WO1997023243A1 - Branched hydrazone linkers - Google Patents
Branched hydrazone linkers Download PDFInfo
- Publication number
- WO1997023243A1 WO1997023243A1 PCT/US1996/020513 US9620513W WO9723243A1 WO 1997023243 A1 WO1997023243 A1 WO 1997023243A1 US 9620513 W US9620513 W US 9620513W WO 9723243 A1 WO9723243 A1 WO 9723243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- integer
- formula
- conjugate
- drug
- moiety
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 CCNC(*)=O Chemical compound CCNC(*)=O 0.000 description 2
- PYFSCIWXNSXGNS-UHFFFAOYSA-N CCC(C)NC Chemical compound CCC(C)NC PYFSCIWXNSXGNS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/44—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
- C07D207/444—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
- C07D207/448—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
- C07D207/452—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6889—Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C281/00—Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
- C07C281/02—Compounds containing any of the groups, e.g. carbazates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
- C07H15/24—Condensed ring systems having three or more rings
- C07H15/252—Naphthacene radicals, e.g. daunomycins, adriamycins
Definitions
- bifunctional compounds which link cytotoxic reagents to antibodies are known in the art. These compounds have been particularly useful in the formation of immunoconjugates directed against tumor associated antigens. Such immunoconjugates allow the selective delivery of toxic drugs to tumor cells.
- acylhydrazine compound 3-(2-pyridyl-dithio)propionyl hydrazide conjugated via an acylhydrazone bond to the 13-keto position of an anthracycline molecule
- Kaneko et al. (U.S. Serial No. 07/522,996, filed May 14, 1990, which is equivalent to European Patent
- the linkers contain a reactive pyridinyldithioor an ortho-nitrophenyldithio- group, by which the linker reacts with a suitable group attached to a cell reactive ligand, to form the completed conjugate.
- a reactive pyridinyldithioor an ortho-nitrophenyldithio- group by which the linker reacts with a suitable group attached to a cell reactive ligand, to form the completed conjugate.
- immunoglobulin achievable. It would be highly desirable to have immunoconjugates which provide a higher ratio of drug to targeting ligand.
- the present invention provides novel branched hydrazone linkers.
- the novel linkers are used to prepare novel drug/linker molecules and biologically active conjugates composed of a targeting ligand, a
- a therapeutically active drug and a branched linker capable of recognizing a selected target cell population (e.g., tumor cells) via the targeting ligand.
- drug/linker As used herein the term “drug/linker” or
- linker/drug molecule refers to the linker molecule coupled to two or more therapeutically active drug molecules
- conjuggate refers to the drug/linker molecule coupled to the targeting ligand.
- the linkers are branched so that more than one drug molecule per linker are coupled to the ligand.
- the number of drugs attached to each linker varies by a factor of 2 for each generation of branching.
- the number of drug molecules per molecule of linker can be 2, 4, 8, 16, 32, 64, etc.
- the factor of branching can be expressed mathematically as 2 n wherein n is a positive integer.
- a singly branched linker will have a first generation of branching or 2 1 , i.e., contains two drug molecules per linker.
- a doubly branched linker will have a second generation of branching or 2 2 , i.e., contains four drug molecules per linker.
- the present invention is directed to a branched linker for linking a thiol group derived from a targeting ligand to two or more drug moieties which comprises a compound having a terminus containing a thiol acceptor for binding to a thiol group (also called a sulfhydryl group) derived from a targeting ligand, at least one point of branching which is a polyvalent atom allowing for a level of branching of 2 n wherein n is a positive integer, and at least two other termini
- n 1, 2, 3, or 4; more preferably 1, 2 or 3; most preferably 1 or 2.
- the polyvalent atom is carbon or nitrogen, and the targeting ligand is an antibody or fragment thereof.
- the phrase "thiol group derived from the targeting ligand” means that the thiol group is already present on the targeting ligand or that the targeting ligand is chemically modified to contain a thiol group, which modification optionally includes a thiol spacer group between the targeting ligand and the thiol group.
- the phrase “an aldehyde or keto group derived from a drug moiety” means that the aldehyde or keto group is already present on the drug or the drug is chemically modified to contain an aldehyde or keto group.
- Also provided by the invention are intermediates for preparing the linkers, drug/linkers and/or conjugates; and a method for treating or preventing a selected disease state which comprises administering to a patient a conjugate of the invention.
- Figure 1 In vitro potency of BR96 straight chains hydrazone and branched hydrazone conjugates following various exposure times as described in Example 62.
- — ⁇ — represents BR96 MCDOXHZN and - - - ⁇ - - - represents BR96 MB-Glu-(DOX) 2 .
- FIGS. 2 In vitro potency of IgG straight chain hydrazone and branched hydrazone conjugates following various exposure times as described in Example 62.
- — ⁇ — represents IgG MCDOXHZN and — ⁇ — represents IgG MB-Glu-(DOX) 2 .
- the molecules are linked to the targeting ligand via the linker of the invention.
- the drug is attached to the linker through an acylhydrazone bond.
- the targeting ligand is attached to the linker through a thioether bond.
- the thioether bond is created by reaction of a sulfhydryl (thiol) group on the ligand, or on a short "thiol spacer" moiety attached to the ligand, with a thiol acceptor.
- the thiol acceptor can be a Michael Addition acceptor which becomes, after the reaction, a Michael Addition adduct.
- the targeting ligand is attached directly to the linker through a covalent thioether bond without a thiol spacer.
- A is a thiol acceptor
- Q is a bridging group
- b is an integer of 0 or 1;
- W is a spacer moiety
- n is an integer of 0 or 1;
- a is an integer of 2, 3 or 4;
- X is a moiety of the formula -NH-NH 2 or
- W, a, b and m are as defined
- X 1 is a moiety of the formula -NH-NH 2 or - or a moiety of the formula
- W, a, b, and m are defined hereinbefore, and X 2 is a moiety of the formula NH-NH 2 or
- W, a, b, and m are as defined hereinbefore, and
- X 3 is a moiety of the formula
- W, a, b and m are as defined hereinbefore, and X 4 is a moiety of the formula -NH-NH 2 or
- n is an integer of 1 to 6
- a is an integer of 0 or 1
- j is an integer of 2 to 6
- c is an integer of 0 or 1
- A is a thiol acceptor
- T is of the formula
- d is an integer of 2 to 6
- n 1 or 2
- f is an integer of 0 or 1
- b is an integer of 0 or 1
- g is an integer of 1 or 2
- X is a moiety of the formula -NH-NH 2 or
- Preferred branched linkers of formula II are where d is 2 , f is 0 , g is 1 , and/or b is 0 .
- Specific preferred compounds of formula II have the following formulae
- a is an integer of 0, 1, 2, or 3
- n is an integer of 1 to 6
- n is an integer of 0 or 1
- X 5 is an anthracycline antibiotic
- n is an integer of 1 to 6
- a is an integer of 0, 1, 2, or 3
- n is an integer of 0 or 1
- X 5 is an anthracycline antibiotic
- Preferred novel conjugates prepared from the drug/linker molecules of the invention have the formula
- A is a thiol adduct
- W is a spacer moiety
- n is an integer of 0 or 1
- a is an integer of 2, 3, or 4,
- b is an integer of 0 or 1
- p is an integer of 1 to 6
- Y is O or NH 2 + Cl-
- z is an integer of 0 or 1
- q is an integer of 1 to 10
- G is a targeting ligand
- W, a, and m are defined hereinbefore, and
- A is a thiol adduct
- n is an integer of 1 to 6
- a is an integer of 0 or 1
- j is an integer of 2 to 6
- c is an integer of 0 or 1
- p is an integer of 1 to 6
- Y is O or NH 2 + Cl-
- z is an integer of 0 or 1
- q is an integer of 1 to 10
- G is a targeting ligand
- T is of the formula
- d is an integer of 2 to 6
- m is an integer of 1 or 2
- f is an integer of 0 or 1
- b is an integer of 0 or 1
- g is an integer of 1 or 2
- anthracycline antibiotic and the ligand is an antibody.
- anthracycline is bound to the linker through an acylhydrazone bond at the 13-keto position of the anthracycline compound.
- the targeting ligand preferably an antibody or fragment thereof, then is bound, through the linker, to the anthracycline compound. In an especially preferred embodiment, this linkage occurs through a reduced
- disulfide group i.e. a free sulfhydryl or thiol group (-SH) on an antibody.
- anthracycline drug moiety is adriamycin, the thiol acceptor ia a
- Addition adduct is derived, especially a maleimido-group, and the antibody moiety is a chimeric or humanized antibody.
- compositions such as one comprising a pharmaceutically effective amount of a compound of Formula III or IV associated with a
- the present invention provides novel branched linker/drug molecules composed of a drug, and a
- thioether-containing linker having at least two drug molecules which can be joined to a ligand capable of targeting a selected cell population.
- the drugs are joined to the linker through an acylhydrazone bond.
- the point of branching is a polyvalent atom, preferably a carbon atom or nitrogen atom.
- the ligand is joined directly to the linker through a thioether bond. Normally, this bond will be created by reaction of a reactive sulfhydryl (-SH) group on the ligand, or on a spacer moiety (e.g., one derived from the SPDP or iminothiolane chemistry described below), with a thiol acceptor such as a Michael Addition acceptor.
- a reactive sulfhydryl (-SH) group on the ligand, or on a spacer moiety (e.g., one derived from the SPDP or iminothiolane chemistry described below), with a thiol acceptor such as
- the invention also provides methods for the
- the conjugates comprise at least two drug molecules connected by a linker of the invention to a targeting ligand molecule that is reactive with the desired target cell population.
- the targeting ligand molecule can be an immunoreactive protein such as an antibody, or fragment thereof, a non-immunoreactive protein or peptide ligand such as bombesin or, a binding ligand recognizing a cell associated receptor such as a lectin or steroid molecule.
- spacer refers to a bifunctional chemical moiety which is capable of
- the "W" spacer links a keto group to a nitrogen atom. Examples of spacer molecules are described in S.S. Wong, Chemistry of Protein Conjugation and Crosslinking, CRC Press,
- g is an integer of 1 to 6, preferably 2 to 4, more preferably 2.
- the most preferred spacer has the formula
- the bridging group is a bifunctional chemical moiety which is capable of covalenting linking together two spaced chemical moieties into a stable tripartate
- bridging group "Q" covalently links the thiol acceptor to a keto moiety.
- An example of a bridging group has the formula
- f is an integer of 0 to 10
- h is an integer of 0 to 10
- g is an integer of 0 or 1
- Z is S, O, NH, SO 2 , phenyl, naphthyl, a
- Preferred cycloaliphatic moieties include
- heteroaromatic moieties include pyridyl, furanyl, pyranyl, pyrimidinyl, pyrazinyl, pyridazinyl, oxazinyl, pyrrolyl, thiazolyl, morpholinyl, and the like.
- f + h is an integer of 2 to 6 preferably 2 to 4 and more preferably 2.
- f is 0 , 1 or 2
- h 0, 1 or 2.
- the thiol acceptor "A" is linked to the ligand via a sulfur atom derived from the ligand.
- the thiol acceptor becomes a thiol adduct after bonding to the ligand through a thiol group via a thioester bond.
- the thiol acceptor can be , for example, an alpha-substitited acetyl group.
- Y is a leaving group.
- leaving groups include Cl, Br, I, meaylate, tosylate, and the like.
- the thiol acceptor is an alpha-substituted acetyl group, the thiol adduct after linkage to the ligand forms the bond -S-CH 2 -
- the thiol acceptor is a Michael Addition acceptor.
- a representative Michael Addition acceptor of this invention has the formula
- Michael Addition acceptor After linkage to the ligand, the Michael Addition acceptor becomes a Michael Addition adduct, such as of the formula A
- the drug of the drug/linker molecule and conjugates of the present invention are effective for the usual purposes for which the corresponding drugs are effective, and have superior efficacy because of the ability, inherent in the ligand, to transport the drug to the desired cell where it is of particular benefit. Further, because the conjugates of the invention can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents.
- cytotoxic drugs particularly those which are used for cancer therapy.
- Such drugs include, in general, DNA damaging agents, anti-metabolites, natural products and their analogs.
- Preferred classes of cytotoxic agents include the anthracycline family of drugs.
- Particularly useful members of that class include, for example, daunorubicin, doxorubicin, carminomycin, morpholino doxorubicin, diacetylpentyl doxorubicin and their
- D is a drug moiety having pendant to the backbone thereof a chemically reactive functional group by means of which the drug backbone is bonded to the linker, said functional group selected from the group consisting of an aldehyde or a ketone.
