WO1998035247A1 - Fibre optique en plastique a coeurs multiples pour la transmission des signaux optiques - Google Patents

Fibre optique en plastique a coeurs multiples pour la transmission des signaux optiques Download PDF

Info

Publication number
WO1998035247A1
WO1998035247A1 PCT/JP1998/000475 JP9800475W WO9835247A1 WO 1998035247 A1 WO1998035247 A1 WO 1998035247A1 JP 9800475 W JP9800475 W JP 9800475W WO 9835247 A1 WO9835247 A1 WO 9835247A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
sheath
resin
optical fiber
plastic optical
Prior art date
Application number
PCT/JP1998/000475
Other languages
English (en)
French (fr)
Inventor
Shinichi Teshima
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to US09/331,884 priority Critical patent/US6188824B1/en
Priority to JP53413398A priority patent/JP4102448B2/ja
Priority to DE19881950T priority patent/DE19881950B4/de
Publication of WO1998035247A1 publication Critical patent/WO1998035247A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres

Definitions

  • Multi-core plastic optical fiber for optical signal transmission Multi-core plastic optical fiber for optical signal transmission
  • the present invention relates to an optical fiber. More specifically, it relates to a plastic optical fiber used as an optical communication transmission medium installed near a device such as a personal computer, an audiovisual device, an exchange, a telephone, an OA device, and a F ⁇ device.
  • a device such as a personal computer, an audiovisual device, an exchange, a telephone, an OA device, and a F ⁇ device.
  • Multi-core plastic optical fiber for communication is composed of a plurality of core fibers composed of a transparent core resin with a high refractive index as shown in International Publication No. WO 95/3324, and a sheath resin around it.
  • Multi-core plastic optical fiber bare wires surrounded by a single core, or each core fiber is surrounded by a sheath resin to form a sheath layer, and they are surrounded by a third resin to form a single core.
  • Multi-core plastic optical fiber cables coated with wires or sheathing resin were used for optical signal transmission.
  • Japanese Patent Application Laid-Open Nos. Sho 62-2-2'04209, JP-A-4-512206, and JP-A-5-2102 disclose covering a sheath around a core in two layers in a single-core plastic optical fiber. 4 9 3 2 5. However, since these are not single-core plastic optical fibers but single-core optical fibers, the core diameter is large, and the light retention due to bending is insufficient.
  • the numerical aperture of the optical fiber (hereinafter, referred to as fiber NA) is reduced to widen the signal transmission band, the numerical aperture of the incident light source (hereinafter, referred to as LNA)
  • the optical fiber is larger than the fiber NA, Since the Aiva does not receive or output the light at the portion that enters beyond the fiber NA, there is a problem that the amount of received light is small.
  • Another problem is the light loss that occurs when bending plastic optical fibers.
  • the multi-core plastic optical fiber has the feature that the optical loss due to bending can be reduced because the diameter of each core can be made very small.However, if the fiber NA is reduced, the optical loss due to bending is reduced. There was a problem that it became too big to ignore. Even when the fiber NA is relatively large, a plastic optical fiber with a smaller optical aperture for bending is preferred ⁇
  • An object of the present invention is to provide a plastic optical fiber having a desired transmission band, which receives a larger amount of light from a light source and has a smaller optical loss even when a plastic optical fiber is bent. Things. Disclosure of the invention
  • each core fiber is surrounded by a transparent first sheath resin having a refractive index lower than the refractive index of the resin.
  • the signal transmission manufactured by the composite spinning method so that the outer periphery of the core fiber and the first sheath layer is surrounded by the second sheath resin having a lower refractive index than that of the first sheath resin so that they become a bundle of fibers.
  • Multi-core plastic optical fiber for use, where each core and the first sheath resin layer surrounding it are islands, and the second sheath resin layer is a multi-core plastic optical fiber or sea A multi-core structure in which the core and the first sheath resin layer surrounding it and the second sheath resin layer surrounding it are islands, and the fourth resin is fused to each other while surrounding the islands to form a sea.
  • Plastic optical fiber and sodium There core resin and the first sheath resin was measured at 2 0 ° C in D lines, the refraction of the second sheath resin n C ORE, n CLAD l, when the n CLAD 2, the fiber NA is the following relationship It is a multi-core plastic optical fiber.
  • the difference between the multi-core plastic optical fiber of the present invention and the conventional multi-core plastic optical fiber is that the multi-core plastic optical fiber has a structure of a multi-core plastic optical fiber using two sheaths having different refractive indexes in steps.
  • the first sheath is a sheath directly surrounding the core, and its requirement is that it has a refractive index corresponding to the band of the optical fiber. That is, the bandwidth depends on the fiber ⁇ , and the fiber NA is defined by the square root of the difference between the square of the refractive index of the core and the square of the refractive index of the sheath. The smaller the fiber NA, the wider the bandwidth.
  • the effect of arranging the further second sheath here is very complicated, but it can be generally considered as follows. That is, in the arrangement of the core, the first layer sheath around it, and the second layer sheath around it, a sheath resin is selected such that the refractive index of the core> the refractive index of the first sheath> the refractive index of the second sheath. Then, as the light incident on the plastic optical fiber travels through the fiber, it initially has a relatively large angle to the fiber axis, as if it were an optical fiber consisting of a core and a second sheath.
  • the light propagates at a small angle. That is, light incident on the core at a relatively large angle passes through the first sheath layer and travels through the optical fiber while being totally reflected at the boundary surface of the second sheath layer.
  • the first sheath layer is not as transparent as the core resin, However, it is considered that such light is absorbed or lost, or is converted into useful light that is totally reflected by the first sheath layer due to some change in the reflection angle.
  • Light incident at a wide angle is considered to be a multi-core plastic optical fiber that is converted into light within the specified NA consisting of the core and the first sheath while passing through a fiber of about 5 m.
  • an optical fiber with only one sheath is regarded as a fiber with a constant fiber NA, whereas a fiber consisting of the first and second sheaths has a smaller fiber NA in the longitudinal direction. It can be said that it is an optical fiber.
  • the structure of the optical fiber of the present invention is such that seven or more core fibers and each of the core fibers are surrounded by a first sheath resin, and further surrounded by a second sheath resin to form a bundle of fibers.
  • each core and the first sheath resin layer surrounding it as islands as shown in Fig. 1 are islands, and the second sheath resin layers are fused together to form a sea.
  • It is a core plastic optical fiber.
  • a structure using a fourth resin is used to increase the heat resistance of the optical fiber, increase the chemical resistance, or provide the light shielding properties of individual cores. Is also possible. That is, as shown in FIG. 2, each core, the first sheath resin layer surrounding it, and the second sheath resin layer surrounding it further form islands, and the fourth resin fuses with each other while surrounding the islands.
  • the diameter of the core, the diameter of the bare multi-core optical fiber, etc. at least seven cores are circular.
  • the arrangement is possible and preferable, and the maximum number is not particularly limited, but is about 10000 from the viewpoint of easy production of the fiber. More preferably, the number is from 19 to 100.
  • Core diameter 5 m ⁇ 50 It is up to about 0 m. More preferably, it is 20 ⁇ m to 250 5m, and still more preferably, 50 ⁇ IT! ⁇ 200 m.
  • the ratio of the total cross-sectional area of the core to the cross-sectional area of the bare multi-core optical fiber, the total cross-sectional area of the first sheath layer, and the total cross-sectional area of the second sheath layer or the fourth resin layer is as follows. Is about 60% to 90%, more preferably 70% to 85%. If it is less than 60%, the amount of light decreases. At 90% or more, the core becomes deformed from a circular shape, and transmission loss increases.
  • the cross-sectional area of the first sheath layer is 3% to 30%, more preferably 5% to 15%. The reason is that the first sheath layer has a role as a light transmission layer in addition to a role as a reflection layer.
  • the first sheath layer is disposed in a substantially ring shape around the core and has a thickness of about 0.8 ⁇ m to 3 m and can be thinly coated.
  • the ratio of the total cross-sectional area of the second sheath layer is 3% to 30%. It is more preferably 7% to 20%. It is preferable that the thickness is about l ⁇ m to 20 ⁇ m.
  • the ratio of the total cross-sectional area of the fourth resin layer is 3% to 30%. More preferably, it is 7% to 20%. It is preferable that the thickness is about l ⁇ m to 20 ⁇ m.
  • the diameter of the bare wire composed of the core fiber, the first sheath, the second sheath and, in some cases, the fourth resin layer is preferably 0.1 mm to 3 mm. 0.1 mm or less It is too thin and difficult to handle. If it exceeds 3 mm, it becomes rigid and difficult to handle. More preferably, it is 0.5 to 1.5 mm.
  • Various transparent resins can be used as the core resin in the multi-core plastic optical fiber used in the present invention.
  • a known resin of the polymethyl methacrylate type can be used.
  • the copolymerizable components include methyl acrylate, ethyl acrylate, and acrylic acid.
  • Acrylates such as butyl, ethyl methacrylate, propyl methacrylate, methacrylates such as hexyl methacrylate, and maleimides such as isopropyl maleide;
  • acrylic acid methyl acrylate, styrene and the like, and one or more of these can be appropriately selected and copolymerized.
  • styrene resins can be used.
  • a styrene homopolymer / styrene-methyl methacrylate copolymer may be used.
  • polycarbonate resins can be used. Polycarbonate resins are characterized by high heat resistance and low hygroscopicity.
  • CYT0P® resin manufactured by Asahi Glass, TEFL TEN AF® resin manufactured by DuPont, and ARTON @ resin manufactured by JSR which are proposed as core resins for plastic optical fibers, can also be used as the core resin. It is.
  • the refractive index is the refractive index of the core resin, the first sheath resin, and the second sheath resin measured at 20 ° C with the sodium D line at n C0 RE , n
  • CLAD is n C LA D 2
  • multi-core plastic optical fiber When the numerical aperture fiber NA is specified by the following equation,
  • Fiber NA (n C0RE 2 ⁇ n C LAD 1 2 ) ° 5
  • the value of the fiber ⁇ is about 0.1 to 0.6, but the effect of the present invention is that the lower the fiber NA, the lower the refractive index of the first sheath and the second sheath. The greater the difference, the greater. They are especially prominent in multi-core plastic optical fibers with a fiber NA of 0.45 or less and n CLAD1-n CLAD2 ⁇ 0.02.
  • a conventional single-sheath optical fiber when the fiber NA is as low as 0.45, high-speed transmission is possible, but the amount of light received from the light source is reduced, and the optical fiber is bent.
  • the loss of light quantity at the time increases, the surprisingly remarkable effect can be achieved by using the two-layer sheath structure of the present invention.
  • the first sheath resin is as follows: If the core resin is an MMA resin, a resin containing fluoroalkyl methacrylate, a vinylidene fluoride resin, or a vinylidene fluoride resin Alloys, such as a mixture of a methacrylate resin and a methacrylate resin.
  • fluoroalkyl methacrylate resins are preferred because they have no crystallinity and do not change loss at high temperatures.
  • Fluoroalkyl methacrylate is a compound of the following formula.
  • methacrylate monomers such as methyl methacrylate and ethyl methacrylate, methyl acrylate, ethyl acrylate, and butyl acrylate are used as high refractive index components.
  • copolymers of various combinations with acrylate monomers such as methacrylate and acrylate.
  • vinylidene fluoride resins include copolymers of vinylidene fluoride and hexafluoroacetone, or ternary or higher copolymers obtained by adding trifluoroethylene or tetrafluoroethylene to these binary components. Polymer.
  • a copolymer of vinylidene fluoride and hexafluoropropene, or a terpolymer of ternary or higher obtained by adding trifluoroethylene-tetrafluoroethylene to these binary components and a copolymer of vinylidene fluoride and A binary copolymer of tetrafluoroethylene, particularly a copolymer composed of 80 mol% of vinylidene fluoride and 20 mol% of tetrafluoroethylene is preferable.
  • Other examples include binary copolymers of vinylidene fluoride and trifluoroethylene. And even these It is better to use an alloy in which a vinylidene fluoride resin and a methacrylate resin are mixed.
  • the methacrylate resin examples include a homopolymer of methyl methacrylate and methyl methacrylate, or a copolymer mainly composed of these, and methyl methacrylate and butyl acrylate.
  • Alkyl acrylates such as relays and alkyl methacrylates may be copolymerized.
  • a resin composition containing no fluorine component such as a copolymer of methyl methacrylate and butyl acrylate can be used as the sheath resin when the fiber NA is lower than 0.25.
  • the refractive index of the first sheath resin is selected to adjust the fiber NA, but the first sheath is required not only to function as a light reflection layer but also to function as a light transmission layer.
  • the second sheath resin needs to be a sheath having a lower refractive index than the first sheath resin.
  • the sheath resin is preferably a fluoroalkyl methacrylate resin similar to the first resin, a vinylidene fluoride resin, or a low-refractive index resin such as Teflon AF® manufactured by Dubon or Cytop® manufactured by Asahi Glass. More preferred is vinylidene fluoride resin.
  • vinylidene fluoride resin is flexible and mechanically strong, and the first sheath is made of fluoroalkyl methacrylate resin or vinylidene fluoride resin. -In the case of a mixture of heat-resistant resins, it is possible to obtain a multi-core plastic optical fiber that adheres well to them and is mechanically strong.
  • vinylidene fluoride resins are vinylidene fluoride and tetrafluoroethylene copolymers and vinylidene fluoride.
  • Hexafluoropropene copolymer with ride vinylidene fluoride and hexafluoroacetone copolymer, vinylidene fluoride and trifluoroethylene copolymer Vinylidene fluoride, trifluoroethylene and hexafluoroacetone copolymer vinylidene Fluoride, tetrafluoroethylene and hexafluoroacetone copolymers, vinylidene fluoride lids and trifluoroethylene and hexafluoroacetone copolymers, vinylidene fluoride and tetrafluoroethylene and hexafluorolop pen copolymers, etc. I can give it.
  • the fourth resin includes vinylidene fluoride resin, nylon 12 resin, polycarbonate resin, and PMMA resin.
