WO1998003455A1 - Procede pour la preparation d'ethylbenzene - Google Patents

Procede pour la preparation d'ethylbenzene Download PDF

Info

Publication number
WO1998003455A1
WO1998003455A1 PCT/JP1997/002476 JP9702476W WO9803455A1 WO 1998003455 A1 WO1998003455 A1 WO 1998003455A1 JP 9702476 W JP9702476 W JP 9702476W WO 9803455 A1 WO9803455 A1 WO 9803455A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzene
ethylene
reaction
catalyst
catalyst layer
Prior art date
Application number
PCT/JP1997/002476
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Takamatsu
Hiroshi Ishida
Yoshihito Itani
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to US09/214,845 priority Critical patent/US6060632A/en
Publication of WO1998003455A1 publication Critical patent/WO1998003455A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing ethylbenzene useful as a raw material for various polymers.
  • WO 96/21048 describes a method for producing ethyl benzene from benzene and ethylene using a zeolite such as MCM-22, MCM-49, MCM-56 as a highly selective catalyst.
  • a zeolite such as MCM-22, MCM-49, MCM-56 as a highly selective catalyst.
  • the alkylation reaction is carried out in the liquid phase, and the benzene Z ethylene molar ratio is 5 to 10 in most cases, and 5.5 according to the examples.
  • US-A-5,334,795 also describes a method for synthesizing ethylbenzene from benzene and ethylene using MCM-22 zeolite.
  • the benzenenoethylene molar ratio is 4.6 even in the smallest example.
  • JP— B— 0 6 0 4 3 3 4 6 contains an organic aromatic compound and C 2 in a distillation column reactor containing a structure obtained by fixing a fixed bed acidic catalyst in a distillation packing. To form an alkylated product, separating the formed alkylated product, unreacted organic aromatic compound and orefin, and removing the alkylated product from the distillation reactor at a point below the fixed bed. Is described. However, this publication does not describe the use of / S-zeolite. According to the example, the benzene / ethylene molar ratio of the reaction product recovered from the bottom was 3.47 even in the lowest example, and the ethylbenzene production rate based on the catalyst weight was 0.12 to 0. . Extremely low at 3.
  • US-A-5,111,8996 describes a continuous liquid-phase alkylation reaction of a liquid aromatic compound selected from benzene, toluene and xylene using olefin as an alkylating agent, and a crystalline aluminosilicate as a catalyst. 0.25 to 0.35 m1 Zg pore volume, consisting of silica and alumina A process is described which uses a catalyst having a larger pore radius and a particle size no greater than 1 Z64 inch in a fixed bed of a reactive distillation reactor.
  • This publication describes an example using a reactive distillation method in which the molar ratio of an aromatic compound to ethylene is 2, and the ethylene conversion in this example is extremely low at 55%.
  • JP-A-041867647 describes a method in which both alkylation and transalkylation reactions are carried out in the liquid phase on a molecular sieve aromatic alkylation and transalkylation catalyst.
  • the ratio is 4 or less, and about 2 can be used, and / 5 zeolite is mentioned as an alkylation catalyst.
  • the benzene / ethylene molar ratio is 5.2.
  • This publication describes a method for achieving a benzene / ethylene molar ratio of 2 under idealized reaction conditions. However, this method achieves the above molar ratio by supplying ethylene in five stages.
  • WO 966-04225 describes a fixed-bed liquid-phase alkylation reaction of a gas-liquid falling cocurrent system carried out in a tricklebed region using ⁇ zeolite as a hornworm medium.
  • this method shows high productivity, it has a large change in catalytic activity in the early stage of the reaction and is difficult to control.
  • JP—A—0 3 1 8 1 4 2 4 describes a liquid-phase Alkylic reaction and a transalkylation reaction using zeolite as a catalyst.
  • the aromatic hydrocarbon Z-olefin The molar ratio is 4 or more.
  • the zeolite catalyst is used as a catalyst for the alkylation reaction of aromatic hydrocarbons, and is advantageous as a non-corrosive catalyst that replaces the conventional catalyst used for the Friedel-Crafts reaction. Therefore, many proposals have been made for zeolite catalysts.
  • the alkylation reaction is carried out at a relatively high benzene / ethylene mole ratio.
  • a high molar ratio is extremely disadvantageous from an industrial point of view because it increases the amount of unreacted benzene recycled and increases the load on benzene recovery.
  • the following three points can be cited as reasons why the alkylation reaction is carried out at a high benzene / ethylene molar ratio in the conventional method.
  • Y-type zeolite is the most widely used alkylation catalyst.
  • Y-type zeolite is known to provide good activity and good selectivity for the desired product, but at low benzene Z ethylene monole ratios butylbenzene increases with increasing benzene conversion.
  • by-products such as diphenylethane became remarkable, and that the selectivity of nucleoethylation was significantly reduced. I had to say.
  • JP-A-041867647 discloses an example in which a Y-type zeolite is used as a transalkylation catalyst.
  • the Y-type zeolite when comparing a Y-type zeolite having the same oxygen 12-membered ring structure with a zeolite, the Y-type zeolite has a large cavity called a super cage at a portion where pores cross each other, and this cavity is In this, binuclear products such as diphenylene are easily produced as by-products, and this by-product causes a decrease in selectivity, and at the same time, causes pore closure (ie, a decrease in activity) due to a high molecular weight substance. It is thought that.
  • JP-A-0 650 888 17 discloses an alkylation reaction using a mordenite type zeolite having a silylation Z alumina molar ratio greater than 160 and a symmetric index of at least 1 as a catalyst.
  • this is due to the presence of gas zones in the reactor. It is carried out in a qualitatively non-existent state, most preferably in a completely liquid state.
  • the publication states that the presence of a substantial gas zone results in the accumulation of alkylating agents therein, which polymerizes and increases selectivity and catalyst deactivation. is there. In other words, it is described that the use of this catalyst makes it impossible to carry out the mordenite type zeolite in a gas-liquid mixed phase in which ethylene bubbles substantially exist.
  • the MCM-22, MCM-49, MCM-56 zeolite catalysts which are highly selective catalysts disclosed in W096 / 21048, etc., also have a benzene Z ethylene molar ratio as described above.
  • This molar ratio is only 4.6, and this molar ratio is only the value achieved by multistage feeding of the complete dissolved ethylene.
  • the reaction can be performed only under the condition that ethylene is completely dissolved in benzene in order to suppress the deterioration of the catalyst activity.
  • ethylene In order to use the above-mentioned catalyst, ethylene must be completely dissolved in benzene, and when performing the reaction at a low benzene Z ethylene molar ratio, multi-stage supply of ethylene or high ethylene to increase the solubility is required. Pressure will be required. Therefore, in order to use crude ethylene of low purity as a raw material, higher pressure and higher-order multistage supply are required, so that purification of ethylene is indispensable. Not applicable industrially.
  • JP-A-0 504 502 451 or JP-A-0 418 64764 proposes a method for supplying ethylene in multiple stages. According to the report, even if multi-stage lining is performed, the benzenenoethylene molar ratio is still 3 or more. It is performed at a high ratio.
  • JP-A-0 450 0 245 1 supplies benzene to the first stage of an alkylation reactor having at least two reaction stages, and supplies new olefins at the entrance of each stage.
  • the benzene Z-olefin molar ratio in the entire reactor is reduced while maintaining the benzene Z-olefin molar ratio at each stage at a value high enough to reduce the temperature rise. It is stated that avoiding such situations would improve selectivity and extend catalyst life. It is stated that since the reaction is carried out at a low temperature, the zeolite catalyst can be maintained in a liquid phase, and the time until catalyst regeneration becomes necessary can be extended.
  • WO 96/21048 discloses a method using MCM-22, MCM-49, MCM-56 zeolite as a catalyst. By supplying and providing a cooling stage, heat of reaction is removed. It is stated that operating at near constant temperature will increase product purity and catalyst life. In such a method, in order to achieve a lower benzene / ethylene molar ratio, the number of ethylene supply and cooling stages needs to be increased, and the equipment becomes complicated. On the other hand, a method has been proposed in which the reaction heat is removed by latent heat of evaporation by performing reactive distillation. For example, in JP-B-0.6043334, the Y-type zeolite is used as a catalyst, and the reactor is filled with cloth wrapped in cloth.
  • the product is recovered from the bottom of the reactor. Since the activity of the Y-type zeolite catalyst substantially deteriorates in the presence of ethylene in the gas phase, the cloth is used to avoid contact between the catalyst and bubbles, and ethylene is substantially completely dissolved in the reaction zone. It is estimated to be in the state. However, in the first place, as long as Y-type zeolite is used as a catalyst, it is difficult to carry out the reaction at a low benzene-ethylene molar ratio from the viewpoint of maintaining the selectivity. In fact, even in the example of JP—B—0.6043334, the lowest benzene / ethylene monole ratio of the product obtained from the bottom is only 3.47. In addition, in such a reactive distillation method, gas-phase ethylene becomes a continuous phase, and a force and a catalyst charging method that avoids contact between the catalyst and bubbles are employed. Is considered impossible.
  • US—A—5, 118, 896 also discloses a reactive distillation method, It refers to using zeolites.
  • zeolites In the working examples, only examples of the ethylation of toluene with Y-type zeolite are described, and in the working examples in reactive distillation, the catalyst is still used in a cloth. I have. Therefore, even in these examples, bubbles are blocked in the catalyst layer, and a uniform liquid phase is maintained in the reaction zone. In this case, the gas-liquid boundary area cannot necessarily be a large value because it is necessarily the surface area of the cloth, and therefore a considerable number of stages (amount of catalyst) is required to complete the conversion of ethylene. Will be less productive.
  • the (toluene + benzene) Z ethylene molar ratio is 2
  • the catalyst weight is 272 g
  • the feed rate is toluene 151 g / Hr
  • the benzene is 27 g / ⁇ r.
  • Below the ethylene conversion is only 55%. Further, when performing the reaction by the above-mentioned reactive distillation method, it is difficult to fix the catalyst layer in the reactor, and there is a disadvantage that the apparatus becomes complicated.
  • the reaction zone is completely dissolved so that substantially no ethylene bubbles are present.
  • the reaction is being performed in the system. That is, the reaction had to be carried out under the condition of a high benzene / ethylene molar ratio.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, using a fixed bed ascending flow type reactor, benzene and ethylene were separated from ethylbenzene in the presence of a catalyst containing zeolite 3.
  • a fixed bed ascending flow type reactor benzene and ethylene were separated from ethylbenzene in the presence of a catalyst containing zeolite 3.
  • the present invention relates to a method for producing ethylbenzene from benzene and ethylene in the presence of a catalyst containing zeolite using a fixed bed ascending flow type reactor, a) when ethylene is supplied from a lower part of the catalyst layer, The reaction is performed under the condition that ethylene bubbles are present at the entrance of the catalyst layer, and
  • the catalyst used in the present invention is zeolite / 3.
  • Zeolite is a synthetic crystalline aluminosilicate first described in US-A-3,308,699 and is identified by its characteristic X-ray diffraction image described in the publication.
  • Table 1 shows the reflection d values of X-ray diffraction contained in zeolite / 3.
