WO1996025771A1 - Nonwoven fabric for an alkaline battery separator and method for producing the same - Google Patents

Nonwoven fabric for an alkaline battery separator and method for producing the same Download PDF

Info

Publication number
WO1996025771A1
WO1996025771A1 PCT/JP1996/000333 JP9600333W WO9625771A1 WO 1996025771 A1 WO1996025771 A1 WO 1996025771A1 JP 9600333 W JP9600333 W JP 9600333W WO 9625771 A1 WO9625771 A1 WO 9625771A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
alkaline battery
battery separator
treatment
subjected
Prior art date
Application number
PCT/JP1996/000333
Other languages
English (en)
French (fr)
Inventor
Toshihiro Shigematsu
Yoshitami Ishikawa
Yasuyuki Oku
Original Assignee
Mitsubishi Paper Mills Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Limited filed Critical Mitsubishi Paper Mills Limited
Priority to EP96902448A priority Critical patent/EP0872899B1/en
Priority to DE69638345T priority patent/DE69638345D1/de
Priority to JP52483296A priority patent/JP4180653B2/ja
Publication of WO1996025771A1 publication Critical patent/WO1996025771A1/ja
Priority to US08/911,018 priority patent/US6080471A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/24Polymers or copolymers of alkenylalcohols or esters thereof; Polymers or copolymers of alkenylethers, acetals or ketones
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/005Mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • Y10T428/249964Fibers of defined composition