- cytotoxic agents for use as drugs in the present invention include drugs of the following formula:
- R 1 is -CH 3 , -CH 2 OH, -CH 2 OCO ⁇ CH 2 ) 3 CH 3 or - CH 2 OCOCH(OC 2 H 5 ) 2
- R 2 is -OCH 3 , -OH or -H
- R 3 is -NH 2 , -NHCOCF 3 , 4-morpholinyl, 3-cyano-4- morpholinyl, 1-piperidinyl, 4-methoxy-1-piperidinyl, benzylamine, dibenzylamine, cyanomethylamine, 1-cyano-2- methoxyethyl amine, or NH-(CH 2 ) 4 -CH(OAc) 2 ;
- R 4 is -OH, -OTHP, or -H
- R 5 is -OH or -H provided that R 5 is not -OH when R 4 is -OH or -OTHP.
- Formula (V) includes compounds which are drugs, or are derivatives of drugs, which have acquired in the art different generic or trivial names.
- Table I which follows, represents a number of anthracycline drugs and their generic or trivial names and which are especially preferred for use in the present invention.
- Doxorubicin also be a highly preferred drug is Doxorubicin.
- Doxorubicin also be a highly preferred drug is Doxorubicin.
- Doxorubicin also be a highly preferred drug is Doxorubicin.
- DOX is that anthracycline shown on Table I in which R 1 is -CH 2 OH, R 3 is -OCH 3 , R 4 is -NH 2 ,
- R 5 is -OH, and R 6 is -H.
- the "ligand” includes within its scope any molecule that specifically binds or reactively associates or complexes with a receptor or other receptive moiety associated with a given target cell population.
- This cell reactive molecule, to which the drug reagent is linked via the linker in the conjugate, can be any molecule that binds to, complexes with or reacts with the cell population sought to be therapeutically or otherwise biologically modified and, which possesses a free
- the cell reactive molecule acts to deliver the therapeutically active drug moiety to the particular target cell population with which the ligand reacts.
- Such molecules include, but are not limited to, large molecular weight proteins such as, for example, antibodies, smaller molecular weight proteins, polypeptides or peptide ligands, and non-peptidyl ligands.
- the non-immunoreactive protein, polypeptide, or peptide ligands which can be used to form the conjugates of this invention may include, but are not limited to, transferrin, epidermal growth factors ("EGF"), bombesin, gastrin, gastrin-releasing peptide, platelet-derived growth factor, IL-2, IL-6, tumor growth factors ("TGF”), such as TGF-a and TGF-b, vaccinia growth factor (“VGF”), insulin and insulin-like growth factors I and II.
- Non-peptidyl ligands may include, for example, carbohydrates, lectins, and apoprotein from low density lipoprotein.
- the immunoreactive ligands comprise in antigen-recognizing immunoglobulin (also referred to as antigen-recognizing immunoglobulin (also referred to as antigen-recognizing immunoglobulin (also referred to as antigen-recognizing immunoglobulin (also referred to as antigen-recognizing immunoglobulin (also referred to as antigen-recognizing immunoglobulin (also referred to as antigen-recognizing immunoglobulin (also referred to as antigen-recognizing immunoglobulin (also referred to as
- immunoglobulin or an antigen-recognizing fragment thereof.
- immunoglobulins are those having the following properties of the amino acids
- immunoglobulins which can recognize a tumor-associated antigen.
- immunoglobulin may refer to any recognized class or subclass of immunoglobulins such as IgG, IgA, IgM, IgD, or IgE. Preferred are those
- immunoglobulins which fall within the IgG class of immunoglobulins.
- the immunoglobuin can be derived from any species. Preferably, however, the immunoglobulin is of human, murine, or rabbit origin. Furthermore, the immunoglobulin may be polyclonal or monoclonal,
- immunoglobulin fragments may include, for example, the Fab", F(ab') 2 , F v or Fab fragments, or other antigen recognizing immunoglobulin fragments.
- immunoglobulin fragments can be prepared, for example, by proteolytic enzyme digestion, for example, by pepsin or papain digestion, reductive alkylation, or recombinant techniques.
- proteolytic enzyme digestion for example, by pepsin or papain digestion, reductive alkylation, or recombinant techniques.
- the materials and methods for preparing such immunoglobulin fragments are well-known to those skilled in the art. See generally, Parham, J. Immunology, 131, 2895 (1983); Lamoyi et al., J. Iinmunological Methods, 56, 235 (1983); Parham, id. , 53, 133 (1982); and Matthew et al., id ., 50, 239 (1982).
- the immunoglobulin can be a "chimeric antibody" as that term is recognized in the art. Also the
- immunoglobulin may be a "bifunctional" or “hybrid” antibody, that is, an antibody which may have one arm having a specificity for one antigenic site, such as a tumor associated antigen while the other arm recognizes a different target, for example, a hapten which is, or to which is bound, an agent lethal to the antigen-bearing tumor cell.
- the bifunctional antibody may be one in which each arm has specificity for a different epitope of a tumor associated antigen of the cell to be therapeutically or biologically modified.
- the hybrid antibodies have a dual specificity, preferably with one or more binding sites specific for the hapten of choice or more or more binding sites specific for a target antigen, for example, an antigen associated with a tumor, an infectious organism, or other disease state.
- hybrid or bifunctional antibodies may be derived, as noted, either biologically, by cell fusion techniques, or chemically, especially with cross-linking agents or disulfide bridge-forming reagents, and may be comprised of whole antibodies and/or fragments thereof. Methods for obtaining such hybrid antibodies are disclosed, for example, in PCT Application WO83/03679, published
- bifunctional antibodies are those biologically prepared from a "polydoma” or "quadroma” or which are
- cross-linking agents such as bis- (maleimido) -methyl ether (“BMME”), or with other cross-linking agents familiar to those skilled in the art.
- BMME bis- (maleimido) -methyl ether
- the immunoglobulin may be a single chain antibody ("SCA”). These may consist of single chain Fv fragments (“scFv”) in which the variable light (“V L ”) and variable heavy (“VH”) domains are linked by a peptide bridge or by disulfide bonds. Also, the immunoglobulin may consist of single V H domains (dAbs) which possess antigen-binding activity. See, e.g., G. Winter and C. Milstein, Nature, 349, 295 (1991); R. Glockshuber et al.,
- chimeric monoclonal antibodies preferably those chimeric antibodies having specificity toward a tumor associated antigen.
- chimeric antibody refers to a monoclonal antibody comprising a variable region, i.e. , binding region, from one source or species and at least a portion of a
- chimeric antibodies comprising a murine variable region and a human constant region are especially preferred in certain applications of the invention, particularly human therapy, because such antibodies are readily prepared and may be less immunogenic than purely murine monoclonal antibodies.
- Such murine/human chimeric antibodies are the product of expressed immunoglobulin genes comprising DNA segments encoding murine immungobulin constant regions .
- Other forms of chimeric antibodies encompassed by the invention are those in which the class or subclass has been modified or changed from that of the original antibody. Such "chimeric" antibodies are also referred to as "class-switched antibodies”.
- chimeric antibody is the concept of "humanized antibody”, that is those antibodies in which the framework or “complementarity determining regions (“CDR") have been modified to comprise the CDR of an immunoglobulin of different specificitry as compared to that of the parent immunoglobulin.
- CDR complementarity determining regions
- a murine CDR is grafted into the framework region of a human antibody to prepare the "humanized antibody”. See, e.g., L. Riechmann et al., Nature 332, 323 (1988); M. S. Neuberger et al., Nature 314, 268 (1985).
- Particularly preferred CDR's correspond to those representing sequences recognizing the antigens noted above for the chimeric and bifunctional antibodies.
- the reader is referred to the teaching of EPA 0 239 400 (published September 30, 1987), incorporated herein by reference, for its teaching of CDR modified antibodies.
- bifunctional-chimeric antibody can be prepared which would have the benefits of lower immunogenicity of the chimeric or humanized antibody, as well as the
- bifunctional-chimeric antibodies can be synthesized, for instance, by chemical synthesis using cross-linking agents and/or recombinant methods of the type described above.
- the present invention should not be construed as limited in scope by any particular method of production of an antibody whether bifunctional, chimeric, bifunctional-chimeric, humanized, or an antigen-recognizing fragment or derivative thereof.
- the invention encompasses within its scope immunoglobulins (as defined above) or
- immunoglobulin fragments to which are fused active proteins for example, an enzyme of the type disclosed in
- antibody constructions also include, within their individual contexts constructions comprising antigen recognizing fragments. As one skilled in the art will recognize, such fragments could be prepared by traditional enzymatic cleavage of intact bifunctional, chimeric, humanized, or chimeric-bifunctional antibodies. If, however, intact antibodies are not susceptible to such cleavage, because of the nature of the construction involved, the noted
- constructions can be prepared with immunoglobulin fragments used as the starting materials; or, if recombinant techniques are used, the DNA sequences, themselves, can be tailored to encode the desired
- fragment which, when expressed, can be combined in vivo or in vitro, by chemical or biological means, to prepare the final desired intact immunoglobulin "fragment". It is in this context, therefore, that the term “fragment” is used.
- the immunoglobulin (antibody), or fragment thereof, used in the present invention may be polyclonal or monoclonal in nature.
- Monoclonal antibodies are the preferred immunoglobulins, however.
- the preparation of such polyclonal or telomeres are the preferred immunoglobulins, however.
- the preparation of such polyclonal or telomeres are the preferred immunoglobulins, however.
- hybridomas and which are useful in the practice of the present invention are publicly available from sources such as the American Type Culture Collection ("ATCC”) 12301 Parklawn Drive, Rockville, Maryland 20852 or, commercially, for example, from Boehringer-Mannheim
- monoclonal antibodies for use in the present invention are those which recognize tumor associated antigens.
- Such monoclonal antibodies are not to be so limited, however, and may include, for example, the following (the disclosures of which are incorporated herein by reference):
- the ligand containing conjugate is derived from chimeric antibody BR96,
- ChiBR96 is an internalizing murine/human chimeric antibody and is reactive, ad noted, with the fucosylated Lewis Y antigen expressed by human carcinoma cells such as those derived from breast, lung, colon, and ovarian carcinomas. Modified and/or humanized BR96 antibody can also be used in the present invention.
- immunoglobulin or “antibody” encompasses within its meaning all of the
- the conjugates of the invention demonstrate improved activity relative to linear conjugates.
- the present invention also encompasses pharmaceutical compositions, combinations and methods for treating diseases such as cancers and other tumors, non-cytocidal viral or other pathogenic infections, and auto-immune diseases. More particularly, the invention includes methods for treating disease in mammals wherein a pharmaceutically effective amount of at least one conjugate of the invention is administered in a pharmaceutically acceptable manner to the host mammal, preferably humans.
- an embodiment of this invention may involve the use of a number of conjugates wherein the specificity of the antibody component of the conjugate varies, i.e., a number of conjugates are used, each one having an antibody that binds specifically to a different antigen or to different sites or epitopes on the same antigen or to different sites or epitopes on the same antigen present on the cell population of interest.
- the drug component of these conjugates may be the same or may vary.
- this embodiment may be especially useful in the treatment of certain tumors where the amounts of the various antigens on the surface of a tumor is unknown or the tumor cell population is heterogeneous in antigen expression and one wants to be certain that a sufficient amount of drug is targeted to all of the tumor cells at the tumor site.
- this embodiment is important for achieving a high degree of specificity for the tumor because the likelihood that normal tissue will possess all of the same tumor-associated antigens is small (see, J.
- conjugates can be used, wherein only to drug component of the conjugate varies.
- a particular antibody can be linked to two or more doxorubicins to form one conjugate and can be linked to two or more daunomycins to form a second conjugate. Both conjugates can then be
- An additional embodiment includes the conjugation of more than one drug to a particular antibody to form a conjugate bearing a variety of different drugs along its surface - all linked to the antibody via acylhydrazone bonds. Administration of the conjugate of this embodiment results in the release of a number of different drugs at the site of or within the target cells.
- a combination of drug-targeting ligand conjugates can be used wherein the drug can be targeted to a cell population carrying a specific antigen as well as a receptor for a specific ligand on its surface. Again, one type of drug or number of different drugs can be used in this combination therapy.
- the conjugates of the invention can be administered in the form of pharmaceutical compositions using
- intralymphatic or administration directly into the site of a selected cell population such as a tumor.
- conjugates for in vivo treatment, it may be useful to use conjugates comprising antibody fragments such as Fab or F(ab") 2 or chimeric or humanized antibodies.
- compositions of the invention-comprising the conjugates - may be in a variety of dosage forms which include, but are not limited to, solid, semi-solid and liquid dosage forms such as tablets, pills, powders, liquid solutions or suspensions, suppositories, polymeric microcapsules or microvesicles, liposomes, and injectable or infusible solutions.
