WO1998016573A1 - Film polyester a orientation biaxiale destine a etre stratifie avec des feuilles de metal - Google Patents

Film polyester a orientation biaxiale destine a etre stratifie avec des feuilles de metal Download PDF

Info

Publication number
WO1998016573A1
WO1998016573A1 PCT/JP1997/003643 JP9703643W WO9816573A1 WO 1998016573 A1 WO1998016573 A1 WO 1998016573A1 JP 9703643 W JP9703643 W JP 9703643W WO 9816573 A1 WO9816573 A1 WO 9816573A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mol
plane
polyester
glass transition
Prior art date
Application number
PCT/JP1997/003643
Other languages
English (en)
French (fr)
Inventor
Koji Kubo
Hirofumi Murooka
Masahiko Kosuge
Manabu Kimura
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1004397A external-priority patent/JP3749586B2/ja
Priority claimed from JP15093797A external-priority patent/JP3330847B2/ja
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to DE1997625130 priority Critical patent/DE69725130T2/de
Priority to EP19970943174 priority patent/EP0900818B1/en
Priority to US09/091,190 priority patent/US6086989A/en
Publication of WO1998016573A1 publication Critical patent/WO1998016573A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/66Cans, tins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a polyester film for bonding a metal plate to s ⁇ f, and more particularly, it shows excellent moldability when laminating to a metal plate and performing can-forming such as drawing, and has heat resistance and retort resistance.
  • the present invention relates to a metal can excellent in fragrance retention, impact resistance, and prevention, for example, a polyester for metal plate lamination processing capable of forming a beverage can, a food can, and the like.
  • Metal cans are coated with "" ⁇ to prevent corrosion on the inner and outer surfaces.
  • the anti-corrosion property is obtained without using organic solvents for the purpose of simplifying the process, improving hygiene, and preventing pollution.
  • the development of methods is being advanced, and as one of them, the covering power of thermoplastic films is being attempted.
  • thermoplastic resin film on a metal plate such as tinplate, tin-free steel, or aluminum, and then forming the can by drawing or the like.
  • thermoplastic resin film As a thermoplastic resin film, it is becoming clear that a copolyester film is suitable in terms of moldability, heat resistance, impact resistance, and fragrance retention. However, this polyester film does not necessarily show sufficient cognitive sensation when used in beverages that require an extremely delicate taste, such as green tea, and in mineral water, which is required to have a tasteless and odorless power. Changes in taste are perceived.
  • Japanese Patent Application Laid-Open No. 6-116376 discloses a polyester for metal forming with improved flavor, comprising a copolymerized polyester containing a specific amount of a metallic element and a germanium element. Film power has been proposed. When this film is used, when the contents are packed like a cold pack system, The process shows excellent flavor and flavor retention in the process due to heat, but it does not necessarily provide sufficient flavor and flavor retention in the process where the contents are filled, such as in retort treatment. I can't.
  • terephthalic acid is mainly used, and 1,4-cyclohexanedimethanol and ethylene glycolone are obtained as a diol component in a ratio of around
  • Polymerized polyester films have been proposed. This film has been proposed to obtain fragrance retention for contents that require a retort treatment step. This film has low heat resistance, so there is a problem that sufficient production cannot be obtained.
  • An object of the present invention is to eliminate the drawbacks of the prior art and maintain the excellent processability, heat resistance and impact resistance of the copolymerized polyester film while retaining the fragrance retention of the contents, especially after retort treatment.
  • An object of the present invention is to provide a polyester film for laminating and forming a metal plate, which has improved flavor retention.
  • the melting point is in the range of 210-250 ° C
  • polyester copolymer of the present invention 82 to 100 mol% of the total dicarboxylic acid ⁇ ⁇ is terephthalic acid, and 0 to 18 mol% is 2,6-naphthalenedicarboxylic acid or 2, 6- Consists of naphthenic dicarboxylic acid and other dicarboxylic acids.
  • dicarboxylic acids include, for example, aromatic dicarboxylic acids such as isophthalic acid and phthalenoic acid; fat-containing dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decane dicarboxylic acid; Examples thereof include alicyclic dicarbonic acid and the like. These may be used alone or in combination of two or more.
  • polyester copolymer of the present invention it is also preferable that 82 to 100 mol% of the total dionole ⁇ 3 ⁇ 43 ⁇ 4 is ethylene glycolonole and 0 to 18 mol% is cyclohexane dimethanol or cyclohexane dimethanol. Consists of other dials.
  • diols include, for example, aliphatic diols such as diethylene glycol, propylene glycol, neopentyl glycol, butanediol, pentanediol, and hexanediol; alicyclic diols such as cyclohexanedimethanol; bisphenol Aromatic diols such as ⁇ ; and polyalkylene glycols such as polyethylene glycol and polypropylene daricozole. These can be used alone or in combination.
  • aliphatic diols such as diethylene glycol, propylene glycol, neopentyl glycol, butanediol, pentanediol, and hexanediol
  • alicyclic diols such as cyclohexanedimethanol
  • bisphenol Aromatic diols such as ⁇
  • polyalkylene glycols such as polyethylene glycol and polypropylene daricozol
  • the polyester copolymer may contain at least one or both of 2,6-naphthalenedicarboxylic acid and 1,4-cycloxane dimethanol as copolymer components.
  • a particularly preferred polyester copolymer is one in which all dicarboxylic acids are composed of terephthalic acid and 2,6-naphthalenedicarboxylic acid and all diol components are ethylene glycol.
  • the polyester copolymer of the present invention further has a glass transition temperature (T g) of 78 ° C. or higher and a melting point of 210 ° C. to 250 ° C.
  • polyester copolymer of the present invention 2,6-naphthalenedicarboxylic acid and cyclohexanedimethanol are used as copolymerization components as described above in order to increase the Tg to 78 ° C. or higher.
  • the glass transition ((Tg) of the polyester copolymer is preferably in the range of 78 to 90 ° C.
  • the Tg of the polyester was 290 when a 2 Omg film sample was put into a pan for DSC measurement. After heating and melting on the C heating stage for 5 minutes, the bread was quickly quenched and solidified on aluminum foil spread on ice, and the temperature was raised at a rate of 20 using a DuPont Instrumen ts 910 DSC. It is based on the method of determining the glass transition point by the CZ component.
  • the heat resistance of the polymer is inferior, while the melting point is 245. If it exceeds C, the crystallinity of the polymer is too large and the moldability is lost.
  • the melting point of the polyester copolymer is preferably from 210 to 245. It is in the range of C.
  • the melting point of the copolymerized polyethylene terephthalate is measured by a method in which DuPont Instrument s 910 DSC is used and a peak is obtained at a temperature rise of 20 ° CZ.
  • the sample size is 2 Omg.
  • the intrinsic viscosity (orthochlorophenol, 35 ° C) of the polyester copolymer is preferably 0.52 to 1.50, more preferably 0.57 to 1.00, and particularly preferably 0.60 to 0.80. If the intrinsic viscosity is less than 0.52, impact resistance may be reduced, which is not preferable. On the other hand, if the intrinsic viscosity exceeds 1.50, the formability may be impaired.
  • the polyester copolymer in the present invention is not limited by its production method, terephthalic acid, ethylene glycolone and a copolymer component are subjected to an esterification reaction, and the obtained reaction product is subjected to a desired degree of polymerization.
  • Preferred is a method in which a polycondensation reaction is carried out until a desired polyester copolymer is obtained.
  • the polyester copolymer obtained by the above method (melt polymerization) may be used, if necessary, in a solid state. 0 (Polymerization method) can be used to obtain a polymer with a higher degree of polymerization.
  • additives such as an antioxidant, a heat stabilizer, a viscosity controller, a plasticizer, a hue daughter agent, a lubricant, and a mk ultraviolet absorber can be added to the polyester copolymer.
  • the awakening at the trace of Kamai is antimony ⁇ ! (Sb of course), Titanium ⁇ ! (Ti compound), Germanium ⁇ ! (Ge conversion ⁇ ) and the like are preferred.
  • the titanium compound and germanium compound are more preferable from the viewpoint of the fragrance retention of the film.
  • Preferred examples of the titanium compound include titanium tetrabutoxide and titanium acetate.
  • germanium compound as the germanium compound,