Definitions

  • the present invention relates to a nickel cadmium battery used to prevent a short circuit between the positive and negative electrodes of an alkaline battery, to sufficiently retain an electrolytic solution, and to allow the electromotive reaction to proceed smoothly. It relates to a nonwoven fabric for an alkaline battery separator such as a hydrogen battery.
  • Alkaline batteries have excellent charge / discharge characteristics and overcharge / overdischarge characteristics, and have a long service life. Therefore, alkaline batteries are widely used in remarkably small and lightweight electronic devices. The characteristics of such an alkaline battery largely depend on the characteristics of the non-woven fabric for an alkaline battery separator.
  • nonwoven fabrics for alkaline battery separators have traditionally been polyamide fibers such as 6-nylon and 6,6-nylon, or core-sheath type polyolefin fibers in which the core component is polypropylene and the sheath component is polyethylene.
  • Nonwoven fabrics of the dry method have been used. These nonwoven fabrics for dry battery separators made of the dry method nonwoven fabric have large variations in the basis weight, so they are used by crushing with a heat calender with a large basis weight, and have high mechanical strength and battery workability. However, there is a problem that it is not possible to reduce the weight.
  • this type of battery separator made of melt-blown non-woven fabric is manufactured by injecting high-speed heated airflow from both sides while melt-spinning the fiber to make the fiber finer and collecting it on a screen. Therefore, the mechanical strength is very weak, and the variation in the basis weight is still large.Therefore, the problem that the basis weight cannot be reduced to a certain level or less and the permeability is low. The reaction gas generated at the time cannot be escaped, and as a result, the internal pressure of the battery rises, and there is a problem that rapid charging becomes difficult.
  • Japanese Patent Application Laid-Open No. 5-182654 discloses a method in which a melt-blown nonwoven fabric and a short fiber web are subjected to a hydroentanglement treatment, or a short fiber web and a melt blow web are used.
  • a battery separator in which a water entangled nonwoven fabric that has been stacked and subjected to a water entanglement treatment is laminated and integrated by thermocompression bonding.
  • Japanese Patent Application Laid-Open No. 7-29561 discloses that a splittable conjugate fiber composed of a polyolefin polymer and an ethylene vinyl alcohol copolymer is combined with a heat-adhesive conjugate fiber and a splittable conjugate fiber.
  • a battery separator that has been mixed with ultrafine fibers after splitting and short fibers of rigid fibers having a higher denier than the heat-adhesive conjugate fibers, and wet-processed. Manufacturing methods have been proposed.
  • heat-fusible fibers are mixed and heat-fused, and at the same time, high-pressure water-flow treatment is performed to entangle the constituent fibers three-dimensionally to develop mechanical strength.
  • the splittable fibers are divided and finely divided by high-pressure water flow treatment to maintain the electrolyte.
  • the only way to completely prevent the movement of the active material and ensure the liquid retention of the electrolyte is to increase the wet web weight.
  • the weight is 70 g / m 2. Before and after, it is difficult to reduce the basis weight.
  • An object of the present invention is to provide an excellent nonwoven fabric for an alkaline battery separator and a method for producing the same.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have come to invent a non-woven fabric for an alkaline battery separator.
  • the nonwoven fabric for an alkaline battery separator of the present invention is a nonwoven fabric for an alkaline battery separator obtained by subjecting a wet-formed polyolefin-based fiber ⁇ X to a hydroentanglement treatment, a corona discharge treatment, and a calender treatment.
  • at least a center plane average roughness SRa at a confounding trace of one side of the nonwoven fabric is 13 m or less
  • the nonwoven fabric has a maximum pore diameter of 50 / m or less, and is pressurized. It is characterized by having a water absorption of 20 g / m 2 or more.
  • the method for producing a nonwoven fabric for an alkaline battery separator of the present invention is a method for producing a polyolefin-based fiber by wet sheet-making using a column-shaped water jet nozzle having a shape having a wider injection port than a water introduction port provided inside an injector of a water entanglement device.
  • the entangled web surface is subjected to a hydroentanglement treatment, and then the entangled web surface is subjected to a corona discharge treatment, and then subjected to a calender treatment to manufacture.
  • the column-shaped water jet nozzle having a shape having a wider injection port than the water flow inlet is characterized by being provided at least inside the last injector.
  • the nonwoven fabric for an alkaline battery separator has a standard deviation of pore diameter distribution measured by a bubble point method of 20 / m or less, and an average pore diameter of ⁇ 2 / m Characterized in that the number of the pores present in the core is 35% or more of the whole, and that the corona discharge treatment is performed.
  • the nonwoven fabric for an alkaline battery separator is mainly composed of a polyolefin-based fiber partially containing an ethylene vinyl alcohol copolymer or a cross-linked polyethylene oxide, and is subjected to corona discharge treatment.
  • the peak area ratio (OZC ratio) is 0.50 to 1.85 and 0.45 to 1.40, respectively.
  • the peak area ratio (OZC ratio) of the oxygen element (0) and the carbon element (C) at the intermediate position in the surface and thickness direction of the nonwoven fabric for an alkaline battery separator by electron spectroscopy (ESCA) is strong. 5 to 50 and 0.48 to 20.
  • the nonwoven fabric for an alkaline battery separator of the present invention is mainly composed of finely wrinkled polyolefin-based fibers partially having an ethylene-vinyl alcohol copolymer and having many fine lines formed on the surface of the fibers.
  • Corona discharge treatment virtually through holes
  • the method for producing a non-woven fabric for an alkaline battery separator of the present invention comprises the steps of: forming a non-woven fabric mainly comprising a polyolefin-based fiber partially containing an ethylene vinyl alcohol copolymer or a cross-linked polyethylene oxide; Using a multi-electrode having a tip shape, the nonwoven fabric is subjected to a corona discharge treatment under a condition of a discharge degree of 20.0 w / cm 2 or less, and the surface of the nonwoven fabric measured by electron spectroscopy (ESCA) and the intermediate position in the thickness direction are measured
  • the peak area ratio (0 to C ratio) of oxygen element (0) and carbon element (C) is set to 0.50 to 85 and 0.45 to 1.40, respectively. It is.
  • FIG. 1 is a right side view of the hydroentanglement device
  • FIG. 2 is an enlarged sectional view of one of the injectors in FIG.
  • FIGS. 3A and 3B are side sectional views showing the shape of a columnar water jet nozzle according to the present invention
  • FIGS. 4A and 4B are side sectional views showing the shape of a conventional columnar water jet nozzle.
  • FIGS. 6A, 6B and 6C show examples of the shape of the multi-electrode.
  • FIG. 7 is an electron micrograph of the nonwoven fabric for an alkaline battery separator according to Example 39.
  • FIG. 8 is an electron micrograph of the nonwoven fabric for an alkaline battery separator according to Example 41.
  • 1 is an injector
  • 2 is a column water jet nozzle
  • 3 is a high pressure column water flow
  • 4 is a wet-formed polyolefin fiber web
  • 5 is a porous support
  • 6 is a high pressure column water inlet
  • 7 is an internal filter
  • Reference numeral 8 denotes a pressure plate
  • 9 denotes a suction plate
  • 10 denotes a suction box
  • 11 denotes a water flow inlet
  • 12 denotes an injection port.
  • the nonwoven fabric for an alkaline battery separator of the present invention has been subjected to a hydroentanglement treatment, a corona discharge treatment, and a calendar treatment.
  • Such confounding traces remain on the surface of the non-woven fabric for battery packs, but the larger the concavity and convexity of the confounding traces, the larger the center surface average roughness SRa and the larger the maximum pore size.
  • the pore size distribution force is broken, and the liquid retention is reduced.
  • a calendering treatment is performed to adjust the thickness of the nonwoven fabric for the alkaline battery separator to a predetermined thickness, and to smooth out the concavo-convex irregularities and reduce the maximum pore diameter. If the unevenness is large, a through hole that cannot be repaired even if it is formed will be formed.
  • the center-surface average roughness SR a (j ⁇ m) of at least one side of the nonwoven fabric for a calendar-treated battery separator after entangling is preferably 13 m or less, and 11; Is more preferred.
  • the thickness D (unit: // m) of the nonwoven fabric for the battery separator that has been slid by the calendering process is referred to as a center surface average roughness SR a (hereinafter abbreviated as R in some cases).
  • R center surface average roughness
  • SR a center surface average roughness
  • : / Zm) was found to show a certain value depending on the state of the concavo-convex irregularities before the beach.
  • DZR 8 or more, if the basis weight of 5 0 g / m 2 extent, D / R is 1 2 or more, if the basis weight of 6 0 g / m 2, D / R is preferably 14 or more.
  • the maximum pore size of the nonwoven fabric for an alkaline battery separator is preferably 50 im or less, particularly preferably 40 / m or less.
  • the water absorption under pressure of the nonwoven fabric for an alkaline battery separator is preferably at least 20 g / m 2, more preferably at least 30 gZm 2 .
  • the electrolyte held by the non-woven fabric for alkaline battery separator shifts to the positive electrode side due to the expansion due to repeated charge and discharge of the positive electrode.
  • Some nonwoven fabrics for alkaline battery separators cause dry out.
  • Polyolefin-based fibers constituting the nonwoven fabric for an alkaline battery separator of the present invention are not particularly limited as long as they are polyolefin-based.
  • single fibers such as polypropylene and polyethylene
  • the core component is a polypropylene polymer
  • the sheath is Core-sheath type heat-fusible conjugate fiber composed of low melting point or high melting point polyethylene or ethylene vinyl alcohol copolymer, splittable conjugate fiber of polyolefin polymer and ethylene vinyl alcohol copolymer, etc.
  • a mixture of the above fibers in an appropriate amount can be used.
  • the fiber diameter of the polyolefin-based fiber used is preferably as small as possible in order to prevent the maximum pore diameter from being enlarged when subjected to hydroentanglement treatment, preferably 1 to 20 m, and 3 to 10 m. Are more preferred.
  • the fiber length of the polyolefin-based fiber used is preferably 5 to 15 mm from the viewpoint of dispersibility in wet papermaking and the strength of the entangled nonwoven fabric. If the fiber length is longer than 15 mm, the dispersing process in water is difficult, so it is necessary to select a dispersant and use an appropriate amount, as well as once dispersing and then re-aggregating, twisting, tangling, Throat, 'problem that easily occurs ⁇ In addition, the dispersion concentration must be reduced, resulting in poor productivity.
  • the dispersing process is easy, In addition, since the fibers are easy to move due to the high pressure columnar water flow, it is difficult to bend and entangle the fibers, and it is difficult to obtain a strong sheet. In addition, the movement of the entire fiber causes a shift between the fibers, causing a strain inside the confounding tube, and the problem that many wrinkles occur on the confounding tube after injecting a high-pressure columnar water flow. .
  • the web of the nonwoven fabric for an alkaline battery separator is manufactured by a wet papermaking method using the above-mentioned polyolefin-based fiber.
  • a wet papermaking method using the above-mentioned polyolefin-based fiber.
  • it can also be produced by a known method such as a card method other than the wet papermaking method, a cross layer method, and a random bar method.
  • a card method other than the wet papermaking method a cross layer method, and a random bar method.
  • the carding method and the air-laying method fibers having a long fiber length can be used.
  • Eb also has poor formation, and when observed with transmitted light, spots are observed. For this reason, it is necessary to increase the basis weight in order to obtain the maximum pore diameter required to prevent a short circuit.
  • the wet papermaking method has the advantage that the production speed is faster than that of the card method or the like, and that fibers with different fiber diameters and multiple types of fibers can be mixed at an arbitrary ratio in the same apparatus.
  • it is a method that gives a very good formation of the tube compared to other methods. For this reason, it is an extremely wide-ranging application and a web forming method that can easily control the pore size.
  • the hydroentanglement process will be described.
  • Fig. 1 shows a right side view of the hydroentanglement device
  • Fig. 2 shows an enlarged sectional view of the injector 1 in Fig. 1.
  • the present invention is characterized in that a water-entanglement process is performed using a column-shaped water-jet nozzle 2 having an injection port 12 wider than a water-flow inlet 11 provided inside an injector 11 of a water-entanglement device. And Further, the column-shaped water jet nozzle is provided at least in the final stage of the injector.
  • FIG. 3 is a side sectional view showing the shape of a columnar water jet nozzle according to the present invention
  • FIG. 4 is a side sectional view showing the shape of a conventional columnar water jet nozzle.
  • the amount of water injected at the same water pressure is smaller than that of the conventional one shown in Fig. 4, and the water flow can be prevented from being sprinkled.
  • Surplus water that does not contribute to water can be reduced.
  • an entangled web with small concavo-convex traces can be produced without disturbing the web obtained by the wet papermaking method.
  • the nozzle pitch is preferably in the range of 0.5 to 1.0 mm, and the nozzle diameter is preferably 150 m or less, since the center plane average roughness can be reduced, and more preferably 100 // m or less.
  • the high-pressure columnar water stream 3 is jetted from above the tube, and the high-pressure columnar water flow 3 and the tube 4 are relatively moved to three-dimensionally entangle the polyolefin fibers.
  • a method of rotating a support of a set of conveyors or a drum-type support is convenient.
  • the transport speed of the support is determined by the energy applied to the tube, but can be used at a speed of 1 to 10 Om / min or less.
  • the porosity of the support is greater than 40%, through holes are formed in the obtained entangled web, making it difficult to adjust the maximum pore diameter. Conversely, the smaller the porosity, the better the unevenness of the entangled traces of the obtained entangled web, but if the porosity is too small, the water required for the entanglement does not fall down from the support, and After hitting the web, it rebounds to the web again, and the rebound water pushes up the web, causing a phenomenon that the web is damaged, which is not preferable.
  • porous support examples include metal wires such as stainless steel and bronze, and plastic wires such as reinforced polyester and polyamide in a weave method such as plain weave and twill weave.
  • a columnar water jet nozzle 2 having a wider shape of the injection port 12 than the water flow inlet 11 as shown in FIG. Attached and use a confounding tube that has been subjected to hydroentanglement The power to do, 'important.
  • a entangled tube with a maximum pore diameter of more than 60 / m is calendered before corona discharge treatment to reduce the maximum pore diameter to 60 ⁇ m or less, and corona pinholes are generated even when corona discharge treatment is performed.
  • the frequency decreases, it is not possible to fill the unevenness due to the unevenness of the confounding traces, and the corona pinhole may still open. Therefore, in the hydroentanglement treatment, it is preferable that the concavo-convex unevenness is as small as possible and the maximum pore diameter is 6 Om or less.
  • calendering is applied to the entangled web that has been subjected to corona discharge treatment to adjust the thickness of the non-woven fabric for the battery separator.
  • corona discharge treatment reversing the order of the corner discharge treatment and the force render treatment is particularly problematic. There is no.
  • corona discharge treatment can be performed deeper into the entangled web
  • corona treatment may be performed again after the calendar treatment and before the battery assembly.
  • the roll material used in the calendering process can be a combination of rubber-rubber, steel-steel, steel-rubber, cotton-steel, or cotton-cotton. Cotton-steel is preferred from the viewpoint of workability of thickness adjustment and surface quality after calendering.
  • the calendar process is rolled up. The problematic power of doing Therefore, even in the case of performing the calendering process, the surface smoothness of the entangled web is important, and it is preferable that the unevenness of the entangled web be minimized during the hydroentanglement process.
  • the non-woven fabric After performing the corona discharge treatment on the non-woven fabric for an alkaline battery separator, the non-woven fabric may be coated or impregnated with a wetting agent such as a nonionic surfactant. Further, in order to be able to be suitably used as a non-woven fabric for an alkaline battery separator, it is desirable that the thickness be 200 m or less as measured by a microphone port meter.
  • a columnar jet jet nozzle having a shape having a wider injection port than the waterflow introduction port is attached and subjected to the hydroentanglement treatment, and the nonwoven fabric for the battery separator is formed.
  • the nonwoven fabric for an alkaline battery separator according to the second aspect of the present invention will be described in detail.
  • the fibers constituting the nonwoven fabric for an alkaline battery separator of the present invention will be described.
  • the fiber constituting the non-woven fabric for an alkaline battery separator of the present invention is not particularly limited as long as it is a polyolefin-based fiber.
  • a single fiber such as polypropylene or polyethylene
  • a core component is a polypropylene polymer
  • a sheath component has a low melting point.
  • a high melting point polyester, a core-sheath type heat-fusible conjugate fiber that is an ethylene vinyl alcohol copolymer, a splittable conjugate fiber of a polyolefin polymer and an ethylene vinyl alcohol copolymer, or the like can be used.
  • the fiber diameter of the fibers constituting the non-woven fabric for the battery separator of the present invention is preferably as thin as possible, preferably 1 to 20 m, and more preferably 1 to 10 m. It is preferable because the pore size distribution can be narrowed.
  • the standard deviation of the pore size distribution of the nonwoven fabric for the battery separator is composed of fine fibers. Then it becomes smaller, and it becomes larger if it is composed of thick fibers.
  • the standard deviation of the pore size distribution changes with the basis weight, and when compared at a fixed thickness, the larger the basis weight, the smaller the standard deviation, and the smaller the basis weight, the larger the standard deviation.
  • the standard deviation of the pore size distribution when compared with a certain amount of basis weight, becomes smaller as the thickness is reduced by crushing, and becomes larger as the thickness is increased without loosing.
  • the standard deviation of the pore size distribution of the nonwoven fabric for an alkaline battery separator according to the present invention is preferably 20 m or less, more preferably 10 x m or less. If the standard deviation of the pore size distribution is larger than 20 m, the electrolyte retention property deteriorates, and when the electrode swells, the electrolyte is extruded from the inside of the non-woven fabric for the battery separator and dried. The likelihood increases.
  • the standard deviation of the pore diameter distribution measured by the bubble point method is 20 m or less, and the number of pores present in the average pore diameter soil 2 zm is Corona discharge treatment is applied to the non-woven fabric for the battery separator, which accounts for 35% or more of the whole.
  • the above-mentioned polyolefin fiber or resin is used, for example, a known paper forming method such as a wet papermaking method, a card method, a spunbond method, and a melt blow method. A method can be used.
  • the wet papermaking method and the melt blow method are preferable because the fiber diameter of the fibers constituting the non-woven fabric for an alkaline battery separator can be reduced.
  • the wet papermaking method has a high production rate, and a plurality of types of fiber
  • fibers can be mixed in any ratio.
  • the splittable conjugate fiber can be almost completely split in the disaggregation step with a disintegrator such as a pulper, a high-speed mixer or a beater, and the dispersion step. For this reason, it is an extremely wide-ranging application method.
  • the web obtained by the wet papermaking method is subjected to hydrostatic treatment, and the polyolefin fibers constituting the web are three-dimensionally converted. There is a method of confounding.
  • the hydroentanglement treatment is applied, the tensile strength and elongation at break of the non-woven fabric for battery separators are significantly increased, which results from the tensile force applied during battery construction, winding pressure, and settling during use. Thickness change can be prevented, and it is very effective in preventing short circuit.
  • a corona discharge treatment is performed to improve the affinity of the nonwoven fabric for an alkaline battery separator made of polyolefin-based fibers with the electrolytic solution.
  • the corona discharge treatment causes the surface of the polyolefin fiber to be partially eroded into a finely branched state, increasing the surface area of the non-woven fabric for alkaline battery separators and improving the liquid retention property for the web. Has contributed.
  • the nonwoven fabric After subjecting the nonwoven fabric for an alkaline battery separator to a corona discharge treatment, the nonwoven fabric may be applied or impregnated with a wetting agent such as a nonionic surfactant.
  • a wetting agent such as a nonionic surfactant.
  • the thickness in order to be able to be suitably used as a non-woven fabric for an alkaline battery separator, it is desirable that the thickness be 200 m or less as measured by a micrometer.
  • the electrolysis inside the nonwoven fabric formed by entanglement of the polyolefin fibers constituting the nonwoven fabric for the alkaline battery separator is performed.
  • the liquid holding space fine and uniform, the liquid holding property of the electrolyte is improved, and the electrode strength is increased.
  • the electrolyte is extruded from the inside of the non-woven fabric for alkaline battery separators and dried out. It is made so that there is no gap.
  • the nonwoven fabric for an alkaline battery separator of the present invention is subjected to corona discharge treatment for the alkaline battery separator nonwoven fabric made of polyolefin-based fibers by an inexpensive method without relying on a surfactant impregnation treatment. It is intended to provide excellent electrolyte absorbency.
  • the nonwoven fabric for an alkaline battery separator and the method for producing the same according to the third aspect of the present invention will be described in detail.
  • the fibers constituting the nonwoven fabric for an alkaline battery separator of the present invention will be described.
  • polyolefin fibers partially containing an ethylene vinyl alcohol copolymer or a cross-linked polyethylene oxide include, for example, a core-sheath type in which the core component is a polypropylene polymer and the sheath component is an ethylene vinyl alcohol copolymer.
  • Heat-fusible composite fiber segmented composite fiber of polyolefin polymer and ethylene vinyl alcohol copolymer: parallel type composite fiber in which polyolefin polymer and ethylene vinyl alcohol copolymer are arranged in parallel; polyolefin polymer Sea-island composite fiber with ethylene-vinyl alcohol copolymer as the sea component; Door can be.
  • a single fiber such as polypropylene or polyethylene may be appropriately used in combination with the above fibers.
  • the fiber diameter of the above-mentioned fiber is 1 to 20 / zm, and more preferably 1 to 1 Ojt / m.
  • the liquid retaining property of the nonwoven fabric improves.However, when the thickness is smaller than 1 m, the sheet tends to be dense and the air permeability tends to be deteriorated. It is not preferable because the strength becomes low. On the other hand, if the thickness is larger than 20 tm, the liquid retention property is undesirably deteriorated.
  • the fine wrinkled polyolefin fiber is a polyolefin fiber partially containing an ethylene vinyl alcohol copolymer, and has a large number of fine fibers, that is, a fine uneven peak or undulation on its surface.
  • the wrinkles of the fine wrinkled polyolefin-based fiber may be formed on the fiber before the nonwoven fabric is manufactured, or may be formed on the surface of the polyolefin-based fiber during or after the manufacture of the nonwoven fabric. Is also good. Further, a wrinkle may be formed in a corona discharge treatment step described later.
  • the state of the whisk may be a state in which the resin is raised or a hollow state. If it is in a hollow state, it does not matter if the cavity is in communication with the outside of the fiber.
  • the ethylene-vinyl alcohol copolymer fibers shrink in the drying step of forming the nonwoven fabric after the splitting of fibers, resulting in fine wrinkles. Are formed, and fine wrinkles are enlarged by corona discharge treatment described later, so that more wrinkles are formed.
  • the fiber surface is wrinkled, the specific surface area of the fiber increases, the effect of improving the affinity for the electrolyte increases, and the effect of improving the liquid absorption and liquid retention of the fiber itself increases.
  • the fiber spacing is closer than that without a wrinkle, the synergistic effect of the capillary effect due to the voids formed between the fibers and the improvement in the affinity of the fiber itself for the electrolyte leads to the liquid absorption and liquid retention of the nonwoven fabric. Properties are significantly increased.
  • examples of a method for forming a nonwoven fabric include known methods such as a wet papermaking method, a card method, a spunbond method, and a melt blow method.
  • the wet papermaking method and the melt blow method are preferable because the fiber diameter of the fibers constituting the nonwoven fabric for an alkaline battery separator can be reduced.
  • the wet papermaking method has a high production rate and a plurality of seeds with different fiber diameters in the same equipment.
  • any kind of fibers can be mixed in an arbitrary ratio.
  • fiber forms such as stapled and pulp-shaped fibers, and usable fibers can be used from ultra-fine fibers with a diameter of 7 m or less to thick fibers and fibers. This is a method by which a nonwoven fabric with good formation can be obtained.
  • the method of application is extremely wide and is a method for forming a nonwoven fabric.
  • a method of forming a nonwoven fabric by a wet papermaking method will be described.
  • the fiber used in the present invention is defibrated at an arbitrary concentration with a pulp mill or a high-speed mixer or the like, and dispersed with a paste or a bellmer to prepare a raw material slurry.
  • a wet non-woven fabric is formed, and moisture is dried in a drying step, and at the same time, a part of the fibers is thermally contacted to form a non-woven fabric.
  • the nonwoven fabric of the polyolefin fiber obtained by the wet papermaking method is also a preferred method to subject the nonwoven fabric of the polyolefin fiber obtained by the wet papermaking method to hydroentanglement treatment, and to three-dimensionally entangle the polyolefin fiber constituting the nonwoven fabric.
  • hydroentanglement treatment When the hydroentanglement treatment is applied, the tensile strength and breaking elongation of the non-woven fabric for alkaline battery separators are significantly increased.Thus, the thickness changes due to the tensile force applied during battery construction, the winding pressure, and the sag during use. This is very effective for preventing short circuit.
  • nonwoven fabric for an alkaline battery separator of the present invention it is an essential condition that a corona discharge treatment is performed in order to improve the affinity for an electrolytic solution.
  • an appropriate gap is provided between the electrode connected to the high-voltage generator and the metal roll covered with polyester film, hypalon, EP rubber, etc., and a voltage of several thousand to tens of thousands of volts is applied at high frequency.
  • a high-pressure corona is generated, and at this interval, the nonwoven fabric obtained by the above method is run at an appropriate speed, and the surface of the nonwoven fabric reacts with the ozone or nitric oxide that has formed corona to form a carbonyl group, a carboxyl group, or a hydroxyl group. , A peroxide group and a hydroxyl group.
  • hydrophilic groups are thought to contribute to the affinity of the non-woven fabric for the alkaline battery separator with the electrolyte.
  • polyolefin it is considered that the surface of the system fiber is partially invaded and becomes finely branched, so that the surface area of the non-woven fabric for the Al-Li-ion battery separator is increased, contributing to the improvement of the liquid retaining property of the non-woven fabric.
  • the treatment is preferably performed at a discharge degree of 20. OwZ cm 2 or less. A more preferable range of the discharge degree is 5.0 to 15. OwZcm 2 .
  • release-tend is determined by dividing the discharge power in the discharge electrode area, but the strength of the discharge by power supplied to have enough those unit area of the electrode is greater than 20. OwZcm 2, pinholes The problem that occurs, 'causes.
  • the processing speed must be reduced or some electrodes must be used.
  • the corona discharge treatment is performed in such a manner that it is necessary to increase the number of bases with one unit in each group, and it is difficult to generate a hydrophilic group to a deep portion in the thickness direction of the nonwoven fabric. It is preferable to use a multi-electrode as shown in FIG.
  • the electrode can also have the shape shown in Fig. 5.Forced discharge is more likely to occur at the edge of the electrode when the degree of discharge is increased. Therefore, the degree of discharge is limited.
  • an electrode having a rounded tip shape In particular, in the method for producing a nonwoven fabric for an alkaline battery separator of the present invention, it is preferable to use an electrode having a rounded tip shape. By making the tip of the electrode round, the occurrence of mustache discharge can be suppressed, and the degree of discharge can be increased to 20.0 w / cm 2 . As a result, it is possible to generate a hydrophilic group to a deep portion in the thickness direction of the rib, and it is possible to reduce the frequency of occurrence of pinholes.
  • the peak area ratio (OZC ratio) analyzed by electron spectroscopy (ESCA) after corona discharge treatment was 0.50 to 1.85 on the nonwoven fabric surface. 0 at the middle position in the thickness direction of the nonwoven fabric.
  • the OZC ratio is 0.55 to 1.50 on the surface of the nonwoven fabric, and 0.48 to 0.50 at an intermediate position in the thickness direction of the nonwoven fabric. It is 20.
  • the intermediate position in the thickness direction of the nonwoven fabric is a center point in a cross section of the nonwoven fabric for an alkaline battery separator.
  • the OZC ratio When the OZC ratio is improved by the corner discharge treatment, there is a limit point at which the mixing of the polyolefin-based fibers constituting the nonwoven fabric can be improved at an intermediate position in the nonwoven fabric surface and the thickness direction of the nonwoven fabric. In addition, if the OZC ratio is increased beyond a certain value, the liquid absorption will be reduced, so it is necessary to select an optimal OZC ratio.
  • the OZC ratio on the surface of the nonwoven fabric is lower than 0.50, the OZC ratio at the intermediate position is also lower than 0.45, resulting in insufficient generation of hydrophilic groups in the thickness direction of the nonwoven fabric.
  • the affinity of the electrolyte decreases rapidly over time. When the electrolyte retention of the non-woven fabric for battery separator decreases, and the life of the battery is shortened, a problem arises.
  • the nonwoven fabric surface and the nonwoven fabric are not included. Even if a predetermined 0 / C ratio is obtained at an intermediate position in the thickness direction, the affinity with the electrolyte over time decreases rapidly during storage.
  • a wetting agent such as a nonionic surfactant may be applied or impregnated.
  • a calendering treatment it is desirable to carry out a calendering treatment so that the thickness becomes 300 m or less as measured by a micrometer.
  • the former when calendering is performed on the entangled web that has been subjected to corona discharge treatment and when the order is reversed, the former has a lower fiber density, so the O / C It is more preferable because the ratio can be improved.
  • corona treatment may be performed again after the calendar treatment and before the battery assembly.
  • Example 1 Made of crystalline polypropylene having an MFR of 40 and an ethylene content of 38 mol%, an ethylene vinyl alcohol copolymer having an MFR of 40 and a degree of conversion of 99.6%, a fineness of 3 denier, after fiber splitting 0.2 denier (3.9 m), 99 parts of split conjugate fiber with 6 mm fiber length, hot water soluble polyvinyl alcohol fiber with 1 denier weave, 3 mm fiber length (VPW103: Kuraray) Using one part, a web was produced by a web paper machine by a wet papermaking method.
  • the tube was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow at a processing speed of 8 mZmin.
  • Two injectors were used. Inside each injector, a column-shaped water jet nozzle with a nozzle pitch of 0.6 mm and a nozzle diameter of 120 mm was installed inside each injector. The water pressure was 13 Ok kgZcm 2.
