WO1995024285A1 - Procede et appareil de coulage continu - Google Patents

Procede et appareil de coulage continu Download PDF

Info

Publication number
WO1995024285A1
WO1995024285A1 PCT/JP1995/000027 JP9500027W WO9524285A1 WO 1995024285 A1 WO1995024285 A1 WO 1995024285A1 JP 9500027 W JP9500027 W JP 9500027W WO 9524285 A1 WO9524285 A1 WO 9524285A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
space
molten metal
power supply
temperature
Prior art date
Application number
PCT/JP1995/000027
Other languages
English (en)
French (fr)
Inventor
Keisuke Fujisaki
Kiyoshi Wajima
Kenji Umetsu
Kenzo Sawada
Takatsugu Ueyama
Takehiko Toh
Kensuke Okazawa
Yasushi Okumura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6035704A external-priority patent/JP3041182B2/ja
Priority claimed from JP6035541A external-priority patent/JP3006991B2/ja
Priority claimed from JP6041575A external-priority patent/JPH07246444A/ja
Priority claimed from JP6049257A external-priority patent/JP3067941B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US08/646,230 priority Critical patent/US5746268A/en
Priority to BR9506647A priority patent/BR9506647A/pt
Priority to EP95905764A priority patent/EP0750958B1/en
Priority to DE69528969T priority patent/DE69528969T2/de
Priority to KR1019960703013A priority patent/KR100202471B1/ko
Publication of WO1995024285A1 publication Critical patent/WO1995024285A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds

Definitions

  • the present invention relates to a continuous manufacturing method and apparatus for obtaining a metal slab free of surface defects such as vertical cracks in a continuous manufacturing of metal slabs such as steel.
  • FIG. 1 is a cross-sectional view of a device used for a conventional continuous production of a metal slab.
  • a molten metal 1 is injected into a mold 3 from an immersion nozzle 2, and the molten metal is gradually cooled from the cooled wall of the mold 3 to form a solidified shell 4. This solidified shell is pulled out to become a metal slab.
  • FIG. 2 is a plan view of the apparatus shown in FIG.
  • the immersion nozzle 2 is provided at the center of the horizontal surface of the mold, and the molten metal 1 in the mold is discharged and flows as shown by the arrow in FIG.
  • the gas surface (upper surface of the molten metal) 5 a reverse flow is generated from the short side 11 of the mold to the immersion nozzle 2, as shown by the solid arrows in FIGS.
  • FIG. 3 shows a conventional electromagnetic stirrer described in this publication.
  • the molten metal in the mold 3 is formed by electromagnetic stirring coil portions 6a 'and 6b provided along the long sides 10a and 10b of the mold.
  • a uniform electromagnetic stirring thrust was applied to the molten metal to generate a circulating flow along the mold wall in the molten metal.
  • the electromagnetic stirring core part 6a is formed on a plurality of magnetic cores 12a arranged along the long side 10a of the mold and on the magnetic cores 12a. It includes a coil 14a wound around a slot 13a, and the electromagnetic stirring coil section 6b is similarly configured.
  • Each of the coils 14a and 14b is connected to a three-phase power supply 8 via connection boxes 7a and 7b, respectively, and a typical example of the connection is shown in FIG. Therefore, the electromagnetic stirring thrust of the moving magnetic field method was uniformly applied to the molten metal in the meniscus plane 5 as shown by the arrow.
  • FIG. Fig. 4 the thrust distribution in the meniscus plane when the frequency of the three-phase power supply 8 is 2 Hz and the current is 40 OA is shown in FIG. Fig. 4 is shown by the general-purpose electromagnetic field numerical analysis software, and the arrows indicate the direction of the thrust in the area of each cell in the direction of the arrow and the direction of the thrust. The size is indicated by the length of the arrow. As can be seen in FIG. 4, the force in the long side direction of the thrust along the long side 10 of the mold is almost constant at each position on the long side.
  • the electromagnetic stirring force is uniformly applied to the molten metal along the long side of the mold, so that the actually obtained meniscus is obtained.
  • the rotating flow of the molten metal in the plane of the molten metal overlaps the above-mentioned reverse flow with the electromagnetic stirring force, and is strong when moving from the short side of the mold 11 to the immersion nozzle 2 as indicated by the dotted arrow in Fig. 2.
  • the flow was weak when heading from the immersion nozzle 2 to the short side 11 of the mold.
  • non-metallic inclusions and powder are floating on the meniscus surface, but when the molten metal has a non-uniform rotational flow and stagnation, non-metal inclusions accumulate in the stagnation area. Or the powder is caught. These non-metallic inclusions and powders generate bubbles such as C0 when the molten metal changes to a solid, and breakage of the powder when the powder remains in the metal. Seizure, which is a cause, is likely to occur. Therefore, although the conventional electromagnetic stirrer in the mold is useful for equalizing the temperature of the molten metal on the mold wall at the same height, it is not enough to prevent the vertical cracking of the solidified shell 4. Power
  • molten metal in a mold is uniformly rotated and flowed in a meniscus plane.
