WO1998008255A1 - Procede de fabrication de dispositif a oxyde dielectrique et memoire et semi-conducteur utilisant ce dispositif - Google Patents

Procede de fabrication de dispositif a oxyde dielectrique et memoire et semi-conducteur utilisant ce dispositif Download PDF

Info

Publication number
WO1998008255A1
WO1998008255A1 PCT/JP1997/000965 JP9700965W WO9808255A1 WO 1998008255 A1 WO1998008255 A1 WO 1998008255A1 JP 9700965 W JP9700965 W JP 9700965W WO 9808255 A1 WO9808255 A1 WO 9808255A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
oxide dielectric
oxide
ferroelectric
dielectric thin
Prior art date
Application number
PCT/JP1997/000965
Other languages
English (en)
French (fr)
Inventor
Takaaki Suzuki
Toshihide Nabatame
Kazutoshi Higashiyama
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to US09/242,302 priority Critical patent/US6548342B1/en
Priority to EP97907437A priority patent/EP0957516A1/en
Publication of WO1998008255A1 publication Critical patent/WO1998008255A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer

Definitions

  • the present invention relates to a method for manufacturing an oxide dielectric element, a memory and a semiconductor device using the same.
  • R 0 M Read Only Memory
  • RAM random access memory
  • An oxide dielectric is one of the materials used for this RAM memory.
  • oxide dielectrics there are a high dielectric having a high dielectric constant and a ferroelectric having polarization hysteresis.
  • DRAMs using high dielectrics and nonvolatile RAMs using ferroelectrics there are DRAMs using high dielectrics and nonvolatile RAMs using ferroelectrics.
  • a non-volatile RAM using a ferroelectric material has non-volatility by utilizing the hysteresis effect of the ferroelectric material, and the number of times of rewriting is 10.sup.10 to 10.sup.12. Times and very good.
  • the speed of rewriting is less than ts (1 / 100,000 second) compared to other methods, and it is attracting attention as an ideal next-generation memory.
  • Developments are being made to increase the capacity, nonvolatileness, and speed of such nonvolatile RAMs.
  • P r spontaneous polarization
  • ferroelectric material having large spontaneous polarization P r
  • perovskite oxides are widely used.
  • S r B i 2 T a 2 0 9 single grating is several overlapping crystal structure B i layer-like ferroelectric are known Of this Chi Bae Robusukai preparative structure.
  • This material has crystal anisotropy that Pr shows only in the direction perpendicular to the c-axis.
  • Pr value is not necessarily large, an example using this material because of its excellent film fatigue properties is described in Patent W0931,254,2 (PCT / US92 /
  • DRAMs using high dielectric materials have entered the era of increasing the capacity of 16M and 64M bits with advances in high-density and highly integrated technologies. For this reason, miniaturization of circuit components is required, and particularly miniaturization of capacitors for storing information is being performed. Of these, the miniaturization of capacitors can be achieved by reducing the thickness of the dielectric material, adopting a material with a high dielectric constant, or flattening the structure of the upper and lower electrodes and the dielectric into a three-dimensional structure.
  • BST crystal structure is a single lattice Bae Robusukai structure ((B a ZS r) T i 0 3) is a conventional S i 0 2 ZS i 3 N Large permittivity compared to 4
  • the present invention relates to a method for manufacturing an oxide dielectric element, a memory and a semiconductor device using the same, and more particularly, to a high dielectric element such as a DRAM utilizing a high dielectric constant and a low leak current density, and a high spontaneous operation.
  • a high dielectric element such as a DRAM utilizing a high dielectric constant and a low leak current density, and a high spontaneous operation.
  • Non-volatile RAM using polarization and low coercive electric field It can be used for a ferroelectric element such as, a memory or a semiconductor device using a high dielectric element or a ferroelectric element.
  • the ferroelectric thin film and the temperature for forming the high dielectric thin film is P b (Z r / ⁇ i ) 0 3 about 6 5 0 ° C, with (B a / S r) T i 0 3 about 6 At 0, it was necessary to raise the temperature to about 800 ° C at S r ⁇ i 2 ⁇ a 0.
  • a high temperature of 600 ° C. or more is required to promote crystallization.
  • raising the temperature raises various problems. For example, in the vapor phase method, the lower electrode is peeled off by experiencing an oxidizing atmosphere at a high temperature in the early stage of film formation.
  • the transition layer is formed by the diffusion reaction of the element at the interface of the alloy, the spontaneous polarization (P r) is reduced, the original characteristics are not obtained, the coercive electric field (E c) is increased, and the film fatigue is reduced. Caused. For this reason, the number of times of writing by inverting the electric field is greatly restricted. Further, by increasing the temperature, (a) the dielectric constant and spontaneous polarization are reduced due to the formation of the reaction layer, and (b) the crystal grains grow and the leak current density increases. This causes problems such as loss of operating voltage, which leads to a higher operating voltage, making it difficult to achieve high integration of devices.
  • the present invention provides an excellent oxide dielectric element, particularly a ferroelectric element having a high spontaneous polarization and a low coercive electric field, or a high dielectric substance having a high dielectric constant and a high withstand voltage characteristic.
  • An object of the present invention is to propose a method of manufacturing a semiconductor device, a memory using the same, and a semiconductor device.
  • the present invention is directed to an oxide dielectric element, particularly a ferroelectric element having spontaneous polarization and a low coercive electric field, or a high dielectric element having high dielectric constant and withstand voltage characteristics.
  • the ferroelectric thin film and the ferroelectric thin film constituting them are formed in a low oxygen concentration atmosphere, and the formation temperature is 65 O'C or less for the ferroelectric thin film, and is 6 or less for the high dielectric thin film.
  • the formation temperature is 65 O'C or less for the ferroelectric thin film, and is 6 or less for the high dielectric thin film.
  • One feature is that it is performed at 0 ° C or lower. In this case, as the low oxygen concentration atmosphere, the perovskite structure is most frequently formed, and the oxygen concentration at which high electrical characteristics are easily obtained is higher than 0.1% and lower than 5.0%. A smaller range is desirable.
  • Another feature of the present invention is that it is possible to prepare a low oxygen concentration atmosphere by adjusting the mixing ratio of oxygen and inert gas, and it is a very simple method because of normal pressure. .
  • a ferroelectric thin film ⁇ beauty high ⁇ body thin ⁇ formed by the above manufacturing method 0 3, N 2 0, again in activated oxygen atmosphere of La radical such as oxygen
  • a high quality ferroelectric thin film and a high dielectric thin film are formed.
  • the ferroelectric thin film is
  • A B i, T 1, ⁇ g P b, S b, A s
  • B Pb, Ca, SrBa, at least one of rare earth elements
  • A L a, B a, N b
  • High dielectric thin film obtained by the present invention is characterized by having a T a 2 0 6 I Li large kina dielectric constant was conventionally obtained.
  • At least one of Pt, Au, A1, Ni, Cr, Ti, Mo, and W is used. It is characterized by one kind.
  • a conductive oxide composed of a single element Ti, V, Eu, Cr, o, W, Ph, Os, Ir, Pt, Re, Ru, S It is characterized by being at least one oxide of n.
  • the method for producing a ferroelectric thin film and a high dielectric thin film according to the present invention is characterized in that the ferroelectric thin film and the high dielectric thin film are produced by a sputtering method, a laser vapor deposition method, or a MOCVD method in a mixed gas atmosphere of oxygen and an inert gas. I do. Alternatively, it may be prepared by a spin-coating method or a dip-coating method using a metal alkoxide or an organic acid salt as a starting material under normal pressure and in a mixed gas of oxygen and an inert gas. .
  • the re-heat treatment method includes a sputtering method provided with ECR oxygen plasma, It is characterized by re-heating by laser vapor deposition and M 0 CVD. Further, while irradiating light in the ultraviolet region, reheat treatment may be performed using a spin coat method or a dip coat method using a metal alkoxide or an organic acid salt as a starting material.
  • FIG. 1 is a view showing a change in a crystal structure of a ferroelectric thin film according to an oxygen concentration in an atmosphere of the present invention.
  • FIG. 2 is a sectional view showing a ferroelectric element of the present invention.
  • FIG. 3 is a sectional view showing a ferroelectric element of the present invention.
  • FIG. 4 is a cross-sectional view showing a ferroelectric element using the conductive oxide of the present invention for an electrode.
  • FIG. 5 is a schematic view of the microstructure of the ferroelectric thin film of the present invention.
  • FIG. 6 is a sectional view showing a ferroelectric memory of the present invention.
  • FIG. 7 is a sectional view showing a high dielectric memory according to the present invention.
  • FIG. 8 is a diagram showing the degree of orientation of the (105: plane) in the crystal structure according to the oxygen concentration in the atmosphere of the present invention.
  • FIG. 9 is a diagram showing the relationship between the underpressure and the leak current density of the present invention.
  • FIG. 10 shows a non-contact type semiconductor device K using the ferroelectric element of the present invention.
  • FIG. 11 is a view showing the result of measuring the number of repetitions of the ferroelectric element of the present invention.
  • 2 1, 3 1, 6 1, 7 1, 1 0 0 8 are upper electrodes
  • 4 1 is an upper electrode (conductive oxide)
  • 2 2, 4 2, 6 2, 1 0 7 are strong Dielectric thin film
  • 24, 34, 44 are base substrates
  • 25, 45 are ferroelectric elements
  • 35 are high dielectric elements
  • 6474, 1002 are Si, 65 , 7 5, source unit, 6 6, 7 6, de Rei down unit, 6 7, 7 9, Po Li click Li STAL S i, 6 8, 7 7, 7 8, the S i 0 2, 1 0 0 1, the non-contact type semiconductor device, 1 0 0 3, diffusion layers, 1 0 0 4, S i 0 2 gate film, 1 0 0 5, gate electrode, 1 0 0 9, 1 0 1 0, S i 0 2 insulating layer, 1 0 1 1 represents the aluminum wiring.
  • the perovskite structure can be formed in the thin film.
  • the formation temperature can be lowered, the reaction with the upper and lower poles can be prevented.
  • FIG. 2 shows a dielectric element structure according to the present embodiment.
  • a lower electrode is formed on the lower substrate, and a ferroelectric thin film is formed on the lower electrode. Further, the structure is such that an upper electrode is disposed on the ferroelectric thin film.
  • Reference numeral 24 indicates an underlying substrate.
  • the first base substrate using a substrate to form a S i 0 2 by thermally oxidizing the surface of the S i.
  • a lower electrode 23 (Pt) having a thickness of 2000 was formed on the base substrate 24 by sputtering at room temperature.
  • Fig. 1 shows the change in the ratio of the perovsite structure in the crystal to the oxygen concentration of the atmospheric gas.
  • the lower oxygen concentration has the effect of increasing the proportion of the perovskite structure.
  • the oxygen filtration rate of the formed atmosphere gas is 0.1% or less. Larger, less than 5.0% is desirable.
  • the amount of oxygen required to form a perovskite structure is insufficient, and it is difficult to form a perovskite structure.
  • At an oxygen concentration of 5.0% or more no significant difference was observed in the formation of the perovskite structure.
  • the ferroelectric thin film is less than 650 ° C and the high dielectric thin film is less than 600 ° C. Further, it is desirable to carry out at a temperature of 400 ° C. or more. Even if the heat treatment is performed at a temperature lower than this temperature range, the formation of the belovskite structure becomes difficult.
  • FIG. 8 shows the relationship between the degree of oxygen and the orientation of the (105) plane of the perovskite structure.
  • This orientation is represented by the ratio of the peak intensity I (105) of the (105) plane to the total peak intensity I (total) identified by X-ray diffraction.