  • First, one side of the web was entangled, and then the back side of the web was entangled. At this time, the maximum pore size of the entangled web was 52.9 // m. Both ends of the entangled web thus obtained were subjected to edge discharge treatment.
  • a calender treatment was performed at room temperature, the thickness measured with a micrometer having a diameter of 6.3 mm was set to 180 m, and cut to obtain a nonwoven fabric for an alkaline battery separator.
  • Example 1 a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 1, except that the nozzle pitch of the columnar water jet nozzle was 1.0 mm and the nozzle diameter was 150 ⁇ m.
  • Example 1 5 g / 2 a basis weight of Uwebu, except that the 1 0 0 k cm 2 water pressure, Example 4 to obtain an alkali cell separator for non-woven fabric in the same manner as in Example 1
  • Example 1 while keeping the nozzle pitch and nozzle diameter as they are, the shape of the columnar water jet nozzle attached to the first injector is shown in Fig. 4A, and the shape of the nozzle attached to the second injector is shown in Fig. 3A.
  • Fig. 4A the shape of the columnar water jet nozzle attached to the first injector is shown in Fig. 4A
  • Fig. 3A the shape of the nozzle attached to the second injector
  • Example 5 In Example 1, a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 1, except that the shape of the column-shaped water jet nozzles mounted on the injector 1 was changed to A in FIG.
  • a non-woven fabric for alkaline battery separator was obtained in the same manner as in Example 5, except that the thickness of the non-woven fabric for an alkaline battery separator was slid to 149 m by calendering.
  • Example 5 a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 5, except that the nozzle pitch of the columnar water jet nozzle was set to 1.0 mm and the nozzle diameter was set to 150 // m.
  • Example 5 a non-woven fabric for an alkaline battery separator was obtained in the same manner as in Example 5, except that the nozzle pitch of the columnar water jet nozzle was 0.6 mm and the nozzle diameter was 80 m.
  • the nonwoven fabrics for battery separators manufactured in Examples 1 to 8 were evaluated by the following evaluation methods. The evaluation results are shown in Table 1 below.
  • the thickness was evaluated by using a micrometer to measure the thickness (// m) at six different locations on each of the ten samples, and the average value was shown.
  • the maximum pore diameter (m) was measured using a Coulter porometer (manufactured by PMI, USA) based on ASTM F316-86. The value before calender treatment was defined as pore diameter 1, and the value after calender treatment was defined as pore diameter 2. Also, the values of the maximum pore diameter shown in Table 1 exclude those due to pinholes opened by corona discharge treatment.
  • Center plane average roughness (hereinafter sometimes referred to as center plane surface roughness)>
  • the center plane average roughness SR a (m) referred to in this specification is measured using a stylus type three-dimensional surface roughness meter, and is defined by the following (1).
  • Wx represents the length of the sample surface area in the X-axis direction (the direction orthogonal to the confounding traces created by the hydroentanglement process)
  • Wy represents the sample surface area in the Y-axis direction (due to the hydroentanglement process).
  • Sa represents the area of the sample surface area.
  • SE-3AK and SPA-111 made by Kosaka Lab. .
  • the liquid absorption rate of the electrolyte (the suction height per minute mm) was measured.
  • the absorption rate of the electrolyte was determined by taking three test pieces of 1.5 cm x 18 cm from the flow direction of each sample, performing preliminary drying at 40 ⁇ 5 ° C, and calculating the official water content. After that, leave the sample in the test room at the standard greenhouse temperature, weigh the sample at intervals of one hour or more, and make sure that the difference in mass before and after that is within 0.1% of the mass after. (This condition is called the water equilibrium condition). Then, place the test piece on a water tank containing a caustic potash (KOH) solution of 3 (20) specific gravity at 20 ⁇ 2 ° C.
  • KOH caustic potash
  • the amount of retained water (g / m 2 ) after pressurization was measured as an evaluation of the liquid retaining property of the electrolyte of the nonwoven fabric for an alkaline battery separator.
  • the amount of water retained after pressurization was determined by taking three test pieces of 10 cm x 10 cm from each sample, measuring the weight W (g) when water equilibrium was established, and then , 20 ⁇ 1 ° C
  • the test piece was spread and immersed in distilled water, allowed to stand for 1 minute, taken out of the distilled water, immediately sandwiched with 3 ⁇ 4t paper (Advantech No. 26), passed through a roll press with a linear pressure of 50 kgZcm, and the test piece.
  • Measure the weight W, (g) of the sample and calculate it from the following (2), and the holding amount after pressing (g / m 2 ) C (W, one W) / (0.1 X 0.1) (2) ⁇ Pinhole>
  • the entangled webs subjected to the corner discharge treatment were visually evaluated, and were evaluated as ⁇ when no pinhole was generated, and as X when the pinhole was generated.
  • At least the final stage of the injector is provided with a columnar jet jut nozzle having a shape with a wider injection port than the waterflow inlet, and the flow is entangled. If the surface is processed to reduce the center surface average roughness, it should be processed without causing corona pinholes during the corner discharge treatment and without deteriorating the winding appearance during force rendering. Was possible. Further, even when the basis weight to 4 0 g / m 2, 5 0 m at the largest pore diameter I was able to keep it down.
  • the nonwoven fabric for an alkaline battery separator produced by the production method of the present invention is particularly excellent in the liquid retaining property of the electrolytic solution, particularly the liquid retaining property under pressure, while having a low basis weight. In addition, movement of the active material can be prevented. As a result, according to the present invention, it has become possible to provide a nonwoven fabric for an alkaline battery separator excellent in the liquid absorbing property and liquid retaining property of the electrolytic solution. INDUSTRIAL APPLICABILITY
  • the nonwoven fabric for alkaline battery separators of the present invention can be suitably used as a separator for alkaline secondary batteries that require advanced characteristics such as high capacity, long life, and high reliability.
  • a fineness of 3 denier consisting of a crystalline polypropylene having an MFR of 40 and an ethylene-vinyl alcohol copolymer having an ethylene content of 38 mol% and an MFR of 40 and a degree of genification of 99.6% 0 after fiber splitting 30 parts of 2 denier (3.9 m), 6 mm fiber-length splittable conjugate fiber, polypropylene as the core component, ethylene vinyl alcohol copolymer as the sheath component, and a core-to-shell volume ratio of 50 : 50 denier, 2 denier, 5 mm fiber length, sheath-core type heat-adhesive conjugate fiber is mixed at a ratio of 70 parts, and the basis weight is 52.8 g / m 2 by a circular paper machine by a wet papermaking method. A 50 cm wide web was produced.
  • Example 9 was the same as Example 9 except that the blending ratio of the polyolefin fiber was changed to 60 parts of the splittable conjugate fiber used in Example 9 and 40 parts of the core-sheath type heat-adhesive conjugate fiber used in Example 9. In the same manner, a non-woven fabric for an alkaline battery separator was obtained.
  • Example 9 80 parts of splittable conjugate fiber used in Example 9, 0.5 denier (8.8 ⁇ m) denier, 19 parts of polypropylene fiber with 10 mm fiber length, 19 parts, 1 denier fineness, heat of 3 mm fiber length
  • a water-soluble polyvinyl alcohol fiber (VPW103: manufactured by Kuraray Co., Ltd.) was produced by a wet papermaking method with a circular web paper machine to produce a basis weight of 42.9 g / m 2 and a width of 50 cm.
  • the web is conveyed onto a porous support, which is a 100-mesh stainless steel wire, and subjected to hydroentanglement on both sides of the web with a high-pressure columnar water stream.
  • a porous support which is a 100-mesh stainless steel wire
  • the mixing ratio of the polyolefin fibers was the same as in Example 11 except that 99 parts of the splittable conjugate fiber used in Example 9 and 1 part of the hot water-soluble polyvinyl alcohol fiber used in Example 11 were used.
  • a nonwoven fabric for an alkaline battery separator was obtained by the method.
  • a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 12, except that the basis weight was 51.8 g / m 2 and the thickness after calendering was 200 m in Example 12.
  • a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 12, except that the basis weight was 62.4 g / m 2 and the thickness after calendering was 200 in Example 12.
  • a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 12, except that the basis weight was 72.3 g / m 2 and the thickness after calendering was 202 ⁇ m in Example 12.
  • a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 4, except that the basis weight was 79.1 g / m 2 and the thickness after calendering was 201 in Example 12.
  • the nonwoven fabric is impregnated with a nonionic surfactant in a size press, dried with a hot-air drier, and finally calendered at room temperature to obtain a thickness measured with a micrometer having a diameter of 6.3 mm. And cut to obtain a non-woven fabric for an alkaline battery separator.
  • Polypropylene is the core component
  • ethylene-vinyl alcohol copolymer is the sheath component
  • the core-sheath volume ratio is 50:50, moth degree 2 denier, fiber-sheath type heat-adhesive composite fiber with a fiber length of 5 mm is wet-processed.
  • a web having a basis weight of 57.6 g / m 2 and a width of 50 cm was produced on a round paper machine by the method.
  • a corona discharge treatment was applied to both sides of the web thus obtained.
  • a calender treatment was performed at room temperature, the thickness measured with a micrometer having a diameter of 6.3 mm was set to 144 / m, and cut to obtain a nonwoven fabric for an alkaline battery separator.
  • Polypropylene is the core component
  • ethylene-vinyl alcohol copolymer is the sheath component
  • the core-sheath volume ratio is 50:50
  • fineness is 2 denier
  • fiber length is 51 mm.
  • a web having a basis weight of 65.7 g / m 2 was prepared by one method, and then pressed through a 110 ° C hot calender roll, and both sides of the web thus obtained were subjected to edge discharge treatment. did.
  • the thickness measured with a micrometer having a diameter of 6.3 mm is set to 1 46 ⁇ m, and cut to obtain a nonwoven fabric for an alkaline battery separator.
  • a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 13 except that the corona discharge treatment was not performed in Example 13.
  • the nonwoven fabrics for alkaline battery separators produced in Examples 9 to 20 were evaluated by the following evaluation methods, and the evaluation results are shown in Tables 2 and 3 below.
  • the pore diameter (// m) was measured using a Coulter porometer (manufactured by PME, USA) based on ASTMF316-86.
  • standard deviation The standard deviation of the pore size distribution (hereinafter referred to as standard deviation) was calculated from the pore size distribution in the range where RELATIVE FLOW starts and ends.
  • the ratio of the number of pores existing at an average pore diameter of ⁇ 2 m is calculated from the number of pores existing at an average pore diameter of ⁇ 2 m and the battery separator. The total number of pores present in the entire nonwoven fabric was determined, and the ratio (%) was calculated.
  • the standard deviation of the pore diameter distribution is 20 ⁇ m or less, and the number of pores existing in the average pore diameter ⁇ 2 tm is 3
  • the standard deviation of the pore size distribution is larger than 20 n, and the number of pores existing in the average pore size ⁇ 2 m is 35% of the total. Smaller In this case, the water absorption under pressure is small, and when a high pressure is applied to the non-woven fabric for an alkaline battery separator, the possibility of dry drying is high.
  • Examples 13 in Table 2 and Example 20 in Table 3 are comparisons of the presence or absence of corona discharge treatment.For example, when the corona discharge treatment is not performed, the liquid absorption is extremely poor and the pressure is high. The water absorption is also slightly lower.
  • the nonwoven fabric for an alkaline battery separator of the present invention manages the standard deviation of the pore size distribution and the ratio of the number of pores present in a certain range, and makes the electrolyte solution holding space fine and uniform. Due to the large number of these, they are particularly excellent in electrolyte retention, especially under pressure. In addition, since the tube is subjected to a corona discharge treatment, the liquid absorbing property of the electrolytic solution is very high.
  • the present invention it is possible to provide a non-woven fabric for an alkaline battery separator having excellent electrolyte absorption and liquid retention properties, and the non-woven fabric for an alkaline battery separator of the present invention has a high capacity, It can be suitably used as a separator for alkaline secondary batteries that require advanced characteristics such as long life and high reliability.
  • the electrodes used in the example are Fig. 5A as a bar electrode, Fig. 6C as a multi-electrode, and Fig. 6A as a multi-electrode with rounded electrode tips, and the area per electrode. Have the same area.
  • 3 denier fiber consisting of crystalline polypropylene with MFR of 40 and ethylene-vinyl alcohol copolymer with an ethylene content of 38 mol%, MFR of 40 and a degree of genification of 99.6%, after fiber splitting 0.2 denier (3.9 zm), 97 parts of split conjugate fiber with a fiber length of 6 mm, hot water soluble polyvinyl alcohol fiber with a fineness of 1 denier and a fiber length of 3 mm (VPW103: manufactured by Kuraray Co., Ltd.) Using the three parts, a non-woven fabric was produced by a web paper machine by a wet papermaking method.
  • the nonwoven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow.
  • the entangled nonwoven fabric thus obtained was subjected to a corona discharge treatment under the conditions shown in Table 4 and a calendar treatment at room temperature. A nonwoven fabric for one piece was obtained.
  • the core component is polypropylene
  • the sheath component is ethylene vinyl alcohol copolymer
  • the core / sheath volume ratio is 50:50
  • the fineness is 1.5 denier
  • the fiber length is 10 mm.
  • VPW103 hot-water-soluble polyvinyl alcohol fiber
  • wet-paper-making using a circular paper machine wet-paper-making using a circular paper machine.
  • a nonwoven fabric of 58.1 g / m 2 was produced.
  • the front and back of this nonwoven fabric were subjected to corona discharge treatment shown in Table 4 and were subjected to a force render treatment at room temperature to obtain a nonwoven fabric for an AL battery separator.
  • a nonwoven fabric was manufactured by a wet papermaking method using 27 parts of a core-sheath type heat-fusible conjugate fiber having a 50:50, fineness of 1.5 denier and a fiber length of 10 mm by a wet papermaking method. Subsequently, the nonwoven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow. The entangled nonwoven fabric obtained in this way is shown in Table 5. Under the conditions described above, a corona discharge treatment was performed, and a calender treatment was performed at room temperature to obtain a nonwoven fabric for an alkaline battery separator.
  • Example 21 The entangled nonwoven fabric produced in Example 21 was subjected to a corona discharge treatment under the conditions shown in Table 4 and a calendar treatment at room temperature to obtain a nonwoven fabric for an alkaline battery separator. In Example 31, no corona discharge treatment was performed.
  • Example 21 In place of the corona discharge treatment, the entangled nonwoven fabric prepared in Example 1 was set at a position 10 cm from the electrode plate in a plasma processing device (pressure reducing vessel) in parallel with the electrode plate, and plasma was placed. after the inside of the processing apparatus was evacuated to 1 0 _ 5 T orr, weight flow of oxygen gas 1 0 supplied at cc Z min 0. adjust to 0 1 T orr, radio frequency 1 3. in 5 6 MH z The entangled nonwoven fabric was subjected to a plasma treatment on the front and back, and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator. In each case, the plasma irradiation time was changed to a different OZC ratio.
  • a non-woven fabric was prepared by a wet papermaking method using a round paper machine. Subsequently, this nonwoven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow. The entangled nonwoven fabric thus obtained was subjected to corona discharge treatment under the conditions shown in Table 4 and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator.
  • the nonwoven fabrics for alkaline battery separators produced in Examples 21 to 37 were evaluated by the following evaluation methods. The evaluation results are shown in Table 4 below. In the table of discharge treatment in the table, the abbreviations are as follows.
  • C M Corona discharge treatment, using multi-round electrodes (Fig. 6A)
  • the OZC ratio of the nonwoven fabric for the battery separator is measured using an electron spectrochemical analyzer manufactured by VG SCIENTIFIC, and elemental analysis of the nonwoven fabric surface is performed using magnesium K- ⁇ rays as the X-ray source.
  • the OZC ratio at the intermediate position in the thickness direction of the nonwoven fabric was measured by scraping the fiber on the nonwoven fabric surface using cellophane tape and preparing a sample.
  • the 0ZC ratio of the surface of the nonwoven fabric and the OZC ratio of the intermediate layer (position within about 90 zm from the surface of the nonwoven fabric) in the thickness direction of the nonwoven fabric are shown in the “surface” and “intermediate” columns, respectively.
  • the absorption after leaving for 3 months in an environmental test room at a temperature of 20 ° C and a humidity of 65% was evaluated.
  • the liquid properties were measured. With respect to the liquid absorptivity before standing, X was reduced to less than 40%, X was reduced to 40 to 60%, ⁇ was reduced to 61 to 80%, and 81% or more. What was maintained was marked with ⁇ .
  • the practical level of non-woven fabric for alkaline battery separators is above ⁇ .
  • the nonwoven fabric subjected to the corona discharge treatment is visually evaluated by passing it through a fluorescent lamp, and then is observed under a microscope. If no through-hole (pinhole) of 100; , And X when it occurred. Table 4
  • Examples 21 to 30 show that a nonwoven fabric using a polyolefin fiber partially containing an ethylene vinyl alcohol copolymer or a crosslinked polyethylene oxide was subjected to corona discharge treatment, and the 0 / C ratio of the nonwoven fabric surface was 0.50. -85, those whose O / C ratio at the intermediate position in the thickness direction of the non-woven fabric is in the range of 0.45 to 1.30 are used as non-woven fabric for battery separators during storage period before use. Of liquid absorption performance in There was little deterioration with time, and extremely excellent liquid absorption and retention properties for the electrolytic solution were obtained.
  • Examples 21 to 25 are the same non-woven fabrics for alkaline battery separators.However, by changing the type of electrode, the degree of discharge, and the number of electrode groups, the OZC ratio also changes, resulting in good liquid retention. I understand.
  • Examples 27 to 29 are the same nonwoven fabrics for alkaline battery separators.Examples 27 and 28 using a large number of single-type electrodes and examples 28 to 29 using a small number of rounded multi-electrodes It can be seen that the latter is more efficient and better in characteristics.
  • the non-woven fabric for the Al-Li battery separator of Example 31 which was not subjected to the discharge treatment had an OZC specific force ⁇ out of the range of the present invention and was inferior in characteristics.
  • Example 3 In the nonwoven fabric for alkaline battery separators of 2 to 33, in Example 32, the discharge degree of the multi-type electrode was 16 OwZ cm 2 , and in Example 33, the discharge degree of the bar-type electrode was 7.5 wZ cm 2. And the degree of discharge was increased beyond the limit, and through-holes were generated, which was a practical problem.
  • the nonwoven fabrics for alkaline battery separators of Examples 34 to 36 were subjected to plasma discharge treatment, but satisfied the OZC ratio, but were inferior in the evaluation of the change over time.
  • the nonwoven fabric for an alkaline battery separator of Example 37 was one in which polypropylene fiber was used as the polyolefin-based fiber, and although the OZC ratio was satisfactory, the properties of liquid absorption and aging were poor.
  • Fineness of 3 denier consisting of crystalline polypropylene with MFR of 40 and ethylene vinyl alcohol copolymer with ethylene content of 38 mol%, MFR strength of 40, and degree of genification of 99.6%, after fiber splitting . 0 2 denier (. 3 9 ⁇ 1 11), fiber length 6 11 9 5 parts of splittable conjugate fiber of 111, fineness 1 denier, hot water soluble Poribinirua alcohol fibers having a fiber length of 3 mm (V PW 1 0 3: Using 5 parts of Kuraray Co., Ltd., a nonwoven fabric was produced by a web paper machine by a wet papermaking method.
  • the nonwoven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow.
  • the entangled nonwoven fabric thus obtained was subjected to a corona discharge treatment under the conditions shown in Table 5 and a calender treatment at room temperature. A nonwoven fabric for one piece was obtained.
  • the core component is polypropylene
  • the sheath component is ethylene vinyl alcohol copolymer
  • the core ratio is 50:50
  • the fineness is 1.5 denier
  • the fiber length is 10 mm.
  • 2 denier (3.9 ⁇ m) 70 parts of split-type composite fiber with a fiber length of 6 mm, fineness of 1 denier, hot water-soluble polyvinyl alcohol fiber with a fiber length of 3 mm (VPW103: manufactured by Kuraray Co., Ltd.) 5 parts, a resin in which polypropylene is used as the core component, cross-linked polyethylene oxide having a molecular weight of 100,000 and low-density polyethylene are compatibilized at a ratio of 20:80, and the volume ratio of the core and the sheath is 5
  • a nonwoven fabric was produced by a wet papermaking method using a core-sheath type heat-fusible conjugate fiber having a denier of 1.5, a denier of 1.5 and a fiber length of 10
  • this nonwoven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow.
  • the entangled nonwoven fabric thus obtained was subjected to corona discharge treatment under the conditions shown in Table 2 and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator.
  • the nonwoven fabric for an alkaline battery separator produced in Examples 38 to 42 was evaluated by the same evaluation method as above, and the evaluation results are shown in Table 5 below. The following fiber shapes were added as evaluation items.
  • the fiber surface was observed with an electron micrograph, and the case where fine wrinkles were generated was indicated by “ ⁇ ”, and the case where no fine wrinkles were generated was indicated by “X”.
  • Electrode pressure example Electrolyte liquid absorption base water variation only Surface intermediate degree
  • Example 38 The nonwoven fabric for the alkaline battery separator of 8 to 40 was obtained using a splittable conjugate fiber composed of polypropylene and ethylene vinyl alcohol copolymer. This is a non-woven fabric for battery separators, and the ultra-fine fiber surface of the ethylene vinyl alcohol copolymer contains sensitive polyolefin-based fibers having a large number of fine wrinkles.
  • Example 38 The same applies to the nonwoven fabrics for alkaline battery separators of Examples 8 to 40.
  • the electron micrograph of the nonwoven fabrics for alkaline battery separators of Example 39 is shown in FIG. Even if the OZC ratio on the surface of the nonwoven fabric and the intermediate position was not increased, the liquid absorbing property and the liquid retaining property with respect to the electrolytic solution were good.
  • Example 41 The non-woven fabric for an alkaline battery separator of Example 1 is a non-woven fabric for an alkaline battery separator using a core-sheath composite fiber composed of polypropylene as a core component and an ethylene-vinyl alcohol copolymer as a sheath component. Due to the formation of fine wrinkles in the sheath component of the copolymer, the decrease in the affinity for the electrolyte over time was small, and the liquid absorption and liquid retention of the electrolyte could be significantly improved.
  • Example 41 An electron micrograph of the nonwoven fabric for alkaline battery separators of Example 1 is shown in FIG.
  • the non-woven fabric for alkaline battery separator of Example 42 is a non-woven fabric for an alkaline battery separator using a split type conjugate fiber and a core-sheath type conjugate fiber in combination. Due to the formation of fine wrinkles, there is little decrease in the affinity of the electrolyte over time, and the absorption and retention of the electrolyte can be significantly improved. I was able to.
  • Fineness of 3 denier consisting of crystalline polypropylene having an MFR of 40 and an ethylene-vinyl alcohol copolymer having an ethylene content of 38 mol%, an MFR of 40 and a degree of germination of 99.6% 0 after fiber splitting 2 denier (3.9 ⁇ m), 96 parts of split type composite fiber with 6 mm fiber length, 1 denier fineness, 3 mm fiber length, hot water soluble polyvinyl alcohol fiber (VPW103: Kuraray) 4
  • the non-woven fabric was produced using a part by a wet papermaking method using a web paper machine.
  • the nonwoven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow.
  • the entangled nonwoven fabric thus obtained was subjected to a corona discharge treatment under the conditions shown in Table 6 and a calendar treatment at room temperature to obtain a nonwoven fabric for alkali battery separators having a basis weight shown in Table 6.
  • the front and back of this nonwoven fabric were subjected to the corona discharge treatment shown in Table 6 and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator.
  • Fineness of 3 denier consisting of a crystalline polypropylene having an MFR of 40 and an ethylene vinyl alcohol copolymer having an ethylene content of 38 mol%, an MFR of 40 and a degree of genification of 99.6%, after fiber splitting 0.2 denier (3.9 m), 70 parts of split conjugate fiber with a fiber length of 6 mm, hot water soluble polyvinyl alcohol fiber with a fineness of 1 denier and a fiber length of 3 mm (VPW103: Kuraray clay) 2 parts, a resin in which polypropylene is used as the core component, crosslinked polyethylene oxide having a molecular weight of 100,000 and low-density polyethylene are compatibilized at a ratio of 20:80, and the volume ratio of the core and the sheath is 5
  • a nonwoven fabric was produced by a wet papermaking method using a net paper machine using 28 parts of a core-sheath type heat-fusible conjugate fiber having a density of 0: 50, a fineness of
  • this nonwoven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow.
  • the entangled nonwoven fabric thus obtained was subjected to corona discharge treatment under the conditions shown in Table 6 and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator.
  • Example 21 The entangled nonwoven fabric produced in Example 21 was subjected to corona discharge treatment under the conditions shown in Table 6, and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator.
  • Example 43 The nonwoven fabric for an alkaline battery separator produced in accordance with 3 to 52 was evaluated by the same evaluation method as described above, and the evaluation results are shown in Table 6 below. Table 6
  • Example 4 The nonwoven fabric for alkaline battery separators of 3 to 51 is a case where corona discharge treatment was performed using a rounded tip electrode having a rounded tip. As a result, the discharge rate can be increased without generating holes, and the number of electrodes can be reduced. As a result, a non-woven fabric for an alkaline battery separator can be efficiently produced.
  • the above example is a specific example that satisfies at least two or more of the requirements of the first, second, and third aspects of the present invention.
  • Example 2 In the same manner as in Example 1, a web was produced by a wet papermaking machine using 97 parts of splittable conjugate fiber and 3 parts of hot water-soluble polyvinyl alcohol fiber (VPW103: Kuraray). did.
  • VPW103 hot water-soluble polyvinyl alcohol fiber
  • this tube is connected to a porous support made of 100 mesh stainless steel wire. It was conveyed up and subjected to hydroentanglement treatment with a high-pressure columnar water flow at a treatment speed of 1 OmZmin.
  • Table 7 shows the evaluation results.
  • Example 53 Example 54 Basis weight 55.2 54.8
  • Fineness of 3 denier consisting of crystalline polypropylene having an MFR of 40 and an ethylene vinyl alcohol copolymer having an ethylene content of 38 mol%, an MFR of 40 and a degree of conversion of 99.6%, after fiber splitting 0.2 denier (3.9 ⁇ m), 96 parts of split conjugate fiber with 6 mm fiber length, 1 denier fineness, 3 mm fiber length, hot water soluble polyvinyl alcohol fiber (VPW103: Kuraray) Using the four parts, a web was made by a web paper machine by a wet papermaking method.
  • the web was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow at a treatment speed of 1 OmZmin.
  • Two injectors were used. Inside each injector, a column-shaped water jet nozzle with a nozzle pitch of 0.6 mm and a nozzle diameter of 120 mm was installed inside each injector. The water pressure was 130 kg / cm 2.
  • one side of the web was entangled, and then the back side of the web was entangled. Corona discharge treatment was performed on both sides of the entangled web thus obtained under the conditions shown in Table 8. Finally, calendering is performed at room temperature to obtain a diameter of 6.
  • the thickness measured with a 3 mm micrometer was set to 18 1 zm, and cut to obtain a nonwoven fabric for an alkaline battery separator.
  • Fineness of 3 denier consisting of crystalline polypropylene with MFR of 40 and ethylene-vinyl alcohol copolymer with ethylene content of 38 mol%, MFR strength of 40, and a degree of genification of 99.6%, after fiber splitting 0.2 denier (3.9 m), fiber length 6 mm split
  • a web was made by a wet papermaking machine using 95 parts of the conjugated fiber, 5 parts of hot water-soluble polyvinyl alcohol fiber (VPW103: Kuraray) having a denier of 1 denier and a fiber length of 3 mm. .
  • the tube was conveyed onto a porous support made of a 100-mesh stainless steel wire, and subjected to a hydroentanglement treatment with a high-pressure columnar water flow.
  • Corona discharge treatment was performed on both surfaces of the entangled web thus obtained under the conditions shown in Table 10 below. Finally, calendering was performed at room temperature, the thickness measured with a micrometer having a diameter of 6.3 mm was set to 180 zm, and cut to obtain a nonwoven fabric for alkaline battery separators.
  • Table 10 shows the evaluation results.
  • the average pore diameter was 12.5 rn, the standard deviation was 8.3, and the ratio was 67.3%.
  • Fineness of 3 denier consisting of a crystalline polypropylene having an MFR of 40 and an ethylene vinyl alcohol copolymer having an ethylene content of 38 mol%, an MFR of 40 and a degree of genification of 99.6% 0 after fiber splitting 2 denier (3.9 ⁇ m), 95 parts of split type composite fiber with 6 mm fiber length, 1 denier fineness, 3 mm fiber length, hot water soluble polyvinyl alcohol fiber (VPW103: made by Kuraray Co., Ltd.) 3 parts, polypropylene as the core component, ethylene vinyl alcohol copolymer as the sheath component, core-sheath composite with core / sheath volume ratio of 50:50, fineness of 1.0 denier, fiber length of 10 mm Using 5 parts of the fiber, a nonwoven fabric was produced by a wet papermaking method using a round paper machine.
  • the non-woven fabric was conveyed onto a porous support made of a 100-mesh stainless steel wire, and was converted into a high-pressure columnar water flow. More hydroentanglement treatment was performed.
  • the entangled nonwoven fabric thus obtained was subjected to corona discharge treatment under the conditions shown in Table 11 and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator having a basis weight shown in Table 11 .
  • Table 11 shows the evaluation results.
  • Fineness of 3 denier consisting of crystalline polypropylene with MFR of 40 and ethylene-vinyl alcohol copolymer with ethylene content of 38 mol%, MFR strength of 40, and a degree of genification of 99.6%, after fiber splitting 0.2 denier (3.9 zm), 95 parts of split conjugate fiber with 6 mm fiber length, hot water soluble polyvinyl alcohol fiber with 1 denier fineness and 3 mm fiber length (VPW103: Kuraray) 3 Part, polypropylene as core component, ethylene vinyl alcohol copolymer as sheath component, heat-adhesive core-sheath composite fiber with core / sheath volume ratio of 50:50, fineness of 0 denier and fiber length of 10 mm 7 Using the part, a nonwoven fabric was produced by a web paper machine by a wet papermaking method.
  • this non-woven fabric is It was conveyed on a porous support made of mesh stainless steel wire and subjected to hydroentanglement treatment using a high-pressure columnar water flow.
  • the entangled nonwoven fabric thus obtained was subjected to corona discharge treatment under the conditions shown in Table 13 and calendered at room temperature to obtain a nonwoven fabric for an alkaline battery separator having a basis weight shown in Table 13 .
  • Table 13 shows the evaluation results.
  • the average pore diameter was 14.5 m
  • the standard deviation was 10.3
  • the ratio was 63.0%.
  • a non-woven fabric for an alkaline battery separator was obtained in the same manner as in Example 1, except that the corona discharge treatment was not performed before the calender treatment, and the corona discharge treatment was performed after the calender treatment.
  • Table 14 shows the evaluation results.
  • a nonwoven fabric for an alkaline battery separator was obtained in the same manner as in Example 22 except that the corona discharge treatment was not performed before the calender treatment, and the corona discharge treatment was performed after the calender treatment.
  • Table 15 shows the evaluation results.
  • the nonwoven fabric of the present invention has excellent liquid absorbing properties of an electrolytic solution and liquid retaining properties under pressure, and is suitably used as an alkaline battery separator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Cell Separators (AREA)
  • Nonwoven Fabrics (AREA)
  • Secondary Cells (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