  • Zeorai Bok ⁇ of S i 0 2 / A 1 2 0 3 ratio is 5 to 0 0 used in, good Mashiku 1 0-8 0, more preferably 1 5 to 4 0 is there.
  • the zeolite used as a catalyst in the present invention is obtained by ion exchange. It is preferably an acid-type zeolite in which thorium ions are replaced by hydrogen ions and / or polyvalent cations. If zeolite / 3 has a sufficient organic cation / sodium ion ratio, the zeolite can be used only by calcining. In order to obtain higher activity, zeolite 3 is preferably converted to a hydrogen ion type by an ion exchange method. The ion exchange method to the hydrogen ion type is preferably performed by the following method.
  • zeolite 5 is stirred in a dilute aqueous nitric acid solution, ion-exchanged to a hydrogen ion type, dried, and the water content is reduced to 10 parts by weight. Except for the following, it is used for the reaction.
  • the catalyst When filling the reactor with the catalyst, the catalyst is preferably a molded body. In order to form a molded body, it may be molded with pure zeolite alone, or may be formed by adding an inorganic oxide such as alumina, silica, silica alumina or natural clay as a binder. . As for the molding method, tablet molding, extrusion molding and the like are well known in the relevant field, and the shape of the molded catalyst is generally cylindrical. In addition, a molded article such as a sphere, a plate, and a hollow cylinder may be used.
  • the reaction type in the present invention is a fixed bed upward flow reaction type.
  • the molded catalyst is filled in the reactor.
  • Benzene and the like which are reaction raw materials, are introduced from the lower part of the reactor after being preheated to a predetermined temperature lower than the maximum temperature of the catalyst layer by 50 ° C or more.
  • ethylene is also introduced into the lower part of the reactor or into the catalyst layer.
  • the reactor is adiabatic, and since this reaction is an exothermic reaction, heat is generated as the reaction proceeds, and the liquid temperature (catalyst layer temperature) rises.
  • the pressure during operation is low, evaporation necessarily occurs at the vapor-liquid equilibrium composition under the temperature and pressure conditions at that time.
  • the evaporating gas is a fraction mainly composed of benzene, and the amount of evaporating gas is reduced by the amount of generated reaction heat and liquid sensible heat according to reaction conditions such as reaction pressure, raw material supply amount, reaction heat, and raw material preheating temperature. Determined from the balance with the amount of heat. Therefore, the latent heat of vaporization can partially remove a large amount of reaction heat generated as the alkylation reaction progresses to suppress the rise in reaction temperature and control the maximum temperature of the catalyst layer to an arbitrary constant temperature. it can. This control is effective in suppressing catalyst deterioration and maintaining selectivity.
  • the reaction raw materials in the present invention are benzene and ethylene as an alkylating agent. You. It is also possible to recycle the fraction mainly composed of unreacted benzene, which is recovered as steam to remove reaction heat, by supplying it to the reactor as a reaction raw material.
  • Benzene used as a raw material in the present invention preferably has a water content of 200 ppm or less, in order to prevent a decrease in catalytic activity due to adsorption of water to the catalyst in a low temperature range.
  • Ethylene used as a raw material in the present invention includes not only purified pure ethylene gas but also crude ethylene gas generated from a general naphtha cracking furnace (for example, paraffin-based hydrocarbon gas such as methane and ethane, propylene, (Including hydrogen, etc.) can also be used.
  • a general naphtha cracking furnace for example, paraffin-based hydrocarbon gas such as methane and ethane, propylene, (Including hydrogen, etc.
  • a feature of the method of the present invention is that the reaction can be carried out in a gas-liquid mixed phase. Therefore, even when crude ethylene gas is used as a raw material, the reaction can be performed under relatively low pressure.
  • the conventional method that requires complete dissolution of ethylene in benzene requires a very high pressure to dissolve ethylene if the purity of the raw material ethylene gas is low. Not a target. Therefore, from the industrial point of view, the method of the present invention is preferable because the step of purifying the raw material ethylene can be omitted.
  • the benzene Z ethylene molar ratio of the reaction gas supplied (hereinafter, referred to as benzene Z ethylene supply molar ratio or simply supply monolith ratio) is 1 to 6, preferably 1.5 to 4, and more preferably 2 to 3. .
  • the obtained product liquid since a part of unreacted benzene is recovered as vapor, the obtained product liquid has a benzene ring / ethyl group molar ratio lower than the supplied molar ratio.
  • the evaporative gas fraction is recycled and supplied to the reactor for reuse, a product having the same molar ratio of benzene ring / ethyl group as the supplied molar ratio can be obtained.
  • the preferred molar ratio of the benzene ring Z-ethyl group in the obtained product liquid is 1 to 3 from the viewpoint of maintaining a high selectivity.
  • the reaction pressure in the present invention is determined by the partial pressure of the evaporative gas mainly composed of benzene, which is determined by the vapor-liquid equilibrium from the desired composition of the product liquid, the benzene / ethylene supply molar ratio, the maximum temperature of the catalyst layer, and the like.
  • the maximum temperature (ie, the vapor-liquid equilibrium temperature) of the catalyst layer is set to 250 ° C. or less. Boiling occurs below this temperature, and the pressure is determined so that the product liquid is concentrated.
  • the reaction pressure is low, there is a concern that the reaction rate will decrease and the amount of evaporation, that is, the amount of recycling, will increase.Therefore, the preferable pressure is to obtain a sufficient reaction rate and recycle with the composition and flow rate of the product liquid to be recovered.
  • the partial pressure of the steam fraction mainly composed of benzene generated is 5 to 20 kg / cm 2 G, preferably 10 to 15 k gZ cm 2 G.
  • the reaction temperature of the present invention is defined as the maximum temperature reached in the catalyst layer, and is determined by the reaction pressure and the force determined by the liquid composition. It is preferred that The reaction pressure is appropriately selected as described above so as to be in this temperature range. Therefore, the reaction temperature rises to the target temperature due to the heat of the reaction. However, any additional heat of reaction is used to evaporate the benzene-based fraction, so that the temperature of the catalyst layer can be kept constant.
  • the temperature at the inlet of the catalyst layer (benzene preheating temperature) is set at least 50 ° C. lower than the highest temperature attained by the catalyst layer. This is because keeping the temperature at the entrance of the catalyst layer low increases the solubility of ethylene at the entrance of the catalyst layer and greatly contributes to the complete conversion of ethylene.
  • the temperature profile up to the maximum temperature which is the boiling point in, is formed so as to lower the average temperature of the catalyst layer, and therefore, an effect of maintaining high selectivity is produced. Since the decrease in catalytic activity near the entrance of the catalyst layer where ethylene bubbles are substantially present depends on the temperature, from the viewpoint of preventing the decrease in activity, the lower the entrance temperature of the catalyst layer is, the better.
  • the actual preheating temperature (temperature at the entrance of the catalyst layer) in the present invention is determined in consideration of the desired product liquid composition (amount of evaporative gas), and is at least 30 ° C. or higher as the temperature at which the reaction starts, and Highest catalyst layer
  • the temperature is selected in the range of at least 50 ° C lower than the ultimate temperature, preferably 30 to 200 ° C, more preferably 80 to 160 ° C.
  • the temperature at the entrance of the catalyst layer is the lowest, the temperature rises toward the upper layer due to the heat generated by the progress of the reaction, and when the temperature reaches a predetermined temperature, evaporation occurs. The heat is removed and there is no further temperature rise. Since the catalyst layer has a predetermined temperature profile, keeping the temperature at the entrance of the catalyst layer low improves the ethylene solubility at the entrance of the catalyst layer, increases the reaction rate, and contributes to the complete conversion of ethylene. Further, according to the present invention, even if ethylene bubbles are present at the entrance of the catalyst layer, the effect of suppressing a decrease in catalyst activity is exhibited by lowering the temperature in the layer. In addition, having such a temperature profile means that the average temperature of the entire catalyst layer is lowered, which has the effect of maintaining the nuclear ethylation selectivity at an extremely high value.
  • the supplied ethylene cannot necessarily be completely dissolved in benzene at the inlet of the catalyst layer, and as bubbles.
  • the conventional method has problems such as deterioration of the catalyst and reduction of the selectivity, and an increase in temperature due to a large heat of reaction.
  • the reaction is carried out under the condition of a high benzene / ethylene molar ratio, in which ethylene completely dissolves in benzene. Therefore, a complicated reaction system had to be adopted.
  • the alkylation reaction under low benzene ethylene conditions can be carried out with very simple equipment and low pressure. Therefore, it can be carried out even when the raw material ethylene purity is low, and the step of purifying ethylene can be omitted.
  • 3 zeolite has excellent resistance to degradation with contact with gaseous ethylene, and can exhibit high catalytic activity and high reaction selectivity even under conditions of low power, low benzene and ethylene molar ratio.
  • the generated heat of reaction was partially removed by evaporating it as a fraction mainly composed of unreacted benzene, making it possible to maintain the catalyst layer at an arbitrary temperature.
  • the alkylation reaction can be completed with high selectivity even under low benzene / ethylene molar ratio conditions (complete conversion of ethylene). I found a way to do it.
  • the method of the present invention has a very small decrease in the activity of the catalyst.
  • the mixture was then placed in a 500 milliliter autoclave and left at 155 ° C. for 8 days without stirring, producing a large amount of crystalline material.
  • This material was filtered, washed with water, and dried at 120 ° C for 24 hours to obtain 66 g of a crystalline powder.
  • the temperature of the crystalline powder was gradually raised to 350 to 550 ° C, and finally calcined at 550 ° C for 6 hours.
  • the powder after calcination was identified by X-ray diffraction to be / 3 zeolite.
  • Synthesis of zeolite and hydrogen ion exchange were performed several times by the same operation, and the obtained hydrogen ion-type zeolite was molded by a tablet molding machine to obtain a molded catalyst of 3 mm 03 to 5 mm L. By repeating the same operation, 400 g of a molded catalyst was obtained.
  • the stainless steel reaction tube provided with one nozzle was filled with 400 g of the zeolite ⁇ catalyst molded body.
  • the catalyst was filled from 600 mm to 132 mm from the bottom of the reactor, and a 3 mm ⁇ stainless steel Dickson packing was filled in the upper and lower parts of the catalyst layer.
  • the product liquid extraction nozzle was connected to a liquid recovery drum pressurized with nitrogen so that the pressure was equalized with the reactor pressure.
  • the evaporative gas fraction was recovered from the pressure control valve via a cooler, and the liquid was recovered as a product liquid from a product liquid extraction nozzle to a liquid recovery drum.
  • Benzene was supplied from the bottom of the reactor (inlet of the preheating layer) at a supply rate of 228 g / Hr.
  • the pressure in the reactor was adjusted to 13.8 kg / cm 2 G by the pressure control valve at the reactor outlet, and the system was completely sealed.
  • the heating medium at 150 ° C was circulated through the preheating layer heating medium jacket, and the catalyst layer inlet temperature was set at 122 ° C.
  • ethylene was supplied from the bottom of the reactor in the same manner as benzene at a supply rate of 10.18 mo1 / Hr, and the reaction was started. As the reaction was started, the temperature of the catalyst layer gradually increased, and the maximum temperature of the catalyst layer reached 230 ° C in the middle area of the catalyst layer.
