WO1997027505A1 - Module de guide d'ondes lumineuses - Google Patents

Module de guide d'ondes lumineuses Download PDF

Info

Publication number
WO1997027505A1
WO1997027505A1 PCT/JP1997/000137 JP9700137W WO9727505A1 WO 1997027505 A1 WO1997027505 A1 WO 1997027505A1 JP 9700137 W JP9700137 W JP 9700137W WO 9727505 A1 WO9727505 A1 WO 9727505A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
reinforcing member
module according
reference surface
optical
Prior art date
Application number
PCT/JP1997/000137
Other languages
English (en)
French (fr)
Inventor
Dai Yui
Masahide Saitou
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to JP52673297A priority Critical patent/JP3497510B2/ja
Priority to IL12170497A priority patent/IL121704A/xx
Priority to EP97901256A priority patent/EP0819959A4/en
Priority to US08/913,491 priority patent/US5999674A/en
Priority to AU14564/97A priority patent/AU734053B2/en
Publication of WO1997027505A1 publication Critical patent/WO1997027505A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present invention relates to an optical waveguide module in which an optical waveguide device used for branching and coupling of signal light in an optical transmission system is mounted, and is particularly applicable to an optical fiber communication system requiring high reliability.
  • the present invention relates to a package structure of a simple optical waveguide module. Background art
  • a conventional optical waveguide module is used for branching, coupling, and the like of signal light, and houses an optical waveguide device for optically connecting optical fibers, which are transmission lines, and the optical waveguide device therein. And a housing.
  • the space between the housing and the optical waveguide device is filled with a buffer protection material.
  • the cushioning protection material functions to absorb a bump or the like applied to a connection portion between the optical waveguide and the optical fiber, which is formed in the optical waveguide device from outside the housing.
  • an optical waveguide is provided on an upper surface thereof, and a waveguide substrate having a function of branching, coupling, and the like of signal light, and one end of the optical waveguide and one end of an input optical fiber are optically connected to each other.
  • a silicon V-grooved support member (first support member) attached to the tip of the input optical fiber, and the other end of the optical waveguide and one end of the output optical fiber.
  • a silicon-made V-grooved support member attached to the tip of the output optical fiber for optically connecting the optical fiber.
  • the optical waveguide and the input and output optical fibers are aligned on the optical axis (the optically connected state) on both end surfaces of these waveguide substrates.
  • the second support member is fixed.
  • the present invention relates to a package structure of an optical waveguide module applicable to an optical fiber communication system requiring high reliability.
  • the inventors have found that the conventional optical waveguide module cannot sufficiently prevent the expansion and contraction of the housing due to a temperature change in the environment. I discovered that.
  • the input optical fiber and the output optical fiber receive a tensile stress in a high-temperature environment or a shear stress in a low-temperature environment.
  • the adhesive strength of the adhesive for joining the V-grooved support member and the waveguide substrate decreases with time, so that the optical loss at the joint surface between these members due to optical axis deviation increases.
  • the V-grooved support member may peel off from the waveguide substrate.
  • the material of the housing As a countermeasure, it is conceivable to change the material of the housing to glass or a liquid crystal polymer with a low coefficient of linear expansion, but in this case, the glass has a strength characteristic that it is weak against climbing, and the liquid crystal polymer has a thin thickness. Because of its processing characteristics that it is difficult to form such a housing, it is not possible to achieve the miniaturization of the housing as a result.
  • the input optical fiber and the output optical fiber are accommodated in the housing in a state where they are given an extra length and are bent.
  • the work of storing these optical fibers is troublesome and is not suitable for mass production.
  • an optical waveguide module according to the present invention reduces the number of package components for storing an optical waveguide device, and protects the optical waveguide device against stress caused by a change in the temperature of the environment and a bump acting from the outside. It is an object of the present invention to provide a highly reliable optical waveguide module having a structure and excellent environmental resistance characteristics.
  • an optical waveguide module according to the present invention has, for example,
  • an optical waveguide device 30 and an optical waveguide device 3 as optical functional devices having functions such as signal light branching and coupling for optically connecting optical fibers.
  • a first reinforcing member 110 (a metal plate member) constituting at least a part of a case for storing the first reinforcing member 110 and at least a part of the optical waveguide device 30 and the optical fiber. It is provided with a buffer protection material 400 adhered to the substrate 100 at a predetermined strength.
  • the optical waveguide device 30 is attached to a waveguide substrate 32 having an optical waveguide 320 provided on an upper surface 321, and an end of an input optical fiber 340.
  • a first support member 31 fixed to one end surface of the waveguide substrate 32 in a state where one end and one end of the input optical fiber 340 are optically connected; and an output optical fiber.
  • a second support member 33 fixed thereto (see FIG. 1).
  • the optical fiber includes a core having a predetermined refractive index, and a cladding provided on the outer periphery of the core and having a lower refractive index than the core.
  • the first reinforcing member 110 has a reference surface 111 facing the waveguide substrate 32, and at least a metal plate having a shape in which the longitudinal direction of the optical waveguide device 310 is open. And having edge portions 170 and 171 (first and second edge portions) bent so as to face each other. At least a part of the optical waveguide device 30 includes a reference plane 11 1, a surface 11 2 of an edge portion 17 0 continuous with the reference plane 11 1, and the reference plane 11 1 1 And the surface 1 13 of the edge portion 17 1 which is continuous.
  • the cushioning protection material 400 is adhered at least to the reference surface 111 of the first reinforcing member 110 with a predetermined strength, and is provided on the reference surface 111 of the first reinforcing member 110.
  • the product of the adhesive area in contact with the buffer material 400 and the adhesive strength is 0.5 kgf or more. (Bellcore standard).
  • the cushioning protection member 400 having a modulus of elasticity in the range of 1 kgi / cm 2 ⁇ 20 kgf Bruno cm 2 after curing.
  • the cushioning protective material 400 has a modulus of elasticity of 1 kgf Zcm 2 to 20 kgf / cm 2 after hardening, and is therefore relatively soft. Therefore, even when the case undergoes thermal expansion or thermal contraction due to a change in the temperature of the environment, the thermal stress acting on the optical waveguide device 30 is suppressed by interposing the buffer protection material 400.
  • the buffer protection material 400 is uniformly filled between the case and the optical waveguide device 30 based on the capillary phenomenon immediately after the case is injected. Therefore, no air gap remains between the case and the optical waveguide device 30, so that no thermal stress is generated from inside the buffer protection material 400.
  • the cushioning protection material 400 has a relatively low elastic modulus and the case (metal plate) has a relatively high strength, mechanical shock acting on the optical waveguide device 30 from outside the case can be reduced. Buffered through the protective material 400 and the case. Due to these structures, the optical waveguide device 30 is stably positioned and fixed even when a temperature change of the environment occurs or an external force acts. In addition, the change over time in the adhesive force of the adhesive bonding the first support member 31, the waveguide substrate 32, and the second support member 33 is reduced.
  • the optical waveguide module according to the present invention has a through-hole 211 (151) for penetrating the input optical fiber 340 and a second surface having an adhesive surface 212 (153) adhered to the buffer protection material 400.
  • the first and second edge components 2 10 and 2 0 cover the open region of the first reinforcing member 110 in the longitudinal direction of the optical waveguide device 30.
  • the first reinforcing member 110 may be configured to surround the entirety (see FIGS. 11 and 12).
  • the case for accommodating the first optical waveguide device 30 has a reference surface 121 facing the waveguide substrate 32 together with the first reinforcing member 110, and at least the optical waveguide device 310.
  • the second reinforcing member 120 may have a shape whose longitudinal direction is open.
  • the second reinforcing member 120 also has edge portions 180 and 181 (third and fourth edge portions) bent so as to face each other.
  • the second reinforcing member 120 is arranged such that its reference surface 121 faces the reference surface 111 of the first reinforcing member 110 via the optical waveguide device 30 (FIG. 1). 6).
  • the second reinforcing member 120 is pressed by the edges 180, 181 of the first reinforcing member 30 by gripping the edges 170, 171 of the first reinforcing member 30. Engage with member 1 1 ⁇ .
  • the buffer protection material 400 covers the entire optical waveguide device 30, and It is possible to configure so as to wrap the whole of the 1 reinforcing member 110 and the whole of the second reinforcing member 120.
  • FIG. 1 shows an optical waveguide device mounted on the optical waveguide module according to the present invention. It is an assembly process drawing for demonstrating a structure.
  • FIG. 2 is a plan view of an optical waveguide device mounted on the optical waveguide module according to the present invention.
  • FIG. 3 is a view showing a first assembling step for manufacturing the first embodiment of the optical waveguide module according to the present invention.
  • FIG. 4 is a view for explaining a modified example (using an alternative member) of the first assembling step shown in FIG.
  • FIG. 5 is a view showing a second assembling step for manufacturing the first embodiment of the optical waveguide module according to the present invention.
  • FIG. 6 is a perspective view of a first embodiment of the optical waveguide module according to the present invention, obtained through the assembling steps shown in FIG. 3 and FIG.
  • FIG. 7 is a diagram showing a cross-sectional structure of the optical waveguide module according to the first embodiment of the present invention, taken along line II in FIG.
  • FIG. 8 is a perspective view showing an application example of the first embodiment of the optical waveguide module shown in FIG.
  • FIG. 9 is a diagram showing a first step for manufacturing the second embodiment of the optical waveguide module according to the present invention.
  • FIG. 10 is a view showing a second step for manufacturing the second embodiment of the optical waveguide module according to the present invention.
  • FIG. 11 is a perspective view of a second embodiment of the optical waveguide module according to the present invention, obtained through the assembling steps shown in FIGS.
  • FIG. 12 is a diagram showing a cross-sectional structure of a second embodiment of the optical waveguide module according to the present invention, which is taken along line ⁇ in FIG.
  • FIG. 13 shows the experimental results for confirming the optical loss fluctuation due to the heat load in the second embodiment of the optical waveguide module according to the present invention shown in FIGS. 11 and 12. Shows the relationship between environmental temperature and time change added to the optical waveguide module It is a graph.
  • FIG. 14 shows the experimental results of the second embodiment of the optical waveguide module according to the present invention shown in FIGS. 11 and 12, in which the light loss fluctuation caused by the heat load was confirmed.