明 細 耆 アル力リ電池セパレータ用不織布およびその製造方法 〔技術分野〕
本発明は、 アル力リ電池の正負両極間に介在させて両者の短絡を防止すると共 に、 電解液を十分に保持し、 起電反応を円滑に進行させるために使用するニッケ ルカドミゥム電池、 ニッケル水素電池等のアルカリ電池セパレータ用不織布に関 するものである。
〔背景技術〕
アルカリ電池は、 充放電特性、 過充電過放電特性に優れ、 長寿命で繰り返し使 用できるため、 小型軽量化の著しいエレクトロニクス機器に広く使用されている。 このようなアルカリ電池の特性は、 そのアル力リ電池セパレータ用不織布の特性 にも大きく依存している。
アル力リ電池セパレータ用不織布の一般的な機能としては、 以下の条件が必要 あ 。
( 1 ) 正極と負極を物理的に分離できること。
(2) 短絡を防ぐための電気的絶縁性を持つこと。
(3) 耐電解液性を持つこと。
(4) 耐電気化学的酸化性を持つこと。
(5) 電解液を含んだ状態で低い電気抵抗を示すこと。
(6) 電解液に対して濡れやすく、 電解液の保液性が大きいこと。
(7) 電池組立工程で耐え得る強度、 剛性を持つこと。
(8) 電池にとっての有害物質を出さないこと。
(9) 充電時に陽極より発生する酸素ガス透過性に優れること。
そのため、 従来から、 アルカリ電池セパレータ用不織布としては、 6—ナイ口 ン、 6, 6—ナイロンなどのポリアミ ド繊維、 あるいは芯成分がポリプロピレン で、 鞘成分がポリエチレンである芯鞘型のポリオレフィン系繊維からなる乾式法 の不織布が使用されてきた。 これらの乾式法の不織布からなるアル力リ電池セパレータ用不織布は、 目付け のバラツキが大きいために、 目付けを多くして、 熱カレンダーで潰して使用され ており、 機械的強度が強く、 電池加工性に優れる反面、 低目付けにできないとい う問題点がある。 その結果、 最近の電池の高容量化に伴い、 電極活物質量を増加 させたり、 セパレー夕の目付けを減少させると共に薄化させる傾向に対処した場 合、 脱落活物質の移動が起きたり、 電解液の保持量が減少する問題が生じる。 これらの問題を解決する手段として、 メルトブロー不織布からなるアル力リ電 池用セパレータカ《提案されている。 このメルトブロー不織布は、 極細繊維から構 成されて 、るため、 不織布の細孔径を小さくすることや高い空隙率を得ることが できるので、 アルカリ電池セパレー夕の薄化をある程度行っても、 脱落活物質の 移動を阻止できると共に電解液の保持量は維持することができる。
しかしながら、 このメルトブロー不織布からなるアル力リ電池用セパレータは、 溶解紡糸しながらその両サイドから高速加熱気流を噴射して繊維を細繊化し、 そ れをスクリーン上に捕集して製造しているため、 機械的強度が非常に弱く、 目付 けのバラツキがやはり大きいために、 ある程度以下には低目付けにできないとい つた問題や通気性が低いため、 電極活物質を増加させた場合には、 大量に発生す る反応ガスを逃がしきれず、 その結果として電池の内圧が上昇し、 急速充電が困 難となる問題があった。
そこで、 上記問題を解決する手段として、 特開平 5— 1 8 2 6 5 4号公報には、 メルトブロー不織布と短繊維ウェブに水流絡合処理を施した、 あるいは短繊維ゥ エブとメルトブローウェブとを重ねて水流絡合処理を施した水流絡合不織布とを 熱圧着により積層一体化した電池用セパレータが提案されている。
この電池用セパレータは、 メノレ卜プロー不織布と短繊維不織布とを高圧水の噴 射によつて積層一体化した場合、 メルトプロー不織布に貫通孔が形成されてしま い、 最大細孔径力く拡大してしまう対策として、 メルトブロー不織布層によって電 極活物質の移動を防止すると共に電解液の保液性を改良し、 水流絡合不織布層に よつて強度と通気性と電解液の保持性を改良させたものであるが、 この電池用セ パレータを工業的に安定に生産するにはセパレータ全体としての目付けが大きく なり、 これを敢て低目付けとした場合、 生産性が著しく低下するため、 量産され る段階までには至っていない。
また、 特開平 7— 2 9 5 6 1号公報には、 ポリオレフイン重合体とエチレンビ ニルアルコール共重合体とからなる分割型複合繊維の短繊維に、 熱接着性複合繊 維と分割型複合繊維の分割後の極細繊維および熱接着性複合繊維よりもデニール の大きい剛性繊維の短繊維を混合して湿式抄造し、 得られた湿式不織布を高圧水 流処理して熱力レンダー仕上げした電池セパレー夕とその製造方法が提案されて いる。
この電池セパレータは、 熱融着性繊維を混ぜて熱融着させると共に高圧水流処 理を施して構成繊維を 3次元に絡み合わせて機械的強度を発現させている。 また、 高圧水流処理により分割型繊維を分割し細繊化させて電解液の保持性を持たせて いる。
しかしながら、 湿式抄造ゥュブに高圧水流処理を施した場合、 交絡跡が湿式ゥ Xブ上に残ると共に貫通孔が形成されてしまい、 最大細孔径が拡大してしまうた め、 活物質の移動を完全に防止することが困難になるという欠点があつた。
また、 熱融着性繊維を熱触着させた場合、 電解液の保持空間を減少させるため、 保液性が低下し、 また、 吸液性を悪化させてしまうといった欠点があった。
従って、 活物質の移動を完全に防止し、 電解液の保液性を確保するには、 湿式 ウェブを高目付けにするしかなく、 この提案の実施例においても目付けは、 7 0 g /m 2 前後であり、 目付けを減少させることは困難である。
従って、 本発明は、 前記の問題点に鑑みてなされたものであって、 これを解決 し、 低目付けでありながら、 活物質の移動を防止し、 電解液の吸液性および保液 性に優れたアル力リ電池セパレータ用不織布およびその製造方法を提供すること を目的とする。
〔発明の開示〕
本発明者らは、 上記の目的を達成するために鋭意研究した結果、 アルカリ電池. セパレータ用不織布を発明するに至つた。
即ち、 本発明のアルカリ電池セパレータ用不織布は、 湿式抄造されたポリオレ フィン系繊維ゥ Xブを水流交絡処理し、 コロナ放電処理して後、 カレンダー処理 してなるアル力リ電池セパレータ用不織布である。 本発明の第 1の側面においては、 少なくとも該不織布片面の交絡跡における中 心面平均粗さ SRaが 1 3 m以下であり、 該不織布が、 最大細孔径 5 0 / m以 下、 且つ加圧吸水度 20 g/m2 以上であることを特徴とする。
また、 本発明のアルカリ電池セパレータ用不織布の製造方法は、 水流交絡装置 のインジヱクタ一内部に付設された水流導入口よりも喷射口の広い形状を有する 柱状水流ジエツトノズルを用い、 湿式抄造によるポリオレフイン系繊維ゥヱブ面 に水流交絡処理し、 次いで交絡ウェブ面にコロナ放電処理して後、 カレンダー処 理して製造することを特徴とする。
さらに、 水流導入口よりも噴射口の広い形状を有する柱状水流ジ Xッ 卜ノズル は、 少なくとも最終段のインジヱクタ一内部に付設されたものであることを特徴 とする。
本発明の第 2の側面においては、 アルカリ電池セパレータ用不織布は、 バブル •ボイント法により測定された細孔径分布の檫準偏差が 2 0 / m以下であり、 且 つ平均細孔径 ±2 / mに存在する細孔の個数が全体の 3 5%以上であり、 且つコ ロナ放電処理が施されてなることを特徴とする。
本発明の第 3の側面においては、 アルカリ電池セパレータ用不織布は、 ェチレ ンビニルアルコール共重合体または架橋ポリェチレンォキサイドを部分的に有す るポリオレフイ ン系繊維を主体とし、 コロナ放電処理され、 実質的に貫通孔が存 在しないアルカリ電池セパレータ用不織布であって、 電子分光法 (ESCA) に よる該不織布表面および厚み方向における中間位置の酸素元素 (0) と炭素元素 (C) のピーク面積比 (OZC比) がそれぞれ 0. 5 0〜1. 8 5および 0. 4 5〜1. 4 0であることを特徴とするものである。
好ましくは、 電子分光法 (ESCA) によるアルカリ電池セパレータ用不織布 表面および厚み方向における中間位置の酸素元素 (0) と炭素元素 (C) のピー ク面積比 (OZC比) 力く、 それぞれ 0. 5 5〜し 5 0および 0. 4 8〜し 2 0である。
また、 本発明のアルカリ電池セパレーター用不織布は、 エチレンビニルアルコ ール共重合体を部分的に有し、 且つ該繊維表面に多数の微細な鈹が形成された微 皺ポリオレフイ ン系繊維を主体とし、 コロナ放電処理され、 実質的に貫通孔が存 在しないアルカリ電池セパレータ用不織布であって、 電子分光法 (ESCA) に よる該不織布表面および厚み方向における中間位置の酸素元素 (0) と炭素元素 (C) のピーク面積比 (OZC比) がそれぞれ 0. 6 0〜1. 3 5および 0. 5 0〜1. 0 0であることを特徴とするものである。
さらに、 本発明のアルカリ電池セパレータ用不織布の製造方法は、 エチレンビ ニルアルコール共重合体または架橋ポリェチレンォキサイドを部分的に有するポ リオレフイン系繊維を主体として不織布を形成し、 丸みのある電極先端形状を有 するマルチ電極を用いて放電度 2 0. 0 w/cm2 以下の条件により該不織布に コロナ放電処理を施し、 電子分光法 (ESCA) による該不織布表面および厚み 方向における中間位置の酸素元素 (0) と炭素元素 (C) のピーク面積比 (0ノ C比) をそれぞれ 0. 5 0〜し 8 5および 0. 4 5〜1. 4 0とすることを特 徴とするものである。
〔図面の簡単な説明〕
図 1は、 水流交絡装置の右側面図であり、 図 2は、 図 1におけるインジヱクタ 一の拡大断面図である。
図 3 A及び図 3 Bは本発明における柱状水流ジュットノズルの形状を示す側断 面図であり、 図 4 A及び図 4 Bは従来における柱状水流ジヱッ卜ノズルの形状を 示す側断面図である。
図 5 A、 図 5 B及び図 5 Cはバー電極の形状例であり、 図 6A、 図 6 B及び図 6 Cはマルチ電極の形状例である。
図 7は、 例 3 9によるアルカリ電池セパレータ用不織布の電子顕微鏡写真図で あり、
図 8は、 例 4 1によるアルカリ電池セパレータ用不織布の電子顕微鏡写真図で める。
図中、 1はインジヱクタ一、 2は柱状水流ジヱットノズル、 3は高圧柱状水流、 4は湿式抄造されたポリオレフィン系繊維ゥヱブ、 5は多孔質支持体、 6は高圧 柱状水流入口、 7は内部フィルター、 8は耐圧板、 9はサクシヨンプレート、 1 0はサクシヨンボックス、 1 1は水流導入口、 そして 1 2は噴射口を示す。
〔発明を実施するための最良の形態〕 まず、 本発明の第 1の側面におけるアル力リ電池セパレータ用不織布について、 詳細な説明を行う
本発明のアル力リ電池セパレータ用不織布は、 水流交絡処理とコロナ放電処理 とカレンダー処理が施されたものである。 このようなアル力リ電池セパレータ用 不織布表面には、 凹凸の交絡跡が残るが、 この交絡跡の凹凸が大きいほど中心面 平均粗さ S R aは大きな値を示し、 最大細孔怪が拡大すると共に、 細孔径の分布 力、'崩れるために保液性が低下する。
そこで、 カレンダー処理を施し、 アルカリ電池セパレータ用不織布を湞して所 定の厚みに調整すると共に、 交絡跡の凹凸を平滑にし、 最大細孔径を小さくする 力、'、 最初に付いた交絡跡の凹凸が大きい場合、 溃しても修復できない貫通孔が形 成される。
カレンダー処理によってアル力リ電池セパレータ用不織布を攮すほど、 中心面 平均粗さ S R aは小さくなり、 それに伴って最大細孔径も小さくなる。
カレンダー処理が施されたアル力リ電池セパレータ用不織布の少なくとも片面 の交絡後の中心面平均粗さ S R a ( j^ m) は、 1 3 m以下であることが好まし く、 1 1; 以下がさらに好ましい。
また、 本発明ではカレンダー処理により滑したアル力リ電池セパレータ用不織 布の厚み D (単位: // m) を交絡後の中心面平均粗さ S R a (以下 Rと略すこと がある (単位: /z m) ) で除した値が、 濱す前の交絡跡の凹凸の状態によりある 一定値を示すことを見出した。 すなわち、 カレンダー処理する前のアルカリ電池 セパレータ用不織布に付いた交絡跡の凹凸が大きい程、 DZRは小さくなり、 交 絡跡の凹凸が小さい程、 D/Rが大きくなることを見出した。
目付けが 4 0 g /m 2 程度の場合、 DZRは 8以上、 目付けが 5 0 g/m 2 程 度の場合、 D /Rは 1 2以上、 目付けが 6 0 g /m 2 の場合、 D/Rは 1 4以上 であることが好ましい。
各目付けにおける D/Rが上記の値より小さい場合、 アル力リ電池セパレータ 用不織布に貫通孔が形成されてしまい、 最大細孔径が 5 0 / mより拡大するため に活物質の移動を完全に防止することが困難になり、 また、 細孔径の分布が崩れ るために、 保液性が低下する。 アル力リ電池セパレータ用不織布の最大細孔径は、 5 0 i m以下が好ましく、 特に 4 0 / m以下が好ましい。
アルカリ電池セパレータ用不織布の加圧吸水度は、 2 0 g/m 2 以上であるこ と力、'好ましく、 3 0 gZm 2 以上であることがさらに好ましい。 ここで、 加水吸 水度が 2 0 g/m 2 未満の場合、 正極の充放電の繰り返しによる膨張により、 ァ ルカリ電池セパレータ用不織布に保持された電解液力、'正極側に移行するため、 ァ ルカリ電池セパレータ用不織布のドライアウトを招く廣れがある。 また、 急速充 電の際に発生する多量の反応ガスにより、 アル力リ電池セパレータ用不織布に保 持された電解液が押し出されるといつた問題が発生する。
次に、 本発明のアルカリ電池セパレータ用不織布の製造方法について、 詳細な 説明を行う。
最初に、 水流交絡処理される湿式抄造法で得られるポリオレフィン系繊維ゥヱ ブについて述べる。 本発明のアル力リ電池セパレータ用不織布を構成するポリオ レフイ ン系繊維は、 ポリオレフイン系であれば特に制限はなく、 例えば、 ポリブ ロピレン、 ポリエチレンなどの単独繊維、 芯成分がポリプロピレン重合体で、 鞘 成分が低融点、 または高融点のポリエチェン、 あるいはエチレンビニルアルコ一 ル共重合体である芯鞘型熱融着性複合繊維、 ポリオレフイン重合体とエチレンビ ニルアルコール共重合体との分割型複合繊維など、 また、 上記繊維を適当量混ぜ 合わせたものを用いることができる。
また、 使用される上記ポリオレフイン系繊維の繊維径は、 水流交絡処理した際 の最大細孔径の拡大を防ぐためにはできるだけ細い方が良く、 1〜2 0 が好 ましく、 3〜1 0 mのものがさらに好ましい。
さらに、 使用される上記ポリオレフイ ン系繊維の繊維長は、 湿式抄造での分散 性および交絡不織布の強度の点から、 5〜1 5 mmのものが好ましい。 繊維長が 1 5 mmより長いと、 水中での分散工程が難しく、 分散剤を選択し、 適量使用す る必要があるばかりか、 一度分散した後、 再度凝集して、 よれ、 もつれ、 だまな ど力、'発生し易くなるという問題力《生じてくる。 また、 分散濃度を低くしなければ ならず生産性が劣る。
—方、 繊維長が 5 mmより短いと、 分散工程は容易であるが、 水流交絡処理時 に高圧柱状水流により繊維が動き易いために、 繊維を曲げ、 絡み合わせることが 困難で、 強度の大きいシートを得ること力、'困難である。 また、 繊維全体が動くた めに、 繊維間のずれが生じ、 交絡ゥヱブ内部で歪が生じ、 高圧柱状水流を噴射し た後、 交絡ゥ Xブに多くのしわが発生するという Ρ題が生じる。
アルカリ電池セパレータ用不織布のウェブは、 上記ポリオレフイン系繊維を用 いて湿式抄造法により製造する。 もちろん、 湿式抄造法以外のカード法、 クロス レイヤー法、 ランダムゥヱバー法などの公知の方法によっても製造することがで きる。 し力、しな力、'ら、 カード法やエアレイ法は、 繊維長の長い繊維を用いること ができるが、 均一なゥ Xブ化が困難で、 高圧柱状水流で加工され得られた交絡ゥ エブも地合が悪く、 透過光で観察すると斑点模様が見られる。 このため、 短絡を 防ぐために必要な最大細孔径を得るには高目付けにしなければならな 、。
—方、 湿式抄造法は、 生産速度がカード法などに比べて早く、 同一装置で繊維 径の異なる繊維や複数の種類の繊維を任意の割合で混合できる利点がある。 また、 他の方法に比べて極めて良好な地合のゥュブが得られる方法である。 このような ことから極めて応用範囲が広く、 細孔径を制御しやすいウェブ形成法である。 次に、 水流交絡処理について述べる。
図 1に水流交絡装置の右側面図を、 図 2に図 1におけるインジュクタ一の拡大 断面図を示す。 本発明では、 水流交絡装置のインジ-クタ一 1内部に付設された 水流導入口 1 1よりも噴射口 1 2の広い形状を有する柱状水流ジェッ トノズル 2 を用いて、 水流交絡処理することを特徴とする。 また、 上記の柱状水流ジ ット ノズルは、 少なくとも最終段のインジヱクタ一内部に付設されたものであること を特徴とする。
図 3に本発明における柱状水流ジヱッ卜ノズルの形状を示す側断面図、 また、 図 4に従来における柱状水流ジ ットノズルの形状を示す側断面図を示した。 図 3の形状にした場合、 図 4の従来のものと比較して、 同じ水圧で噴射される 水量が少なく、 また、 水流の散水化を防ぐことができることから、 ウェブを効率 よく交絡できると共に交絡に寄与しない余剰水を削減できる。 その結果、 湿式抄 造法で得られたウェブを乱さずに交絡跡の凹凸が小さな交絡ウェブを作製できる。 少なくとも最終段のインジヱクタ一で付設される柱状水流ジヱットノズルのノ ズルピッチは 0 . 5〜1 . 0 mmの範囲のもの、 ノズル径は 1 5 0 m以下が中 心面平均粗さを小さくできる点から好ましく、 1 0 0 // m以下力さらに好ましい。 水流交絡処理としては、 湿式抄造法により得られたゥヱブ 4を開孔率 4 0 %以 下、 一つの開孔の大きさが 0 . 0 4 mm 2 以下の多孔質支持体 5上に積載し、 ゥ ブ上方から高圧柱状水流 3を噴射し、 高圧柱状水流 3とゥュブ 4を相対的に移 動させ、 ポリオレフイン系繊維を三次元的に交絡させる。
ゥヱブと高圧柱状水流を相対的に移動させる方法としては、 コンベア一式の支 持体あるいはドラム式の支持体を回転運動させる方法が簡便である。 この時、 支 持体の搬送速度は、 ゥヱブに与える印加エネルギーにより決定されるが、 1〜1 0 O m/m i n以下の速度で用いることができる。
支持体の開孔率が 4 0 %より大きいと得られる交絡ウェブに貫通孔が生じ、 最 大細孔径の調整が困難になる。 逆に、 開孔率が小さいほど、 得られた交絡ウェブ の交絡跡の凹凸が良化するが、 余りに開孔率が小さいと、 交絡に要した水が支持 体から下に抜けず、 支持体に当たった後、 再びウェブに跳ね返り、 跳ね返り水が ゥュブを突き上げ、 ウェブが破損する現象が生じ好ましくない。
このような多孔質支持体としては、 平織り、 綾織りなどの織り方で、 ステンレ ス、 ブロンズなどの金属ワイヤー、 あるいは強化ポリエステル、 ポリアミ ドなど のプラスチックワイヤーが挙げられる。
次に、 このようにして得られた交絡ゥヱブにコ口ナ放電処理を行う。
このコロナ放電処理は、 高電圧発生機に接続した電極とポリエステルフィルム、 ハイバロン、 E Pラバーなどでカバーした金属ロール間に適度の間隔を設け、 高 周波で数千〜数万 Vの電圧を掛け、 高圧コロナを発生させ、 この間隔に前記方法 で得られた交絡ゥ Xブを過度な速度で走らせ、 交絡ゥュブ面にコロナを生成した オゾン、 あるいは酸化窒素を反応させて、 カルボニル基、 カルボキシル基、 ヒド 口キシル基、 ペルォキシド基を生成させるものであり、 この親水性基が交絡ゥェ ブの電解液との親和性の向上に寄与していると考えられる。
ここで、 本発明では、 コロナ放電処理する場合、 少なくとも最終段のインジュ クタ一内部に図 3に示すような水流導入口 1 1よりも噴射口 1 2の広い形状を有 する柱状水流ジュットノズル 2を付設して、 水流交絡処理した交絡ゥ ブを使用 すること力、'重要である。
その理由としては、 交絡跡の凹凸の激し 、交絡ゥエブにコロナ放電処理した場 合、 コロナ放電が目付けの少ない部分に集中するために、 交絡ゥヱブに 0 . 2〜 1 . 0 mm大のコロナピンホール (以下、 貫通孔ということもある) が生じるか りであ。o
交絡ゥヱブにコロナピンホールができるかどうかの目安としては、 水流交絡直 後の交絡ゥ ブの最大細孔径が 6 より大きい場合、 コロナピンホーノレが生 じる可能性力、'極めて高い。
最大細孔径が 6 0 / mより大きい交絡ゥヱブをコロナ放電処理の前にカレンダ 一処理して、 最大細孔径を 6 0〃m以下とし、 コロナ放電処理を施した場合でも、 コロナピンホールが生じる頻度が減少するものの、 一度付 、た交絡跡の凹凸によ る目付けむらを埋めることはできず、 やはりコロナピンホールが開く可能性があ る。 従って、 水流交絡処理において、 交絡跡の凹凸をできるだけ小さく、 また、 最大細孔径を 6 O m以下とすることが好ましい。
最後に、 コロナ放電処理を施した交絡ゥヱブにカレンダー処理を施し、 アル力 リ電池セパレータ用不織布の厚みを調整するが、 コ口ナ放電処理と力レンダー処 理の順序を逆にしても特に問題はない。
つまり、 交絡ゥヱブのより深部までコロナ放電処理をしやすい点では、 コロナ 放電処理を施した交絡ウェブにカレンダー処理を施した方が好ましく、 交絡ゥェ ブの交絡面を平滑にして貫通孔の発生を防ぐ点では、 カレンダー処理を施した交 絡ゥ Lブにコ口ナ放電処理した方が好まし L、。
しかし、 本発明の製造方法で水流交絡処理した場合、 交絡ウェブの交絡面に貫 通孔が生じる心配がな 、ほど平滑であり、 吸液性と保液性の特性面からより深部 までコロナ放電処理をしやすい前者の方がより好ましい順序である。
また、 カレンダー処理後電池組立前に再度コロナ処理してもよい。