  • the purpose is to manufacture slabs without surface defects such as.
  • a continuous manufacturing method of a metal slab is a method for melting a metal slab into a mold from an immersion nozzle provided in the center of a horizontal plane of the mold.
  • the step and the step of cooling a part of the mold, wherein the component of the electromagnetic force directed toward the short side and the component of the electromagnetic stirring force directed from the short side of the mold toward the immersion nozzle are different. And drawing out the solidified metal.
  • the continuous manufacturing apparatus for a metal slab provides a molten metal into an inside of the mold from an immersion nozzle provided in the center of a horizontal plane of the mold.
  • Two electromagnetic stirring coil sections provided along the long side of the mold and controlling the flow of the molten metal in the mold by an electromagnetic force, each of which includes the two electromagnetic stirring coil sections.
  • a plurality of magnetic cores arranged along each of the long sides of the mold; and a plurality of coils wound around the magnetic cores, respectively. , Predetermined frequency
  • At least one power supply circuit that generates two-phase or more alternating current and two circuits each consisting of the coil and the connection means for the two long sides of the mold
  • the electromagnetic stirring coil section and the at least one power supply circuit are point-symmetric with respect to the nozzle, and each of the two circuits is divided into two circuit parts.
  • the continuous manufacturing apparatus for a metal slab according to the second aspect of the present invention includes a immersion nozzle provided in the center of a horizontal plane of a mold, and the molten metal is introduced into the mold.
  • Two electromagnetic stirring coil sections provided along the long side of the mold and controlling the flow of the molten metal in the mold by electromagnetic force, each of which includes the two electromagnetic stirring coil sections.
  • the inner and outer space, the a dipping Bruno nozzle plane parallel to the center as the two modes Lumpur de long sides of, the immersion Roh nozzle around the street the two malls de long side With the vertical plane, it is virtually divided into a first space, a second space, a third space, and a fourth space, and the third space is related to the center of the immersion nozzle.
  • the fourth space is located in the first space when the fourth space is located in the second space and the target position with respect to the center of the immersion nozzle.
  • the magnetic core existing in the third space is longer than the magnetic core existing in the second space and the magnetic core existing in the fourth space.
  • Energizing means for applying an alternating current for driving the molten metal in a direction along a mold side to the coil existing in the first space and the coil existing in the third space; DC current is supplied to the coil present in the second space and the coil present in the fourth space, or the AC current is supplied to the coil.
  • DC current is supplied to the coil present in the second space and the coil present in the fourth space, or the AC current is supplied to the coil.
  • one of the two mold long sides is present in the first space and the second space, and the other one of the two mold long sides is the third space and the fourth space.
  • one of the two electromagnetic stirring coil sections has the coil only in the first space, and the other has the coil only in the third space. May be included.
  • the continuous manufacturing apparatus for a metal slab according to the third aspect of the present invention is characterized in that a molten metal is injected into the mold from an immersion nozzle provided at the center of a horizontal plane of the mold while the molten metal is injected into the mold.
  • a continuous metal slab manufacturing device that continuously solidifies metal slabs by pulling out solidified metal while cooling part of the molding, along the long sides of the two moldings
  • Two electromagnetic stirring coil sections for controlling the flow of molten metal in the mold by electromagnetic force, each of which is disposed along each of the two long sides of the mold;
  • An electromagnetic stirring coil section having a plurality of magnetic cores arranged in a row, and a plurality of coils wound around the magnetic core, respectively, and the two electromagnetic stirring coil sections.
  • Current supply means for supplying a current to the molten metal
  • flow velocity detection means for detecting the flow velocity of the surface layer of the molten metal at a plurality of positions on the upper surface of the molten metal in the mold, and the detected flow velocity is preset.
  • Flow velocity conversion means for converting the flow velocity components into a plurality of flow velocity components in a plurality of surface layer flow velocity distribution modes, and compensation for comparing the converted flow velocity components with respective target values in each mode to calculate a flow velocity component deviation The flow rate component deviation is calculated using the plurality of positions.
  • inverse conversion means for inversely converting the respective velocity deviation definitive molten metal table layer portion, in earthenware pots by to zero these velocity deviation, and a control means for controlling the energization means.
  • the distribution of the electromagnetic stirring force generated by the two electromagnetic stirring coil sections is determined.
  • the molten metal in the plane of the meniscus can be given a uniform rotating force along the mold.
  • the electromagnetic stirring coil section can be simplified and downsized.
  • setting, changing, and adjusting the flow velocity distribution of the molten metal can be performed. It will be easier.
  • FIG. 1 is an explanatory diagram showing a situation in a mold in a conventional continuous structure.