  • a resin having a lower refractive index than the second sheath resin to form a multi-core plastic optical fiber having a three-layer sheath structure is also included in the present invention.
  • the multi-core plastic optical fiber of the present invention is manufactured by a composite spinning method that can simultaneously melt-mold a core resin, a first sheath resin, and a second sheath resin. This is because, when multi-core plastic optical fibers are used for communication, the relative positions of the cores in a multi-core plastic optical fiber are kept uniform everywhere in the fiber cross section, and each core has a high density. This is because it is important that they are arranged without gaps and that the transmission loss of each core be kept as low as possible.
  • the center of the light emitting element corresponds to the center group of the central part of the multi-core plastic optical fiber, which is located at the opposite end face, at the center of the light receiving element. This is because responding to sections is very effective in increasing the light coupling efficiency. For this reason, the multi-fiber plastic optical fiber of the present invention is obtained by later bundling a single-fiber plastic optical fiber. The thing is completely different.
  • FIGS. 3 and 4 show examples of the structure of the composite spinning die used in the composite spinning method.
  • FIG. 3 shows a composite spinning die used to manufacture a multi-core plastic optical fiber having the structure shown in FIG. 1, wherein a molten core resin, a first sheath resin, and a second sheath resin are introduced at the same time. A core structure is formed.
  • FIG. 4 shows a composite spinning die used to manufacture a multi-core plastic optical fiber having the structure shown in FIG. 2, and includes a molten core resin, a first sheath resin, a second sheath resin, and a fourth resin. Are introduced at the same time to form a multi-core structure strand. The strands of these multifilamentary structures are stretched about 1.2 to 3 times and heat-treated to obtain a multifilament plastic optical fiber bare wire having a desired diameter.
  • the multi-core plastic optical fiber bare wire of the present invention is produced.
  • polyethylene, ethylene-vinyl alcohol copolymer, ethylene-vinyl acetate copolymer, polypropylene, and polyvinyl chloride are placed on this bare wire. It is usually used as a cable after being coated with a polyurethane resin, a polyamide resin, a polyester resin, a vinylidene fluoride resin, a silicon resin, a bridge polyolefin resin, a cross-linked polyvinyl chloride resin, or the like.
  • the coupling efficiency between the light source and the light receiving element in communication is high, and particularly small.
  • coupling with other optical fibers of an aperture can be advantageously performed.
  • the fixing of the fiber to the connector at the end can be easily performed by caulking the coating material or using an adhesive, as in the case of handling a large-diameter plastic optical fiber with one core.
  • Such a method of using a multi-core plastic optical fiber can be used as a signal transmission medium for optical communication. That's it Such devices include personal computers, audiovisual devices, exchanges, telephones, OA devices, and FA devices, which are connected to the optical data link. No, installed on the desk. Taking the Sokon LAN as an example, the interface cable connected to the LAN cable is extremely flexible, but is ideal for such applications. In addition, there are many places where it can be applied to portable audiovisual equipment and FA equipment. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic view showing a cross section of a multi-core plastic optical fiber of the present invention (a multi-core plastic optical fiber for optical signal transmission in which a core fiber and a first sheath layer are islands and a second sheath layer is sea).
  • FIG. 2 is a cross-sectional view of the multi-core plastic optical fiber of the present invention (a multi-core plastic optical fiber for optical signal transmission in which the core fiber and the first sheath layer and the second sheath layer are islands and the fourth resin is the sea).
  • FIG. 2 is a cross-sectional view of the multi-core plastic optical fiber of the present invention (a multi-core plastic optical fiber for optical signal transmission in which the core fiber and the first sheath layer and the second sheath layer are islands and the fourth resin is the sea).
  • FIG. 3 shows a composite spinning die for producing a multi-core plastic optical fiber of the present invention (a multi-core plastic optical fiber for optical signal transmission having a core fiber and a first sheath layer as islands and a second sheath layer as sea).
  • FIG. 3 shows a composite spinning die for producing a multi-core plastic optical fiber of the present invention (a multi-core plastic optical fiber for optical signal transmission having a core fiber and a first sheath layer as islands and a second sheath layer as sea).
  • FIG. 4 shows the production of a multi-core plastic optical fiber of the present invention (a multi-core plastic optical fiber for optical signal transmission in which the core fiber and the first sheath layer and the second sheath layer are islands and the fourth resin is the sea).
  • FIG. 2 is a schematic view showing a composite spinning die.
  • Refractive index n c as core resin re 1.492 polymethyl methacrylate resin with melt flow index of 230 ° C Load 3.8 kg g Orifice diameter 2 mm, length 8 mm, 1.5 g / 10 min was used. 17% FMA, 14%, 4FM, 6%, 3FMA, 6%, MMA, 74% are cast and polymerized as the first sheath, and the menoleto flow index at a load of 3.8 kg at 230 ° C is 3 1 g / 10 min The refractive index was 1.47.
  • the second sheath is a copolymer of vinylidene fluoride (80 mol%) and tetrafluoroethylene (20 mol%).
  • the melt flow index measured under the same conditions is 30 g / 10 minutes, and the refractive index is 1.
  • a 402 resin was used.
  • As the composite spinning die a die having 91 cores, each of which has a first sheath and a second sheath covering two cores as shown in Fig. 3, was used. The composite spinning die is supplied so that the ratio of the volume of the core resin to the volume of the first sheath resin and the second sheath resin is 80:10:10, and the strand discharged from the die is supplied. It converged and was stretched twice to produce a two-sheath multi-core plastic optical fiber bare fiber with a diameter of 1.22 mm. The fiber NA of this multi-core optical fiber is 0.26.
  • the bare wire was coated with black polyethylene to obtain a 2.2 mm double-sheath multi-core plastic optical fiber cable.
  • the transmission loss of this multi-core plastic optical fiber was measured at LNA 0.15 at a wavelength of 65 nm, and was 182 dBZ km.
  • Monochromatic light with a wavelength of 650 ⁇ m was incident on the double-sheath multi-core plastic optical fiber at various L ⁇ ⁇ , and the amount of light emitted through a 2 m fiber was measured.
  • the amount of emitted light was measured in the same manner.
  • the output light power ratio of the double-sheath multi-core plastic optical fiber to the single-sheath multi-core plastic optical fiber (power multiple of the output light of the double-sheath multi-core plastic optical fiber compared to the single-sheath multi-core plastic optical fiber) See Table 1.
  • this double-sheath multi-core plastic optical fiber was cut to a length of 2 m, and an LED light having a wavelength of 65 nm and an LNA of 0.6 or more was made incident.
  • Table 2 shows the results of measuring the change in the amount of light caused by winding one turn around the rod. Comparative Example 1
  • the same composite spinning die was supplied with the first sheath resin instead of the second sheath resin to produce a 91-core single-sheath multi-core plastic optical fiber.
  • the volume ratio of the core to the first sheath is 80:20, and a single-sheath multi-core plastic optical fiber with a diameter of 1.22 mm is manufactured.
  • black polyethylene with an outer diameter of 2.2 mm 1 A multi-sheath plastic optical fiber cable was obtained.
  • the transmission loss of this multi-core plastic optical fiber was 181 nm BZkm at a wavelength of 650 nm and measured with LNA 0.15.
  • this single-sheath multi-core plastic optical fiber was cut to a length of 2 m, and LED light having a wavelength of 65 nm and an LNA of 0.6 or more was injected.
  • Table 2 shows the results of measuring the change in the amount of light caused by winding one turn around the mm rod.
  • the core resin has a refractive index n c . re 1.492 polymethyl methacrylate resin with melt tip index of 230 ° C Load 3.8 kg g 1.5 gZ 10 with orifice diameter 2 mm and length 8 mm Minutes were used.
  • n c . re 1.492 polymethyl methacrylate resin with melt tip index of 230 ° C Load 3.8 kg g 1.5 gZ 10 with orifice diameter 2 mm and length 8 mm Minutes were used.
  • As the first sheath 17% FMA, 14%, 4FM, 6%, and 3FMA, 6MMA, 74% were cast and polymerized, and the Menoletov index at 25 ° C and 3.8kg load was 25%.
  • the refractive index was 1.47.
  • the second sheath a resin made of a copolymer of vinylidene difluoride of 80 mol% and tetrafluoroethylene of 20 mol% and having a melt flow index of 30 g / 10 min measured under the same conditions was used.
  • the refractive index was 1.402.
  • the composite spinning die a die having 37 cores, each of which had a first sheath and a second sheath, each of which was coated in two layers, as shown in FIG. 3, was used. The composite spinning die is supplied so that the ratio of the volume of the core resin to the volume of the first sheath resin and the volume of the second sheath resin is 80:10:10, and the strand discharged from the die is supplied.
  • a double-sheath multi-core plastic optical fiber bare fiber having a diameter of 1.0 mm was manufactured.
  • the fiber NA of this multi-core optical fiber is 0.26.
  • the bare wire was coated with black polyethylene to obtain a 2.2 mm two-sheath multi-core plastic optical fiber cable.
  • the transmission loss of this multi-core plastic optical fiber was measured at LNA 0.15 at a wavelength of 650 nm and found to be 140 dB / km.
  • the double-sheath, multi-core plastic optical fiber was irradiated with monochromatic light of 650 ⁇ m using various LNAs, and the amount of light emitted through the 2 m fiber was measured. The amount of light emitted from the single-sheath multi-core plastic optical fiber obtained in 2 was measured in the same manner.
  • Single sheath multi-core plastic optical fiber Table 3 shows the output light power magnification for single-sheath multi-core plastic optical fiber (power multiple of the output light of double-sheath multi-core plastic optical fiber compared to single-sheath multi-core plastic optical fiber).
  • the two-sheath multi-core plastic optical fiber cable was cut to a length of 2 m, and an LED light having a wavelength of 65 nm and an LNA of 0.6 or more (photom 205 made by HAKTRON ICS) was injected.
  • One turn was wrapped around a rod with a radius of 10 mm at the center of the fiber length, and the change in light amount due to the winding was measured. Table 4 shows the results.
  • the multi-core plastic optical fiber of the present invention has a large output light quantity even at a fiber length of 2 m or a fiber length of 50 m. Comparative Example 2
  • Example 2 the same composite spinning die as in Example 2 was supplied with the first sheath resin instead of the second sheath resin, to produce a 37-core single-sheath multicore plastic optical fiber.
  • the core-to-sheath volume ratio was 80:20, and a single-sheath multi-core plastic optical fiber with a diameter of 1.0 mm was manufactured.
  • the outer diameter of 2.2 mm was made of black polyethylene in the same manner as in Example 2.
  • a one-sheath multi-core plastic optical fiber cable was obtained.
  • the transmission loss of this multi-core plastic optical fiber was found to be 140 dB / km when measured at LNA 0.15 at a wavelength of 650 nm.
  • this single-sheath multi-core plastic optical fiber cable was cut to a length of 2 m, and the wavelength was 65 nm and the LNA was 0.6 or more.
  • ED light photom205 made by HAKTRON ICS
  • Table 4 shows the results.
  • the core resin has a refractive index n c . re 1.492 polymethyl methacrylate resin with a Menoletov mouth index of 230 ° C Load 3.8 Kg Orifice diameter 2 mm, length 8 mm, 1.5 gZ 10 Minutes were used.
  • n c . re 1.492 polymethyl methacrylate resin with a Menoletov mouth index of 230 ° C Load 3.8 Kg Orifice diameter 2 mm, length 8 mm, 1.5 gZ 10 Minutes were used.
  • As the first sheath 17 FMA 45% by weight, 4 FM20%, and MMA 35% are cast polymerized, and the melt index at a load of 230 kg and a load of 3.8 kg is 35 g / 1. 0 minute
  • a resin having a refractive index of 1.428 was used.
  • the second sheath a resin composed of a copolymer of vinylidene mouth 80% by mole and tetrafluoroethylene 20% by mole and having a melt index of 30 g / 10 minutes measured under the same conditions was used.
  • the refractive index was 1.402.
  • the composite spinning die a die as shown in FIG. 3 having a structure in which each of the cores had 37 cores and each of the cores was covered with a first sheath and a second sheath in two layers was used.
  • the composite spinning die is supplied so that the ratio of the volume of the core resin to the volume of the first sheath resin and the volume of the second sheath resin is 80:10:10, and the strand discharged from the die is supplied.
  • A is 0.43.
  • the transmission loss of this multi-core plastic optical fiber was measured at an incident NA of 0.15 at a wavelength of 650 nm, and was measured at 135 dB / km.
  • this double-sheath multi-core plastic optical fiber cable was cut into a length of 2 m, and a 65 nm LED (HAKTRON ICS phot om 205) with an LNA of 0.6 or more was input.
  • Table 6 shows the results of measuring the change in the amount of light by irradiating one turn around rods with different radii at the center of the length of the optical fiber.
  • the 2m and 50m cables of this double-sheath multi-core plastic optical fiber emit LED light (haktron ICS photom 205) with a wavelength of 65nm and an LNA of 0.6 or more. And the amount of emitted light was measured. Table 7 shows the measurement results.
  • the multi-core plastic optical fiber of the present invention has a large output light quantity even at a fiber length of 2 m or a fiber length of 50 m. Comparative Example 3
  • Example 3 the same composite spinning die as in Example 3 was supplied with the first sheath resin instead of the second sheath resin to produce a 37-core single-sheath multi-core plastic optical fiber.
  • the volume ratio of the core to the first sheath was 80:20, and a single-sheath multi-core plastic optical fiber with a diameter of 1.0 mm was manufactured.
  • 2.2 mm of black polyethylene was used.
  • a single-sheath multi-core plastic optical fiber cable having the following outer diameter was obtained.
  • the transmission loss of this multi-core plastic optical fiber was measured at LNA 0.15 at a wavelength of 65 nm, and was found to be 135 dB / km.
  • Table 6 shows the results of measuring the change in the amount of light caused by making a light beam with a LNA of 0.6 or more incident on it and wrapping it around a rod with a different radius at the center of the optical fiber once. Shown in
  • the 2m and 50m cables of this single-sheath multi-core plastic optical fiber are supplied with LED light (HAKTRON ICS photom 205) with a wavelength of 65nm and an incident NA of 0.6 or more. And the amount of emitted light was measured. Table 7 shows the measurement results.
  • Emission light ratio between the double-sheath multi-core plastic optical fiber and the single-sheath multi-core plastic optical fiber of the present invention fiber length 2m650 ⁇ m monochromatic light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