- dosage forms include, but are not limited to, solid, semi-solid and liquid dosage forms such as tablets, pills, powders, liquid solutions or suspensions, suppositories, polymeric microcapsules or microvesicles, liposomes, and injectable or infusible solutions.
- solid, semi-solid and liquid dosage forms such as tablets, pills, powders, liquid solutions or suspensions, suppositories, polymeric microcapsules or microvesicles, liposomes, and injectable or infusible solutions.
- the preferred form depends upon the mode of administration and the
- the pharmaceutical compositions may also include conventional pharmaceutically carriers known in the art such as serum proteins such as human serum albumin, buffer substances such as phosphates, water or salts or electrolytes.
- serum proteins such as human serum albumin
- buffer substances such as phosphates, water or salts or electrolytes.
- the most effective mode of administration and dosage regimen for the conjugates of this invention depends upon the severity and course of the disease, the patient's health and response to treatment and the judgment of the treating physician. Accordingly, the dosages of the conjugates and any accompanying compounds should be titrated to the individual patient. Nevertheless, an effective dose of the conjugates may be in the range of from about 1 to about 100 mg/m 2 drug or from about 500-5000 mg/m 2 antibody.
- An effective dose of the conjugates containing ligands other than antibodies may be in the range of from about 1 to about 100 mg/m 2 drug or from about 1 to about 100 mg/m 2 ligand.
- the carbon-branched linker is derived from a bis-carboxylic acid, which also contains a protected amine functionality.
- the nitrogen-branched linker is derived from an oligoamine, differentially protected in such a way that all but one amino group are elaborated to yield terminal N, N-dialkanoylhydrazide groups. The remaining amino group is elaborated to yield a terminal thiol acceptor. Condensation of the multiple hydrazides with an drug containing an aldehyde or ketone group yields a multiple acylhydrazone of the drug.
- Conjugation of the linker to the targeting ligand is accomplished by the reaction of free thiol groups of the ligand, generated under controlled atmospheric conditions, with the terminal thiol acceptor of the linker.
- Z is carbobenzoxy
- DCC is dicyclohexylcarbodiimide
- BOC is t-butoxy carbonyl
- TFA is trifluoroacetic acid
- DOX is doxorubicin.
- Solvents were partially removed by rotary evaporation. The oil was dissolved in 100 ml ethyl acetate, then extracted three times with 100 ml 10% citric acid, three times with 100 ml saturated aqueous sodium bicarbonate, and three times with 100 ml H2O. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. This was purified by flash chromatography on silica gel (2 in. X 11 in.) with CH 2 CI 2 -acetic acid-methanol
- Solvents were removed by rotary evaporation. The oil was dissolved in 100 ml ethyl acetate, then extracted three times with 100 ml 10% citric acid, three times with 100 ml saturated aqueous sodium bicarbonate, and three times with 100 ml H 2 O. The organic layer was dried over sodium sulfate and rotary evaporated to a foam. This was
- DOX ⁇ HCl (1.34 g, 2.30 mmole) were dissolved in 600 ml methanol over a period of 3 hours. The reaction was concentrated to 100 ml by rotary evaporation, then stirred for 2.5 days. The reaction was further
- N-hydroxysuccinimide ester of maleimidopropionic acid 300 mg, 1.13 mmole was prepared as in the
- the organic layer was washed three times with 50 ml 10% citric acid, three times with 50 ml saturated NaHCO 3 , and three times with 50 ml H 2 O.
- the organic layer was concentrated to a foam, which was purified by flash chromatography on silica gel (1 in. X 12 in.) with
- FTIR 3292, 2980, 1720, 1690, 1484, 1368, 1248, 1162, 1048, 1016, 880, 773, 574 cm -1 .
- FTIR 3300, 2982, 1738, 1708, 1680 (sh), 1498, 1394, 1368, 1248, 1162, 1048, 1016, 72, 696 cm -1 .
- FTIR 3328, 2980, 1698, 1672, 1500, 1368, 1300, 1252, 1162, 778, 692 cm -1 .
- Method B On a scale >3 g, the same procedure was utilized for the DTT reaction, with the exception that the MAb solutions were de-oxygenated by bubbling with Ar. Purification after DTT reduction was accomplished by ultrafiltration in a Filtron Minisette unit. The
- Minisette was fitted with two Filtron 30K cassettes and was connected to a Watson Marlow 604S pump with Bioprene tubing.
- the MAb solution was ultrafiltered at 0°C under Ar against Ar-bubbled PBS, pH 7.0 (eluant flow rate 100-150 ml/min., 25 psi backpressure), while continually monitoring eluant for thiol content as above.
- a 6.6 g batch of BR96 (550 ml at 75.3 uM) yielded 6.1 g reduced BR96 (800 ml at 47.6 uM MAb, 398 uM thiol) for a yield of 92% and thiol titer of 8.4 mole thiol groups/mole BR96.
- Conjugate was purified at 4°C by percolation (approximately 2 ml/min.) through a 1" ⁇ 36" Bio-Beads column (initially prepared by swelling and packing in methanol, then equilibrated in H 2 O, and finally PBS, pH 7.0). The purified conjugate was filtered again through a 0.22u sterile filter to yield 155 ml of BR96-2b (BR96, 39.13 uM; DOX, 589.0 uM; MR, 15.1 mole DOX/mole BR96; yield, 100%). Conjugate was frozen in liquid n 2 and stored at -80°C.
- Example 70 Example 70
- MAb BR64 murine IgG 1
- MAb BR96 mouse/human
- Trail et al. 1992; Trail et al., 1993; Willner, D., Trail, P.A., Hofstead, S.J., King, H.D., Lasch, S.J., Braslawsky, G.R., Greenfield, R.S., Kaneko, T. and
- DOX/MAb molar ratios were prepared with both chimeric BR96 and control human IgG.
- L2987 is a human lung line which expresses the BR64 and BR96 antigens. L2987 was obtained from I. Hellst ⁇ m (Bristol-Myers Squibb, Seattle, WA).
- In vitro cytotoxicity assays were performed as described previously (Trail et al., 1992). Briefly, monolayer cultures of L2987 human carcinoma cells were harvested using trypsin-EDTA (GIBCO, Grand Island, NY), and the cells counted and resuspended to 1 ⁇ 10 5 /ml in RPMI-1640 containing 10% heat
- mice of Balb/c background (Balb/c nu/nu; Harlan Sprague-Dawley, Indianapolis, IN) were used in thse studies.
- mice were housed in Thoren caging units on sterile bedding with controlled temperature and humidity.
- T-C is defined as the median time (days) for treated tumors to reach 500mm 3 size minus the median time for control tumors to reach 500mm 3 in size and TVDT is the time
- Partial tumor regression reflects a decrease in tumor volume to ⁇ 50% of the initial tumor volume
- complete tumor regression refers to a tumor which for a period of time is not palpable; and cure is defined as an established tumor which is not palpable for a period of time ⁇ 10 TVDT's.
- Treatments were administered by the ip or iv route on various schedules as denoted. DOX was diluted in normal saline and MAb and MAb-DOX conjugates were diluted in PBS. All therapy was administered on a mg/kg basis calculated for each animal and doses are presented as mg/kg/injection. Control animals were not treated.
- Doses of immunoconjugate are reported based on the drug (equivalent DOX) and antibody content.
- the maximum tolerated dose (MTD) for a treatment regimen is defined as the highest dose on a given schedule which resulted in ⁇ 20% lethality.
- n is a positive integer
- the conjugate molar ratios of the various singly branched conjugates ranged from 11-16 and that of the doubly branched
- DOXHZN conjugates were 2-20 fold (IC 50 values of 0.1-1.0 uM equivalent DOX), and the doubly branched conjugates (IC50 of 0.2uM) were 10 fold, more potent than the straight chain DOXHZN conjugate BMS-182248 (2 uM DOX).
- BMS-182248 refers to the straight chain conjugate as disclosed by
- linker chemistries which are extremely stable in the extracellular environment yet liberate drug efficiently upon internalization into antigen-expressing cells.
- One method for assessing extracellular stability, and in part, intracellular hydrolysis rates is to evaluate antigen-specific
- the MCDOXHZN (BMS-182248) conjugate was less potent than the branched hydrazone, MB-Glu-(DOX) 2 ; BMS-187852, conjugate during the first 24 h of exposure.
- the potency of the MCDOXHZN conjugate was increased over time whereas that of the branched DOXHZN remained essentially unchanged over 48h of exposure.
- hydrazone conjugates increased with longer exposure times.
- the increase in potency of non-binding conjugates likely reflects cytotoxicity of DOX itself following release of DOX from the conjugate over time.
- the potency of both the linear and branched hydrazone conjugates increased in parallel, suggesting that the extracellular stability of these conjugates was quite similar.
- the BR96 branched hydrazone conjugates were more potent in vitro at short exposure times than were the MCDOXHZN (BMS-182248) conjugates.
- the extracellular stability of the branched conjugates was not different from that of the straight chain MCDOXHZN conjugate.
- BR96 and IgG conjugates were produced using six different branched linkers and the conjugates evaluated for
- the molar ratio of the BMS-187852 conjugates varied from 13.7-15. As shown in Table 3, 3 lots
- BMS-187852 were tested.
- the optimal dose for both BMS-187852 and BMS-182248 was 2.5 mg/kg DOX.
- the branched conjugate was approximately 2 fold more potent than BMS-182248 (RG) on a MAb basis.
- the antitumor activity of BMS-187852 was antigen-specific
- BMS-187853 conjugate Two lots of BMS-187853 conjugate (molar ratios approximately 11.5) were evaluated against established L2987 lung tumor xenografts. The antitumor activity of the 2 lots was similar; both produced optimal antigenspecific antitumor activity at doses of approximately 2.0 mg/kg DOX, 45 mg/kg BR96. Overall, these conjugates were similar to BMS-182248 (RG) on a DOX and 2 fold more potent on a MAb basis.
- BMS-188077 The DOX/BR96 molar ratio of BMS-188077 conjugates was in the range of 14.6-16.1. As shown in Table 5, antigen-specific antitumor activity was observed for BMS-188077. BMS-188077 was of similar potency as BMS- 182248 (RG) on a DOX equivalent basis but due to the increase in the molar ratio, approximately 2 fold more potent on a MAb basis.
- BMS-189099 conjugates were evaluated in parallel with non-binding IgG conjugates (BMS-188078) produced with the same linker chemistry.
- the mole ratios of the BR96 conjugates were in the range of 14.5-15.5.
- the antitumor activity of BMS-189099 and non-binding conjugates is presented in Table 6. Antigen-specific antitumor activity was observed in vivo.
- the BMS-189099 conjugates were of similar potency as BMS-182248 (RG) on a DOX basis but approximately 2 fold more potent on a MAb basis.
- the molar ratios of the BMS-189812 conjugates were in the range of 11-15 moles DOX/moles BR96. Data for the antitumor activity of BMS-189812 is summarized in Table 7.
- the optimal dose of BMS-189812 was approximately 2 mg/kg DOX, 50 mg/kg BR96.
- the potency on a DOX basis was similar to BMS-182248 (RG) and the conjugate was two fold more potent on a MAb basis.
- the BMS-190385 conjugates demonstrated antigen-specific activity in vivo.
- the antitumor activity of BMS-190385 conjugates is presented in Table 8.
- two lots of BR96-DOX conjugate are currently being evaluated against established L2987 lung xenografts. Antigen-specific antitumor activity was observed.
- the optimal dose of thse conjugates is 2 mg/kg DOX, 60 mg/kg BR96. This is similar to that of BMS-182248 on a DOX basis and slightly more potent on a MAb basis.