  • the obtained product liquid was 157 2 g / Hr, and was concentrated so that the molar ratio of the benzene ring / ethyl group became 2.14, and the selectivity of the nucleated ethylated product was 99. It was 7%.
  • the evaporative gas component was obtained at 992 g ZH r, and the benzene ring Z ethyl group molar ratio was 6.06.
  • Ethylene conversion was 99.977%, indicating almost complete conversion.
  • the reaction lasted 500 hours.
  • the tendency of the change in the temperature profile of the catalyst layer (particularly, the temperature change near the entrance of the catalyst layer) showed that the catalyst activity gradually decreased, but the ethylene conversion rate did not show any tendency to decrease. Almost complete conversion was achieved.
  • Table 2 shows the results. Table 2 Operating hours (Hr) 50 100 500 Catalyst bed inlet 122 121 122
  • Composition engineered benzene on y4 1 Q9 7 on (wt3 ⁇ 4) getylbenzene 1 ⁇ , L-gatriethylbenzene n v. 1144 n U. 1141 Selectivity 99.94 99.92 99.94 Ethylene conversion 100.00 99.96 99.96
  • Zeolite (sodium type) manufactured by PQ Corporation was exchanged with a hydrogen ion type under the same conditions as in Example 1 to obtain a hydrogen ion type; ⁇ zeolite.
  • the ratio of silica to alumina of the obtained hydrogen ion type; 3 zeolite was 35.
  • the obtained hydrogen ion type zeolite was tableted by a tableting machine to obtain a 3 mm 0 X 3 to 5 mm L shaped catalyst. By repeating the same operation, 400 g of a molded catalyst was obtained.
  • Example 2 The same reactor as in Example 1 was charged with 400 g of the catalyst. The height of the packed bed was 725 mm. Benzene was supplied from the bottom of the reactor (inlet of the preheating layer) at a supply rate of 2400 gZHr. The pressure inside the reactor was set to 13.8 kg / cm 2 G by the pressure control valve at the outlet of the reactor, and the inside of the system was completely sealed. A heating medium at 160 ° C was circulated through the preheating layer heating medium jacket, and the catalyst layer inlet temperature was set at 133 ° C. Thereafter, ethylene was supplied from the lowermost portion of the reactor in the same manner as benzene at a supply rate of 10.7 1 mo1 / Hr to start the reaction.
  • the recycle flow rate is 104 2 g ZHr
  • the benzene supply flow rate is 1362 g / Hr
  • the product liquid recovery flow rate is 1662 gZHr, which is almost constant. Tona I got it.
  • the maximum temperature of the catalyst layer was 232 ° C
  • the temperature at the product collection nozzle position was 230 ° C
  • the reaction pressure was 13.8 kg / cm 2 G. The reaction was continued for 500 hours. Table 3 shows the results.
  • the reaction was carried out using the following mixed gas as the raw material ethylene.
  • the zeolite ⁇ catalyst molded body and the reaction apparatus used were the same as in Example 2. However, in this embodiment, since the raw material contains an inert gas such as methane and hydrogen, the gas phase recovery receiver and the product liquid recovery receiver are provided with a gas phase equalization line, Gas was used to equalize both receivers.
  • Benzene was supplied from the bottom of the reactor (preheating layer inlet) at a supply rate of 2400 g / Hr.
  • the pressure inside the reactor was set to 30.2 kg / cm 2 G by the pressure control valve at the outlet of the reactor, and the inside of the system was completely sealed.
  • an inert gas hydrogen, methane, ethane, a trace amount of carbon monoxide gas
  • the pressure was 30.2 kg / cm z G.
  • a heat medium of 160 ° C was circulated through the heat medium jacket of the preheating layer, and the catalyst layer inlet temperature was set to 132 ° C.
  • the raw material mixed gas containing ethylene was converted to 2 4.25 mol ZH r
  • Ethylene was supplied from the bottom of the reactor in the same manner as benzene at a supply rate of 10.7 lmol ZHr to start the reaction.
  • the raw material supply rate was controlled in the same manner as in Example 2, and several hours later, the supply reached a steady state.
  • the recycle flow rate was 1043 g / Hr
  • the benzene supply flow rate was 1362 g / Hr
  • the product liquid recovery was 1662 gZHr, indicating almost constant values.
  • the reaction was continued for 500 hours. Table 4 shows the results.
  • This comparative example was performed to compare the reaction results of the Y-type zeolite and the zeolite catalyst.
  • the hydrogen ion-type zeolite / 3 catalyst molded body obtained in the same manner as in Example 1 was pulverized and classified, and sized to 8 to 14 mesh, and 30 g of the mixture was filled.
  • the catalyst charging position is 32 Omn from the bottom of the reactor! The position is about 51 Omm, and the top and bottom of the catalyst layer are filled with 3 mm ⁇ stainless steel Dickson packing.
  • Benzene was supplied from the bottom of the reactor (inlet of the preheating layer) at a supply rate of 319 g / Hr.
  • the pressure inside the reactor was set to 13.5 kg / cm 2 G by the pressure control valve at the reactor outlet, and the inside of the system was completely sealed.
  • a heating medium of 140 ° C was circulated through the heating medium jacket of the preheating layer, and the catalyst layer inlet temperature was set to 135 ° C. Thereafter, ethylene was supplied from the bottom of the reactor in the same manner as benzene at a supply rate of 1.4 mol 1 ZHr to start the reaction.
  • This comparative example shows that it is impossible to use the type III zeolite widely used in the conventional method under the condition of an extremely low benzene-ethylene molar ratio as in the present invention.
  • This comparative example was performed in order to compare the reaction results based on the catalyst layer temperature profile.
  • the hydrogen ion-type zeolite 3 catalyst compact obtained in the same manner as in Example 1 was pulverized and classified, and sized to 8 to 14 mesh. Filled with 3 O g.