明 細 書
光信号伝送用多芯プラスチック光ファイバ 技術分野
本発明は、 光ファイバに関する。 より具体的には、 パソコンや、 オーディオビジュアル機器、 交換機、 電話、 O A機器 F Α機器な どの機器に近接した部分に設置される光通信伝送媒体として、 使 用されるプラスチック光ファイバに関する。 技術背景
従来の通信用多芯プラスチック光フアイバは国際公開番号 WO 9 5 / 3 2 4 4 2号にあるように屈折率の高い透明な芯樹脂から なる、 複数本の芯繊維と、 その周りを鞘樹脂でとり囲み一まとめ にした多芯プラスチック光ファイバ裸線か、 または芯繊維の各々 を鞘樹脂で取り囲み鞘層となし、 それらを第 3の樹脂で取り囲ん で一まとめにした多芯プラスチック光ファイバ裸線かまたはそれ らをシース用の樹脂で被覆した多芯プラスチック光ファイバケー ブルを光信号伝送用に使用していた。
単芯プラスチック光ファイバにおいて芯の回りに鞘を 2層に被 覆することについては特開昭 6 2— 2' 0 4 2 0 9 , 特開平 4― 5 1 2 0 6 , 特開平 5— 2 4 9 3 2 5に記載されている。 しかし、 これらは、 多芯プラスチック光ファイバではなく、 単芯の光ファ ィバであるため、 芯の直径が大きく、 曲げによる光保持率は不十 分なものであった。 即ち従来の多芯プラスチック光フアイバにお いては信号伝送帯域を広く しょうとして光ファイバの開口数 (以 下ファイバ N Aと記す) を低く した場合、 入射光源の開口数 (以 下 L NAと記す) がファイバ N Aより大きい場合には、 その光フ アイバは、 そのファイバ N Aを越えて入射する部分の光を受光出 来ないので、 受光量が小さいという問題があった。 もう一つの問 題は、 プラスチック光ファイバを曲げた時に生じる光ロスの問題 である。 多芯プラスチック光ファイバは個々の芯の直径を非常に 小さ くできるので、 曲げによる光ロスが小さくできるというのが 特長であるが、 それにもかかわらずフアイバ N Aが小さ くなると、 曲げによる光ロスは大きくなり無視出来なくなるという問題があ つた。 ファイバ N Aが比較的大きい場合でも、 曲げに対する光口 スがより小さいプラスチック光ファイバはより好ましいものであ る ο
本発明は、 所望の伝送帯域を有するプラスチック光ファイバに おいて、 光源からの受光量がより大きく、 かつ、 プラスチック光 フアイバを曲げても光ロスのより少ないプラスチック光ファイバ、 の提供を目的とするものである。 発明の開示
本発明は透明な芯樹脂からなる、 7本以上の芯繊維と、その各々 の芯繊維の周りを上記樹脂の屈折率よりも低い屈折率を有する透 明な第 1鞘樹脂でとり囲み、 各々の芯繊維と第 1鞘層との外側を、 第 1鞘樹脂より屈折率の低い第 2鞘樹脂で取り囲みそれらが一ま とめの繊維状になるように複合紡糸法によって製造された信号伝 送用多芯プラスチック光フアイバであり、 個々の芯とそれを取り 囲む第 1鞘樹脂層を島とし、 第 2鞘樹脂層は互いに融着して海を 形成する多芯プラスチック光ファイバや或は個々の芯とそれを取 り囲む第 1鞘樹脂層と、 さらにそれを取り囲む第 2鞘樹脂層とを 島とし、 さらに第 4の樹脂が島を取り囲みつつ互いに融着して海 を形成する多芯プラスチック光ファイバであり、 またナト リウム の D線で 2 0°Cで測定した芯樹脂及び第 1鞘樹脂、 第 2鞘樹脂の 屈折 を n C O R E, n C L A D l, n C L A D 2としたとき、ファイバ N Aが次式の関係にある多芯プラスチック光ファイバである。
NA≤ 0. 4であり、 かつ、 n C LAD 1— nC LAD 2 ≥ 0. 0 2 但し、 ファイバ NA= ( nC O R E 2 - n C LAD 1 2 ) °· 5
即ち、 本発明の多芯プラスチック光ファイバが、 従来の多芯プ ラスチック光フアイバに比べて異なるところは屈折率が段階的に 異なる二つの鞘を用いた多芯プラスチック光ファイバの構造とな つている事である。 ここで、 第 1の鞘は芯を直接取り囲む鞘であ り、 その要件としては、 光ファイバの帯域に応じた屈折率を有し ている事が必要である。 即ち、 帯域はファイバ Ν Αに依存し、 フ アイバ N Aは芯の屈折率の 2乗と鞘の屈折率の 2乗の差の平方根 で規定され、 ファイバ N Aが小さい程広い帯域が得られる。 しか し、 ここに更にもう一層の第 2の鞘を配置することの効果は、 非 常に複雑であるが、 概ね次のように考えられる。 即ち、 芯とその 周りの第 1層鞘とさらにその周りの第 2層鞘の配置において、 芯 の屈折率 >第 1鞘の屈折率 >第 2鞘の屈折率となるような鞘樹脂 を選択すれば、 プラスチック光ファイバに入射した光が、 フアイ バの中を進行するにつれ、 最初は、 あたかも、 芯と第 2鞘からな る光ファイバであるかのごとく、 ファイバ軸に対し比較的大きな 角度で進行する光も伝播させていく力^ 光が進行するにつれ (フ アイバの距離が長くなるにつれ) 、 ついには芯と第 1鞘からなる 光ファイバであるかのようにファイバ軸に対してより小さな角度 で伝播する光と化していく ものと考えられる。 即ち、 比較的大き な角度で芯に入射した光は、 第 1鞘層を貫通して行き、 第 2鞘層 の境界面で全反射しながら光ファイバ内を進行して行く。 しかし、 第 1鞘層は芯樹脂ほどの光透過性はないので、 このような繰り返 しのうち、 そのような光は吸収消失するか、 或は何らかの反射角 度の変化により、 第 1鞘層で全反射して行く有益な光に変換され るものと考えられる。 広角度で入射した光も、 5 m程度のフアイ バを通過するうちには芯と第 1鞘からなる規定の N Aにおさまる 光に変換していく多芯プラスチック光ファイバになるものと考え られる。 その意味では、 1つの鞘だけの光ファイバが一定フアイ バ N Aのファイバと見做されるのに対し、 第 1鞘と第 2鞘からな るファイバは、 長手方向にファイバ N Aが小さくなるような光フ ァイノくということができる。
本発明の光フアイバの構造は、 7本以上の芯繊維とその各々の 芯繊維の周りを第 1鞘樹脂で取り囲み、 さらにその周りを第 2鞘 樹脂でとりかこみそれらが一まとめの繊維状になった構造である 力 即ち、 第 1図に示すような個々の芯とそれを取り囲む第 1鞘 樹脂層を島とし、 第 2鞘樹脂層は互いに融着して海を形成する構 造の多芯プラスチック光ファイバである。 さらに特殊な場合とし て、 光ファイバの耐熱性をあげたり、 耐薬品性をあげたり、 個々 の芯の光遮蔽性を付与するなどなどの目的で、 第 4の樹脂を用い た構造にすることも可能である。 即ち第 2図に示すように、 個々 の芯とそれを取り囲む第 1鞘樹脂層とさらにそれを取り囲む第 2 鞘樹脂層を島とし、 さらに第 4の樹脂が島を取り囲みつつ互いに 融着して海を形成した多芯プラスチック光ファイバである。
本発明の多芯プラスチック光フアイバにおいて、 芯の数や芯の 直径、 多芯プラスチック光ファイバ裸線の直径などについて、 好 ましい適用範囲について述べれば、 芯の数としては最低 7個が円 形配置が可能となり好ましく、 最大数については、 特に制限はな いがフアイバの製造の容易さから 1 0 0 0 0ケ程度である。 より 好ましくは 1 9 ケ〜 1 0 0 0ケである。 芯の直径は 5〃 m ~ 5 0 0 m程度までである。 より好ましくは 2 0〃 m~ 2 5 0 〃 mで あり、 さらに好ましくは 5 0 〃 IT!〜 2 0 0〃 mである。 芯の直径 は小さければそれだけ曲げによる光量ロスは小さくなるのだが、 光ファイバとしての伝送損失が大きくなるから本発明の 2層鞘構 造にして比較的曲げによる光ロスを低減させ、 その分を芯の直径 を大きくするように仕向け、 プラスチック光ファイバの伝送損失 値を下げるのが好適である。
次に多芯プラスチック光ファイバ裸線断面積に対する芯の全断 面積と第 1鞘層の全断面積と第 2鞘層或は第 4樹脂層の全断面積 の比率についてのベれば、 芯の比率は 6 0 %〜 9 0 %程度、 より 好ましくは 7 0 %〜 8 5 %である。 6 0 %未満では光量が少なく なる。 9 0 %以上では、 芯が円形から変形してく るので伝送損失 が大きくなる。 第 1鞘層の断面積は 3 %〜 3 0 %、 より好ましく は 5 %〜 1 5 %である。 この理由は、 第 1鞘層は反射層としての 役割の他に、 光透過層としての役割があり、 この層があまり厚す ぎると、 光吸収ロスが大きくなる。 そのような観点から、 第 1鞘 層は芯の回りをほぼリ ング状に配置されその厚さが 0. 8 〃 m〜 3 m程度に、 薄く被覆できるのが好ましい。 第 2鞘層の全断面 積の比率は、 3 %〜 3 0 %である。 より好ましくは 7 %〜 2 0 % である。 その厚さは l 〃 m〜 2 0〃 m程度が確保されているのが 好ましい。 さらに、 第 4樹脂層を配置した構造の場合には第 4樹 脂層の全断面積の比率は 3 %〜 3 0 %である。 より好ま しく は 7 %~ 2 0 %である。 その厚さは l 〃 m〜 2 0〃 m程度が確保さ れているのが好ましい。