  • the oxygen concentration low Ri by 5% (1 0 5) Ri by that stronger orientation of the surface
  • low oxygen concentration in the formed S r B i 2 T a 2 0 9 Tsuyo ⁇ collecting thin film crystal structure Is characterized in that the (105) plane is strongly oriented. This is because, due to the low oxygen concentration, a melt is generated due to the decomposition reaction of the oxide of each constituent element, and the crystal grows from the melt, so that preferential growth of the (105) plane is facilitated.
  • a metal Pt having a thickness of 2000 A was formed on the ferroelectric thin film 22 ((Bi0) 2+ (SrTa0) 2 ") by a sputtering method.
  • the ferroelectric element was formed at room temperature to produce an upper electrode 21.
  • the spontaneous polarization (Pr) and coercive electric field (Ec) of the obtained ferroelectric element were measured at room temperature. Table 1 shows the results. Table 1
  • P r is the polarization obtained at the maximum positive and negative applied voltage with a hysteresis of Pr 1 V.
  • Pr when the oxygen concentration was in the range of 0.2 to 3.0%, Pr was high, the value of Ec was low, and the result reflected the result of X-ray diffraction.
  • ferroelectric devices performed at an oxygen concentration of 0.7% exhibited values of 20 ZC / cm 2 and 45 kV / cm, respectively.
  • Fig. 11 shows a typical example of the result of measurement at an oxygen concentration of 0.7% from the results of measuring the number of repetitions by reversing the voltage of l SS k VZcm. In any of the thin films prepared at an oxygen concentration of 0.15 to 3.0%, no deterioration of the Pr characteristics was observed up to the 10th 14th power.
  • the element of the A-site is one of Tl, Hg, Pb, Sb, and As.
  • Example 1 since the formation at a low temperature can be performed by setting the oxygen concentration to be low, there is no problem such as the formation of a transition layer and the diffusion of elements, and the diffusion prevention layer is omitted between the substrate and the underlying substrate. It may be a structure that is provided.
  • a lower electrode 23 was formed on the base substrate 24.
  • a metal Pt having a thickness of 250 OA was formed on the base substrate 24 by a sputtering method in a vacuum at room temperature.
  • Pb: La: Zr: Ti 0.95: 0.05: 0.52: 0.4
  • the metal alkoxide solution prepared in eight compositions was spin-coated at 2500 rpm for 30 seconds. Thereafter, drying was performed at 140 ° C. for 13 minutes, and a pre-heat treatment was performed in air or oxygen at 450 ° C. lower than the crystallization temperature of the ferroelectric thin film for 20 minutes.
  • the above operation was defined as one cycle, and the cycle was repeated three times to produce a precursor thin film having a thickness of 170 OA.
  • Their were obtained the ferroelectric thin film and this is a heat treatment of 5 5 0 ° C in a low oxygen concentration ((P b ZL a) ( Z r / T i) 0 3).
  • the crystal structure of the ferroelectric thin film was examined by X-ray diffraction. As a result, similar to Example 1, In the range of 0.2 to 3.0%, the proportion of the perovskite structure in the crystal tended to increase sharply.
  • an upper electrode 21 was formed on the ferroelectric thin film 22.
  • a precursor thin film of Onm was prepared. Next, in order to form a pair Robusukai Bok structure. In low oxygen concentration atmosphere, the high dielectric thin film between this heat treatment is performed for 5 0 0 t ((B a 0. 6 S r 0. 6) T i O a ). The crystal structure of the high dielectric thin film was examined by X-ray diffraction. As a result, as in Example 1, when the oxygen concentration was made smaller than 5%, the proportion of the perovskite structure in the entire crystal phase began to increase, and in the range of 0.2 to 3.0%, The ratio tended to be the highest. Next, an upper electrode 31 was formed on the high dielectric thin film 32.
  • Table 3 shows the results of measuring the dielectric constant ( ⁇ ) of the obtained high dielectric element 35 at room temperature.
  • the method is shown below. First, in the cross section of the ferroelectric element shown in FIG. 4, a substrate in which the surface of S i was thermally oxidized to form S i 0 2 was used as the base substrate 44. Next, a lower electrode 43 was formed on the base substrate 44. On the base substrate 44, a single-element conductive oxide RuO having a thickness of 1 to 100 persons was produced by sputtering while heating at 450 ° C. in an oxygen gas atmosphere. .
  • a metal alkoxide solution of Bi, Sr, and Nb elements was spin-coated at 300 rpm for 25 seconds. Thereafter, drying was performed at 150 ° C. for 10 minutes, and a pre-heat treatment was performed in air or oxygen at 450 ° C. for 10 minutes. The above operation was defined as one cycle, and the cycle was repeated three times to produce a precursor thin film having a thickness of 230 OA. Finally, by heating at 600 ° C. in a low oxygen concentration atmosphere of argon gas + 0.7% oxygen, a ferroelectric thin film 42 having a perovskite structure is obtained.
  • the upper electrode 41 was formed on the ferroelectric thin film 42.
  • the upper electrode 41 is made of a single-element conductive oxide RuO of a thickness of 1700 by sputtering while heating to 450 ° C. in an oxygen gas atmosphere.
  • Dielectric element 45 was produced.
  • the Pr and coercive electric field (Ec) of the obtained ferroelectric element 45 were measured at room temperature. The results show the value of each 1 9 2 and 4 6 k V / cm.
  • an oxide dielectric element having excellent electric characteristics can be manufactured by using one of a conductive oxide made of and a conductive oxide having a verovskite structure.
  • Example 2 Using the same manufacturing method as in Example 1, a lower electrode (Pt) was formed on the underlying substrate.
  • the obtained metal alkoxide solution was spin-coated at 300 rpm for 35 seconds. Thereafter, drying was performed at 150 at this temperature for 10 minutes, and a pre-heat treatment was performed at 400 ° C. for 10 minutes in air or oxygen.
  • the above operation was regarded as one cycle, and the cycle was repeated twice to produce a precursor thin film having a thickness of 110 OA. Then, heating was performed at 63 ° C.
  • a lower electrode (Pt) was formed on the underlying substrate.
  • a 2: 1: 2 composition of the metal alkoxide solution was spin-coated at 350 rpm for 25 seconds. Thereafter, after drying at 17 for 10 minutes, a pre-heat treatment was performed at 450 ° C. for 10 minutes. The above operation was repeated three times to produce a precursor thin film having a thickness of 2200 people.
  • This embodiment in order to form at a low temperature and low oxygen concentration, for example, in the case of S r B i 2 T a 2 0 9 ferroelectric thin, regardless of the multi-little of B i composition of the starting, after formation
  • the composition ratio can form a thin film having a stoichiometric composition.
  • 3 0 2 was formed 3 1 substrate Pt lower electrodes were formed on the undersubstrate in the number of 2000.
  • Spin coating was performed for 30 seconds.
  • drying was performed at 150 ° C. for 15 minutes, and a pre-heat treatment was performed in air at 450 * C for 20 minutes.
  • the above operation was repeated five times to produce a precursor thin film having a thickness of 2000.
  • heat treatment was performed at 65 * C for 1 hour in an atmosphere of 0.7% oxygen to form a ferroelectric thin film.
  • ferroelectric thin films were heat-treated at 800 ° C and 720 ° C for 1 hour in 100% oxygen.
  • 200 P-electrodes were formed and the withstand voltage characteristics were measured.
  • Figure 9 shows the measurement results. 6 5 0 ° ferroelectric element was manufactured created with an oxygen concentration of 0.7% in C, even voltage 5 V rie leak current density has a value of 3. 0 X 1 0 A / cm 2, prior It was found that the withstand voltage characteristics were superior to those of the ferroelectric devices manufactured at temperatures of 800 ° C. and 720 ° C.
  • Example 3 was prepared by ((B a 0. 6 S r 0. 6) T i 0 3) results of withstand voltage measuring high dielectric thin film, 5. 0 X 1 0- 7 A / It was found that the withstand voltage characteristics were excellent at a leak current density of cm 2 .
  • FIG. 6 is a cross section of a ferroelectric memory using the ferroelectric element according to the present example.
  • the fabrication method is described below. First, Si 64 having a source part 65 and a drain capital 66 was used as a substrate, and the surface thereof was oxidized to form a SiO 2 film having a thickness of 26 OA. Masukubata - to produce a convex portion S i 0 2 film 6 8 to the substrate center and training.
  • a polycrystalline Si 67 with a thickness of 450 A was formed on the obtained convex portion by a CVD method.
  • a ferroelectric element having a structure composed of the upper electrode 61 and the ferroelectric thin film lower electrode 63 manufactured in Example 1 is formed, whereby the ferroelectric memory using the ferroelectric element is formed. I got As a result, the advantage that the difference in capacitance due to electric field reversal can be detected with twice the magnitude was obtained.
  • FIG. 7 is a cross-sectional view of a high-dielectric memory using the high-dielectric element according to the present embodiment, and a manufacturing method will be described below.
  • First using the S i 7 4 with source portion 7 5 and drain Lee emission unit 7 6 on the substrate, which was to form a S i 0 2 film of 270 people thickness and surface oxidation.
  • a polycrystalline Si 79 having a thickness of 400 OA is formed on the obtained convex portion by a CVD method, and the surface thereof is further oxidized to form an Si 0 2 film 7 having a thickness of 25 OA.
  • Example 7 was formed to form a MOS transistor, and the upper electrode 7 1, the high dielectric thin film 7 2, and the lower electrode formed in Example 3 were placed on the capacitor portion corresponding to the obtained semiconductor MOS portion.
  • a high dielectric element having a structure of 73 a high dielectric memory using the high dielectric element was obtained.
  • the obtained high-dielectric memory can be detected by the change in the stored charge obtained at a voltage of 3 V.
  • FIG. 10 (a) shows the non-contact type semiconductor device 1001
  • FIG. 10 (b) shows it.
  • 2 shows a structure of a ferroelectric element built in the non-contact semiconductor device.
  • the ferroelectric capacitor is summer from P t lower electrode 1006, S r B i 2 T a 2 0 9 ferroelectric thin ⁇ 1 0 0 7, P t the upper electrode 1 0 0 8 formed at a low oxygen concentration .
  • a system using a non-contact type semiconductor device is composed of a controller, a transponder with built-in memory and communication functions, an IC card with a built-in non-contact type semiconductor device, etc. .
  • signals are transmitted from the controller to the IC card, and the IC card returns necessary information to the controller according to the command.
  • non-volatile RAM for the memory element, the inversion time of the ferroelectric itself becomes less than 1 nanosecond. For this reason, many excellent performances can be obtained, such as that information is read and written at the same distance, high-speed data transfer, and errors during writing are extremely small.
  • Ni will Yo above examples were described using a structure consisting of P t top electrode 1 0 0 8, S r B i 2 T a 2 0 9 ferroelectric thin film 1 0 0 7, the lower electrode 1 0 0 6
  • a high dielectric element having a structure composed of an upper electrode, a high dielectric thin film, and a lower electrode.
  • the obtained semiconductor device having a high dielectric element is a semiconductor device having a stored charge capacity of 30 fF at a voltage of 3 V.
  • the thin film produced according to the present invention has a crystal structure in which the polarization axis is preferentially oriented in the plane orientation of the vertical direction, controls the crystal grain size to an optimal size, and further prevents reaction with the electrode.
  • an oxide dielectric element having a high dielectric constant, spontaneous polarization, and a small coercive electric field could be manufactured.
  • ferroelectric element in a semiconductor electric field transistor structure and incorporating the ferroelectric element in a semiconductor MOS structure, a ferroelectric memory and a high dielectric memory for detecting reading and writing can be realized. It could be produced. Further, it is possible to manufacture a semiconductor device using the ferroelectric memory and the ferroelectric memory as a non-contact read or write memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