- the branched chain DOXHZN conjugates evaluated herein typically had molar ratios in the range of 11-15. This is 1.5-1.8 fold higher than the molar ratio
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicinal Preparation (AREA)
- Saccharide Compounds (AREA)
- Silver Salt Photography Or Processing Solution Therefor (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pyrrole Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP96944522A EP0871490B1 (en) | 1995-12-22 | 1996-12-17 | Branched hydrazone linkers |
| DK96944522T DK0871490T3 (da) | 1995-12-22 | 1996-12-17 | Forgrenede hydrazonlinkere |
| CA002239183A CA2239183C (en) | 1995-12-22 | 1996-12-17 | Branched hydrazone linkers |
| JP09523841A JP2000503639A (ja) | 1995-12-22 | 1996-12-17 | 分枝ヒドラゾンのリンカー類 |
| AT96944522T ATE234635T1 (de) | 1995-12-22 | 1996-12-17 | Verzweigte hydrazongruppen enthaltende kuppler |
| DE69626849T DE69626849T2 (de) | 1995-12-22 | 1996-12-17 | Verzweigte hydrazongruppen enthaltende kuppler |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US910095P | 1995-12-22 | 1995-12-22 | |
| US60/009,100 | 1995-12-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997023243A1 true WO1997023243A1 (en) | 1997-07-03 |
Family
ID=21735570
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1996/020513 Ceased WO1997023243A1 (en) | 1995-12-22 | 1996-12-17 | Branched hydrazone linkers |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US5824805A (enExample) |
| EP (1) | EP0871490B1 (enExample) |
| JP (1) | JP2000503639A (enExample) |
| AT (1) | ATE234635T1 (enExample) |
| DE (1) | DE69626849T2 (enExample) |
| DK (1) | DK0871490T3 (enExample) |
| ES (1) | ES2195036T3 (enExample) |
| MX (1) | MX9804386A (enExample) |
| PT (1) | PT871490E (enExample) |
| WO (1) | WO1997023243A1 (enExample) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000006543A1 (en) * | 1998-07-29 | 2000-02-10 | Chisso Corporation | Novel diamino compounds, polyamic acid, polyimide, liquid-crystal alignment film made from film of the polyimide, and liquid-crystal display element containing the alignment film |
| WO2001017614A3 (en) * | 1999-09-07 | 2002-02-28 | Conjuchem Inc | Methods and compositions containing succinimide or maleimide derivatives of antineoplastic agents |
| WO2002092631A1 (en) * | 2001-05-14 | 2002-11-21 | The Horticulture And Food Research Institute Of New Zealand Limited | Kinetic assay |
| US6706892B1 (en) | 1999-09-07 | 2004-03-16 | Conjuchem, Inc. | Pulmonary delivery for bioconjugation |
| WO2004067038A1 (en) * | 2003-01-24 | 2004-08-12 | Immunomedics, Inc. | Anthracycline-antibody conjugates |
| EP1889639A3 (en) * | 1999-09-07 | 2008-04-09 | ConjuChem Biotechnologies Inc. | Methods and compositions containing succinimide or maleimide derivatives of antineoplastic agents, for producing long lasting antineoplastic agents |
| US8361464B2 (en) | 2002-03-01 | 2013-01-29 | Immunomedics, Inc. | Anthracycline-Antibody Conjugates for Cancer Therapy |
| AU2011236095B2 (en) * | 2003-01-24 | 2013-08-01 | Immunomedics, Inc. | Anthracycline-antibody conjugates |
| US8877202B2 (en) | 2013-02-07 | 2014-11-04 | Immunomedics, Inc. | Pro-drug form (P2PDOX) of the highly potent 2-pyrrolinodoxorubicin conjugated to antibodies for targeted therapy of cancer |
| WO2014194030A3 (en) * | 2013-05-31 | 2015-01-22 | Immunogen, Inc. | Conjugates comprising cell-binding agents and cytotoxic agents |
| US20220040320A1 (en) * | 2018-12-21 | 2022-02-10 | Seagen Inc. | Adcs with thiol multiplex linkers |
Families Citing this family (270)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6218160B1 (en) * | 1997-10-31 | 2001-04-17 | Roche Diagnostics Corporation | Site-specific conjugation of glycoproteins |
| PT1392359E (pt) | 2001-05-11 | 2010-01-27 | Ludwig Inst For Cancer Res Ltd | Proteínas de ligação específica e suas utilizações |
| US20100056762A1 (en) | 2001-05-11 | 2010-03-04 | Old Lloyd J | Specific binding proteins and uses thereof |
| KR20030033007A (ko) * | 2001-05-31 | 2003-04-26 | 코울터 파머수티컬, 인코포레이티드 | 세포독소, 약물전구체, 링커 및 이에 유용한 안정화제 |
| RU2196604C1 (ru) * | 2001-12-21 | 2003-01-20 | Северин Евгений Сергеевич | Полипептид, являющийся аналогом рецепторсвязывающего фрагмента эпидермального фактора роста с 21-й по 31-ю аминокислоту, его конъюгат с доксорубицином и фармацевтическая композиция на его основе |
| US20050239688A1 (en) * | 2002-07-24 | 2005-10-27 | Anne-Marie Fernandez | Method for the synthesis of anthracycline-peptide conjugates |
| US20040047917A1 (en) * | 2002-09-06 | 2004-03-11 | Stephen Wilson | Drug delivery and targeting with vitamin B12 conjugates |
| DK1594542T3 (da) | 2003-02-20 | 2010-10-11 | Seattle Genetics Inc | Anti-CD70 antistof-lægemiddelkonjugater og deres anvendelse ved behandling af cancer |
| US7053191B2 (en) * | 2003-05-21 | 2006-05-30 | Solux Corporation | Method of preparing 4-R-substituted 4-demethoxydaunorubicin |
| CN1879065A (zh) * | 2003-09-12 | 2006-12-13 | 弗尔克斯破产财产公司 | 用于生物活性剂的定位传递的包含磁性成分和生物相容性聚合物的可磁靶向颗粒 |
| WO2005112919A2 (en) * | 2004-05-19 | 2005-12-01 | Medarex, Inc. | Self-immolative linkers and drug conjugates |
| US7691962B2 (en) * | 2004-05-19 | 2010-04-06 | Medarex, Inc. | Chemical linkers and conjugates thereof |
| US7541330B2 (en) * | 2004-06-15 | 2009-06-02 | Kosan Biosciences Incorporated | Conjugates with reduced adverse systemic effects |
| WO2006015318A2 (en) * | 2004-07-30 | 2006-02-09 | Biogen Idec Inc. | Antibody conjugated to a drug moiety via a poptidic linker |
| EP2305716B1 (en) | 2004-11-30 | 2014-10-22 | Celldex Therapeutics, Inc. | Antibodies directed to gpnmb and uses thereof |
| CA2598522A1 (en) * | 2005-02-18 | 2006-08-24 | Medarex, Inc. | Human monoclonal antibodies to prostate specific membrane antigen (psma) |
| US7569358B2 (en) * | 2005-03-30 | 2009-08-04 | Saladax Biomedical Inc. | Doxorubicin immunoassay |
| US7714016B2 (en) * | 2005-04-08 | 2010-05-11 | Medarex, Inc. | Cytotoxic compounds and conjugates with cleavable substrates |
| CN101312748A (zh) * | 2005-09-26 | 2008-11-26 | 梅达莱克斯公司 | 抗体-药物轭合物和使用方法 |
| US7847105B2 (en) | 2005-10-26 | 2010-12-07 | Medarex, Inc. | Methods and compounds for preparing CC-1065 analogs |
| CA2627190A1 (en) | 2005-11-10 | 2007-05-24 | Medarex, Inc. | Duocarmycin derivatives as novel cytotoxic compounds and conjugates |
| SI2019671T1 (sl) | 2006-05-05 | 2015-03-31 | The Regents Of The University Of Michigan | Intermediati za pripravo bivalentnih Smac-mimetikov |
| PT2099823E (pt) | 2006-12-01 | 2014-12-22 | Seattle Genetics Inc | Agentes de ligação ao alvo variantes e suas utilizações |
| TWI412367B (zh) | 2006-12-28 | 2013-10-21 | Medarex Llc | 化學鏈接劑與可裂解基質以及其之綴合物 |
| CN101711284A (zh) | 2007-01-25 | 2010-05-19 | 达娜-法勃肿瘤研究所 | 抗egfr抗体在治疗egfr突变体介导的疾病中的用途 |
| CA2678514A1 (en) | 2007-02-21 | 2008-08-28 | Medarex, Inc. | Chemical linkers with single amino acids and conjugates thereof |
| JP5618549B2 (ja) | 2007-03-15 | 2014-11-05 | ルードヴィッヒ インスティテュート フォー キャンサーリサーチ リミテッド | Egfr抗体及びsrc阻害剤を用いる治療方法及び関連製剤 |
| CA2680237C (en) | 2007-03-27 | 2018-11-06 | Sea Lane Biotechnologies, Llc | Constructs and libraries comprising antibody surrogate light chain sequences |
| EP2188311B1 (en) | 2007-08-14 | 2016-10-05 | Ludwig Institute for Cancer Research Ltd. | Monoclonal antibody 175 targeting the egf receptor and derivatives and uses thereof |
| EA201000343A1 (ru) | 2007-10-04 | 2011-10-31 | Займодженетикс, Инк. | ЧЛЕН СЕМЕЙСТВА B7, zB7H6 И РОДСТВЕННЫЕ КОМПОЗИЦИИ И СПОСОБЫ |
| US8357785B2 (en) * | 2008-01-08 | 2013-01-22 | Solux Corporation | Method of aralkylation of 4′-hydroxyl group of anthracylins |
| ES2613963T3 (es) | 2008-01-18 | 2017-05-29 | Medimmune, Llc | Anticuerpos manipulados con cisteína para conjugación específica de sitio |
| US20120128671A1 (en) | 2009-05-13 | 2012-05-24 | Lawrence Horowitz | Neutralizing molecules to influenza viruses |
| EP2711018A1 (en) | 2009-06-22 | 2014-03-26 | MedImmune, LLC | Engineered Fc regions for site-specific conjugation |
| WO2011028952A1 (en) | 2009-09-02 | 2011-03-10 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
| US20110076232A1 (en) * | 2009-09-29 | 2011-03-31 | Ludwig Institute For Cancer Research | Specific binding proteins and uses thereof |
| CA3031851C (en) | 2009-10-23 | 2020-07-07 | Amgen British Columbia | Anti-gcc antibody molecules and related compositions and methods |
| HRP20141170T1 (hr) | 2009-12-09 | 2015-01-30 | Institut National de la Santé et de la Recherche Médicale | Monoklonska antitijela koja se vežu za b7h6 i njihove uporabe |
| ES2668645T3 (es) | 2010-02-08 | 2018-05-21 | Agensys, Inc. | Conjugados de fármaco y anticuerpo (ADC) que se unen a proteínas 161P2F10B |
| CN103052649B (zh) | 2010-07-29 | 2015-12-16 | Xencor公司 | 具有修改的等电点的抗体 |
| CN105567717B (zh) | 2010-09-29 | 2019-10-29 | 艾更斯司股份有限公司 | 结合于191p4d12蛋白的抗体药物偶联物(adc) |
| EP3828205A1 (en) | 2010-10-01 | 2021-06-02 | Oxford BioTherapeutics Ltd | Anti-ror1 antibodies |
| CA3211246A1 (en) | 2010-12-06 | 2012-06-14 | Seagen Inc. | Humanized antibodies to liv-1 and use of same to treat cancer |
| JOP20210044A1 (ar) | 2010-12-30 | 2017-06-16 | Takeda Pharmaceuticals Co | الأجسام المضادة لـ cd38 |
| US8846882B2 (en) | 2011-04-29 | 2014-09-30 | Synbias Pharma Ag | Method of producing 4-demethoxydaunorubicin |
| PE20141045A1 (es) | 2011-05-27 | 2014-09-10 | Glaxo Group Ltd | Proteinas de union a bcma (cd269/tnfrsf17) |
| WO2013016714A1 (en) | 2011-07-28 | 2013-01-31 | Sea Lane Biotechnologies | Sur-binding proteins against erbb3 |
| WO2013022855A1 (en) | 2011-08-05 | 2013-02-14 | Xencor, Inc. | Antibodies with modified isoelectric points and immunofiltering |
| US20130058947A1 (en) | 2011-09-02 | 2013-03-07 | Stem Centrx, Inc | Novel Modulators and Methods of Use |
| DK2766392T3 (da) | 2011-10-10 | 2019-10-07 | Xencor Inc | Fremgangsmåde til oprensning af antistoffer |
| US10851178B2 (en) | 2011-10-10 | 2020-12-01 | Xencor, Inc. | Heterodimeric human IgG1 polypeptides with isoelectric point modifications |