本発明の多芯プラスチック光ファイバにおける、 芯繊維と第 1 鞘と第 2鞘と場合によっては第 4樹脂層から構成される裸線の直 径としては 0. 1 mm〜 3 mmが好ましい。 0. 1 mm以下では 細過ぎて扱いずらく、 3 mmを越えると剛直になり扱いずらくな る。 より好ましくは、 0. 5〜 1. 5mmである。
次に本発明の多芯プラスチック光ファイバに使用する芯, 第 1 鞘, 第 2鞘樹脂について説明する。
本発明に使用する多芯プラスチック光ファイバは芯樹脂として は、 各種の透明樹脂が使用できる。 特に好ましい樹脂としてはポ リメチルメタク リ レー ト系の公知の樹脂が使用できる。 例えばメ チルメタク リ レー ト単独重合体や、 メチルメタク リ レー トを 5 0 重量%以上含んだ共重合体で、 共重合可能な成分として、 ァク リ ル酸メチル、 アク リル酸ェチル、 アク リル酸ブチルなどのァク リ ル酸エステル類、 メタク リル酸ェチル、 メタク リル酸プロピル、 メタク リル酸シク口へキシルなどのメタク リル酸エステル類、 ィ ソプロピルマレイ ミ ドのようなマレイ ミ ド類、 ァク リル酸、 メ夕 ク リル酸、 スチレンなどがあり、 これらの中から一種以上適宜選 択して共重合させることができる。 その他好ましい樹脂として、 スチレン系樹脂が使用できる。 例えばスチレン単独重合体ゃスチ レン—メチルメタク リ レー ト共重合体などである。 その他好まし い樹脂として、 ポリカーボネー ト系樹脂が使用できる。 ポリカー ボネ一 ト系樹脂は耐熱性が高いこと、 及び吸湿性が低いという特 徴を有する。 そのほかプラスチック光ファイバの芯樹脂として提 案されている、旭硝子社製 C YT 0 P®樹脂やデュポン社製 T E F L〇N AF®樹脂、 J S R社製ァー トン@樹脂なども芯樹脂として も使用可能である。
次に芯と第 1鞘樹脂の関係について述べる。 まず屈折率である カ^ ここで屈折率は、 ナト リウムの D線で 2 0°Cで測定した芯樹 脂及び第 1鞘樹脂、第 2鞘樹脂の屈折率をそれぞれ、 n C0 R E, n C L A Dい n C LA D 2としたとき、 多芯プラスチック光ファイバの 開口数ファイバ N Aを次式で規定した場合、
ファイバ NA= ( nC0RE 2 ― n C LAD 1 2) °· 5
本発明においてはフアイバ Ν Αの値としては 0. 1〜 0. 6程度 を対象としているが、 本発明の効果はファイバ N Aが低ければ低 いほど、 そして第 1鞘と第 2鞘の屈折率の差が大きいほど大きい。 それらが特に顕著になるのはファイバ NAが 0. 4 5以下であり、 かつ n CLADl - n CLAD2 ≥ 0. 0 2の多芯プラスチック光フ アイバである。 従来の単一鞘の光ファイバにおいては、 ファイバ NAが 0. 4 5のように低い場合、 高速伝送が可能になるかわり に、 光源からの受光量が小さ くなり、 かつ、 光ファイバを曲げた 時の光量ロスが大きくなるが、 本発明の 2層鞘構造にすれば、 驚 く ほど著しい効果を上げることができる。
さて第 1鞘樹脂として具体的に例をあげれば、 芯樹脂が MMA 系樹脂の場合であれば、 フルォロアルキルメタク リ レー トを含む 樹脂やビニリデンフロラィ ド系樹脂やビニリデンフロラィ ド系樹 脂とメタク リ レ— ト系樹脂を混合したァロイなどである。 特に通 信用途ではフルォロアルキルメタク リ レー ト樹脂が結晶性がなく、 高温でのロスの変化もなく好ましい。 フルォロアルキルメタク リ レー トとしては次式の化合物である。
C H 3
I
CH 2 = C - C OO (CH 2 ) n (C F 2 ) m C F 2 X n = 1 , 2
m = 1〜 1 1までの整数 X = H , F
これらで示されるフルォロアルキルメタク リ レー トモノマの 1種 類以上と、 他の共重合可能なフルォロアルキルァク リ レー トゃァ ルキルメタク リ レー トゃアルキルァク リ レー トなどとの共重合体 である。 さらに具体的に例をあげれば、 フルォロアルキルメタク リ レー トとしては、 ト リフロォ口ェチルメタク リ レ一 ト、 テトラ フルォロプロピルメタク リ レー ト、 ペン夕フルォロプロピルメ夕 ク リ レー ト、 ヘプタデカフルォロデシルメタク リ レー ト、 ォクタ フルォロプロペンチルメタク リ レー トなどがあり、 フッ化ァク リ レ一 トモノマーとしては, ト リフルォロェチルァク リ レ一 ト、 テ トラフルォロプロピルァク リ レー ト、 ォクタフルォロペンチルァ ク リ レー トなどがある。 そしてこれらのフッ素系モノマ —の他に、 高屈折率成分として、 メチルメタク リ レー トやェチルメタク リ レ - トなどのメタク リ レー トモノマーゃメチルァク リ レー トゃェチ ルァク リ レー ト、 ブチルァク リ レー トなどのァク リ レー トモノマ —、 メタク リル酸ゃァク リル酸などとのいろいろな組合せによる 共重合体が挙げられる。 ビニリデンフロラィ ド系樹脂として例を 挙げれば、 ビニリデンフロラィ ドとへキサフロロァセ トンの共重 合体、 或いはこれらの 2元成分にさらに、 ト リフロロエチレンや テトラフロロエチレンを加えた 3元以上の共重合体。 さらに、 ビ 二リデンフロラィ ドとへキサフロロプロペンの共重合体、 或いは これらの 2元成分にさらに、 ト リフロロエチレンゃテ トラフロロ ェチレンを加えた 3元以上の共重合体、 さらにビニリデンフロラ イ ドとテトラフロロエチレンの 2元共重合体、 特に、 ビニリデン フロラィ ド 8 0モル%とテトラフロロエチレン 2 0モル%からな る共重合体が好ましい。 その他、 ビニリデンフロラィ ドと ト リ フ ロロエチレンの 2元共重合体などがある。 そしてさらにこれらの ビニリデンフロラィ ド系樹脂とメタク リ レー ト系樹脂を混合した ァロイを使用すると良い。 メタク リ レー ト系の樹脂としては、 メ チルメタク リ レー トゃェチルメタク リ レー トの単独重合体や、 或 いは、 これらを主体とする共重合体であり、 これらにメチルメタ ク リ レー トゃブチルァク リ レー トなどのアルキルァク リ レー トゃ アルキルメタク リ レ— トなどを共重合しても良い。 また、 フアイ バ N Aが 0 . 2 5より も低い場合の鞘樹脂としては、 メチルメタ ク リ レー トとブチルァク リ レー トの共重合体のようにフッ素成分 を含まぬ樹脂組成物も可能である。 さて第 1鞘樹脂は、 ファイバ N Aを調整するために屈折率が調整選択されるが、 さらに第 1鞘 は、 光の反射層というだけではなく、 光透過層としての機能もあ る程度は必要であり、 透明性がより高い方が好ま しく、 その理由 からフルォロアルキルメタク リ レー ト系の鞘ゃビニリデンフロラ ィ ド系樹脂とメタク リ レー ト系樹脂の混合体で透明度の高いもの がより好ましい。 第 2の鞘樹脂は、 第 1鞘樹脂より屈折率が低い 鞘である必要がある。 この屈折率は低ければ低いほど、 本発明に は適している。 鞘樹脂としては、 第 1樹脂と同様なフルォロアル キルメタク リ レー ト系樹脂ゃビニリデンフロラィ ド系樹脂ゃデュ ボン社のテフロン A F ®や旭硝子社製のサイ トップ ®などの低屈折 率樹脂などが好ましく、 より好ましぐはビニリデンフロラィ ド系 樹脂である。 その理由は、 ビニリデンフロラィ ド系樹脂は、 可撓 性があり、 機械的に強度があり、 さらに第 1鞘がフルォロアルキ ルメタク リ レー ト系樹脂やビニリデンフロラィ ド系樹脂とメ夕ク リ レ- ト系樹脂の混合物の場合などの場合には、 それらとよく接 着して機械的にも強固な多芯プラスチック光ファイバが得られる からである。 それらのビニリデンフロライ ド系樹脂は、 ビニリデ ンフロラィ ドとテトラフロロェチレン共重合体やビニリデンフロ ライ ドとへキサフロロプロペン共重合体、 ビニリデンフロラィ ド とへキサフロロァセ トン共重合体、 ビニリデンフロライ ドと ト リ フロロェチレン共重合体ビニリデンフロラィ ドと ト リフロロェチ レンとへキサフロロァセトン共ビニリデンフロラィ ドとテ トラフ ロロエチレンとへキサフロロアセトン共重合体、 ビニリデンフ口 ライ ドと トリフロロエチレンとへキサフロロァセ トン共重合体、 ビニリデンフロラィ ドとテトラフ口ロェチレンとへキサフロロプ 口ペン共重合体などをあげることができる。
さらに第 2図に示す構造を採用する場合の第 4の樹脂について は、 ビニリデンフロラィ ド系樹脂、 ナイロン 1 2樹脂、 ポリ力一 ボネー ト樹脂、 P M M A樹脂などである。 ビニリデンフロライ ド 系樹脂の場合は第 2鞘樹脂より も屈折率の低い樹脂にして、 3層 鞘構造の多芯プラスチック光ファイバとすることも本発明に含ま れる。