  • 6 is a graph showing the relationship between the elastic modulus of the sample and the light loss fluctuation.
  • FIG. 15 shows the experimental results of the second embodiment of the optical waveguide module according to the present invention shown in FIGS. 11 and 12, which confirmed the optical loss fluctuation caused by the external force load.
  • 5 is a graph showing the relationship between the elastic modulus of a material and light loss fluctuation.
  • FIG. 16 is a view showing a part of an assembling process for manufacturing the third embodiment of the optical waveguide module according to the present invention.
  • FIG. 17 is a perspective view showing a third embodiment of the optical waveguide module according to the present invention, obtained through the assembly process shown in FIG.
  • FIG. 18 is a diagram showing a cross-sectional structure of a third embodiment of the optical waveguide module according to the present invention, which is taken along line ⁇ in FIG.
  • FIG. 19 is a diagram showing a cross-sectional structure of a fourth embodiment of the optical waveguide module according to the present invention.
  • FIG. 20 is a perspective view showing an application example of the third embodiment of the optical waveguide module shown in FIG.
  • FIG. 21 is a view for explaining a manufacturing method different from the manufacturing method shown in FIGS. 9 and 10 for manufacturing the fourth embodiment of the optical waveguide module shown in FIG. .
  • FIG. 1 is an assembly process diagram for explaining the structure of an optical waveguide device mounted on an optical waveguide module according to the present invention. As shown in this figure, an optical waveguide device 30 is attached to the tip of an input optical fiber 34 0 for propagating signal light, and a fiber support 31 fixed to the tip.
  • First support member and an optical waveguide 320 that branches or couples the signal light that has entered the input end from the input optical fiber 340 and guides the signal light to the output end is provided on the upper surface 321 thereof.
  • the fiber supports 31 and 33 are fixed to the respective end faces of the waveguide substrate 32 with a first adhesive 37.
  • the fiber support 31 includes a silicon lower member 311 supporting a single-core input optical fiber 3400 with a single V-groove formed on the surface thereof, and a lower member 311 made of silicon.
  • the upper member 3 made of transparent glass bonded to the input optical fiber 3400 together with the first adhesive 3 by the second adhesive 3 8 on the surface of the lower member 3 1 1. 1 0.
  • the upper side member 310 presses the input optical fiber 340 against the lower side member 311 on the back surface.
  • the light emission side end face of the input optical fiber 340 is exposed so as to coincide with the light emission side end face of the fiber support 31.
  • the surface of the input optical fiber 340 is plastic-coated except for the tip portion.
  • reference numeral 34 denotes a fiber cable including the input optical fiber 340. It is.
  • the fiber support 33 also has a silicon lower member 331 supporting eight output optical fibers 360 with eight V-grooves formed on the surface thereof, and the lower member.
  • the upper member 3 made of transparent glass bonded to the output optical fiber 360 with the second adhesive 38 together with 33 1 and bonded to the surface of the lower member 33 1 with the second adhesive 38 30.
  • the upper surface of the upper member 330 presses the output optical fiber 360 against the lower member 331 on the back surface.
  • the output optical fiber 360 The incident side end face is exposed in a state in which it coincides with the light incident side end face of the fiber support 33.
  • Each output optical fiber 360 has a plastic coating on its surface except for the tip, and in the figure, 36 denotes a tape type fiber including these output optical fibers 360.
  • ⁇ Cable ribbon ⁇ fiber).
  • the waveguide substrate 32 is a glass member, and has a one-input, eight-output, eight-branch optical waveguide 320 formed on the surface by a normal flame deposition method.
  • the waveguide substrate 32 may be a silicon member.
  • the light entrance side end face and the light exit side end face of the optical waveguide 320 are exposed in a state of being coincident with the light entrance side end face and the light exit side end face of the waveguide substrate 32, respectively.
  • the first joint between the light emitting side end face of the fiber support 31 and the light incident side end face of the waveguide substrate 32 is formed by connecting the light emitting side end face of the input optical fiber 34 to the optical waveguide 32.
  • the first adhesive 37 is fixed in a state where the optical axis of the light-incident side end face is aligned with the optical axis.
  • the second joint between the light emitting side end face of the waveguide substrate 32 and the light incident side end face of the fiber support 33 is formed by the light emitting side end face of the optical waveguide 320 and the output optical fiber 3.
  • the first adhesive 37 is fixed with the 60 light incident side end face aligned with the optical axis (see FIG. 2).
  • the first and second adhesives 37 and 38 are ultraviolet (UV) curable adhesives.
  • the first adhesive 37 has at least a refractive index matched with the core region of the input optical fiber 340, the optical waveguide 320, and the core region of the output optical fiber 360, and It is a material transparent to the signal light propagated by these.
  • the second adhesive may be an ultraviolet-curable adhesive, a thermosetting adhesive, or a composite adhesive containing an ultraviolet-curing catalyst and a thermosetting catalyst.
  • a thermosetting adhesive is used as the second adhesive, a silicon member can be used as the upper members 310 and 330.
  • the main material of the upper members 310 and 330 is, for example, silicon, quartz glass (transparent glass, advantageous because it can transmit ultraviolet rays), ceramics, and the like. Can be selected.
  • the lower members 311 and 331 include, for example, silicon (easy to process V-grooves), quartz glass (transparent glass, which is advantageous because it can transmit ultraviolet rays), and ceramics (zirconia, crystallized glass), and the like. You can choose from.
  • the waveguide substrate 32 can be selected from, for example, silicon, quartz glass, and the like.
  • the optical waveguide module according to the first embodiment includes a first reinforcing member 110 that forms at least a part of a case that houses the optical waveguide device 30.
  • the first reinforcing member 110 is a metal plate having a reference surface 111 and at least a shape in which the longitudinal direction of the optical waveguide device 30 is open, and faces each other. In the direction shown by arrows S1 and S2 in the figure, there are bent edge portions 170 and 171 respectively.
  • the optical waveguide device 30 has its upper surface 3 2 1 (the side on which the optical waveguide 3 20 is provided) facing the reference surface 1 1 1 of the first reinforcing member 110, and 1 1 1, reference plane 1
  • the first reinforcing member 110 and the waveguide device 30 may be arranged so that the lower surface 3222 facing the upper surface 321 and the reference surface 111 face each other.
  • the first reinforcing member 110 has an open area in one longitudinal direction of the optical waveguide device 30 in which a fiber cable including the input optical fiber 340 is inserted.
  • a first edge component 210 rubber boot having a hole 211 and an adhesive surface 212 is provided.
  • a through hole 221 through which a fiber cable including the output optical fiber 360 is penetrated, and a bonding surface.
  • a second edge part 220 rubber boot having 222 is provided.
  • the optical waveguide device 30 is housed in a space defined by these planes 111, 112, 113, 211, and 222.
  • the first and second edge members 210 and 220 are rubber parts, respectively, and as shown in FIG. 4, a metal plate member having through holes 151 and 161 respectively. It may be 150 or 160. Further, by providing the notches 152 and 162 in these plate members 150 and 160, the manufacturing process can be further simplified. Also in this configuration, the optical waveguide device 30 is housed in the space defined by these planes 111, 112, 113, 153, and 163.
  • the optical waveguide device 30 is accommodated in the space defined by the planes 111, 112, 113, 212, and 222, and the cushioning protective material 400 is provided. Is injected into the space.
  • the buffer protection material 400 is injected, a predetermined tension is applied to each of the fiber cables 34 and 36 in the directions indicated by arrows S3 and S4 in the figure. That is, by pulling the cables 34 and 36 in the directions indicated by S3 and S4, respectively, the optical waveguide device 30 is set at a predetermined position in the space filled with the buffer protection material 400.
  • FIG. 6 is a perspective view of a first embodiment of the optical waveguide module according to the present invention
  • FIG. 7 is a sectional view of the optical waveguide module according to the present invention taken along line II in FIG.
  • FIG. 2 is a diagram showing a cross-sectional structure of the first embodiment.
  • the buffer protection material 400 is exposed from the upper opening of the first reinforcing member 110 constituting the case. are doing.
  • the cushioning protection material 400 is urethane rubber and has an elastic modulus in the range of about 1 kgf / cm 2 to about 20 kgf Z cm 2 after curing. Specifically, MU-102 manufactured by Nippon Pernox Co., Ltd. was used. This buffer protection material 400 covers the entire optical waveguide device 30 housed inside the first reinforcing member 110. Further, the cushioning protection material 400 is adhered at least to the reference surface 111 of the first reinforcing member 110 with a predetermined strength. It has an adhesive strength such that the product of the adhesive area in contact with the buffer protective material 400 and the adhesive strength is 0.5 kgf or more (Bellcore standard). Further, the first reinforcing member 110 is stainless steel, which is a metal member having high strength, for example, SUS304.
  • the cushioning protection material 400 is relatively soft because it has a low elastic modulus in the range of about 1 kgf Z cm 2 to about 20 kgf / cm 2 after curing. Therefore, even if the first reinforcing member 110 undergoes thermal expansion or contraction due to a change in the temperature of the environment, the thermal stress acting on the optical waveguide device 30 is reduced by the buffer protection material 40. It is suppressed by intervening 0.
  • the buffer protection material 400 can uniformly penetrate between the first reinforcing member 110 and the optical waveguide device 30 based on the capillary phenomenon immediately after injection into the case. Therefore, no air gap remains between the first reinforcing member 110 and the optical waveguide device 30, so that no thermal stress is generated from inside the buffer protection material 400.
  • the buffer protection member 400 has a relatively low elastic modulus and the first reinforcing member 110 (case) has a relatively high strength, it acts on the optical waveguide device 30 from the outside. Mechanical impact from a predetermined direction is buffered through the buffer protection member 400 and the first reinforcing member 110.
  • the optical waveguide device 30 is stably positioned and fixed in the case even when the temperature of the environment changes or external force acts, and the fiber support 3 1 and the waveguide substrate 3 2, and the waveguide substrate 3 2 It is possible to reduce a change with time of the adhesive force of the first adhesive 38 for joining the joint portions with the fiber support 33.
  • the first joint between the input optical fiber 340 and the optical waveguide 320 and the second joint between the optical waveguide 320 and the output optical fiber 360 are good. Alignment state is maintained respectively. Further, the transmission loss of the signal light propagating from the input optical fiber 340 to the output optical fiber 360 can be stably suppressed with time.
  • FIG. 8 is a perspective view showing an application example of the first embodiment (FIG. 6) of the optical waveguide module according to the present invention.
  • the edge components 210 and 220 in FIG. 6 are unnecessary.
  • each edge portion 410, 420 of the cushioning protection material 400 functions to protect the fiber cables 34, 36, respectively.