明 細 書
酸化物誘電体素子の製造方法、 それを用いたメモ リ及び半導体装置 技術分野
本発明は、 酸化物誘電体素子の製造方法、 それを用いたメモ リ 及び半 導体装置に関する。 背景技術
近年、 半導体メモ リ と しては、 電源がオフ時でもデータ が保持される 不揮発性を利用 した R 0 M (Read Only Memory)があるが、 書き換え回数 の大幅な制限や、 書き換え速度が遅いなどの問題を有 している。 ま た、 この他にデータの書き換えを高速で行えるという利点を有する R AM (Random Access Memory)がある。 この R A Mのメモリ 用キヤ ノくシタ材料 と して酸化物誘電体がある。 酸化物誘電体の中には、 高い誘電率を有す る高誘電体と分極ヒステリ シスを有する強誘電体がある。 その中でも高 誘電体を用いた D R AMと強誘電体を用いた不揮発性 R A Mがある。 ま ず、 強誘電体を用いた不揮発性 R AMは、 強誘電体のヒステリ シス効果 を利用することで不揮発性を有すると共に、 書き換え回数も 1 0 の 1 0 乗回乃至 1 0の 1 2乗回と非常に優れている。 ま た、 書き換えのスピ一 ドも他の方式に比べて t s ( 1 0 0万分の 1 秒)以下と高速性を有し、 次 世代の理想的メモリ と して注目されている。 このよ う な不揮発性 R AM の大容量化, 不揮発性化, 高速化を実現するための開発がなされている。 しかし、 書き込み回数の増加に伴って強誘電体の自発分極 ( P r ) が低 下するといつた膜疲労が大きな問題点と して生じた。 大容量化, 耐久化 には、 ( 1 ) 大きな自発分極 ( P r ) を持つ強誘電体材料の採用, ( 2 ) 膜疲労に強い強誘電体材料の採用が良く 知られている。 これらの材料と しては、 ぺロブスカイ ト構造の酸化物が広く 利用されている。 このう ち ぺロブスカイ ト構造の単一格子が複数個重なった結晶構造である B i 層 状強誘電体の S r B i 2 T a209 が知られている。 この材料については P rが c軸と垂直方向にのみ示す結晶の異方性を持っている。 ま た、 P r値も必ずしも大き く ないが、 膜疲労特性に優れているために、 この 材料を用いた例が、 特許 W0 9 3 1 2 5 4 2 ( P C T/U S 9 2 /
1 0 6 2 7 〉 ,特開平 5— 24994号で開示されている。
一方、 高誘電体を用いた D R AMは、 高密度, 高集積技術の進歩に伴 い 1 6 M, 6 4 Mビッ トの大容量化時代を迎えている。 このために、 回 路構成素子の微細化が要求され、 特に情報を蓄積するコ ンデンサ一の微 細化が行われている。 このう ち、 コ ンデンサ一の微細化には、 誘電体材 料の薄膜化, 誘電率の高い材料の採用, 上下電極と誘電体からなる構造 の平坦化から立体化などが挙げられる。 このう ち、 誘電率の高い材料と して、 結晶構造がぺロブスカイ構造の単一格子である B S T ( ( B a Z S r ) T i 03 ) は、 従来の S i 02 Z S i 3 N4 に比べて大きな誘電率
( ε ) を有する こ とが知られている。 この高誘電体材料を使用する例が イ ンタ一ナショナル ' エレク ト ロ ン ' デバイス · ミ ィ 一ティ ング ' テク 二カル ' ダイ ジェス ト 1 9 9 1 年 8 2 3頁( I E D M Tech. Dig. : 823, 1991 ) で報告されている。 発明の開示
本発明は、 酸化物誘電体素子の製造方法、 それを用いたメモリ 及び半 導体装置に関し、 特に、 高誘電率 · 低リ ーク電流密度を利用 した DRAM等 の高誘電体素子、 及び高自発分極 · 低抗電界を利用 した不揮発性 RAM 等の強誘電体素子、 及び高誘電体素子又は強誘電体素子を用いたメモ リ や半導体装置に利用できる。
この場合、 強誘電体薄膜及び高誘電体薄膜を形成する温度が P b ( Z r / Ύ i ) 03 で約 6 5 0 °C、 ( B a / S r ) T i 03 で約 6 0 0で、 S r Β i 2 Τ a 0 においては約 8 0 0 °Cまで温度を上げる こ とが必要 と されていた。 以上の結晶構造がぺロブスカイ 卜構造の薄膜形成におい ては、 結晶化を促進するために 6 0 0 °C以上の高温度が必要である。 し かし、 高温度にする ことは種々の問題が発生する。 例えば、 気相法では 成膜初期に高温で、 酸化性雰囲気を経験する ことによる下部電極の剥離 が生じる。 更に S r B i 2 T a 2 09 の場合、 従来の 8 0 0 °Cの高温度で 形成する際、 B i が蒸発し組成ずれが生じるため、 出発の B i 組成を過 剰にする必要がある。 その結果、 高温形成後、 余剰の B i が強誘電体層 の粒界に B i を多く 含んだ異相と して存在し、 耐電圧特性の低下、 更に は強誘電体薄膜と上下の金属電極の界面での元素の拡散反応によ り遷移 層が形成され、 自発分極 ( P r ) が低下 し本来の特性が得られに く く 、 抗電界 ( E c ) が増大した り 、 膜疲労の原因となった。 このために、 電 界を反転させて行う書き込み回数は大き く 制限されている。 更に、 高温 にすることで、 ( a ) 反応層の形成が生じたことによ り誘電率や自発分 極が小さ く なる、 ( b ) 結晶粒が成長して、 リ ーク電流密度が大き く な る等の問題が発生し、 動作電圧の高圧化につながり素子の高集積化が困 難となる。
上記の知見に基づき、 本発明は、 優れた酸化物誘電体素子、 特に、 高 い自発分極と低い抗電界を有する強誘電体素子、 ま たは高い誘電率と耐 圧特性に優れた高誘電体素子を対象と して、 その製造方法及びそれを用 いたメモリ , 半導体装置を提案する こと を目的とする。 本発明は、 酸化物誘電体素子、 特に、 髙ぃ自発分極と低い抗電界を有 する強誘電体素子、 ま たは高い誘電率と耐圧特性に ftれた高誘電体素子 を対象と して、 それら をそれぞれ構成する強誘電体薄膜及び髙誘電体薄 膜の形成を低酸素濃度雰囲気中で、 かつ形成する温度が強誘電体薄膜で は 6 5 O 'C以下、 高誘電体薄膜では 6 0 0 °C以下で行う こと を一つの特 徴とする。 この場合、 低酸素濃度雰囲気と して、 最もぺロ ブスカイ 卜構 造の形成する割合が多く 、 高い電気特性が得られやすい酸素濃度は、 0. 1 %よ り大き く 、 5. 0 %よ り小さ い範囲が望ま しい。
本発明のその他の特徴は、 酸素と不活性ガスの混合比を調節する こ と で低酸素濃度雰囲気を作製する ことが可能で、 しかも常圧である ため非 常に簡便な方法である ことである。
ま た、 本発明の他の特徴は、 上記製造方法で形成した強誘電体薄膜及 び高誘亀体薄胰を、 03 , N20 , ラ ジカル酸素等の活性化酸素雰囲気 中で再度熱処理する こと によ り 、 高品質な強誘電体薄膜及び髙誘電体薄 膜を形成する こ とである。
次に、 本発明において、 強誘電体薄胰は、
( A O ) 2+ ( B C O ) 2 -
A = B i , T 1 , Η g P b , S b, A s
B = P b, C a, S r B a , 希土類元素のう ち少な く と も 1種以上
C = T i , N b , T a W , Μ 0 , F e, C o , C r のう ち少なく と も 1種以上、 及び
( P b /A ) ( Z r / T i ) 03
A = L a , B a, N b
となる化学構造式で表わされている こ と を特徴とする
ま た、 高誘電体薄膜は、 ( B a / S r ) T i 03
となる化学構造式で表わされている こ と を特徴とする。
本発明で得られる高誘電体薄膜は、 従来得られていた T a206 よ リ大 きな誘電率を有する こと を特徴とする。
ま た、 本発明に用いられる上部及び下部電極材と して、 金属を用いる 場合は、 P t, A u , A 1 , N i , C r , T i , M o , Wのう ち少なく とも 1種である こ と を特徴とする。 ま た、 単一元素からなる導電性酸化 物の場合は、 T i , V , E u , C r , o , W , P h, O s , I r , P t , R e , R u, S nのう ち少な く とも 1種の酸化物である こ と を特 徴とする。 更に、 ぺロブスカイ ト構造の導電性酸化物の場合は、 Re03 S r R e 03 , B a R e 03 , L a T i O 3 , S r V 03 , C a C r O 3 , S r C r O a , S r F e 03 , L a ,— S r xC o O3 ( 0く xく 0. 5 ) , L a N i O a , C a R u O a , S r R u O 3 , S r T i O 3 , B a P b 03 のうち少なく とも 1種である こ と を特徴と し、 電極材と しての機能を持 たせる為に、 単一元素からなる導電性酸化物及びぺロブスカイ ト構造の 導電性酸化物を用いる場合は抵抗率が 1 πι Ω · cm以下である こと を特徴 とする。
本発明の強誘電体薄膜及び高誘電体薄膜の製造方法は、 酸素と不活性 ガスの混合ガス雰囲気で、 スパッタ リ ング法, レーザ蒸着法、 あるいは MO C V D法を用いて作製すること を特徴とする。 ま た、 常圧でかつ酸 素と不活性ガスの混合ガス棼囲気で、 金属アルコ キシ ドあるいは有機酸 塩を出発原料と したスピンコ一 ト法, ディ ップコー ト法を用いて作製し てもよい。
ま た、 本発明の強誘電体薄膜及び高誘電体薄膜の製造方法の中で、 再 熱処理方法と しては、 E C R酸素プラズマを具備 したスパッタ リ ング法, レーザ蒸着法, M 0 C V D法で再熱処理を行う こ と を特徴とする。 更に 紫外領域の光を照射しながら、 金属アルコ キシ ドあるいは有機酸塩を出 発原料と したスピンコー ト法あるいはディ ップコ一ト法を用いて再熱処 理しても よい。 図面の簡単な説明
第 1 図は、 本発明の雰囲気中の酸素濃度による強誘電体薄膜の結晶構 造の変化を示す図である。
第 2図は、 本発明の強誘電体素子を示す断面図である。
第 3 図は、 本発明の髙誘電体素子を示す断面図である。