本発明の多芯プラスチック光ファイバは芯樹脂と第 1鞘樹脂と 第 2鞘樹脂を同時に溶融成形できる複合紡糸法によって製造され るものである。 というのは、 多芯プラスチック光ファイバを通信 に用いる場合、 多芯プラスチック光ファイバにおいて、 各々芯の 相対的な位置がファイバ断面においてどこでも一様に保たれてい ること、 各々の芯が高密度に隙間なく配置されることと、 さらに 各々芯の伝送損失値が出来るだけ低く抑えられることが重要だか らである。 芯の相対的な位置が保たれることの重要性について言 えば、 発光素子の中心が多芯プラスチック光ファイバの中央部の 芯グループに対応し、 それが反対側の端面において、 受光素子の 中央部に対応していく ことは光の結合効率をあげる上で非常に効 果的であるからである。 この理由から、 本発明の多芯プラスチッ ク光ファイバは、 単芯のプラスチック光ファイバを後で束にした ものとは、 全く異なるものである。
この複合紡糸法に用いる複合紡糸ダイの構造例を第 3図と第 4 図に示す。 第 3図は第 1図の構造の多芯プラスチック光ファイバ' を製造するのに用いられる複合紡糸ダイであり、 溶融した芯樹脂 と第 1鞘樹脂と第 2鞘樹脂が同時に導入されて、 多芯構造体が形 成される。 第 4図は、 第 2図の構造の多芯プラスチック光フアイ バを製造するのに用いられる複合紡糸ダイであり、 溶融した芯樹 脂と第 1鞘樹脂と第 2鞘樹脂と第 4の樹脂がが同時に導入されて、 多芯構造体のス トランドが形成される。 これらの多芯構造体のス トランドは、 1 . 2〜3倍程度に延伸し、 熱処理して所望の直径 の多芯プラスチック光ファイバ裸線が得られる。
このようにして本発明の多芯プラスチック光フアイバ裸線を製 造するが、 この裸線の上にポリエチレン、 エチレン—ビニルアル コール共重合体、 エチレン一酢酸ビニル共重合体、 ポリプロピレ ン、 ポリ塩化ビニル、 ポリウレタン樹脂、 ポリアミ ド樹脂、 ポリ エステル樹脂、 ビニリデンフロライ ド系樹脂、 シリ コン樹脂、 架 橋ポリオレフィ ン樹脂、 架橋ポリ塩化ビニル樹脂などで被覆して ケーブルとして使用するのが通常的である。
本発明のプラスチック光ファイバは多数の芯が完全に一体化し ていて、 個々の芯の相対的位置は厳密に保たれるため、 通信にお いて光源ゃ受光素子との結合効率がたかく、 特に小口径の他の光 フアイバとの結合も有利に行える特長もある。 フアイバの端末に おけるコネクターとの固定も、 一芯の大口径のプラスチック光フ アイバの取扱いと同様に、 被覆材のかしめや、 接着剤などで容易 に固定できる。
さて、 このような多芯プラスチック光ファイバの利用方法とし ては光通信の信号伝送媒体として使用することができる。 そのよ うな機器としてはパソコンや、 オーディオビジュアル機器、 交換 機、 電話、 O A機器、 F A機器などであり、 光データリ ンクに接 続される。 机の上に設置された、 ノ、。ソコン L A Nを例にとれば、 その、 L A N力一 ドに接続されたィンターフェ一スケ一ブルは、 非常に屈曲が激しいが、 このような用途に最適である。 その他、 ポータブルのオーディオビジュアル機器、 F A機器などにも適用 できるところが多い。 図面の簡単な説明
第 1図は、 本発明の多芯プラスチック光ファイバ (芯繊維と第 1鞘層を島とし第 2鞘層を海とする光信号伝送用多芯プラスチッ ク光ファイバ) の断面を示す模式図。
第 2図は、 本発明の多芯プラスチック光ファイバ (芯繊維と第 1鞘層、 及び第 2鞘層を島とし第 4樹脂を海とする光信号伝送用 多芯プラスチック光ファイバ) の断面を示す模式図。
第 3図は、 本発明の多芯プラスチック光ファイバ (芯繊維と第 1鞘層を島とし第 2鞘層を海とする光信号伝送用多芯プラスチッ ク光ファイバ) を製造する複合紡糸ダイを示す模式図。
第 4図は、 本発明の多芯プラスチック光ファイバ (芯繊維と第 1鞘層、 及び第 2鞘層を島とし第 4樹脂を海とする光信号伝送用 多芯プラスチック光ファイバ) を製造する複合紡糸ダイを示す模 式図。
図中符号は、 以下のとおりである。
1…芯、 2…第 1鞘、 3…第 2鞘、 4…第 4樹脂(保持部)、 5…芯樹脂供給口、 6…第 1鞘樹脂供給口、 7…第 2鞘樹脂供 給口、 8…芯ガイ ドパイプ、 9…鞘ガイ ドパイプ、 10…第 4樹脂 供給口、 11…第 4樹脂ガイ ドパイプ 発明を実施するための最良の形態
以下、 実施例に基づき本発明を説明するするが、 本発明の範囲 はこれらの実施例に限定されるものではない。 実施例 1
芯樹脂として屈折率 n cr e 1. 4 9 2のポリメチルメタク リ レー ト樹脂でメルトフローインデックスが 2 3 0 °C 荷重 3. 8 K g オリフィスの直径 2 mm、 長さ 8 mmの条件で、 1. 5 g/ 1 0分であるものを用いた。 第 1鞘として 1 7 FMA 1 4 %、 4 FM6 %、 3 FMA 6 %、 MM A 74 %をキャス ト重合して、 2 3 0 °C 3. 8 K g荷重におけるメノレトフローインデックスが 3 1 g / 1 0分 屈折率が 1. 4 7を用いた。 第 2鞘としてビ 二リデンフロラィ ド 8 0モル%とテ トラフロロエチレン 2 0モ ル%の共重合体で、 同条件で測定したメルトフローインデックス が 3 0 g/ 1 0分、 屈折率は 1. 4 0 2の樹脂を用いた。 複合紡 糸ダイとしては、 9 1芯を有し、 各々芯を第 1鞘と第 2鞘が二層 に被覆する構造の第 3図に示すようなダイスを用いた。 この複合 紡糸ダイに、 芯樹脂の容積と第 1鞘樹脂と第 2鞘樹脂の容積の比 率が 8 0対 1 0対 1 0になるように供給し、 ダイから排出される ス トラン ドを収束し、 2倍に延伸して、 直径 1. 2 2 mmの 2鞘 多芯プラスチック光ファイバ裸線を製造した。 この多芯光フアイ バのファイバ NAは、 0. 2 6である。 さらにこの裸線に黒色ポ リエチレンで被覆し、 2. 2 mmの 2重鞘構造多芯プラスチック 光フアイバケーブルを得た。 この多芯プラスチック光フアイバの 伝送損失は 6 5 0 n mの波長で、 L N A 0. 1 5で測定し 1 8 2 d BZ kmであった。 この 2重鞘の多芯プラスチック光フアイバゲ一ブルに 6 5 0 η mの単色光をいろいろな L Ν Αで入射せしめ、 2 mのファイバを 経て出射される光量を測定すると共に、 下記比較例 1で得れた単 一鞘多芯プラスチック光ファイバについても同様の方法で出射さ れる光量を測定した。 2重鞘多芯プラスチック光ファイバの単一 鞘多芯プラスチック光ファイバに対する出射光量倍率 (単一鞘多 芯プラスチック光ファイバに比した 2重鞘多芯プラスチック光フ アイバの出射光のパワー倍数) を表 1に示す。
つぎにこの 2重鞘多芯プラスチック光フアイバゲ一ブルを 2 m の長さに切り取り、 波長が 6 5 0 nmでLNAが0. 6以上の L E D光を入射せしめ、 中央部分で、 半径 1 0 mmの棒に 1回転巻 き付け、 それによる光量変化を測定した結果を表 2に示す。 比較例 1
一方比較のために、 同じ複合紡糸ダイに、 第 2鞘樹脂の代わり に第 1鞘樹脂を供給し 9 1芯の 1鞘多芯プラスチック光ファイバ を製造した。 芯と第 1鞘の容積比率は 8 0対 2 0とし、 直径 1. 2 2 mmの単一鞘多芯プラスチック光ファイバを製造し、 同様に 黒色ポリエチレンで 2. 2 mmの外径を有する 1鞘多芯プラスチ ック光フアイバケーブルを得た。 この多芯プラスチック光フアイ バの伝送損失は 6 5 0 n mの波長で、 L NA 0. 1 5で測定し 1 8 1 d BZkmであった。
つぎにこの単一鞘多芯プラスチック光フアイバゲ一ブルを 2 m の長さに切り取り、 波長が 6 5 0 nmで L NAが 0. 6以上の L E D光を入射せしめ、 中央部分で、 半径 1 0 mmの棒に 1回転巻 き付け、 それによる光量変化を測定した結果を表 2に示す。 実施例 2
芯樹脂を屈折率 n cr e 1. 4 9 2のポリメチルメタク リ レ 一ト樹脂でメルトフ口一インデックスが 2 3 0 °C 荷重 3. 8 K g オリフィスの直径 2 mm、 長さ 8 mmの条件で、 1. 5 gZ 1 0分であるものを用いた。 第 1鞘として 1 7 FMA 1 4 %、 4 FM 6 %、 3 FMA 6 MM A 7 4 %をキャス ト重合して、 2 3 0 °C 3. 8 K g荷重におけるメノレトフ口一インデックスが 2 5 g// 1 0分 屈折率が 1. 4 7を用いた。 第 2鞘としてビニリ デンフロラィ ド 8 0モル%とテトラフロロエチレン 2 0モル%の 共重合体で、 同条件で測定したメルトフローインデックスが 3 0 g/ 1 0分の樹脂を用いた。 屈折率は 1. 4 0 2であった。 複合 紡糸ダイとしては、 3 7芯を有し、 各々芯を第 1鞘と第 2鞘が二 層に被覆する構造の第 3図に示すようなダイスを用いた。 この複 合紡糸ダイに、 芯樹脂の容積と第 1鞘樹脂と第 2鞘樹脂の容積の 比率が 8 0対 1 0対 1 0になるように供給し、 ダイから排出され るス トラン ドを収束し、 2倍に延伸して、 直径 1. 0 0 mmの 2 重鞘多芯プラスチック光ファイバ裸線を製造した。 この多芯光フ アイバのファイバ NAは 0. 2 6である。 さらにこの裸線に黒色 ポリエチレンで被覆し、 2. 2 mmの 2鞘構造多芯プラスチック 光ファイバケーブルを得た。 この多芯プラスチック光フアイバの 伝送損失は 6 5 0 n mの波長で、 L NA 0. 1 5で測定し 1 4 0 d B / k mであつた。