  • the ⁇ ffl amount of the catalyst may be a commonly used amount. It is preferable to add a lubricant to the polyester copolymer for the purpose of improving the winding property of the film.
  • the type of the lubricant may be inorganic or organic, but is preferably inorganic.
  • non-mm lubricant examples include silica, alumina, titanium oxide, calcium carbonate, and barium sulfate
  • organic lubricant examples include silicone resin particles and cross-linked polystyrene particles.
  • a lubricant which is particularly preferable from the viewpoint of pinhole resistance is a monodispersed lubricant having a particle size ratio (long and short diameter) force of 1.0 to 1.2. Examples of such a lubricant include silica silica, silicone resin particles, and spherical cross-linked polystyrene.
  • the particle size and amount of the lubricant may be determined from the winding property of the film, the anti-binhono 1 ⁇ and the preservative properties. That is, if the sily force has an average particle size of 1.5 m, it is 0.06 S *% or more and 0.25 wt% or less. % To 0.45% by weight or less, it is possible to secure the winding property without impairing the maintenance resistance d3 ⁇ 4.
  • the lubricant is not limited to the above-mentioned added particles, but may be, for example, internal precipitated particles obtained by precipitating part or all of the catalyst used in the production of polyester in the reaction step. Can also be. It is also possible to use externally added particles and internally precipitated particles in combination.
  • the polyester film of the present invention In order for the polyester film of the present invention to be particularly suitable for use in food cans or beverage cans, it is better that the amount of the substance eluted or scattered from the film is smaller, but it is practically impossible to completely eliminate such substances. It is possible. Therefore, for use in food cans or drink cans, for example, the extraction amount per inch 2 of the film when extracted with ion-exchanged water for 121 or 2 hours is preferably 0.5 mg or less,
  • the film of the present invention comprises the above polyester copolymer, and is stretched in a biaxially stretched and heat-set state. At this time, the highest temperature of the loss elastic modulus of the polyester film
  • Te-Tg exceeds 30, the molecular orientation and the crystallinity of the film become too high, resulting in poor moldability.
  • the value of Te is preferably adjusted by the copolymerization and the force conditions depending on the copolymerization amount, particularly by the biaxial stretching ratio or stretching.
  • the relationship between the highest temperature peak (Te) and the glass transition (Tg) of the iron elastic modulus is preferably 15 ⁇ T e-Tg ⁇ 25 o
  • T e is the measured frequency 10 H Z using a dynamic viscoelasticity measuring apparatus, is determined by a dynamic displacement earth 25 X 10- 4 cm.
  • the polyester film of the present invention preferably has the following relationship between the (100) plane and the (1 ⁇ 0) plane, which are on the film surface: 0.10 ⁇ I (110) ZI (100) ⁇ 0.40 where I (110) is the X-ray diffraction by the (110) plane 3 ⁇ 4g and I (100) is the X-ray diffraction by the (100) plane.
  • Nen ratio (I (110) / ⁇ (100)) is less than 0.10, the formability tends to be insufficient, while if the transport ratio exceeds 0.40, the heat resistance tends to be poor.
  • the refractive index power in all directions in the film surface direction is preferably 1.620 to 1.670, more preferably 1.625 to 1.665.
  • the deformation In slicing and drawing and ironing, which are frequently used in can-making, the deformation must be uniform in all directions, and all parts of the film must be able to follow this deformation. If the refractive index in the film plane direction is less than 1.620 in all directions, ⁇ workability is good, but heat resistance is likely to be inferior, while if this refractive index exceeds 1.670, 5 ⁇ workability will be inferior Therefore, the film is likely to be whitened or broken during deep drawing.
  • the polyester film of the present invention preferably has a SIS coefficient of 0.100 to 0.150, more preferably 0.110 to 0.140.
  • the plane orientation coefficient is less than 0.100, if the drawing ratio at the time of deep drawing is high, it is not preferable because it causes problems such as cracking in the film. On the other hand, if the @@ S direction coefficient exceeds 0.150, an image will be formed on the film during the punching process, making it impossible to process.
  • the awakening coefficient is defined by the following equation.
  • f [(rix + n y ) / 2] one n z above formula
  • f plane orientation coefficient
  • n x, n each eta .XI is to the horizontal of the film, longitudinal, and the refractive index in the thickness direction .
  • the polyester film of the present invention preferably, the DS C, as different beak and melting peaks has a peak (referred to sub-peak) in the range of one hundred fifty to two hundred and five e C.
  • the temperature is more preferably 155 to 200 ° C, and still more preferably 160 to 195 ° C.
  • This subpeak contributes to the stability of film quality after heat lamination on a metal plate. If the sub-beak is lower than 150 ° C, raising the heating lamination temperature with the metal plate tends to cause brittleness at the bottom of the can. ⁇ 1> Lowering the heat lamination reduces the film breaking force during processing. In addition, it becomes difficult to produce good cans depending on the heating lamination temperature. If the sub-peak exceeds 205 ° C, the film is likely to be broken at the time of canning, regardless of the heating lamination, making canning difficult.
  • the measurement of the sub-peak is performed by a method similar to the measurement of the above, using DuPont Instrument s 910 DSC, obtaining the sub-peak with a sample amount of 20 mg and a heating rate of 20 ° CZ.
  • the sub-beak means a small peak B that appears on the low temperature side of the beak A of g ⁇ in the DSC chart as shown in FIG.
  • the polyester film of the present invention preferably has a tensile stress (F 40, kgf / mm 2 ) at 40% elongation at 100 ° C and a tensile stress at 120% elongation at 100 ° C in the finolem plane. (F 120, kgf 7mm 2 )
  • the tensile stress of 40% and 120% elongation at 100 ° C was measured using a tensile tester equipped with a heating probe and measuring a 10 mm wide strip sample. C, check spacing 10 cm, pull? These are stresses (kg / mm 2 ) at elongations of 40% and 120%, respectively, when a tensile test was performed under the conditions of a degree of 10 cmZ. Also, this direction may correspond to the extrusion direction of the film. Many.
  • the tensile stress at 100 ° C. can be adjusted by the type and amount of copolymerization / ⁇ or the film stretching conditions. If F40 120 is less than 0.6, the stress due to molding is too large, and the molding workability is liable to decrease. On the other hand, when the ratio exceeds 0.8, the film is apt to be embrittled, so that the impact resistance tends to be inferior.
  • a polyester copolymer is melt-extruded and quenched to produce an unstretched film, and when biaxially stretched, the longitudinal stretching ratio is 2.5 to 3.8 times, preferably 2.7 to 3.6 times.
  • the longitudinal stretching temperature is 95 to: L50 ° C, preferably 110 to 140. C, the drawing magnification is 2.7 to 4.0 times, preferably 2.8 to 3.8 times, the transverse stretching temperature is 100 to 150 ° 110, preferably 110 to 140 ° ⁇ , and the heat setting temperature is 140 to 230 ° C, preferably 140-210.
  • As C a condition under which each of the above values becomes a predetermined value may be selected.
  • the refractive index of the polyester film in the thickness direction is preferably from 1.500 to 1.545, more preferably from 1.505 to 1.530. If the refractive index power is too low, the processing becomes insufficient, while if it is too high, the structure becomes close to amorphous, and the heat resistance may decrease.
  • the 1I-oriented polyester film for metal plate laminating is particularly intended to improve the protection after retort treatment.
  • the above polyester copolymer used in the present invention is made of the same polyester copolymer, but the relationship between Te and Tg is not necessarily.
  • Te and Tg the relationship between Te and Tg is not necessarily.
  • a biaxially oriented polyester film for metal plate laminating and molding (hereinafter referred to as a second polyester film of the present invention) having a free dicarboxylic acid diolenoester content of 50 ppm or less. Provided as well.
  • the free dicarboxylic acid diol ester (hereinafter, sometimes referred to as a free glycol ester) contained in the second polyester film of the present invention means that a part of the polyester copolymer is terephthalic acid and , 6-naphthylenedicarboxylic acid, and when the glycol component is ethylene glycol, free bis (/ 3-hydroxyethyl) terephthalate (hereinafter sometimes referred to as BHET) and bis (—hydroxy Chill) Indicates naphthalate (hereinafter sometimes referred to as BHEN). Accordingly, the content of the dicarboxylic acid diol ester in the ⁇ "film indicates the sum of the above BHET and B HEN contained in the film.