  • the catalyst filling position was from 320 mm to 51 Omm from the lower part of the reactor, and 3 mm ⁇ stainless steel Dickson packing was filled above and below the catalyst layer.
  • Benzene was supplied from the bottom of the reactor (inlet of the preheating layer) at a supply rate of 319 g / Hr.
  • the pressure inside the reactor was set to 13.8 kg / cm 2 G by the pressure control valve at the reactor outlet, and the inside of the system was completely sealed.
  • the heat medium at 230 ° C was circulated through the preheated layer heat medium jacket, and the catalyst layer inlet temperature was set at 195 ° C. Thereafter, ethylene was supplied from the lowermost part of the reactor in the same manner as benzene at a supply rate of 1.4 mo1 / Hr to start the reaction.
  • the maximum temperature of the catalyst layer reached 232 ° C in the middle area of the catalyst layer, but under this reaction conditions, evaporation occurred, and further temperature rise was suppressed, and the temperature of the upper catalyst layer was maintained.
  • a cooler was provided at the reactor outlet, and all the products were collected as a liquid and analyzed by gas chromatography. Table 6 shows the results of the reaction evaluation. Table 6
  • the ethylene conversion rate is 98% even at the initial stage, and complete conversion is not achieved.
  • the rate was as low as 99.3%, and the catalyst activity deteriorated relatively quickly.
  • such a catalyst layer temperature profile is not preferable because the flow rate of evaporative gas (recycled amount) increases extremely and the yield of product liquid decreases.
  • an alkylation reaction of benzene is carried out at an extremely low benzene Z ethylene supply molar ratio without causing a decrease in catalytic activity, while maintaining an extremely high nuclear ethylation selectivity and complete conversion of ethylene.
  • the reaction can be carried out using a simple apparatus and under a low pressure.
  • since it is not necessary to completely dissolve ethylene unlike the conventional method, it is possible to carry out the reaction from a low-purity ethylene material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書 ェチルベンゼンの製造方法 技術分野
本発明は、 各種ポリマーの原料等として有用なェチルベンゼンの製造方法に関 する。
背景技術
WO 9 6 / 2 0 1 4 8には、 高選択的な触媒として MCM— 2 2, MCM- 4 9, MCM— 5 6等のゼォライ トを用いるベンゼンとエチレンとからのェチルベ ンゼンの製造方法が記載されている。 この公報によれば、 アルキル化反応が液相 で実施され、 ベンゼン Zエチレンモル比がほとんどの場合 5 ~ 1 0であり、 実施 例によれば 5. 5である。
US-A- 5, 3 3 4, 7 9 5にも MCM— 2 2ゼォライ 卜を用いるベンゼン とエチレンとからのェチルベンゼンの合成方法が記載されている。 しかし、 この 公報の実施例によれば、 ベンゼンノエチレンモル比は最も小さい例であっても 4. 6である。
J P— B— 0 6 0 4 3 3 4 6には、 固定床酸性触媒を蒸留用充塡物内に固定し て得られる構造体を含む蒸留塔反応器内で、 有機芳香族化合物と C 2〜C 2 0ォ レフインとを接触させ、 アルキル化物を形成し、 生成したアルキル化物、 未反応 有機芳香族化合物及びォレフィンを分別し、 アルキル化物を蒸留反応器から固定 床の下の箇所で取り出す方法が記載されている。 しかし、 この公報には/ S—ゼォ ライ 卜の使用は記載されていない。 また、 実施例によれば、 底部から回収される 反応生成物のベンゼン/エチレンモル比は最も低い例であっても 3. 4 7であり、 触媒重量基準のェチルベンゼン生成速度も 0. 1 2〜0. 3と極めて低い。
US-A- 5, 1 1 8, 8 9 6には、 ォレフィンをアルキル化剤として用いる ベンゼン、 トルェン及びキシレンから選ばれる液体芳香族化合物の連続液相アル キル化反応を、 触媒として結晶性アルミノシリケ一トゼォライ トを含み、 シリ力 とアルミナとからなる、 0. 2 5〜0. 3 5 m 1 Zgの細孔容積と、 4 5 0 Aよ り大きい細孔半径とを有し、 1 Z 6 4ィンチより大きくない粒子径を有する触媒 を用いて、 反応蒸留式反応器の固定床で行う方法が記載されている。 この公報に は、 芳香族化合物とエチレンとのモル比が 2である反応蒸留方式を用 、た実施例 が記載されているが、 この例のエチレン転化率は 5 5 %と極めて低い。
J P - A - 0 4 1 8 7 6 4 7には、 アルキル化及びアルキル転移反応を共にモ レキユラシーブ芳香族アルキル化及びアルキル転移触媒上にて液相で行う方法が 記載されており、 ベンゼン/エチレンモル比は 4以下であり 2程度も使用し得、 また、 アルキル化触媒として /5ゼォライトが挙げられているが、 実施例ではベン ゼン /エチレンモル比は 5 . 2である。 この公報には、 理想化された反応条件下 で、 ベンゼン/エチレンモル比 = 2を達成する方法が記載されている。 しかし、 この方法は、 エチレンを 5段階に分けて供給することにより上記モル比を達成す るものである。
WO 9 6 - 0 4 2 2 5には、 ^ゼォライトを角虫媒として用いる卜リクルべッ ド 領域で行われる気液下降並流方式の固定床液相ァルキル化反応が記載されている。 しかし、 この方法は高生産性を示してはいるものの、 反応初期において触媒活性 の変化が大きく制御が困難である。
J P— A— 0 3 1 8 1 4 2 4には、 ゼォライ トを触媒として用いる液相アル キルィヒ反応及びトランスアルキル化反応が記載されている力 実施例によれば、 芳香族炭化水素 Zォレフィンのモル比は 4以上である。
ゼォライ ト触媒は、 芳香族炭化水素のアルキル化反応の触媒として用いられ、 フリ一デル · クラフツ反応に用いられる従来の触媒に代わる非腐食性触媒として 有利である。 それ故、 ゼォライ ト触媒について多くの提案がなされている。
しかしながら従来の方法のほとんどの場合、 比較的高いベンゼン /ェチレンモ ル比でアルキル化反応が実施されている。 このような高いモル比は、 未反応ベン ゼンのリサイクル量を増加し、 ベンゼン回収の負荷を増大させるので、 工業的見 地から極めて不利である。 それにもかかわらず、 従来の方法では高いベンゼン/ ェチレンモル比で、 ァルキル化反応が実施されている理由として以下の 3点が挙 げられる。
第一に、 触媒性能上の制約、 すなわち核ェチル化の選択率の低さが挙げられる。 例えば、 従来アルキル化触媒として最も広く用いられているものとして、 Y型ゼ ォライ 卜が挙げられる。 Y型ゼォライ 卜は、 良好な活性と所望の生成物に関する 良好な選択率とを与えることが知られていた力く、 低いベンゼン Zエチレンモノレ比 では、 ベンゼンの反応率の上昇に伴ってブチルベンゼン、 ジフヱニルェタン等の 副生物の生成が著しくなり、 それにより核ェチル化の選択率が著しく減少するこ とが判明するに至って、 低いベンゼン/エチレンモル比での γ型ゼォライ 卜の使 用は不可能と言わざるを得なかった。
第二に、 比較的低い圧力下で一段供給で実施される低ベンゼン Zエチレンモル 比での反応においては、 実質的に触媒層入口で、 エチレンが気泡として存在する ことになり、 触媒の活性が著しく低下することが挙げられる。 例えば、 J P— A - 0 4 1 8 7 6 4 7には、 アルキル転移触媒として Y型ゼォライ トを用いる例が 開示されており、 この触媒を実質的にガス相が存在する下向流滴下
( t r i c k l e ) 床反応器中で用いてジェチルベンゼンのアルキル転移反応を 行った結果、 ジェチルベンゼン転化率が数時間から 2 4時間の間に著しく低下し たとの記載がある。
さらに、 本発明者らの検討の結果によれば、 Y型ゼオライ トを用いる固定床上 昇流方式でのベンゼンのェチル化反応を比較的低 、圧力下、 低ベンゼン Zェチレ ンモル比で実施したところ、 核ェチル化の選択率は極めて低く、 活性低下も著し かった。 そもそも、 Y型ゼォライ トを用いるバッチ反応に於いても、 ベンゼンの 反応率が上昇するに伴って著し 、選択率の低下と活性の低下とが確認されている。 この原因は、 Y型ゼォライ 卜の細孔構造によるものと考えられる。 すなわち、 同 じ酸素 1 2員環構造を有する Y型ゼォライ 卜と ゼォライ 卜とを比較した場合、 Y型ゼォライ トは細孔が互いに交差する部分にスーパーケージと呼ばれる大きな 空洞を有し、 この空洞内で、 ジフ ニルェタン等の二核体生成物が副生し易くな り、 この副生が選択率の低下を引き起こすと同時に、 高分子量物質による細孔の 閉塞 (すなわち、 活性の低下) をもたらすのであろうと考えられる。
J P - A - 0 6 5 0 8 8 1 7には、 1 6 0より大きいシリ力 Zアルミナモル比 と少なくとも 1の対称ィンデックスとを有するモルデナィ 卜型ゼォライ 卜を触媒 として用いるアルキル化反応が開示されているが、 これは反応器中にガス帯が実 質的に存在しない状態で、 最も好ましくは完全な液体状態で実施される。 この公 報には、 実質的なガス帯の存在はその中でアルキル化剤の蓄積を招き、 アルキル 化剤が重合し、 選択率の低下と触媒の不活性化とを増大させるとの記載がある。 すなわち、 この触媒を用いるには、 実質的にエチレン気泡が存在する気液混合相 での上記モルデナィ 卜型ゼォライ 卜の実施は不可能であると記述されている。
W09 6/2 0 1 4 8等に開示された高選択性触媒である M CM— 2 2, MC M- 4 9, MCM- 5 6ゼォライ ト触媒においても、 上述のように、 ベンゼン Z エチレンモル比は 4. 6にすぎず、 し力、も、 このモル比は完全溶解分のエチレン を多段供給することにより達成された値にすぎない。 すなわち、 触媒活性の劣化 を抑制するために、 エチレンがベンゼンに完全に溶解する条件でしか反応を行う ことができないのである。
上述のような触媒を用いるためには、 エチレンがベンゼンに完全に溶解する必 要があり、 低ベンゼン Zエチレンモル比での反応の実施には、 エチレンの多段供 給、 又は溶解度を高めるために高い圧力が必要となるであろう。 したがって、 原 料として純度の低い粗エチレンを利用するためには、 さらに高い圧力とさらに高 次の多段供給が必要となるので、 エチレンの精製が必須となり、 上述のような触 媒は実際には工業的には適用できない。