カレンダー処理で使用されるロールの材質としては、 ゴム一ゴム、 スチール一 スチール、 スチール一ゴム、 コッ トン一スチール、 コッ トン—コッ トンの組み合 わせのものが使用できる。 厚み調節の作業性及びカレンダー処理後の面質の点か ら、 コットン一スチールが好ましい。 水流交絡直後の交絡ウェブの最大細孔径が 6 0 mより大きく、 交絡跡の凹凸 の激しいものをカレンダー処理した場合、 カレンダー処理跡の巻取りにシヮ力、'生 じ、 巻き姿力《悪化するといった問題力《起こる。 従って、 カレンダー処理する場合 でも、 交絡ゥヱブの表面平滑性が重要であり、 水流交絡処理時に交絡ゥヱブの凹 凸をできるだけ小さくすることが好ましい。
なお、 アルカリ電池セパレータ用不織布にコロナ放電処理を施した後、 ノニォ ン系の界面活性剤などの濡れ剤で塗布あるいは含浸処理しても良い。 また、 アル 力リ電池セパレータ用不織布として好適に使用しうるためには、 厚みをマイク口 メータで測定した 2 0 0 m以下とすること力、'望ましい。
本発明では、 水流交絡処理工程において、 少なくとも最終段のインジェクター 内部に、 水流導入口よりも噴射口の広い形状を有する柱状水流ジエツトノズルを 付設して水流交絡処理を施し、 アル力リ電池セパレータ用不織布面の交絡跡にお ける中心面平均粗さを小さくすることによって、 該不織布の低目付け化を可能に し、 また、 繊維ゥヱブあるいはメルトブロー不織布などと積層一体化させること なく、 低目付けでありながら活物質の移動を防止でき、 優れた吸液性と保液性を 付加できるようにした。
以下、 本発明の第 2の側面におけるアル力リ電池セパレータ用不織布について、 詳細な説明を行う。 まず、 本発明のアルカリ電池セパレータ用不織布を構成する 繊維の説明を行う。
本発明のアルカリ電池セパレータ用不織布を構成する繊維は、 ポリオレフイ ン 系であれば、 特に制限はなく、 例えば、 ポリプロピレン、 ポリエチレンなどの単 繊維、 芯成分がポリプロピレン重合体で、 鞘成分が低融点、 または高融点のポリ ェチェン、 或いはエチレンビニルアルコール共重合体である芯鞘型熱融着性複合 繊維、 ポリオレフィン重合体とエチレンビニルアルコール共重合体との分割型複 合繊維などを用いることができる。
また、 本発明のアル力リ電池セパレータ用不織布を構成する繊維の繊維径は、 できるだけ細い方が良く、 好ましくは、 l〜2 0 m、 さらに好ましくは 1〜1 0 mのもの力、'、 細孔径分布を狭くできることから好ましい。
アル力リ電池セパレータ用不織布の細孔径分布の標準偏差は、 細い繊維で構成 すると小さくなり、 太い繊維で構成すると大きくなる。
また、 細孔径分布の標準偏差は目付けでも変わり、 一定の厚みで比較した場合、 目付けが多いと小さくなり、 目付けが少ないと大きくなる。
さらに、 細孔径分布の標準偏差は、 一定量の目付けで比較した場合、 潰して厚 みを薄くすると小さくなり、 潸さずに厚みが厚いと大きくなる。
ところが、 太い繊維で目付けを多くして細孔径分布の標準偏差を小さくした場 合、 電極の容量が低下するため、 放電特性が劣化する問題が発生する。
本発明でのアルカリ電池セパレータ用不織布の細孔径分布の標準偏差は、 2 0 m以下が好ましく、 1 0 x m以下がさらに好ましいこと力 <判った。 細孔径分布 の標準偏差が 2 0 mより大きい場合、 電解液の保液性が悪くなり、 電極が膨潤 した際に電解液がアル力リ電池セパレータ用不織布内部から押し出され、 ドライ ァゥ卜する可能性が高くなる。
次に、 一定範囲、 即ち平均細孔径 ± 2 mに存在する細孔の個数が全体に占め る割合について述べると、 :の値が大きい程、 細孔が均一化していることを示し、 保液性が良くなる。
本発明では、 平均細孔径 ± 2 // mに存在する細孔の個数が全体に占める割合が 3 5 %以上の場合、 さらに好ましくは 5 0 %以上の場合、 良好な保液性を示すこ とが判った。
次に、 本発明のアル力リ電池セパレータ用不織布の製造方法について述べる。 本発明のアル力リ電池セパレータ用不織布は、 バブル ·ボイン卜法により測定 された細孔径分布の標準偏差が 2 0 m以下であり、 且つ平均細孔径土 2 z mに 存在する細孔の個数が全体の 3 5 %以上であるアル力リ電池セパレータ用不織布 にコロナ放電処理を施すことを特徴とする。
そこで、 アルカリ電池セパレータ用不織布のゥヱブ形成法としては、 上記のポ リオレフイ ン系繊維、 或いは榭脂を用いて、 例えば、 湿式抄造法、 カード法、 ス パンボンド法、 メル卜ブロー法などの公知の方法を用いることができる。
上記のゥ ブ形成法の中では、 湿式抄造法とメルトブロー法は、 アルカリ電池 セパレータ用不織布を構成する繊維の繊維径を細く構成できる点から好ましい。 特に、 湿式抄造法は生産速度が早く、 同一装置で繊維径の異なる複数の種類の 繊維を任意の割合で混合できる利点がある。 即ち、 繊維の形態も、 ステーブル状、 パルプ状などと選択の幅は広く、 使用可能な繊維径も、 7 m以下の極細繊維か ら太い繊維まで使用可能で、 他の方法に比べ、 極めて良好な地合のウェブが得ら れる方法である。 さらに、 分割型複合繊維を分割するに当たり、 パルパ一や高速 ミキサーやビータ一などの離解機での離解工程、 および分散工程で分割型複合繊 維をほぼ完全に分割させることができる。 この様なことから、 極めて応用範囲が 広いゥヱブ形成法である。
湿式抄造法で得られたアル力リ電池セパレータ用不織布のさらなる改良方法と しては、 湿式抄造法で得られたウェブに水流交格処理を施し、 ウェブを構成する ポリオレフイン系繊維を 3次元的に交絡させる方法がある。 水流交絡処理を施し た場合、 アル力リ電池セパレータ用不織布の引張強度や破断伸度が格段と大きく なることから電池構成時に加わる引張力、 巻回圧および使用時におけるへたりな どに起因する厚み変化が防止でき、 さらには、 短絡防止に非常に効果がある。 次に、 本発明ではポリオレフイン系繊維からなるアルカリ電池セパレータ用不 織布の電解液への親和性を向上させるために、 コロナ放電処理を施す。
このコロナ放電処理は、 高電圧発生機に接続した電極と、 ポリエステルフィル ム、 ハイバロン、 E Pラバーなどでカバーした金属ロール間に適度の間隔を設け、 高周波で数千〜数万 Vの電圧をかけ、 高圧コロナを発生させ、 この間隔に前記の 方法で得られたゥヱブを適度な速度で走らせ、 ゥヱブ面にコ口ナを生成したォゾ ン、 あるいは、 酸化窒素を反応させて、 カルボニル基、 カルボキシル基、 ヒドロ キシル基、 ペルォキシド基を生成させるものであり、 この親水性基がアルカリ電 池セパレ—タ用不織布の電解液親和性に寄与していると考えられる。 また、 コロ ナ放電処理を施することにより、 ポリオレフィン系繊維の表面が部分的に侵され て細く枝分かれした状態となるため、 アルカリ電池セパレータ用不織布の表面積 が増大し、 ウェブに対する保液性の向上に寄与している。
なお、 アルカリ電池セパレータ用不織布にコロナ放電処理を施した後、 ノニォ ン系の界面活性剤などの濡れ剤で塗布或いは含浸処理しても良い。 また、 アル力 リ電池セパレータ用不織布として好適に使用しうるためには、 厚みをマイクロメ 一夕で測定して 2 0 0 m以下とすることが望ましい。 本発明では、 細孔径分布の標準偏差と一定範囲に存在する細孔の個数の割合を 管理し、 アルカリ電池セパレータ用不織布を構成するポリオレフイ ン系繊維の絡 み合いにより形成される不織布内部の電解液保持空間を微細で、 しかも均一化す ることにより、 電解液の保液性を高めると共に電極力、'膨潤した際にも電解液がァ ルカリ電池セパレータ用不織布内部から押し出され、 ドライアウトすることがな いようにできるようにしたものである。
また、 本発明では、 本発明のアルカリ電池セパレータ用不織布にコロナ放電処 理することにより、 界面活性剤の含浸処理に頼ることなく、 安価な方法でポリオ レフイン系繊維からなるアルカリ電池セパレータ用不織布に優れた電解液の吸液 性を付与できるようにしたものである。
以下、 本発明の第 3の側面におけるアル力リ電池セパレータ用不織布およびそ の製造方法について、 詳細な説明を行う。 まず、 本発明のアルカリ電池セパレ一 タ用不織布を構成する繊維の説明を行う。
エチレンビニルアルコール共重合体または架橋ポリェチレンォキサイドを部分 的に有するポリオレフイン系繊維としては、 例えば、 芯成分がポリプロピレン重 合体で、 鞘成分がェチレンビニルアルコール共重合体である芯鞘型熱融着性複合 繊維;芯成分がポリプロピレン重合体、 鞘成分が分子量 1 0 0万の架橋ポリェチ レンォキサイドと低密度ポリエチレンを例えば 2 5 : 7 5の割合で相溶化させた ものである芯鞘型熱融着性複合繊維;ポリオレフィ ン重合体とエチレンビニルァ ルコール共重合体との分割型複合繊維:ポリオレフィン重合体とエチレンビニル アルコール共重合体を並列に並べた並列型複合繊維;ポリオレフィン系重合体を 島成分とし、 エチレンビニルアルコール共重合体を海成分とした海島型複合繊 維;などを用いることができる。 また、 上記繊維に、 ポリプロピレン、 ポリェチ ェンなどの単繊維を適宜併用してもよい。
上述した繊維の繊維径としては、 1〜2 0 /z mであり、 さらに好ましくは、 1 〜1 O jt/ mである。 繊維径が細くなるほど該不織布の保液性は向上するが、 1 mより細いとシートが緻密になり易く、 通気性が悪化する傾向にあり、 また繊維 強度が弱くアル力リ電池セパレータ用不織布の強度が低くなることから好ましく ない。 一方、 2 0 t mより太いと保液性が悪化するので好ましくない。 微皴ポリオレフィン系繊維とは、 エチレンビニルアルコール共重合体を部分的 に有するポリオレフイン系繊維であり、 その表面に多数の微細な皲、 つまり微細 な凹凸の山、 またはうねりを有するものを指す。 ここで、 エチレンビニルアルコ ール共重合体は、 繊維表面に少なくともその一部が露出、 あるいは繊維表面また は繊維全体であることが好ましい。
微皴ポリオレフィン系繊維の皺は、 不織布を製造する前の繊維に形成されたも のであっても良いし、 不織布製造中あるいは製造後に、 ポリオレフイン系繊維の 表面に皺を形成させたものであっても良い。 また、 後述するコロナ放電処理のェ 程で皴を形成させたものであっても良い。 皸の状態は、 樹脂が盛り上がった状態 であっても良いし、 空洞状態であっても良い。 空洞状態である場合、 空洞が繊維 外部と通じた状態になつていても問題はなレ、。
上記ポリオレフィン系繊維の内でも、 ポリオレフィン重合体とエチレンビニル アルコール共重合体との分割型複合繊維は、 繊維分割後に不織布形成の乾燥工程 においてェチレンビニルアルコール共重合体繊維が収縮し、 微細な皺が形成され、 後述するコロナ放電処理により微細な皴が拡大し、 より多く形成される。
また、 芯成分がポリプロピレン重合体で、 鞘成分がェチレンビニルアルコール 共重合体である芯鞘型複合繊維の場合には、 ある一定エネルギー量以上のコロナ 放電処理した際に鞘成分に皴が形成される。
繊維表面が皺になっていることで、 繊維の比表面積が大きくなり、 電解液親和 性の改良効果が大きくなり、 繊維自体の吸液性および保液性の向上効果が大きく なる。 また、 皴がないものに比べて繊維間隔が接近するため、 繊維同士で形成さ れる空隙による毛管現象と繊維自体の電解液親和性の向上との相乗効果により、 不織布の吸液性及び保液性が著しく大きくなる。
次に、 本発明のアル力リ電池セパレータ用不織布の製造方法について述べる。 まず、 不織布の形成方法としては、 例えば、 湿式抄造法、 カード法、 スパンボン ド法、 メルトブロー法などの公知の方法が挙げられる。
上記の不織布の形成方法の中でも、 湿式抄造法およびメルトブロー法が、 アル 力リ電池セパレータ用不織布を構成する繊維の繊維径を細くできる点から好まし い。 特に、 湿式抄造法は、 生産速度が速く、 同一装置で繊維径の異なる複数の種 類の繊維を任意の割合で混合できる利点がある。 即ち、 繊維の形態も、 ステープ ノレ状、 パルプ状などと選択の幅は広く、 使用可能な繊維径も 7 m以下の極細繊 維から太 、繊維まで使用可能で、 他の方法に比べて極めて良好な地合の不織布が 得られる方法である。 この様なことから極めて応用範囲が広 、不織布の形成方法 である。 ここでは、 湿式抄造法により不織布を形成する方法について説明する。 湿式抄造法では、 本発明で用いる繊維を任意の濃度で、 パルパ一や高速ミキサ 一などで離解し、 チヱスト、 あるいはベルマーで分散させ原料スラリーを作製し、 長網または円網抄紙機を用レ、て湿式不織布を形成し、 乾燥工程で水分を乾燥させ ると同時に一部の繊維を熱触着することによって不織布を形成する。
湿式抄造法で得られたポリオレフィン系繊維の不織布に水流交絡処理を施し、 不織布を構成するポリオレフィン系繊維を三次元的に交絡させることも好ましい 方法である。 水流交絡処理を施した場合、 アルカリ電池セパレータ用不織布の引 張強度や破断伸度が格段と大きくなることから電池構成時に加わる引張力、 巻回 圧および使用時におけるへたりなどに起因する厚み変化が防止でき、 さらには短 絡防止に非常に効果がある。
さらに、 ポリオレフイ ン系繊維の不織布を三次元的に交絡させた構造では、 後 述するコロナ放電処理により、 不織布の厚み方向に対して、 三次元交絡させない 不織布よりもより深部まで親水性基の生成が可能であり、 極めて優れた電解液親 和性効果が得られるという予想以上の結果が得られた。
本発明のアルカリ電池セパレーター用不織布においては、 電解液への親和性を 向上させるためにコロナ放電処理を施すことを必須条件とする。
コロナ放電処理は、 高電圧発生機に接続した電極とポリエステルフィルム、 ハ ィパロン、 E Pラバーなどでカバーした金属ロール間に適度の間隔を設け、 高周 波で数千〜数万 Vの電圧をかけ、 高圧コロナを発生させ、 この間隔に前記の方法 で得られた不織布を適度な速度で走らせ、 不織布表面にコロナを生成したオゾン、 あるいは酸化窒素を反応させて、 カルボニル基、 カルボキシル基、 ヒドロキシル 基、 ペルォキシド基、 水酸基を生成させるものである。 これらの親水性基を生成 させることによって、 アル力リ電池セパレータ用不織布の電解液親和性に寄与し ていると考えられる。 また、 コロナ放電処理を施すことにより、 ポリオレフイ ン 系繊維の表面が部分的に侵されて細く枝別れした状態となるため、 アル力リ電池 セパレータ用不織布の表面積力増大し、 不織布の保液性向上に寄与しているもの と考えられる。
コロナ放電処理では、 20. OwZ cm2 以下の放電度で処理することが好ま しい。 さらに好ましい放電度の範囲は、 5. 0〜1 5. OwZcm2 である。 放 電度は、 放電力を放電電極面積で除すことによって求められ、 電極の単位面積当 たりに供給されている電力による放電の強さであるが、 20. OwZcm2 より 大きい場合、 ピンホールが発生する問題力、'生じる。
また、 5. 0 w/cm2 より低くても構わないが、 その場合は、 セパレー夕と して必要な電解液親和性を得るためには、 処理速度を遅くしたり、 何本かの電極 郡の 1単位を 1基とした基数を増加しなければならないことや、 さらに、 不織布 の厚み方向に対して深部まで親水性基を生成させにくくするなどの不都合が生じ 本発明において、 コロナ放電処理で用いる電極は、 図 6に示すようなマルチ電 極を用いることカ<好ましい。 電極には、 図 5に示すような形状のものも用いるこ とができる力 放電度を高くした場合に電極のエッジ箇所よりヒゲ放電が発生し 易くなり、 ピンホールの発生する危険性力 <増加することから放電度に制限が加え られる。
特に、 本発明のアルカリ電池セパレーター用不織布の製造方法においては、 電 極の先端形状に丸みを持たせた電極を用いることが好ましい。 電極の先端形状に 丸みを持たせることにより、 ヒゲ放電の発生を抑えることができ、 放電度を 20. 0 w/cm2 まで強めることができる。 その結果、 ゥ ブの厚み方向に対して深 部まで親水性基を生成させることが可能となり、 また、 ピンホールの発生頻度を 減少させることができる。
本発明のアルカリ電池セパレーター用不織布において、 コロナ放電処理後にお ける電子分光法 (ESCA) により分析されたピーク面積比 (OZC比) が、 不 織布表面では 0. 5 0〜1. 8 5、 不織布の厚み方向における中間位置では 0.
45〜し 40であることを特徴とする。 好ましくは、 OZC比が不織布表面に では 0. 5 5〜1. 5 0、 不織布の厚み方向における中間位置では 0. 4 8〜し 2 0である。 ここで、 不織布の厚み方向における中間位置とは、 アルカリ電池セ パレータ用不織布の断面での中央地点である。
コ口ナ放電処理により OZC比を向上させる場合、 不織布を構成するポリオレ フィン系繊維の配合により、 不織布表面および不織布の厚み方向における中間位 置で向上させ得る限界点がある。 また、 ある値以上に OZC比を上げても、 吸液 性が逆に低下する結果にもなることから、 最適な OZ C比を選択する必要がある。 不織布表面での OZC比が 0 . 5 0より低い場合、 中間位置での OZC比も 0 . 4 5を下回り、 不織布の厚み方向での親水性基の生成が不十分となる結果、 アル 力リ電池セパレータ用不織布として保管中に電解液親和性の経時的低下が速く、 電池構成時に電解液の注液時間が安定しないといつた問題や電池に組み込んだ場 合でも、 充放電サイクル中にアル力リ電池セパレータ用不織布の電解液保液性が 低下し、 電池の寿命が短くなるといつた問題が発生する。
また、 アルカリ電池セパレータ用不織布を構成する繊維力 エチレンビニルァ ルコール共重合体成分または架橘ポリェチレンォキサイドを部分的に有するポリ ォレフィ ン系繊維を含有していない場合、 不織布表面および不織布の厚み方向に おける中間位置で所定の 0/C比を得たとしても、 保管中に電解液親和性の経時 的低下が速くなつてしまう。
アル力リ電池セパレータ用不織布にコロナ放電処理を施した後、 ノニオン系界 面活性剤などの濡れ剤を塗布あるいは含浸処理しても良い。 また、 アルカリ電池 セパレータ用不織布として好適に使用しうるためには、 厚みをマイクロメータで 測定して 3 0 0 m以下となるようカレンダ一処理することが望ましい。
また、 コロナ放電処理を施した交絡ゥヱブにカレンダー処理を施す場合とその 順序を逆にした場合では、 前者の方が繊維密度が低いためコ口ナ放電処理におい て、 ウェブの中まで O/C比を向上させることができるのでより好ましい。
また、 カレンダー処理後電池組立前に再度コロナ処理してもよい。
以下、 本発明の第 1の側面を具体例によりさらに詳細に説明するが、 本発明は これらの例に限定されるものではない。 なお、 例中における、 部、 %はすべて重 量によるものである。
例 1 MFRが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 MFR が 4 0で、 ゲン化度 9 9. 6%のエチレンビニルアルコーノレ共重合体とからなる 繊度 3デニール、 繊維分割後 0. 2デニール (3. 9 m) 、 繊維長 6 mmの分 割型複合繊維を 99部、 織度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニル アルコール繊維 (VPW1 0 3 : クラレ社製) 1部を用いて、 湿式抄造法により 円網抄紙機でゥヱブを作製した。
次に、 このゥヱブを 1 0 0メッシュのステンレスワイヤーである多孔質支持体 上に搬送し、 処理速度 8mZmi nで高圧柱状水流により水流交絡処理を行った。 インジェクターを 2台用い、 各インジェクター内部には図 3 Aの形状でノズル ピッチが 0. 6 mm、 ノズル径が 1 2 0〃 mの柱状水流ジェットノズルを付設し た。 水圧は、 1 3 O k gZcm2 で、 まず、 ゥヱブの片面を交絡し、 次にゥヱブ の裏面を交絡した。 この時の交絡ゥヱブの最大細孔径は、 5 2. 9 //mであった。 このようにして得られた交絡ゥヱブの両面にコ口ナ放電処理を施した。 最後に、 常温でカレンダー処理を行 て、 直径 6. 3 mmのマイクロメータで測定した厚 みを 1 8 0 mとし、 切断してアルカリ電池セパレータ用不織布を得た。
例 2
例 1において、 柱状水流ジェットノズルのノズルピッチを 1. 0mmで、 ノズ ル径を 1 5 0〃mにした以外は、 例 1と同様の方法でアルカリ電池セパレータ用 不織布を得た。
例 3
例 1において、 ゥヱブの目付けを 4 5. 5 g/ 2 、 水圧を 1 0 0 k cm2 とした以外は、 例 1と同様の方法でアルカリ電池セパレータ用不織布を得 例 4
例 1において、 ノズルピッチおよびノズル径はそのままで、 第 1インジヱクタ 一に付設される柱状水流ジヱッ トノズル形状を 4図 Aにし、 第 2インジヱクタ一 に付設されるノズル形状を図 3 Aにして、 水圧を 1 0 0 k gZcm2 とした以外 は、 例 1と同様の方法でアルカリ電池セパレータ用不織布を得た。
例 5 例 1において、 インジヱクタ一に装着される柱状水流ジヱッ トノズルの形状を 2台とも図 4の Aとした以外は、 例 1と同様の方法でアル力リ電池セパレータ用 不織布を得た。
例 6
例 5において、 カレンダー処理によりアルカリ電池セパレータ用不織布の厚み を 1 4 9〃mまで滑した以外は、 例 5と同様の方法でアルカリ電池セパレー夕用 不織布を得た。
例 7
例 5において、 柱状水流ジェットノズルのノズルピッチを 1 . O mmで、 ノズ ル径を 1 5 0 // mにした以外は、 例 5と同様の方法でアルカリ電池セパレータ用 不織布を得た。
例 8
例 5において、 柱状水流ジェットノズルのノズルピッチを 0 . 6 mmで、 ノズ ル径を 8 0 mにした以外は、 例 5と同様の方法でアル力リ電池セパレータ用不 織布を得た。
例 1〜 8で作製したアル力リ電池セパレータ用不織布について、 下記の評価方 法によって評価し、 その評価結果を下記表 1に示した。