  • the content of B HEN is small, especially when the molar ratio of terephthalenoleic acid (2,6-naphthalenedicarboxylic acid) is in the range of 85 to 15 to 97-3, the content of ⁇ in the film is below the quantitative detection limit.
  • Substantially only BHE ⁇ is detected as the free glycol ester
  • «such that substantially only BHET is detected as the free glycol ester the film of the entire free glycol ester is detected. It is preferable because the content in the inside can be reduced.
  • the content of this free glyconole ester in the film must be 50 ppm or less, preferably 3 Oppm or less, more preferably 20 ppm or less.
  • the amount of free glycol ester contained in the second polyester film of the present invention exceeds 50 ppm, the taste and flavor retention of the contents after the retort sterilization treatment is significantly reduced.
  • the amount of glycoester contained in the polyester film to 50 ppm or less, the above-mentioned range of the polymer fiber extinction must be satisfied. You can do this by doing
  • the present invention is not limited to the method for producing a polyester copolymer, but the second polyester film of the present invention is characterized in that the total amount of alkali metal elements (total alkali metal element) in the film is reduced. Satisfaction of A ⁇ 5 (ppm) is preferable for preservation and preservation. The total amount of these metallic elements is the sum of the ppm of the Li, Na, and K elements determined by atomic absorption analysis.
  • the amount of 1J raw ether glycolone in the polyester copolymer increases, and the heat resistance of the polyester film decreases. It is known that the property of the film by the electrostatic application casting method is reduced. However, from the studies of the present inventors, it was found that the amount of the metal compound in the catalyst was optimized and the conditions of the esterification or transesterification reaction were reduced. Thus, the amount of IJ raw ether glycol, particularly the amount of by-product diethylene glycol, can be controlled, and the amount of catalytic metal elements and the amount of phosphatization by the metal compound can be controlled. By specifying the ratio of the amount of phosphorus element in the film due to ⁇ 1 to a certain range, the property of the polyester film in the electrostatic cast method can be improved. And divide the force can be suppressed below.
  • the “catalytic metal element” in the present invention is derived from metallization used as a reaction catalyst. This metal element exists in a state of being dissolved in the polyester copolymer and should be used as the metal element in the lubricant particles.
  • phosphorus element is derived from phosphide used to deactivate a catalyst or as a stabilizer for a polyester copolymer.
  • the sum of the ⁇ (M) of the catalytic metal element remaining in the film and the concentration of the phosphorus element (P) is 20 ⁇ (M + P) ⁇ 55 (mmol %) Is preferable.
  • (M + P) is less than 20 mmol%, the productivity of the above-mentioned polyester copolymer in the electrostatic application casting method is reduced.
  • (M + P) exceeds 55 mmol%, the amount of ⁇ ⁇ ⁇ ⁇ ij raw ether alcohol can be increased and the heat resistance can be reduced.
  • the ratio of the concentration of the catalytic metal element (M) remaining in the film to the concentration of the phosphorus element (P) is I (M / P) ⁇ 5. (Mmol / mmol%).
  • the second polyester film of the present invention preferably has a catalyst metal element (M) remaining in the film in the range of (mmol%).
  • M catalyst metal element
  • M is less than 10 mmol%, it is difficult to obtain a polyester copolymer having a sufficient degree of polymerization, and properties such as impact resistance may be reduced.
  • M exceeds 35 mmol%, thermal stability may be reduced.
  • the polyester copolymer of the present invention it is preferable that 90 mol% or more of all diols is ethylene glycol, and diethylene glycol is used for all polyols in the copolymer ⁇ 3 ⁇ 48 ⁇ .
  • the copolymerization amount of the monomer is 5% by mole or less, more preferably 4% by mole or less. If the copolymerization amount exceeds 5 mol%, the heat resistance may decrease.
  • the diethylene glycol also contains a diethylene glycol component produced by IJ when producing a polyester copolymer containing ethylene glycol as a daricol component.
  • the copolymerization amount of the diethylene glycol component is preferably 0.5 mol% or more (based on the total amount of glycoside components) from the viewpoint of the production of the polyester copolymer.
  • the intrinsic viscosity of the polyester copolymer is preferably in the range from 0.5 to 0.8 dl Zg.
  • the second polyester film of the present invention preferably has an extraction amount of 0.1 mg or less per inch 2 of the film when extracted with ion-exchanged water at 125 ° C. for 1 hour.
  • the second polyester film of the present invention preferably has a relationship between Te and Tg, as in the case of the polyester of the present invention, that is, Te-Tg ⁇ 30.
  • the second polyester film of the present invention has the same properties or performances as those described above for the polyester film, unless otherwise specified.
  • Each of the polyester films of the present invention preferably has a thickness of 6 to 75. is there. Further, it is preferably 8 to 75 m, particularly preferably 10 to 50 / m. If the thickness is less than 6 m, breakage and other forces are likely to occur during processing, while if it exceeds 75 m, it is excessive quality and uneconomical
  • a metal plate to which the polyester film of the present invention is bonded particularly a metal plate for can making, a plate of tin, tin-free steel, aluminum or the like is suitable.
  • the bonding of the polyester film to the metal plate can be performed, for example, by the following methods (1) and (2).
  • a resin adhesive of ⁇ ⁇ for example, an epoxy-based adhesive, an epoxy-ester-based agent, an alkyd-based adhesive, or the like can be used for the i «agent layer.
  • the method uses Du Pont Instrument s 910 DSC to determine the melting peak at a heating rate of 20 ° CZ.
  • the sample volume is 2 Omg c
  • the film is bonded to both sides of tin-free steel with a plate pressure of 0.25 mm heated to the melting point of polyester ⁇ Lb, cooled with water, cut into a 15 Omm diameter disc, and deep drawn in four steps using a drawing die and punch. This was processed into a 55mm diameter sake seamless container (hereinafter abbreviated as can). The following about this can! ⁇ And a test were performed, and the following were evaluated.
  • There is no abnormality in the film, and no whitening or breakage is observed in the processed film. ⁇ : Whitening was observed on the upper part of the film can.
  • Processed without any abnormalities, waterproof test of the film surface in the can (1% NaC1 aqueous solution is put in the can, the electrode is inserted, the current when a voltage of 6V is applied with the can body as the anode The value shall be 0.2 mA or less in the ERV test.
  • 0.2 mA or more for 1 to 5 pieces.
  • 0.2 mA or less for all 10 samples. ⁇ : 0.2 mA or more for 1 to 5 pieces.
  • Deep drawing force ⁇ A good can was filled with water and retorted in a steam sterilizer at 120 ° C for 1 hour, and then stored at 50 ° C for 30 days. After dropping 10 cans for each test from a height of 50 cm on a PVC tile floor, an E RV test was performed inside the cans.
  • 0.2 mA or more for 1 to 5 pieces.
  • a polarizing plate analyzer attached to the eyepiece side of the Abbe refractometer, monochromatic light N a D line, next to the film, longitudinal, refractive index in the thickness direction, n x, n y, and n z, respectively and 3 ⁇ 4U constant,
  • the method uses a Du Pont Inst rumen t s 910 DSC to determine sub-peaks at a heating rate of 20 ° CZ.
  • the sample size is 2 Omg.
  • Amount of free glycol ester 50 Omg of the polyester film was dissolved in 3 ml of hexafluoroisopropanol. 10 ml of methanol was added thereto, and the sample polymer was re-dissolved. Using the filtrate after filtration, the amount of free daricol ester was quantified by a liquid chromatography, and the concentration in the film was determined. The amount of free glycol ester substantially indicates the amount of free BHET since the amount of free BHEN is below the limit of quantification in the range of this example.
  • the polyester film was immersed in ion-exchanged water and extracted at 125 ° C for 1 hour.
  • the extract in the immersion liquid was quantified to determine the extract amount per 1 inch 2 of the film.
  • the film sample was heated and melted in 24 (TC) to make a circular disk, and the catalytic metal element and phosphorus element were quantified by X-ray fluorescence analysis.