| US12466897B2 (en) | 2011-10-10 | 2025-11-11 | Xencor, Inc. | Heterodimeric human IgG1 polypeptides with isoelectric point modifications |
| WO2013063702A1 (en) | 2011-11-04 | 2013-05-10 | Zymeworks Inc. | Stable heterodimeric antibody design with mutations in the fc domain |
| US9975956B2 (en) | 2011-12-22 | 2018-05-22 | I2 Pharmaceuticals, Inc. | Surrogate binding proteins which bind DR4 and/or DR5 |
| CA3111357A1 (en) | 2011-12-23 | 2013-06-27 | Pfizer Inc. | Engineered antibody constant regions for site-specific conjugation and methods and uses therefor |
| CA2862292C (en) | 2012-01-20 | 2019-10-08 | Sea Lane Biotechnologies, Llc | Binding molecule conjugates |
| SMT201700467T1 (it) | 2012-02-24 | 2017-11-15 | Abbvie Stemcentrx Llc | Modulatori di dll3 e metodi di uso |
| KR102557309B1 (ko) | 2012-05-15 | 2023-07-20 | 씨젠 인크. | 자가-안정화 링커 접합체 |
| CN103566377A (zh) | 2012-07-18 | 2014-02-12 | 上海博笛生物科技有限公司 | 癌症的靶向免疫治疗 |
| PL2887959T3 (pl) | 2012-08-23 | 2019-04-30 | Agensys Inc | Koniugaty leków i przeciwciał (adc), które wiążą białka 158p1d7 |
| JP6133431B2 (ja) | 2012-11-24 | 2017-05-24 | ハンジョウ ディーエーシー バイオテック シーオー.,エルティディ.Hangzhou Dac Biotech Co.,Ltd. | 親水性連結体及び薬物分子と細胞結合分子との共役反応における親水性連結体の使用 |
| US11053316B2 (en) | 2013-01-14 | 2021-07-06 | Xencor, Inc. | Optimized antibody variable regions |
| US9605084B2 (en) | 2013-03-15 | 2017-03-28 | Xencor, Inc. | Heterodimeric proteins |
| US9701759B2 (en) | 2013-01-14 | 2017-07-11 | Xencor, Inc. | Heterodimeric proteins |
| CN105051069B (zh) | 2013-01-14 | 2019-12-10 | Xencor股份有限公司 | 新型异二聚体蛋白 |
| US10487155B2 (en) | 2013-01-14 | 2019-11-26 | Xencor, Inc. | Heterodimeric proteins |
| US10131710B2 (en) | 2013-01-14 | 2018-11-20 | Xencor, Inc. | Optimized antibody variable regions |
| US10968276B2 (en) | 2013-03-12 | 2021-04-06 | Xencor, Inc. | Optimized anti-CD3 variable regions |
| US9738722B2 (en) | 2013-01-15 | 2017-08-22 | Xencor, Inc. | Rapid clearance of antigen complexes using novel antibodies |
| TR201908761T4 (tr) | 2013-02-22 | 2019-07-22 | Abbvie Stemcentrx Llc | Antidll3-antikor-pbd konjugatları ve kullanımları. |
| US10858417B2 (en) | 2013-03-15 | 2020-12-08 | Xencor, Inc. | Heterodimeric proteins |
| US10106624B2 (en) | 2013-03-15 | 2018-10-23 | Xencor, Inc. | Heterodimeric proteins |
| US10519242B2 (en) | 2013-03-15 | 2019-12-31 | Xencor, Inc. | Targeting regulatory T cells with heterodimeric proteins |
| WO2014145806A2 (en) | 2013-03-15 | 2014-09-18 | Xencor, Inc. | Heterodimeric proteins |
| US10544187B2 (en) | 2013-03-15 | 2020-01-28 | Xencor, Inc. | Targeting regulatory T cells with heterodimeric proteins |
| WO2015017552A1 (en) | 2013-08-01 | 2015-02-05 | Agensys, Inc. | Antibody drug conjugates (adc) that bind to cd37 proteins |
| MX377339B (es) | 2013-08-28 | 2025-03-06 | Abbvie Stemcentrx Llc | Metodos de conjugacion de anticuerpos especificos de sitio y composiciones. |
| KR20160046914A (ko) | 2013-08-28 | 2016-04-29 | 스템센트알엑스 인코포레이티드 | 신규한 sez6 조절물질 및 사용방법 |
| ES2960807T3 (es) | 2013-10-11 | 2024-03-06 | Us Health | Anticuerpos contra TEM8 y su uso |
| UA119047C2 (uk) | 2013-10-11 | 2019-04-25 | Берлін-Хемі Аг | Кон'юговане антитіло до ly75 для лікування раку |
| AU2014337555C1 (en) | 2013-10-15 | 2021-01-28 | Seagen Inc. | PEGylated drug-linkers for improved Ligand-Drug Conjugate pharmacokinetics |
| US20160280798A1 (en) | 2013-11-06 | 2016-09-29 | The United States Of America, As Represented By The Secretary Department Of Health & Human Service | Alk antibodies, conjugates, and chimeric antigen receptors, and their use |
| MX383206B (es) | 2013-11-25 | 2025-03-13 | Seagen Inc | Preparación de anticuerpos de cultivos de célula de ovario de hámster chino para conjugación. |
| WO2015103549A1 (en) | 2014-01-03 | 2015-07-09 | The United States Of America, As Represented By The Secretary Department Of Health And Human Services | Neutralizing antibodies to hiv-1 env and their use |
| US10548985B2 (en) | 2014-01-10 | 2020-02-04 | Birdie Biopharmaceuticals, Inc. | Compounds and compositions for treating EGFR expressing tumors |
| EP3107576A4 (en) | 2014-02-21 | 2017-09-06 | Abbvie Stemcentrx LLC | Anti-dll3 antibodies and drug conjugates for use in melanoma |
| US10464955B2 (en) | 2014-02-28 | 2019-11-05 | Hangzhou Dac Biotech Co., Ltd. | Charged linkers and their uses for conjugation |
| JP2017511376A (ja) | 2014-03-21 | 2017-04-20 | アッヴィ・インコーポレイテッド | 抗egfr抗体及び抗体薬物コンジュゲート |
| CA2943609A1 (en) | 2014-03-27 | 2015-10-01 | The Brigham And Women's Hospital, Inc. | Metabolically-activated drug conjugates to overcome resistance in cancer therapy |
| EP3122781B1 (en) | 2014-03-28 | 2020-01-01 | Xencor, Inc. | Bispecific antibodies that bind to cd38 and cd3 |
| CN105440135A (zh) | 2014-09-01 | 2016-03-30 | 博笛生物科技有限公司 | 用于治疗肿瘤的抗-pd-l1结合物 |
| AU2015292326A1 (en) | 2014-07-24 | 2017-02-23 | Xencor, Inc. | Rapid clearance of antigen complexes using novel antibodies |
| RS61431B1 (sr) | 2014-11-19 | 2021-03-31 | Axon Neuroscience Se | Humanizovana antitela na tau u alchajmerovoj bolesti |
| EP3223845B1 (en) | 2014-11-26 | 2021-05-19 | Xencor, Inc. | Heterodimeric antibodies that bind cd3 and cd20 |
| AU2015353416C1 (en) | 2014-11-26 | 2022-01-27 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and CD38 |
| US10259887B2 (en) | 2014-11-26 | 2019-04-16 | Xencor, Inc. | Heterodimeric antibodies that bind CD3 and tumor antigens |
| EP3237449A2 (en) | 2014-12-22 | 2017-11-01 | Xencor, Inc. | Trispecific antibodies |
| AU2016226083A1 (en) | 2015-03-05 | 2017-10-12 | Sirenas Llc | Cyclic peptide analogs and conjugates thereof |
| US10227411B2 (en) | 2015-03-05 | 2019-03-12 | Xencor, Inc. | Modulation of T cells with bispecific antibodies and FC fusions |
| KR102790429B1 (ko) | 2015-03-09 | 2025-04-04 | 어젠시스 인코포레이티드 | Flt3 단백질에 결합하는 항체 약물 콘쥬게이트(adc) |
| EP3091033A1 (en) | 2015-05-06 | 2016-11-09 | Gamamabs Pharma | Anti-human-her3 antibodies and uses thereof |
| CA2989347A1 (en) | 2015-06-12 | 2016-12-15 | Lentigen Technology, Inc. | Method to treat cancer with engineered t-cells |
| EA201890158A1 (ru) | 2015-06-30 | 2018-06-29 | Сиэтл Дженетикс, Инк. | Антитела против ntb-a и связанные композиции и способы |
| JP6759326B2 (ja) | 2015-07-12 | 2020-09-23 | ハンジョウ ディーエーシー バイオテック シーオー.,エルティディ.Hangzhou Dac Biotech Co.,Ltd. | 細胞結合分子の共役のための架橋連結体 |
| US9839687B2 (en) | 2015-07-15 | 2017-12-12 | Suzhou M-Conj Biotech Co., Ltd. | Acetylenedicarboxyl linkers and their uses in specific conjugation of a cell-binding molecule |
| WO2017044803A1 (en) | 2015-09-09 | 2017-03-16 | The United States Of America, As Represented By The Secretary Department Of Health And Human Service | Expression vector delivery system and use thereof for inducing an immune response |
| WO2017062748A1 (en) | 2015-10-07 | 2017-04-13 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Il-7r-alpha specific antibodies for treating acute lymphoblastic leukemia |
| CN108779162B (zh) | 2015-10-09 | 2021-12-07 | 美天施生物科技有限公司 | 嵌合抗原受体和使用方法 |
| WO2017066714A1 (en) | 2015-10-16 | 2017-04-20 | Compugen Ltd. | Anti-vsig1 antibodies and drug conjugates |
| WO2017100372A1 (en) | 2015-12-07 | 2017-06-15 | Xencor, Inc. | Heterodimeric antibodies that bind cd3 and psma |
| EP3419655A1 (en) | 2016-02-27 | 2019-01-02 | The United States of America, as represented by The Secretary, Department of Health and Human Services | Peptide vaccines comprising self-assembling polymer nanoparticles |
| PE20181953A1 (es) | 2016-03-02 | 2018-12-17 | Eisai Randd Man Co Ltd | Conjugados de anticuerpo y farmaco basados en eribulina y metodos para su uso |
| MA45324A (fr) | 2016-03-15 | 2019-01-23 | Seattle Genetics Inc | Polythérapie utilisant un adc-liv1 et un agent chimiothérapeutique |
| KR102626498B1 (ko) | 2016-03-25 | 2024-01-19 | 씨젠 인크. | 페길화된 약물-링커 및 그의 중간체의 제조를 위한 공정 |
| US10934359B2 (en) | 2016-04-21 | 2021-03-02 | Abbvie Stemcentrx Llc | Anti-BMPR1B antibodies and methods of use |
| WO2017189483A1 (en) | 2016-04-25 | 2017-11-02 | The Johns Hopkins University | Znt8 assays for drug development and pharmaceutical compositions |
| MX2018015285A (es) | 2016-06-08 | 2019-09-18 | Abbvie Inc | Anticuerpos anti-b7-h3 y conjugados de anticuerpo y farmaco. |
| AU2017277916A1 (en) | 2016-06-08 | 2019-01-03 | Abbvie Inc. | Anti-CD98 antibodies and antibody drug conjugates |
| UY37278A (es) | 2016-06-08 | 2018-01-31 | Abbvie Inc | Anticuerpos anti-b7-h3 y conjugados de fármaco y anticuerpos |
| US20200002432A1 (en) | 2016-06-08 | 2020-01-02 | Abbvie Inc. | Anti-cd98 antibodies and antibody drug conjugates |
| JP2019526529A (ja) | 2016-06-08 | 2019-09-19 | アッヴィ・インコーポレイテッド | 抗b7−h3抗体及び抗体薬物コンジュゲート |
| WO2017218707A2 (en) | 2016-06-14 | 2017-12-21 | Xencor, Inc. | Bispecific checkpoint inhibitor antibodies |
| US10316088B2 (en) | 2016-06-28 | 2019-06-11 | Xencor, Inc. | Heterodimeric antibodies that bind somatostatin receptor 2 |
| EP3496747A4 (en) | 2016-08-09 | 2020-04-15 | Seattle Genetics, Inc. | Drug conjugates with self-stabilizing linkers having improved physiochemical properties |
| WO2018045245A1 (en) | 2016-09-02 | 2018-03-08 | Sirenas Llc | Cyclic peptide analogs and conjugates thereof |
| JP7160482B2 (ja) | 2016-09-02 | 2022-10-25 | レンティジェン・テクノロジー・インコーポレイテッド | Duocarを用いてがんを処置するための組成物および方法 |
| MA46534A (fr) | 2016-10-14 | 2019-08-21 | Xencor Inc | Protéines de fusion fc hétérodimères il15/il15r |
| CN110099682B (zh) | 2016-11-14 | 2023-03-31 | 杭州多禧生物科技有限公司 | 偶联连接体,含有此连接体的细胞结合分子-药物偶联物及其制备和应用 |
| CN110234348B (zh) | 2016-12-16 | 2024-06-25 | 蓝鳍生物医药公司 | 抗-含cub结构域蛋白1(cdcp1)抗体、抗体药物缀合物及其使用方法 |
| ES2880010T3 (es) | 2017-01-09 | 2021-11-23 | Lentigen Tech Inc | Composiciones y métodos para tratar el cáncer con inmunoterapia antimesotelina |
| CN110392697A (zh) | 2017-03-02 | 2019-10-29 | 国家医疗保健研究所 | 对nectin-4具有特异性的抗体及其用途 |
| GB201703876D0 (en) | 2017-03-10 | 2017-04-26 | Berlin-Chemie Ag | Pharmaceutical combinations |