この 2重鞘の多芯プラスチック光フアイバゲ一ブルに 6 5 0 η mの単色光をいろいろな L N Aで光を入射せしめ、 2 mのフアイ バを経て出射される光量を測定すると共に、 下記比較例 2で得ら れた 1鞘多芯プラスチック光ファイバについても同様の方法で出 射される光量を測定した。 2鞘多芯プラスチック光ファイバの単 一鞘多芯プラスチック光ファイバに対する出射光量倍率 (単一鞘 多芯プラスチック光ファイバに比した 2重鞘多芯プラスチック光 ファイバの出射光のパワー倍数) を表 3に示す。
つぎにこの 2鞘多芯プラスチック光フアイバケーブルを 2 mの 長さに切り取り、 波長が 6 5 0 nmでLNAが0. 6以上の L E D光 (HAKTRON I C S社製 p h o t o m 20 5 ) を入射せ しめ、 フアイバの長さの中央部分で、 半径 1 0 mmの棒に 1回転 巻き付け、 それによる光量変化を測定した。 結果を表 4に示す。
さらにこの 2重鞘多芯プラスチック光フアイバの 2 mと 5 0 m のケーブルに対し、 波長が 6 5 0 nmで LNAが 0. 6以上の L ED光 (HAKTRON I C S社製 p h o t o m 2 0 5 ) を光源 として接続し、 出射光量を測定した。 測定結果を表 5に示す。 このように本発明の多芯プラスチック光ファイバ'は 2 mのファ ィバ長さでも、 5 0 mのフアイバ長さでも出射光量が多いことが わ力、る。 比較例 2
一方比較のために、 実施例 2と同じ複合紡糸ダイに、 第 2鞘樹 脂の代わりに第 1鞘樹脂を供給し 3 7芯の単一鞘多芯プラスチッ ク光ファイバを製造した。 芯と鞘の容積比率は 8 0対 2 0とし、 直径 1. 0 0 mmの単一鞘多芯プラスチック光フアイバを製造し、 実施例 2と同様に黒色ポリエチレンで 2. 2 mmの外径を有する 1鞘多芯プラスチック光ファイバケーブルを得た。 この多芯ブラ スチック光ファイバの伝送損失は 6 5 0 n mの波長で、 L N A 0. 1 5で測定し 1 4 0 d B/ kmであった。
つぎにこの単一鞘多芯プラスチック光フアイバケーブルを 2 m の長さに切り取り、 波長が 6 5 0 n mでL NAが0. 6以上の L E D光 (HAKTRON I C S社製 p h o t o m 2 0 5 ) を入射 せしめ、 中央部分で、 半径 1 0 mmの棒に 1回転巻き付け、 それ による光量変化を測定した。 結果を表 4に示す。
さらに、 この単一鞘多芯プラスチック光フアイバの 2 mと 5 0 mのケーブルに対し、 波長が 6 5 0 nmでLNAが0. 6以上の L E D光 (HAKTRON I C S社製 p h o t o m 2 0 5 ) を光 源として接続し、 出射光量を測定した。 測定結果を表 5に示す。 実施例 3
芯樹脂を屈折率 n cr e 1. 4 9 2のポリメチルメタク リ レ ― ト樹脂でメノレトフ口一インデックスが 2 3 0 °C 荷重 3. 8 K g オリフィスの直径 2 mm、 長さ 8 mmの条件で、 1. 5 gZ 1 0分であるものを用いた。 第 1鞘として 1 7 FMA 4 5重量%、 4 FM2 0 %、 MMA 3 5 %をキャス ト重合して、 2 3 0 °C 3. 8 K g荷重におけるメルトフ口一インデックスが 3 5 g/ 1 0分 屈折率が 1. 4 2 8の樹脂を用いた。 第 2鞘としてビニリデンフ 口ライ ド 8 0モル%とテトラフロロエチレン 2 0モル%の共重合 体で、 同条件で測定したメルトフ口一イ ンデックスが 3 0 g/ 1 0分の樹脂を用いた。 屈折率は 1. 4 0 2であった。 複合紡糸ダ ィとしては、 3 7芯を有し、 各々芯を第 1鞘と第 2鞘が二層に被 覆する構造の第 3図に示すようなダイスを用いた。 この複合紡糸 ダイに、 芯樹脂の容積と第 1鞘樹脂と第 2鞘樹脂の容積の比率が 8 0対 1 0対 1 0になるように供給し、 ダイから排出されるス ト ラン ドを収束し、 2倍に延伸して、 直径 1. 0 0 mmの 2鞘多芯 プラスチック光ファイバ裸線を製造した。 さらにこの裸線に黒色 ポリエチレンで被覆し、 2. 2 mmの 2重鞘構造多芯プラスチッ ク光フアイバケーブルを得た。 この組み合わせによるフアイバ N W j^g
Aは 0. 4 3である。 この多芯プラスチック光ファイバの伝送損 失は 6 5 0 n mの波長で、 入射 N A 0. 1 5で測定し 1 3 5 d B / k mでめった。
つぎにこの 2重鞘多芯プラスチック光ファイバケーブルを 2 m の長さに切り取り、 6 5 0 nmの L E D (HAKTRON I C S 社製 p h o t om 2 0 5 ) 、 その LNAが 0. 6以上の光線を入 射せしめ、 光ファイバの長さの中央部分で、 半径の異なる棒に 1 回転巻き付け、 それによる光量変化を測定した結果を表 6に示す。
さらにこの 2重鞘多芯プラスチック光フアイバの 2 mと 5 0 m のケーブルに対し、 波長が 6 5 0 n mで L N Aが 0. 6以上の L E D光 (HAKTRON I C S社製 p h o t o m 2 0 5 ) を光源 として接続し、 出射光量を測定した。 測定結果を表 7に示す。 このように本発明の多芯プラスチック光ファイバは 2 mのファ ィバ長さでも、 5 0 mのフアイバ長さでも出射光量が多いことが わ力、る。 比較例 3
一方比較のために、 実施例 3と同じ複合紡糸ダイに、 第 2鞘樹 脂の代わりに第 1鞘樹脂を供給し 3 7芯の単一鞘多芯プラスチッ ク光ファイバを製造した。 芯と第 1鞘の容積比率は 8 0対 2 0と し、 直径 1. 0 0 mmの単一鞘多芯プラスチック光ファイバを製 造し、 実施例 3と同様に黒色ポリエチレンで 2. 2 mmの外径を 有する単一鞘多芯プラスチック光ファイバケーブルを得た。 この 多芯プラスチック光ファイバの伝送損失は 6 5 0 nmの波長で、 L N A 0. 1 5で測定し 1 3 5 d B / k mであつた。
つぎに、 この単一鞘多芯プラスチック光フアイバケーブルを 2 mの長さに切り取り、 6 5 0 nmの L E D (HAKTRON I C S社製 p h o t om 2 0 5 ) 、 その LNAが 0. 6以上の光線を 入射せしめ、 光ファイバの中央部分で、 半径の異なる棒に 1回転 巻き付け、 それによる光量変化を測定した結果を表 6に示す。
さらにこの 1鞘多芯プラスチック光フアイバの 2 mと 5 0 mの ケーブルに対し、 波長が 6 5 0 nmで入射NAが0. 6以上の L E D光 (HAKTRON I C S社製 p h o t o m 2 0 5 ) を光源 として接続し、 出射光量を測定した。 測定結果を表 7に示す。
表 1 本発明の 2重鞘多芯プラスチック光ファイバと比較例 1の単一 鞘多芯プラスチック光ファイバの出射光量比率 (ファイバ長 2 m 6 5 0 n m単色光)
Figure imgf000022_0001
表 2
曲げによる光ロス
2鞘多芯プラス光 1 鞘多芯プラス光 フ ァ イバ (実施例 フ ァ イバ (比較例 1 ) 1 )
曲げによるロス 0 . 0 5 d B 0 . 4 d B
(曲げ半径 10mm) 表 3
本発明の 2重鞘多芯プラスチック光ファイバと単一鞘多芯ブラ スチック光ファイバの出射光量比率 (ファイバ長 2m 6 5 0 η m単色光)
Figure imgf000023_0001
表 4 曲げによる光ロス
曲げによる光ロス
2鞘多芯プラスチック 1鞘多芯プラスチッ 曲げ半径 光ファイバ(実施例 2 ) ク光ファイバ、 (比較 例 2 )
1 0 mm 0. 1 dB 1. 0 dB
5 mm 0. 2 dB 2. 2 dB
3 mm 0. 3 dB 5. 0 dB 表 5 本発明の 2重鞘多芯プラスチック光ファイバ単一鞘多芯プラス チック光ファイバの出射光量 (光源 6 5 0 n mL E D)
Figure imgf000024_0001
表 6 曲げによる光ロス
曲げによる光ロス
2重鞘多芯プラスチック 単一鞘多芯プラスチック 曲げ半径 光ファイバ (実施例 3 ) 光フアイバ (比較例 3 )
1 0 mm 0. 1 dB 0. 3 dB
0 mm 0. 2 dB 1. 1 dB
3 mm 0. 4 dB 1. 8 dB
表 7 本発明の 2重鞘多芯プラスチック光ファイバと単一鞘多芯ブラ スチック光ファイバの出射光量 (光源 6 5 0 n mL E D) 光フ ァイバ 二重鞘多芯プラスチッ 単一鞘多芯プラスチッ 長さ クファイバ(実施例 3 ) クファイノく (比較例 3 )
2 m - 1 6. 0 dBm - 1 7. 2 dBm
5 0 m — 2 8. 6 dBm - 2 9. 2 dBm