  • the polyester film was bonded to a 0.25 mm thick tin free stainless steel plate heated to a temperature equal to or higher than the melting point of the polyester, and then cooled to obtain a coated steel sheet.
  • the coated steel sheet was observed, and the laminability was evaluated according to the following criteria.
  • Shrinkage rate is less than 2%.
  • TO rate is 2% or more and less than 5%.
  • the fiber rate is 5% or more.
  • copolymerized polyethylene terephthalate (intrinsic viscosity: 0.64, particle size ratio: 1.1, 0.2% by weight of fibrous silica having an average particle size of 0.5 ⁇ m) was extruded, quenched and solidified rapidly. Thus, an unstretched film was obtained. Next, the unstretched film was longitudinally stretched at the ratios and magnifications shown in Table 1, and then stretched by the g and magnification shown in Table 1; C was heat-set to obtain a biaxially stretched polyester film.
  • the thickness of the obtained film was 25 m.
  • Table 1 shows the glass transition temperature (T g) and the maximum beak i ⁇ (T e) of the loss modulus of the film, and Table 2 shows the results.
  • the cans coated with the polyester film of the present invention have good deep drawing workability, resistance to tt resistance, resistance to retonation, and good impact resistance. It was excellent in fragrance, especially in flavor retention after retort.
  • the glass transition (Tg) of the film the highest beak temperature of the elastic modulus (Te), the X-ray diffraction ratio, the refractive index in the film plane direction, the refractive index in the film thickness direction, and the amount of water extract—1 are shown.
  • Table 4 shows the evaluation results.
  • Example 4 84 100 16 0.38 1.652 / 1.638 1.545 0.25
  • Example 8 83 103 20 0.35 1.654 / 1.635 1.542 0.16
  • Example 9 81 107 26 0.13 1.659 / 1.648 1.51 7 0.10
  • Example 10 80 107 27 0.15 1.652 / 1.645 1.514 0.10
  • Example 1 1 79 104 25 0.22 1 642 / 1.634 1.518 0.14
  • Example 12 78 100 22 0.23 1.645 / 1.638 1.521 0.20
  • the thickness of the obtained film was 25 / m.
  • the glass transition (Tg) of the film, the maximum peak temperature of the elastic modulus (Te), the X-ray diffraction ⁇ J ⁇ ratio, the refractive index in the film plane direction, the refractive index in the film thickness direction, and the amount of water extract-1 Table 7 shows the results.
  • Example 13 I A 4 228 3.1 1 115 3.2 120 120
  • Example 14 NDC 10 232 3.2 105 3.3 115 190 Comparative Example 6 NDC 10 232 3.4 4 120 3.6 130 190
  • Example 9 the stretching and heat setting conditions were changed as shown in Table 9 to have ⁇ 14 shown in Table 10 (especially, the X-ray diffraction ratio and the refractive index in the film plane direction were changed) A biaxially stretched polyester film was obtained.
  • Example 17 2.—8 125 3.3 3.3 130 190
  • Example 15 81 107 26 0.12 1.661 / 1.649 1.515 0.10
  • Example 16 81 98 17 0.38 1.638 / 1.630 1.536 0.23
  • Example 17 81 102 21 0.24 1.660 / 1.628 1.526 0.17
  • Example 18 81 106 25 0.21 1.667 / 1.632 1.521 0.11
  • the thickness of the obtained film was 25 zm.
  • Table 13 shows the glass transition (Tg) of the film, the maximum peak temperature of the loss modulus (Te), the X-ray diffractometer ratio, the ffi coefficient, the refractive index in the film thickness direction, and the amount of water extract-1.
  • Table 14 shows the results.
  • Example 7 V intensity ratio Ong / square inch) Comparative Example 7 84 100 16 0.37 0.16 1.542 0.19 Example 19 83 103 20 0.34 0.104 1.541 0.14 Example 20 81 107 26 0.19 0.138 1.516 0.10 Example 21 80 107 27 0.14 0.135 1.514 0.09 Comparative Example 8 79 107 28 0.16 0.132 1.51 3 0. 09 Example 22 79 102 23 0.24 0.1 16 1.519 0.18 Example 23 78 99 21 0.25 0.11 16 1.523 0.21
  • the copolymerized polyethylene terephthalate shown in Table 15 (intrinsic viscosity 0.62, particle size ratio 1.1, containing 0.2% by weight of 3 ⁇ 4 ⁇ -shaped silica with an average particle size of 0.5 ytzm) was extruded, quenched and solidified.
  • the stretched film was stretched and heat-set under the conditions shown in Table 15 to obtain a biaxially stretched polyester film.
  • the thickness of the obtained film was 25 m.
  • Table 16 shows the glass transition i3 ⁇ 4 (Tg) of the film, the maximum peak temperature of the elastic modulus (Te), the X-ray diffraction 3 ⁇ 4 ⁇ ratio, the coefficient of refraction, the refractive index in the film thickness direction, and the amount of water extract. As shown in the figure.
  • Tg is 78 ° C or higher, if Te-Tg is of the present invention the following 30 ° C, but good results were obtained, when Ding 2 is less than 78 ( In Comparative Example 9), the heat resistance was inferior, the flavor retention after retort was poor, and when the Te-Tg exceeded 30, (Comparative Example 10) decreased the workability.
  • Table 15 5 Copolymerization components Copolymerization ratio Melting point Longitudinal stretching condition Horizontal stretching (E condition Heat setting temperature mol! 3 ⁇ 4 ° c magnification temperature ° C magnification temperature
  • Example 25 NDC 10 232 3.3 110 3.4 120 190 Comparative Example 10 NDC 10 232 3.5 125 3.6 130 190
  • Example 20 the stretching and heat-setting conditions were changed as shown in Table 18, and the values shown in Table 19 were changed (especially, the X-ray diffraction ratio and the ffi-direction coefficient were changed). I got
  • Table 20 The results are as shown in Table 20. In the case of the present invention in which the X-ray diffraction intensity ratio was 0.10 to 0.40 and the plane orientation coefficient was 0.100 to 0.150, good results were obtained. Table 20 shows the overall Nffi. Table 18 Longitudinal conditions Horizontal rolling conditions Heat setting temperature
  • Example 26 81 107 26 0.12 0.140 1.515 0.08
  • Example 27 81 99 18 0.38 0.16 1.532 0.20
  • Example 28 81 94 13 0.36 0.102 1.534 0.27
  • Example 29 81 107 26 0.15 0.148 1.511 0.11
  • the thickness of the obtained film was 25 m.
  • Table 22 shows the glass transition ⁇ (Tg) of the film, the maximum beak temperature of the loss modulus (Te), the X-ray diffraction ratio, the sub-peak (Tsm) by DSC, the refractive index in the film thickness direction, and the amount of water extract.
  • Table 23 shows the evaluation results.
  • Example 11 X intensity ratio Sub-peak Refractive index (mg / square inch) Comparative Example 11 84 100 16 0.38 170 1.543 0.18 Example 30 83 103 20 0.35 170 1.541 0.14 Example 31 81 107 26 0.19 169 1.519 0.10 Example 32 80 107 27 0.15 168 1.514 0.10 Example 33 79 102 23 0.24 169 1.519 0.20 Example 34 78 98 20 0. 25 169 1. 523 0.23
  • Example 3034 of the present invention in which the value of the copolymerized polyester was 210 245 ° C., when the temperature at which good results were obtained was less than 210 ° C. In Example 11), the heat resistance was inferior, and the flavor and preservative properties after retorting were d).
  • Copolymerized polyethylene terephthalate (intrinsic viscosity: 0.62, particle size ratio: 1.1, average particle size: 0.5 ⁇ , containing 0.2% by weight of sily force) obtained by copolymerizing the components shown in Table 24 was melted out, quenched and solidified. The obtained unstretched film was stretched and heat-set under the conditions shown in Table 24 to obtain a biaxially stretched polyester film.
  • the thickness of the obtained film was 25 m.
  • Example 35 I A 4 228 3.1 1 120 3.2 125 180
  • Example 36 NDC 12 228 3.2 100 3.3 110 190 Comparative Example 13 NDC 12 228 3.4 115 3.6 125 190
  • Example 31 the stretching and heat setting conditions were changed as shown in Table 27, and the properties shown in Table 28 were used (especially, the X-ray diffraction intensity ratio and the subpeak (T sm) by DSC were changed). A polyester film was obtained.
  • Example 39 3.- 2 110 3.3 120 155
  • Example 37 81 107 26 0.12 1 58 1.517 0.09
  • Example 38 81 98 1 7 0.38 199 1.538 0.22
  • Example 39 81 107 26 0.18 1 52 1.520 0. 1 0
  • Example 40 81 100 1 9 0.33 202 1.533 0.18
  • Copolymerized polyethylene terephthalate (containing 0.2% by weight of true spherical silica having a particle size ratio of 1.1 and an average particle size of 0.5 / im using the diethylene glycol, alkali metal conjugate, Si compound catalyst and phosphorus compound shown in Table 30.
  • the unstretched film was stretched 3.0 times in the machine direction, then 3.0 times in the transverse direction, and heat-set at 180 ° C. to obtain a biaxially oriented film having a thickness of 25 m.
  • Tables 32 and 33 show ⁇ of this film.
  • a biaxially oriented film was obtained in the same manner as in Example 46, except that the extruding temperature during copolymerization PET was set to 300 ° C.
  • the properties of this film are shown in Tables 32 and 33.
  • the free glyconoleesteno 1 / M in the biaxially oriented film was higher than in the ⁇ 1 ⁇ 2 example.
  • TA terephthalic acid
  • NDC 2, 6- naphthalene dicarboxylic acid
  • AA adipic acid
  • IA isophthalic acid
  • the DEG diethylene Tg: glass transition point
  • Tm melting point
  • GeO 2 germanium dioxide
  • Sb 2 0 3 three Antimony oxide