  • optical waveguide module according to the present invention may be configured so that the entire first reinforcing member 110 (case) accommodating the optical waveguide device 30 is wrapped with the buffer protection material 400.
  • 9 and 10 show the steps of manufacturing the optical waveguide module of the second embodiment.
  • a lower mold 500 and an upper mold 5100 each having a predetermined recess are prepared. Then, the optical waveguide device 30 and the first reinforcing member 110 are placed in the cavity defined by the recesses of these molds 50,000 and 5110, and the optical waveguide is placed in the first reinforcing member 110.
  • the opening of the lower mold 500 and the opening of the upper mold 50 are aligned so that the device 30 is stored in the installed state.
  • a release agent is applied to the surfaces of the recesses of the lower mold 500 and the upper mold 501, and the recesses of the lower mold 500 are buffer-protected in advance. Part of the material 400 has been injected. Subsequently, as shown in FIG.
  • the buffer protective material 400 is supplied from the resin injection hole 511 provided in the upper mold 5100 to the lower mold 5100 and the upper mold 5100. Defined by each dent Inject into the cavity. At this time, a predetermined tension is applied to the optical fibers 340 and 360 in the directions indicated by arrows S5 and S6 in the figure. That is, by injecting the cushioning protection material 400 while pulling the cables 34, 36 in the directions of the arrows S5, S6, respectively, the optical waveguide device 30 becomes the first reinforcing member 1. It is installed at a predetermined position within 10.
  • FIG. 11 is a perspective view of a second embodiment of the optical waveguide module according to the present invention
  • FIG. 12 is an optical waveguide module according to the present invention taken along the line ⁇ — ⁇ in FIG.
  • FIG. 6 is a view showing a cross-sectional structure of a second embodiment of the module.
  • the buffer protection material 400 functions in the same manner as the buffer protection material 400 of the first embodiment described above, and as a result, the first embodiment described above. Operational effects substantially equivalent to those of the optical waveguide module of the example can be obtained.
  • the inventors conducted an experiment on the second embodiment to confirm the light loss fluctuation caused by the heat load.
  • buffering coercive Mamoruzai 4 0 0 modulus were included in 0. 5 kgf Z cm 2 ⁇ about 1 0 0 kgf in the range of Z cm 2, the six different samples Prepared.
  • Figure 13 shows the changes over time in the environmental temperature applied to these six types of optical waveguide modules.
  • the horizontal axis represents the elapsed time (h)
  • the vertical axis represents the environmental temperature ().
  • the maximum temperature T H is a at + 7 5
  • T R is room temperature.
  • FIG. 14 The results of measuring the maximum optical loss fluctuations of all the optical waveguide devices 30 in each prepared optical waveguide module before and after repeating such an 8-hour heat cycle test over two weeks are shown in FIG. Shown in The optical loss was measured by measuring the optical loss between the input fiber 340 and the output fiber 360. Each measurement is performed.
  • the horizontal axis represents the elastic modulus (kgf / cm 2 ) of the buffer protection material 400
  • the vertical axis represents the maximum optical loss variation (dB) of the optical waveguide device 30.
  • the elastic modulus of the buffer protective material 400 becomes larger than 20 kgf / cm 2
  • the maximum light loss fluctuation in the optical waveguide device 30 sharply increases from within 0.2 dB. .
  • the elastic modulus of the buffer protective material 400 is not more than 20 kgf Z cm 2 , the maximum optical loss fluctuation of the optical waveguide device 30 is at a level that does not pose a practical problem, 0.2 dB or less. Can be suppressed.
  • cushioning protection material 4 0 0 modulus is within the scope of 0. 5 kgf Z cm 2 ⁇ about 1 0 0 kg ⁇ / cm 2 , six different Samples were prepared.
  • the maximum light loss fluctuation of the optical waveguide device 30 sharply increases from within 0.2 dB. Therefore, if the elastic modulus of the buffer protective material 400 is 1 kg ⁇ Z cm 2 or more, the maximum light loss fluctuation of the optical waveguide device 30 is set to 0.2 dB or less as a level that does not cause a practical problem. Can be suppressed.
  • the elastic modulus of the buffer material 400 is within the range of 1 kgf / cm 2 to about 20 kgf / cm 2 , the optical loss fluctuation of the optical waveguide device 30 is practically used. It can be suppressed to a level that does not cause a problem.
  • the optical waveguide module according to the present invention has the same shape as the first reinforcing member 110 as a case for housing the optical waveguide device 30. And the second reinforcing member 120 of the same material.
  • the second reinforcing member 120 is also made of metal (stainless steel SUS304) that forms at least a part of the case that houses the optical waveguide device 30. It is.
  • the second reinforcing member 120 is a metal plate having a reference surface 121 and having a shape in which at least the longitudinal direction of the optical waveguide device 30 is open, and is bent so as to face each other.
  • the optical waveguide device 30 has a reference surface 1 2 1 with its back surface 3 2 2 (the side facing the upper surface 3 2 1) facing the reference surface 1 2 1 of the second reinforcing member 1 20.
  • the surface 1 2 2 of the edge portion 180 connected to the reference surface 1 2 1 and the surface 1 2 3 of the edge portion 18 1 connected to the reference surface 1 2 1 Stored in space ⁇ .
  • the manufacturing of the optical waveguide module of the third embodiment is the same as that of the module obtained through the manufacturing process (FIGS. 3 to 5) of the first embodiment described above (the same as the optical waveguide module shown in FIG. 6).
  • the structure can be obtained by further covering the second reinforcing member 120 on the structure. That is, as shown in FIG. 16, the second reinforcing member 120, as shown in FIG. 16, moves the edge portions 180, 18 1 of the second reinforcing member 120 to the arrows S 7, S 8 in the figure. By using the return force of each edge portion 180, 181 by expanding in the direction indicated by, the edge portion 180 of the first reinforcing member 110 at the edge portion 180, 181 is used. The first reinforcing member 110 is engaged by grasping 70,171.
  • FIG. 17 is a perspective view showing a third embodiment of the optical waveguide module according to the present invention.
  • FIG. 18 is a perspective view of the optical waveguide module according to the present invention, taken along the line ⁇ in FIG.
  • FIG. 8 is a view showing a cross-sectional structure of a third embodiment of the optical waveguide module. Also in the third embodiment, the structure as shown in FIG. 4 can be applied.
  • the buffer protection material 400 in the third embodiment functions in the same manner as the buffer protection material 400 in the first embodiment, and as a result, the optical waveguide module in the first embodiment described above. Operation and effect substantially equivalent to the above can be obtained.
  • the entire first and second reinforcing members 110 and 120 constituting the case capable of using the optical waveguide device 30 are wrapped with the buffer protection material 400. You may comprise.
  • the longitudinal direction of the optical waveguide device 30 is open.
  • the optical waveguide module of the fourth embodiment is obtained through the steps shown in FIGS. 9 and 10 similarly to the optical waveguide module of the second embodiment.
  • FIG. 19 shows a cross-sectional structure of a fourth embodiment of the optical waveguide module according to the present invention.
  • the cross-sectional view of the fourth embodiment corresponds to, for example, a cross-section taken along line ⁇ in FIG.
  • the buffer protection member 400 functions in the same manner as the buffer protection member 400 of the first embodiment, and as a result, the optical waveguide of the first embodiment described above. Operation and effect substantially equivalent to those of the module can be obtained.
  • a buffer (a first protective member 110, or both the first and second reinforcing members 110, 120) and a buffer protective material 400 that covers and protects the optical waveguide device 30.
  • a buffer a first protective member 110, or both the first and second reinforcing members 110, 120
  • a buffer protective material 400 that covers and protects the optical waveguide device 30.
  • a silicon resin or an epoxy resin may be used as the buffer protection material 400. In this case, substantially the same operation and effect as those of the first to fourth embodiments can be obtained.
  • the case for housing the optical waveguide device 30 is stainless steel.
  • any of titanium metal, aluminum metal or spring steel is used as the material of the case Even in this case, substantially the same operation and effect as those of the above-described embodiments can be obtained.
  • each of the fiber support 31, the waveguide substrate 32, and the fiber support 33 is bonded with an ultraviolet-curable adhesive as a first adhesive.
  • an ultraviolet-curable adhesive as a first adhesive.
  • a thermosetting adhesive or a composite adhesive containing an ultraviolet curing catalyst and a thermosetting catalyst is used as the first adhesive instead of the ultraviolet curing adhesive, substantially the same as in each of the embodiments, Equivalent effects can be obtained.
  • the optical waveguide 320 is a one-input / eight-output type branch device.
  • any one-input / multi-output type, multi-input / one-output type or multi-input / multi-output type optical waveguide is applied, substantially the same operation and effect as those of the above-described embodiments can be obtained.
  • the input optical fiber 340 was a single-core optical fiber
  • the output optical fiber 360 was an 8-core optical fiber.
  • these optical fibers may be input and output optical fibers in a configuration including any number of optical fibers, corresponding to the optical input / output type of the optical waveguide. Also in this case, substantially the same operation and effect as those of the above-described embodiments can be obtained.
  • FIG. 20 is a perspective view showing an application example of the third embodiment (see FIG. 17) of the optical waveguide module according to the present invention.
  • the application example of the third embodiment also has an edge portion 410, 420 in which the cushioning protection material 400 protrudes outside the first and second reinforcing members 110, 120, and FIG.
  • the edge parts 210 and 220 in 17 are unnecessary.
  • FIG. 21 by attaching the buffer protection material 400 again to the outer periphery of the optical waveguide module shown in FIG. 20, the present invention shown in FIG. An optical waveguide module having the same structure as that of the fourth embodiment of the optical waveguide module is obtained.
  • the manufacturing method shown in FIG. 21 is also applicable to the first embodiment shown in FIG. 6, and the manufacturing method (see FIG. 21) allows the light guide according to the present invention to be applied.
  • An optical waveguide module having a structure similar to that of the second embodiment (FIGS. 11 and 12) of the waveguide module is obtained.
  • the buffer protection material is filled in the case to cover the entire optical waveguide device, and at least the optical waveguide device ( Or, the open area in the longitudinal direction of the optical fiber is closed.
  • the optical waveguide module according to the present invention can protect the optical waveguide device with the buffer protection material against the stress caused by the environmental temperature, the impact acting from the outside, and the like.
  • the optical waveguide module has good alignment at the first junction between the input optical fiber and the optical waveguide and at the second junction between the optical waveguide and the output optical fiber. Since the state is maintained, it has high reliability with excellent environmental resistance characteristics.
  • optical waveguide module according to the present invention can reduce the number of package components and reduce costs such as material costs and assembly processing costs as compared with conventional optical waveguide modules. There is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