第三点として、 反応熱の除去の問題が挙げられる。 本反応は発熱反応であり、 したがって、 低ベンゼン エチレン条件下で反応を完結させると著し 、発熱が生 じる。 発熱による触媒層温度の上昇はアルキル化反応の選択率を低下させ、 液相 を維持できなくなれば、 触媒の著しい活性低下は避けられない。 反応熱の除去は 重要な問題であり、 従来の方法では、 この除熱の観点からも大過剰のベンゼンの 存在下 (高ベンゼン/エチレンモル比) でアルキル化反応を行わざるを得なかつ たのである。
このような状況下、 低ベンゼン Zエチレンモル比でのアルキル化反応を達成す るために、 反応熱の除去の問題を解決する方法が提案されて ^、る。
J P— A— 0 4 50 2 4 5 1又は J P— A— 0 4 1 8 7 64 7には、 エチレン を多段供給する方法が提案されているが、 そのための装置が複雑であり、 実施例 によれば多段供袷を行っても、 依然としてベンゼンノエチレンモル比は 3以上の 高い比で行われている。 例えば、 J P— A— 0 4 5 0 2 4 5 1には、 少なくとも 2つの反応段階を有するアルキル化反応器の第一段階にベンゼンを供袷し、 各段 階の入口に新たなォレフィンを供給してアルキル化反応を行うことにより、 各段 階におけるベンゼン Zォレフィ ンモル比を温度上昇を低減させるに充分な高い値 に維持しながら、 反応器全体としてのベンゼン Zォレフィンモル比を低減させ異 常温度となる事態を回避し、 これによつて選択率を改善し、 触媒寿命を延ばすこ とが記載されている。 反応が低温で行われるので、 ゼォライ ト触媒を液相中に維 持することができ、 触媒の再生が必要となるまでの時間を延長できるとの記載が ある。
WO 9 6 / 2 0 1 4 8には、 M C M— 2 2 , M C M— 4 9, M C M— 5 6ゼォ ライ トを触媒として用いる方法が開示されており、 この方法によればォレフィ ン を多段供給し、 かつ冷却段を設けることにより反応熱の除去が行われる。 一定温 度に近 、状態での運転は製品の純度及び触媒の寿命を高めるとの記載がある。 以上のような方法では、 より低いベンゼン /ェチレンモル比を達成するために は、 エチレン供給段及び冷却段の数をより増やす必要があり、 装置が複雑となる。 一方、 反応蒸留を行うことにより反応熱を蒸発潜熱で除去する方法も提案され ている。 例えば、 上記の J P— B— 0 6 0 4 3 3 4 6では、 触媒として Y型ゼォ ライ 卜が用いており、 反応器内にクロスに包まれて充塡されている。 生成物は反 応器底部から回収される。 Y型ゼォライ ト触媒は実質的に気相のエチレンの存在 下では活性劣化が著しいため、 クロスを用いて触媒と気泡との接触を避けており、 反応部ではエチレンは実質的に完全に溶解した状態であると推定される。 しかし ながらそもそも、 Y型ゼオライ トを触媒として用いる限りにおいては、 選択率維 持の点からも低 、ベンゼン ェチレンモル比での反応の実施は困難と言わざるを 得ない。 実際、 J P— B— 0 6 0 4 3 3 4 6の実施例においても、 底部から得ら れる生成物の最も低いベンゼン/エチレンモノレ比は 3 . 4 7にすぎない。 また、 このような反応蒸留方式では、 気相エチレンが連続相となり、 し力、も、 触媒と気 泡との接触を避ける触媒充塡方法を採用しているため、 必然的にエチレンの完全 転化は不可能であると考えられる。
U S— A— 5, 1 1 8, 8 9 6も、 反応蒸留方式を開示しており、 触媒として ^ゼオライトを用いることに言及している。 し力、しな力くら、 その実施例には、 Y 型ゼォライトによるトルエンのェチル化の例しか記載されておらず、 反応蒸留で の実施例では、 やはり触媒はクロスに包まれて使用されている。 したがって、 こ れらの例でも触媒層では気泡が遮断され、 反応ゾ一ンでは均一な液相が維持され ている。 この場合、 気液界面積は必然的にクロスの表面積となるため大きな値と はなり得ず、 したがってエチレンの転化を完結せしめるためには相当な段数 (触 媒量) が必要であり、 触媒当たりの生産性は低いものとなるであろう。 実際、 当 該公報の実施例によれば、 (トルエン +ベンゼン) Zエチレンモル比が 2、 触媒 重量 2 7 2 g、 供給速度トルエン 1 5 1 g/H r , ベンゼン 2 7 g /Έ rの条件 下でエチレン転化率は 5 5 %にしかすぎない。 さらに、 以上のような反応蒸留方 式で反応を実施する際には、 触媒層の反応器内への固定が困難であり、 装置が複 雑となる不利がある。
また、 同じ U S— A— 5 , 1 1 8 , 8 9 6に、 触媒の評価を目的とした実験と して、 メタンにより希釈されたエチレンを原料として用い、 固定床上昇流気液混 相方式で、 Y型ゼオライトによるトルエンのェチル化を実施した例がある。 しか し、 この例では触媒層は分割された電気炉によって一定温度に保たれている。 力、 かる反応方式では、 たとえ、 Y型ゼォライ卜の代わりに ゼォライ 卜を触媒とし て用いたとしてもェチレンの完全転化は達成され得ないし、 触媒の活性劣化も著 しいものとなってしまう。触媒層の入り口から高温で原料の液体成分の蒸発が起 こり、 触媒層入口でのエチレンの溶解度も低下するために反応を完結することが できないからであり、 また、 気相エチレン存在下での触媒の活性低下は高温にな るほど著しいからである。 上記公報の実施例も、 あくまでも触媒評価を目的とし ており、 長期間の運転は実施されていないが、 短期間でも触媒活性の低下は認め られており、 また、 エチレンの完全転化も達成されてはいない。
以上のように、 従来の方法では、 触媒の性能 (選択率) 、 触媒の活性低下及び 反応熱の除去の問題から、 少なくとも反応ゾ一ンでは実質的にェチレンの気泡が 存在しないように完全溶解系で反応が実施されている。 すなわち、 高いベンゼン /ェチレンモル比条件下で反応を行わざるを得なかったのである。
このような状況下で、 工業的に有利である低ベンゼン/エチレンモル比を指向 する場合、 例えば、 完全溶解系で一段で低ベンゼン エチレンモル比を達成しよ うとすると、 非常に高圧の反応となってしまう。 したがって、 従来の方法ではェ チレンを多段供給する方式を採用せざるを得ないのである。 同時に、 発生する反 応熱を除去せねばならない問題もあって、 熱交換器を設ける必要がある。 反応熱 を除去しないと触媒層温度が上昇し、 エチレン溶解度がさらに低下してしまうで あろう。 また、 完全溶解系で反応を実施するためには原料であるエチレンが高純 度であることが要求され、 エチレンの精製が必須となる。 なぜなら、 希釈された エチレンを原料とするには、 さらに高圧が必要となるからである。
一方、 反応熱の除去に蒸発潜熱を利用する t、わゆる反応蒸留方式反応器がしば しば提案されているが、 これも実際の反応ゾーンは、 エチレンを完全溶解させる 必要があり、 触媒と気泡エチレンとの接触を避けることが重要となり、 装置及び 触媒充填方法が複雑となる。 し力、も、 エチレンを完全に転化させることは、 原理 上不可能であるから、 残存エチレンをより多く転化させるためにフィニッシング 反応器が必要となる。 これらの装置上の要請は工業的な実施の上で大きな問題で ある。
発明の開示
上述の問題点を解決するために、 本発明者らは鋭意検討を重ねた結果、 固定床 上昇流方式の反応器を用いて、 ゼォライト 3を含む触媒の存在下にベンゼンとェ チレンとからェチルベンゼンを製造する方法において、
a ) 触媒層下部よりエチレンを供給する際に、 触媒層入り口においてエチレンの 気泡が存在する条件下で反応を行い、 かつ、
b ) 反応器の上部から反応生成物を液体として回収すると同時に、 未反応ベン ゼンを主とする留分を蒸気として抜き出し、 力、つ、
c ) 触媒層の入り口での温度を触媒層の最高到達温度よりも少なくとも 5 0 °C 低くすることによって、
極めて低いベンゼン/エチレンモル比においても、 発生する反応熱を容易に除去 し、 触媒層温度の異常上昇を抑制することが可能となり、 その結果、 極めて高い 収率でしかも高選択的にェチル化ベンゼンの製造が可能であることを見いだし、 かかる知見に基づき本発明を完成した。 本発明によれば、 エチレンを完全に転化 せしめ、 触媒の活性低下も抑制することができ、 単純な装置を用いて低圧力下、 低ベンゼン/エチレンモル比で反応の実施が可能である。
本発明は、 固定床上昇流方式の反応器を用いて、 ゼォライ卜 を含む触媒の存 在下にベンゼンとエチレンとからェチルベンゼンを製造する方法において、 a ) 触媒層下部よりエチレンを供給する際に、 触媒層入り口においてエチレンの 気泡が存在する条件下で反応を行い、 かつ、
b ) 反応器の上部から反応生成物を液体として回収すると同時に、 未反応ベン ゼンを主とする留分を蒸気として抜き出し、 かつ、
c ) 触媒層の入り口での温度を触媒層の最高到達温度よりも少なくとも 5 0 °C 低くすることからなる上記方法である。
発明を実施するための最良の形態
本発明に使用される触媒はゼォライト /3である。 ゼォライト は U S— A— 3, 3 0 8, 0 6 9に最初に記載された合成結晶性アルミノ珪酸塩であり、 該公報中 に記載されたその特性 X線回折像により同定される。 ゼォライト /3に含まれる X 線回折の反射 d値を表 1に示す。
表 1
/3ゼォライ卜の反射 d値
1 1 . 4 土 0 2 A
7 . 4 士 0 2
6 , 7 土 0 2
4 , 2 5 ± 0 1
3 , 9 7 ± 0 1
3 0 ± 0 1
2 2 ± 0 本発明に用いられるゼォライ卜^の S i 0 2 /A 1 2 0 3 比は 5〜1 0 0、 好 ましくは 1 0〜8 0、 より好ましくは 1 5〜4 0である。
本発明において触媒として用いられるゼォライト は、 イオン交換法によりナ トリウムイオンを水素イオン及び/又は多価カチオンによって置き換えた、 いわ ゆる酸型のゼォライ ト であることが好ましい。 もし、 ゼォライ ト /3が充分な有 機陽イオン/ナトリウムイオン比を有する場合は、 ゼォライト はか焼されるだ けでも使用することができる。 より高い活性を得るためには、 ゼォライ ト 3をィ オン交換法により水素イオン型とすることが好ましい。 水素イオン型へのイオン 交換方法は好ましくは以下の方法により行われる。
合成されたゼォライ ト をか焼し、 有機物を除いた後、 希硝酸水溶液中でゼォ ライト 5を撹拌し、 水素イオン型へのイオン交換を行い、 乾燥し、 含有水分量を 1 0重量部以下にまで除き、 反応に用いる。
反応器に触媒を充塡するに際し、 触媒は成型体であることが好ましい。 成型体 とするには純粋なゼォライ トのみで成型しても良いし、 アルミナ、 シリカ、 シリ 力ノアルミナ又は天然産粘土のような無機酸化物をバインダ一として添加して成 型しても構わない。 成型方法については、 打錠成型、 押し出し成型法等が当該分 野でよく知られており、 成型触媒の形状は一般的には円筒状である。 また、 球状、 板状、 中空円筒状等の成型体も用いられる。
本発明における反応形式は固定床上昇流反応方式である。 触媒成型体は反応器 内に充填される。 反応原料であるベンゼン等は反応器の下部から、 触媒層の最高 到達温度よりも 5 0 °C以上低い所定温度に予熱されて導入される。 一方、 ェチレ ンもまた反応器の下部又は触媒層内に導入される。 反応器は断熱式であり、 本反 応が発熱反応であるために反応の進行に伴って発熱が生じ、 液温 (触媒層温度) が上昇してくる。 ところが、 本発明では操作時の圧力が低圧であるために、 必然 的に、 その時の温度及び圧力条件下での気液平衡組成で蒸発が起こる。 蒸発ガス はベンゼンを主とする留分となり、 その蒸発ガスの量は、 反応圧力、 原料供給量、 反応熱、 原料予熱温度等の反応条件に応じて、 発生する反応熱量と液顕熱による 除熱量とのバランスから決まる。 したがって、 蒸発潜熱によって、 アルキル化反 応の進行に伴い生じる多量の反応熱を一部除去して反応温度の上昇を抑制し、 触 媒層の最高到達温度を任意の一定温度に制御することができる。 この制御は触媒 の劣化抑制、 選択率の維持に有効である。
本発明における反応原料は、 ベンゼン及びアルキル化剤としてのエチレンであ る。 反応熱除去のために蒸気として回収される未反応ベンゼンを主とする留分を 反応原料として再び反応器に供給して再利用することも可能である。
本発明に原料として用いられるベンゼンは、 低温度領域での触媒への水の吸着 による触媒活性の低下を防止するため、 含水量を 2 0 0 p p m以下に除去してお くことが好ましい。
本発明に原料として用いられるエチレンは、 精製された純エチレンガスだけで なく、 一般的なナフサ分解炉から生成する粗エチレンガス (例えば、 メタン、 ェ タン等のパラフィ ン系炭化水素ガス、 プロピレン、 水素等を含む) をも用いるこ とができる。
本発明の方法の特徴は、 気液混相で反応を実施できることである。 したがって、 粗エチレンガスを原料とする場合も比較的低圧下で反応を実施できる。 一方、 従 来のようにェチレンをベンゼン中に完全に溶解することが必要になるような方法 は、 原料エチレンガスの純度が低いと、 エチレンを溶解させるために非常に高い 圧力が必要となり、 現実的ではない。 したがって、 本発明の方法は、 工業的な見 地からすれば、 原料エチレンの精製工程を省略することができ望ましい。
本発明において供給する反応ガスのベンゼン Zエチレンモル比 (以下、 ベンゼ ン Zエチレン供給モル比又は単に供給モノレ比という) は 1〜6、 好ましくは 1 . 5〜4、 より好ましくは 2〜 3である。