  • FIG. 2 is a view taken in the direction of arrows A—A in FIG.
  • FIG. 3 is a cross-sectional view and a circuit diagram of a conventional device example.
  • Fig. 4 is a diagram showing the distribution of electromagnetic stirring thrust in the conventional device example.
  • FIG. 5 is an explanatory diagram of the first embodiment of the present invention.
  • FIG. 6 is a sectional view and a circuit diagram of the device according to the first embodiment of the present invention.
  • FIG. 7 is a circuit diagram of the device shown in FIG.
  • FIG. 8 is a sectional view and a circuit diagram of another device according to the first embodiment of the present invention.
  • FIG. 9 is a sectional view and a circuit diagram of still another device according to the first embodiment of the present invention.
  • FIG. 10 is a diagram showing the distribution of electromagnetic stirring thrust in Conventional Example 2.
  • FIG. 11 is a diagram showing the distribution of electromagnetic stirring thrust in Example 1 of the present invention.
  • FIG. 12 is a graph showing the distribution of electromagnetic stirring thrust in Example 1 of the present invention.
  • FIG. 13 is a diagram showing the distribution of electromagnetic stirring thrust in Example 2 of the present invention.
  • Fig. 14 shows the distribution of electromagnetic stirring thrust in Example 2 of the present invention. This is the graph shown.
  • FIG. 15 is an explanatory diagram of an apparatus according to a second embodiment of the present invention.
  • FIG. 16 is an explanatory diagram of another device according to the second embodiment of the present invention.
  • FIG. 17 is a connection diagram of a power supply circuit used in the device according to the second embodiment of the present invention.
  • FIG. 18 is an explanatory diagram of the operation of the device according to the second embodiment of the present invention.
  • FIG. 19 is an explanatory diagram of the operation of the device according to the second embodiment of the present invention.
  • FIG. 20 is a sectional view and a circuit diagram of an apparatus according to a second embodiment of the present invention.
  • FIG. 21 is an explanatory diagram showing the distribution of the electromagnetic stirring thrust in the second embodiment of the present invention.
  • FIG. 22 is an explanatory diagram showing the distribution of the electromagnetic stirring thrust in the second embodiment of the present invention.
  • FIG. 23 is an explanatory diagram showing the distribution of the electromagnetic stirring thrust in the second embodiment of the present invention.
  • FIG. 24 is an explanatory diagram showing the distribution of the electromagnetic stirring thrust in the second embodiment of the present invention.
  • FIG. 25 is an explanatory diagram showing the distribution of the electromagnetic stirring thrust in the second embodiment of the present invention.
  • FIG. 26 is a graph showing the distribution of the electromagnetic stirring thrust in the second embodiment of the present invention.
  • FIG. 27 is a perspective view showing the external appearance of the third embodiment of the present invention and a central longitudinal section.
  • FIG. 28 is an enlarged cross-sectional view of the cores 17F and 17L shown in FIG.
  • FIG. 29 is an enlarged cross-sectional view taken along line B-B of FIG.
  • FIG. 30 is an electric circuit diagram showing the connection of the electric coil shown in FIG.
  • FIG. 31 is an electric circuit diagram showing a power supply circuit for applying a three-phase AC voltage to the electric coils of the first group of each linear motor shown in FIG.
  • FIG. 32 is an electric circuit diagram showing a power supply circuit for applying a three-phase alternating current to the electric coils of the second group of each linear motor shown in FIG.
  • Figure 33 shows the relationship between the number of poles of the linear motor, the frequency of the applied AC, and the electromagnetic force.
  • FIG. 34 is a plan view showing a distribution of electromagnetic force generated by two 2-pole linear motors.
  • Fig. 35 is a plan view showing the distribution of electromagnetic force generated by two 4-pole linear motors.
  • Fig. 36 is a plan view showing the electromagnetic force distribution generated by two 6-pole linear motors.
  • Fig. 37 is a plan view showing the distribution of electromagnetic force generated by two 12-pole linear motors.
  • Fig. 38 is a plan view showing the electromagnetic force distribution that appears when a 1.8-Hz three-phase AC is applied to two 4-pole linear motors. You.
  • Fig. 39 is a plan view showing the electromagnetic force distribution that appears when three-phase alternating current of 3 Hz is applied to two four-pole linear motors.
  • FIG. 40 is a plan view showing an electromagnetic force distribution that appears when a 5-phase three-phase alternating current is applied to two four-pole linear motors.
  • Fig. 41 is a plan view showing the electromagnetic force distribution that appears when a three-phase alternating current of 10 Hz is applied to two 4-pole linear motors.
  • Fig. 42 shows two 4-pole linear motors. It is a plan view showing the electromagnetic force distribution that appears when a three-phase alternating current of 20 Hz is applied.
  • Figure 43B is a plan view showing the surface flow in the meniscus plane of the type I molten steel.