弓月糸田 光導波路モジュール 技術分野
この発明は、 光伝送システムにおいて、 信号光の分岐、 結合等に利用される光 導波路デバイスが実装された光導波路モジュールに関し、 特に、 高い信頼性が要 求される光フアイバ通信システムに適用可能な光導波路モジュ一ルのパッケージ 構造に関するものである。 背景技術
従来の光導波路モジュールは、 信号光の分岐、 結合等に利用され、 伝送路であ る光ファイバ間を光学的に接続するための光導波路デバィスと、 該光導波路デバ イスをその内部に収納する筐体とを備えている。 また、 この筐体と光導波路デバ イスとの間の空間には、 緩衝保護材が充填されている。 緩衝保護材は、 筐体外部 から光導波路デバィスに作り込まれた光導波路と光ファイバとの接続部分等に加 わる衝攀などを吸収するよう機能する。
ここで、 上記光導波路デバイスは、 光導波路がその上面に設けられ、 信号光の 分岐、 結合等の機能を有する導波路基板と、 該光導波路の一端と入力用光フアイ バの一端とを光学的に接続するための、 該入力用光ファイバの先端に取り付けら れたシリコン製の V溝付き支持部材 (第 1支持部材) と、 該光導波路の他端と出 力用光ファイバの一端とを光学的に接続するための、 該出力用光ファイバの先端 に取り付けられたシリコン製の V溝付き支持部材 (第 2支持部材) とを備えてい る。 なお、 これら導波路基板の両端面には、 光導波路と入力用及び出力用光ファ ィバとが相互に光軸調心された状態 (光学的に接続された状態) で、 それぞれ第 1及び第 2支持部材が固着されている。 また、 以上のような光導波路モジュールの構造は、 例えば、 特開平 5— 2 7 1 3 9号公報等に開示されている。 発明の開示
この発明は、 高い信頼性が要求される光ファイバ通信システムに適用可能な光 導波路モジュールのパッケージ構造に関するものである。 そして、 発明者らは上 述された従来の光導波路モジュールについて検討した結果、 従来の光導波路モジ ユールでは、 環境の温度変化に伴う筐体の伸縮発生を十分には防止することがで きないことを発見した。
すなわち、 入力用光ファイバや出力用光ファイバなどは、 設置環境によっては、 高温環境下で引張応力を受けたり、 低温環境下で剪断応力を受けたりすることに なる。 これにより、 V溝付き支持部材と導波路基板とを接合する接着剤の接着力 が経時的に低下するので、 これらの部材間の接合面で光軸ずれによる光損失が増 大することとなる。 さらに、 接着剤の接着力の低下が著しい場合、 V溝付き支持 部材が導波路基板から剥離する可能性もある。
対応策としては、 筐体の材質を線膨張率の低いガラスや液晶ポリマなどに変更 することが考えられるが、 この場合、 ガラスは攀力に弱いという強度特性を有し、 液晶ポリマは薄い厚さの筐体を形成し難いという加工上の特質を有するため、 結 果的に筐体の小型化を達成することができない。
また、 入力用光ファイバ及び出力用光ファイバを予め余長を与えて撓ませた状 態で筐体の内部に収容することも考えられる。 しかしながら、 これらの光フアイ バの収容作業には手間がかかるので、 量産を行うには不向きである。
そこで、 この発明は、 光導波路デバイスを格納するためのパッケージ部品の個 数を低減させるとともに、 環境の温度変化に起因した応力や外部から作用する衝 攀などに対して光導波路デバイスを保護するパッケージ構造を備え、 耐環境特性 に便れた高信頼性を有する光導波路モジュールを提供することを目的とする。 上記の目的を達成するため、 この発明に係る光導波路モジュールは、 例えば図
2〜図 7に示されたように、 光ファイバ間を光学的に接続するための、 信号光の 分岐、 結合等の機能を有する光機能デバイスとしての光導波路デバイス 3 0、 光 導波路デバイス 3 0を収納するケースの少なく とも一部を構成する第 1補強部材 1 1 0 (金属製の板部材) と、 少なくとも光導波路デバイス 3 0及び光ファイバ の一部を覆うとともに、 第 1補強部材 1 1 0に所定の強度で接着している緩衝保 護材 4 0 0とを備えている。
上記光導波路デバィス 3 0は、 その上面 3 2 1に光導波路 3 2 0が設けられた 導波路基板 3 2と、 入力用光ファイバ 3 4 0の先端に取り付けられ、 該光導波路 3 2 0の一端と該入力用光ファイバ 3 4 0の一端とを光学的に接続させた状態で 該導波路基板 3 2の一方の端面に固定された第 1支持部材 3 1 と、 出力用光ファ ィバ 3 6 0の先端に取り付けられ、 該光導波路 3 2 0の他端と該出力用光フアイ バ 3 6 0の一端とを光学的に接続させた状態で該導波路基板 3 2の他方の端面に 固定された第 2支持部材 3 3とを有する (図 1参照) 。 なお、 光ファイバは、 所 定の屈折率を有するコアと、 該コアの外周に設けられ、 該コアよりも低い屈折率 を有するクラッドを備えている。
上記第 1補強部材 1 1 0は、 導波路基板 3 2と向い合った基準面 1 1 1を有す るとともに、 少なく とも光導波路デバイス 3 0の長手方向が開放された形状を有 する金属板であって、 互いに向い合うよう折り曲げられたエッジ部 1 7 0、 1 7 1 (第 1及び第 2エッジ部) を有する。 また、 光導波路デバイス 3 0の少なく と も一部は、 基準面 1 1 1、 該基準面 1 1 1 と連続しているエッジ部 1 7 0の面 1 1 2、 及び該基準面 1 1 1 と連続しているエッジ部 1 7 1の面 1 1 3とで定義さ れる空間内に収納されている。
上記緩衝保護材 4 0 0は、 少なくとも第 1補強部材 1 1 0の基準面 1 1 1に所 定の強度で接着しており、 第 1補強部材 1 1 0の基準面 1 1 1上における、 該緩 衝保護材 4 0 0と接触している接着面積とその接着力の積が 0 . 5 k g f 以上 (ベルコア規格) となるような接着力を有する。 特に、 緩衝保護材 400として は、 硬化後に 1 k g i / c m2〜 20 k g f ノ c m2の範囲内の弾性率を有する。 緩衝保護材 400は、 硬化後に 1 k g f Zc m2〜20 k g f /c m2の弾性率 を有するので比較的柔らかい。 そのため、 ケースが環境の温度変化に伴って熱膨 張または熱収縮を起こした場合であっても、 光導波路デバィス 30に作用する熱 応力が、 緩衝保護材 400を介在することによって抑制される。
また、 緩衝保護材 400は、 ケース注入直後は毛細管現象に基づいて、 ケース と光導波路デバイス 30との間に均一に充填される。 そのため、 ケースと光導波 路デバイス 30との間に空隙が残存しないので、 熱応力が緩衝保護材 400の内 部から発生することもない。
さらに、 緩衝保護材 400が比較的低い弾性率を有するとともに、 ケース (金 厲板) が比較的高い強度を有することから、 ケース外部から光導波路デバイス 3 0に作用する機械的な衝撃が、 緩衝保護材 400及びケースを介して緩衝される。 これらの構造により、 環境の温度変化が発生したり、 外部から擊力が作用したり する場合であっても、 光導波路デバイス 30は安定して位置決め固定される。 加 えて、 第 1支持部材 31、 導波路基板 32、 及び第 2支持部材 33をそれぞれ接 合している接着剤の接着力の経時変化が低減する。
したがって、 入力用光ファイバ 340と光導波路 321との間の第 1接合部と、 光導波路 321と出力用光ファイバ 360との間の第 2接合部とにおいて、 良好 な調心状態がそれぞれ維持される。 加えて、 入力光ファイバから出力光ファイバ に伝送される光信号の損失が経時的に安定して抑制される。
さらに、 この発明に係る光導波路モジュールは、 入力用光ファイバ 340を貫 通させるための貫通孔 21 1 (151) を有するとともに、 緩衝保護材 400に 接着される接着面 212 (153) を有する第 1エッジ部品 210 (1 50) と、 出力用光ファイバ 360を貫通させるための貫通孔 221 (161) を有すると ともに、 緩衝保護材 400に接着される接着面 222 ( 1 63) を有する第 2ェ ッジ部品 2 2 0 ( 1 6 0 ) とを備えてもよレ、。 このように、 これら第 1及び第 2 エッジ部品 2 1 0、 2 2 0は、 第 1捕強部材 1 1 0の、 光導波路デバイス 3 0の 長手方向の開放領域を塞いでいる。
また、 この発明に係る光モジュールは、 上記緩衝保護材 4 0 0が、 光導波路デ バイス 3 0全体を覆つた状態で、 第 1補強部材 1 1 0の基準面 1 1 1、 該基準面 1 1 1 と連続しているエッジ部 1 7 0の面 1 1 2、 及び該基準面 1 1 1 と連続し ているエッジ部 1 7 1の面 1 1 3とで定義される空間内に提供されるとともに、 該第 1補強部材 1 1 0全体を包み込むように構成してもよい (図 1 1及び図 1 2 参照) 。
さらに、 第 1光導波路デバイス 3 0を収納するケースは、 上記第 1補強部材 1 1 0とともに、 導波路基板 3 2と向い合った基準面 1 2 1を有し、 少なくとも光 導波路デバイス 3 0の長手方向が開放された形状を有する第 2補強部材 1 2 0で 構成してもよレ、。 特に、 この第 2補強部材 1 2 0も、 互いに向い合うよう折り曲 げられたエッジ部 1 8 0、 1 8 1 (第 3及び第 4のエッジ部) を有する。 そして、 第 2補強部材 1 2 0は、 その基準面 1 2 1が第 1補強部材 1 1 0の基準面 1 1 1 と光導波路デバイス 3 0を介して対向するよう配置されている (図 1 6参照) 。 このとき、 第 2補強部材 1 2 0は、 そのエッジ部 1 8 0、 1 8 1力 第 1補強部 材 3 0のエッジ部 1 7 0、 1 7 1を把持することにより、 該第 1補強部材 1 1 ◦ と係合する。
このように、 上記第 1及び第 2補強部材 1 1 0、 1 2 0によってケースを構成 する場合にも、 緩衝保護材 4 0 0が、 光導波路デバイス 3 0全体を覆った状態で、 前記第 1補強部材 1 1 0全体及び第 2補強部材 1 2 0全体を包み込むように構成 することが可能である。 図面の簡単な説明
図 1は、 この発明に係る光導波路モジュールに搭載される光導波路デバィスの 構造を説明するための組立工程図である。
図 2は、 この発明に係る光導波路モジュールに搭載される光導波路デバィスの 平面図である。
図 3は、 この発明に係る光導波路モジュールの第 1実施例を製造するための、 第 1組立工程を示す図である。
図 4は、 図 3に示された第 1組立工程の変形例 (代替部材を使用) を説明する ための図である。
図 5は、 この発明に係る光導波路モジュールの第 1実施例を製造するための、 第 2組立工程を示す図である。
図 6は、 図 3及び図 5に示された組立工程を経て得られた、 この発明に係る光 導波路モジュールの第 1実施例の斜視図である。
図 7は、 図 6中の I— I線に示沿った、 この発明に係る光導波路モジュールの 第 1実施例の断面構造を示す図である。
図 8は、 図 6に示された光導波路モジュールの第 1実施例の応用例を示す斜視 図である。
図 9は、 この発明に係る光導波路モジュールの第 2実施例を製造するための、 第 1工程を示す図である。
図 1 0は、 この発明に係る光導波路モジュールの第 2実施例を製造するための、 第 2工程を示す図である。
図 1 1は、 図 9及び図 1 0に示された組立工程を経て得られた、 この発明に係 る光導波路モジュールの第 2実施例の斜視図である。
図 1 2は、 図 1 1中の Π— Π線に示沿った、 この発明に係る光導波路モジユー ルの第 2実施例の断面構造を示す図である。
図 1 3は、 図 1 1及び図 1 2に示された、 この発明に係る光導波路モジュール の第 2実施例について、 熱負荷に起因した光損失変動を確認するための実験結果 であり、 該光導波路モジュールに付加された環境温度と時間変化との関係を示す グラフである。
図 1 4は、 図 1 1及び図 1 2に示された、 この発明に係る光導波路モジュール の第 2実施例について、 熱負荷に起因した光損失変動を確認した実験結果であり、 緩衝保護材の弾性率と光損失変動の関係を示すグラフである。
図 1 5は、 図 1 1及び図 1 2に示された、 この発明に係る光導波路モジュール の第 2実施例について、 外力負荷に起因した光損失変動を確認した実験結果であ り、 緩衝保護材の弾性率と光損失変動の関係を示すグラフである。
図 1 6は、 この発明に係る光導波路モジュールの第 3実施例を製造するための、 組立工程の一部を示す図である。
図 1 7は、 図 1 6に示された組立工程を経て得られた、 この発明に係る光導波 路モジュールの第 3実施例を示す斜視図である。
図 1 8は、 図 1 7中の ΠΙ— ΠΙ線に示沿った、 この発明に係る光導波路モジユー ルの第 3実施例の断面構造を示す図である。
図 1 9は、 この発明に係る光導波路モジュールの第 4実施例の断面構造を示す 図である。
図 2 0は、 図 1 7に示された光導波路モジュールの第 3実施例の応用例を示す 斜視図である。
図 2 1は、 図 1 9に示された光導波路モジュールの第 4実施例を製造するため の、 図 9及び図 1 0に示された製造方法と異なる製造方法を説明するための図で ある。 発明を実施するための最良の形態