本発明においては未反応ベンゼンの一部を蒸気として回収するため、 得られる 製品液は供給モル比より低いベンゼン環/ェチル基モル比を有する。 また、 上述 のように、 蒸発ガス留分をリサイクルさせ、 反応器へ供給して再利用する場合は、 供給モル比と同じベンゼン環/ェチル基モル比の製品を得ることができる。 得ら れる製品液の好ましいベンゼン環 Zェチル基モル比は高選択率を維持する点から 1〜3である。 したがって、 蒸発ガス留分をリサイクルさせ、 反応器へ供給して 再利用する場合は、 製品液のベンゼン環/ェチル基モル比 1〜3を実現するため には、 供袷する反応ガスのベンゼン/エチレン供給モル比も 〜 3とすればよい。 本発明における反応圧力は、 所望の製品液の組成、 ベンゼン/エチレン供給モ ル比、 触媒層の最高到達温度などから、 気液平衡により決定されるベンゼンを主 とする蒸発ガスの分圧により定められる。 通常は、 核ェチル化選択率を維持する ために、 触媒層の最高到達温度 (即ち、 気液平衡温度) を 2 5 0 °C以下にするこ とが好ましい。 この温度以下で沸騰が生じ、 製品液が濃縮されるように圧力が定 められる。 反応圧力が低い時には、 反応速度の低下、 蒸発量、 すなわちリサイク ノレ量の増大が懸念されるので、 好ましい圧力は、 充分な反応速度を得ること、 回 収する製品液の組成及び流量とリサイクルする蒸気分の組成及び流量を現実的な 範囲とすることを考慮し、 発生するベンゼンを主とする蒸気留分の分圧は 5〜2 0 k g/ c m 2 G、 好ましくは、 1 0〜1 5 k gZ c m 2 Gである。
また、 粗エチレンを原料とする場合には、 気相にはアルキル化反応で消費され るエチレン又はプロピレンといったォレフィン成分以外のガス成分がベンゼンを 主とする蒸気留分とともに排出される。 した力、'つて、 純エチレンを用いる場合と 同様な蒸発 ·気液平衡とするには、 分圧補正した操作圧力で反応を実施する。 操 作時の圧力の決定はェチレンの純度も考慮せねばならない。
本発明の反応温度は、 触媒層の最高到達温度として定義され、 反応圧力、 液組 成により決定される力 充分な反応速度、 選択率を維持する点から、 1 7 0〜2 5 0 °Cであることが好ましい。 この温度範囲となるように、 上述のように適宜、 反応圧力が選ばれる。 したがって、 反応温度は反応熱により目的温度にまで上昇 する。 しかし、 それ以上の反応熱は全てベンゼンを主とする留分を蒸発させるた めに用いられるので、 触媒層の温度を一定に保つことができる。
本発明において、 触媒層入口での温度 (ベンゼン予熱温度) は、 少なくとも上 記触媒層の最高到達温度よりも 5 0 °C以上低く設定される。 なぜならば、 触媒層 入り口での温度を低く保つことは、 触媒層入り口でのェチレンの溶解度を高め、 エチレンの完全転化に寄与する処が大きく、 また、 触媒層入り口の温度から、 設 定条件下における沸点である最高到達温度に至るまでの温度プロフィールを、 触 媒層の平均温度をより低くするように形成することになり、 したがつて高 、選択 性を維持する効果を生じる。 実質的にエチレン気泡が存在する触媒層入り口近傍 での触媒活性の低下は温度に依存するので、 活性低下の防止の観点からも、 触媒 層入り口温度はより低い方が好ましい。 本発明における実際の予熱温度 (触媒層 入り口温度) は、 目的とする製品液組成 (蒸発ガス量) との兼ね合いで決まるが、 反応が開始される温度として少なくとも 3 0 °C以上であり、 かつ触媒層の最高到 達温度よりも 5 0 °C以上低い温度の範囲で選ばれ、 好ましくは 3 0〜 2 0 0 °C、 より好ましくは 8 0〜1 6 0 °Cである。
したがって、 本発明においては触媒層入り口が最も温度が低く、 上層に向かつ て反応進行による発熱のために温度が上昇し、 所定の温度に到達すれば蒸発が生 じるので、 蒸発潜熱による反応熱の除去が行われ、 それ以上の温度上昇は無いこ とになる。 触媒層は所定の温度プロフィールを持つので、 触媒層入り口での温度 を低く保つことは、 触媒層入り口でのエチレン溶解度を向上せしめ、 反応速度の 上昇、 エチレンの完全転化に寄与する。 また、 本発明によれば触媒層入り口では エチレン気泡が存在しても、 当該層での温度を低くすることにより、 触媒活性の 低化を抑制する効果が発揮される。 また、 かかる温度プロフィールを持つことは 触媒層全域の平均温度が下がることを意味し、 このことは核ェチル化選択率を極 めて高い値に維持せしめる効果がある。
本発明のような、 低べンゼン /ェチレン供給モル比かつ低圧の条件下にあって は、 必然的に触媒層入口では、 供給されたエチレンはベンゼン中に全て溶解する ことができず、 気泡として存在している。 従来の方法では、 かかる状況下にあつ ては、 触媒の劣化と選択率の低下が顕著となり、 大きな反応熱により温度が上昇 する等の問題があつた。 これらの問題を回避するためにェチレンがべンゼンに完 全に溶解する高べンゼン /ェチレンモル比という条件の下で反応が実施され、 低 ベンゼン/ェチル基モル比の製品を得るためには、 非常に煩雑な反応方式を採用 せざるを得なかったのである。 しかしながら驚くべきことに、 本発明によれば、 極めて単純な装置かつ低圧力で、 低べンゼン エチレン条件下でのアルキル化反 応を実施することができる。 したがって、 原料エチレン純度が低い場合でも実施 可能であり、 エチレンの精製工程を省略することができる。
本発明者らは、 ;3ゼォライ 卜が気相エチレンとの接触に対して耐劣化性に優れ、 力、つ、 低ベンゼン Zエチレンモル比条件下でも高い触媒活性と高い反応選択性を 発揮できることを初めて見出し、 ^ゼオライ トを触媒として用い、 発生する反応 熱を未反応ベンゼンを主とする留分として蒸発させることにより一部除去し、 触 媒層温度を任意の温度に保つことを可能にしたことによって、 低べンゼン /ェチ レンモル比条件下でも高選択的にアルキル化反応を完結 (ェチレンの完全転化) できる方法を見出した。 また本発明の方法は、 触媒の活性低下も極めて小さいも のである。
以下、 実施例を挙げて本発明を説明する。 なお、 本発明は、 これらの実施例に 限定されるものではなく、 その要旨を越えない限り、 様々な変更、 修飾等が可能 である。
実施例 1
;9ゼォライ 卜の合成
1 0 %水酸化テトラエチルアンモニゥム水溶液 1 6 0 g、 水 1 4 0 g、 水酸化 ナトリウム 4 . 2 g及びアルミン酸ナトリウム N a A 1 0 2 9 . 5 gを混合、 溶 解し、 これに融合シリカ 「二ップシール」 (日本シリカ工業社製 N V— 3の商品 名) 7 0 . 5 g、 種結晶として ^ゼオライ ト 7 gを添加し、 得られた混合物をホ モジナイザーにより毎分 5 0 0 0回転で 3 0分間撹拌した。 次に、 この混合物を 5 0 0 ミリリツ トルのォートクレーブに入れ、 撹拌せずに 1 5 5 °Cで 8日間放置 したところ、 大量の結晶性物質が生成した。 この物質を濾過、 水洗し、 1 2 0 °C で一昼夜乾燥し、 6 6 gの結晶性粉末を得た。 次に、 この結晶性粉末を 3 5 0 ~ 5 5 0 °C迄徐々に昇温し、 最終的には 5 5 0 °Cで 6時間か焼した。 か焼した後の 粉末は X線回折により /3ゼォライ 卜であると同定された。
^ゼォライ 卜の水素イオン交換
か焼した ySゼォライト 5 0 gを 0 . 1 5 Nの硝酸水溶液 4 5 0 g中に添加し、 室温下で 3時間撹拌し、 イオン交換を行った。 交換後、 濾過、 水洗し、 その後 1 2 0 °Cで乾燥して水素イオン型) δゼォライ 卜を得た。 その組成分析を X線マイク 口アナライザー (Ε Ρ ΜΑ) を用いて行った。 シリカノアルミナ比は 2 5であつ た。 同様な操作にてゼォライ 卜の合成、 水素イオン交換を数回行い、 得られた水 素イオン型 ゼォライ トを錠剤成型器により成型し、 3 mm 0 3〜 5 mm Lの 成型触媒とした。 同様の操作を繰り返すことにより、 成型触媒 4 0 0 gを得た。
アルキル化反応実験
内径 4 2 . 8 mm、 長さ 1 5 0 0 mmのステンレス製反応管であって、 予熱層 として反応器下部 6 0 0 mmの領域に熱媒ジャケッ トを備え、 反応器出口に圧力 制御弁を備え、 圧力制御弁より下の位置には製品液の抜き取り用のオーバーフロ 一ノズルを設けた上記ステンレス製反応管に、 上記ゼォライト^触媒の成型体 4 0 0 gを充填した。 触媒充塡位置は反応器下部から 6 0 0 mm〜 1 3 2 0 mmの 位置であり、 触媒層上下部には 3 mm øのステンレス製ディクソンパッキングを 充塡した。 製品液抜き取り用ノズルは反応器圧力と均圧となるように窒素加圧さ れた液回収ドラムに接続された。 反応器出口では蒸発ガス留分は圧力制御弁から 冷却器を介して回収され、 液は製品液抜き取り用ノズルから液回収ドラムに製品 液として回収された。
反応器最下部 (予熱層入口) よりベンゼンを 2 2 8 0 g /H rの供給速度にて 供給した。 反応器出口の圧力制御弁により反応器内の圧力を 1 3 . 8 k g / c m 2 Gとし、 系内を完全に液封状態とした。 予熱層熱媒ジャケッ卜に 1 5 0 °C の熱媒を循環させ、 触媒層入口温度を 1 2 2 °Cとした。 しかる後、 エチレンを 1 0 . 1 8 m o 1 /H rの供袷速度でベンゼンと同様に反応器最下部から供給し反 応を開始した。 反応が開始されるに伴い、 触媒層温度は次第に上昇し、 触媒層の 最高到達温度は触媒層中間域で 2 3 0 °Cに達したが、 本反応条件下では一部蒸発 が生じるため、 それ以上の温度上昇は抑制され触媒層上層においてもその温度が 維持された。 オーバーフローノズル位置 (液面位置) での温度は 2 2 2 °Cであつ た。 供給ベンゼン エチレンモル比は 2 · 8 7であった。 この条件では供給され たェチレンが全てベンゼンに溶解することはできず、 触媒層入口にェチレン気泡 が存在することは明らかであつた。
得られた製品液は 1 5 7 2 g /H rで、 そのベンゼン環/ェチル基モル比が 2 . 1 4となるほどに濃縮されており、 また、 核ェチル化生成物の選択率は 9 9 . 7 %であった。 蒸発ガス成分は 9 9 2 g ZH rで得られ、 そのベンゼン環 Zェチル 基モル比は 6 . 0 6であった。 エチレン転化率は 9 9 . 9 7 %であり、 ほぼ完全 転化されていた。 反応は 5 0 0時間継続した。 触媒層の温度プロフィールの変化 (特に触媒層入り口近傍の温度変化) の傾向から、 緩やかに触媒活性の低下が進 行していることが観察されたが、 ェチレン転化率としては全く低下傾向は見られ ず、 ほぼ完全転化が達成された。 結果を表 2に示す。 表 2 運転時間 (H r ) 50 100 500 触媒層入口 122 121 122
(°c) 触媒層最高到達温度 230 230 230 製品液抜き取り用 222 222 222 ノ人マ、ノしレ/ r iff
反応圧力 Kg/ cm ϋ lo. ol 1
10. 06 lo. ol 原料供給 ヘンでノ on on o
29. 23
(mol/Hr) o
エアしレ、ノ' 1U. lo o 1U. lo 10. 18 供給 o n モル比 へノセノ Ζェ Τレノ 2. 87 L 87 2. 87 収量 („ノ U—ヽ
157^ 1577 1574 ベンゼン r- t o
5j. 12 53. Ob 53. 06 製 組成 ェチルベンゼン o4. 88 d5. 01 35. 11 口
PP (wt¾) ジェチルベンゼン 1U. lb IU. 07 10. 09 液 トリェチルベンゼン 1. o4 1. by 1. 5o
ベンゼン環ノエチル基 O 14 . 14 I. 14 核ェチル化選択率 o 9n9. 7 ΙΔ on c
99. 75 収量 (g/Hr) 9o9 991
ベンゼン o onU. n Uc t o oU.丄 U
組成 工チルベンゼン 上 y4 1 Q9 7 on 発 (wt¾) ジェチルベンゼン 1 丄, L ガ 卜リェチルベンゼン n v. 1144 n U. 1141 ス ベンゼン環ノェチル基 6. 06 6. 08 6. 09 核ェチル化選択率 99. 94 99. 92 99. 94 エチレン転化率 100. 00 99. 96 99. 96
(%) 本実施例から、 本発明の方法によれば、 低ベンゼン/エチレンモル比条件下で のアルキル化反応において、 触媒層入り口では明らかにェチレン気泡が存在して 、る条件下でも高レ、選択率が維持され反応が完結すること、 未反応べンゼンの一 部を蒸気として回収するため反応熱の除去が可能であること、 約 2という極めて 低いベンゼン/ェチル基モル比の製品を得ることができること、 触媒の活性低下 が非常に小さいことがわかる。 また、 本実施例における触媒重量基準のェチルベ ンゼン換算生成速度は、 2 . 7 g—ェチルベンゼン —触媒/時に相当した。 実施例 2
P Qコーポレーション社製 ゼォライ ト (ナトリウム型) を実施例 1と同様の 条件で水素イオン型に交換し、 水素イオン型; δゼォライ トを得た。 得られた水素 イオン型; 3ゼォライ 卜のシリカ Ζアルミナ比は 3 5であった。
得られた水素イオン型 ゼォライ トを錠剤成型器により打錠成型し、 3 mm 0 X 3〜5 mm Lの成型触媒とした。 同様の操作を繰り返すことにより、 成型触媒 4 0 0 gを得た。