  • FIG. 44 is an electric circuit diagram showing a power supply circuit for applying a three-phase AC voltage to an electric coil of the first group of the linear motor 6F in the continuous manufacturing apparatus according to the fourth embodiment of the present invention.
  • Figure 45 is an electric circuit diagram showing a power supply circuit that applies three-phase AC to the electric coils of the second group of the linear motor 6F.
  • FIG. 46 is an electric circuit diagram showing a power supply circuit for applying a three-phase alternating current to the electric coils of the second group of the linear motor 6L.
  • FIG. 47 is an electric circuit diagram showing a power supply circuit that applies a three-phase alternating current to the electric coils of the first group of the linear motor 6L.
  • Figure 48 is a block diagram showing the backs of the short sides 11L and 11R of the artificial structure and the electric circuits connected to the thermocouples provided on them.
  • Figure 49 is a block diagram showing the backs of the long sides 10F and 10L of the artificial structure and the electric circuits connected to the thermocouples provided on them.
  • FIG. 50 is a block diagram showing the output of the computer 63 shown in FIG. 48 and FIG.
  • FIG. 51A is a plan view showing the direction of the electromagnetic force of the linear motor according to the fourth embodiment of the present invention.
  • Figure 51B is a plan view showing the intensity difference of the surface flow due to the drift of the injection flow.
  • FIG. 51C is a plan view showing the electromagnetic force generated by the linear motion in order to suppress the difference in intensity shown in FIG. 51B.
  • FIG. 52 is a horizontal sectional view showing a phase division of an electric coil of a linear motor according to a fourth embodiment of the present invention.
  • FIG. 53 is a block diagram showing the contents of the arithmetic processing of the computer 43 according to the fourth embodiment of the present invention.
  • FIG. 54 is an enlarged transverse cross-sectional view of the cores 12F and 12L in the continuous manufacturing apparatus according to the fifth embodiment of the present invention, which is horizontally broken.
  • FIG. 55 is an electric circuit diagram showing connection of electric coils in the continuous manufacturing apparatus according to the fifth embodiment of the present invention.
  • FIG. 56A is an enlarged plan view of a portion surrounded by a broken line C shown in FIG.
  • FIG. 56B is an enlarged plan view of a portion surrounded by a broken line D shown in FIG.
  • FIG. 57 is a plan view showing a distribution of electromagnetic force generated by two 2-pole linear motors using the slot of the first embodiment of the present embodiment.
  • FIG. 58 is a plan view showing the distribution of electromagnetic force generated by two two-pole linear motors using the slot according to the second embodiment of the present embodiment.
  • FIG. 59 is an enlarged cross-sectional view of the core 12F, 12L of the second embodiment, which is cut horizontally.
  • FIG. 6OA is a block diagram showing a connection relationship between a linear motor and a power supply circuit according to a third embodiment of the present embodiment.
  • FIG. 60B is an electric circuit diagram showing the configuration of the power supply circuit VD shown in FIG. 6OA.
  • Fig. 61A is a plan view showing the surface flow generated by injection of molten metal from the immersion nozzle in the meniscus plane of the molten metal in the mold.
  • Fig. 61B is a plan view showing the surface flow to be generated by two linear motors by dotted arrows.
  • Fig. 61C is a plan view showing the vector sum of the superficial flow generated by the injection of molten metal from the immersion nozzle and the superficial flow generated by the thrust of the two linear motors by a solid line arrow. It is.
  • FIG. 62A is a vertical cross-sectional view showing a mold 3 and a tundish 80 for supplying the molten metal thereto and a ladle 79 for supplying the molten metal thereto.
  • Fig. 62B is a graph showing the change in molding flow velocity from the start to the end of continuous production.
  • FIG. 63 is an enlarged cross-sectional view of the device according to the sixth embodiment of the present invention, in which the cores 12F and 12L are horizontally broken.
  • FIG. 64 is a sectional view corresponding to FIG. 63, showing the phase division and the group division of the electric coil shown in FIG.
  • FIG. 65 is an electric circuit diagram showing the connection of the electric coil shown in FIG.
  • FIG. 66 is a block diagram showing a schematic configuration of an apparatus according to a sixth embodiment of the present invention.
  • FIG. 67 is a block diagram illustrating a schematic configuration of a control system that controls the power supply circuits 30a to 30d illustrated in FIG.
  • FIG. 68 is a block diagram showing a configuration of the power supply circuit 92 a and the energization controller C C1 shown in FIG. 67.
  • Fig. 69A is an enlarged side view of the flow velocity sensor 91a shown in Fig. 63, with the outer case cut away.
  • FIG. 69B is a cross-sectional view taken along the line E—E shown in FIG. 69A.
  • FIG. 7OA is a cross-sectional view showing the use state of the flow velocity sensor 91a shown in FIGS. 69A and 69B.