以下、 この発明に係る光導波路モジュールの各実施例の構成を、 図 1〜図 2 1 を用いて説明する。 なお、 図面中の同一の要素には同一の符号を付し、 重複する 説明を省略する。 また、 図面の寸法比率は、 説明のものと必ずしも一致していな い。 図 1は、 この発明に係る光導波路モジュールに搭载される光導波路デバィスの 構造を説明するための組立工程図である。 この図に示されたように、 光導波路デ バイス 3 0は、 信号光を伝搬するための入力用光ファイバ 3 4 0の先端に取り付 けられ、 該先端に固定されたファイバ支持体 3 1 (第 1支持部材) と、 入力用光 ファイバ 3 4 0からその入射端へ入射された信号光を分岐または結合して出射端 へ導く光導波路 3 2 0がその上面 3 2 1に設けられた導波路基板 3 2と、 光導波 路 3 2 0の出射端から出射された信号光を導くための出力用光ファイバ 3 6 0の 先端に取り付けられ、 該先端に固定されたファイバ支持体 3 3 (第 2支持部材) とを備えている。 また、 これらファイバ支持体 3 1 、 3 3は、 導波路基板 3 2の 各端面に第 1接着剤 3 7によって固着されている。
ファイバ支持体 3 1は、 その表面に形成された単一の V溝で単芯の入力用光フ アイバ 3 4 0を支持するシリコン製の下側部材 3 1 1と、 該下側部材 3 1 1 とと もに第 2接着剤 3 8によって入力用光ファイバ 3 4 0に接着され、 下側部材 3 1 1の表面上に第 2接着剤 3 8によって接合された透明ガラス製の上側部材 3 1 0 とを備える。 この上側部材 3 1 0はその裏面で入力用光ファイバ 3 4 0を下側部 材 3 1 1に押し当てている。 ここで、 入力用光ファイバ 3 4 0の光出射側端面は、 ファイバ支持体 3 1の光出射側端面と一致した状態で露出している。 なお、 入力 用光ファイバ 3 4 0は、 先端部分を除いてその表面がプラスティック · コ一ティ ングされており、 図中 3 4は、 入力用光ファイバ 3 4 0を含むファイバ 'ケ一ブ ルである。
一方、 ファイバ支持体 3 3も、 その表面に形成された 8本の V溝でそれぞれ 8 芯の出力用光ファイバ 3 6 0を支持するシリコン製の下側部材 3 3 1と、 該下側 部材 3 3 1 とともに第 2接着剤 3 8によって出力用光ファイバ 3 6 0に接着され、 下側部材 3 3 1の表面上に第 2接着剤 3 8によって接合された透明ガラス製の上 側部材 3 3 0とを備える。 この上側部材 3 3 0はその裏面で出力用光ファイバ 3 6 0を下側部材 3 3 1に押し当てている。 ここで、 出力用光ファイバ 3 6 0の光 入射側端面は、 ファイバ支持体 3 3の光入射側端面と一致した状態で露出してい る。 なお、 各出力用光ファイバ 3 6 0は、 先端部分を除いて一体的にその表面が プラスティック · コーティングされており、 図中 3 6は、 これら出力用光フアイ バ 3 6 0を含むテープ型ファイバ ·ケーブル (リボン ·ファイバ) である。
また、 導波路基板 3 2は、 ガラス製部材であって、 通常の火炎堆積法によりそ の表面に 1入力 8出力型の 8分岐の光導波路 3 2 0が形成されている。 なお、 導 波路基板 3 2はシリコン製部材であってもよい。 ここで、 光導波路 3 2 0の光入 射側端面および光出射側端面は、 導波路基板 3 2の光入射側端面および光出射側 端面と一致した状態でそれぞれ露出している。
なお、 ファイバ支持体 3 1の光出射側端面と導波路基板 3 2の光入射側端面と の間の第 1接合部は、 入力用光ファイバ 3 4 0の光出射側端面と光導波路 3 2 0 の光入射側端面とを光軸調心された状態で、 第 1接着剤 3 7によって固定されて いる。 一方、 導波路基板 3 2の光出射側端面とファイバ支持体 3 3の光入射側端 面との間の第 2接合部は、 光導波路 3 2 0の光出射側端面と出力用光ファイバ 3 6 0の光入射側端面とを光軸調心された状態で、 第 1の接着剤 3 7によって固定 されている (図 2参照) 。
ただし、 第 1および第 2接着剤 3 7、 3 8は、 紫外線 (UV) 硬化型接着剤で ある。 また、 第 1接着剤 3 7は、 少なく とも入力用光ファイバ 3 4 0のコア領域、 光導波路 3 2 0、 及び出力用光ファイバ 3 6 0のコア領域と整合した屈折率を有 するとともに、 これらにより伝搬される信号光に対して透明な材料である。 なお、 この第 2接着剤は、 紫外線硬化型接着剤の他、 熱硬化型接着剤、 紫外線硬化触媒 と熱硬化触媒を含む複合型接着剤のいずれであってもよい。 また、 第 2接着剤と して、 熱硬化型接着剤を利用する場合には、 上記上側部材 3 1 0、 3 3 0として シリコン製部材を利用することも可能である。
特に、 上記上側部材 3 1 0 , 3 3 0の主材料としては、 例えばシリコン、 石英 ガラス (透明ガラス、 紫外線が透過可能であるため有利) 、 セラミックス等から 選択可能である。 上記下側部材 3 1 1、 3 3 1としては、 例えばシリコン (V溝 加工が容易) 、 石英ガラス (透明ガラス、 紫外線が透過可能であるため有利) 、 セラミ ックス (ジルコユア、 結晶化ガラス) 等から選択可能である。 さらに、 上 記導波路基板 3 2としては、 例えばシリコン、 石英ガラス等から選択可能である。 なお、 該上側部材 3 1 0及び下側部材 3 1 1のいずれもフィラーを 8 0 %以上含 むエポキシ榭脂で形成される場合には、 ファイバ支持体 3 1を一体成形すること が可能となる。 また、 他方の上側部材 3 3 0及び下側部材 3 3 1もフイラ一を 8 0 %以上含むエポキシ榭脂で形成される場合には、 同様にファイバ支持体 3 3を 一体成形することが可能となる。
第 1実施例
次に、 図 3〜図 7を用いて、 この発明に係る光導波路モジュールの第 1実施例 を説明する。
図 3に示されたように、 この第 1実施例の光導波路モジュールは、 光導波路デ バイス 3 0を収納するケースの少なくとも一部を構成する第 1補強部材 1 1 0
(金属製の板部材) を備える。 この第 1捕強部材 1 1 0は、 基準面 1 1 1を有す るとともに、 少なくとも光導波路デバイス 3 0の長手方向が開放された形状を有 する金属板であって、 互いに向い合うよう、 図中の矢印 S l、 S 2で示された方 向に、 それぞれ折り曲げられたエッジ部 1 7 0、 1 7 1を有する。 光導波路デバ イス 3 0は、 その上面 3 2 1 (光導波路 3 2 0が設けられている側) を第 1補強 部材 1 1 0の基準面 1 1 1に向い合せにした状態で、 基準面 1 1 1、 該基準面 1
1 1 と連続しているエッジ部 1 7 0の面 1 1 2、 及び該基準面 1 1 1 と連続して いるエッジ部 1 7 1の面 1 1 3とで定義される空間内に収納される。 なお、 上記 第 1補強部材 1 1 0と導波路デバイス 3 0は、 上面 3 2 1 と対向する下面 3 2 2 と基準面 1 1 1とが向い合うように配置されてもよレ、。
さらに、 第 1補強部材 1 1 0の、 光導波路デバイス 3 0の長手方向の一方の開 放領域には、 入力光ファイバ 3 4 0を含むファイバ ·ケーブルを貫通させた貫通 孔 21 1を有するとともに、 接着面 212を有する第 1エッジ部品 210 (ゴム ブーツ) が設けられている。 一方、 第 1補強部材 1 10の、 光導波路デバイス 3 0の長手方向の他方の開放領域には、 出力光ファイバ 360を含むファイバ ·ケ —ブルを貫通させた貫通孔 221を有するとともに、 接着面 222を有する第 2 エッジ部品 220 (ゴムブーツ) が設けられている。 光導波路デバイス 30は、 これら面 1 1 1、 1 12、 1 13、 21 1、 222によって定義される空間内に 収納される。
なお、 上記第 1及び第 2エッジ部材 210、 220は、 それぞれゴム性の部品 であるが、 図 4に示されたように、 それぞれ貫通孔 1 51、 1 6 1を備えた金属 性の板部材 1 50、 160であってもよい。 さらに、 これら板部材 1 50、 1 6 0に切り欠け部 152、 162を設けることで、 より製造工程の簡略化が可能と なる。 この構成の場合も、 光導波路デバイス 30は、 これら面 1 1 1、 1 12、 113、 1 53、 163によって定義される空間内に収納される。
続いて、 図 5に示されたように、 光導波路デバイス 30が、 面 1 1 1、 1 12、 113、 21 2、 222によって定義される空間内に収納された状態で、 緩衝保 護材 400が該空間内に注入される。 なお、 この緩衝保護材 400が注入される 際、 各ファイバ ·ケ一ブル 34、 36は図中の矢印 S 3、 S4で示された方向に 所定の張力が加えられている。 すなわち、 ケーブル 34、 36を S 3、 S 4で示 された方向にそれぞれ引っ張ることにより、 光導波路デバイス 30は緩衝保護材 400が充填された空間中の所定位置に設置される。
以上の工程を経てこの発明に係る光導波路モジュール (第 1実施例) が得られ る。 なお、 図 6は、 この発明に係る光導波路モジュールの第 1実施例の斜視図で あり、 図 7は、 図 6中の I— I線に示沿った、 この発明に係る光導波路モジユー ルの第 1実施例の断面構造を示す図である。
図 6及び図 7に示されたように、 第 1実施例の光導波路モジュールにおいて、 緩衝保護材 400は、 ケースを構成する第 1補強部材 1 10の上部開口から露出 している。
緩衝保護材 4 0 0は、 ウレタンゴムであり、 硬化後に約 1 k g f / c m 2〜約 2 0 k g f Z c m 2の範囲内の弾性率を有する。 具体的には、 日本ペルノ ックス (株) 社製の MU— 1 0 2を利用した。 この緩衝保護材 4 0 0は、 第 1補強部材 1 1 0の内部に収納された光導波路デバイス 3 0全体を覆っている。 また、 緩衝 保護材 4 0 0は、 少なくとも第 1補強部材 1 1 0の基準面 1 1 1に所定の強度で 接着しており、 第 1補強部材 1 1 0の基準面 1 1 1上における、 該緩衝保護材 4 0 0と接触している接着面積とその接着力の積が 0 . 5 k g f 以上 (ベルコア規 格) となるような接着力を有する。 さらに、 第 1補強部材 1 1 0は、 高い強度を 有する金属製部材であるステンレス鋼、 例えば S U S 3 0 4である。
ここで、 緩衝保護材 4 0 0は、 硬化後に約 1 k g f Z c m 2〜約 2 0 k g f / c m 2の範囲の低い弾性率を有するので比較的柔らかい。 そのため、 第 1補強部 材 1 1 0が環境の温度変化に伴って熱膨張または熱収縮を起こした場合であって も、 当該光導波路デバイス 3 0に作用する熱応力が、 緩衝保護材 4 0 0を介在す ることによって抑制される。
また、 緩衝保護材 4 0 0は、 ケース注入直後は毛細管現象に基づいて、 第 1補 強部材 1 1 0と光導波路デバイス 3 0との間に均一に浸入可能である。 そのため、 第 1補強部材 1 1 0と光導波路デバイス 3 0との間には空隙が残存しないので、 熱応力が緩衝保護材 4 0 0の内部から発生することもない。
さらに、 緩衝保護材 4 0 0が比較的低い弾性率を有するとともに、 第 1補強部 材 1 1 0 (ケース) が比較的高い強度を有することから、 外部から光導波路デバ イス 3 0に作用する所定方向からの機械的な衝擊が、 緩衝保護材 4 0 0及び第 1 補強部材 1 1 0を介して緩衝される。
以上のことから、 環境の温度変化が発生したり、 外部から擊力が作用したりす る場合であっても、 光導波路デバイス 3 0は安定してケース内に位置決め固定さ れ、 ファイバ支持体 3 1と導波路基板 3 2との接合部分、 及び導波路基板 3 2と ファイバ支持体 3 3との接合部分をそれぞれ接合する第 1接着剤 3 8の接着力の 経時変化を低減できる。 加えて、 入力用光ファイバ 3 4 0と光導波路 3 2 0との 間の第 1接合部と、 光導波路 3 2 0と出力光ファイバ 3 6 0との間の第 2接合部 とにおいて、 良好な調心状態がそれぞれ維持される。 また、 入力用光ファイバ 3 4 0から出力用光ファイバ 3 6 0に伝搬される信号光の伝送損失が経時的に安定 して抑制できる。
さらに、 図 8に示されたように、 該緩衝保護材 4 0 0の一部 (エッジ部 4 1 0、 4 2 0 ) を第 1補強部材 1 1 0の外部へはみ出させてもよい。 図 8は、 この発明 に係る光導波路モジュールの第 1実施例 (図 6 ) の応用例を示す斜視図である。 この応用例では、 図 6中のエッジ部品 2 1 0、 2 2 0が不要である。 また、 緩 衝保護材 4 0 0の各エッジ部 4 1 0 , 4 2 0はそれぞれファイバ ·ケーブル 3 4、 3 6を保護するよう機能する。
第 2実施例
さらに、 この発明に係る光導波路モジュールは、 光導波路デバイス 3 0を収納 した第 1補強部材 1 1 0 (ケース) 全体を緩衝保護材 4 0 0で包み込むよう構成 してもよい。 なお、 図 9及び図 1 0にこの第 2実施例の光導波路モジュールの製 造工程を示す。