実施例 1と同様の反応器に、 触媒 4 0 0 gを充填した。 充塡層の高さは 7 2 5 mmであった。 反応器最下部 (予熱層入口) よりベンゼンを 2 4 0 0 gZH rの 供給速度にて供給した。 反応器出口の圧力制御弁により反応器内の圧力を 1 3 . 8 k g/ c m2 Gとし、 系内を完全に液封状態とした。 予熱層熱媒ジャケッ トに 1 6 0 °Cの熱媒を循環させ、 触媒層入口温度を 1 3 3 °Cとした。 しかる後、 ェチ レンを 1 0 . 7 1 m o 1 /H rの供給速度にてベンゼンと同様に反応器最下部か ら供給し反応を開始した。 反応開始に伴い、 触媒層温度は次第に上昇し始め、 触 媒層中間域で 2 3 2 °Cに達した。 この温度、 圧力下では、 反応器内で一部反応液 の蒸発が起こることは明らかであつた。 蒸発ガス留分は予めベンゼンを入れてあ る回収ドラムへと導かれ、 そのドラムレベルが一定となるように制御され、 流入 液はポンプにて原料ライン (供袷原料混合タンク) ヘリサイクルされた。 一方、 ベンゼンは反応器への全供給液量が一定となるように、 すなわち、 供給原料混合 タンク内の液面を一定に保つように当該タンクへ供給された。
数時間後に系は安定し、 リサイクル流量は 1 0 4 2 g ZH r、 ベンゼン供袷流 量は 1 3 6 2 g /H r . 製品液回収流量は 1 6 6 2 g ZH rでほぼ一定流量とな つた。 その際の触媒層の最高温度は 2 3 2°C、 製品回収ノズル位置の温度は 2 3 0 °Cであり、 反応圧力は 1 3. 8 k g/ c m2 Gであった。 反応は 5 0 0時間継 続して行った。 結果を表 3に示す。
表 3
Figure imgf000019_0001
その他: テトラエチルベンゼン、 ブチルベンゼン、 ジフヱニルェタンなど 本実施例において、 定常時の供給ベンゼン Zエチレンモル比は 1. 6 3で あり、 リサイクル液を併せてもベンゼン環/エチレンモル比は 2. 78であって、 触媒層入口においては明らかにエチレン気泡が存在していた。 5 0 0時間に亘っ て、 ベンゼン環/ェチル基モル比 1. 6 2の製品液を得、 エチレンはほぼ完全に 転化されたことがわかる。 触媒重量基準のェチルベンゼン換算生成速度は 2. 8 4 g—ェチルベンゼン/ g—触媒/時に相当した。 しかも、 その間製品液の核ェ チル化選択率は 9 9. 6 %と極めて高い値を維持した。
実施例 3
原料エチレンとして、 以下に示す混合ガスを用いて反応を実施した。 %は体積 %を表す。
エチレン 4 4. 1 9%
メタン 3 5. 3 2%
ェタン 4. 4 4 %
プロピレン 0. 0 4%
水素 1 5. 9 4 %
一酸化炭素 0. 0 7 %
用いたゼォライ ト^触媒成型体及び反応装置は実施例 2と同様であった。 ただ し、 本実施例においては、 メタン、 水素などの不活性ガスが原料中に含まれてい るため、 気相回収受器と製品液回収受器には気相均圧ラインを設け、 不活性ガス により両受器を均圧とした。
反応器最下部 (予熱層入口) よりベンゼンを 24 0 0 g/H rの供給速度にて 供給した。 反応器出口の圧力制御弁により反応器内の圧力を 3 0. 2 k g/ cm2 Gとし、 系内を完全に液封状態とした。 本実施例における操作圧力では、 不活性ガス (水素、 メタン、 ェタン、 微量の一酸化炭素ガス) が気相回収側に排 出される。 したがって、 実施例 2と同様の組成及び量を有する原料混合ガスの蒸 発を起こさせるためには、 これらの不活性ガス分の分圧を考慮して全圧を補正す る必要があり、 操作圧力を 30. 2 k g/cmz Gとした。
予熱層の熱媒ジャケッ 卜に 1 6 0°Cの熱媒を循環させ、 触媒層入口温度を 1 3 2°Cとした。 しかる後、 エチレンを含む原料混合ガスを 2 4. 2 5 mo lZH r、 エチレンとしては 1 0. 7 lmo lZHrの供給速度で、 ベンゼンと同様に反応 器最下部から供給し、 反応を開始した。 反応開始後は、 実施例 2と同様に、 原料 供給速度の制御を行い、 数時間後には定常に至った。 リサイクル流量は 1043 g/H r、 ベンゼン供給流量は 1 362 g/H r、 製品液回収量は 1662 gZ H rでほぼ一定値を示すようになつた。 反応は 500時間継続して行った。 結果 を表 4に示す。
表 4
Figure imgf000022_0001
* その他: テトラエチルベンゼン、 クメン、 ブチルベンゼン、 ジフヱニルェ タン等 本実施例から、 5 0 0時間に亘つて、 エチレンはほぼ完全に転化し、 製品液と してベンゼン環/ェチル基 = 1. 6 2、 核ェチル化選択率 99. 5 %を維持した ことがわかる。 なお、 この際の触媒重量基準のェチルベンゼン換算生成速度は 2. 8 4 g—ェチルベンゼン/ g—触媒ノ時に相当した。 また、 従来の方法のように エチレンを完全に溶解させる必要がないので、 低純度エチレン原料での実施が可 能であることが本実施例からわかる。
比較例 1
本比較例は Y型ゼォライ 卜とゼォライト 触媒の反応成績を比較するために行 つた。
内径 2 2. 1 mm、 長さ 8 0 0 mm、 予熱層として反応器下部 3 0 Ommの領 域に熱媒ジャケッ トを備え、 反応器出口に圧力制御弁を備えたステンレス製反応 管に、 実施例 1と同様にして得られた水素イオン型ゼォライ ト /3触媒成型体を粉 砕分級し 8〜1 4me s hに整粒したものを 30 g充填した。 触媒充塡位置は反 応器下部から 3 2 Omn!〜 5 1 Ommの位置であり、 触媒層上下には 3 mm øの ステンレス製ディクソンパッキングを充塡した。 反応器最下部 (予熱層入口) よ りベンゼンを 3 1 9 g/H rの供給速度で供給した。 反応器出口の圧力制御弁に より反応器内の圧力を 1 3. 5 k g/ cm2 Gとし、 系内を完全に液封状態とし た。 予熱層熱媒ジャケッ 卜に 1 4 0°Cの熱媒を循環させ、 触媒層入口温度を 1 3 5°Cとした。 しかる後、 エチレンを 1. 4 mo 1 ZH rの供給速度でベンゼンと 同様に反応器最下部から供給し反応を開始した。 触媒層の最高到達温度は触媒層 中間域で 2 32 °Cに達した力 本反応条件下では一部蒸発が生じるため、 それ以 上の温度上昇は抑制され触媒層上層もその温度が維持された。 反応器出口に冷却 器を設け、 生成物を全て液として回収し、 ガスクロマトグラフにより分析した。 次に、 触媒として Y型ゼォライ卜の LZY— 8 2 (リンデゼォライ ト社製:商 品名) を 8〜1 4 me s hに成型したものを用いて同様の実験を行った。 触媒充 塡量は 3 3. 3 g、 触媒層位置は反応器の下部から 3 2 0〜 4 7 0 mmの領域で あった。 触媒層入口温度を 1 4 5 °Cとして反応を開始した。 Y型、 3型両者の触 媒での反応成績の比較結果を表 5に示す。 表 5
Figure imgf000024_0001
その他:テトラエチルベンゼン、 クメン、 ブチルベンゼン、 ジフヱニルェ タン等 ベンゼン Zエチレン供給モル比は 2. 9であり、 触媒層入口ではエチレンはべ ンゼンに完全には溶解せず、 ェチレンの気泡が存在した。
^ゼォライ トを触媒として用いると、 エチレン転化率は 9 9. 3 %であり、 ェ チレンはほぼ完全に転化され、 しかも、 核ェチル化生成物の選択率は 9 9. 1% と極めて高かった。 しかも、 3 0 H rの間、 その成績を維持し、 活性劣化は全く 見られなかった。
一方、 Y型ゼオライ トを触媒として用いると、 核ェチル化生成物の選択率は 9 5. 5%と極めて低く、 また、 初期でもエチレン転化率は 7 3%に過ぎず、 わず か 4時間の反応の間に 6 0 %にまで低下した。
本比較例から、 本発明のように極めて低いベンゼン Ζエチレンモル比の条件で は、 従来の方法で幅広く用いられてきた Υ型ゼォライ トを用いることは不可能で あること力わカヽる。
比較例 2
本比較例は、 触媒層温度プロフィールによる反応成績の比較を行うために実施 した。
比較例 1に用いたものと同様の反応装置に、 実施例 1と同様にして得られた水 素イオン型ゼォライ ト 3触媒成型体を粉砕分級し 8〜1 4me s hに整粒したも のを 3 O g充塡した。 触媒充塡位置は反応装置の下部から 3 2 0 mm〜5 1 Ommの位置であり、 触媒層上下には 3 mm øのステンレス製ディクソンパツキ ングを充填した。 反応器最下部 (予熱層入口) よりベンゼンを 3 1 9 g/H rの 供給速度で供給した。 反応器出口の圧力制御弁により反応器内の圧力を 1 3. 8 k g/cm2 Gとし、 系内を完全に液封状態とした。 予熱層熱媒ジャケッ 卜に 2 3 0°Cの熱媒を循環させ、 触媒層入口温度を 1 9 5°Cとした。 しかる後、 ェチレ ンを 1. 4 mo 1/H rの供給速度でベンゼンと同様に反応器最下部から供給し て反応を開始した。 触媒層の最高到達温度は触媒層中間域で 2 3 2°Cに達したが、 本反応条件下では蒸発が生じるため、 それ以上の温度上昇は抑制され、 触媒層上 層もその温度が維持された。 比較例 1と同様に反応器出口には冷却器を設け、 生 成物を全て液として回収し、 ガスクロマトグラフにより分析した。 反応評価結果 を表 6に示す。 表 6
Figure imgf000026_0001
その他: テトラエチルベンゼン、 クメ ン、 ブチルベンゼン、 ジフエ二 ルェタン等 比較例 1に示すように、 触媒層入り口温度を 1 3 5°Cとした場合、 エチレン転 化率は 9 9. 3 %であり、 エチレンはほぼ完全に転化され、 し力、も、 核ェチル化 生成物の選択率は 9 9. 7 %と極めて高かった。 しかも、 3 0 H rの間、 その成 績を維持し、 活性劣化は全く見られなかった。 これに対して、 本比較例のように、 触媒層入り口温度が 1 9 5°Cと、 本発明でいう触媒層入り口での温度が触媒層の 最高到達温度より 5 0 °C以上低いとされる温度範囲を大きく逸脱するような場合 には、 初期でもエチレン転化率は 9 8 %であり、 完全転化には至らず、 しかも、 核ェチル化選択率は 9 9 . 3 %と低く、 しかも、 触媒活性の劣化も比較的速いこ とが明らかになった。 工業的に実施する場合を考えると、 かかる触媒層温度プロ フィ一ルでは蒸発ガス流量 (リサイクル量) が極端に増加し、 製品液の収量が減 少するため好ましくない。
産業上の利用可能性
本発明によれば、 極めて低いベンゼン Zエチレン供給モル比で、 触媒活性の低 下をひき起こすことなく、 極めて高い核ェチル化選択率及びェチレンの完全転化 を維持しつつベンゼンのアルキル化反応を実施することが可能であり、 しかも、 単純な装置を用いかつ低圧力下で反応を行うことができる。 また、 従来の方法の ようにェチレンを完全に溶解する必要がないので、 低純度ェチレン原料からの反 応の実施も可能となる。 これらのことはェチルベンゼンの製造を工業的に実施す る上で極めて有利である。
他の出願との関連性
本願は 1 9 9 6年 7月 1 9日に出願された日本国特許出願第 0 8— 2 0 7 5 6 7号に基づいており、 その内容は全体として、 参照することにより本明細書中に 取り込まれるものとする。

Claims

請 求 の 範 囲
1. 固定床上昇流方式の反応器を用 、て、 ゼォライト を含む触媒の存在下に ベンゼンとエチレンとからェチルベンゼンを製造する方法において、
a ) 触媒層下部よりエチレンを供給する際に、 触媒層入り口においてエチレンの 気泡が存在する条件下で反応を行い、 かつ、
b ) 反応器の上部から反応生成物を液体として回収すると同時に、 未反応べンゼ ンを主とする留分を蒸気として抜き出し、 力、つ、
c ) 触媒層の入り口での温度を触媒層の最高到達温度よりも少なくとも 5 0で低 くすることからなるェチル化べンゼンの製造方法。
2. ベンゼンとエチレンとの供給モル比が 1〜6である請求項 1記載のェチル 化ベンゼンの製造方法。
3. 得られる製品液のベンゼン環ノエチル基モル比が 1〜 3である請求項 1に 記載のェチル化べンゼンの製造方法。
4. 触媒層の入り口の温度が 3 0〜 2 0 0 °C、 触媒層の最高到達温度が 1 7 0 〜2 5 0 °Cとなる触媒層温度プロフィールを持つ請求項 1に記載のェチル化ベン ゼンの製造方法。
5. 反応器上部から蒸気として抜き出される留分の分圧が 5 ~ 2 0 k g Z c m2 Gである請求項 1に記載のェチル化ベンゼンの製造方法。
6. 反応器から蒸気として回収される未反応ベンゼンを主とする留分をアルキ ノレ化反応器へ循環供給する、 請求項 1に記載のェチル化ベンゼンの製造方法。
7. ベンゼンとェチレンとの供給モル比が 1〜 3である請求項 6に記載のェチ ル化ベンゼンの製造方法。
PCT/JP1997/002476 1996-07-19 1997-07-17 Procede pour la preparation d'ethylbenzene WO1998003455A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/214,845 US6060632A (en) 1996-07-19 1997-07-17 Process for producing ethylbenzene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20756796 1996-07-19
JP8/207567 1996-07-19