第 4図は、 本発明の導電性酸化物を電極に用いた強誘電体素子を示す 断面図である。
第 5図は、 本発明の強誘電体薄膜の微細組織の模式図である。
第 6図は、 本発明の強誘電体メモ リ を示す断面図である。
第 7 図は、 本発明の高誘電体メモリ を示す断面図である。
第 8 図は、 本発明の雰囲気中の酸素濃度による結晶構造中の ( 1 0 5 : 面の配向度を示す図である。
第 9図は、 本発明の鼋圧と リ ーク電流密度の関係を示す図である。 第 1 0 図は、 本発明の強誘電体素子を用いた非接触型半導体装 K。 第 1 1 図は、 本発明の強誘電体素子の繰り返し回数を測定した結果を 示す図である。 発明を実施するための最良の形態
以下、 本発明の実施例を図面を参照して説明するが、 本発明は何ら こ れらに限定するものではない。 図面中で使用される主要な符号の意味は、 以下の通り である。
2 1 , 3 1 , 6 1, 7 1 , 1 0 0 8は、 上部電極、 4 1 は、 上部電極 (導電性酸化物) 、 2 2, 4 2 , 6 2, 1 0 0 7は、 強誘電体薄膜、 3 2, 7 2は、 高誘電体薄膜、 2 3, 3 3, 6 3, 7 3, 1 0 0 6は、 下部電極、 4 3は、 下部電極 (導電性酸化物) 、 2 4, 3 4 , 4 4は、 下地基板、 2 5, 4 5は、 強誘電体素子、 3 5は、 高誘電体素子、 6 4 7 4, 1 0 0 2は、 S i 、 6 5, 7 5は、 ソース部、 6 6, 7 6は、 ド レイ ン部、 6 7 , 7 9は、 ポ リ ク リ スタル S i 、 6 8, 7 7 , 7 8 は、 S i 02 、 1 0 0 1 は、 非接触型半導体装置、 1 0 0 3は、 拡散層、 1 0 0 4は、 S i 02 ゲー ト膜、 1 0 0 5は、 ゲー ト電極、 1 0 0 9 , 1 0 1 0は、 S i 02 絶縁層、 1 0 1 1 は、 アルミ配線を表す。
(実施例 1 )
本発明の一実施例を示す。
本発明の特徴を、 更に詳細に説明すると、 上記手段の強誘電体薄膜及 び高誘電体薄膜を形成する雰囲気を低酸素濃度に制御する ことによ り 、 薄膜中におけるぺロブスカイ ト構造の形成する割合が増加する こ とがで きる。 S r B i 2 T a209 強誘電体の場合は、 低酸素濃度にする こ とで、 酸化物の分解反応に伴う融液形成が、 低温でも促進するため、 従来の 8 0 0 °Cよ リ も低温度で結晶化できる。 ま た形成温度を低温化できる こ とで、 上下亀極との反応が防止できる。
本実施例に使用した強誘電体薄膜は、 ( A O ) 2+ ( B C 0 ) 2—の化学 構造式で、 A= B i 元素, B = S r元素, C = T a元素の場合の作製方 法を以下に示す。 第 2図に本実施例にかかる誘電体素子構造を示す。 下 地基板の上に下部電極が形成され、 該下部電極の上に強誘電体薄膜が形 成される。 更に該強誘電体薄膜の上に上部電極を配置する構造である。 参照数字 2 4は下地基板を示す。 まず下地基板には S i の表面を熱酸化 させて S i 02 を形成させた基板を用いた。 次に、 この下地基板 2 4上 に下部亀極 2 3 ( P t ) を室温でスパッタ リ ング法によ り厚み 2 0 0 0 人作製した。 この下部電極 2 3上に強誘電体薄膜 2 2 を形成するために B i : S r : T a = 2 : 1 : 2組成に調合した金属アルコキシ ド溶液を 3 0 0 0 rpm (毎分当た り の回転数) で 3 0秒間スピンコー ト した。 そ の後、 1 5 0 °Cで 1 0分間乾燥後、 更に空気中ま たは酸素中で強誘電体 薄膜の結晶化温度よ り低い 5 0 0 °Cで 1 5分間前熱処理を行っ た。 以上 の操作を 3回繰り返し、 厚み 2 4 0 0人の前駆体薄膜を作製した。 そ し て、 最後に 6 5 0 °C X 1 時間で酸素濃度雰囲気を変えて熱処理を行い強 誘電体薄膜を作製した。 該強誘電体薄膜の結晶構造を X線回折で同定し た。
第 1 図に、 雰囲気ガスの酸素濃度に対する結晶中におけるぺロブス力 イ ト構造の占める割合の変化を示す。 低酸素濃度にする こと によ り 、 ぺ ロブスカイ ト構造の割合が増加する作用がある。 更に酸素濃度が 0. 2 - 3. 0 % の範囲でぺロ ブスカイ ト構造の形成割合の増加が最も高く な るこ とから、 形成する雰囲気ガスの酸素漉度は、 0. 1 % よ り大き く 、 5.0 %未満の範囲が望ま しい。 ま た、 0. 1 %以下の酸素濃度では、 ぺ ロブスカイ 卜構造を形成する為に必要な酸素量が不足し、 ぺロブスカイ ト構造を形成しずら く している。 ま た、 5. 0 % 以上の酸素濃度では、 ぺロブスカイ ト構造の形成に有為差は認められなかった。 更に、 第 1 図 に、 形成温度を 6 0 0〜 7 0 0 °Cと変化させた時の雰囲気中の酸素澳度 に対する結晶中におけるぺロブスカイ 卜構造の占める割合の変化を示す 低酸素濃度の効果は、 形成する温度が低温になる程有効である。 本実施 例では、 強誘電体薄膜は 6 5 0 °C以下、 高誘電体薄膜は 6 0 0 °C以下と し、 更に 4 0 0 °C以上で行う ことが望ま しい。 この温度範囲よ り低い温 度で熱処理を行ってもベロブスカイ ト構造が形成されに く く なる。
ま た、 第 8図に、 酸素濂度に対するぺロブスカイ 卜構造の ( 1 0 5 ) 面の配向性の関係を示す。 この配向性は、 X線回折で同定できた全ての ピーク強度 I (total) に対する ( 1 0 5 ) 面のピーク強度 I ( 1 0 5 ) の比で表している。 酸素濃度を 5 %よ り低く する と ( 1 0 5 ) 面の配向 度が強く なる こと よ り 、 低酸素濃度で形成した S r B i 2 T a209 強誘 電体薄膜の結晶構造は、 ( 1 0 5 ) 面が強く 配向する特徴がある。 これ は、 低酸素濃度によ って、 各構成元素の酸化物の分解反応に伴う融液が 生成し、 前記融液からの結晶成長となるために ( 1 0 5 ) 面の優先成長 が容易となったこ と による。 これによ り 、 ( 1 0 5 ) 面配向 しやす く な る効果がある。 S r B i 2 T a 209 強誘電体薄膜は層状ぺロ ブスカイ ト 構造であ り 、 結晶の対称性のために分極軸が B i 一 0層と平行方向 ( c 軸に垂直) しか示さない結晶の異方性がある。 従って、 ( 1 0 5 ) 面が 優先的に配向する ことで、 優れた特性を有する薄膜を形成できる。 尚、 他の強誘電体材料を用いた場合でも、 分極軸が上下方向に有する面方位 で優先的に配向する ことができる。
次に、 強誘電体薄膜 2 2である ( ( B i 0 ) 2 + ( S r T a 0 ) 2" ) 上 に、 スパッタ リ ング法によ り厚み 2 0 0 0 Aの金属 P t を室温で形成し、 上部電極 2 1 を作製し、 強誘電体素子 2 5 を得た。 この得られた強誘電 体素子の自発分極 ( P r ) および抗電界 ( E c ) を室温で測定 した結果 を第 1表に示す。 第 1表
Figure imgf000012_0001
P r は、 P r 一 Vのヒステリ シスで正負の最大印加電圧で得られた分 極量である。 特に酸素濃度が 0. 2〜 3. 0 %の範囲で P r が髙 く 、 低 E cの値を示し、 X線回折の結果を反映した結果となった。 中でも、 酸 素濃度が 0. 7 %で行った強誘電体素子で、 それぞれ 2 0 Z C /cm2およ び 4 5 k V / cmの値を示した。 ま た、 l S S k VZcmの電庄を反転させ て繰り返し回数を測定した結果の中から、 第 1 1 図に代表例と して酸素 濃度が 0. 7 % の測定結果を示す。 酸素濃度 0. 1 5 ~ 3. 0 %で作製し た薄膜は、 いずれも 1 0の 1 4乗回数まで P r特性の劣化は認め られな かっ た。
ま た、 ( AO ) 2+ ( S r , T a 0 ) 2 の化学構造式において、 Aサイ 卜の元素を T l , H g , P b , S b , A sのう ちいずれかを用いた場合 においても、 上記と同様の作製を行って得られた強誘電体素子の P r , E c を測定した結果、 P r = 1 9〜 2 l t C Zcm2 , E c = 4 4〜 4 8 k V cmの値が得られた。
ま た、 ( B i 0 ) 2 + ( B T a 0 ) 2 の化学構造式において、 Bサイ ト の元素を P b , C a, B aのう ちいずれかを用いた場合においても、 上 記と同様の作製を行って得られた強誘電体素子の P r , E c を測定した 結果、 P r - 1 8〜 2 2 C Zcm2 , E c = 4 3〜 4 7 k VZcmの値が 得られた。 ま た、 ( B i O ) 2 ' ( S r C O ) 2 の化学構造式において、 Cサイ ト の元素を T i , N b , W, M o , F e, C o , C rのう ちいずれかを用 いた場合においても、 上記と同様の作製を行って得られた強誘電体素子 の P r , E c を測定した結果、 P r = 1 7〜 2 2 μ C /cm2 , E c =
4 2〜 4 9 k V / cmの値が得られた。
ま た、 上記実施例 1 では、 低酸素濃度にすることで低温度での形成が 行えるため、 遷移層の形成や元素の拡散などの問題が無く 、 下地基板と の間に拡散防止層を省いて設けるといった構造でも良い。
(実施例 2 )
本実施例に使用 した ( P b ZA ) ( Z r / T i ) 03 の化学構造式か らなる強誘電体薄膜において、 A = L a元素の場合の作製方法を以下に 示す。 第 2図に示した強誘電体素子の断面図において、 参照数字 2 4は 下地基板を示す。 まず、 下地基板には、 S i の表面を、 熱酸化させて