まず、 図 9に示されたように、 それぞれ所定の凹みが設けられた下側型 5 0 0 と上側型 5 1 0とを用意する。 そして、 これら型 5 0 0、 5 1 0の凹みによって 定義されるキヤビティ内に、 光導波路デバイス 3 0と第 1補強部材 1 1 0とを、 該第 1補強部材 1 1 0内に該光導波路デバイス 3 0を設置した状態で収納するよ う、 該下側型 5 0 0の開口部と上側型 5 1 0の開口部とを合せる。 なお、 このと き、 下側型 5 0 0と上側型 5 1 0の各凹み表面には剥離剤が塗付されており、 ま た、 該下側型 5 0 0の凹みには予め緩衝保護材 4 0 0の一部が注入されている。 続いて、 図 1 0に示されたように、 上側型 5 1 0に設けられた樹脂注入孔 5 1 1から緩衝保護材 4 0 0を該下側型 5 0 0と上側型 5 1 0の各凹みによって定義 されたキヤビティ内に注入する。 このとき、 各光ファイバ 3 4 0、 3 6 0には図 中の矢印 S 5、 S 6で示された方向に所定の張力が加えられている。 すなわち、 ケーブル 3 4、 3 6を、 それぞれ S 5、 S 6の矢印の方向に引っ張った状態で緩 衝保護材 4 0 0の注入を行うことにより、 光導波路デバィス 3 0が第 1補強部材 1 1 0内の所定位置に設置される。
以上の工程を経てこの発明に係る光導波路モジュール (第 2実施例) が得られ る。 なお、 図 1 1は、 この発明に係る光導波路モジュールの第 2実施例の斜視図 であり、 図 1 2は、 図 1 1中の Π— Π線に示沿った、 この発明に係る光導波路モ ジュールの第 2実施例の断面構造を示す図である。
以上のように製造された光導波路モジュールにおいても、 緩衝保護材 4 0 0は、 上述の第 1実施例の緩衝保護材 4 0 0と同様に機能し、 結果的に、 上述の第 1実 施例の光導波路モジュールと実質的に同等な作用効果を得ることができる。
次に、 この第 2実施例について、 発明者らが行った実験結果について図 1 3〜 図 1 5を用いて説明する。
まず、 発明者らは、 この第 2実施例に対し熱負荷に起因した光損失変動を確認 する実験を行った。 この実験では、 対比する光導波路モジュールとして、 緩衝保 護材 4 0 0の弾性率が 0 . 5 k g f Z c m 2〜約 1 0 0 k g f Z c m 2の範囲内に 含まれた、 異なる 6サンプルを用意した。
これら 6種類の光導波路モジュールに負荷した環境温度の時間変化をを図 1 3 に示す。 この図 1 3において、 横軸は経過時間 (h ) 、 縦軸は環境温度 ( ) で ある。 なお、 最高温度 THは + 7 5でであり、 最低温度 T Lは— 4 5 °Cであり、 T Rは室温である。
このような周期 8時間のヒートサイクル試験を 2週間に渡って繰り返す前後で、 用意された各光導波路モジュールにおける光導波路デバイス 3 0の全てについて、 その最大光損失変動を測定した結果を図 1 4に示す。 なお、 光損失の測定は、 入 力用ファイバ 3 4 0と出力用ファイバ 3 6 0の各芯との間において光損失をそれ ぞれ測定することにより行われる。 この図 1 4において、 横軸は緩衝保護材 4 0 0の弾性率 (k g f / c m2) であり、 縦軸は光導波路デバイス 3 0の最大光損 失変動 (d B) である。 図 1 4によれば、 緩衝保護材 4 0 0の弾性率が 2 0 k g f / c m2よりも大きくなると、 光導波路デバィス 3 0における最大光損失変動 が 0. 2 d B以内から急増している。 そのため、 緩衝保護材 4 0 0の弾性率が 2 0 k g f Z c m2以下であれば、 光導波路デバイス 3 0の最大光損失変動を、 実 用上問題とならないレベルである 0. 2 d B以下に抑制することができる。
さらに、 発明者らは、 この第 2実施例に対し、 外力負荷に起因した光損失変動 を確認するための実験を行った。 この実験では、 対比する光導波路モジュールと して、 緩衝保護材 4 0 0の弾性率が 0. 5 k g f Z c m2〜約 1 0 0 k g ί / c m2の範囲内に含まれた、 異なる 6サンプルを用意した。
これら 6種類の光導波路モジュールの中央部を固定し、 その中央部よりも出力 用光ファイバ 3 6 0側に位置する端部に、 実用上発生すると考えられる引張力と して 5 Nを 1分間程度だけ加えた。 このような外力負荷試験の前後で、 用意され た各光導波路モジュールにおける光導波路デバイス 3 0の全ての接合部分 (光フ アイバ 34、 3 6と光導波路 3 2 0との接続部分) について、 その最大光損失変 動を測定した結果を図 1 5に示す。 この図 1 5において、 横軸は緩衝保護材 4 0 0の弾性率、 縦軸は光導波路デバイス 3 0の最大光損失変動である。
図 1 5によれば、 緩衝保護材 4 0 0の弾性率が 1 k g f Zc m2未満になると、 光導波路デバイス 3 0の最大光損失変動が 0. 2 d B以内から急増している。 そ のため、 緩衝保護材 4 0 0の弾性率が 1 k g ί Z c m2以上であれば、 光導波路 デバイス 3 0の最大光損失変動を、 実用上問題とならないレベルとして 0. 2 d B以下に抑制することができる。
したがって、 以上の実験結果から、 緩衝保護材 4 0 0の弾性率が 1 k g f / c m2〜約 2 0 k g f / c m 2の範囲内であれば、 光導波路デバィス 3 0の光損失変 動を実用上問題とならないレベルに抑制することができる。 第 3実施例
次に、 この発明に係る光導波路モジュールは、 図 1 6及び図 1 7に示されたよ うに、 光導波路デバイス 3 0を収納するケースとして、 第 1補強部材 1 1 0とと もに、 同一形状及び同一材料の第 2補強部材 1 2 0とで構成してもよい。
特に、 この第 2補強部材 1 2 0も、 第 1補強部材 1 1 0と同様に、 光導波路デ バイス 3 0を収納するケースの少なくとも一部を構成する金属製 (ステンレス鋼 S U S 3 0 4 ) である。 そして、 この第 2補強部材 1 2 0は、 基準面 1 2 1を有 するとともに、 少なくとも光導波路デバイス 3 0の長手方向が開放された形状を 有する金属板であって、 互いに向い合うよう折り曲げられたエッジ部 1 8 0 (第 3及び第 4エッジ部) 、 1 8 1を有する。 光導波路デバイス 3 0は、 その裏面 3 2 2 (上面 3 2 1 と対向する側) を第 2補強部材 1 2 0の基準面 1 2 1に向い合 せにした状態で、 基準面 1 2 1、 該基準面 1 2 1と連続しているエッジ部 1 8 0 の面 1 2 2、 及び該基準面 1 2 1 と連続しているエッジ部 1 8 1の面 1 2 3とで 定義される空間內に収納される。
この第 3実施例の光導波路モジュールの製造は、 上述された第 1実施例の製造 工程 (図 3〜図 5 ) を経て得られたモジュール (図 6に示された光導波路モジュ —ルと同じ構成) に、 さらに第 2補強部材 1 2 0を被せることにより得られる。 すなわち、 第 2補強部材 1 2 0は、 図 1 6に示されたように、 第 2捕強部材 1 2 0のエッジ部分 1 8 0、 1 8 1を、 図中の矢印 S 7、 S 8で示された方向に押し 広げることにより各エッジ部 1 8 0、 1 8 1の戻り力を利用して、 該エッジ部 1 8 0、 1 8 1で第 1補強部材 1 1 0のエッジ部 1 7 0、 1 7 1を把持することに より、 第 1補強部材 1 1 0と係合する。
以上の製造工程を経て、 図 1 7及び図 1 8に示された光導波路モジュール (第 3実施例) が得られる。 なお、 図 1 7は、 この発明に係る光導波路モジュールの 第 3実施例を示す斜視図であり、 図 1 8は、 図 1 7中の ΠΙ— ΙΠ線に示沿った、 こ の発明に係る光導波路モジュールの第 3実施例の断面構造を示す図である。 この第 3実施例においても、 図 4に示されたような構造を適用することが可能 である。 また、 この第 3実施例における緩衝保護材 4 0 0は、 上述の第 1実施例 の緩衝保護材 4 0 0と同様に機能し、 結果的に、 上述の第 1実施例の光導波路モ ジュールと実質的に同等な作用効果を得ることができる。
第 4実施例
さらに、 この発明に係る光導波路モジュールは、 光導波路デバイス 3 0を有能 するケースを構成する第 1及び第 2補強部材 1 1 0、 1 2 0全体を、 緩衝保護材 4 0 0で包み込むよう構成してもよい。 なお、 このケースは、 光導波路デバイス 3 0の長手方向が開放されている。
この第 4実施例の光導波路モジュールも、 第 2実施例の光導波路モジュールと 同様に、 図 9及び図 1 0に示された工程を経て得られる。
なお、 図 1 9に、 この発明に係る光導波路モジュールの第 4実施例の断面構造 を示す。 この第 4実施例の断面図は、 例えば図 1 1中の Π— Π線に沿った断面に 相当している。 さらに、 この第 4実施例においても、 緩衝保護材 4 0 0は、 上述 の第 1実施例の緩衝保護材 4 0 0と同様に機能し、 結果的に、 上述の第 1実施例 の光導波路モジュールと実質的に同等な作用効果を得ることができる。
ここで、 この発明は上述された実施例に限られるものではなく、 種々の変形を 行うことが可能である。 例えば、 ケース (第 1補強部材 1 1 0、 あるいは第 1及 び第 2補強部材 1 1 0、 1 2 0の両方) 及び光導波路デバィス 3 0を被覆して保 護する緩衝保護材 4 0 0は、 ウレタン榭脂で形成されている。 しかしながら、 こ のウレタン榭脂に代え、 シリコン榭脂またはエポキシ樹脂をこの緩衝保護材 4 0 0として利用してもよい。 この場合も上述された第 1〜第 4実施例と実質的に同 等の作用効果が得られる。
また、 上述された第 1〜第 4実施例において、 光導波路デバイス 3 0を収納す るケースは、 ステンレス鋼であった。 しかしながら、 このステンレス鋼に代え、 チタン金属、 アルミ金属、 またはバネ鋼のいずれかを該ケースの材料として利用 しても、 上述された各実施例と実質的に同等の作用効果が得られる。
また、 上述された各実施例において、 ファイバ支持体 3 1、 導波路基板 3 2 、 及びファイバ支持体 3 3のそれぞれは、 第 1接着剤として紫外線硬化型接着剤に より接合されている。 しかしながら、 この紫外線硬化型接着剤に代え、 熱硬化型 接着剤、 あるいは紫外線硬化触媒と熱硬化触媒とを含む複合型接着剤を第 1接着 剤として利用しても、 各実施例と実質的に同等の作用効果が得られる。
また、 上述された各実施例において、 光導波路 3 2 0は 1入力 8出力型の分岐 器であった。 しかしながら、 一入力多出力型、 多入力一出力型、 あるいは多入力 多出力型のいずれの光導波路を適用しても、 上述された各実施例と実質的に同等 の作用効果が得られる。
さらに、 上述された各実施例において、 入力用光ファイバ 3 4 0は単芯の光フ アイバであり、 出力用光ファイバ 3 6 0は 8芯の光ファイバであった。 しかしな がら、 これら光ファイバを、 光導波路の光入出力型式に対応して、 いかなる本数 の光ファイバを含む構成として入力用及び出力用光ファイバとしてもよい。 また、 この場合も、 上述された各実施例と実質的に同等の作用効果が得られる。
加えて、 図 6に示された光導波路モジュールに第 2補強部材 1 2 0 (図 1 6参 照) を被せることにより、 図 2 0に示されたような光導波路モジュールを構成し てもよい。 図 2 0は、 この発明に係る光導波路モジュールの第 3実施例 (図 1 7 参照) の応用例を示す斜視図である。 この第 3実施例の応用例も緩衝保護材 4 0 0が第 1及び第 2補強部材 1 1 0、 1 2 0の外部にはみ出したエッジ部 4 1 0、 4 2 0を備えており、 図 1 7中のエッジ部品 2 1 0 , 2 2 0は不要である。
また、 図 2 1に示されたように、 図 2 0に示された光導波路モジュールの外周 に再度緩衝保護材 4 0 0を付着させることにより、 図 1 9に示された、 この発明 に係る光導波路モジュールの第 4実施例と同様の構造を備えた光導波路モジユー ルが得られる。 なお、 図 2 1に示された製造方法は、 図 6に示された第 1実施例 にも適用可能であり、 この製造方法 (図 2 1参照) により、 この発明に係る光導 波路モジュールの第 2実施例 (図 1 1及び図 1 2 ) と同様の構造を備えた光導波 路モジュールが得られる。 産業上の利用可能性
以上、 詳細に説明したように、 この発明に係る光導波路モジュールは、 緩衝保 護材が、 ケースの内部に充填されて光導波路デバイス全体を被覆するとともに、 該ケースの、 少なく とも光導波路デバイス (あるいは光ファイバ) の長手方向の 開放領域を閉塞している。
これにより、 この発明に係る光導波路モジュールは、 環境温度に起因した応力 や外部から作用する衝撃などに対して、 緩衝保護材によって光導波路デバイスを 保護させることができる。 加えて、 当該光導波路モジュールは、 入力用光フアイ バと光導波路との間の第 1接合部と、 光導波路と出力用光フアイバとの間の第 2 接合部とにおいて、 それぞれ良好な調心状態が維持されるので、 耐環境特性に優 れた高信頼性を有する。
さらに、 この発明に係る光導波路モジュールは、 従来の光導波路モジュールと 比較して、 パッケージ部品の個数を低減させることができる上に、 材料費や組立 加工費などのコストも低减できるなどの効果がある。