Claims

請 求 の 範 囲
1 透明な芯樹脂からなる 7本以上の芯繊維と、 その各々の芯繊 維の周りを上記樹脂の屈折率よりも低い屈折率を有する透明な第
1鞘樹脂でとり囲み、 各々の芯繊維と第 1鞘層の外側を、 第 1鞘 樹脂より屈折率の低い第 2鞘樹脂で取り囲み、 それらが一まとめ の繊維状になるように複合紡糸法によって製造された信号伝送用 多芯プラスチック光ファイバ。
2 個々の芯とそれを取り囲む第 1鞘樹脂層とを島とし、 第 2鞘 樹脂層は互いに融着して海を形成する特許請求項第 1項の多芯プ ラスチック光ファイバ。
3 個々の芯とそれを取り囲む第 1鞘樹脂層とさらにそれを取り 囲む、 第 2鞘樹脂層とを島とし、 さらに第 4の樹脂が島を取り囲 みっつ互いに融着して海を形成する特許請求項第 1項の多芯ブラ スチック光ファイバ。
4 ナト リゥムの D線で 2 0°Cで測定した芯樹脂及び第 1鞘樹脂、 第 2鞘樹脂の屈折率をそれぞれ Π CORE, n CLAD1, n CLAD2 とした とき、 次式の関係を満たす請求項 1〜 3記載の多芯プラスチック 光ファイバ。
ファイバ NA≤ 0. 4 5であり、
カヽつ、 Π CLAD1 - Π CLAD2 ≥ 0. 0 2
但し、 ファイバ N Aは、多芯プラスチック光ファイバの開口数を 意味し、 ファイバ NA= ( n coRE2 - n cLADi2 ) °· 5 で定義さ れる。
PCT/JP1998/000475 1997-02-07 1998-02-05 Fibre optique en plastique a coeurs multiples pour la transmission des signaux optiques WO1998035247A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/331,884 US6188824B1 (en) 1997-02-07 1998-02-05 Optical signal transmission multicore plastic optical fiber
JP53413398A JP4102448B2 (ja) 1997-02-07 1998-02-05 光信号伝送用多芯プラスチック光ファイバ
DE19881950T DE19881950B4 (de) 1997-02-07 1998-02-05 Mehrkern-Kunststoff-Lichtleitfaser für die optische Signalübertragung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2483997 1997-02-07
JP9/24839 1997-02-07