  • A the total amount of the alkali metal elements remaining in the film
  • M the concentration of the catalytic metal element remaining in the film
  • P the concentration of the phosphorus element remaining in the film measured by the method described above.
  • M + P and MZP are obtained by substituting these values.
  • Example 4 9 o, ⁇ ⁇ o ⁇ ⁇ ⁇ ⁇ Example 50 0 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 51 1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Example 52 2 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Comparative Example 1 7 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Comparative Example 18 8 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Comparative Example 1 9 ⁇ X
  • Comparative Example 20 0 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Comparative Example 2 1 ⁇ O ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Comparative Example 2 2 ⁇ ⁇ X
  • the cans obtained by subjecting the copolymerized polyester film of the present invention to ⁇ ffl have good deep drawing workability, heat resistance, retort resistance, and impact resistance as well as good protection. Excellent in fragrance, especially in flavor retention after retort.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書 金属板貼合せ成形加工用二軸配向ポリエステルフィルム 技術分野
本発明は金属板貼合せ s¾f幼 αェ用ポリエステルフィルムに関し、 さらに詳しく は金属板と貼合せて絞り加工などの製缶加工をする際優れた成形加工性を示し、 かつ耐熱性、耐レトルト性、保香性、耐衝撃性、防 などに優れた金属缶、例 えば飲料缶、食品缶などを し得る金属板貼合せ 加工用ポリエステルに関 する。 背景技術
金属缶には内外面の腐蝕防止として ""^に塗装が施されている力 、工程 簡素化、衛生性向上、公害防止などの目的で、有機溶剤を使用せずに防錡性を得 る方法の開発力進められ、 その一つとして熱可塑性フィルムによる被覆力試みら れている。
即ち、 ブリキ、 ティンフリースチール、 アルミニウム等の金属板に熱可塑性樹 脂フィルムをラミネートした後、絞り加工等により製缶する方法の検討力進めら れている。
この熱可塑性樹脂フィルムとしては、成形加工性、耐熱性、耐衝撃性、保香性 などの点で、共重合ポリエステルフィルムが適していることカ《?^に明らかにな りつつある。 しかしながら、 このポリエステルフィルムは緑茶類など極めて微妙 な味わいが重要な飲料、 さらには無味無臭力要求されるミネラルウォーターを内 容物とした場合、必ずしも十分な保 呆味性を示さず、: ^や味に対する変化が 感知される。
これに対し、特開平 6 - 1 1 6 3 7 6号では、特定量のアル力リ金属元素とゲ ルマニゥム元素を含有する共重合ポリエステルからなる、 フレーバー性を向上せ しめた金属 形加工用ポリエステルフィルム力提案されている。 し力、し、 この フィルムを用いた場合、 コールドパックシステムのような内容物をつめた段階で 熱のかからな 、工程では優れた保味保香性を示すが、 レトルト処理のような内容 物をつめた段階で讓理カ <行われる工程においては、必ずしも十分な保味保香性 を得られない。
また、特開平 8— 2 3 1 6 9 0号公報では、テレフタル酸を主たる とし、 1 , 4ーシクロへキサンジメタノールとエチレングリコーノレを特¾|5囲の比率でジ オール成分として得られる共重合ポリエステルフィルムカ提案されている。 この フィルムはレトルト処理工程を要する内容物に対して保香性を得るために提案さ れたものである力 このフィルムは耐熱性が低いため十分な製 力得られな いという問題がある。
本発明の目的は、従来技術の欠点を解消し、共重合ポリエステルフィルム力持 つている優れた 加工性、耐熱性、耐衝撃性を保持しながら、 内容物の保香性、 特にレトルト処理後の保味保香性を改善した金属板貼合せ成形加工用ポリエステ ルフィルムを提供することにある。
本発明の他の目的および利点は以下の説明から明らかになろう。 発明の開示
本発明によれば、本発明の上記目的および利点は、第 1に、
(A) ( a ) 全ジカルボン^分の 8 2〜1 0 0モル%がテレフタル酸でありそ して 0〜1 8モル%が2 , 6—ナフタレンジカルボン酸または 2 , 6—ナフタレン ジカルボン酸と他のジカルボン酸からなり、
(b ) 全ジォーノレ^の 8 2〜1 0 0モル%カエチレングリコ一ノレでありそして 0〜1 8モル%がシクロへキサンジメタノールまたはシクロへキサンジメタノ一 ルと他のジオールからなり、
( c ) ガラス転移-^が 7 &。 C以上でありそして
( d ) 融点が 2 1 0〜2 5 0°Cの範囲にある、
ポリエステル共重合体からなり、 そして
(B) 損 弾性率の最高温ピーク (T e ,°C) と上記ガラス転移温度 (T g, °C) との間に下記関係: T e - T g≤3 0 か する、
金属板貼合せ成形加工用二軸配向ポリエステルフィルムによつて達成される。 本発明におけるポリエステル共重合体は、 全ジカルボン酸 β ^の 8 2〜1 0 0 モル%がテレフ夕ル酸でありそして 0〜 1 8モル%が 2 , 6—ナフタレンジカルボ ン酸または 2 , 6—ナフ夕レンジカルボン酸と他のジ力ルポン酸からなる。
他のジカルボン酸としては、例えば、 イソフタル酸、 フタノレ酸等の如き芳香族 ジカルボン酸;アジピン酸、 ァゼライン酸、 セバシン酸、 デカンジカルボン酸等 の如き脂励矣ジカルボン酸; シク口へキサンジカルボン酸等の如き脂環族ジカル ボン酸等が例示できる。 これらは単独または 2種以上で用いられる。
本発明におけるポリエステル共重合体は、 また、 全ジォーノレ β¾¾·の 8 2 ~ 1 0 0モル%がェチレングリコーノレでありそして 0 ~ 1 8モル%がシクロへキサンジ メタノールまたはシクロへキサンジメタノールと他のジォールからなる。
他のジオールとしては、 例えばジエチレングリコール、 プロピレングリコール、 ネオペンチルグリコール、 ブタンジオール、 ペンタンジオール、へキサンジォー ル等の如き脂昉族ジオール; シク口へキサンジメタノール等の如き脂環族ジォー ノレ; ビスフエノール Α等の如き芳香族ジオール;ポリエチレングリコール、 ポリ プロピレンダリコ一ゾレ等の如きポリアルキレングリコールが例示できる。 これら は単独または二種以上を すること力 <できる。
上記ポリエステル共重合体は共重合成分として 2 , 6—ナフタレンジカルボン酸 および 1 , 4—シクロ^キサンジメタノールのうちの少なくともいずれ力、一方ある 、は両方を含むことができる。
特に好適なポリエステル共重合体は、全ジカルボン^^がテレフタル酸と 2, 6—ナフタレンジカルボン酸からなりそして全ジォール成分がェチレングリコー ルからなる。
本発明におけるポリエステル共重合体は、 さらにガラス転移温度 (T g) が 7 8 °C以上でありそして融点が 2 1 0〜2 5 0 °Cである。
T gが 7 8 °C未満であると、耐熱性が劣り、本発明のフィルムを金属板に貼合 せて金属缶としたときレトルト後の保味保香性が悪ィ匕する。本発明のポリエステ ル共重合体は T gを 78 °C以上にするため、上記の如く共重合成分として 2 , 6— ナフタレンジカルボン酸およびシクロへキサンジメタノールが用いられる。
ポリエステル共重合体のガラス転移^ (Tg) は、好ましくは 78〜90°C の範囲にある。
ここで、 ポリエステルの Tgは、 DS C測定用パンに 2 Omgのフィルムサン プルを入れ、 290。C加熱ステージ上で 5分間加熱溶融後、すばやくパンを氷の 上に敷いたアルミ箔上で急冷固化し、 Du Pon t I n s t rumen t s 910 DS Cを用い、昇温速度 20。CZ分でガラス転移点を求める方法によ る。
また、 が 210°C未満ではポリマーの耐熱性力劣り、一方、融点が 245 。Cを越えると、 ポリマーの結晶性が大きすぎて成形加工性力仕損なわれる。
ポリエステル共重合体の融点は、好ましくは 210〜245。Cの範囲にある。 ここで、共重合ポリエチレンテレフタレートの融点測定は、 Du Pon t I ns t rumen t s 910 D S Cを用い、昇温舰 20°CZ分で 军ピ ークを求める方法による。 なおサンプル量は 2 Omgとする。
ポリエステル共重合体の固有粘度 (オルトクロロフエノ一ル、 35°C) は 0.5 2〜1.50であること力好ましく、 さらに好ましくは 0.57〜1.00、特に好 ましくは 0.60〜0.80である。 この固有粘度が 0.52未満の場合には耐衝撃 性カ坏足することがあり好ましくない。他方、固有粘度が 1.50を超える場合に は、成形加工性が損なわれることがある。
本発明におけるポリエステル共重合体は、 その製法により限定されることは ないが、 テレフタル酸、 エチレングリコーノレおよび共重合成分をエステノレィ饭応 させ、ついで得られた反応^物を目的とする重合度になるまで重縮合反応させ て所望のポリエステル共重合体とする方法、 あるいはテレフタル酸ジメチルエス テル、エチレングリコールおよび共重合成分をエステル交換反応させ、 ついで得 られた反応生成物を目的とする重合度になるまで重縮合反応させて所望のポリェ ステル共重合体とする方法を好ましく挙げることができる。 また、 上記の方法 (溶融重合) により得られたポリエステル共重合体は、必要に応じて固相状態で の重合方法 (固相重合) により、 さらに重合度の高いポリマーとすること力でき る 0
前記ポリエステル共重合体には必要に応じて、酸化防止剤、 熱安定剤、粘度調 、可塑剤、色相娘剤、滑剤、 mk紫外線吸収剤などの添加剤を加えるこ と力できる。
前記鎌合跡に麵する醒としては、アンチモン化^! (S b化 勿) 、 チタン化^! (T i化合物) 、ゲルマニウム化^! (G e化^) などが好まし く挙げられる。 この中チタン化合物、 ゲルマニウム化^!はフィルムの保香性の 面からより好ましい。 チタン化合物としては、例えばチタンテトラブトキシド、 酢酸チタンなどが好ましく挙げられる。 また、 ゲルマニウム化合物としては、
(ィ) 無定形酸化ゲルマニウム、 (口) 微細な結晶性酸化ゲルマニウム、 (ハ) 酸化ゲルマニウムをアル力リ金属またはアル力リ土類金属もしくはそれらの化合 物の存在下にダリコールに溶解した 、 (二) 酸化ゲルマニウムを水に溶解し た溶液など;^好ましく挙げられる。触媒の^ ffl量は通常用いられている量でよい。 ポリエステル共重合体には、 フィルムの巻取り性を向上させる目的で滑剤を添 加することカ好ましい。滑剤の種類は無機、有 の如何を問わないが、無機系 力く好ましい。無 mm滑剤としては、 シリカ、 アルミナ、酸化チタン、 炭酸カルシ ゥム、硫酸バリゥムなどが例示でき、有機系滑剤としてはシリコーン樹脂粒子、 架橋ポリスチレン粒子などカ例示できる。特に耐ピンホール性の点で好ましい滑 剤は、粒径比 (長 短径) 力 1 . 0〜 1 . 2である単分散の滑剤である。 このよ うな滑剤としては、 状シリカ、 ンリコーン樹脂粒子、球状架橋ポリス チレンなどか 』示できる。
滑剤の粒径および量は、 フィルムの卷取り性と耐ビンホーノ 1 ^および保 {呆味 性から決定するとよい。す わち、平均粒径 1 . 5 mのシリ力であれば 0 . 0 6 S*%以上 0 . 2 5重量%以下、平均粒径 0 . 8 mのシリ力であれば 0 . 1重量% 以上 0 . 4 5重量%以下の範囲で添加することにより、保割呆 d¾を損なうことな く巻取性を確保すること力 <できる。
なお、滑剤は上言 部添加粒子に限るものではなく、例えばポリエステル製造 時に用いた触媒などの一部または全部を反応工程で析出させた内部析出粒子を用 いることもできる。 また、外部添加粒子と内部析出粒子を併用することも可能で あ 。
本発明のポリエステルフィルムは、特に食品缶または飲料缶に用いられるのに 適するには、該フィルムより溶出あるいは飛散する物質が少ないほど良いが、 そ れらの物質を全くなくすことは実質的に不可能である。 そこで、食品缶または飲 料缶用途に使用するためには、例えばイオン交換水で 121 、 2時間抽出した ときのフィルム 1 i n c h2当りの抽出量が 0.5 mg以下であること力好ましく、
0.1m g以下であることがさらに好ましい。
本発明のフィルムは上記ポリエステル共重合体からなり、二軸延伸、熱固定し た忧態で^^される。 このとき、 ポリエステルフィルムの損失弾性率の最高温ビ
—ク温度 (Te) と、 DSC測定におけるガラス転移 (Tg) は下言己式を満 足する必要がある。
T e-Tg≤30
Te-Tgの値が 30を超えると、 フィルムの分子配向性や結晶性カ くなり すぎるために成形加工性カ しく低下する。 Teの値は共重合 および共重合 量にもよる力^ 条件により、特に二軸延伸の倍率または延伸 で調節する のが好ましい。
ί鉄弾性率の最高温ピーク (Te) とガラス転移 (Tg) との関係は、 好ましくは、 15≤T e-Tg≤25 ある o
ここで、 T eは動的粘弾性測定装置を用いて測定周波数 10 H Z、動的変位土 25 X 10- 4 c mにて求められる。
また、本発明のポリエステルフィルムは、好ましくは、 フィルム表面に 亍な (100)面と (1 Ϊ 0)面との間に下記関係: 0.10≤ I (110) ZI (100) ≤0.40 ここで、 I (110) は (110)面による X線回折 ¾gでありそして I (10 0) は (100)面による X線回折 である、
を有する。 この嫩比 (I (110) /\ (100) ) が 0.10未満であると成 形加工性が不十分となり易く、他方搬比が 0.40を越えると耐熱性力劣り易く なる。
さらに、本発明のポリエステルフィルムは、 フィルム面方向の屈折率力全方向 について、好ましくは 1.620〜 1.670、 より好ましくは 1.625〜 1.6 65である。製缶加工において多用される り加工や絞り一しごき加工では、 全方向に亘つて変形が均一に行われなければならず、 フィルムのすベての部分が この変形に追従できなければならない。 フィルム面方向の屈折率が全方向につい て 1.620未満の は、 ^加工性はよいが、耐熱性が劣り易く、一方、 この 屈折率が 1.670を超える場合は、 5 ^加工性が劣るようになるため、深絞り加 ェ時にフィルムの白化、破断が発生し易くなる。
さらに、本発明のポリエステルフィルムは、 SIS向係数が好ましくは 0.100 〜0.150、 より好ましくは 0.110〜 0.140である。
面配向係数が 0.100未満では、深絞り加工時の絞り比が高い場合、 フィルム にクラックカ <入る等の問題力生ずるので好ましくない。一方、 ®@S向係数が 0.1 50を超えると、赚り加工時、 フィルムに画が生じ、加工不能となる。
ここで、醒向係数とは、以下の式により定義されるものである。 f = [ (rix+ny) /2] 一 nz 上記式において、 f :面配向係数、 nx、 n:へ ηΞはそれぞれ、 フィルムの横、 縦、厚さ方向の屈折率である。
ここで屈折率は次の方法による:
ァッベの屈折計の接眼側に偏光板アナライザ一を取り付け、単色光 N a D線で、 それぞれの屈折率を測定する。マウント液はヨウ化メチレンを用い、 測定温度は 25 Cであ <s。
また、本発明のポリエステルフィルムは、好ましくは、 DS Cにおいて、融点 ピークとは異なるビークとして、 150〜205eCの範囲にピーク (サブピーク という) を有する。
より好ましくは 155〜200°C、 さらに好ましくは 160〜195°Cである。 このサブピークは金属板上に加熱ラミネートした後のフィルム品質の安定性に寄 与する。 このサブビークが 150°C未満では金属板との加熱ラミネート温度を上 げると缶の底部カ<脆ィ匕し易く、一 ¾¾Π熱ラミネ一ト を下げると加工時にフィ ルムの破断力 <生じ易く、加熱ラミネート温度の によって良好な缶をつくるこ と力困難となる。 またサブピークが 205°Cを越えると、 いかなる加熱ラミネ一 ト にしても製缶時にフィルムの破断が生じ易く、製缶が困難となる。
なお、 サブピーク の測定は、前記の 、の測定と同様に、 D u Pon t I n s t r umen t s 910 D S Cを用い、 サンプル量 20 m gで昇温 速度を 20°CZ分としてサブピークを求める方法による。 ここで、サブビークと は、 図 1に示すように、 DS Cチャートの g^、のビーク Aの低温側に現れる小さ いピーク Bを意味する。
また、本発明のポリエステルフィルムは、 フイノレム面内に、好ましくは 100 °Cにおける 40%伸長時の引張応力 (F 40, k g f /mm2) と 100°Cにおけ る 120%伸長時の引張応力 (F 120,k g f 7mm2) との間に下記関係:
0.6≤F 40/F 120≤0.8 が する方向を有する。
ここで、 100°Cにおける 40%および 120%伸び畤の引張応力 (kg/m m2) とは、加熱プローブを取り付けた引張試験機を用い、 10mm幅の短冊型試 料を、 測定 100。C、 チヤック間隔 10 cm、 引? 度 10 cmZ分の条件 で引張試験を行ったときの、 それぞれ伸度 40%および 120%における応力 (k g/mm2) である。 また、 この方向はフィルムの押出方向に一致することが 多い。
この 100°Cにおける引張応力は、共重合/^の種類および量、 またはフィル ムの延伸条件によって調整できる。 F40 120が 0.6未満であると、成形 による応力增大力伏きすぎるために成形加工性力《低下し易い。 また、 0.8を超え るとフィルムが脆化しやすくなるために耐衝撃性に劣り易くなる。
本発明のポリエステルフィルムは、 ポリエステル共重合体を溶融押し出して急 冷して未延伸フィルムを作り、 これをニ軸延伸する際に、縦延伸倍率を 2.5〜 3. 8倍、好ましくは 2.7〜3.6倍、縦延伸温度を 95〜: L50°C、好ましくは 1 10〜140。C、觀伸倍率を 2.7〜4.0倍、好ましくは 2.8〜 3.8倍、横 延伸温度を 100〜150°〇、好ましくは110〜140°〇、 熱固定' ί¾を 14 0〜230°C、好ましくは 140〜210。Cとして、上記各 値が所定の値と なる条件を選択すればよい。
また、 ポリエステルフィルムの厚さ方向の屈折率は、 1.500〜 1.545で あること力好ましく、 1.505〜1.530であることがさらに好ましい。 この 屈折率力低すぎると 加工が不十分となり、一方高すぎると非晶に近い構造と なるため、耐熱性が低下することがある。
かくして、本発明によれば、金属板貼合せ戯幼 Π工用 1I由配向ポリエステルフ ィルムが特にレトルト処理後の保„ を改善するものとして衞共される。
し力、して、本発明者の研究によれば、本発明で用いられる上記ポリエステル共 重合体と同じポリエステル共重合体からなるも、 Teと Tgとの間に前記関係が 必ずしもかしなくても、 Mのジカルボン酸ジオールエステルの含有量が 50 ppm以下の場合には、上記フィルムと同様に、 レトルト処理後の保香保味性を やはり改善できることが明らかにされた。