く厚さ〉
厚さの評価は、 マイクロメータ一を用いて、 1 0枚の試料のそれぞれ異なる 6 箇所で厚さ (// m) を測定し、 その平均値を示した。
〈細孔径〉
細孔径の評価としては、 A S TM F 3 1 6 - 8 6に準拠したコールター ·ポロ メータ (米国 P M I社製) を用いて最大細孔径 ( m) を測定した。 カレンダー 処理前の値を細孔径 1、 カレンダー処理後の値を細孔径 2とした。 また、 表 1に 示した最大細孔径の値は、 コロナ放電処理により開いたピンホールによるものを. 除いた。
〈中心面平均粗さ (以下、 中心面表面粗さということもある) 〉
本明細書でいう中心面平均粗さ S R a ( m) は、 触針式 3次元表面粗さ計を 用いて測定され、 下記 (1 ) で規定されるものである。
Figure imgf000023_0001
式 1において、 Wxは試料面域の X軸方向 (水流交絡処理により付いた交絡筋 跡に直交する方向) の長さを表し、 Wyは試料面域の Y軸方向 (水流交絡処理に より付いた交絡跡に沿った方向) の長さを表し、 S aは試料面域の面積を表す。 具体的には、 触針式 3次元表面粗さ計および 3次元粗さ解析装置として、 小坂研 究所 (株) 製 SE— 3 AK型機および SPA— 1 1型機を用い、 カツトオフ値 1. 25mm、 Wx= 1 0 mm、 Wy = 5 mm, 従って S a = 50 mm2 の条件で求 めることができる。 なお、 X軸方向のデータ処理としてはサンプリングを 666 7点行い、 Y軸方向の走査としては 1 0線行った。
〈吸液性〉
電解液の初期吸液性の評価としては、 電解液の吸液速度 (1分当りの吸い上げ 高さ mm) を測定した。 電解液の吸液速度は、 各試料の流れ方向から 1. 5 cm X 1 8 c mの試験片を 3枚採取し、 40 ± 5 °Cのもとに予備乾燥を行 、、 公定水 分率以下にした後、 試料を標準温室度状態の試験室に放置し、 その後試料を 1時 間以上の間隔で計量し、 その前後の質量差が後の質量の 0. 1 %以内になった状 態 (この状態を水分平衡状態という) にし、 次に、 試験片を 20±2°Cにおける 比重し 3 (20 ) の苛性カリ (KOH) 溶液を入れた水槽上に所定高さの水 平棒を設置し、 各試料をこの水平棒にその下端を揃えてピンで止めて各試料を垂 れ下げ、 水平棒を降下して各試験片の下端が 5 mmだけ液中に漬かった状態とな . し、 1分後に毛細管現象により KOH溶液が上昇した高さを測定した。
〈加圧吸水度 (以下、 保液性と称することもある) 〉
充放電に伴う電極の膨潤により、 アル力リ電池セパレータ用不織布には大きな 圧力が掛かるため、 アルカリ電池セパレータ用不織布中の電解液は正極、 あるい . は負極側に次第に移行して行く。 この場合のアル力リ電池セパレータ用不織布の 持つ電解液の保液性の評価として、 加圧後の水の保持量 (g/m2 ) を測定した。 加圧後の水の保持量は、 各試料から 1 0 cmx 1 0 cmの大きさの試験片を 3枚 採取し、 水分平衡状態となしたときの重量 W (g) を測定し、 次に、 20± 1°C の蒸留水中に試験片を広げて浸漬し、 1分間放置したのち蒸留水中から取り出し、 直ちに ¾t紙 (ァドバンテック No. 2 6) で挟み、 線圧 5 0 k gZcmのロール プレスに通し、 その試験片の重量 W, (g) を測定して、 下記 (2) より算出し 加圧後の保持量 (g/m2 ) = C (W, 一 W) / (0. 1 X 0. 1) 〕 (2) 〈ピンホール〉
コ口ナ放電処理を施した交絡ゥヱブを目視により評価し、 ピンホールが発生し なかった場合は〇、 発生した場合は Xとした。
〈巻き姿〉
カレンダー処理後の巻取りにおいて、 シヮの発生がなく、 問題なくきれいに卷 けた場合は〇、 シヮが発生した場合は X、 シヮの程度が比較的軽度の場合は と した。
表 1
Figure imgf000024_0001
上記表 1の例 1〜 4に示したように、 水流交絡処理工程において、 少なくとも 最終段のインジェクター内部に、 水流導入口よりも喷射口の広い形状を有する柱 状水流ジュットノズルを付設して水流交絡処理を施し、 中心面平均粗さを小さく するように製造した場合、 コ口ナ放電処理の際にコロナピンホールが生じること なく、 力レンダー処理の際に巻き姿を悪化させることなく処理することが可能で あった。 また、 目付けを 4 0 g/m2 にした場合でも、 最大細孔径を 5 0 m以 下に抑えることができた。
—方、 例 5〜8で示したように、 従来のノズノ 状で水流交絡処理した場合に は、 低目付けでは、 最大細孔径を 5 0 m以下にすることが困難であり、 また、 コロナピンホールや巻き姿の悪化などの問題が発生した。 また、 細孔径の分布が 崩れるために例 1〜 4のものに比較すると若干保液性が低下した。
上記から明かなように、 本発明の製造方法で製造されたアル力リ電池セパレー タ用不織布は、 低目付けでありながら、 電解液の保液性、 特に加圧下での保液性 に特に優れており、 また、 活物質の移動を防止することができる。 その結果、 本 発明により、 電解液の吸液性と保液性に優れたアル力リ電池セパレータ用不織布 を提供すること力、'可能となった。 本発明のアルカリ電池セパレー夕用不織布は、 高容量、 長寿命、 高信頼性などの高度な特性が必要なアルカリ二次電池用セパレ 一夕として好適に使用することができる。
以下、 本発明の第 2の側面を具体例によりさらに詳細に説明する力 本発明は これらの例に限定されるものではない。 なお、 例中における、 部、 %はすべて重 量によるものである。
例 9
M F Rが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 M F R が 4 0で、 ゲン化度 9 9 . 6 %のエチレンビニルアルコール共重合体とから成る 繊度 3デニール、 繊維分割後 0 . 2デニール (3 . 9 m) 、 繊維長 6 mmの分 割型複合繊維を 3 0部、 ポリプロピレンが芯成分で、 エチレンビニルアルコール 共重合体が鞘成分で、 芯鞘の容量比率が 5 0 : 5 0、 繊度 2デニール、 繊維長 5 mmの芯鞘型熱接着性複合繊維を 7 0部の割合で混合し、 湿式抄造法により円網 抄紙機で坪量 5 2 . 8 g/m2 、 幅 5 0 c mのウェブを作製した。
次に、 この様にして得られたゥヱブの両面にコロナ放電処理を施した。 最後に、 常温でカレンダー処理を行って、 直径 6 . 3 mmのマイクロメータで測定した厚 みを 1 5 とし、 切断してアルカリ電池セパレータ用不織布を得た。
例 1 0
ポリオレフイン系繊維の配合比率について、 例 9で使用した分割型複合繊維を 6 0部、 例 9で使用した芯鞘型熱接着性複合繊維を 4 0部にした以外は、 例 9と 同様の方法でアル力リ電池セパレータ用不織布を得た。
例 1 1
例 9で使用した分割型複合繊維を 8 0部、 繊度 0. 5 (8. 8〃m) デニール、 繊維長 1 0 mmのポリプロピレン繊維を 1 9部、 繊度 1デニール、 繊維長 3 mm の熱水可溶性ポリビニルアルコール繊維 (VPW1 0 3 :クラレ社製) 1部を湿 式抄造法により円網抄紙機で、 坪量 4 2. 9 g/m2 、 幅 5 0 cmゥ χブを作製 した。
次に、 このゥヱブを 1 0 0メッシュのステンレスワイヤーである多孔質支持体 上に搬送し、 高圧柱状水流によりゥヱブの両面に水流交絡処理を行い、 この様に して得られた交絡不織布の両面にコ口ナ放電処理を施した。
最後に、 常温でカレンダー処理を行って、 直径 6. 3 mmのマイクロメータで 測定した厚みを 1 2 3 mとし、 切断してアルカリ電池セパレ一タ用不織布を得 。
例 1 2
ポリオレフィン系繊維の配合比率について、 例 9で使用した分割型複合繊維を 9 9部、 例 1 1で使用した熱水可溶性ポリビニルアルコーノレ繊維を 1部にした以 外は、 例 1 1と同様の方法でアルカリ電池セパレータ用不織布を得た。
例 1 3
例 1 2で坪量を 5 1. 8 g/m2 、 カレンダー処理後の厚みを 2 00 mとし た以外は、 例 1 2と同様の方法でアルカリ電池セパレータ用不織布を得た。
例 1 4
実施例 1 2で坪量を 6 2. 4 g/m2 、 カレンダー処理後の厚みを 2 0 0 とした以外は、 例 1 2と同様の方法でアル力リ電池セパレータ用不織布を得た。 例 1 5
例 1 2で坪量を 7 2. 3 g/m2 、 カレンダー処理後の厚みを 20 2〃mとし た以外は、 例 1 2と同様の方法でアルカリ電池セパレータ用不織布を得た。
例 1 6
例 1 2で坪量を 7 9. 1 g/m2 、 カレンダー処理後の厚みを 20 1 とし た以外は、 実施例 4と同様の方法でアルカリ電池セパレータ用不織布を得た。 例 1 7
メルトブロー法によって坪量 6 5. 3 g/m2 のポリプロピレン繊維不織布を 作製し、 次いで、 1 7 0°Cの熱ロールで加熱加圧してその厚さを 1 6 0〃mとし o
次に、 この不織布の両面にコロナ放電処理を施した。 そして、 この不織布にサ ィズプレスにおいてノニオン系の界面活性剤を含浸させ、 その後、 熱風乾燥機で 乾燥し、 最後に、 常温でカレンダー処理を行って、 直径 6. 3mmのマイクロメ 一夕で測定した厚みを 1 4 5 /mとし、 切断してアルカリ電池セパレータ用不織 布を得た。
例 1 8
ポリプロピレンが芯成分で、 エチレンビニルアルコール共重合体が鞘成分で、 芯鞘の容量比率が 5 0 : 5 0、 蛾度 2デニール、 繊維長 5 mmの芯鞘型熱接着性 複合繊維を湿式抄造法により円網抄紙機で坪量 5 7. 6 g/m2 、 幅 5 0 cmの ゥヱブを作製した。
次に、 この様にして得られたウェブの両面にコロナ放電処理を施した。 最後に、 常温でカレンダー処理を行って、 直径 6. 3 mmのマイクロメータで測定した厚 みを 1 4 5 / mとし、 切断してアルカリ電池セパレータ用不織布を得た。
例 1 9
ポリプロピレンが芯成分で、 エチレンビニルアルコール共重合体が鞘成分で、 芯鞘の容量比率が 5 0 : 5 0、 繊度 2デニール、 繊維長 5 1 mmの芯鞘型熱接着 性複合繊維をクロスレイヤ一法により坪量 6 5. 7 g/m2 のゥヱブを作製し、 次いで 1 1 0度の熱カレンダーロールを通して圧着させ、 この様にして得られた ゥェブの両面にコ口ナ放電処理を施した。
最後に、 常温でカレンダー処理を行って、 直径 6. 3 mmのマイクロメータで 測定した厚みを 1 4 6 ^mとし、 切断してアルカリ電池セパレータ用不織布を得 例 2 0
例 1 3でコロナ放電処理をしなかった以外は、 例 1 3と同様の方法でアル力リ 電池セパレータ用不織布を得た。 例 9〜2 0で作製したアルカリ電池セパレータ用不織布について、 下記の評価 方法によって評価し、 その評価結果を下記表 2と表 3に示した。
〈厚さ〉
例 1と同様にして測定した。
〈細孔径測定〉
細孔径の評価としては、 ASTMF 3 1 6 - 8 6に準拠したコールター ·ポロ メータ (米国 PME社製) を用いて細孔径 (//m) を測定した。
1 ) 細孔径分布の標準偏差 (以下、 標準偏差と記す。 ) は、 RELATIVE FLOWが始 終する範囲での細孔径分布から計算した。
2) 平均細孔径 ±2 mに存在する細孔の個数の割合 (以下、 割合と記す。 ) は、 DIFFERENTIAL NUMBERから、 平均細孔径 ± 2 mに存在する細孔の個数とアル力 リ電池セパレータ用不織布全体に存在する細孔の合計個数を求め、 その割合 ( %) を計算した。
〈吸液性〉
例 1と同様にして測定した。
〈加圧吸水度〉
例 1と同様にして測定した。
9 10 11 12 13 14 坪 量 52.8 41.0 42.9 43.2 51.8 62.4 厚 さ 150 194 123 137 200 200 細 平均細孔径 28 6 21 3 15 6 13 5 13 A g « 孔
径 標準偏差 12.6 11.2 16.9 11.1 9.9 7.0 測
定 割 合 35.0 39.4 49.4 59.8 62.9 73.8 吸 液 性 38.5 45.5 24.0 27.0 20.0 18.7 加圧吸水度 6.0 17.2 28.7 21.0 28.0 30.0
表 3
Figure imgf000030_0001
上記表 2と表 3の例 9〜 1 7に示したように、 細孔径分布の標準偏差が 2 0 u m以下であり、 且つ平均細孔径 ± 2 t mに存在する細孔の個数が全体の 3 5 %以 上にすることにより、 アルカリ電池セパレータ用不織布に高い圧力が掛かった場 合でも、 儍れた保液性を示すことが判る。
また、 例 9〜1 7により、 細孔径分布の標準偏差が小さい程、 また、 平均細孔 径 ± 2 // mに存在する細孔の個数の全体個数に占める割合が大きい程、 加圧吸水 度が向上することが判る。
—方、 表 3の例 1 8〜2 0に示したように、 細孔径分布の標準偏差が 2 0 n より大きく、 平均細孔径 ± 2 mに存在する細孔の個数が全体の 3 5 %より小さ い場合、 加圧吸水度が小さく、 アルカリ電池セパレータ用不織布に高い圧力が掛 かった場合、 ドライアゥ卜する可能性が高いことが判る。
表 2の例 1 3と表 3の例 2 0は、 コロナ放電処理の有無を比較した場合である 力、'、 コロナ放電処理を施さない場合、 吸液性が極端に悪く、 また、 加圧吸水度も 若干低くなる。
上記から明かなように、 本発明のアルカリ電池セパレータ用不織布は、 細孔径 分布の標準偏差と一定範囲内に存在する細孔の個数の割合を管理し、 電解液保持 空間を微細で均一で、 その個数を多くしているため、 電解液の保液性、 特に加圧 下での保液性に特に優れている。 また、 そのゥヱブにコロナ放電処理を施してい るため、 電解液の吸液性も非常に傻れている。
その結果、 本発明により電解液の吸液性と保液性に優れたアル力リ電池セパレ 一夕用不織布を提供することが可能になり、 本発明のアルカリ電池セパレータ用 不織布は、 高容量、 長寿命、 高信頼性などの高度な特性が必要なアルカリ二次電 池用セパレー夕として好適に使用することができる。
以下、 本発明の第 3の側面を具体例によりさらに詳細に説明するが、 本発明は これらの例に限定されるものではない。 なお、 例中における、 部、 %はすべて重 量によるものである。 例で用いた電極は、 バー電極として図 5 A、 マルチ電極と して図 6 C、 また、 電極の先端形状に丸みを持たせたマルチ電極として図 6 Aを 用い、 電極 1基当たりの面積は、 それぞれ同じ面積とした。
例 2 卜 2 5
M F Rが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 M F R が 4 0、 ゲン化度 9 9 . 6 %のエチレンビニルアルコーノレ共重合体とからなる繊 維 3デニール、 繊維分割後 0 . 2デニール (3 . 9 z m) 、 繊維長 6 mmの分割 型複合繊維を 9 7部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコール繊維 (V PW 1 0 3 : クラレ社製) 3部を用いて、 湿式抄造法により円 網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0メッシュのステンレ スワイヤーである多孔質支持体上に搬送し、 高圧柱状水流により水流交絡処理を 行った。 この様にして得られた交絡不織布に、 表 4に示した条件でコロナ放電処 理を施し、 常温でカレンダー処理を行い、 表 4に示す坪量のアルカリ電池セパレ 一タ用不織布を得た。
例 2 6
芯成分としてポリプロピレン、 鞘成分としてェチレンビニルアルコール共重合 体、 芯鞘の容積比率が 5 0 : 5 0、 繊度 1 . 5デニール、 繊維長 1 0 mmの熱接 着性芯鞘型複合繊維を 9 8部、 および繊度 1デニール、 繊維長 3 mmの熱水可溶 性ポリビニルアルコーノレ繊維 (V PW 1 0 3 : クラレ社製) 2部を用いて、 湿式 抄造法により円網抄紙機で目付け 5 8 . 1 g /m2 の不織布を作製した。 この不 織布の表裏に表 4に示したコロナ放電処理を施し、 常温で力レンダー処理を行 、、 アル力リ電池セパレータ用不織布を得た。
例 2 7〜 2 9
芯成分としてポリプロピレン、 鞘成分として分子量 1 0 0万の架橋ポリェチレ ンォキサイドと低密度ポリエチレンを 2 0 : 8 0の割合で相溶化させた樹脂、 芯 鞘の容積比率が 5 0 : 5 0、 繊度 1 . 5デニール、 繊維長 1 0 mmである芯鞘型 熱融着性複合繊維を 1 0 0部用いて、 湿式抄造法により円網抄紙機で目付け 5 7 . 9 g /m2 の不織布を作製した。 この不織布の表裏に表 4に示したコロナ放電処 理を施し、 常温でカレンダー処理を行い、 アルカリ電池セパレータ用不織布を得 た。
例 3 0
M F Rが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 M F R が 4 0、 ゲン化度 9 9 . 6 %のエチレンビニルアルコール共重合体とからなる繊 度 3デニール、 繊維分割後 0 . 2デニール (3 . 9 /z m) 、 繊維長 6 mmの分割 型複合繊維を 7 0部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコール繊維 (V PW 1 0 3 :クラレ社製) .3部、 芯成分としてポリプロピレン、 鞘成分として分子量 1 0 0万の架橋ポリエチレンォキサイドと低密度ポリエチレ ンを 2 0 : 8 0の割合で相溶化させた樹脂、 芯鞘の容積比率が 5 0 : 5 0、 繊度 1 . 5デニール、 繊維長 1 0 mmである芯鞘型熱融着性複合繊維を 2 7部を用い て、 湿式抄造法により円網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0メッシュのステンレスワイヤ一である多孔質支持体上に搬送し、 高圧柱状水 流により水流交絡処理を行った。 この様にして得られた交絡不織布に、 表 5に示 した条件でコロナ放電処理を施し、 常温でカレンダー処理を行い、 アルカリ電池 セパレータ用不織布を得た。
例 3 卜 3 3
例 2 1により作製した交絡不織布に、 表 4に示した条件でコロナ放電処理を施 し、 常温でカレンダー処理を行い、 アルカリ電池セパレータ用不織布を得た。 な お、 例 3 1では、 コロナ放電処理を施さなかった。
例 3 4〜 3 6
例 2 1により作製した交絡不織布に対して、 コロナ放電処理の代わりに、 ブラ ズマ処理装置 (減圧容器) 内の電極板から 1 0 c mの位置に、 電極板と平行にセ ットし、 プラズマ処理装置内を 1 0 _5 T o r rまで減圧にした後、 酸素ガスを流 量 1 0 c c Z分で供給して 0 . 0 1 T o r rに調整し、 ラジオ周波数 1 3 . 5 6 MH zで、 交絡不織布の表裏にプラズマ処理を施し、 常温でカレンダー処理を行 い、 アルカリ電池セパレータ用不織布を得た。 なお、 各例ではプラズマ照射時間 を代えて異なる OZ C比とした。
例 3 7
繊度 0 . 5デニール、 繊維長 1 0 mmのポリブロピレン繊維を 9 7部、 繊度 1 デニール、 繊維長 3 mmの熱水可溶性ポリビニルアルコーノレ繊維 (V PW 1 0 3 : クラレ社製) 3部を用いて、 湿式抄造法により円網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0メッシュのステンレスワイヤーである多孔質支持体 上に搬送し、 高圧柱状水流により水流交絡処理を行った。 この様にして得られた 交絡不織布に、 表 4に示す条件でコロナ放電処理を施し、 常温でカレンダー処理 を行い、 アルカリ電池セパレータ用不織布を得た。
例 2 1〜3 7により作製したアルカリ電池セパレータ用不織布について、 下記 の評価方法によって評価し、 その評価結果を下記表 4に示した。 なお、 表中の放 電処理の欄では、 下記のとおり略した。
C B :コロナ放電処理、 バー型電極使用 (図 5 A)
C C : コロナ放電処理、 マルチ型電極使用 (図 6 C )
C M : コロナ放電処理、 マルチ丸み型電極使用 (図 6 A )
P Z :プラズマ放電処理 〈厚さ〉
例 1と同様にして測定した。
〈o/ c比〉
アル力リ電池セパレータ用不織布の OZ C比は、 V. G. SCIENTIFIC社製の電子分 光化学分析計を用いて測定し、 X線源としてマグネシウム K一 α線を用い、 不織 布表面の元素分析を行い、 酸素原子 (0) と炭素元素 (C ) の存在比 (OZ C 比) をピーク面積で求めた。 測定は、 η = 3で行い、 その平均を示した。 不織布 の厚み方向において、 中間位置の OZ C比の測定は、 セロハンテープを用いて不 織布表面の繊維を剝ぎ取って試料を作製し、 測定した。 そして、 不織布表面の 0 Z C比、 不織布の厚み方向において中間位匱 (不織布表面から約 9 0 z m内部の 位置) の OZ C比をそれぞれ 「表面」 、 「中間」 の欄に示した。
ぐ吸液性〉
例 1と同様に測定した。
く加圧吸水度〉
例 1と同様にして測定した。
く経時変化〉
アル力リ電池セパレータ用不織布の電解液親和性を改良した後の吸液性の経時 変化の評価として、 温度 2 0 °C、 湿度 6 5 %の環境試験室に 3力月放置した後の 吸液性を測定した。 放置前の吸液性に対して、 4 0 %より低下したものを X、 4 0〜6 0 %に低下したものを△、 6 1〜8 0 %に低下したものを〇、 8 1 %以上 維持したものを◎とした。 アルカリ電池セパレータ用不織布として、 実用出来る レベルは△以上である。