Publications (1)

Publication Number Publication Date
WO1998035247A1 true WO1998035247A1 (fr) 1998-08-13

Family

ID=12149386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000475 WO1998035247A1 (fr) 1997-02-07 1998-02-05 Fibre optique en plastique a coeurs multiples pour la transmission des signaux optiques

Country Status (4)

Country Link
US (1) US6188824B1 (ja)
JP (1) JP4102448B2 (ja)
DE (1) DE19881950B4 (ja)
WO (1) WO1998035247A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109300A (ja) * 2007-10-29 2009-05-21 Asahi Kasei Electronics Co Ltd 光ファイバセンサー
JP2009115976A (ja) * 2007-11-05 2009-05-28 Asahi Kasei Electronics Co Ltd 光ファイバセンサー
JP2010044334A (ja) * 2008-08-18 2010-02-25 Asahi Kasei E-Materials Corp 電子機器及び光接続方法
WO2011024954A1 (ja) 2009-08-31 2011-03-03 旭化成イーマテリアルズ株式会社 回転光リンクジョイント
WO2014163084A1 (ja) 2013-04-02 2014-10-09 三菱レイヨン株式会社 マルチコア光ファイバ及びマルチコア光ファイバケーブル

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919428C2 (de) * 1999-04-28 2001-12-06 Tyco Electronics Logistics Ag Kunststoff-Ferrule für einen Lichtwellenleiter und Verfahren zum Befestigen einer Ferrule an einem Lichtwellenleiter
KR100562620B1 (ko) * 1999-09-09 2006-03-17 미츠비시 레이온 가부시키가이샤 플라스틱 광섬유, 광섬유 케이블, 플러그 부착 광섬유케이블 및 이들의 제조방법
CN1250988C (zh) * 1999-12-27 2006-04-12 三菱丽阳株式会社 塑料光纤维、塑料光导纤维光缆和带插头的光导纤维光缆
US6611648B2 (en) * 2001-05-09 2003-08-26 Corning Incorporated Optical fibers having cores with different propagation constants, and methods of manufacturing same
KR20040026766A (ko) * 2002-09-26 2004-04-01 광주과학기술원 다중 코어 플라스틱 광섬유와 그를 이용한 병렬 광통신연결 구조 및 그 제조방법
WO2004046777A1 (en) * 2002-11-21 2004-06-03 Cactus Fiber Pty Ltd Microstructured polymer signal guiding element
US6861148B2 (en) * 2002-11-22 2005-03-01 Chromis Fiberoptics, Llc Plastic optical fiber preform
TW200621484A (en) * 2004-10-28 2006-07-01 Fuji Photo Film Co Ltd Plastic optical member and producing method thereof
CN102282488B (zh) * 2009-01-19 2014-04-23 住友电气工业株式会社 多芯光纤
EP2209029B1 (en) 2009-01-19 2015-03-11 Sumitomo Electric Industries, Ltd. Optical fiber
DK2209031T3 (da) 2009-01-20 2020-04-06 Sumitomo Electric Industries Anordningsomformer
TWI404981B (zh) * 2009-01-30 2013-08-11 Woongjin Chemical Co Ltd 光學調變物件
WO2011061735A2 (en) * 2009-11-19 2011-05-26 Acrylicom Ltd. System and method for aligning a multi-core plastic optical fiber assembly
JP5708015B2 (ja) * 2010-02-26 2015-04-30 住友電気工業株式会社 光ファイバケーブル
EP3054332B1 (en) * 2013-09-30 2021-11-03 Kuraray Co., Ltd. Plastic image fiber and method for fabrication of same
US20230417982A1 (en) * 2022-06-26 2023-12-28 ZSquare Ltd. Reduced crosstalk betweeen cores of a multicore fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275603A (ja) * 1985-09-30 1987-04-07 Mitsubishi Rayon Co Ltd 光伝送性集合フアイバ−
JPH05345632A (ja) * 1992-06-17 1993-12-27 Hitachi Cable Ltd 希土類元素添加マルチコアファイバ及びその製造方法
WO1995032442A1 (fr) * 1994-05-24 1995-11-30 Asahi Kasei Kogyo Kabushiki Kaisha Faisceau de fibres plastiques pour communication optique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249325A (ja) * 1992-03-06 1993-09-28 Mitsubishi Rayon Co Ltd プラスチック光ファイバ
DE69225242T2 (de) * 1992-09-30 1998-12-24 Asahi Chemical Ind Hohle optische mehrkern-faser und herstellungsverfahren
CA2182830C (en) * 1996-02-22 2002-06-18 Katsuyuki Imoto Rare earth element-doped multiple-core optical fiber and optical systems using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275603A (ja) * 1985-09-30 1987-04-07 Mitsubishi Rayon Co Ltd 光伝送性集合フアイバ−
JPH05345632A (ja) * 1992-06-17 1993-12-27 Hitachi Cable Ltd 希土類元素添加マルチコアファイバ及びその製造方法
WO1995032442A1 (fr) * 1994-05-24 1995-11-30 Asahi Kasei Kogyo Kabushiki Kaisha Faisceau de fibres plastiques pour communication optique

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109300A (ja) * 2007-10-29 2009-05-21 Asahi Kasei Electronics Co Ltd 光ファイバセンサー
JP2009115976A (ja) * 2007-11-05 2009-05-28 Asahi Kasei Electronics Co Ltd 光ファイバセンサー
JP2010044334A (ja) * 2008-08-18 2010-02-25 Asahi Kasei E-Materials Corp 電子機器及び光接続方法
WO2011024954A1 (ja) 2009-08-31 2011-03-03 旭化成イーマテリアルズ株式会社 回転光リンクジョイント
US8983246B2 (en) 2009-08-31 2015-03-17 Asahi Kasei E-Materials Corporation Rotary optical link joint
WO2014163084A1 (ja) 2013-04-02 2014-10-09 三菱レイヨン株式会社 マルチコア光ファイバ及びマルチコア光ファイバケーブル
CN105103018A (zh) * 2013-04-02 2015-11-25 三菱丽阳株式会社 多芯光纤以及多芯光缆
US9448358B2 (en) 2013-04-02 2016-09-20 Mitsubishi Rayon Co., Ltd. Multicore optical fiber and multicore optical fiber cable
JPWO2014163084A1 (ja) * 2013-04-02 2017-02-16 三菱レイヨン株式会社 マルチコア光ファイバ及びマルチコア光ファイバケーブル

Also Published As

Publication number Publication date
DE19881950B4 (de) 2005-12-29
DE19881950T1 (de) 2000-01-27
US6188824B1 (en) 2001-02-13
JP4102448B2 (ja) 2008-06-18

Similar Documents

Publication Publication Date Title
WO1998035247A1 (fr) Fibre optique en plastique a coeurs multiples pour la transmission des signaux optiques
WO1995032442A1 (fr) Faisceau de fibres plastiques pour communication optique
WO1996036894A1 (fr) Fibres optiques plastique et cable a fibres optiques
TW556006B (en) Plastic optical fiber, optical fiber cable and optical transmission device
JP7279362B2 (ja) プラスチック光ファイバ、プラスチック光ファイバケーブル、ワイヤーハーネス及び車両
JP5095328B2 (ja) 光送信モジュール
JP5106986B2 (ja) 光ファイバセンサー
KR102466037B1 (ko) 플라스틱 광 파이버, 플라스틱 광 파이버 케이블, 커넥터가 부착된 플라스틱 광 파이버 케이블, 광 통신 시스템, 및 플라스틱 광 파이버 센서
JP4987666B2 (ja) 光ファイバセンサー
JP3898818B2 (ja) プラスチック光ファイバの製造方法
JPH11237513A (ja) 光信号伝送用耐熱多芯プラスチック光ファイバ素線及びケーブル
JP5095545B2 (ja) 多芯プラスチック光ファイバ素線及びケーブル
JP2000162450A (ja) プラスチック製混合多芯光ファイバ、光ファイバケーブル、及びプラグ付き光ファイバケーブル
JPH1152147A (ja) 多段階屈折率分布多心プラスチック光ファイバ
JP2992352B2 (ja) プラスチック光ファイバ及び光ファイバケーブル
JPH11167031A (ja) プラスチック製マルチ光ファイバケーブル
JPH0933737A (ja) 光通信用多芯プラスチック光ファイバ及びケーブル
JPH08101316A (ja) 広帯域多芯プラスチック光ファイバユニット
JPH112747A (ja) 多芯プラスチック光ファイバケーブル
JP2001091780A (ja) 高帯域プラスチック光ファイバ
JPH11258432A (ja) 多心線プラスチック光ファイバ及びこれを用いた光通信方法
JP2000089043A (ja) 多芯光ファイバ
JPH1123918A (ja) 信号伝送用小口径プラスチック光ファイバ素線及び該素線を用いた信号伝送用小口径プラスチック光ファイバケーブル
JP2002267867A (ja) 多層コアプラスチック光ファイバを用いた光通信方法
JP2000193834A (ja) 信号伝送用小口径プラスチック光ファイバ素線

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09331884

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19881950

Country of ref document: DE

Date of ref document: 20000127

WWE Wipo information: entry into national phase

Ref document number: 19881950

Country of ref document: DE