それ故、本発明によれば、第 2に、
(A) (a)全ジカルボン^^の 82〜: L 00モル%がテレフタノレ酸でありそ して 0〜18モル%が 2, 6—ナフタレンジカルボン酸または 2, 6—ナフタレン ジカルボン酸と他のジカルボン酸からなり、
(b)全ジオール fifcS"の 82〜100モル%カエチレングリコ一ノレでありそして 0 ~ 18モル%がシクロへキサンジメタノールまたはシクロへキサンジメタノ一 ルと他のジオールからなり、
( c ) ガラス転移-^が 78。(:以上でありそして
(d) It、が 210〜250°Cの範囲にある、
ポリエステル共重合体からなり、 そして
(Β' ) 遊離のジカルボン酸ジォーノレエステルの含有量が 50 p pm以下である、 金属板貼合せ成型加工用二軸配向ポリエステルフィルム (以下、本発明の第 2の ポリエステルフィルムという) が同様に提供される。
また、本発明の第 2のポリエステルフィルム中に含まれる遊離のジカルボン酸 ジオールエステル (以下、遊離グリコールエステルと禾尔することがある) とは、 ポリエステル共重合体の «分が、 テレフタル酸および 2 , 6—ナフ夕レンジカル ボン酸であり、 グリコール成分がェチレングリコールである場合、 遊離のビス (/3—ヒドロキシェチル) テレフタレート (以下、 BHETと称することがある) および のビス ( —ヒドロキシェチル) ナフタレート (以下、 BHENと称、 することがある) のことを示す。従って、 この^"フィルム中のジカルボン酸ジ オールエステルの含有量とはフィルム中に含まれる上記 BHETと B HENの総 和を示す。特に、本発明におけるポリマー構成^ ^組成の範囲では B HENの含 有量が少なく、特に 分のモル比 (テレフタノレ酸 2, 6—ナフタレンジカルボ ン酸) が 85ノ 15〜97ノ3の範囲では、 ΒΗΕΝのフィルム中の含有量が定 量検出限界以下となり遊離グリコールエステルとして実質的に B HE Τのみが検 出される。 さらに、遊離グリコールエステルとして実質的に BHETのみ検出さ れるようにポリマー構成^ |«を選択することにより、遊離グリコールエステ ル全体のフィルム中での含有量を低下させることができるので好ましい。
この遊離グリコーノレエステルのフイルム中での含有量は 50 p pm以下にする 必要が有り、好ましくは 3 Opp m以下、 さらに好ましくは 20 p p m以下であ る。
本発明の第 2のポリエステルフィルムに含有される遊離グリコールエステルが 50p pmを超えると、 レトルト殺菌処理を施した後の内容物の保味 ·保香性が 著しく低下する。 ポリエステルフィルム中に含有される グリコ一ルエステル の量を 50 p pm以下にするには、前述のポリマー構 糸滅範囲を満足させ ることで することができる。
ただ、 ポリエステル共重合体の製造法に制限されるものではないが、 本発明の この第 2のポリエステルフィルムはフィルム中のアル力リ金属元素の総、量 (ト一 タルアルカリ金属元 ¾¾Α) が A≤5 (p p m) を満足することが保味'保香性 1¾寺のため好ましい。 このアル力リ金属量元素の総量は、原子吸光分析により定 量される L i、 N a、 K元素の p p m の和である。
このアル力リ金属元素の が 5 p p m以下ではポリエステル共重合体 時 の畐 1J生エーテルグリコーノレ量、特に副生ジエチレングリコーノレ量力 曽加し、該ポ リエステルフィルムの耐熱性力低下し、 さらにポリエステルフィルムの静電印加 キャスト法での 性が低下することが知られているが、本発明者らの研究から、 触媒の金属化合物量の適正化、およびエステル化またはエステル交換反応の条件 を¾£化することにより、 ポリエステル共重合 ί«造時の畐 IJ生エーテルグリコー ル量、特に副生ジエチレングリコーノレ量の制御力可能であり、 また、該金属化合 物による触媒金属元素の量とリン化^ 1に因るリン元素の量のフィルム中での存 在比率をある範囲に特定することにより、 ポリエステルフィルムの静電印加キヤ スト法での^性の低下を抑制できること力分かつた。
ここで、本発明における "触媒金属元素" とは、反応触媒として用いた金属化 勿に由来するものである。 この金属元素はポリエステル共重合体に溶けた状態 で存在し、滑剤粒子中の金属元素と させるべきものである。 また、 "リン元 素" とは、触媒を失活するため、 あるいはポリエステル共重合体の安 として 用いられたリン化^ f勿に由来するものである。
また、本発明における第 2のポリエステルフィルムは、 フィルム中に残存する 触媒金属元素の^^ (M) とリン元素の濃度 (P) との和が 2 0≤ (M+ P) ≤ 5 5 (ミリモル%) の範囲にあること力好ましい。 (M+ P) が 2 0ミリモル% 未満の場合、前述のポリエステル共重合体の静電印加キャスト法での生産性が低 下する。 また、 (M+ P) が 5 5ミリモル%を超えると、畐 ij生のエーテルダリコ —ル量力増加し耐熱性力低下すること力ある。
さらに、本発明における第 2のポリエステルフィルムは、 フィルム中に残存す る触媒金属元素濃度 (M) とリン元素濃度 ( P) との比が I (M/P ) ≤5 (ミリモル /ミリモル%) の範囲にあること力好ましい。 MZPが 1に満たな い場合または 5を超える場合は、共に触媒金属元素とリン元素の存在比力崩れ、 ii¾のリン元素または触媒金属元素がポリマー中に存在することにより、熱安定 性力く低下することがある。
本発明における第 2のポリエステルフィルムは、 フィルム中に残存する触媒金 属元素 (M) が (ミリモル%) の範囲にあること力好ましい。 M が 1 0ミリモル%未満では十分な重合度を有するポリエステル共重合体を得るこ と力 <困難となり、耐衝撃性等の特性が低下することがある。 一方、 Mが 3 5ミリ モル%を超える場合は、 熱安定性が低下すること力《ある。
また、本発明におけるポリエステル共重合体は、全ジオール の 9 0モル% 以上がェチレングリコーノレであるのが好ましく、 また共重合 β¾8·のうち全ジォ一 ル^に対してジエチレングリコ—ノレ^の共重合量が 5モノレ%以下であること 力好ましく、 4モル%以下であることがさらに好ましい。 この共重合量が 5モル %を超えると、耐熱性が低下することがある。 なお、 このジエチレングリコール はェチレングリコールをダリコール成分とするポリエステル共重合体を製造 する際に畐 IJ生するジエチレングリコーノレ成分も含む。 ジエチレングリコール成分 の共重合量は、 0 . 5モル%以上 (全グリコ一ノレ成分に対し) であることがポリェ ステル共重合体製造の点から望ましい。
このポリエステル共重合体の固有粘度は好ましくは 0 . 5〜0 . 8 d l Zgの範 囲にある。
本発明の第 2のポリエステルフィルムは、 ィォン交換水で 1 2 5 °C 1時間抽 出したときのフィルム 1 i n c h 2当たりの抽出量が 0 . l m g以下であることが 好ましい。
本発明の第 2のポリエステルフィルムは好ましくは T eと T gとの間に、本発 明の前記ポリエステルと同様に、 T e—T g≤3 0の関係を有する。
本発明の第 2のポリエステルフィルムは、 ここに言己載のない事項については、 前記ポリエステルフィルムにつ L、て言識したと同様の性質あるいは性能を有する と ¾1されるべきである。
本発明のポリエステルフィルムは、 いずれも好ましくは厚みが 6〜 7 5 で ある。 さらに 8〜75 m、特に 10〜50/ mであること力好ましい。厚みが 6 m未満では加工時に破れなど力生じやすくなり、一方 75 mを超えるもの は過剰品質であつて不経済である
本発明のポリエステルフィルムが貼合せられる金属板、特に製缶用金属板とし ては、 ブリキ、 ティンフリースチール、 アルミニウム等の板が適切である。金属 板へのポリエステルフィルムの貼合せは、例えは下記①、②の方法で行うことが できる。
① 金属板をフィルムの融点以上に加熱しておいてフィルムを貼合せた後冷却 し、金属板に接するフィルムの表層部 (薄層部) を非晶化して密着させる。
② フィルムに予め接着剤層をプライマ一コートしておき、 この面と金属板を 貼合せる。 i«剤層としては^ πの樹脂接着剤、例えばエポキシ系接着剤、ェポ キシ一エステル系 剤、 アルキッド系接着剤等を用いること力できる。 発明を実施するための最良の形態
以下、 ½例により本発明をさらに説明する。 なお、例中の,は下記の方法 で測定した。
(1) ポリエステルの固有粘度
オルトクロ口フエノール中、 35°Cで測定する。
(2) ポリエステルの融点
Du Pon t I ns t rument s 910 DSCを用い、昇温速度 20°CZ分で融解ピークを求める方法による。 なおサンプル量は 2 Omgとする c
(3) ポリエステルのガラス転移温度 (Tg)
DS C測定用パンに 2 Omgのフィルムサンプルを入れ、 29 CTC加熱ステー ジ上で 5分間加熱溶融後、すばやく試料パンを氷の上に敷いたアルミ箔上で急冷 固化し、 Du Pont I ns t rumen t s 910 DSCを用い、昇 温速度 20°CZ分でガラス転移点を求める方法による。
(4) フィルムの 弾性率の最高温ビーク温变 (Te)
動的粘弾性測定装置を用いて測定周波数 10 H z、動的変位士 25 X 10 -4 c mにて 弾性率を求め、 このときの最高温ピ一ク ί¾ ^をもつて示す。 (5)深絞り加工性
フィルムをポリエステルの融点 ^Lbに加熱した板圧 0.25 mmのティンフリー スチールの両面に貼合せ、水冷した後 15 Omm径の円板状に切り取り、絞りダ イスとポンチを用いて 4段階で深絞り加工し、 55mm径の彻酒無継目容器 (以 下、缶と略す) を作成した。 この缶について以下の!^および試験を行い、各々 下記の,で評価した。
①深絞り加工性— 1
〇:フィルムに異常なく、加工されたフィルムに白化や破断カ認められない。 △:フィルムの缶上部に白化認められる。
X:フィルムの"^にフィルム破断が認められる。
②深絞り加工性— 2
〇:異常なく加工され、缶内フィルム面の防锖性試験 ( 1 %N a C 1水溶液を缶 内に入れ、電極を挿入し、缶体を陽極にして 6Vの電圧をかけた時の電流値を測 定する。 以下、 ERV試験と略す) において 0.2mA以下を示す。
X:フィルムに異常はないが、 E R V試験では電流値が 0.2 m A以上であり、通 電箇所を拡大観察するとフィルムのS 滑剤を起点としたピンホール状の割れが I忍められる。
(6)耐衝撃性
、 «り βが良好な缶について、水を満注し、 0°Cに冷却した後、各テストに つき 10個ずつを高さ 30 cmから塩ビタイル床面に落とした後、缶内の ERV 試験を行った結果、
〇:全 10個について 0.2mA以下であった。
Δ: 1〜5個について 0.2mA以上であった。
X: 6個以上について 0.2m A以上である力、、 あるいは落下後既にフィルムのひ び割れが認められた。
(7)耐編匕性
深絞り力 <良好であった缶を 200°CX 5分間加熱^した後、 (3) に記した 耐衝撃性評価を行った結果、
〇:全 10個について 0.2mA以下であった。 △: 1〜5個について 0 . 2 mA以上であった。
X : 6個以上について 0 . 2 mA以上である力、、 あるいは 2 0 0°CX 5分間加熱後 既にフィルムのひび割れが認められた。
( 8 ) 耐レトルト性
深絞り 力 <良好な缶について、水を満注し、蒸気滅菌器で 1 2 0 °C、 1時間 レトルト処理を行い、 しかる後、 5 0°Cで 3 0日間保存した。得られた缶を各テ ストにつき 1 0個ずつ高さ 5 0 c mから塩ビタイル床面に落とした後、 缶内の E R V試験を行った。
〇:全 1 0個について 0 . 2 mA以下であった。
△: 1〜5個について 0 . 2 mA以上であった。
X: 6個以上について 0 . 2 mA以上である力、、 あるいは落下後既にフィルムのひ び割れが認められた。
(9 ) 保!
深絞り成形が良好な缶について、 イオン, を充塡し、常温下 ( 2 0°C) 3 0曰間保管する。 その浸漬液を用いて 3 0人のパネラーにて試飲テストを行い、 比較用のイオン 水と比較し、下記 で する。
◎: 3 0人中 3人以下が比較液と比べて味の変化を感じた。
〇: 3 0人中 4人〜 6人力比較液と比べて味の変化を感じた。
Δ: 3 0人中 7人〜 9人力比較液と比べて味の変化を感じた。
X: 3 0人中 1 0人以上が比較液と比べて味の変化を感じた。
( 1 0) 保味性一 2
深絞り成形が良好な缶について、 イオン ^水を充塡し、蒸気滅菌器で 1 2 0 °C、 1時間レトルト処理を行い、 しかる後、常温下 (2 0°C) 3 0曰間保管する。 その浸漬液を用いて 3 0人のパネラーにて試飲テストを行い、比較用のイオン交 換水と比較し、下記辨で言 する。
◎ : 3 0人中 3人以下が比較液と比べて味の変化を感じた。
〇: 3 0人中 4人〜 6人が比較液と比べて味の変化を感じた。
△: 3 0人中 7人〜 9人力比較液と比べて味の変化を感じた。
X: 3 0人中 1 0人以上が比較液と比べて味の変化を感じた。 (11) 100°Cにおける 40%および 120%伸び時の引張応力 (F40、 F 120)
加熱プローブを取り付けた引張試験機 (東洋ボールドウイン (株) 製'テンシ ロン万能型引張試験機) を用い、 1 Omm幅の短冊型試料を、 測定温度 100で、 チャック間隔 10 cm、 引張 iffil 0 cmZ分の条件で引張試験を行ったときの、 伸度 40%および 120%における応力 (kg/mm2) を求めた。
(12) X線回折 比
X線源として CuK—αを用いて、発散スリツト 1Z2° 、散乱スリツト 1 2° 受光スリット 0.15mm、 スキヤンスピード 1.000° Z分の条件で測定 し、 P s eudo Vo i ght ビールモデルを用いた多重ピール分離法によ り、 フィルム表面に 亍な (100)面による X線回折 (I (100) ) と、 フィルム表面に ラな (liO)面による X線回折敵 (I (110) ) とを測 定し、 (I (ΐ ίθ) ) Ζ (Ι (100) ) から X線回折強度比を求める。
( 13 ) フィルム面方向および厚さ方向の屈折率
アッベの屈折計の接眼側に偏光板アナライザーを取り付け、単色光 NaD線で、 それぞれの方向の屈折率を測定する。 マウント液はヨウ化メチレンを用い、測定 温 は 25 °Cである。
(14)雨向係数
アッベの屈折計の接眼側に偏光板アナライザーを取り付け、単色光 N a D線で、 フィルムの横、縦、厚さ方向の屈折率、 nx、 ny、 nzをそれぞ ¾U定し、下記式 により面配向係数 fを求める。 f = [ (nx+ny) /2] -n2
(15) DS Cによるサブピーク
Du Pon t I n s t rumen t s 910 DSCを用い、昇温速度 20°CZ分でサブピークを求める方法による。 なお、 サンプル量は 2 Omgとす
(16)遊離グリコールエステル量 ポリエステルフィルム 50 Omgをへキサフルォロイソプロパノール 3m 1に 溶解した。 これにメタノール 10mlを加え、試料ポリマーを再 させ、濾過 後の濾液をそのまま用いて液体ク口マトグラフにて遊離ダリコールエステル量を 定量し、 フィルム中の濃度を求めた。 なお、遊離グリコールエステル量は本実施 例での範囲では遊離 B H E N量が定量限界以下であるため、実質的に遊離 B H E T量を示す。
(17)水抽出物量一 1
ポリエステルフィルムをイオン交換水に浸漬し、 121。C、 1時間で抽出処理 を行った。 この浸漬液中の抽出物を定量し、 フィルム 1 i n ch2あたりの抽出物 量を求めた。
(18)水抽出物量— 2
ポリエステルフィルムをイオン交換水に浸漬し、 125°C、 1時間で抽出処理 を行なった。 この浸漬液中の抽出物を定量し、 フィルム 1 i nch2あたりの抽出 物量を求めた。
(19) アル力リ金属量
フィルムサンプルをオルソクロロフエノ一ルに溶解した後、 0.5規定塩酸で抽 出操作を行う。 この抽出液について原子吸光分析により N a、 K、 L iの定量を 各元素毎に行う。
(20)触媒金属元^ Mおよびリン元
フィルムサンプルを 24 (TCに加熱溶融して円形ディスクを作成し、蛍光 X線 分析により、触媒金属元 およびリン元 «を定量した。
(21) ラミネート性
ポリエステルフィルムを、 ポリエステルの融点以上に加熱した板厚 0.25mm のティンフリースチ一ノレ板と貼合せた後、冷却して被覆鋼鈑を得た。 この被覆鋼 鈑を観察し、 ラミネート性を下記の判定基準で言 ¾Sした。
[気泡、 しわの判定辨]
〇:気泡、 しわが見られない。
△:気泡、 しわ力長さ 10 cm当り 2~3箇所見られる。
X:気泡、 しわが多数見られる。 [熱収縮率の判定基準]
〇:収縮率が 2%未満。
△: TO率が 2 %以上 5 %未満。
X :纖率が 5%以上。 実施例 1-7および比較例 1〜 3
表 1に示す成分を共重合した共重合ポリエチレンテレフタレート (固有粘度 0. 64、粒径比 1.1および平均粒径 0.5 β mの纖状シリカを 0.2重量%含有) を した後溶 甲出し、急冷固化して未延伸フィルムを得た。次いで、 この未 延伸フィルムを表 1に示す ぉよび倍率で縦延伸した後、表 1に示す およ び倍率で; g 伸し、更に 1 80。Cで熱固定して 2軸延伸ポリエステルフィルムを 得た。
得られたフィルムの厚みは 25 mであった。 また、 フィルムのガラス転移温 度 (T g) と損失弾性率の最高ビーク i¾ (T e) を表 1に、言 ¥ 結果を表 2に 示す。
共重合成分 共重合比 Tm 縦延伸条件 横延伸条件 Tg Te Te - Tg モル% ■c 倍率 温度 倍率 温度 V 実施例 1 NDC 18 213 3. 2 110 3. 3 120 83 105 17 実施例? NDC 10 232 3. 0 115 3. 1 125 81 100 19 実施例 3 , NDC 10 232 3. 3 110 3. 5 120 81 109 28 実施例 4 NDC 6 242 3. 0 120 3. 1 130 80 108 28 実施例 5 CHDM 12 229 3. 0 110 3. 1 120 79 102 23 実施例 6 CHDM 18 212 3. 2 100 3. 3 110 80 95 15 実施例 7 I A 6 228 3. 0 110 3. 1 120 78 98 20
NDC 6
比較例 1 I A 6 243 3. 0 110 3. 1 120 76 103 27 比較例 2 NDC 20 208 3. 2 100 3. 3 110 84 97 13 比較例 3 NDC 10 232 3. 2 100 3. 3 110 81 112 32 共重合成分 I A…イソフ夕ル酸
NDC— 2, 6—ナフタレンジカルボン酸
CHDI^"1, 4—シクロへキサンジメタノール
(以下の表においても同じ)
表 2
Figure imgf000022_0001
表中「一」印は評価しなかったことを示す。
表 2の Hffi結果から明らかなように、本発明のポリエステルフィルムを^ ^し た缶では、深絞り加工性、耐^ t化性、耐レトノレト性、耐衝撃性が良好であると ともに、保香性、特にレトルト後の保味保香性に優れたものであった。
実施例 8〜 3および比較例 4
表 3に示す成分を共重合した共重合ポリエチレンテレフタレート (固有粘度 0. 64,粒径比 1.1,平均粒径 0.5 mの真職シリ力を 0.2重量%含有) を乾燥 した後、溶,出し、急冷固化して未延伸フィルムを得た。 次いで、 この未延伸 フィルムを表 3に示す温度および倍率で縦延伸した後、表 3に示す温度および倍 率で横延伸し、更に 170°Cで熱固定して二軸延仲ポリエステルフィルムを得た。 得られたフィルムの厚みは、 25 mであった。 また、 フィルムのガラス転移 (Tg) 、 «弾性率の最高ビーク温度 (Te)、 X線回折體比、 フィル ム面方向の屈折率、 フィルム厚さ方向の屈折率および水抽出物量— 1を表 4に、 評価結果を表 5に示す。
表 3 共重合成分 共重合比 融点 縦延 条件 横延 ίΕ条件
モル% 倍率 温度で 倍率 温度で 比較例 4 NDC 20 208 3. 5 105 3. 6 115 実施例 8 NDC 18 213 3. 3 100 3. 5 110 実施例 9 NDC 10 232 3. 2 115 3. 3 125 実施例 10 NDC 6 242 3. 0 130 3. 1 135 実施例 11 CHDM 12 229 3. 2 115 3. 3 125 実施例 12 I A 6 228 3. 2 120 3. 3 130