5 i 02 を形成させた基板を用いた。 次に、 この下地基板 2 4上に下部 電極 2 3 を作製した。 前記下地基板 2 4上に室温、 真空中でスパッタ リ ング法によ リ厚み 2 5 0 O Aの金属 P t を形成した。 この下部電極 2 3 上に、 強誘電体薄膜 2 2 を形成するために、 P b : L a : Z r : T i = 0. 9 5 : 0. 0 5 : 0. 5 2 : 0. 4 8組成に調合した金属アルコ キシ ド 溶液を 2 5 0 0 rpm で 3 0秒間スピンコ一 卜 した。 その後、 1 4 0 °Cで 1 3分間乾燥、 更に空気中ま たは酸素中で、 強誘電体薄膜の結晶化温度 よ リ低い温度 4 5 0 °Cで 2 0分間前熱処理を行った。 以上の操作を 1 サ ィ クルと して、 サイ クルを 3回繰り返すこ とで厚み 1 7 0 O Aの前駆体 薄膜を作製した。 そ して、 低酸素濃度で 5 5 0 °Cの熱処理をする こ とで 強誘電体薄膜 ( ( P b Z L a ) ( Z r / T i ) 03 ) を得た。 該強誘電 体薄膜の結晶構造を X線回折で調べた。 その結果、 実施例 1 と同様に 0. 2〜 3. 0 %の範囲で、 結晶中のぺロブスカイ ト構造の占める割合が 急激に増加している傾向が見られた。 次に、 強誘電体薄膜 2 2の上に上 部電極 2 1 を作製した。 上都電極 2 1 は、 前記強誘電体薄膜 2 2である ( P b / L a ) ( Z r / T i ) 03 上に、 スパッタ リ ング法によ り真空 中、 室温の条件で、 厚み 2 0 0 O Aの金属 P t を作製し、 強誘電体素子 2 5を作製した。 該強誘電体素子の P r及び抗鼋界 ( E c ) を測定 した その結果、 酸素濃度が 0. 7 %でそれぞれ 2 O i C Zcm2および 5 0 k V Z cmであった。 ま た、 誘電率 ( ε ) を室温で測定した結果を第 2表に示 す。
第 2表
Figure imgf000014_0001
酸素濃度が 0.7 % の時、 1 5 9 0の値を示した。 ま た、 電圧と リ ー ク電流密度の閱係を調べた結果、 3 Vで 1 X 1 0 7 A/cm2 以下と非常 に耐圧特性に優れている こ とが分かった。
ま た、 ( P b /A ) ( Z r ZT i ) 03 の化学構造式からなる強誘電 体薄膜において、 A = B aおよび A = N bの強誘電体素子を、 上記と同 様の製造方法を用いて作製し、 P r及び E c を測定したと ころ、 P r = 2 0 μ C /cm2 , E c = 5 1 k V/cinの値を示し、 更に誘電率を室温で 評価した結果、 酸素澳度が 0. 2〜 3. 0 %の時に、 誘電率 = 1 5 9 0〜 1 6 1 0の高い値が得られる こ とが分かった。 ま た、 特に ( 1 1 1 ) 面 配向した ( P b /A ) ( Z r / T i ) 03 の化学構造式からなる強誘電 体薄膜において、 A = B a, N b, T i いずれかを用いた場合でも、 高 い分極特性を有する ことが分かつ た。
(実施例 3 )
本実施例に使用 した ( B a。 6 S r。 6) T i 03 の組成比からなる髙 誘電体薄膜の作製方法を以下に示す。 第 3図に示 した高誘電体素子の断 面図において、 参照数字 3 4は下地基板を示す。 まず、 下地基板には、 実施例 2 と同様の S i を用いた。 次に、 この下地基板 3 4上に下部電極 3 3 を作製した。 前記下地基板 3 4上に室温、 真空雰囲気の条件でスパ ッタ リ ング方法にょ リ厚み 2 0 0 O Aの金属 P t を形成した。 この下部 電極 3 3上に、 高誘電体薄膜 3 2 を形成するために、 温度を 3 0 0 °C, 圧力 0. 5 5 P a , 酸素とアルゴンの混合ガスの条件で、 膜厚 l O Onm の前駆体薄膜を作製した。 次に、 ぺロブスカイ 卜構造を形成させるため . 低酸素濃度雰囲気で、 5 0 0 tの熱処理を行う こ とで高誘電体薄膜 ( ( B a 0. 6 S r 0. 6 ) T i Oa ) を得た。 該高誘電体薄膜の結晶構造を X線回折で調べた。 その結果、 実施例 1 と同様に、 酸素濃度を 5 %よ り 小さ く すると、 全結晶相中に占めるぺロブスカイ 卜構造の割合が増加し 始め、 0. 2〜 3. 0 %の範囲で、 最も割合が高く なる傾向が見られた。 次に、 高誘電体薄膜 3 2の上に上部電極 3 1 を作製した。 上部電極 3 1 は、 前記高誘電体薄膜 3 2である ( ( B a。.6 S r。 6 ) T i 03 ) 上に、 スパッタ リ ング法によ り真空中、 室温の条件で、 厚み 2 0 0 O Aの金属 P t を作製した。 この得られた高誘電体素子 3 5の誘電率 ( ε ) を室温 で測定した結果を第 3表に示す。
第 3表 酸素澳度(%) 0 , 1 5 0. 2 0. 7 1. 0 3. 0 5. 0 ε 3 1 0 4 9 3 5 2 0 5 0 3 4 8 0 2 5 3 酸素濃度が 0. 2〜 3. 0 %の範囲で誘電率 = 4 8 0〜 5 2 0の高い値 を示 した。
(実施例 4 )
本実施例に使用 した強誘電体薄膜は、 ( A O ) 2 + ( B C 0 ) 2-の化学 構造式で、 A = B i 元素, B = S r 元素, C = N b元素の場合の作製方 法を以下に示す。 まず第 4図に示す強誘電体素子の断面において、 下地 基板 4 4 には S i の表面を、 熱酸化させて S i 02 を形成させた基板を 用いた。 次に、 下地基板 4 4 に下部電極 4 3 を作製した。 前記下地基板 4 4 上に、 酸素ガス雰囲気中、 4 5 0 °Cに加熱しながらスパッタ リ ング 法によ り厚み 1 Ί 0 0 人の単一元素の導電性酸化物 R u O を作製した。 この下部電極 4 3 上に強誘電体薄膜を形成するために、 B i , S r , N b元素の金属アルコ キシ ド溶液を 3 0 0 0 rpm で 2 5秒間スピンコー 卜 した。 その後、 1 5 0 'Cで 1 0分間乾燥、 更に空気中ま たは酸素中で 4 5 0 °Cで 1 0分間前熱処理を行っ た。 以上の操作を 1 サイ クルと して、 該サイ クルを 3 回繰り返すことで、 膜厚 2 3 0 O Aの前駆体薄膜を作製 した。 そ して、 最後にアルゴンガス + 0. 7 % 酸素の低酸素濃度雰囲気 中で、 6 0 0 'Cの加熱を行う こと によ り 、 ぺロブスカイ ト構造を有する 強誘電体薄膜 4 2 である ( B i 0 ) 2 + ( S r N b 0 ) 2一を得た。 前記強 誘電体薄膜 4 2 の上に上部電極 4 1 を作製した。 上部電極 4 1 は、 酸素 ガス雰囲気中、 4 5 0 °Cに加熱しながらスパッタ リ ング法によ り厚み 1 7 0 0 人の単一元素の導電性酸化物 R u Oを作製し、 強誘電体素子 4 5 を作製した。 この得られた強誘電体素子 4 5 の P r 及び抗電界 ( E c ) を室温で測定した。 その結果、 各々 1 9 2 および 4 6 k V /cmの値を示した。
ま た、 上記と同様に T i O ,, V 0, , E u 0 , C r 02 , M o 02 , W O , P h O , O s 0 , I r O , P t O , R e 02, R u 02, S n O 2 のう ちいずれかを電極材に用いた場合においても、 上記と同様の作製を 行って得られた強誘電体素子の特性は、 P r = 1 8〜 2 2 μ C /cm2 , E c == 4 4〜 4 8 k V/cmの値を示した。 以上の様に、 本実施例に用い られる上部及び下部電極材と して、 金属ま たは電極材と しての機能を持 たせる為に、 抵抗率が 1 m Ω · cm以下の単一元素からなる導電性酸化物 及びべロブスカイ ト構造の導電性酸化物の 1種を用いる ことで、 優れた 電気特性を有する酸化物誘電体素子を作製する ことができる。
(実施例 5 )
実施例 1 と同様の製造方法を用いて、 下地基板上に下部電極 ( P t ) を形成した。 該下部電極上に、 ( A O ) ^ ( B C 0 ) 2 の化学構造式で Α - B i 元素, B - S r元素, C = T a元素からなり 、 実施例 1 と同様 の組成比に調合した金属アルコ キシ ド溶液を 3 0 0 0 rpm で 3 5秒間ス ピンコー ト した。 その後、 1 5 0 で 1 0分間乾燥、 更に空気中ま たは 酸素中で 4 0 0 °Cで 1 0分間前熱処理を行った。 以上の操作を 1 サイ ク ルと して、 該サイ クルを 2回繰り返すことで膜厚 1 1 0 O Aの前駆体薄 膜を作製した。 そ して、 低酸素濃度雰囲気中で、 6 3 0 °Cの加熱を行い 強誘電体薄膜を作製した。 比較と して、 上記と同様の方法を用いて、 下 地基板上に下部電極を形成後、 同組成の強誘電体薄膜を低酸素中で形成 した後、 更に E C R酸素プラズマ中で 4 0 0 の加熱を行った強誘電体 薄膜を作製した。 それぞれの強誘電体薄膜上に、 実施例 1 と同様の方法 で上部電極 ( P t ) を形成し第 2図に示す断面構造の強誘電体素子を作 製した。 それぞれの強誘電体素子の P r及び抗電界 ( E c ) を室温で測 定した結果を第 4表に示す。 第 4表
Figure imgf000018_0001
E C R酸素プラズマ中で加熱を した強誘電体素子の方が、 自発分極及 び抗電界共に高い値を示 した。 ま た、 上記と同様の方法で、 03 , ラジ カル酸素, N20 (亜酸化窒素) を用いて再熱処理した場合でも、 自発 分極及び抗電界共に同等の値を示した。 以上のよ う に、 酸化力の強い活 性化酸素雰囲気中で再度熱処理を行う こ とで、 酸素欠損の無いぺロブス カイ ト構造が得られ、 その結果と して電気特性が大幅に向上した。 この 再熱処理は低酸素濃度での結晶化熱処理温度以下で行う こ とが望ま しい。 (実施例 6 )