| WO2018175994A1 (en) | 2017-03-24 | 2018-09-27 | Seattle Genetics, Inc. | Process for the preparation of glucuronide drug-linkers and intermediates thereof |
| EP3601356A1 (en) | 2017-03-24 | 2020-02-05 | Lentigen Technology, Inc. | Compositions and methods for treating cancer with anti-cd33 immunotherapy |
| CA3057715A1 (en) | 2017-04-04 | 2018-10-11 | Avidea Technologies, Inc. | Peptide-based vaccines, methods of manufacturing, and uses thereof for inducing an immune response |
| AU2018250336B2 (en) | 2017-04-07 | 2025-02-20 | Juno Therapeutics, Inc. | Engineered cells expressing prostate-specific membrane antigen (PSMA) or a modified form thereof and related methods |
| US11932694B2 (en) | 2017-04-19 | 2024-03-19 | Bluefin Biomedicine, Inc. | Anti-VTCN1 antibodies and antibody drug conjugates |
| WO2018199337A1 (ja) | 2017-04-28 | 2018-11-01 | 味の素株式会社 | 可溶性タンパク質に対する親和性物質、切断性部分および反応性基を有する化合物またはその塩 |
| CN118994394A (zh) | 2017-06-12 | 2024-11-22 | 蓝鳍生物医药公司 | 抗-il1rap抗体和抗体药物缀合物 |
| WO2019006472A1 (en) | 2017-06-30 | 2019-01-03 | Xencor, Inc. | TARGETED HETETRODIMERIC FUSION PROTEINS CONTAINING IL-15 / IL-15RA AND ANTIGEN-BINDING DOMAINS |
| WO2019014044A1 (en) | 2017-07-12 | 2019-01-17 | The Johns Hopkins University | ZNT8 AUTO-ANTIGEN BASED ON PROTEOLIPOSOMES FOR THE DIAGNOSIS OF TYPE 1 DIABETES |
| AU2018309735B2 (en) | 2017-07-31 | 2025-03-13 | Lentigen Technology, Inc. | Compositions and methods for treating cancer with anti-CD19/CD20 immunotherapy |
| WO2019030574A1 (en) | 2017-08-10 | 2019-02-14 | Cerenis Therapeutics Holding | Cargomers |
| JP7035170B2 (ja) | 2017-09-15 | 2022-03-14 | レンティジェン・テクノロジー・インコーポレイテッド | 抗cd19免疫療法によりがんを処置するための組成物および方法 |
| JP7275118B2 (ja) | 2017-10-16 | 2023-05-17 | レンティジェン・テクノロジー・インコーポレイテッド | 抗cd22免疫療法によってがんを処置するための組成物および方法 |
| CN120789288A (zh) | 2017-10-23 | 2025-10-17 | 马布林克生物科学公司 | 包含单分子量聚肌氨酸的配体-药物-缀合物 |
| US10386338B2 (en) | 2017-10-30 | 2019-08-20 | Cynthia Rena Wright | DNA/RNA PEMS microcantilever probe for detection of viral infection and detection of genetic variants |
| JP7448903B2 (ja) | 2017-11-03 | 2024-03-13 | レンティジェン・テクノロジー・インコーポレイテッド | 抗ror1免疫療法によってがんを処置するための組成物および方法 |
| US10981992B2 (en) | 2017-11-08 | 2021-04-20 | Xencor, Inc. | Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors |
| AU2018366199A1 (en) | 2017-11-08 | 2020-05-28 | Xencor, Inc. | Bispecific and monospecific antibodies using novel anti-PD-1 sequences |
| IL316155A (en) | 2017-11-29 | 2024-12-01 | Heidelberg Pharma Res | Compositions and Methods for the Depletion of CD5(PLUS) CELLS |
| EA202091339A1 (ru) | 2017-12-01 | 2020-10-21 | Сиэтл Дженетикс, Инк. | Антитела против cd47 и их применение для лечения онкологических заболеваний |
| EA202091360A1 (ru) | 2017-12-01 | 2020-08-24 | Сиэтл Дженетикс, Инк. | Гуманизированные анти-liv1 антитела для лечения рака молочной железы |
| MA51291A (fr) | 2017-12-19 | 2020-10-28 | Xencor Inc | Protéines de fusion il-2 fc modifiées |
| EP3728307A4 (en) | 2017-12-20 | 2021-05-19 | Lentigen Technology, Inc. | Compositions and methods for treating hiv/aids with immunotherapy |
| WO2019183131A1 (en) | 2018-03-19 | 2019-09-26 | Bioventures, Llc | Periostin antibodies and methods of using the same |
| WO2019180150A1 (en) | 2018-03-22 | 2019-09-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for modulating innate lymphoid cell activity, antibody drug conjugates and uses in therapy |
| BR112020018948A2 (pt) | 2018-03-23 | 2021-01-05 | Seattle Genetics, Inc. | Uso de conjugados de fármaco e anticorpo que compreendem agentes de interrupção de tubulina para tratar tumor sólido |
| WO2019186276A2 (en) | 2018-03-28 | 2019-10-03 | Axon Neuroscience Se | Antibody-based methods of detecting and treating alzheimer's disease |
| CA3096052A1 (en) | 2018-04-04 | 2019-10-10 | Xencor, Inc. | Heterodimeric antibodies that bind fibroblast activation protein |
| CA3097741A1 (en) | 2018-04-18 | 2019-10-24 | Xencor, Inc. | Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains |
| MX2020010910A (es) | 2018-04-18 | 2021-02-09 | Xencor Inc | Proteinas de fusion heterodimericas dirigidas a pd-1 que contienen proteinas de fusion il-15 / il-15ra fc y dominios de union al antigeno pd-1 y usos de los mismos. |
| US20210113705A1 (en) | 2018-05-22 | 2021-04-22 | Avidea Technologies, Inc. | Improved methods of manufacturing peptide-based vaccines |
| US12172986B2 (en) | 2018-06-01 | 2024-12-24 | Eisai R&D Management Co., Ltd | Splicing modulator antibody-drug conjugates and methods of use |
| GB201809746D0 (en) | 2018-06-14 | 2018-08-01 | Berlin Chemie Ag | Pharmaceutical combinations |
| CN120665147A (zh) | 2018-06-14 | 2025-09-19 | 味之素株式会社 | 具有针对抗体的亲和性物质和生物正交性官能团的化合物或其盐 |
| EP3808760A4 (en) | 2018-06-14 | 2022-10-05 | Ajinomoto Co., Inc. | COMPOUND WITH AFFINITY FOR ANTIBODY, CLEAVAGE SITE AND REACTIVE GROUP OR SALT THEREOF |
| UY38289A (es) | 2018-07-02 | 2020-01-31 | Amgen Inc | Proteína de unión al antígeno anti-steap1 |
| AU2019311077B2 (en) | 2018-07-23 | 2025-05-29 | Heidelberg Pharma Research Gmbh | Use of anti-CD5 antibody drug conjugate (ADC) in allogeneic cell therapy |
| EP3837286A4 (en) | 2018-08-16 | 2022-08-10 | The Johns Hopkins University | ANTIBODIES TO HUMAN ZNT8 |
| CN113260630B (zh) | 2018-09-20 | 2024-05-24 | 莱蒂恩技术公司 | 用于用抗cd123免疫治疗来治疗癌症的组合物和方法 |
| CN118581122A (zh) | 2018-09-26 | 2024-09-03 | 莱蒂恩技术公司 | 用于用抗cd19/cd22免疫治疗来治疗癌症的组合物和方法 |
| AU2019355926A1 (en) | 2018-10-03 | 2021-04-22 | Barinthus Biotherapeutics North America, Inc. | Aromatic ring substituted amphiphilic polymers as drug delivery systems |
| CA3115096A1 (en) | 2018-10-03 | 2020-04-09 | Xencor, Inc. | Il-12 heterodimeric fc-fusion proteins |
| CN113227124B (zh) | 2018-10-31 | 2025-04-08 | 味之素株式会社 | 具有针对抗体的亲和性物质、切割性部分及反应性基团的化合物或其盐 |
| CA3121244A1 (en) | 2018-11-30 | 2020-06-04 | Lentigen Technology, Inc. | Compositions and methods for treating cancer with anti-cd38 immunotherapy |
| MX2021006430A (es) | 2018-12-03 | 2021-09-14 | Agensys Inc | Composiciones farmacéuticas que comprenden conjugados de fármaco-anticuerpo anti-191p4d12 y métodos de uso de las mismas. |
| CA3114931A1 (en) | 2018-12-13 | 2020-06-18 | Eisai R&D Management Co., Ltd. | Herboxidiene antibody-drug conjugates and methods of use |
| US11617798B2 (en) | 2019-02-05 | 2023-04-04 | Seagen Inc. | Anti-CD228 antibodies and antibody-drug conjugates |
| BR112021016955A2 (pt) | 2019-03-01 | 2021-11-23 | Xencor Inc | Composição, composição de ácido nucleico, composição de vetor de expressão, vetor de expressão, célula hospedeira, métodos de produção de um domínio de ligação de membro de família 3 de pirofosfatase/fosfodiesterase de ectonucleotídeo e de tratamento de um câncer, anticorpo anti-enpp3, e, anticorpo heterodimérico |
| EP3934668A1 (en) | 2019-03-06 | 2022-01-12 | Lentigen Technology, Inc. | Compositions and methods for treating cancer with self-driving chimeric antigen receptors |
| ES3017207T3 (en) | 2019-03-20 | 2025-05-12 | Univ California | Claudin-6 antibodies and drug conjugates |
| JP7682797B2 (ja) | 2019-03-20 | 2025-05-26 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | クローディン6二重特異性抗体 |
| US20230026627A1 (en) | 2019-04-17 | 2023-01-26 | Vaccitech North America, Inc. | Compositions and Methods of Manufacturing Star Polymers for Ligand Display and/or Drug Delivery |
| JP2022530026A (ja) | 2019-04-24 | 2022-06-27 | ハイデルベルク ファルマ リサーチ ゲゼルシャフト ミット ベシュレンクテル ハフツング | アマトキシン抗体薬物複合体及びその使用 |
| CA3140102A1 (en) | 2019-05-30 | 2020-12-03 | Dina SCHNEIDER | Compositions and methods for treating cancer with anti-bcma immunotherapy |
| US20220233709A1 (en) | 2019-06-05 | 2022-07-28 | Seagen Inc. | Masked Antibody Formulations |
| WO2020247574A1 (en) | 2019-06-05 | 2020-12-10 | Seattle Genetics, Inc. | Methods of purifying masked antibodies |
| JP2022539589A (ja) | 2019-07-02 | 2022-09-12 | ザ ユナイテッド ステイツ オブ アメリカ アズ リプリゼンテッド バイ ザ セクレタリー、デパートメント オブ ヘルス アンド ヒューマン サービシーズ | EGFRvIIIと結合するモノクローナル抗体およびその使用 |
| JP2022541591A (ja) | 2019-07-22 | 2022-09-26 | シージェン インコーポレイテッド | がんの処置のためのヒト化抗liv1抗体 |
| US12366570B2 (en) | 2019-10-01 | 2025-07-22 | The Johns Hopkins University | Cell-based ZNT8 assay |
| AU2020358859A1 (en) | 2019-10-04 | 2022-05-12 | Seagen Inc. | Anti-PD-L1 antibodies and antibody-drug conjugates |
| WO2021066869A1 (en) | 2019-10-04 | 2021-04-08 | TAE Life Sciences | Antibody compositions comprising fc mutations and site-specific conjugation properties |
| EP3812008A1 (en) | 2019-10-23 | 2021-04-28 | Gamamabs Pharma | Amh-competitive antagonist antibody |
| EP4072682A1 (en) | 2019-12-09 | 2022-10-19 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Antibodies having specificity to her4 and uses thereof |
| WO2021142086A1 (en) | 2020-01-08 | 2021-07-15 | Synthis Therapeutics, Inc. | Alk5 inhibitor conjugates and uses thereof |
| WO2021224186A1 (en) | 2020-05-04 | 2021-11-11 | Institut Curie | New pyridine derivatives as radiosensitizers |
| JP2023525053A (ja) | 2020-05-12 | 2023-06-14 | インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル) | 皮膚t細胞リンパ腫及びtfh由来リンパ腫を処置する新しい方法 |
| US11919956B2 (en) | 2020-05-14 | 2024-03-05 | Xencor, Inc. | Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3 |
| BR112022024833A2 (pt) | 2020-06-05 | 2023-02-14 | Eisai R&D Man Co Ltd | Conjugados anticorpo anti-bcma-fármaco e métodos de uso |
| JPWO2021251358A1 (enExample) | 2020-06-09 | 2021-12-16 | ||
| AU2021296423A1 (en) | 2020-06-22 | 2023-02-02 | Lentigen Technology, Inc. | Compositions and methods for treating cancer with TSLPR-CD19 or TSLPR-CD22 immunotherapy |
| IL300176A (en) | 2020-08-04 | 2023-03-01 | Seagen Inc | Anti-CD228 antibodies and antibody-drug conjugates |
| EP3970752A1 (en) | 2020-09-17 | 2022-03-23 | Merck Patent GmbH | Molecules with solubility tag and related methods |
| US20230381112A1 (en) | 2020-09-22 | 2023-11-30 | Vaccitech North America, Inc. | Compositions and Methods of Manufacturing Amphiphilic Block Copolymers that Form Nanoparticles in Situ |