Claims

言青求の範囲
1 . その上面に光導波路が設けられた導波路基板と、 光ファイバの先端に取り 付けられ、 該光導波路の一端と該光ファィバの一端とを光学的に接続させた状態 で該導波路基板に固定された支持部材とを有する光導波路デバイスと、
前記導波路基板と向い合った第 1基準面を有するとともに、 少なく とも前記光 導波路デバイスの長手方向が開放された形状を有する第 1補強部材と、 そして、 少なくとも前記導波路基板と前記支持部材との間の接合部分、 及び前記光ファ ィバの一部を覆うとともに、 前記第 1補強部材の第 1基準面に所定の強度で接着 している緩衝保護材と、 を備えた光導波路モジュール。
2 . 前記緩衝保護材は、 前記第 1補強部材の第 1基準面上における、 該緩衝 保護材と接触している接着面積とその接着力の積が 0 . 5 k g ί以上となるよう な接着力を有することを特徴とする請求項 1記載の光導波路モジュール。
3 . 前記第 1補強部材は、 互いに向い合うよう折り曲げられた第 1及び第 2 エッジ部を有するとともに、
前記光導波路デバイスの少なくとも一部は、 前記第 1基準面、 該第 1基準面と 連続している前記第 1エッジ部の第 1面、 及び該第 1基準面と連続している前記 第 2エッジ部の第 2面とで定義される空間内に収納されていることを特徴とする 請求項 1記載の光導波路モジュール。
4 . 前記緩衝保護材は、 その一部が前記第 1補強部材の外部にはみ出してい ることを特徴とする請求項 3記載の光導波路モジュール。
5 . 前記光ファイバを貫通させるための貫通孔を有するとともに、 前記緩衝 保護材に接着される接着面を有するエッジ部品を備えたことを特徴とする請求項 3記載の光導波路モジュ一ル。
6 . 前記緩衝保護材は、 少なく ともその一部が前記光導波路デバイス全体を 覆った状態で、 前記第 1補強部材の前記第 1基準面、 該第 1基準面と連続してい る前記第 1ェッジ部の第 1面、 及び該第 1基準面と連続している前記第 2エッジ 部の第 2面とで定義される空間内に提供されるとともに、 該第 1補強部材全体を 包み込んでいることを特徴とする請求項 3記載の光導波路モジュール。
7 . 前記導波路基板と向い合った第 2基準面を有するとともに、 少なく とも 前記光導波路デバイスの長手方向が開放された形状を有する部材であって、 互い に向い合うよう折り曲げられた第 3及び第 4エッジ部を有する第 2補強部材をさ らに備えるとともに、
該第 2捕強部材は、 その第 2基準面が前記第 1補強部材の第 1基準面と前記光 導波路デバイスを介して対向するよう配置されていることを特徴とする請求項 3 記載の光導波路モジュール。
8 . 前記第 2補強部材は、 前記第 3及び第 4エッジ部が、 前記第 1補強部材 の第 1及び第 2エツジ部を把持することにより、 該第 1補強部材と係合している ことを特徴とする請求項 7記載の光導波路モジュール。
9 . 前記緩衝保護材は、 前記光導波路デバイス全体を覆った状態で、 前記第 1補強部材全体及び第 2補強部材全体を包み込んでいることを特徴とする請求項 7記載の光導波路モジュール。
1 0 . 前記緩衝保護材は、 硬化後に 1 k g f Z c m 2〜2 O k g f Z c m 2の 範囲内の弾性率を有することを特徴とする請求項 1記載の光導波路モジュール。
1 1 . その上面に光導波路が設けられた導波路基板と、 光ファイバの先端に 取り付けられ、 該光導波路の一端と該光フアイバの一端とを光学的に接続させた 状態で該導波路基板の端面に固定された支持部材とを有する光導波路デバイスと、 前記導波路基板と向い合った第 1基準面を有するとともに、 互いに向い合うよ う折り曲げられた第 1及び第 2エッジ部を有する部材であって、 少なく とも前記 光導波路デバイスの長手方向が開放された形状を有する第 1補強部材と、
少なくとも前記導波路基板と前記支持部材との間の接合部分、 及び前記光ファ ィバの一部を覆った状態で、 少なくともその一部は前記第 1基準面、 該第 1基準 面と連続している前記第 1エッジ部の第 1面、 及び該第 1基準面と連続している 前記第 2エッジ部の第 2面とで定義される空間内に提供され、 前記第 1捕強部材 の第 1基準面に所定の強度で接着している緩衝保護材と、 を備えた光導波路モジ ュ一ル0
1 2 . 前記緩衝保護材は、 前記第 1補強部材の第 1基準面上における、 該緩 衝保護材と接触している接着面積とその接着力の積が 0 . 5 k g f 以上となるよ うな接着力を有することを特徴とする請求項 1 1記載の光導波路モジュール。
1 3 . 前記緩衝保護材は、 その一部が前記第 1補強部材の外部にはみ出して いることを特徴とする請求項 1 1記載の光導波路モジュール。
1 4 . 前記光ファイバを貫通させるための貫通孔を有するとともに、 前記緩 衝保護材に接着される接着面を有するエッジ部品を備えたことを特徴とする請求 項 1 1記載の光導波路モジュール。
1 5 . 前記緩衝保護材は、 前記光導波路デバイス全体を覆った状態で、 前記 第 1補強部材全体を包み込んでいることを特徴とする請求項 1 1記載の光導波路 モジュ一ノレ。
1 6 . 前記導波路基板と向い合った第 2基準面を有するとともに、 少なくと も前記光導波路デバイスの長手方向が開放された形状を有する部材であって、 互 いに向い合うよう折り曲げられた第 3及び第 4エッジ部を有する第 2補強部材を さらに備えるとともに、
該第 2捕強部材は、 その第 2基準面が前記第 1補強部材の第 1基準面と前記光 導波路デバイスを介して対向するよう配置されていることを特徴とする請求項 1 1記載の光導波路モジュール。
1 7 . 前記第 2補強部材は、 前記第 3及び第 4エッジ部が、 前記第 1補強部 材の第 1及び第 2エツジ部を把持することにより、 該第 1補強部材と係合してい ることを特徴とする請求項 1 6記載の光導波路モジュール。
1 8 . 前記緩衝保護材は、 前記光導波路デバイス全体を覆った状態で、 前記 第 1補強部材全体及び第 2補強部材全体を包み込んでいることを特徴とする請求 項 16記載の光導波路モジュール。
1 9. 前記緩衝保護材は、 硬化後に 1 k g f Zcm2〜2 O k g f Zc m2の 範囲内の弾性率を有することを特徴とする請求項 1 1記載の光導波路モジュール。
PCT/JP1997/000137 1996-01-26 1997-01-22 Module de guide d'ondes lumineuses WO1997027505A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP52673297A JP3497510B2 (ja) 1996-01-26 1997-01-22 光導波路モジュール
IL12170497A IL121704A (en) 1996-01-26 1997-01-22 Optical waveguide module
EP97901256A EP0819959A4 (en) 1996-01-26 1997-01-22 LIGHT WAVE GUIDE MODULE
US08/913,491 US5999674A (en) 1996-01-26 1997-01-22 Optical waveguide module with reinforcing member and buffer protector
AU14564/97A AU734053B2 (en) 1996-01-26 1997-01-22 Light waveguide module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1202596 1996-01-26
JP8/12025 1996-01-26