実施例 1 と同様の方法を用いて、 下地基板上に、 下部電極 ( P t ) を 形成した。 該下部電極上に、 ( A O ) 2 + ( B C 0 ) 2 の化学構造式で、 A : B i , B : S r, C : T aからな リ 、 B i : S r : T a = 2. 2 : 1 : 2組成に調合した金属アルコ キシ ド溶液を 3 5 0 0 rpm で 2 5秒間 のスピンコー ト を行った。 その後、 1 7 で 1 0分間の乾燥後、 450 °Cで 1 0分間の前熱処理を行った。 以上の操作を 3 回繰り返して、 膜厚 2 2 0 0 人の前駆体薄膜を作製 した。 そ して、 6 5 CTC X 1 時間, 0.7 %酸素雰囲気中で熱処理を行い、 強誘電体薄膜を作製した。 比較と して、 上記と同様の方法を用いて、 前駆体薄膜を作製し、 6 5 CTC X 1 時間及 び 5時間、 1 0 0 %酸素雰囲気で熱処理した強誘電体薄膜も作製した。 得られた強誘電体薄膜の上に、 実施例 1 と同様の方法で上部電極 ( P t ) を形成し、 第 2図に示す断面構造の強誘電体素子を作製した。 それぞれ の強誘電体素子の P r を室温で測定した。 その結果、 酸素濃度が 0. 7 %で形成した強誘電体素子は P r = 2 2 n C /cm2 であるのに対して、 酸素濃度が 1 0 0 %で形成した強誘電体素子の結果は、 1 時間では分極 ヒステリ シス曲線は認められず、 5時間で P r - l O Cノ cm2 と低い 値であった。 このよ う に、 低酸素濃度にする こ とによ り 、 熱処理時間を 短縮できる効果がある。 これは、 前途したよ う に、 構成元素の酸化物の 分解反応による融液からの結晶成長速度が低酸素濃度によ り促進される ため、 従来の酸素濃度 : 1 0 0 %で形成した薄膜に比べて、 低酸素濃度 で形成した薄膜は約 1 5の時間でぺロブスカイ ト構造が形成し、 高い 電気特性を得るこ とができる。 更に、 それぞれの該強誘電体薄膜の組成 分析を行っ た結果、 低酸素濃度雰囲気で熱処理を した薄膜は、 S r : B i : T a = 1 : 2 : 2の化学量論組成であるのに対して、 1 0 0 %酸 素雰囲気で熱処理した薄膜は S r : B i : T a = 1 : 2. 2 : 2 と B i が多い組成であった。 本実施例は、 低温度 · 低酸素濃度で形成するため , 例えば、 S r B i 2 T a209 強誘電体薄膜の場合、 出発の B i 組成の多 少に係らず、 形成後の組成比は化学量論組成を有する薄膜を形成する こ とができる。 従って、 出発の B i 組成を過剰にする必要が無く 、 ま た過 剰に しても形成後の強誘電体層の粒界等に B i を多く 含んだ異相の生成 が抑制でき、 耐電圧特性に優れ、 ま た上下電極との反応が無く 、 高い誘 電率を有する薄膜を形成できる。
ま た、 上記実施例 6では、 S r B i 2 T a209 強誘電体薄膜を用いて 説明したが、 P b ( Z r / T i ) 03 , ( B a / S r ) T i 03 等の酸 化物誘電体薄膜の場合でも熱処理時間を短縮する こ とが可能である。 (実施例 7 )
実施例 1 と同様の製造方法を用いて、 3 1 基板上に 3 02 を形成し た下地基板上に、 P t下部電極を 2 0 0 0人形成した。 該 P t 下部電極 上に、 強誘電体薄膜を形成するため、 B i : S r : T a = 2 : 1 : 2の 組成に調合した金展アルコ キシ ド溶液を、 2 0 0 0 rpm で 3 0秒の条件 でスピンコー ト した。 その後、 1 5 0 °〇で 1 5分間乾燥し、 更に空気中 で 4 5 0 *Cで 2 0分間前熱処理を行った。 以上の操作を 5回繰り返し、 膜厚 2 0 0 0人の前駆体薄膜を作製した。 次に、 6 5 0 *Cで 1 時間、 0. 7 % 酸素の雰囲気で熱処理を行い強誘電体薄膜を形成した。 比較と して、 8 0 0 °C, 7 2 0 °Cでそれぞれ 1 時間, 1 0 0 %酸素中で熱処理 した強誘電体薄膜を作製した。 それぞれの強誘電体薄膜の表面にスパッ タ リ ング法を用いて、 P 上部電極を 2 0 0 0人形成し耐電圧特性を測 定した。 測定結果を第 9図に示す。 6 5 0 °Cで 0. 7 % の酸素濃度で作 製した強誘電体素子は、 電圧 5 Vでも リ ーク電流密度は 3. 0 X 1 0 A/cm2 の値を示し、 従来の、 8 0 0 °C、 7 2 0 °Cの髙温度で作製した 強誘電体素子に比べて耐電圧特性に優れている ことが分かった。
第 5図に本実施例で得られた S r B i 2 T a 209 強誘電体の微細組蛾 の模式図を示す。 低酸素濂度及び低温度で形成した強誘電体薄膜の結晶 粒は、 粒径が約 7 0 n m以下と高温で形成した薄膜の粒径に比べて小さ く 緻密化していることが分かった。 このために、 リ ーク電流密度が小さ く 耐電庄特性に便れた強誘電体薄膜を形成する ことができる。
ま た、 実施例 3で作製した ( ( B a 0. 6 S r 0. 6 ) T i 03 ) 高誘電体 薄膜の耐電圧測定を行った結果、 5. 0 X 1 0— 7 A/cm2のリ ーク電流密 度で耐電圧特性に優れている ことが分かった。
(実施例 8 )
第 6図は、 本実施例にかかる強誘電体素子を用いた強誘電体メモリ の 断面である。 半導体電界トラ ンジスタ構造上に酸化物層, 金属層、 そ し て絶緣体層を形成した MO S— トラ ンジスタ と キャパシタ に第 2図に示 した上記の強誘電体素子を形成した構造をと る。 作製方法を以下に示す まず、 ソース部 6 5およびドレイ ン都 6 6 を持つ S i 6 4を基板に用い これを表面酸化して膜厚 2 6 O Aの S i 02 膜を形成した。 マスクバタ —ニングして基板中央に凸部 S i 02 膜 6 8 を作製した。 次に、 得られ た凸部を C V D法によ り膜厚 4 5 0 0 Aのポリ ク リ スタル S i 6 7 を形 成した。 この上に、 実施例 1 で作製された上部電極 6 1 , 強誘電体薄膜 下部電極 6 3からなる構造の強誘電体素子を形成する こ とで、 強誘電体 素子を用いた強誘電体メモリ を得た。 これによ り 、 電界反転に伴う キヤ パシタ ンスの差を 2倍の大き さで検出できる利点が得られた。
(実施例 9 )
第 7図は、 本実施例にかかる高誘電体素子を用いた高誘電体メモリ の 断面図であ り 、 作製方法を以下に示す。 まず、 ソース部 7 5および ドレ イ ン部 7 6 を持つ S i 7 4を基板に用い、 これを表面酸化して膜厚 270 人の S i 02 膜を形成した。 マスクパターニングして基板中央に凸部 S i 02 膜 7 8 を作製した。 次に、 得られた凸部を C V D法によ り膜厚 4 6 0 O Aのポリ ク リ スタル S i 7 9 を形成し、 更に表面酸化 して膜厚 2 5 O Aの S i 02 膜 7 7 を形成して M O S部 トランジスタ を作製した , 得られた半導体 MO S部に対抗したキャパシタ部の上に、 実施例 3で作 製された上部電極 7 1 , 高誘電体薄膜 7 2 , 下部電極 7 3からなる構造 の高誘電体素子を形成する ことで、 高誘電体素子を用いた高誘電体メモ リ を得た。 得られた高誘電体メモリ は 3 Vの電圧で得られた蓄積電化容 量の変化で検出できる。
(実施例 1 0 )
第 1 0図 ( a ) に非接触型半導体装置 1 0 0 1 を、 第 1 0図 ( b ) に 該非接触半導体装置に内蔵されている強誘電体素子の構造を示す。 強誘 電体素子は、 拡散層 1 0 0 3 を有する S i 1 0 0 2 を基板に用いて、 こ れに S i 0 2 ゲー ト膜 1 0 0 4 を形成しマスクパターニングしてゲー ト 電極 1 0 0 5 を形成した。 強誘電体キャパシタは、 P t 下部電極 1006, 低酸素濃度で形成した S r B i 2 T a 2 0 9 強誘電体薄胰 1 0 0 7, P t 上部電極 1 0 0 8 からなつている。 トランジスタ と キャパシタ を分離す るため、 S i 0 2 絶縁層 1 0 0 9 , 1 0 1 0 が形成されてお り 、 アルミ 配線 1 0 1 1 で上部電極 1 0 0 8 と拡散層 1 0 0 3 を接続する構造であ る。 非接触型半導体装置を用いたシステムの構成と しては、 コ ン ト 口一 ラ , メモ リ及び通信機能を内蔵する応答器と 、 非接触型半導体装置を内 蔵した I Cカー ド等からなる。 コ ン ト ローラ部から信号が I Cカー ドに 伝送され、 そのコマン ドに応じて I C力一 ドが必要な情報をコ ン ト ロ一 ラに返送するシステムである。 メモリ 素子に、 不揮発性 R A Mを用いる ことで、 強誘電体そのものめ反転時間が 1 ナノ秒以下になる。 このため 情報の読み出 しと書き込みが等距離である こ とや、 高速なデータ転送及 び書き込み時のエラーが極めて小さ いこ と等の多く の優れた性能が得ら れる。
上記実施例のよ う に、 P t 上部電極 1 0 0 8 , S r B i 2 T a 2 0 9 強 誘電体薄膜 1 0 0 7 , 下部電極 1 0 0 6 からなる構造を用いて説明 した が、 上部電極, 高誘電体薄膜, 下部電極からなる構造の高誘電体素子を 形成する ことでもよい。 得られた高誘電体素子の半導体装置は、 3 Vの 電圧で 3 0 f F蓄積電荷容量を有する半導体装置である。
以上のよ う に本実施例の強誘電体素子を用いるこ とによ り優れた非接 触半導体装置を作製する こ とができた。 産業上の利用可能性
以上のよ う に、 酸化物強誘電体薄膜及び酸化物高誘電体薄膜の形成す る雰囲気が、 低酸素濃度で行う こ とによ り 、 構成元素の酸化物の分解反 応に伴う融液が生成し、 前記融液からの結晶成長が促進するため、 強誘 電体薄膜では 6 5 0 C以下、 高誘電体薄膜は 6 0 O 'C以下と従来の温度 よ り低温で形成する ことが可能となり 、 ま た熱処理時間を短縮できる。 その結果、 本発明で作製した薄膜は、 分極軸が上下方向に有する面方位 で優先配向 した結晶構造を有し、 結晶粒径を最適な大きさ に制御し、 更 に電極との反応を防止する こ とによ り 、 高い誘鼋率と 自発分極、 更に小 さな抗電界を有する酸化物誘電体素子を作製する こ とができた。 更に、 上記強誘電体素子を半導体電界 トラ ンジスタ構造に、 ま た上記髙誘電体 素子を半導体 M O S構造に組み込むこ とで、 読み出 しおよび書き込みを 検出する強誘電体メモリ及び高誘電体メモリ を作製する こ とができた。 ま た、 上記強誘電体メモリ 及び髙誘電体メモリ を非接触型読み出 し又は 書き込みメモリ と して用いた半導体装置を製造する こ とができる。
以上、 高集積度な強誘電体素子および高誘電体素子, 半導体装置への 応用を図れる効果がある。