NDC 6
表 4
Tg Te Te-Tg X線回折 屈折率 水抽出物量一 1
X X 強度比 フイルム面方向 厚さ方向 (mg/平方インチ)
Max/Min
比較例 4 84 100 16 0. 38 1. 652/1. 638 1. 545 0. 20 実施例 8 83 103 20 0. 35 1. 654/1. 635 1. 542 0. 16 実施例 9 81 107 26 0. 13 1. 659/1. 648 1. 51 7 0. 10 実施例 10 80 107 27 0. 15 1. 652/1. 645 1. 514 0. 10 実施例 1 1 79 104 25 0. 22 1. 642/1. 634 1. 518 0. 14 実施例 12 78 100 22 0. 23 1. 645/1. 638 1. 521 0. 20
表 5
Figure imgf000025_0001
実施例 13〜 14および比較例 5, 6
表 6に示す成分を共重合した共重合ポリエチレンテレフタレート (固有粘度 0. 62,粒径比 1.1,平均粒径 0.5 /mの真職シリ力を 0.2重量%含有) を溶融 押出し、急冷固化して得た未延伸フィルムを、表 4に示す条件で延伸、 熱固定し て、二軸延伸ポリエステルフィルムを得た。
得られたフィルムの厚みは、 25 /mであった。 また、 フィルムのガラス転移 (Tg) ί跌弾性率の最高ピーク温度 (Te) 、 X線回折 ¾J¾比、 フィル ム面方向の屈折率、 フィルム厚さ方向の屈折率および水抽出物量一 1は、表 7に 示す通りであった。
言 ¥Λ結果は表 8に示す通りであり、 Tgが 78。C以上、 Te— Tgが 30°C以 下の本発明の場合 (雄例 13, 14) は、良好な結果が得られた力 T gが 78 °C未満の場合 (比較例 5) は、耐熱性が劣り、 レトルト後の保味保香性が悪く、 T e— T gが 30°Cを超える場合、 (比較例 6) は、戯幼 Πェ性カ低下した。 表 6 共重合成分 共重合比 融点 縦延 条件 横延 {E条件 熱固定温度 モル ¾; °c 倍率 温度で 倍率 温度1 で 比較例 5 I A 8 228 3. 0 110 3. 1 115 180
NDC 4
実施例 13 I A 4 228 3. 1 115 3. 2 120 180
NDC 8
実施例 14 NDC 10 232 3. 2 105 3. 3 115 190 比較例 6 NDC 10 232 3. 4 120 3. 6 130 190
表 7
Tg Te Te-Tg X線回折 屈折率 水抽出物量一 1
V, X 強度比 フィルム面方向 厚さ方向 (mg/平方インチ)
Ma /M in
比較例 5 77 98 21 0. 25 1. 642/1. 632 1. 521 0. 23 実施例 13 79 102 23 0. 24 1. 644/1. 640 1. 524 0. 17 実施例 14 81 109 28 0. 14 1. 654/1. 649 1. 519 0. 07 比較例 6 8 1 1 13 32 0. 12 1. 655/1. 652 1. 517 0. 05
表 8
Figure imgf000028_0001
表中「一 J印は評価しなかったことを示す。
実施例 15〜18
¾例 9において、延伸、熱固定条件を表 9に示すように変更し、 表 10に示 す^ 14を有する (特に、 X線回析¾¾比およびフィルム面方向の屈折率を変更し た) 二軸延伸ポリエステルフィルムを得た。
結果は、表 11に示す通りであり、 X線回折強度比が 0.10〜0.40で、 フ ィルム面方向の屈折率が全方向について 1.620〜1.670である本発明では、 良好な結果が得られた。総合言 ¥ を表 11に示した。 表 9 縦延伸条件 横延伸条件 熱固定温度
V
倍率 温度 倍率 温度で
実施例 15 3. 4 130 3. 6 135 160
実施例 16 3. 0 125 3. 1 130 200
実施例 17 2.— 8 125 3. 3 130 190
実施例 18 2. 8 120 3. 4 120 170
表 1 0
Tg Te Te-Tg X線回折 屈折率 水抽出物量一 1 で X 強度比 フィルム面方向 厚さ方向 (mg/平方インチ)
Max/Min
実施例 15 81 107 26 0. 12 1. 661/1. 649 1. 515 0. 10 実施例 16 81 98 17 0. 38 1. 638/1. 630 1. 536 0. 23 実施例 17 81 102 21 0. 24 1. 660/1. 628 1. 526 0. 17 実施例 18 81 106 25 0. 21 1. 667/1. 632 1. 521 0. 11
深絞り加工性 耐衝撃性 耐熱脆化性 耐レトルト性 保 "¥ 総合評価
1 2 1 2 実施例 15 〇 〇 〇 〇 〇 ◎ ◎ ◎ 実施例 16 〇 〇 Ό 〇 〇 ◎ ◎ 実施例 17 o 〇 〇 〇 〇 ◎ ◎ ◎ 実施例 18 〇 〇 〇 〇 〇 ◎ ◎ ◎ 実施例 19〜 23および比較例 Ί , 8
表 12に示す を共重合した共重合ポリエチレンテレフ夕レート (固有粘度 0.64,粒径比 1.1 ,平均粒径 0.5;/mの 伏シリカを 0 · 2重量%含有) を 乾燥した後、溶 甲出し、急冷固化して未延伸フィルムを得た。次いで、 この未 延伸フィルムを表 12に示す ί¾および倍率で縦延伸した後、表 12に示す温度 および倍率で横延伸し、更に 170。Cで熱固定して二軸延伸ポリエステルフィル ムを得た。
得られたフィルムの厚みは、 25 zmであった。 また、 フィルムのガラス転移 (Tg) 、損 弾性率の最高ピーク温度 (Te) 、 X線回折體比、 ffi向 係数、 フィルム厚さ方向の屈折率および水抽出物量— 1を表 13に、言 結果を 表 14に示す。
表 1 2 共重合成分 共重合比 融点 縦延 条件 横延ィ E条件
モル ¾ °C 倍率 温度で 倍率 温度で 比較例 7 NDC 20 208 3. 4 100 3. 5 110 実施例 19 NDC 18 213 3. 4 110 3. 5 110 実施例 20 NDC _ 10 232 3. 3 120 3. 4 130 実施例 21 NDC 6 242 2. 9 125 3. 0 130 比較例 8 NDC 4 248 2. 7 120 2. 9 125 実施例 22 CHDM 12 229 3. 2 125 3. 3 130 実施例 23 I A 6 228 3. 2 125 3. 3 135
NDC 6 表 1 3
Tg Te Te-Tg X線回折 面配向係数 厚さ方向屈折率 水抽出物量一 1
X: V 強度比 Ong/平方インチ) 比較例 7 84 100 16 0. 37 0. 106 1. 542 0. 19 実施例 19 83 103 20 0. 34 0. 104 1. 541 0. 14 実施例 20 81 107 26 0. 19 0. 138 1. 516 0. 10 実施例 21 80 107 27 0. 14 0. 135 1. 514 0. 09 比較例 8 79 107 28 0. 16 0. 132 1. 51 3 0. 09 実施例 22 79 102 23 0. 24 0. 1 16 1. 519 0. 18 実施例 23 78 99 21 0. 25 0. 1 16 1. 523 0. 21
表 1 4
Figure imgf000032_0001
表中「一」印は評価しなかったことを示す。 実施例 24〜25および腿例 9~10
表 15に示す を共重合した共重合ポリエチレンテレフタレート (固有粘度 0.62,粒径比 1.1,平均粒径 0.5 ytzmの ¾^状シリカを 0.2重量%含有) を 溶 甲出し、急冷固化して得た未延伸フィルムを、表 15に示す条件で延伸、 熱 固定して二軸延伸ポリエステルフィルムを得た。
得られたフィルムの厚みは、 25 mであった。 また、 フィルムのガラス転移 i¾ (Tg) 、 ί跌弾性率の最高ピーク温度 (Te)、 X線回折 ¾ ^比、 向 係数、 フィルム厚さ方向の屈折率および水抽出物量一 1は、表 16に示す通りで めった。
評価結果は表 16に示す通りであり、 Tgが 78°C以上、 Te—Tgが 30°C 以下の本発明の場合は、良好な結果が得られたが、 丁2が78 未満の場合 (比 較例 9) は、耐熱性が劣り、 レトルト後の保味保香性が悪く、 Te—Tgが 30 を超える場合、 (比較例 10) は、 «加工性力低下した。 表 1 5 共重合成分 共重合比 融点 縦延 条件 横延 {E条件 熱固定温度 モル! ¾ °c 倍率 温度 °C 倍率 温度で
比較例 9 I A 8 228 3. 1 110 3. 2 115 180
NDC 4
実施例 24 I A 4 228 3. 2 115 3. 3 120 180
NDC 8
実施例 25 NDC 10 232 3. 3 110 3. 4 120 190 比較例 10 NDC 10 232 3. 5 125 3. 6 130 190
表 1 6
Tg Te Te - Tg X線回折 面配向係数 厚さ方向屈折率 水抽出物量一 1 強度比 Ong/平方インチ) 比較例 9 77 100 23 0. 22 0. 121 1. 519 0. 21 実施例 24 79 104 25 0. 21 0. 124 1. 521 0. 15 実施例 25 81 109 28 0. 14 0. 133 1. 519 0. 08 比較例 10 81 113 32 0. 12 0. 137 1. 517 0. 05
表 1 7
Figure imgf000035_0001
表中「一」印は評価しなかったことを示す。
実施例 26 ~29
包例 20において、延伸、熱固定条件を表 18に示すように変更し、表 19 に示す ,を有する (特に、 X線回析¾^比および ffi向係数を変更した) 二軸 延伸ポリエステルフィルムを得た。
結果は、表 20に示す通りであり、 X線回析強度比が 0.10〜0.40で、面 配向係数が 0.100〜0.150である本発明の場合には、良好な結果が得られ た。総合 Nffiを表 20に示した。 表 1 8 縦延 条件 横延 条件 熱固定温度
倍率 温度で 倍率 温度で X:
実施例 26 3. 3 125 3. 4 130 160
実施例 27 2. 8 120 3. 0 125 190
実施例 28 3. 1 125 3. 2 130 200
実施例 29 3. 1 100 3. 2 105 170 表 1 9
Tg Te Te -Tg X線回折 面配向係数 厚さ方向 水抽出物量一 1
V V 強度比 屈折率 (mg/平方インチ) 実施例 26 81 107 26 0. 12 0. 140 1. 515 0. 08 実施例 27 81 99 18 0. 38 0. 106 1. 532 0. 20 実施例 28 81 94 13 0. 36 0. 102 1. 534 0. 27 実施例 29 81 107 26 0. 15 0. 148 1. 511 0. 11
表 2 ο
Figure imgf000037_0001
実施例 30〜34および職例 11
表 21に示す を共重合した共重合ポリエチレンテレフ夕レート (固有粘度 0.64,粒径比 1.1 ,平均粒径 0.5 の^^状シリカを 0.2重量%含有) を した後、溶 甲出し、急冷固化して未延伸フィルムを得た。次いで、 この未 延伸フィルムを表 21に示す i¾および倍率で縦延伸した後、表 21に示す温度 および倍率で横延伸し、更に 1 Ί 0°Cで熱固定して二軸延伸ポリエステルフィル ムを得た。
得られたフィルムの厚みは、 25 mであった。 また、 フィルムのガラス転移 ¾ (Tg) 、損 弾性率の最高ビーク温度 (Te)、 X線回折 比、 DSC によるサブピーク (Tsm) 、 フィルム厚さ方向の屈折率および水抽出物量一 1 を表 22に、評価結果を表 23に示す。
表 2 1 共重合成分 共重合比 融点 縦延 条件 横延 条件
モル DC 倍率 温度 倍率 温度で 比較例 11 NDC 20 208 3. 6 110 3. 6 115 実施例 30 NDC' 18 213 3. 5 115 3. 6 115 実施例 31 NDC 12 228 3. 2 110 3. 3 120 実施例 32 NDC 6 242 2. 8 120 2. 9 125 実施例 33 CHDM 12 229 3. 1 115 3. 2 125 実施例 34 I A 6 228 3. 1 120 3. 2 130
NDC 6 表 2 2
Tg T e Te-Tg X線回折 DSCによる 厚さ方向 水抽出物量一 1
X 強度比 サブピーク 屈折率 (mg/平方インチ) 比較例 11 84 100 16 0. 38 170 1. 543 0. 18 実施例 30 83 103 20 0. 35 170 1. 541 0. 14 実施例 31 81 107 26 0. 19 169 1. 519 0. 10 実施例 32 80 107 27 0. 15 168 1. 514 0. 10 実施例 33 79 102 23 0. 24 169 1. 519 0. 20 実施例 34 78 98 20 0. 25 169 1. 523 0. 23
表 23
Figure imgf000039_0001
表 23からも明らかなように、共重合ポリエステルの 、が 210 245°C である本発明の (実施例 30 34) は、良好な結果が得られたカ^ が 210°C未満の場合 (比較例 11) は、耐熱性が劣り、 レトルト後の保味保香性 が d)、つす:。
実施例 35 36および比較例 12 13
表 24に示す成分を共重合した共重合ポリエチレンテレフタレ一ト (固有粘度 0.62,粒径比 1.1,平均粒径 0.5 μπιの 状シリ力を 0.2重量%含有) を 溶,出し、急冷固化して得た未延伸フィルムを、表 24に示す条件で延伸、熱 固定して、二軸延伸ポリエステルフィルムを得た。
得られたフィルムの厚みは、 25 mであった。 また、 フィルムのガラス転移 ¾ (Tg) ί跌弾性率の最高ピーク温度 (Te) X線回折搬比、 DSC によるサブピーク (Tsm) 、 フィルム厚さ方向の屈折率および水抽出物量一 1 は、表 25に示す通りであらた。
評価結果は表 26に示す通りであり、 Tgが 78°C以上、 Te— Tgが 30°C 以下の本発明の場合 (実施例 35 36 ) は、良好な結果が得られたが、 T が 78 C未満の場合 (比較例 12) は、耐熱性が劣り、 レトルト後の保味保香性が 悪く、 T e— T gが 30 Cを超える i#^T、 (比較例 13) は、戲幼口ェ性が低下 表 24 共重合成分 共重合比 融点 縦延伸条件 横延伸条件 熱固定温度 モル% °C 倍率 温度 倍率 温度 で 比較例 12 I A 8 228 3. 1 115 3. 2 120 180
NDC 4
実施例 35 I A 4 228 3. 1 120 3. 2 125 180
NDC 8
実施例 36 NDC 12 228 3. 2 100 3. 3 110 190 比較例 13 NDC 12 228 3. 4 115 3. 6 125 190
表 2 5
Tg Te Te -Tg X線回折 DSCによる 厚さ方向 水抽出物量一 1
X 強度比 サブピーク 屈折率 (mg/平方インチ)
X
比較例 12 77 98 21 0. 25 179 1. 521 0. 20 実施例 35 79 102 23 0. 24 179 1. 524 0. 18 実施例 36 81 109 28 0. 14 188 1. 521 0. 08 比較例 13 81 113 32 0. 12 188 1. 519 0. 04
表 26
Figure imgf000042_0001
表中「一」印は評価しなかったことを示す。
実施例 37~40
包例 31において、延伸、熱固定条件を表 27に示すように変更し、表 28 に示す特性を有する (特に、 X線回折強度比および DSCによるサブピーク (T sm) を変更した) 二軸延伸ポリエステルフィルムを得た。
結果は、表 29に示す通りであり、 X線回折強度比が 0.10〜0.40で、 D SCによるサブピーク (Tsm) が 150〜205。Cである本発明の場合には、 良好な結果力得られた。 総合讀は表 29に示した。 表 2 7 縦延 条件 横延 条件 熱固定温度
倍率 温度で 倍率 温度で °C 実施例 37 3. 4 125 3. 6 130 160
実施例 38 3. 0 120 3. 1 125 200
実施例 39 3.- 2 110 3. 3 120 155
実施例 40 3. 2 110 3. 3 120 205 表 2 8
Tg Te Te - Tg X線回折 DS Cによる 厚さ方向 水抽出物量一 1 で, t X 強度比 サブピーク 屈折率 (mg/平方インチ)
"C
実施例 37 81 107 26 0. 12 1 58 1. 517 0. 09 実施例 38 81 98 1 7 0. 38 199 1. 538 0. 22 実施例 39 81 107 26 0. 18 1 52 1. 520 0. 1 0 実施例 40 81 100 1 9 0. 33 202 1. 533 0. 18
表 2 9
Figure imgf000044_0001
実施例 41-47および比較例 14〜 16
表 30に示す を共重合した共重合ポリエチレンテレフタレート (固有粘度 0.64、粒径比 1.1、平均粒径 0.5 の m¾状シリカを 0.2重量%含有) を、乾燥した後溶謝甲出し、急冷固ィ匕して未延伸フィルムを得た。次いで、 この 未延伸フィルムを表 30に示す温度および倍率で縦延伸した後、表 30に示す温 度および倍率で横延伸し、 180°Cで熱固定して二軸配向フィルムを得た。 得られたフィルムの厚みは 25 mであった。 これらのフィルムの 結果を
^ξύ 1に ο
表 3 0
Figure imgf000045_0001
表 3
Figure imgf000046_0001
表中「一」印は評価しなかったことを示す。
実施例 48~52および比較例 17〜21
表 30に示す、 ジエチレングリコール、 アルカリ金属ィ匕合物、 Si合 触媒及びリン化合物を用いて共重合ポリエチレンテレフタレート (粒径比 1.1、 平均粒径 0.5/i mの真球状シリカを 0.2重量%含有。以下共重合 P E Tと略す ることがある。 ) を ¾ ^した後、 280°0で溶|!^出し、急冷固化して未延伸フ イルムを得た。 次いで、 この未延伸フィルムを縦方向に 3.0倍延伸した後、横方 向に 3.0倍延伸し、 180°Cで熱固定して厚み 25 mの二軸配向フィルムを得 た。 このフィルムの^を表 32及び表 33に示す。
比較例 22
共重合 P ETを する際の溶謝甲し出し を 300°Cとする以外は 包例 46と同じ方法で二軸配向フィルムを得た。 このフィルムの を表 32及び表 33に示す。 この二軸配向フィルム中の遊離グリコーノレエステノ 1/Mは、 ^½例に 比べて高くなった。
表 3 2
Figure imgf000048_0001
尚、 表中の符号は以下の通りである。
TA :テレフタル酸、 NDC: 2, 6—ナフタレンジカルボン酸、 AA:アジピン酸、 IA:イソフタル酸、 D E G:ジエチレングリコール Tg :ガラス転移点、 Tm:融点、 Ge02:二酸化ゲルマニウム; Sb203:三酸化アンチモン
A:フィルム中に残存するアルカリ金属元素の総量、 M:フィルム中に残存する触媒金属元素の濃度、 P:フィルム中に残存するリン元素濃度 を前述の方法にて測定した値を示す。 M+P及び MZPはこれらの値を代入して求められる。
表 3 3 ラミネート性 深絞り加工性 ¾執腊 レトルト 保味性 気泡 ·しわ 熱収縮率 1 2 1 2 実施例 4 8 πリ リ π 〇 〇 〇
実施例 4 9 o , 〇 〇 o ο 〇 〇 ◎ ο 実施例 5 0 〇 〇 〇 〇 〇 〇 〇 ◎ ◎ 実施例 5 1 〇 〇 〇 〇 〇 〇 〇 ◎ 〇 実施例 5 2 〇 〇 〇 〇 〇 〇 〇 〇 〇 比較例 1 7 〇 〇 〇 〇 ο 〇 〇 〇 Δ 比較例 1 8 〇 〇 〇 〇 厶 Δ Δ 〇 X 比較例 1 9 Δ X
比較例 2 0 〇 〇 〇 〇 〇 〇 〇 〇 厶 比較例 2 1 〇 O 〇 〇 〇 〇 〇 ◎ Δ 比較例 2 2 〇 Δ X
表 3 1の評価結果から明らかなように、本発明の共重合ポリエステルフィルム を ^fflした缶は、深絞り加工性、耐«化性、耐レトルト性、耐衝撃性が良好で あるとともに、保香性、特にレトルト後の保味保香性に優れている。