Publications (1)

Publication Number Publication Date
WO1997027505A1 true WO1997027505A1 (fr) 1997-07-31

Family

ID=11794077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000137 WO1997027505A1 (fr) 1996-01-26 1997-01-22 Module de guide d'ondes lumineuses

Country Status (9)

Country Link
US (1) US5999674A (ja)
EP (1) EP0819959A4 (ja)
JP (1) JP3497510B2 (ja)
KR (1) KR100394111B1 (ja)
AU (1) AU734053B2 (ja)
CA (1) CA2214982A1 (ja)
IL (1) IL121704A (ja)
TW (1) TW369615B (ja)
WO (1) WO1997027505A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085532A (ja) * 2012-10-24 2014-05-12 Mitsubishi Cable Ind Ltd 光ファイバアレイ
JP2020112656A (ja) * 2019-01-10 2020-07-27 住友ベークライト株式会社 光配線部品、光配線部品の製造方法および電子機器
JP7491102B2 (ja) 2020-07-09 2024-05-28 住友ベークライト株式会社 光分配器および電子機器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067418A4 (en) * 1998-03-12 2005-11-16 Tomoegawa Paper Co Ltd OPTICAL CONNECTION COMPONENT AND CORRESPONDING PRODUCTION METHOD
EP0961145A1 (en) * 1998-05-25 1999-12-01 Alcatel Two-part device and method for protecting optoelectronic units
US6428217B1 (en) * 1999-04-07 2002-08-06 Jds Uniphase Corporation Apparatus and method for encapsulation of an optical fiber splice
JP3702134B2 (ja) * 1999-11-18 2005-10-05 株式会社巴川製紙所 光学接続部品の作製方法
US6594437B1 (en) * 2000-08-15 2003-07-15 Fci Americas Technology, Inc. Optical fiber separation and regrouping device
JP4652594B2 (ja) * 2001-03-19 2011-03-16 古河電気工業株式会社 光モジュール
US6834154B2 (en) 2001-07-24 2004-12-21 3M Innovative Properties Co. Tooling fixture for packaged optical micro-mechanical devices
US6798954B2 (en) 2001-07-24 2004-09-28 3M Innovative Properties Company Packaged optical micro-mechanical device
US6771859B2 (en) 2001-07-24 2004-08-03 3M Innovative Properties Company Self-aligning optical micro-mechanical device package
JP2003149491A (ja) * 2001-11-15 2003-05-21 Furukawa Electric Co Ltd:The 光導波回路モジュール
EP1338905A1 (en) * 2002-02-21 2003-08-27 Corning Incorporated Optical waveguide end facet coupling
US10247889B1 (en) * 2018-05-15 2019-04-02 Te Connectivity Corporation Overmolded breakout
US11119284B2 (en) * 2018-08-31 2021-09-14 Go!Foton Holdings, Inc. Integrated connector cable
JP2020181045A (ja) * 2019-04-24 2020-11-05 日本電信電話株式会社 光モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277704A (ja) * 1988-09-14 1990-03-16 Mitsubishi Gas Chem Co Inc 光導波路装置
JPH0527139A (ja) * 1991-07-08 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> 光導波回路モジユール
JPH07128538A (ja) * 1993-11-02 1995-05-19 Sumitomo Electric Ind Ltd ファイバユニット、光導波路ユニット及び光導波路モジュール
JPH07140349A (ja) * 1993-11-16 1995-06-02 Sumitomo Electric Ind Ltd 光導波路モジュールの製造方法
JPH0894876A (ja) * 1994-09-29 1996-04-12 Kyocera Corp 光導波路モジュール
JPH08286073A (ja) * 1995-04-18 1996-11-01 Sumitomo Electric Ind Ltd 光導波路の実装用パッケージ構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652912B1 (fr) * 1989-10-09 1994-02-25 Corning Glass Works Procede d'encapsulage d'un composant optique d'interconnexion de fibres optiques, composant encapsule obtenu par la mise en óoeuvre de ce procede et enveloppe formant partie de ce composant.
CA2083983A1 (en) * 1992-01-27 1993-07-28 Kishor P. Gadkaree Low expansion composition for packaging optical waveguide couplers
JP3136741B2 (ja) * 1992-02-07 2001-02-19 住友電気工業株式会社 光ファイバ補強方法
AU668648B2 (en) * 1993-05-26 1996-05-09 Sumitomo Electric Industries, Ltd. Optical waveguide module and method of manufacturing the same
CA2127861C (en) * 1993-07-14 2004-09-21 Shinji Ishikawa Coupling structure of optical fibers and optical waveguides
JPH0792342A (ja) * 1993-07-29 1995-04-07 Sumitomo Electric Ind Ltd 光導波路モジュール
KR100217701B1 (ko) * 1993-12-28 1999-09-01 구라우치 노리타카 광디바이스모듈 및 그 제조방법
DE69521567T2 (de) * 1994-07-21 2002-05-23 Sumitomo Electric Industries, Ltd. Optisches Wellenleitermodul mit einem Substrat aus einem bestimmten Material und einem Ferrule aus einem anderen Material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277704A (ja) * 1988-09-14 1990-03-16 Mitsubishi Gas Chem Co Inc 光導波路装置
JPH0527139A (ja) * 1991-07-08 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> 光導波回路モジユール
JPH07128538A (ja) * 1993-11-02 1995-05-19 Sumitomo Electric Ind Ltd ファイバユニット、光導波路ユニット及び光導波路モジュール
JPH07140349A (ja) * 1993-11-16 1995-06-02 Sumitomo Electric Ind Ltd 光導波路モジュールの製造方法
JPH0894876A (ja) * 1994-09-29 1996-04-12 Kyocera Corp 光導波路モジュール
JPH08286073A (ja) * 1995-04-18 1996-11-01 Sumitomo Electric Ind Ltd 光導波路の実装用パッケージ構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085532A (ja) * 2012-10-24 2014-05-12 Mitsubishi Cable Ind Ltd 光ファイバアレイ
JP2020112656A (ja) * 2019-01-10 2020-07-27 住友ベークライト株式会社 光配線部品、光配線部品の製造方法および電子機器
JP7491102B2 (ja) 2020-07-09 2024-05-28 住友ベークライト株式会社 光分配器および電子機器

Also Published As

Publication number Publication date
AU734053B2 (en) 2001-05-31
IL121704A0 (en) 1998-02-22
EP0819959A1 (en) 1998-01-21
IL121704A (en) 2000-12-06
KR19980703285A (ko) 1998-10-15
EP0819959A4 (en) 1998-04-08
AU1456497A (en) 1997-08-20
TW369615B (en) 1999-09-11
US5999674A (en) 1999-12-07
JP3497510B2 (ja) 2004-02-16
KR100394111B1 (ko) 2003-10-22
CA2214982A1 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
WO1997027505A1 (fr) Module de guide d&#39;ondes lumineuses
EP0636909B1 (en) Optical waveguide module and method of producing such module
JP3259742B2 (ja) 光導波路モジュール
JP5734709B2 (ja) 光コネクタ及び電子情報機器
EP0556483A1 (en) Reinforced optical fiber and method of manufacture
GB2268813A (en) Fibre coupling for packaged optical devices
US5673345A (en) Package with optical waveguide module mounted therein
KR100217701B1 (ko) 광디바이스모듈 및 그 제조방법
US5627930A (en) Arrayed optical fiber coupler and method of manufacturing the same
JP2001033664A (ja) 光ファイバブロック
JPH0273207A (ja) 光導波路部品の実装構造
WO2008007701A1 (fr) Dispositif de guide d&#39;onde optique
JPH1172641A (ja) メカニカルスプライス部品
JP3085344B2 (ja) 光モジュール
JP4872551B2 (ja) メカニカルスプライス
JP3925862B2 (ja) 光素子モジュール
CN110770618B (zh) 光纤构件
EP1680698B1 (en) Anchor for fiber optic cable
US7203410B2 (en) Method and apparatus for attaching an optical fiber to a fiber array substrate
JPH05107425A (ja) 光フアイバ付光波回路
JP2006030552A (ja) 光導波路結合体を収容したパッケージ部品及びその製造方法
JPH0854537A (ja) 光ファイバ及び光導波路モジュールの結合体及び結合方法
JP2005024782A (ja) 光導波路パッケージ
KR100204453B1 (ko) 광도파로모듈
JPH0419701A (ja) 光導波路部品の実装構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190045.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IL JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2214982

Country of ref document: CA

Ref document number: 2214982

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970706689

Country of ref document: KR

Ref document number: 08913491

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997901256

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997901256

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970706689

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970706689

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997901256

Country of ref document: EP