Claims

請 求 の 範 囲
1 . 上部電極と酸化物誘電体薄膜と下部電極からなる酸化物誘電体素子 の製造方法において、 前記酸化物誘電体薄膜を、 形成する雰囲気中の酸 素濃度が 0. 1 % よ り大き く 5 %よ り小さ く 、 かつ形成する温度が 650 °C以下で形成する こ と を特徴とする酸化物誘電体素子の製造方法。
2. 上部電極と酸化物誘電体薄膜と下部電極からなる酸化物誘電体素子 の製造方法において、 前記酸化物誘電体薄膜を、 形成する雰囲気中の酸 素濃度が 0. 1 % よ り大き く 5 %よ り小さ く 、 かつ形成する温度が 600 °C以下で形成する こ と を特徴とする酸化物誘電体素子の製造方法。
3 . 請求の範囲第 1 項, 第 2項のいずれかにおいて、 前記酸化物誘電体 薄膜を活性化酸素雰囲気中で再熱処理する こと を特徴とする酸化物誘電 体素子の製造方法。
4. 請求の範囲第 2項ない し第 3項のいずれかにおいて、 前記酸化物銹 電体薄膜は、 ( B a / S r ) T i 03 の組成比で表わされる こと を特徴 とする酸化物誘電体素子の製造方法。
5. 上部電極と酸化物誘電体薄膜と下部電極からなる酸化物誘電体素子 において、 前記酸化物誘電体薄膜は、 ( B a Z S r ) T i 03 の組成比 を有し、 前記酸化物誘電体薄膜のリーク電流密度は、 5 V以下の電圧に おいて 1 0— 6AZcm2 以下であることを特徴とする酸化物誘電体素子。
6 . 請求の範囲第 1 項に記載の前記酸化物誘電体薄膜が
( P b /A ) ( Z r / T i ) 0 こ こで、 A = L a , B a , N b となる化学構造式で表わされている こと を特徴とする酸化物誘電体素子 の製造方法。
7 . 上部電極と酸化物誘電体薄膜と下部電極からなる酸化物誘電体素子 において、 前記酸化物誘電体薄膜は、 ( P b /A ) ( Z r / T i ) 03
A = L a , B a , N b
となる化学構造式を有し、 前記酸化物強誘電体薄膜のリ ーク電流密度は 5 V以下の電圧において 1 0— 6 AZcm2 以下である こ と を特徴とする酸 化物誘電体素子。
8. 請求の範囲第 5項, 7項のいずれかにおいて、 前記酸化物誘電体薄 膜は、 a軸が下部電極に対して 0度ない し 4 5度ない し 9 0度で配向 し た結晶構造を有する こ と を特徴とする酸化物誘電体素子。
9 . 上部電極と酸化物誘電体薄膜と下部電極からなる酸化物誘電体素子 において、 前記酸化物誘電体薄膜が、
( A O ) " ( B C O ) 2 - A = B i , T 1 , H g , P b, S b , A s
B = P b , C a , S r , B a , 希土類元素のう ち少な く とも 1種以上 C = T i , N b, T a , W , o , F e , C o , C rのう ち少な く とも 1種以上となる化学構造式で表わされるこ と を特徴とする酸化物誘電体 素子。
1 0. 請求の範囲第 9項において、 前記酸化物誘電体薄膜が、 2個以上 のュニッ トセルからなるぺロブスカイ 卜構造を有し、 ( 1 0 5 ) 面の配 向度の割合が 4 5 %よ り大きいこと を特徴とする酸化物誘電体素子。
1 1 . 請求の範囲第 9項ま たは第 1 0項において、 記載の該酸化物誘電 体薄膜の結晶粒径は、 ほぼ 7 0 n m以下である こと を特徴とする酸化物 誘電体素子。
1 2. 請求の範囲第 9項ないし第 1 1項のいずれかにおいて、 前記酸化 物誘電体薄膜のリ ーク電流密度は、 5 V以下の電圧において 1 H / cm2 以下である こ と を特徴とする酸化物誘電体素子。
1 3. 上部電極と酸化物誘電体薄膜と下部電極からなる酸化物誘電体素 子の製造方法において、 前記酸化物誘電体薄膜は、 (B a Z S r ) T i 03 の組成比を有し、 前記酸化物強誘電体薄腠を、 形成する雰囲気中の酸素 濃度が 0. 1 % よ り大き く 5 %よ り小さ く 、 かつ形成する温度が 5 0 0 °C以下で形成する こと を特徴とする酸化物誘電体素子の製造方法。
1 4. 請求の範囲第 6項において、 前記酸化物誘電体薄膜を形成する温 度が 5 5 0 °C以下である こと を特徴とする酸化物強誘電体素子の製造方 法。
1 5. 上都電極と酸化物誘電体薄膜と下部電極からなる酸化物誘電体素 子の製造方法において、 前記酸化物誘電体薄膜が、
( A O ) ( B C O ) 2
A = B i , T 1 , Η g , Ρ b , S b, A s
Β = Ρ b , C a , S r , Β a , 希土類元素のう ち少な く とも 1種以上 C = T i , N b, T a , W, M o, F e, C o , C rのう ち少な く とも 1種以上となる化学構造式で表わされ、 前記酸化物誘電体薄膜を、 形成 する雰囲気中の酸素瀵度が 0. 1 % よ り 大き く 5 %よ り小さ く 、 かつ形 成する温度が 6 5 0 以下で形成させる こ と を特徴とする酸化物強誘電 体素子の製造方法。
1 6. 請求の範囲第 1項あるいは第 2項において、 上部電極及び下部電 極は、 それぞれ、 P t , A u , A 1 , N i , C r , T i , M o , Wのう ち少な く とも 1種の金属であるこ と を特徴とする酸化物誘電体素子の製 造方法。
1 7. 請求の範囲第 1項あるいは第 2項において、 上部電極及び下部電 極は、 それぞれ、 T i , V, E u, C r, M o, W, P h, O s, I r P t , R e , R u , S nのう ち少な く とも 1種の酸化物であ り 、 かつ抵 抗率が 1 m Ω · cm以下であること を特徴とする酸化物誘電体素子の製造 方法。
1 8 . 請求の範囲第 1 項あるいは第 2項において、 上部電極及び下都電 極は、 それぞれ、 R e 03 , S r R e 03, B a R e O 3 , L a T i O 3 , S r V O , C a C r O 3 , S r C r 03 , S r F e Oa ,
L aト x S r xC o O3 ( 0く Xく 0. 5 ) , L a N i O 3 , C a R u 03 , S r R u O , S r T i 03 , B a P b 03 のうち少なく とも 1種のぺロ ブスカイ トであ り 、 かつ抵抗率が 1 m Ω · cm以下である こ と を特徴とす る酸化物誘電体素子の製造方法。
1 9 . 請求の範囲第 1 項, 第 2項あるいは第 3項のいずれかにおいて、 前記酸化物誘電体薄膜の形成方法と して、 酸素と不活性ガスの混合ガス 雰囲気におけるスパッタ リ ング法, レーザ蒸着法又は MO C V D法を用 いる こと を特徴とする酸化物誘電体素子の製造方法。
2 0. 請求の範囲第 1 項, 第 2項あるいは第 3項のいずれかにおいて、 前記酸化物誘電体薄膜の形成方法が、 常圧でかつ酸素と不活性ガスの混 合ガス雰囲気で、 金属アルコキシ ドあるいは有機酸塩を出発原料と した スピンコー ト法, ディ ップコー ト法である こ とを特徴とする酸化物誘電 体素子の製造方法。
2 1 . 請求の範囲第 3項において、 E C R酸素プラズマを具備したスパ ッタ リ ング法, レーザ蒸着法, MO C V D法で再熱処理する こ と を特徴 とする酸化物強誘電体及び酸化物高誘電体素子の製造方法。
2 2. 請求の範囲第 3項において、 紫外領域の光を照射しながら、 金属 アルコキシ ドあるいは有機酸塩を出発原料と したス ピンコー ト法あるい はディ ッブコ一 ト法で再熱処理する こ と を特徴とする酸化物誘電体素子 の製造方法。
2 3 . 請求の範囲第 5項, 第 7項ない し第 1 2項記載の酸化物誘電体素 子を、 キャパシタ と して有すること を特徴とする酸化物誘電体素子を用 いたメモリ 。
2 4 . 請求の範囲第 2 3項に記載のメモリ を非接触型読み出 しま たは書 き込みメモリ と して具備する酸化物誘電体素子を用いた半導体装置。
PCT/JP1997/000965 1996-08-20 1997-03-24 Procede de fabrication de dispositif a oxyde dielectrique et memoire et semi-conducteur utilisant ce dispositif WO1998008255A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/242,302 US6548342B1 (en) 1996-08-20 1997-03-24 Method of producing oxide dielectric element, and memory and semiconductor device using the element
EP97907437A EP0957516A1 (en) 1996-08-20 1997-03-24 Method for manufacturing oxide dielectric device, and memory and semiconductor device usign the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/218253 1996-08-20
JP21825396 1996-08-20