〈貫通孔〉
コロナ放電処理を施した不織布を、 まず、 蛍光灯に透かす目視評価を行い、 そ の後、 顕微鏡観察を行い、 1 0 0 ;t m以上の貫通孔 (ピンホール) が発生しなか つた場合を〇、 発生した場合を Xとした。 表 4
Figure imgf000035_0001
例 2 1〜3 0より、 エチレンビニルアルコール共重合体または架橋ポリェチレ ンォキサイドを部分的に有するポリオレフィン系繊維を用いた不織布にコロナ放 電処理を施し、 不織布表面の 0/C比が 0. 5 0〜し 8 5、 不織布の厚み方向 において中間位置での O/C比が 0. 4 5〜1. 3 0の範囲にあるものは、 アル 力リ電池セパレータ用不織布として、 使用前の保管期間中における吸液性能の経 時的低下が少なく、 また極めて優れた電解液に対する吸液性と保液性を得ること ができた。
例 2 1〜2 5は、 同一のアルカリ電池セパレータ用不織布であるが、 電極の種 類、 放電度、 電極基数を変化させることで、 OZ C比も変って良好な保液性とな ることがわかる。
また、 例 2 7〜2 9は、 同一のアルカリ電池セパレータ用不織布であるが、 ノく 一型電極を多数使用した例 2 7と丸み型マルチ電極を少数で使用した例 2 8〜 2 9では、 後者の方が効率的にも特性的にも優れていることがわかる。
—方、 放電処理を施さなかった例 3 1のアル力リ電池セパレータ用不織布は、 OZ C比力《本発明の範囲外となり、 特性的にも劣った。
例 3 2〜3 3のアルカリ電池セパレータ用不織布において、 例 3 2ではマルチ 型電極の放電度を 1 6 . O wZ c m 2 、 例 3 3ではバー型電極の放電度を 7 . 5 wZ c m2 と放電度を限界以上に高めて処理したものであり、 貫通孔が発生して 実用上問題であった。
例 3 4〜3 6のアルカリ電池セパレータ用不織布は、 プラズマ放電処理を施し たものであるが、 OZ C比を満足するものの、 経時変化の評価において劣った。 例 3 7のアルカリ電池セパレータ用不織布は、 ポリオレフイン系繊維としてポ リプロピレン繊維を使用したもので、 OZC比は満足するものの吸液性および経 時変化の特性が劣った。
例 3 8〜 4 0
M F Rが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 M F R 力く 4 0、 ゲン化度 9 9 . 6 %のエチレンビニルアルコール共重合体とからなる繊 度 3デニール、 繊維分割後 0 . 2デニール (3 . 9 ^ 111) 、 繊維長6 11 111の分割 型複合繊維を 9 5部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコール繊維 (V PW 1 0 3 : クラレ社製) 5部を用いて、 湿式抄造法により円 網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0メッシュのステンレ スワイヤーである多孔質支持体上に搬送し、 高圧柱状水流により水流交絡処理を 行った。 この様にして得られた交絡不織布に、 表 5に示した条件でコロナ放電処 理を施し、 常温でカレンダー処理を行い、 表 5に示す坪量のアルカリ電池セパレ 一タ用不織布を得た。
例 4 1
芯成分としてポリプロピレン、 鞘成分としてエチレンビニルアルコール共重合 体、 芯銷の容積比率が 5 0 : 5 0、 繊度 1 . 5デニール、 繊維長 1 0 mmの熱接 着性芯鞘型複合繊維を 1 0 0部を用いて、 湿式抄造法により円網抄紙機で目付け 5 8 . 1 g /m 2 の不織布を作製した。 この不織布の表裏に表 5に示したコロナ 放電処理を施し、 常温でカレンダー処理を行い、 アルカリ電池セパレータ用不織 布を得た。
例 4 2
M F Rが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 M F R が 4 0、 ゲン化度 9 9 . 6 %のエチレンビニルアルコール共重合体とからなる繊 度 3デニール、 繊維分割後 0 . 2デニール (3 . 9 ^ m) 、 繊維長 6 mmの分割 型複合繊維を 7 0部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコール繊維 (V PW 1 0 3 :クラレ社製) 5部、 芯成分としてポリプロピレン、 鞘成分として分子量 1 0 0万の架橋ポリエチレンォキサイドと低密度ポリエチレ ンを 2 0 : 8 0の割合で相溶化させた樹脂、 芯鞘の容積比率が 5 0 : 5 0、 繊度 1 . 5デニール、 繊維長 1 0 mmである芯鞘型熱融着性複合繊維を 2 5部を用い て、 湿式抄造法により円網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0メッシュのステンレスワイヤーである多孔質支持体上に搬送し、 高圧柱状水 流により水流交絡処理を行った。 この様にして得られた交絡不織布に、 表 2に示 した条件でコロナ放電処理を施し、 常温でカレンダー処理を行い、 アルカリ電池 セパレータ用不織布を得た。
例 3 8〜4 2により作製したアルカリ電池セパレータ用不織布について、 上記 と同様の評価方法によって評価し、 その評価結果を下記表 5に示した。 なお、 評 価項目として、 下記の繊維形状を追加した。
<繊維形状 >
電子顕微鏡写真により繊維表面を観察し、 微細な皺が発生している場合を〇、 発生していない場合を Xで示した。
表 5 OZC比 放 電 放 吸 経 貫 坪 厚 加
電 極 圧 時 例 電 皴 液 吸 通 処 基 水 変 量 み 表面 中間 度
理 数 度 性 化 孔
38 55.1 180 0.88 0.63 CM 04 13.4 有 33.0 29.0 ◎ 無
39 55.7 178 1.20 0.88 CM 05 13.4 有 35.0 31.2 ◎ 無
40 55.2 180 1.35 0.97 CM 06 13.4 有 34.0 31.2 ◎ 無
41 58.1 180 1.28 0.77 CM 05 13.4 有 50.0 13.0 ◎ 無
42 56.8 180 0.65 0.54 CM 01 13.5 有 35.5 29.0 ◎ 無 例 3 8〜4 0のアル力リ電池セパレータ用不織布は、 ポリプロピレンとェチレ ンビニルアルコール共重合体からなる分割型複合繊維を用い、 得られたアル力リ 電池セパレータ用不織布であり、 該ェチレンビニルアルコール共重合体の極細繊 維表面には多数の微細な皴が形成された微敏ポリオレフィン系繊維を含有してい る。 例 3 8〜4 0のアルカリ電池セパレータ用不織布のいずれも同様であるが、 例 3 9のアルカリ電池セパレータ用不織布について、 電子顕微鏡写真を図 7に示 した。 不織布表面および中間位置の OZC比を大きく しなくても電解液に対する 吸液性および保液性が良好であつた。
例 4 1のアルカリ電池セパレータ用不織布は、 芯成分にポリプロピレン、 鞘成 分にエチレンビニルアルコール共重合体からなる芯鞘型複合繊維を用いたアル力 リ電池セパレ一タ用不織布で、 エチレンビニルアルコール共重合体の鞘成分に微 細な皺が形成されたことにより、 電解液親和性の経時的低下が少なく、 電解液の 吸液性および保液性を格段に高めることができた。 例 4 1のアルカリ電池セパレ 一タ用不織布について、 電子顕微鏡写真を図 8に示した。
また、 例 4 2のアルカリ電池セパレータ用不織布は、 分割型複合繊維、 芯鞘型 複合繊維を併用したアル力リ電池セパレータ用不織布であるが、 上記と同様にェ チレンビニルアルコール共重合体成分に微細な皺が形成されたことにより、 電解 液親和性の経時的低下が少なく、電解液の吸液性および保液性を格段に高めるこ とができた。
例 4 3〜 4 5
MFRが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 MFR が 4 0、 ゲン化度 9 9. 6%のエチレンビニルアルコール共重合体とからなる繊 度 3デニール、 繊維分割後 0. 2デニール (3. 9〃m) 、 繊維長 6 mmの分割 型複合繊維を 9 6部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコーノレ繊維 (VPW1 0 3 : クラレ社製) 4部を用いて、 湿式抄造法により円 網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0メッシュのステンレ スワイヤーである多孔質支持体上に搬送し、 高圧柱状水流により水流交絡処理を 行った。 この様にして得られた交絡不織布に、 表 6に示した条件でコロナ放電処 理を施し、 常温でカレンダー処理を行い、 表 6に示す坪量のアルカリ電池セパレ 一タ用不織布を得た。
例 4 6〜 4 7
芯成分としてポリプロピレン、 鞘成分としてエチレンビニルアルコール共重合 体、 芯鞘の容積比率が 5 0 : 5 0、 繊度 1. 5デニール、 繊維長 1 0mmの熱接 着性芯鞘型複合繊維を 9 7部、 および繊度 1デニール、 繊維長 3 mmの熱水可溶 性ポリビニルアルコール繊維 (VPW1 0 3 : クラレ社製) 3部を用いて、 湿式 抄造法により円網抄紙機で目付け 5 8. 1 g/m2 の不織布を作製した。 この不 織布の表裏に表 6に示したコロナ放電処理を施し、 常温でカレンダー処理を行い、 アルカリ電池セパレータ用不織布を得た。
例 4 8〜 4 9
芯成分としてポリプロピレン、 鞘成分として分子量 1 0 0万の架橋ポリェチレ ンォキサイドと低密度ポリエチレンを 2 0 : 8 0の割合で相溶化させた樹脂、 芯 鞘の容積比率が 5 0 : 5 0、 繊度 1. 5デニール、 繊維長 1 0 mmである芯鞘型 熱融着性複合繊維を 9 8部、 および繊度 1デニール、 繊維長 3 mmの熱水可溶性 ポリビニルアルコール繊維 (VPW1 0 3 : クラレ社製) 2部を用いて、 湿式抄 造法により円網抄紙機で目付け 5 7. 9 g/m2 の不織布を作製した。 この不織 布の表裏に表 6に示したコロナ放電処理を施し、 常温でカレンダー処理を行い、 アル力リ電池セパレータ用不織布を得た。 例 5 0
芯成分としてポリプロピレン、 鞘成分としてエチレンビニルアルコール共重合 体、 芯鞘の容積比率が 5 0 : 5 0、 繊度 1 . 5デニール、 繊維長 1 O mmの熱接 着性芯鞘型複合繊維を 5 0部、 および繊度 0 . 5デニール、 繊維長 5 mmのポリ プロピレン繊維を 5 0部用いて、 湿式抄造法により円網抄紙機で目付け 5 7 . 5 g /m2 、 幅 5 0 c mの不織布を作製した。 この不織布の表裏に表 6に示したコ ロナ放電処理を施し、 常温でカレンダー処理を行い、 アルカリ電池セパレータ用 不織布を得た。
例 5 1
M F Rが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 M F R が 4 0、 ゲン化度 9 9 . 6 %のエチレンビニルアルコーノレ共重合体とからなる繊 度 3デニール、 繊維分割後 0 . 2デニール (3 . 9〃m) 、 繊維長 6 mmの分割 型複合繊維を 7 0部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコール繊維 (V PW 1 0 3 :クラレネ土製) 2部、 芯成分としてポリプロピレン、 鞘成分として分子量 1 0 0万の架橋ポリエチレンォキサイドと低密度ポリエチレ ンを 2 0 : 8 0の割合で相溶化させた樹脂、 芯鞘の容積比率が 5 0 : 5 0、 繊度 1 . 5デニール、 繊維長 1 0 mmである芯鞘型熱融着性複合繊維を 2 8部を用い. て、 湿式抄造法により円網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0メッシュのステンレスワイヤーである多孔質支持体上に搬送し、 高圧柱状水 流により水流交絡処理を行った。 この様にして得られた交絡不織布に、 表 6に示 した条件でコロナ放電処理を施し、 常温でカレンダー処理を行い、 アルカリ電池 セパレータ用不織布を得た。
例 5 2
例 2 1により作製した交絡不織布に、 表 6に示した条件でコロナ放電処理を施 し、 常温でカレンダー処理を行い、 アルカリ電池セパレータ用不織布を得た。 実施例 4 3〜5 2により作製したアルカリ電池セパレータ用不織布について、 上記と同様の評価方法によって評価し、 その評価結果を下記表 6に示した。 表 6
Figure imgf000041_0001
実施例 4 3〜5 1のアルカリ電池セパレータ用不織布は、 先端形状が丸みを帯 びたコ口ナ電極を用いてコロナ放電処理を施した場合であるが、 この特定の電極 により貫通孔 (ピンホール) を発生することなく放電度を上げることができ、 結 果として電極の基数を減らすことができることから効率的にアル力リ電池セパレ 一タ用不織布を生産することができた。
以上の例は、 本発明の第 1、 第 2及び第 3の側面の各要件の少くとも 2つ以上 を満たす具体例である。
例 5 3
例 1と同様に、 分割型複合繊維を 9 7部、 熱水可溶性ポリビニルアルコール繊 維 (V P W 1 0 3 : クラレ社製) 3部を用いて、 湿式抄造法により円網抄紙機で ウェブを作製した。
次に、 このゥヱブを 1 0 0メッシュのステンレスワイヤーである多孔質支持体 上に搬送し、 処理速度 1 OmZm i nで高圧柱状水流により水流交絡処理を行つ た。
インジェクターを 2台用い、 各インジェクター内部には図 3 Aの形状でノズル ピッチが 0. 6 mm、 ノズル径が 1 2 0 u mの柱状水流ジェットノズルを付設し た。 水圧は、 1 3 0 k g/cm2 で、 まず、 ゥヱブの片面を交絡し、 次にウェブ の裏面を交絡した。 このようにして得られた交絡ゥヱブの両面にコロナ放電処理 を施した。 最後に、 常温でカレンダー処理を行って、 直径 6. 3 mmのマイクロ メータで測定した厚みを 1 8 1 mとし、 切断してアルカリ電池セパレータ用不 織布を得た。
例 54
例 9と同様に、 分割型複合繊維を 4 0部、 芯鞘型熱接着性複合繊維を 6 0部の 割合で混合し、 湿式抄造法により円網抄紙機で坪量 5 4. 8 g/m2 、 幅 5 0 c mのゥヱブを作製した。
次に、 この様にして得られたウェブの両面にコロナ放電処理を施した。 最後に、 常温でカレンダー処理を行って、 直径 6. 3 mmのマイクロメータで測定した厚 みを 1 5 1 //mとし、 切断してアルカリ電池セパレータ用不織布を得た。
評価結果を表 7に示す。
表 7
例 53 例 54 坪 量 55.2 54.8
厚 さ 101
lol 101 細 平均細孔径 丄1, 0
径 標準偏差 8.1 12.1
定 割合 69.3 37.0 吸 液 性 25.0 37..1
加圧吸水度 32.0 8.0 細孔径 前 1 49.5 68.2
後 2 45.8 中心面 表 10.3 9.1
表面粗さ
裏 11.4 9.4 ピンホール 〇 〇
巻 き 姿 〇 〇 例 5 5
MFRが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 MFR が 4 0、 ゲン化度 9 9. 6 %のエチレンビニルアルコーノレ共重合体とからなる繊 度 3デニール、 繊維分割後 0. 2デニール (3. 9 ^m) 、 繊維長 6 mmの分割 型複合繊維を 9 6部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコーノレ繊維 (VPW1 0 3 : クラレ社製) 4部を用いて、 湿式抄造法により円 網抄紙機でゥュブを作製した。
次に、 このウェブを 1 0 0メッシュのステンレスワイヤーである多孔質支持体 上に搬送し、 処理速度 1 OmZm i nで高圧柱状水流により水流交絡処理を行つ た。 インジェクターを 2台用い、 各インジェクター内部には図 3 Aの形状でノズル ピッチが 0. 6 mm、 ノズル径が 1 2 0〃 mの柱状水流ジェットノズルを付設し た。 水圧は、 1 3 0 k g/cm2 で、 まず、 ウェブの片面を交絡し、 次にウェブ の裏面を交絡した。 このようにして得られた交絡ゥヱブの両面に表 8に示した条 件でコロナ放電処理を施した。 最後に、 常温でカレンダー処理を行って、 直径 6.
3 mmのマイクロメータで測定した厚みを 1 8 1 zmとし、 切断してアルカリ電 池セパレータ用不織布を得た。
評価結果を表 8及び表 9に示す。
表 8
Figure imgf000044_0001
表 9
Figure imgf000044_0002
例 5 6
MFRが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 MFR 力く 4 0、 ゲン化度 9 9. 6 %のエチレンビニルアルコール共重合体とからなる繊 度 3デニール、 繊維分割後 0. 2デニール (3. 9 m) 、 繊維長 6 mmの分割 型複合繊維を 95部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコール繊維 (VPW1 0 3 :クラレ社製) 5部を用いて、 湿式抄造法により円 網抄紙機でゥヱブを作製した。
次に、 このゥヱブを 1 0 0メッシュのステンレスワイヤーである多孔質支持体 上に搬送し高圧柱状水流により水流交絡処理を行った。
このようにして得られた交絡ゥヱブの両面に表 1 0に示した条件でコロナ放電 処理を施した。最後に、 常温でカレンダー処理を行って、 直径 6. 3 mmのマイ クロメータで測定した厚みを 1 8 0 zmとし、 切断してアルカリ電池セパレー夕 用不織布を得た。
評価結果を表 1 0に示す。
表 1 0
Figure imgf000045_0001
細孔径の測定 (例 9〜2 0参照) の結果、 平均細孔径は 1 2. 5 rn, 標準偏 差は 8. 3、 割合は 6 7. 3%であった。
例 5 7
MFRが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 MFR が 4 0、 ゲン化度 9 9. 6 %のエチレンビニルアルコール共重合体とからなる繊 度 3デニール、 繊維分割後 0. 2デニール (3. 9〃m) 、 繊維長 6 mmの分割 型複合繊維を 9 5部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコ一ノレ繊維 (VPW1 0 3 : クラレ社製) 3部、 芯成分としてポリプロピレン、 鞘成分としてエチレンビニルアルコール共重合体、 芯鞘の容積比率が 5 0 : 5 0 , 繊度 1. 0デニール、 繊維長 1 0 mmの熱接着性芯鞘型複合繊維を 5部を用いて、 湿式抄造法により円網抄紙機で不織布を作製した。 続いて、 この不織布を 1 00 メッシュのステンレスワイヤーである多孔質支持体上に搬送し、 高圧柱状水流に より水流交絡処理を行った。 この様にして得られた交絡不織布に、 表 1 1に示し た条件でコロナ放電処理を施し、 常温でカレンダー処理を行い、 表 1 1に示す坪 量のアル力リ電池セパレータ用不織布を得た。
評価結果を表 1 1に示す。
表 1 1
Figure imgf000046_0001
表 1 2
Figure imgf000046_0002
例 5 8
MFRが 4 0の結晶性ポリプロピレンとエチレン含有量が 3 8モル%、 MFR 力く 4 0、 ゲン化度 9 9. 6 %のエチレンビニルアルコール共重合体とからなる繊 度 3デニール、 繊維分割後 0. 2デニール (3. 9 zm) 、 繊維長 6 mmの分割 型複合繊維を 9 5部、 繊度 1デニール、 繊維長 3 mmの熱水可溶性ポリビニルァ ルコール繊維 (VPW1 0 3 :クラレ社製) 3部、 芯成分としてポリプロピレン、 鞘成分としてエチレンビニルアルコール共重合体、 芯鞘の容積比率が 5 0 : 5 0 , 繊度し 0デニール、 繊維長 1 0 mmの熱接着性芯鞘型複合繊維を 7部を用いて、 湿式抄造法により円網抄紙機で不織布を作製した。 続いて、 この不織布を 1 0 0 メッシュのステンレスワイヤーである多孔質支持体上に搬送し、 高圧柱状水流に より水流交絡処理を行った。 この様にして得られた交絡不織布に、 表 1 3に示し た条件でコロナ放電処理を施し、 常温でカレンダー処理を行い、 表 1 3に示す坪 量のアル力リ電池セパレータ用不織布を得た。
評価結果を表 1 3に示す。
表 1 3
Figure imgf000047_0001
細孔径の測定 (例 9〜2 0参照) の結果、 平均細孔径は 1 4 . 5 m、 標準偏 差は 1 0 . 3、 割合は 6 3 . 0 %であった。
以上の例は、 コロナ放電処理をカレンダー処理の後に行った具体例である。 例 5 9
コロナ放電処理をカレンダー処理前には行わず、 コロナ放電処理をカレンダー 処理後に行ったこと以外は、 例 1と同様にしてアルカリ電池セパレーター用不織 布を得た。
評価結果を表 1 4に示す。
表 1 4
曰 ϋ付 Ί Jけリ 55 4
厚 さ 179 細孔径 1 53. 1
9 中心面 表 11. 0 表 iS粗さ 裏 12. 1 吸 液 性 25. 5
加圧吸水度 30. 5
ピンホール 〇
巻 き 姿 〇 例 6 0
コロナ放電処理をカレンダー処理前には行わず、 コロナ放電処理をカレンダー 処理後に行ったこと以外は、 例 2 2と同様にしてアルカリ電池セパレーター用不 織布を得た。
評価結果を表 1 5に示す。
表 1 5
Figure imgf000048_0001
〔産業上の利用可能性〕
以上の様に、 本発明の不織布は、 電解液の吸液性および加圧での保液性等に儍 れ、 アル力リ電池セパレーターとして好適に用いられる。