  • FIG. 70B is a block diagram showing a circuit element that generates a flow velocity signal from a detection signal of the flow velocity sensor 91 a in the flow velocity detection circuit 98 a shown in FIG.
  • Fig. 71 A is a plan view showing the surface flow of molten metal in mold III in the meniscus plane.
  • Fig. 71B is an enlarged cross-sectional view taken along line F-F of Fig. 71A.
  • FIG. 71C is an enlarged sectional view taken along the line G—G of FIG. 71A.
  • Figs. 72A to 72D are plan views showing the vector component of the surface flow in the meniscus of type II molten steel, and Fig. 72A shows the stirring mode component.
  • 72B shows the translation mode component
  • Fig. 72C shows the acceleration mode component
  • Fig. 72D shows the twisting mode component.
  • FIG. 73 is a block diagram showing an outline of a part of the data processing of CPU 98c shown in FIG.
  • FIG. 5 is a view of the continuous structure of the metal slab as the object of the present invention as viewed from above the meniscus surface, and is provided at the center of the cross section of a mold 3 having a substantially rectangular cross section.
  • Molten metal is injected from immersion nozzle 2.
  • the electromagnetic stirring coil sections 6a and 6b are provided along the long sides 10a and 10b of the mold. In the present invention, the electromagnetic stirring coil sections 6a and 6b are used. By adjusting the distribution of the electromagnetic stirring thrust, the molten metal in the meniscus plane 5 is given a uniform rotating flow along the mold.
  • the electromagnetic stirring coil section 6a moves along the long side 10a of the mold from the short side 11a of the mold toward the immersion nozzle 2.
  • the electromagnetic stirring thrust is P
  • the electromagnetic stirring thrust from the immersion nozzle 2 to the short side 1 1b of the mold is Q
  • the electromagnetic stirring coil 6 has a long side of the mold 1 Immersion nozzle from the short side of the mold 1 1b along 0b
  • the thrust P and the thrust Q and the thrust R and the thrust S are defined as R when the electromagnetic stirring thrust toward the mold 2 is R and the electromagnetic thrust from the immersion nozzle 2 toward the short side 11 a of the mold is S.
  • the thrust Q is larger than the thrust P and the thrust S is larger than the thrust R.
  • the molten metal in the meniscus plane is given a clockwise uniform rotating flow as viewed from above. . Fig. 5 ('In this case, the electromagnetic stirring thrust is reversed, the thrust P is larger than the thrust Q, and the thrust R is larger than the thrust S.
  • a uniform rotating flow can be given o
  • the continuous manufacturing apparatus connects the coil 14 a of the electromagnetic stirring coil section 6 a with the connecting means on the long side 10 a of the mold.
  • the circuit composed of the wiring of the connection box 7a is divided into A and B, and the coil 14 of the electromagnetic stirring coil section 6b is located on the long side 10b of the mold.
  • the circuit composed of b and the wiring of the connection box 7b as the connection means is divided into C and D.
  • Circuits A and B and circuits C and D are point-symmetric with respect to immersion nozzle 2, and circuits A and B have different impedances in parallel with each other, and circuits C and C have different impedances. D also has different impedances in parallel with each other.
  • the circuit of the device shown in Fig. 6 has circuits A and C connected in a Y connection (star connection), and circuits B and 0 connected in a circuit. It is a line (ring connection), and the impedance of each circuit is larger than A and C, and larger than B and D. Therefore, as shown by the arrows in the meniscus plane 5 in Fig. 6, the electromagnetic stirring thrusts along the two long sides 10a and 10b are opposite to each other, and The electromagnetic stirring thrust in the direction from the nozzle 2 toward the short side of the mold is greater than the electromagnetic stirring thrust in the direction from the short side of the mold toward the immersion nozzle 2. Then, by setting appropriate electromagnetic stirring conditions such as frequency, voltage, and current according to the operation conditions of the continuous structure in the command box 9, the inside of the meniscus surface 5 is set. A uniform rotating flow along the mold is given to the molten metal.
  • the device shown in FIG. 8 has 24 slots 13 on one side of the electromagnetic stirring coil unit 6, and circuits A and C have 15 slots. Each of the five coils in the slot is connected in series, and each of the circuits B and D is connected in series with three 9-slot coils. The impedance is higher for A and C than for B and D. For this reason, the electromagnetic stirring thrust is distributed as shown by the arrow in the meniscus plane 5 in FIG. 8, and a uniform rotating flow is given to the molten metal in the meniscus plane 5.
  • coils constituting circuits A and C are connected in series, and coils constituting circuits B and D are connected in series. Are connected in parallel, and the impedance of each circuit is A and C, and is larger than B and D. Because of this, electromagnetic The stirring thrust is distributed as shown by the arrow in the meniscus plane 5 in FIG. 9, and a uniform rotating flow is given to the molten metal in the meniscus plane 5.