Publications (1)

Publication Number Publication Date
WO1998008255A1 true WO1998008255A1 (fr) 1998-02-26

Family

ID=16717000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000965 WO1998008255A1 (fr) 1996-08-20 1997-03-24 Procede de fabrication de dispositif a oxyde dielectrique et memoire et semi-conducteur utilisant ce dispositif

Country Status (5)

Country Link
US (1) US6548342B1 (ja)
EP (1) EP0957516A1 (ja)
KR (1) KR100315264B1 (ja)
CN (1) CN1234137A (ja)
WO (1) WO1998008255A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539963B1 (ko) * 2000-12-27 2005-12-28 주식회사 하이닉스반도체 반도체 소자의 유전체막 형성 방법
JP2006278550A (ja) * 2005-03-28 2006-10-12 Fujitsu Ltd 半導体装置の製造方法
US7255941B2 (en) 2002-10-24 2007-08-14 Seiko Epson Corporation Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element, semiconductor element, method of manufacturing ferroelectric film, and method of manufacturing ferroelectric capacitor
JP2011195348A (ja) * 2010-03-17 2011-10-06 Yukio Watabe 酸化物強誘電体の分極電場の増大法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745553B2 (ja) * 1999-03-04 2006-02-15 富士通株式会社 強誘電体キャパシタ、半導体装置の製造方法
DE10008617A1 (de) * 2000-02-24 2001-09-06 Infineon Technologies Ag Verfahren zur Herstellung einer ferroelektrischen Schicht
DE10125370C1 (de) * 2001-05-23 2002-11-14 Infineon Technologies Ag Verfahren zur Herstellung einer integrierten Halbleiterschaltung mit einem stark polarisierbaren Dielektrikum oder Ferroelektrikum
JP2003133531A (ja) 2001-10-26 2003-05-09 Fujitsu Ltd 電子装置とその製造方法
JP4609621B2 (ja) * 2002-12-24 2011-01-12 セイコーエプソン株式会社 強誘電体キャパシタの製造方法
US7297602B2 (en) * 2003-09-09 2007-11-20 Sharp Laboratories Of America, Inc. Conductive metal oxide gate ferroelectric memory transistor
KR100576849B1 (ko) 2003-09-19 2006-05-10 삼성전기주식회사 발광소자 및 그 제조방법
US20050161717A1 (en) * 2004-01-28 2005-07-28 Fujitsu Limited Semiconductor device and method of fabricating the same
JP5076543B2 (ja) * 2007-02-21 2012-11-21 富士通セミコンダクター株式会社 半導体装置の製造方法
KR101487256B1 (ko) * 2008-07-22 2015-01-29 엘지디스플레이 주식회사 산화물 박막 트랜지스터의 제조방법
KR101586674B1 (ko) * 2008-10-28 2016-01-20 엘지디스플레이 주식회사 산화물 박막 트랜지스터의 제조방법
JP2010278319A (ja) * 2009-05-29 2010-12-09 Renesas Electronics Corp 半導体装置およびその製造方法
JP2017179416A (ja) * 2016-03-29 2017-10-05 Tdk株式会社 圧電磁器スパッタリングターゲット、非鉛圧電薄膜およびそれを用いた圧電薄膜素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065946A (ja) * 1992-06-22 1994-01-14 Rohm Co Ltd 強誘電体薄膜の製造方法
JPH06340487A (ja) * 1993-05-27 1994-12-13 Rohm Co Ltd 複合酸化物薄膜の形成方法
JPH07172984A (ja) * 1993-12-20 1995-07-11 Matsushita Electric Ind Co Ltd 誘電体薄膜の製造方法及びその製造装置
JPH07273216A (ja) * 1994-03-30 1995-10-20 Toshiba Corp 金属酸化膜の形成方法
JPH082919A (ja) * 1994-06-16 1996-01-09 Sharp Corp 強誘電体結晶薄膜及び該強誘電体結晶薄膜を有する強誘電体薄膜素子及び該強誘電体結晶薄膜の製造方法
JPH0823073A (ja) * 1994-07-05 1996-01-23 Nec Corp 強誘電体薄膜キャパシタおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0489519A3 (en) 1990-12-04 1993-05-12 Raytheon Company Sol-gel processing of piezoelectric and ferroelectric films
US5648114A (en) 1991-12-13 1997-07-15 Symetrix Corporation Chemical vapor deposition process for fabricating layered superlattice materials
US5516363A (en) * 1991-12-13 1996-05-14 Symetrix Corporation Specially doped precursor solutions for use in methods of producing doped ABO3 -type average perovskite thin-film capacitors
US5270298A (en) * 1992-03-05 1993-12-14 Bell Communications Research, Inc. Cubic metal oxide thin film epitaxially grown on silicon
EP0789395B1 (en) * 1992-06-12 2005-09-07 Matsushita Electric Industrial Co., Ltd. Manufacturing method for semiconductor device having capacitor
EP0600303B1 (en) * 1992-12-01 2002-02-06 Matsushita Electric Industrial Co., Ltd. Method for fabrication of dielectric thin film
US5527567A (en) * 1994-09-02 1996-06-18 Ceram Incorporated Metalorganic chemical vapor deposition of layered structure oxides
US5453908A (en) 1994-09-30 1995-09-26 Texas Instruments Incorporated Barium strontium titanate (BST) thin films by holmium donor doping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065946A (ja) * 1992-06-22 1994-01-14 Rohm Co Ltd 強誘電体薄膜の製造方法
JPH06340487A (ja) * 1993-05-27 1994-12-13 Rohm Co Ltd 複合酸化物薄膜の形成方法
JPH07172984A (ja) * 1993-12-20 1995-07-11 Matsushita Electric Ind Co Ltd 誘電体薄膜の製造方法及びその製造装置
JPH07273216A (ja) * 1994-03-30 1995-10-20 Toshiba Corp 金属酸化膜の形成方法
JPH082919A (ja) * 1994-06-16 1996-01-09 Sharp Corp 強誘電体結晶薄膜及び該強誘電体結晶薄膜を有する強誘電体薄膜素子及び該強誘電体結晶薄膜の製造方法
JPH0823073A (ja) * 1994-07-05 1996-01-23 Nec Corp 強誘電体薄膜キャパシタおよびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL APPLIED PHYSICS, Vol. 32, (1993), T. HORIKAWA et al., "Dielectric Properties of (Ba,Sr)TiO3 Thin Films Deposited by RF Sputtering", pp. 4126-4130. *
NIKKEI MICRODEVICE, issued February 1994, TOKYO: NIKKEI BUSINESS PUBLICATIONS, INC., (01.02.94), p. 99-103. *
NIKKEI MICRODEVICE, issued June 1991, TOKYO: NIKKEI BUSINESS PUBLICATIONS, INC., (01.06.91), p. 78-86. *
See also references of EP0957516A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539963B1 (ko) * 2000-12-27 2005-12-28 주식회사 하이닉스반도체 반도체 소자의 유전체막 형성 방법
US7255941B2 (en) 2002-10-24 2007-08-14 Seiko Epson Corporation Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element, semiconductor element, method of manufacturing ferroelectric film, and method of manufacturing ferroelectric capacitor
US7371473B2 (en) 2002-10-24 2008-05-13 Seiko Epson Corporation Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element, semiconductor element, method of manufacturing ferroelectric film, and method of manufacturing ferroelectric capacitor
JP2006278550A (ja) * 2005-03-28 2006-10-12 Fujitsu Ltd 半導体装置の製造方法
JP2011195348A (ja) * 2010-03-17 2011-10-06 Yukio Watabe 酸化物強誘電体の分極電場の増大法

Also Published As

Publication number Publication date
US6548342B1 (en) 2003-04-15
KR100315264B1 (ko) 2001-11-26
CN1234137A (zh) 1999-11-03
KR20000030011A (ko) 2000-05-25
EP0957516A4 (ja) 1999-12-01
EP0957516A1 (en) 1999-11-17

Similar Documents

Publication Publication Date Title
JP3319994B2 (ja) 半導体記憶素子
JP3103916B2 (ja) 強誘電体キャパシタおよびその製造方法並びにそれを用いたメモリセル
JP3343356B2 (ja) シリコン上に集積された強誘電体キャパシタ用の電極構造および作成方法
WO1998008255A1 (fr) Procede de fabrication de dispositif a oxyde dielectrique et memoire et semi-conducteur utilisant ce dispositif
WO1999025014A1 (fr) Element dielectrique et mode de fabrication
KR20000028681A (ko) 다층 구조의 강유전성 커패시터
EP1150344A2 (en) Semiconductor device having ferroelectric thin film and fabricating method therefor
JP3349612B2 (ja) 誘電体キャパシタおよびその製造方法
JPH1012832A (ja) 強誘電体キャパシタの作製方法及び強誘電体メモリ装置の製造方法
US20040227278A1 (en) Ceramic film manufacturing method, ferroelectric capacitor manufacturing method, ceramic film, ferroelectric capacitor, and semiconductor device
JP3353833B2 (ja) 半導体装置およびその製造方法
JP2004207304A (ja) セラミックス膜の製造方法および強誘電体キャパシタの製造方法、ならびにセラミックス膜、強誘電体キャパシタおよび半導体装置
JPH10214947A (ja) 薄膜誘電体素子
JP3981142B2 (ja) 強誘電体キャパシタおよびその製造方法
JP3543916B2 (ja) 強誘電体キャパシタの形成方法及び不揮発性半導体記憶素子の製造方法
US6455328B2 (en) Method of manufacture of a capacitor with a dielectric on the basis of strontium-bismuth-tantalum
JP3294214B2 (ja) 薄膜キャパシタ
JP2005216951A (ja) 層状反強誘電体、キャパシタとメモリ及びそれらの製造方法
JP2006128718A (ja) 酸化物誘電体素子
JPH1027886A (ja) 高誘電体素子とその製造方法
JP2007294986A (ja) 酸化物誘電体素子
JP3606791B2 (ja) 強誘電体薄膜の製造方法、強誘電体キャパシタ、強誘電体メモリセルおよび強誘電体メモリの製造方法
JP3720270B2 (ja) 酸化物結晶質膜の製造方法
JP2000077616A (ja) 誘電体素子およびその製造方法並びに半導体装置
JP2001332549A (ja) 結晶性酸化物膜の形成方法および半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198996.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997907437

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09242302

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997001308

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997907437

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001308

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997001308

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997907437

Country of ref document: EP