Publications (1)

Publication Number Publication Date
WO1998003455A1 true WO1998003455A1 (fr) 1998-01-29

Family

ID=16541894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002476 WO1998003455A1 (fr) 1996-07-19 1997-07-17 Procede pour la preparation d'ethylbenzene

Country Status (2)

Country Link
US (1) US6060632A (ja)
WO (1) WO1998003455A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252126B1 (en) * 1998-06-19 2001-06-26 David Netzer Method for producing ethylbenzene
US20040129376A1 (en) * 2001-08-13 2004-07-08 Payne Leroy Structure forming method and apparatus
AU2003217760A1 (en) * 2002-02-28 2003-09-16 Washington Group International, Inc. Production of alkyl aromatic compounds
US7074978B2 (en) * 2003-02-25 2006-07-11 Abb Lummus Global Inc. Process for the production of alkylbenzene
US7238843B2 (en) * 2003-02-28 2007-07-03 Abb Lummus Global, Inc. Process for the production of alkylaromatics
KR100818438B1 (ko) * 2003-03-21 2008-04-02 스톤 앤드 웹스터 인코포레이티드 촉매 재활성화를 통한 알킬 방향족 화합물의 생산
EP1479663A1 (en) * 2003-05-17 2004-11-24 Haldor Topsoe A/S Process for catalytic alkylation of monocyclic aromatic compounds and composition of use therein
US7071369B2 (en) * 2003-06-10 2006-07-04 Abb Lummus Global Inc. Process for the production of alkylbenzene with ethane stripping
US7476774B2 (en) * 2005-02-28 2009-01-13 Exxonmobil Research And Engineering Company Liquid phase aromatics alkylation process
US7498474B2 (en) * 2005-02-28 2009-03-03 Exxonmobil Research And Engineering Company Vapor phase aromatics alkylation process
US7525002B2 (en) * 2005-02-28 2009-04-28 Exxonmobil Research And Engineering Company Gasoline production by olefin polymerization with aromatics alkylation
US20060194998A1 (en) * 2005-02-28 2006-08-31 Umansky Benjamin S Process for making high octane gasoline with reduced benzene content
US7812205B2 (en) * 2007-10-12 2010-10-12 Uop Llc Layered zeolitic catalyst for improved linearity in detergent alkylation
EP2110368A1 (en) 2008-04-18 2009-10-21 Total Petrochemicals France Alkylation of aromatic substrates and transalkylation process
US8865958B2 (en) * 2008-09-30 2014-10-21 Fina Technology, Inc. Process for ethylbenzene production
US8420877B2 (en) 2008-09-30 2013-04-16 Fina Technology, Inc. Process for ethylbenzene production
US8395006B2 (en) * 2009-03-13 2013-03-12 Exxonmobil Research And Engineering Company Process for making high octane gasoline with reduced benzene content by benzene alkylation at high benzene conversion
US8455383B2 (en) * 2009-09-28 2013-06-04 Fina Technology, Inc. Process for catalyst regeneration and extended use
US9233887B2 (en) * 2010-12-21 2016-01-12 Exxonmobil Chemical Patents Inc. Process for producing a monocycloalkyl-substituted aromatic compound
CN103517890B (zh) * 2011-05-02 2016-08-17 弗纳技术股份有限公司 乙苯生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181424A (ja) * 1987-12-17 1991-08-07 Chevron Res Co βゼオライトを使用した液相アルキル化及びトランスアルキル化法
JPH04266830A (ja) * 1990-11-09 1992-09-22 Chem Res & Licensing Co 芳香族化合物アルキル化方法
JPH05138034A (ja) * 1991-04-05 1993-06-01 Fina Technol Inc 改質されたゼオライトアルキル化触媒およびそれの使用方法
JPH08103658A (ja) * 1994-06-16 1996-04-23 Enichem Sintesi Spa 芳香族化合物のアルキル化またはアルキル交換方法及びそれに用いる触媒組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424393B1 (en) * 1988-05-09 1995-08-09 Abb Lummus Global Inc. Manufacture of alkylbenzenes
US5334795A (en) * 1990-06-28 1994-08-02 Mobil Oil Corp. Production of ethylbenzene
US5118896A (en) * 1990-10-31 1992-06-02 Amoco Corporation Aromatic alkylation process using large macropore, small particle size, zeolite catalyst
US5086193A (en) * 1990-11-09 1992-02-04 Chemical Research & Licensing Company Aromatic alkylation process
US5113031A (en) * 1990-11-09 1992-05-12 Angel Sy Aromatic alkylation process
JP2882543B2 (ja) * 1990-11-20 1999-04-12 フイナ・テクノロジー・インコーポレーテッド 芳香族転化方法およびその触媒
WO1993000317A1 (en) * 1991-06-21 1993-01-07 The Dow Chemical Company Alkylation of aromatic compounds
EP0776876B1 (en) * 1994-08-03 2000-06-14 Asahi Kasei Kogyo Kabushiki Kaisha METHOD OF LIQUID-PHASE ALKYLATION OF AROMATIC HYDROCARBON BY USING beta-ZEOLITE
US5600048A (en) * 1994-12-27 1997-02-04 Mobil Oil Corporation Continuous process for preparing ethylbenzene using liquid phase alkylation and vapor phase transalkylation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181424A (ja) * 1987-12-17 1991-08-07 Chevron Res Co βゼオライトを使用した液相アルキル化及びトランスアルキル化法
JPH04266830A (ja) * 1990-11-09 1992-09-22 Chem Res & Licensing Co 芳香族化合物アルキル化方法
JPH05138034A (ja) * 1991-04-05 1993-06-01 Fina Technol Inc 改質されたゼオライトアルキル化触媒およびそれの使用方法
JPH08103658A (ja) * 1994-06-16 1996-04-23 Enichem Sintesi Spa 芳香族化合物のアルキル化またはアルキル交換方法及びそれに用いる触媒組成物

Also Published As

Publication number Publication date
US6060632A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
WO1998003455A1 (fr) Procede pour la preparation d'ethylbenzene
KR101599491B1 (ko) p-자일렌의 제조를 위한 통합공정
JP5463283B2 (ja) 改良液相アルキル化方法
JP2002543168A (ja) アルキル芳香族の製造
TWI418530B (zh) Production of propylene
EP0733608B1 (en) Transalkylation of polyalkylaromatic hydrocarbons
WO2007119728A1 (ja) プロピレンの製造方法
TWI405750B (zh) 丙烯之製造方法
EP2099734B1 (en) Method of preparing mono-iodo benzene through transiodination
JP2003534253A (ja) 炭化水素ストリッピングを用いる芳香族アルキル化触媒の再生
JP5334970B2 (ja) アルキル化芳香族化合物の製造方法およびフェノールの製造方法
TW572784B (en) Silica-supported alkylation catalyst
US7745674B2 (en) Alkylation slurry reactor
JPH11199526A (ja) エチルベンゼンの製造方法
WO1996004225A1 (en) METHOD OF LIQUID-PHASE ALKYLATION OF AROMATIC HYDROCARBON BY USING β-ZEOLITE
JPH1081637A (ja) エチルベンゼンの製造方法
JP5902885B2 (ja) 芳香族ヨード化化合物の製造方法
JP5521264B2 (ja) プロピレンの製造方法
EP1608610B1 (en) Process for the hydrogenation of alkylaryl ketones
US20240076252A1 (en) Preparation process of 5-ethylidene-2-norbornene
JP3853003B2 (ja) βゼオライト触媒の再生法
JPH1160515A (ja) エチルベンゼン製造方法
JP2745246B2 (ja) β ゼオライトによる芳香族炭化水素の液相アルキル化方法
JPH1171305A (ja) エチルベンゼンの製造方法
JP2000281595A (ja) エチルベンゼンの高選択的製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09214845

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642