  • the molten metal discharged from the immersion nozzle collides with the short side of the mold and forms a reverse flow, as shown in Fig. 2.
  • the flow is from the short side of the mold 11 to the immersion nozzle 2, but according to the present invention, as shown in FIG.
  • the electromagnetic stirring thrusts Q and S from the immersion nozzle 2 toward the short side 11 of the mold are applied to the nozzle 2 at the short side 11 of the mold.
  • the conditions of the electromagnetic stirring in the present invention are adjusted by adjusting the conditions of the power supply such as frequency, voltage, current and the like by setting the command box 9, and are constituted by the electromagnetic stirring coil unit 6 and the connection box. It can be adjusted by the impedance setting of each divided circuit.
  • the molten metal in the meniscus plane is given an appropriate electromagnetic stirring thrust in consideration of the reverse flow, and the molten metal rotates uniformly along the mold wall. Stagnation of the molten metal, preventing the accumulation of nonmetallic inclusions in the molten metal and the entrapment of powder on the meniscus surface, and eliminating metal defects such as vertical cracks You can get slabs. The comparison between the conventional example and the simulation of the present invention is shown below.
  • Fig. 10 shows the distribution of thrust when rotating thrust was applied. Frequency 2 Hz. Current 5 2 5 A, the current density was magnetically stirred Coil le section 6 a, 6 b and monitor 3. 8 9 3 x 1 0 6 AT / m 2.
  • the thrust distribution is uniform compared to Fig. 4, also in this example, the long-side component of the thrust along the long side 10 of the mold is almost constant at each position of the long side.
  • a uniform rotating flow could not be obtained, and according to experiments, surface defects occurred on the slab surface.
  • FIG. 6 three-phase power frequency 2 Hz, the current 5 2 5 A, the current density is a circuit A and C 2.
  • 2 4 8 X 1 0 6 AT / m 2 that Lee emissions Pida emission scan is to 1. 7 3 times that of the conventional example 2
  • the circuit B and D 3. 8 9 3 X 1 0 6 AT / m 2 This means that Lee emission peak da down scan Is the same as in Example 2).
  • the distribution of electromagnetic stirring thrust in the meniscus plane 5 at this time is shown in Figs. 11 and 12.
  • FIG. 11 is a display similar to FIGS. 14 and 10. Fig.
  • FIG. 12 is a graph of the component of the thrust in the direction of the long side 1Ob of the mold, and the thrust is shown as a ratio with the maximum value being 1.0.
  • the thrust component from the short side of the mold 11 to the immersion nozzle 2 is small (right side in Fig. 12), It can be seen that the thrust component from nozzle 2 to the short side of the mold 11 is large (left side in Fig. 12). Therefore, when electromagnetic stirring is performed by such a device, a small thrust is applied in the same direction as the reverse flow of molten steel in the meniscus plane, and a large thrust is applied in the opposite direction. A uniform rotating flow along the mold was obtained, no stagnation occurred in the molten steel flow, and experiments showed that metal slabs without surface defects were obtained.
  • the distribution of the electromagnetic stirring thrust in the meniscus surface 5 also has a small thrust component from the molding short side 11 to the immersion nozzle 2 as in the case of the first and second examples of the present invention.
  • the thrust component from the nozzle 2 to the short side of the mold 11 is large, and a uniform rotating flow along the mold is obtained, and no stagnation occurs in the molten steel flow. According to the results, metal slabs free from surface defects were obtained.
  • the discharge velocity of the molten metal fluctuates for each discharge port due to the adhesion of nonmetallic inclusions in the molten metal to the discharge port of immersion nozzle 2.
  • the uniform rotational flow can be stably obtained by applying a uniform electromagnetic stirring thrust as in the past. I can't do that.
  • the conventional electromagnetic stirring is performed using a three-phase one power source, and it has been difficult to continuously change the thrust with respect to the continuously changing flow of the molten metal.
  • the electromagnetic stirring thrusts along the long sides of the two molds may interfere with each other to generate a thrust vortex, which may cause surface defects such as vertical splitting in the shell at the stagnation portion. there were.
  • the molten metal in the mold is rotated uniformly in the meniscus plane, or an appropriate action such as braking or accelerating the reverse flow is performed.
  • an appropriate action such as braking or accelerating the reverse flow is performed.
  • the electromagnetic stirring thrust is continuously changed, and the problem due to the vortex of the stirring thrust is solved. The purpose is to obtain metal slabs with excellent surface properties.
  • the continuous manufacturing apparatus for metal slabs uses an electromagnetic stirring coil provided along the long sides of two molds in a meniscus plane while injecting molten metal from the immersion nozzle into the mold.
  • a device for controlling the flow of molten metal in the meniscus plane by means of a coil section comprising the two electromagnetic stirring coil sections, two or four power supplies, and each of the electromagnetic stirring coils. It consists of a coil box, a connection box for connecting each power supply, and a control mechanism for each power supply condition.