Claims

請 求 の 範 囲
1. 水流交絡処理された不織布であつて、 少なくとも該不織布片面の交絡跡に おける中心面平均粗さ S R aが 1 3 /Z m以下であり、該不織布が、 最大細孔径 5 0〃m以下、 且つ加圧吸水度 2 0 g /m2 以上であることを特徴とするアルカリ 電池セパレータ用不織布。
2. 湿式抄造されたポリオレフイン系繊維ゥヱブを水流交絡処理し、 コロナ放 電処理して後、 カレンダー処理してなる請求の範囲第 1項のアル力リ電池セパレ 一タ用不織布。
3. 水流交絡装置のインジヱクタ一内部に付設された水流導入口よりも喷射ロ の広い形状を有する柱状水流ジヱットノズルを用い、 湿式手法により抄造された ポリオレフィン系繊維ゥヱブ面に水流交絡処理し、 次いで交絡ゥヱブ面にコロナ 放電処理して後、 カレンダー処理して製造することを特徴とするアルカリ電池セ パレータ用不織布の製造方法。
4. 水流導入口よりも喷射口の広い形状を有する柱状水流ジェッ トノズルが、 最終段のインジュクタ一内部に付設されたものであることを特徴とする請求の範 囲第 3項のアル力リ電池セパレータ用不織布の製造方法。
5. バブル ·ポイント法により測定された細孔径分布の標準偏差が 2 0 m以 下であり、 且つ平均細孔径 ± 2 mに存在する細孔の個数が全体の 3 5 %以上で あり、 且つコロナ放電処理されてなることを特徴とする請求の範囲第 1項のアル カリ電池セパレータ用不織布。
6. ポリオレフィン系繊維からなるアルカリ電池セパレータ用不織布において、 バブル ·ボイント法により測定された細孔径分布の標準偏差が 2 0 m以下であ り、 且つ平均細孔径 ± 2 jtz mに存在する細孔の個数が全体の 3 5 %以上であり、 且つコロナ放電処理されてなることを特徵とするアル力リ電池セパレータ用不織
7. 少なくとも該不織布片面の交絡跡における中心面平均粗さ S R a力く 1 3 m以下であり、 該不織布が、 最大細孔径 5 0 tz m以下、 且つ加圧吸水度 2 0 / m 2 以上であることを特徴とする請求の範囲第 6項のアルカリ電池セパレータ用 不織布。
8. 湿式抄造されたポリオレフィン系繊維ウェブにコロナ処理してなる請求の 範囲第 6項のアルカリ電池セパレータ用不織布。
9. 湿式抄造されたポリオレフイン系繊維ゥヱブを水流交絡処理し、 コロナ放 電処理して後、 カレンダー処理してなる請求の範囲第 6項のアルカリ電池セパレ 一タ用不織布。
10. エチレン一ビニルアルコール共重合体または架橋ポリエチレンォキサイド を部分的に有するポリオレフイン系繊維を主体とし、 コロナ放電処理され、 実質 的に貫通孔が存在しないアル力リ電池セパレータ用不織布であって、 電子分光法 ( E S C A) による該不織布表面および厚み方向における中間位置の酸素元素 (0) と炭素元素 (C ) のピーク面積比 (OZ C比) がそれぞれ 0 . 5 0〜し 8 5および 0 . 4 5〜し 4 0であることを特徴とするアルカリ電池セパレータ 用 織布。
11. 電子分光法 (E S C A) によるアルカリ電池セパレータ用不織布表面およ び厚み方向における中間位置の酸素元素 (0) と炭素元素 (C ) のピーク面積比
( OZ C比) がそれぞれ 0 . 5 5〜 5 0および 0 . 4 8〜し 2 0であるこ とを特徴とする請求の範囲第 1 0項のアルカリ電池セパレ一タ用不織布。
12. 少なくとも該不織布片面の交絡跡における直交方向の中心面平均粗さ S R aが 1 3 m以下であり、 該不織布が、 最大細孔径 5 0 m以下、 且つ加圧吸水 度 2 0 g /m2 以上であることを特徴とする請求の範囲第 1 0項のアルカリ電池 セパレータ用不織布。
13. バブル ·ボイント法により測定された細孔径分布の標準偏差が 2 0 / m以 下であり、 且つ平均細孔径 ± 2 / mに存在する細孔の個数が全体の 3 5 %以上で あり、 且つコロナ放電処理されてなることを特徴とする請求の範囲第 1 0項のァ ルカリ電池セパレータ用不織布。
14. 湿式抄造されたポリオレフィン系繊維ゥヱブにコロナ処理してなる請求の 範囲第 1 0項のアルカリ電池セパレータ用不織布。
15. 湿式抄造されたポリオレフイ ン系繊維ゥヱブを水流交絡処理し、 コロナ放 電処理して後、 カレンダ一処理してなる請求の範囲第 1 0項のアルカリ電池セパ レータ用不織布。
16. エチレンビニルアルコール共重合体を部分的に有し、 且つ該繊維表面に多 数の微細な皴が形成された微皴ポリオレフィン系繊維を主体とし、 コロナ放電処 理され、 実質的に貫通孔が存在しないアル力リ電池セパレータ用不織布であって、 電子分光法 (ESCA) による該不織布表面および厚み方向における中間位置の 酸素元素 (0) と炭素元素 (C) のピーク面積比 (0ノ C比) がそれぞれ 0. 6 0〜1. 3 5および 0. 5 0〜1. 0 0であることを特徴とするアルカリ電池セ パレータ用不織布。
17. 少なくとも該不織布片面の交絡跡における直交方向の中心面平均粗さ S R aが 1 3 tzm以下であり、 該不織布が、 最大細孔径 5 0 jt m以下、 且つ加圧吸水 度 20 g/m2 以上であることを特徴とする特許請求の範囲第 1 6項のアルカリ 電池セパレータ用不織布。
18. バブル ·ボイント法により測定された細孔径分布の標準偏差が 20 //m以 下であり、 且つ平均細孔径 ±2 に存在する細孔の個数が全体の 35%以上で あり、 且つコロナ放電処理されてなることを特徵とする請求の範囲第 1 6項のァ ルカリ電池セパレータ用不織布。
19. 通式抄造されたポリオレフィン系繊維ゥヱブにコロナ処理してなる請求の 範囲第 1 6項のアルカリ電池セパレータ用不織布。
20. 湿式抄造されたポリオレフイン系繊維ゥヱブを水流交絡処理し、 コロナ放 電処理して後、 カレンダー処理してなる請求の範囲第 1 6項のアルカリ電池セパ レータ用不織布。
21. アルカリ電池セパレ一タ用不織布の製造方法において、 エチレンビニルァ ルコール共重合体または架橋ポリェチレンォキサイドを部分的に有するポリオレ フィン系繊維を主体として不織布を形成し、 丸みのある電極先端形状を有するマ ルチ電極を用 、て放電度 2 0. 0 w/cm2 以下の条件により該不織布にコロナ . 放電処理を施し、 電子分光法 (ESCA) による該不織布表面および厚み方向に おける中間位置の酸素元素 (0) と炭素元素 (C) のピーク面積比 (OZC比) をそれぞれ 0. 5 0〜1. 8 5および 0. 4 5〜し 4 0とすることを特徴とす るアル力リ電池セパレータ用不織布の製造方法。
PCT/JP1996/000333 1995-02-17 1996-02-16 Nonwoven fabric for an alkaline battery separator and method for producing the same WO1996025771A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96902448A EP0872899B1 (en) 1995-02-17 1996-02-16 Nonwoven fabric for an alkaline battery separator and method for producing the same
DE69638345T DE69638345D1 (de) 1995-02-17 1996-02-16 Vlies für separator einer alkalibatterie und verfahren zu dessen herstellung
JP52483296A JP4180653B2 (ja) 1995-02-17 1996-02-16 アルカリ電池セパレータ不織布
US08/911,018 US6080471A (en) 1995-02-17 1997-08-13 Non-woven fabric for alkali cell separator and process for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2938795 1995-02-17
JP7/29387 1995-02-17
JP7/62937 1995-03-22
JP6293795 1995-03-22
JP8/8208 1996-01-22
JP820896 1996-01-22

Publications (1)

Publication Number Publication Date
WO1996025771A1 true WO1996025771A1 (en) 1996-08-22

Family

ID=34317148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000333 WO1996025771A1 (en) 1995-02-17 1996-02-16 Nonwoven fabric for an alkaline battery separator and method for producing the same

Country Status (6)

Country Link
US (1) US6080471A (ja)
EP (1) EP0872899B1 (ja)
JP (2) JP4180653B2 (ja)
CN (2) CN1175504C (ja)
DE (1) DE69638345D1 (ja)
WO (1) WO1996025771A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291105B1 (en) * 1997-08-19 2001-09-18 Daiwabo Co., Ltd. Battery separator and method for manufacturing the same and battery

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852644B2 (ja) * 1998-09-21 2006-12-06 チッソ株式会社 分割型複合繊維、これを用いた不織布及び吸収性物品
JP2000215873A (ja) * 1999-01-25 2000-08-04 Sanyo Electric Co Ltd アルカリ蓄電池およびその製造方法
JP2001313066A (ja) 2000-04-27 2001-11-09 Matsushita Electric Ind Co Ltd アルカリ蓄電池
SE516427C2 (sv) * 2000-05-08 2002-01-15 Sca Hygiene Prod Ab Förfarande och anordning för framställning av nonwovenmaterial samt användning av ett nät vid förfarandet
US20020170169A1 (en) * 2001-05-21 2002-11-21 Gonzalez Jose E. System and method for multilayer fabrication of lithium polymer batteries and cells using surface treated separators
DE10143898B4 (de) * 2001-09-07 2005-07-14 Carl Freudenberg Kg Alkalische Zelle oder Batterie
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
EP1752025A1 (en) * 2004-05-20 2007-02-14 Universidade do Minho Continuous and semi-continuous treatment of textile materials integrating corona discharge
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
CN102869823B (zh) * 2010-04-27 2015-09-02 松下电器产业株式会社 薄片状纤维结构体、电池、绝热材料、防水片、支架
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
CN102694144A (zh) * 2012-05-28 2012-09-26 东莞新能源科技有限公司 一种锂离子电池极片处理方法
JP6108121B2 (ja) * 2012-09-24 2017-04-05 パナソニックIpマネジメント株式会社 薄型電池およびその製造方法
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
KR20150114275A (ko) * 2014-04-01 2015-10-12 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
JP6618291B2 (ja) * 2015-07-29 2019-12-11 日本バイリーン株式会社 アルカリ電池用セパレータ
DE102016119480A1 (de) * 2016-10-12 2018-04-12 TRüTZSCHLER GMBH & CO. KG Düsenbalken für die Bearbeitung von Fasern mit Wasserstrahlen
KR102109832B1 (ko) * 2017-02-23 2020-05-12 주식회사 엘지화학 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
JP6946130B2 (ja) * 2017-09-20 2021-10-06 株式会社東芝 紡糸装置
CN111386628B (zh) * 2017-11-30 2023-10-24 三菱化学株式会社 分隔构件和电池组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112960A (ja) * 1984-06-27 1986-01-21 東レ株式会社 繊維交絡シ−トの製造装置
JPH0434057A (ja) * 1990-05-22 1992-02-05 Toray Ind Inc 繊維シートの高圧水流処理方法及びその装置
JPH06251760A (ja) * 1993-02-23 1994-09-09 Mitsubishi Paper Mills Ltd アルカリ電池セパレータ用不織布およびその製造方法
JPH06295715A (ja) * 1993-04-06 1994-10-21 Mitsubishi Paper Mills Ltd アルカリ電池セパレータ用不織布およびその製造方法
JPH07142047A (ja) * 1993-11-15 1995-06-02 Mitsubishi Paper Mills Ltd アルカリ電池セパレ−タ用不織布の製造方法
JPH07153441A (ja) * 1993-12-01 1995-06-16 Mitsubishi Paper Mills Ltd アルカリ電池セパレ−タ用不織布の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891262A (en) * 1987-12-16 1990-01-02 Asahi Kasei Kogyo Kabushiki Kaisha High strength wet-laid nonwoven fabric and process for producing same
JP2882675B2 (ja) * 1990-10-29 1999-04-12 株式会社クラレ セパレーターシート
JP3217102B2 (ja) * 1991-12-26 2001-10-09 日本バイリーン株式会社 電池用セパレータ
JP2960284B2 (ja) * 1993-06-01 1999-10-06 大和紡績株式会社 電池セパレータおよびその製造方法
JP2966697B2 (ja) * 1993-07-14 1999-10-25 東芝電池株式会社 アルカリ二次電池
JP3349579B2 (ja) * 1994-02-07 2002-11-25 東芝電池株式会社 ニッケル水素二次電池
WO1996020505A1 (en) * 1994-12-28 1996-07-04 Asahi Kasei Kogyo Kabushiki Kaisha Wet type nonwoven fabric for cell separator, its production method and enclosed secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112960A (ja) * 1984-06-27 1986-01-21 東レ株式会社 繊維交絡シ−トの製造装置
JPH0434057A (ja) * 1990-05-22 1992-02-05 Toray Ind Inc 繊維シートの高圧水流処理方法及びその装置
JPH06251760A (ja) * 1993-02-23 1994-09-09 Mitsubishi Paper Mills Ltd アルカリ電池セパレータ用不織布およびその製造方法
JPH06295715A (ja) * 1993-04-06 1994-10-21 Mitsubishi Paper Mills Ltd アルカリ電池セパレータ用不織布およびその製造方法
JPH07142047A (ja) * 1993-11-15 1995-06-02 Mitsubishi Paper Mills Ltd アルカリ電池セパレ−タ用不織布の製造方法
JPH07153441A (ja) * 1993-12-01 1995-06-16 Mitsubishi Paper Mills Ltd アルカリ電池セパレ−タ用不織布の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0872899A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291105B1 (en) * 1997-08-19 2001-09-18 Daiwabo Co., Ltd. Battery separator and method for manufacturing the same and battery

Also Published As

Publication number Publication date
CN1527419A (zh) 2004-09-08
CN1176022A (zh) 1998-03-11
CN1175504C (zh) 2004-11-10
EP0872899A1 (en) 1998-10-21
JP2007294476A (ja) 2007-11-08
JP4180653B2 (ja) 2008-11-12
EP0872899B1 (en) 2011-03-23
DE69638345D1 (de) 2011-05-05
CN1310353C (zh) 2007-04-11
US6080471A (en) 2000-06-27
JP4850794B2 (ja) 2012-01-11
EP0872899A4 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JP4850794B2 (ja) アルカリ電池セパレータ用不織布
US5888916A (en) Wet-laid nonwoven fabric for battery separator, its production method and sealed type secondary battery
EP1179864B1 (en) Battery separator
JP4699899B2 (ja) アルカリ二次電池用セパレータ材料とその製造方法及びアルカリ二次電池用セパレータ
WO2008036332A2 (en) Improved nanowebs
WO2008047542A1 (en) Alkaline battery separator, process for production thereof and alkaline batteries
JP2012216426A (ja) セパレータ材料及びその製造方法、並びにこれを用いた電池
JP4174160B2 (ja) 耐突き刺し性に優れた不織布、その製造方法および電池用セパレータ
US9637861B1 (en) Methods of making single-layer lithium ion battery separators having nanofiber and microfiber constituents
JP5337599B2 (ja) 電池セパレータ、電池および分割型複合繊維
JP3372317B2 (ja) アルカリ電池セパレ−タ用不織布の製造方法
JP4372393B2 (ja) セパレータ材料とその製造方法および電池
JP4384391B2 (ja) セパレータ材料の製造方法およびこれを組み込んだ電池
JP3770748B2 (ja) アルカリ電池セパレータ用不織布およびその製造方法
JP3372321B2 (ja) アルカリ電池セパレ−タ用不織布の製造方法
CN109952666B (zh) 用于能量储存装置的薄的高密度无纺隔膜及其制造方法
JP3403647B2 (ja) 電池セパレータとその製造方法および電池
JP4014340B2 (ja) アルカリ電池セパレータ用不織布の製造方法
JP2001084986A (ja) アルカリ蓄電池セパレーター用不織布及びその製造方法
JP3372346B2 (ja) アルカリ電池セパレータ用不織布及びその製造方法
KR100533124B1 (ko) 전지 세퍼레이터와 그 제조방법 및 전지
JP3411089B2 (ja) 不織布、その製造方法、及びこれを用いた電池用セパレータ
JP2000100410A (ja) アルカリ電池用セパレータ
JP2002231210A (ja) 電池用セパレータ及び電池
JPH07238463A (ja) アルカリ電池セパレ−タ用不織布の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96192008.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996902448

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996902448

Country of ref document: EP