| JP2023543026A (ja) | 2020-09-28 | 2023-10-12 | シージェン インコーポレイテッド | がんの処置のためのヒト化抗liv1抗体 |
| CN116322646A (zh) | 2020-10-01 | 2023-06-23 | 阿比奥尼克斯制药公司 | 用于治疗眼病的包含基于脂质结合蛋白的复合物的组合物 |
| US20230390406A1 (en) | 2020-10-19 | 2023-12-07 | Vaccitech North America, Inc. | Star Polymer Drug Conjugates |
| EP4232453A1 (en) | 2020-10-20 | 2023-08-30 | Institut Curie | Metallic trans-(n-heterocyclic carbene)-amine-platinum complexes and uses thereof for treating cancer |
| JP2023548555A (ja) | 2020-11-05 | 2023-11-17 | レンティジェン・テクノロジー・インコーポレイテッド | 抗cd19/cd22免疫療法によりがんを処置するための組成物および方法 |
| CN116829573A (zh) | 2021-01-18 | 2023-09-29 | 味之素株式会社 | 化合物或其盐、及由它们得到的抗体 |
| WO2022154127A1 (ja) | 2021-01-18 | 2022-07-21 | 味の素株式会社 | 化合物またはその塩、およびそれらにより得られる抗体 |
| AR124681A1 (es) | 2021-01-20 | 2023-04-26 | Abbvie Inc | Conjugados anticuerpo-fármaco anti-egfr |
| EP4294431A4 (en) | 2021-02-16 | 2025-05-07 | Barinthus Biotherapeutics North America, Inc. | Self-assembling nanoparticles based on amphiphilic peptides |
| CA3212665A1 (en) | 2021-03-09 | 2022-09-15 | Xencor, Inc. | Heterodimeric antibodies that bind cd3 and cldn6 |
| KR20230154311A (ko) | 2021-03-10 | 2023-11-07 | 젠코어 인코포레이티드 | Cd3 및 gpc3에 결합하는 이종이량체 항체 |
| AU2022234694A1 (en) | 2021-03-11 | 2023-09-21 | Ajinomoto Co., Inc. | Compound or salt thereof, and antibody obtained using same |
| WO2022189618A1 (en) | 2021-03-12 | 2022-09-15 | Institut Curie | Nitrogen-containing heterocycles as radiosensitizers |
| EP4310096A4 (en) | 2021-03-16 | 2025-06-25 | Ajinomoto Co., Inc. | Complex or salt thereof, and method for manufacturing same |
| WO2022198231A1 (en) | 2021-03-18 | 2022-09-22 | Seagen Inc. | Selective drug release from internalized conjugates of biologically active compounds |
| EP4308169A2 (en) | 2021-03-19 | 2024-01-24 | Heidelberg Pharma Research GmbH | B-lymphocyte specific amatoxin antibody conjugates |
| BR112023020093A2 (pt) | 2021-03-30 | 2023-11-14 | Legochem Biosciences Inc | Conjugado anticorpo-fármaco, incluindo anticorpo contra cldn18.2 humano, e uso do mesmo |
| AU2022253902A1 (en) | 2021-04-10 | 2023-11-02 | Genmab A/S | Folr1 binding agents, conjugates thereof and methods of using the same |
| IL307670A (en) | 2021-04-15 | 2023-12-01 | Abionyx Pharma Sa | Use of lipid binding protein-based complexes in organ preservation solutions |
| TW202308699A (zh) | 2021-04-23 | 2023-03-01 | 美商普方生物製藥美國公司 | Cd70結合劑、其結合物及其使用方法 |
| TW202320857A (zh) | 2021-07-06 | 2023-06-01 | 美商普方生物製藥美國公司 | 連接子、藥物連接子及其結合物及其使用方法 |
| EP4370211A1 (en) | 2021-07-14 | 2024-05-22 | Seagen Inc. | Antibody masking domains |
| US20250129153A1 (en) | 2021-08-20 | 2025-04-24 | The Johns Hopkins University | Cell-surface antibody to a specific biomarker of pancreatic beta-cells |
| EP4405387A1 (en) | 2021-09-24 | 2024-07-31 | Seagen Inc. | Improved antibody masking domains |
| WO2023054706A1 (ja) | 2021-09-30 | 2023-04-06 | 味の素株式会社 | 抗体および機能性物質のコンジュゲートまたはその塩、ならびにその製造に用いられる抗体誘導体および化合物またはそれらの塩 |
| JP2024541058A (ja) | 2021-11-03 | 2024-11-06 | ハンジョウ ディーエーシー バイオテック シーオー.,エルティディ. | 抗体の特異的共役 |
| US20250073346A1 (en) | 2021-11-18 | 2025-03-06 | Oxford Bio Therapeutics Ltd | Pharmaceutical combinations |
| CA3238167A1 (en) | 2021-11-19 | 2023-05-25 | Maria Leia Smith | Gpc3 binding agents, conjugates thereof and methods of using the same |
| US20230338424A1 (en) | 2022-03-02 | 2023-10-26 | Lentigen Technology, Inc. | Compositions and Methods for Treating Cancer with Anti-CD123 Immunotherapy |
| US11590169B1 (en) | 2022-03-02 | 2023-02-28 | Lentigen Technology, Inc. | Compositions and methods for treating cancer with anti-CD123 immunotherapy |
| MX2024010956A (es) | 2022-03-09 | 2024-09-17 | Astrazeneca Ab | Moleculas de union contra fra. |
| AU2023229967A1 (en) | 2022-03-11 | 2024-08-08 | Astrazeneca Ab | A SCORING METHOD FOR AN ANTI-FRα ANTIBODY-DRUG CONJUGATE THERAPY |
| AU2023250345A1 (en) | 2022-04-06 | 2024-11-14 | Abionyx Pharma Sa | Methods for treating eye diseases using lipid binding protein-based complexes |
| WO2023194539A1 (en) | 2022-04-07 | 2023-10-12 | Heidelberg Pharma Research Gmbh | Methods of improving the therapeutic index of amatoxin-antibody conjugates |
| CA3263188A1 (en) | 2022-07-28 | 2024-02-01 | Lentigen Technology, Inc. | Chimeric Antigen Receptor Therapies for the Treatment of Solid Tumors |
| CN119907810A (zh) | 2022-08-26 | 2025-04-29 | 莱蒂恩技术公司 | 用于用全人抗cd20/cd19免疫治疗来治疗癌症的组合物和方法 |
| WO2024052503A1 (en) | 2022-09-08 | 2024-03-14 | Institut National de la Santé et de la Recherche Médicale | Antibodies having specificity to ltbp2 and uses thereof |
| KR20250069943A (ko) | 2022-09-21 | 2025-05-20 | 씨젠 인크. | Cd228과 결합하는 항체 |
| EP4608437A2 (en) | 2022-10-25 | 2025-09-03 | Barinthus Biotherapeutics North America, Inc. | Combination treatment regimes for treating cancer |
| WO2024092030A1 (en) | 2022-10-25 | 2024-05-02 | Vaccitech North America, Inc. | Self-assembling nanoparticles |
| AR130916A1 (es) | 2022-11-01 | 2025-01-29 | Heidelberg Pharma Res Gmbh | Anticuerpo anti-gucy2c y usos del mismo |
| TW202434303A (zh) | 2022-11-03 | 2024-09-01 | 美商思進公司 | 抗αVβ6抗體及抗體藥物結合物及其用於癌症治療之用途 |
| EP4382120A1 (en) | 2022-12-05 | 2024-06-12 | Institut Regional du Cancer de Montpellier | Anti-slc1a4 monoclonal antibodies and uses thereof |
| WO2024121632A1 (en) | 2022-12-09 | 2024-06-13 | Crispr Therapeutics Ag | Use of anti-cd117 antibody drug conjugate (adc) |
| WO2024170660A1 (en) | 2023-02-16 | 2024-08-22 | Astrazeneca Ab | Combination therapies for treatment of cancer with therapeutic binding molecules |
| KR20250152101A (ko) | 2023-03-13 | 2025-10-22 | 하이델베르크 파마 리서치 게엠베하 | 암 치료에의 사용을 위한 피하 투여 항체-약물 접합체 |
| CN120917041A (zh) | 2023-04-04 | 2025-11-07 | 味之素株式会社 | 抗体和功能性物质的缀合物、抗体衍生物以及化合物或它们的盐 |
| WO2024210178A1 (ja) | 2023-04-05 | 2024-10-10 | 味の素株式会社 | 抗体および機能性物質のコンジュゲートまたはその塩、ならびにチオール基を有する抗体中間体またはその塩 |
| AU2024273407A1 (en) | 2023-05-17 | 2025-12-04 | Centre National De La Recherche Scientifique | Anti-cathepsin-d antibodies |
| TW202504637A (zh) | 2023-06-13 | 2025-02-01 | 美商艾德森特克斯治療股份有限公司 | 與結合至nectin-4蛋白之抗體及抗體藥物結合物(adc)相關之方法及組合物 |
| WO2024258967A1 (en) | 2023-06-13 | 2024-12-19 | Synthis Therapeutics, Inc. | Anti-cd5 antibodies and their uses |
| WO2025014896A1 (en) | 2023-07-07 | 2025-01-16 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Humanized 40h3 antibody |
| WO2025021928A1 (en) | 2023-07-25 | 2025-01-30 | Merck Patent Gmbh | Iduronidase-cleavable compounds |
| WO2025027529A1 (en) | 2023-07-31 | 2025-02-06 | Advesya | Anti-il-1rap antibody drug conjugates and methods of use thereof |
| EP4509142A1 (en) | 2023-08-16 | 2025-02-19 | Ona Therapeutics S.L. | Fgfr4 as target in cancer treatment |
| EP4512427A1 (en) | 2023-08-25 | 2025-02-26 | Mablink Bioscience | Antibody-drug conjugates based on molecular glue degraders and uses thereof |
| AR133955A1 (es) | 2023-09-26 | 2025-11-19 | Profoundbio Us Co | Agentes de unión a ptk7, conjugados de éstos y métodos de uso de los mismos |
| WO2025109097A2 (en) | 2023-11-24 | 2025-05-30 | Heidelberg Pharma Research Gmbh | Novel nicotinamide phosphoribosyltransferase inhibitors and uses thereof |
| WO2025126157A1 (en) | 2023-12-15 | 2025-06-19 | Advesya | Anti-il-1rap binding domains and antibody-drug conjugates thereof |
| US20250296992A1 (en) | 2024-01-10 | 2025-09-25 | Genmab A/S | Slitrk6 binding agents, conjugates thereof and methods of using the same |
| WO2025163468A1 (en) | 2024-01-30 | 2025-08-07 | Seagen Inc. | Anti-pd-l1 antibodies and antibody-drug conjugates and their use in the treatment of cancer |
| WO2025181219A1 (en) | 2024-02-29 | 2025-09-04 | Genmab A/S | Egfr and c-met bispecific binding agents, conjugates thereof and methods of using the same |
| US20250295801A1 (en) | 2024-03-21 | 2025-09-25 | Seagen Inc. | Cd25 antibodies, antibody drug conjugates, and uses thereof |
| WO2025224297A1 (en) | 2024-04-26 | 2025-10-30 | Institut National de la Santé et de la Recherche Médicale | Antibodies having specificity to tgfbi and uses thereof |
| WO2025248097A2 (en) | 2024-05-31 | 2025-12-04 | Gamamabs Pharma | Humanized anti-human her3 antibodies and uses thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0004467A2 (en) * | 1978-03-24 | 1979-10-03 | The Regents Of The University Of California | Bis-anthracyclines, methods of making and using them and liposome compositions for administering them |
| EP0328147A2 (en) * | 1988-02-11 | 1989-08-16 | Bristol-Myers Squibb Company | Anthracycline immunoconjugates having a novel linker and methods for their production |
| EP0554708A1 (en) * | 1992-01-23 | 1993-08-11 | Bristol-Myers Squibb Company | Thioether conjugates |
Family Cites Families (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4112217A (en) * | 1977-09-02 | 1978-09-05 | Sri International | Bis-hydrazones of daunomycin and adriamycin |
| GB2116979B (en) * | 1982-02-25 | 1985-05-15 | Ward Page Faulk | Conjugates of proteins with anti-tumour agents |
| US4950738A (en) * | 1984-09-13 | 1990-08-21 | Cytogen Corporation | Amine derivatives of anthracycline antibiotics |
| US5162512A (en) * | 1982-03-09 | 1992-11-10 | Cytogen Corporation | Amine derivatives of anthracycline antibodies |
| US4867973A (en) * | 1984-08-31 | 1989-09-19 | Cytogen Corporation | Antibody-therapeutic agent conjugates |
| US4671958A (en) * | 1982-03-09 | 1987-06-09 | Cytogen Corporation | Antibody conjugates for the delivery of compounds to target sites |
| JP2534222B2 (ja) * | 1982-05-12 | 1996-09-11 | プレジデント アンド フエロウズ オブ ハ−バ−ド カレツジ | 混成タンパク質生産用融合遺伝子 |
| US4560512A (en) * | 1982-09-30 | 1985-12-24 | Merck & Co., Inc. | Derivatives of steroid compounds linked to cyotoxic agents |
| US4542225A (en) * | 1984-08-29 | 1985-09-17 | Dana-Farber Cancer Institute, Inc. | Acid-cleavable compound |
| US5055561A (en) * | 1985-11-19 | 1991-10-08 | The Johns Hopkins University | Protein label and drug delivery system |