  • Each magnetic stirring coil section has a plurality of magnetic poles along the long side of the model. It is a moving magnetic field system in which a coil is wound around each magnetic pole.
  • a circuit composed of the coil and the wiring of the connection box is divided into two, and the divided total is divided. Any two combinations of the four circuits are connected to different power supplies or are The four circuits are connected to another power source, respectively.
  • FIG. 2 is an explanatory view showing a cross section of the continuous manufacturing apparatus for metal slabs according to the present embodiment as viewed from above a meniscus surface, and a connection example of an electromagnetic stirring coil part in the present embodiment.
  • Molten metal is injected from the immersion nozzle 2 provided at the center of the cross section of the mold 3 having a substantially rectangular cross section, and the electromagnetic stirrer is injected along the long sides 10 a and 10 b of the two molds, respectively.
  • the coil portions 6 as 6 b are provided, and the flow of the molten metal in the meniscus surface 5 is controlled by the respective electromagnetic stirring thrusts.
  • the device shown in Figure 15 uses two power supplies, a first power supply 24 and a second power supply 25.
  • the circuit connecting each coil 14 of each of the two electromagnetic stirring coil sections 6a and 6b and each power supply is divided into two, and any of the four divided circuits A, B, C, and D can be used. These two combinations are connected to separate power supplies 24 and 25, respectively, to control the electromagnetic stirring thrust by the coils in each circuit.
  • Another apparatus uses four power supplies, that is, a first power supply 26, a second power supply 27, a third power supply 28, and a fourth power supply 29, as illustrated in FIG.
  • the circuit for connecting each coil 14 of each of the two electromagnetic stirring coil sections 6a and 6b and each power supply is divided into two, and a total of four divided circuits A, B, C, and D are formed. However, they are connected to separate power supplies 26 to 29, respectively, and the electromagnetic stirring thrust by the coil of each circuit is controlled.
  • the electromagnetic stirring thrust distribution control is performed based on the observation result of the flow state of the molten metal on the meniscus surface 5 based on the frequency of the two power sources 24, 25 or the four power sources 26 to 29.
  • the control box 22 adjusts the conditions such as phase, phase difference, and current.
  • Observation of the molten metal flow state may be performed by a person who looks directly at the meniscus surface, or by a sensor 23 that outputs image processing results of a television camera or the like.
  • the connections of circuits A, B, C, and D may be connected in series, connected in parallel, connected in parallel, or mixed in series and parallel. It can be a circuit suitable for the purpose, for example, it can be fixed to a certain circuit during operation or can be switched as appropriate.
  • Each of the power supplies 24 to 29 can be configured as shown in FIG. 17 in addition to those shown in FIGS.
  • a cyclo-converter system may be used.
  • two power supplies are provided by a total of four divided circuits A, B, C, and D.
  • the electromagnetic stirring thrust is controlled using 4 power sources, so that the melting in the meniscus plane is prevented.
  • Various forms of thrust distribution can be imparted to the molten metal, and appropriate flow control can be performed according to the situation of continuously changing structure.
  • Fig. 18 shows the distribution of thrust for various forms of electromagnetic stirring thrust using the conventional one-power system, the two-power system and the four-power system of the present invention.
  • the rectangle in the figure indicates the meniscus surface surrounded by the mold, the direction of the arrow indicates the direction of the thrust, and the length of the arrow indicates the magnitude of the thrust.
  • Rotation has a rotating effect on the molten metal in the meniscus plane, brake has a braking effect on the reverse flow, acceleration has an accelerating effect on the reverse flow, and translation has a shorter molding It exerts a flow action from one side to the other short side of the mold.
  • the impedances of the circuits A, B, C, and D are the same, and the form of thrust is changed depending on the connections of the circuits.
  • the magnitude of the thrust by each circuit is the same, but when using the two power supplies of the present invention, the two sets of thrusts are changed by changing the current values of both power supplies.
  • the size can be changed arbitrarily.
  • the magnitude of thrust of each circuit can be changed for each circuit.
  • a desired molten metal flow can be obtained.
  • inclusions may adhere to the discharge port of the immersion nozzle provided at the center of the cross section of the mold, causing the flow of molten metal in the mold to flow.
  • Fig. 19 shows a case where the molten metal is controlled so as to always have a uniform rotating flow in the meniscus plane when it changes.
  • (1) is a case in which the discharge port of the immersion nozzle is clean with no deposits on the left and right sides, and the flow of the molten metal in the menis- cus surface when the electromagnetic stirring is not performed is a reverse flow symmetrical to the left and right.
  • the electromagnetic stirring thrust is strong in the direction facing the reverse flow, that is, in the direction from the center of the mold to the short side of the mold.