Claims

請求の範囲
1. (A) (a)全ジカルボン酸 の 82~100モル%がテレフ夕ノレ酸であ りそして 0〜18モル%が 2 , 6—ナフタレンジカルボン酸または 2, 6—ナフタ レンジ力ルボン酸と他のジカルボン酸からなり、
(b) 全ジォーノレ^の 82〜100モル%カエチレングリコーノレでありそして 0〜18モル%がシクロへキサンジメタノールまたはシクロへキサンジメタノー ルと他のジォ一ルからなり、
( c ) ガラス転移 i¾tが 78 °c以上でありそして
(d) 融点が 210〜250。Cの範囲にある、
ポリエステノレ共重合体からなり、 そして
(B) 弾性率の最高温ピーク ί¾ (Te,°C) と上記ガラス転移温度 (Tg, °C) との間に下記関係:
T e-Tg≤30 力 する、
金属板貼合せ成形加工用二軸配向ポリエステルフィルム。
2. 全ジカルポン^^がテレフタル酸と 2, 6—ナフタレンジカルボン酸からな りそして全ジォーノレ がエチレングリコールからなるポリエステル共重合体で ある、 クレーム 1のフィルム。
3. ポリエステル共重合体のガラス転移温度 (Tg)が 78〜90。Cの範囲にあ るクレーム 1のフィルム。
4. ポリエステル共重合体 ©Ιί^、が 210〜245°Cの範囲にあるクレーム 1の フィルム。
5. 損失弾性率の最高温ピーク温度 (Te) とガラス転移温度 (Tg) との間に 下記関係: 15≤T e-Tg≤25 が^:する、 クレーム 1のフィルム。
6. フィルム表面に 亍な (100)面と (110)面との間に下記関係:
0.10≤I (1 Ϊ 0) /1 (100) ≤0.40 ここで、 I (1Ϊ0) は (ΐί 0)面による X線回折 ¾J¾でありそして I (10 0) は (100)面による X線回折 である、
カ¾5¾するクレーム 1のフィルム。
7. フィルム面方向における屈折率があらゆる方向において 1.620〜1 · 67 0の間にある、 クレーム 6のフィルム。
8. 面配向係数が 0.100〜0.150の間にある、 クレーム 6のフィルム。
9. D S Cにおいて、融点ピークとは異なるピークとして、 150〜205°Cの 範囲にピークを有する、 クレーム 6のフィルム。
10. 100°Cにおける 40%伸長時の引張応力 (F40,k g f /mm2) と 1 00°Cにおける 120%伸長時の引張応力 (F 120,k g f /mm2) との間に 下記関係:
0.6≤F40/F120≤0.8 力 する方向がフィルム面内に存在する、 クレーム 1のフィルム。
11. イオン交換水で 121°C、 2時間抽出処理したときの抽出量が 0.5mgZ i nch2 (0.0775m cm2)以下である、 クレーム 1のフィルム。
12. (A) (a)全ジカルボン酸 β¾分の 82〜: L 00モル%がテレフタル酸で ありそして 0〜18モル%が 2,6—ナフ夕レンジカルボン酸または 2 ,6—ナフ 夕レンジカルボン酸と他のジ力ルボン酸からなり、
(b) 全ジオール成分の 82〜100モル%がエチレングリコ一ノレでありそして 0-18モル%がシクロへキサンジメタノールまたはシクロへキサンジメタノー ルと他のジォ一ルからなり、 (c) ガラス転移 ί¾が 78。C以上でありそして
(d)融点が 210〜250。Cの範囲にある、
ポリエステル共重合体からなり、 そして
(Β' ) のジカルボン酸ジオールエステルの含有量が 50 p pm以下である、 金属板貼合せ成形加工用二軸配向ポリエステルフィルム。
13. 全ジオール の 90モル% ±iがエチレングリコールである、 クレーム 12のフィルム。
14. ポリエステル共重合体の固有粘度が 0.5〜0.8d lZgの範囲にある、 クレーム 12のフィルム。
15. »のジカルボン酸ジオールエステルがビス (yS—ヒドロキシェチル) テ レフタレ一トである、 クレーム 12のフィルム。
16. フィルムの ί鉄弾性率の最高温ビーク (Te,。C) とポリエステル共重 合体のガラス転移温度 (Tg,°C) との間に下言 2 ^係:
T e-Tg≤30 が紘する、クレーム 12のフィルム。
17. 100°Cにおける 40%伸長時の引張応力 (F40,k g f /mm2) と 1 00°Cにおける 120%伸長時の引張応力 (F120,kgf /mm2) との間に 下記関係:
0. 6≤F40/F 120≤0.8 力 ¾¾iする方向がフィルム面内に する、 クレーム 12のフィルム。
18. イオン交換水で 125°C、 1時間抽出処理したときの抽出量が O.lmg/ i nch2 (O.Ol 5 Smg/cm2)以下である、 クレーム 12のフィルム。
19. フィルム表面に平行な (100)面と (ΐΐ θ)面との間に下記関係:
0.10≤ I (110) /I C100) ≤0.40 ここで、 I (1 Ϊ0) は (1 ϊ 0)面による X線回折搬でありそして I (10 0) は (100)面による X線回折 である、
力 ¾¾¾するクレーム 12のフィルム。
20. フィルム面方向における屈折率があらゆる方向において 1.620〜1 · 6 70の間にある、 クレーム 19のフィルム。
21. ®E向係数が 0.100〜0.150の間にある、 クレーム 19のフィルム c
22. DS Cにおいて、融 ビークとは異なるビークとして、 150〜205°C の範囲にピークを有する、 クレーム 19のフィルム。
23. フイルム厚が 6〜75 の範囲にある、 クレーム 1または 12のフィノレ ム。
24. 金属板に貼合せて積層体を!^するためのクレーム 1または 12のフィノレ ムの用途。
25. 積層体が金属缶製造のための り加 ffiであるクレーム 24の用途。
PCT/JP1997/003643 1996-10-11 1997-10-09 Film polyester a orientation biaxiale destine a etre stratifie avec des feuilles de metal WO1998016573A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1997625130 DE69725130T2 (de) 1996-10-11 1997-10-09 Biaxial orientierter polyesterfilm für laminierung mit metallfolien
EP19970943174 EP0900818B1 (en) 1996-10-11 1997-10-09 Biaxially oriented polyester film for lamination with metal sheets
US09/091,190 US6086989A (en) 1996-10-11 1997-10-09 Biaxially oriented polyester film to be laminated onto a metal plate and molded

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/269753 1996-10-11
JP26975396 1996-10-11
JP9/10043 1997-01-23
JP1004397A JP3749586B2 (ja) 1997-01-23 1997-01-23 金属板貼合せ成形加工用ポリエステルフィルム
JP15093797A JP3330847B2 (ja) 1997-06-09 1997-06-09 金属板貼合せ成形加工用ポリエステルフィルム
JP9/150937 1997-06-09

Publications (1)

Publication Number Publication Date
WO1998016573A1 true WO1998016573A1 (fr) 1998-04-23

Family

ID=27278807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003643 WO1998016573A1 (fr) 1996-10-11 1997-10-09 Film polyester a orientation biaxiale destine a etre stratifie avec des feuilles de metal

Country Status (6)

Country Link
US (1) US6086989A (ja)
EP (1) EP0900818B1 (ja)
KR (1) KR100386147B1 (ja)
DE (1) DE69725130T2 (ja)
TW (1) TW474954B (ja)
WO (1) WO1998016573A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002827A1 (en) * 1998-11-20 2000-05-24 Toray Industries, Inc. Formable biaxially-oriented polyester film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69827607T2 (de) * 1997-12-18 2005-11-03 Teijin Ltd. Biaxial orientierter polyester film für die laminierung auf metallbändern
DE60016911T2 (de) * 1999-12-03 2005-12-08 Toray Industries, Inc. Biaxial gestreckte polyesterfolie zur formgebung
TW546330B (en) * 2000-01-07 2003-08-11 Teijin Ltd Biaxially oriented polyester film for metal sheet laminating molding
EP1120352B1 (en) * 2000-01-28 2007-05-23 Toyo Boseki Kabushiki Kaisha Heat-shrinkable polyester films
DE60111318T2 (de) * 2000-09-05 2006-05-11 Toyo Boseki K.K. Polyesterfolie, ihre Verwendung und aus dieser Folie hergestelltes laminiertes Metallblech, und aus diesem Blech hergestellte Metalldose und Metalldeckel
WO2010038655A1 (ja) * 2008-09-30 2010-04-08 東レ株式会社 ポリエステルフィルム
US10543656B2 (en) 2018-01-11 2020-01-28 Eastman Chemical Company Tough shrinkable films
CN112789156A (zh) 2018-10-08 2021-05-11 伊士曼化工公司 由树脂共混物制成的可结晶可收缩膜和可热成形片材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143687A (ja) * 1994-11-25 1996-06-04 Teijin Ltd 金属板貼合せ成形加工用ポリエステルフイルム
JPH0948840A (ja) * 1995-08-03 1997-02-18 Mitsubishi Chem Corp 共重合ポリエステル製シート及びそれより成る3次元成形体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951093B2 (ja) * 1991-12-02 1999-09-20 帝人株式会社 金属板貼合せ成形加工用ポリエステルフイルム
JP3071557B2 (ja) * 1992-05-22 2000-07-31 帝人株式会社 金属板貼合せ成形加工用ポリエステルフィルム
JP2960613B2 (ja) * 1992-08-25 1999-10-12 帝人株式会社 金属板貼合せ成形加工用ポリエステルフィルム
JP3245994B2 (ja) * 1992-10-08 2002-01-15 東レ株式会社 金属板貼合わせ用共重合ポリエステル及びフィルム
JPH08231690A (ja) * 1995-02-23 1996-09-10 Nippon Ester Co Ltd 共重合ポリエステルフイルム及びレトルト処理飲食品用缶
JP3572739B2 (ja) * 1995-09-05 2004-10-06 東洋紡績株式会社 金属板ラミネート用ポリエステルフィルムおよびそれを用いた金属ラミネート体
JPH0970935A (ja) * 1995-09-08 1997-03-18 Toray Ind Inc 金属板貼合わせ用積層ポリエステルフィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143687A (ja) * 1994-11-25 1996-06-04 Teijin Ltd 金属板貼合せ成形加工用ポリエステルフイルム
JPH0948840A (ja) * 1995-08-03 1997-02-18 Mitsubishi Chem Corp 共重合ポリエステル製シート及びそれより成る3次元成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0900818A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002827A1 (en) * 1998-11-20 2000-05-24 Toray Industries, Inc. Formable biaxially-oriented polyester film

Also Published As

Publication number Publication date
KR100386147B1 (ko) 2004-03-24
US6086989A (en) 2000-07-11
EP0900818A4 (en) 2000-01-05
DE69725130D1 (de) 2003-10-30
EP0900818B1 (en) 2003-09-24
EP0900818A1 (en) 1999-03-10
KR19990072089A (ko) 1999-09-27
DE69725130T2 (de) 2004-06-09
TW474954B (en) 2002-02-01

Similar Documents

Publication Publication Date Title
WO1993014152A1 (en) Polyester film for metal sheet lamination and use thereof
JPH05156040A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
WO1998016573A1 (fr) Film polyester a orientation biaxiale destine a etre stratifie avec des feuilles de metal
JP3083707B2 (ja) 金属板貼合せ成形加工用ポリエステルフイルム
JPH05320378A (ja) 金属板貼合せ成形加工用ポリエステルフイルム
JPH06218895A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP3258255B2 (ja) 金属板貼合せ加工用ポリエステルフィルム
JP3188660B2 (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP3537893B2 (ja) 金属板貼合せ成形加工用ポリエステルフイルム
JP3510768B2 (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP3330862B2 (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP3330847B2 (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP2001192475A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP3265182B2 (ja) 金属板貼合せ成形加工用ポリエステルフイルム
JPH11181114A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JPH0680797A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP2908196B2 (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP3383578B2 (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP2908195B2 (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JPH11181113A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JPH05154971A (ja) 金属板貼合せ成形加工用ポリエステルフイルム
JPH10204164A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JPH11334016A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JPH11255915A (ja) 金属板貼合せ成形加工用ポリエステルフィルム
JP2003246869A (ja) 金属缶蓋貼合せ用フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09091190

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997943174

Country of ref document: EP

Ref document number: 1019980704398

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997943174

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704398

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980704398

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997943174

Country of ref document: EP