| US5057313A (en) * | 1986-02-25 | 1991-10-15 | The Center For Molecular Medicine And Immunology | Diagnostic and therapeutic antibody conjugates |
| US4699784A (en) * | 1986-02-25 | 1987-10-13 | Center For Molecular Medicine & Immunology | Tumoricidal methotrexate-antibody conjugate |
| US4694064A (en) * | 1986-02-28 | 1987-09-15 | The Dow Chemical Company | Rod-shaped dendrimer |
| IN165717B (enExample) * | 1986-08-07 | 1989-12-23 | Battelle Memorial Institute | |
| US4981979A (en) * | 1987-09-10 | 1991-01-01 | Neorx Corporation | Immunoconjugates joined by thioether bonds having reduced toxicity and improved selectivity |
| US5002883A (en) * | 1987-10-30 | 1991-03-26 | Abbott Laboratories | Covalent attachment of antibodies and antigens to solid phases using extended length heterobifunctional coupling agents |
| EP0318948B1 (en) * | 1987-12-02 | 1992-08-19 | Neorx Corporation | Cleavable immunoconjugates for the delivery and release of agents in native form |
| US5057301A (en) * | 1988-04-06 | 1991-10-15 | Neorx Corporation | Modified cellular substrates used as linkers for increased cell retention of diagnostic and therapeutic agents |
| US5066490A (en) * | 1988-06-01 | 1991-11-19 | The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services | Protein crosslinking reagents cleavable within acidified intracellular vesicles |
| US5024834A (en) * | 1988-07-12 | 1991-06-18 | Cetus Corporation | Thioether linked immunotoxin conjugates |
| US5094849A (en) * | 1988-08-08 | 1992-03-10 | Eli Lilly And Company | Cytotoxic antibody conjugates of hydrazide derivatized vinca analogs via simple organic linkers |
| US5144012A (en) * | 1988-08-08 | 1992-09-01 | Eli Lilly And Company | Cytotoxic drug conjugates |
| US5169933A (en) * | 1988-08-15 | 1992-12-08 | Neorx Corporation | Covalently-linked complexes and methods for enhanced cytotoxicity and imaging |
| WO1990003188A1 (en) * | 1988-09-30 | 1990-04-05 | Neorx Corporation | Cleavable linkers for the reduction of non-target organ retention of immunoconjugates |
| WO1990003401A1 (en) * | 1988-09-30 | 1990-04-05 | Neorx Corporation | Targeting substance-diagnostic/therapeutic agent conjugates having schiff base linkages |
| US5013547A (en) * | 1989-02-07 | 1991-05-07 | Erbamont, Inc. | Anticancer drug - antibody conjugates and method for preparing same |
| US5208020A (en) * | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| CA2076347C (en) * | 1990-02-20 | 1996-11-26 | Ravinder K. Gupta | Improved antibody-enzyme direct conjugates and method of making same |
| US5198560A (en) * | 1990-04-27 | 1993-03-30 | Bristol-Myers Squibb Company | Cytotoxic bicyclo[7.3.1]tridec-4-ene-2,6-diyne compounds and process for the preparation thereof |
| US5137877B1 (en) * | 1990-05-14 | 1996-01-30 | Bristol Myers Squibb Co | Bifunctional linking compounds conjugates and methods for their production |
| US5155210A (en) * | 1990-09-11 | 1992-10-13 | Brunswick Corporation | Methods of conjugating actinomycin d |
| JPH04334377A (ja) * | 1990-12-31 | 1992-11-20 | Akzo Nv | 酸−不安定性リンカー分子 |
| US5965106A (en) * | 1992-03-04 | 1999-10-12 | Perimmune Holdings, Inc. | In vivo binding pair pretargeting |
| US6214345B1 (en) * | 1993-05-14 | 2001-04-10 | Bristol-Myers Squibb Co. | Lysosomal enzyme-cleavable antitumor drug conjugates |
-
1996
- 1996-12-17 DE DE69626849T patent/DE69626849T2/de not_active Expired - Lifetime
- 1996-12-17 ES ES96944522T patent/ES2195036T3/es not_active Expired - Lifetime
- 1996-12-17 AT AT96944522T patent/ATE234635T1/de active
- 1996-12-17 EP EP96944522A patent/EP0871490B1/en not_active Expired - Lifetime
- 1996-12-17 WO PCT/US1996/020513 patent/WO1997023243A1/en not_active Ceased
- 1996-12-17 JP JP09523841A patent/JP2000503639A/ja not_active Ceased
- 1996-12-17 DK DK96944522T patent/DK0871490T3/da active
- 1996-12-17 PT PT96944522T patent/PT871490E/pt unknown
- 1996-12-19 US US08/770,614 patent/US5824805A/en not_active Expired - Fee Related
-
1998
- 1998-06-02 MX MX9804386A patent/MX9804386A/es unknown
- 1998-08-19 US US09/136,351 patent/US6512101B1/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0004467A2 (en) * | 1978-03-24 | 1979-10-03 | The Regents Of The University Of California | Bis-anthracyclines, methods of making and using them and liposome compositions for administering them |
| EP0328147A2 (en) * | 1988-02-11 | 1989-08-16 | Bristol-Myers Squibb Company | Anthracycline immunoconjugates having a novel linker and methods for their production |
| EP0554708A1 (en) * | 1992-01-23 | 1993-08-11 | Bristol-Myers Squibb Company | Thioether conjugates |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000006543A1 (en) * | 1998-07-29 | 2000-02-10 | Chisso Corporation | Novel diamino compounds, polyamic acid, polyimide, liquid-crystal alignment film made from film of the polyimide, and liquid-crystal display element containing the alignment film |
| WO2001017614A3 (en) * | 1999-09-07 | 2002-02-28 | Conjuchem Inc | Methods and compositions containing succinimide or maleimide derivatives of antineoplastic agents |
| WO2001017568A3 (en) * | 1999-09-07 | 2002-07-11 | Conjuchem Inc | Bioconjugation in vivo to pulmonary or blood components |
| US6706892B1 (en) | 1999-09-07 | 2004-03-16 | Conjuchem, Inc. | Pulmonary delivery for bioconjugation |
| EP1889639A3 (en) * | 1999-09-07 | 2008-04-09 | ConjuChem Biotechnologies Inc. | Methods and compositions containing succinimide or maleimide derivatives of antineoplastic agents, for producing long lasting antineoplastic agents |
| WO2002092631A1 (en) * | 2001-05-14 | 2002-11-21 | The Horticulture And Food Research Institute Of New Zealand Limited | Kinetic assay |
| US8361464B2 (en) | 2002-03-01 | 2013-01-29 | Immunomedics, Inc. | Anthracycline-Antibody Conjugates for Cancer Therapy |
| US9107962B2 (en) | 2002-03-01 | 2015-08-18 | Immunomedics, Inc. | Anthracycline-antibody conjugates for cancer therapy |
| US8895013B2 (en) | 2002-03-01 | 2014-11-25 | Immunomedics, Inc. | Anthracycline-antibody conjugates for cancer therapy |
| US8568729B2 (en) | 2002-03-01 | 2013-10-29 | Immunomedics, Inc. | Anthracycline-antibody conjugates for cancer therapy |
| WO2004067038A1 (en) * | 2003-01-24 | 2004-08-12 | Immunomedics, Inc. | Anthracycline-antibody conjugates |
| AU2011236095B2 (en) * | 2003-01-24 | 2013-08-01 | Immunomedics, Inc. | Anthracycline-antibody conjugates |
| AU2009212806B2 (en) * | 2003-01-24 | 2011-12-08 | Immunomedics, Inc. | Anthracycline-antibody conjugates |
| AU2004207494C1 (en) * | 2003-01-24 | 2009-11-05 | Immunomedics, Inc. | Anthracycline-antibody conjugates |
| AU2004207494B2 (en) * | 2003-01-24 | 2009-05-28 | Immunomedics, Inc. | Anthracycline-antibody conjugates |
| US8877202B2 (en) | 2013-02-07 | 2014-11-04 | Immunomedics, Inc. | Pro-drug form (P2PDOX) of the highly potent 2-pyrrolinodoxorubicin conjugated to antibodies for targeted therapy of cancer |
| US9095628B2 (en) | 2013-02-07 | 2015-08-04 | Immunomedics, Inc. | Pro-drug form (P2PDOX) of the highly potent 2-pyrrolinodoxorubicin conjugated to antibodies for targeted therapy of cancer |
| US9283286B2 (en) | 2013-02-07 | 2016-03-15 | Immunomedics, Inc. | Pro-drug form (P2PDox) of the highly potent 2-pyrrolinodoxorubicin conjugated to antibodies for targeted therapy of cancer |
| US9486536B2 (en) | 2013-02-07 | 2016-11-08 | Immunomedics, Inc. | Pro-drug form (P2PDOX) of the highly potent 2-pyrrolinodoxorubicin conjugated to antibodies for targeted therapy of cancer |
| US9694088B2 (en) | 2013-02-07 | 2017-07-04 | Immunomedics, Inc. | Pro-drug form (P2PDox) of the highly potent 2-pyrrolinodoxorubicin conjugated to antibodies for targeted therapy of cancer |
| WO2014194030A3 (en) * | 2013-05-31 | 2015-01-22 | Immunogen, Inc. | Conjugates comprising cell-binding agents and cytotoxic agents |
| US20220040320A1 (en) * | 2018-12-21 | 2022-02-10 | Seagen Inc. | Adcs with thiol multiplex linkers |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69626849T2 (de) | 2003-12-24 |
| US5824805A (en) | 1998-10-20 |
| JP2000503639A (ja) | 2000-03-28 |
| US6512101B1 (en) | 2003-01-28 |
| ES2195036T3 (es) | 2003-12-01 |
| EP0871490B1 (en) | 2003-03-19 |
| DE69626849D1 (de) | 2003-04-24 |
| MX9804386A (es) | 1998-09-30 |
| DK0871490T3 (da) | 2003-07-07 |
| ATE234635T1 (de) | 2003-04-15 |
| EP0871490A1 (en) | 1998-10-21 |
| PT871490E (pt) | 2003-07-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0871490B1 (en) | Branched hydrazone linkers | |
| EP0328147B1 (en) | Anthracycline immunoconjugates having a novel linker and methods for their production | |
| US5349066A (en) | Bifunctional linking compounds, conjugates and methods for their production | |
| AU666903B2 (en) | Thioether conjugates | |
| AU687795B2 (en) | Lysosomal enzyme-cleavable antitumor drug conjugates | |
| AU631638B2 (en) | Anthracycline conjugates having a novel linker and methods for their production | |
| AU619614B2 (en) | Antibody-drug conjugates | |
| HK1005018B (en) | Anthracycline conjugates having a novel linker and methods for their production | |
| JPH05238952A (ja) | 抗体を伴う薬物のクラスター複合体 | |
| CA2239183C (en) | Branched hydrazone linkers | |
| CA2010164C (en) | Anthracycline immunoconjugates having a novel linker and methods for their production |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP MX |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref document number: 2239183 Country of ref document: CA Ref document number: 2239183 Country of ref document: CA Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/A/1998/004386 Country of ref document: MX |
|
| ENP | Entry into the national phase |
Ref document number: 1997 523841 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1996944522 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1996944522 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1996944522 Country of ref document: EP |