  • the direction of the reversal flow that is, the direction from the short side of the mold toward the center of the mold, is weakened.
  • (2) is a case in which inclusions or the like adhere to one side of one of the discharge ports, and the flow of molten metal without electromagnetic stirring becomes weaker on the side with the adhered substance.
  • (3) is a case where there is a deposit on both sides of one of the outlets.
  • the thrust as shown in the figure is achieved by using the four-power system of the present invention and setting A ⁇ C and B ⁇ D. And a uniform rotating flow can be obtained.
  • the position of the vortex is adjusted by adjusting the phase difference of each power source. You can change it. Therefore, nonmetallic inclusions and the like in the molten metal do not accumulate in the stagnation portion between the vortices, and a slab free from surface defects such as vertical cracks can be obtained.
  • the total power supply capacity is not different from the case of one power supply, and the overall equipment cost is rather low.
  • FIG. 26 shows the components of the thrust in the direction of the long side 15a of the mold in FIGS. 21 to 25 in a ratio where the maximum value of the thrust is 1.0.
  • the position of the thrust vortex in the meniscus plane was changed by changing the phase difference between the power sources 24 and 25. As a result, a slab having more excellent surface properties was obtained.
  • the molten metal in the mold is rotated uniformly in the meniscus plane, or brakes and accelerations are applied to the reverse flow.
  • the effect can be given.
  • the flow of molten metal changes continuously. Even in the case of moving, it is possible to continuously change the electromagnetic stirring thrust and solve the problem due to the vortex of the stirring thrust to obtain a metal slab with excellent surface properties. As a result, the total power supply capacity does not change even if two or four power supplies are used, and the equipment costs are rather low.
  • the frequency of the alternating current that flows through the electric coil is conventionally set to l to 2 Hz in order to obtain a strong electromagnetic force with a small number of poles.
  • the electromagnetic force becomes maximum at a frequency of about 1 Hz
  • the electromagnetic force becomes maximum at a frequency of about 2 Hz. , 1-2 Hz are used.
  • a larger electromagnetic force is obtained to further promote the floating of bubbles, avoid powder entrainment in molten steel, and / or wipe the inner surface of the steel near the surface layer.
  • the purpose is to do so.
  • a plurality of magnetic poles arranged along the periphery of the mold 3 surrounding the molten metal 1 and a plurality of electric cores for exciting each magnetic pole are provided.
  • B; in a continuous production apparatus for molten metal comprising:
  • the first feature is that the linear motors 6F, 6L are linear motors having five or more poles, and the energizing means 30A, 30B power and an alternating current of 4Hz or more. Apply current to the electric coil
  • the second feature is that the current supply means is a current supply means
  • the third feature is that the amperage conductivity is set to 1200 AT / cm.
  • the electromagnetic force is large, but the electromagnetic force component in the y-direction (along the short side of the triangle) is strong (the arrow is long in the y-direction in the figure).
  • the electromagnetic force forms a counterclockwise spiral at a total of two locations on each side (y direction).
  • Such a force causes a vortex in the molten metal 1, which is likely to cause powder entrainment.
  • the electromagnetic force component in the X direction in the X direction along the inner wall surface (the inner surface of the long side) of the ⁇ type is distributed in large and small, the ⁇ type inner surface is stuffed in the X direction and partially melted. Steel tends to stay.
  • the electromagnetic force forms a counterclockwise spiral at a total of four locations on each of the left and right (y-direction) locations.
  • the y direction
  • the electromagnetic force component in the direction along the short side is weaker, the component in the y direction is still large, which may cause powder entrainment
  • the ⁇ -shaped inner wall surface the inner surface of the long side
  • the y-direction component of the electromagnetic force is substantially eliminated, no more swirls are observed, and substantially only a creeping flow occurs. Therefore, the effect of preventing powder entrapment is extremely high, and the X-direction component of the electromagnetic force is uniform over the entire length of the long side (X direction), and the creepage flow at a constant direction (X direction) and a constant speed is obtained. As a result, the wiping of the inner surface of the mold becomes uniform, and the floating of bubbles is promoted.
  • the effect is provided.
  • the conventional two-pole or four-pole linear mode is used, and in these cases, as shown in Figure 33, the frequency of 1 Hz is used in the case of two poles.
  • the maximum electromagnetic force can be obtained at a frequency of 2 Hz in the case of 4 poles, so a 3-phase alternating current of 1 to 2 Hz is conventionally supplied to the linear motor.
  • the electromagnetic force distribution in the horizontal plane of the surface layer of the molten metal 1 in the mold is shown by an arrow when placed and arranged as shown in Fig. 2 '7, and the direction of the arrow indicates the direction of the electromagnetic force.
  • Amps conductivity (I X N S) Z TT S-(5)
  • the conventional amperage conductivity is 800 AT / cm
  • a current of at least ampere conductance of at least 1200 ATZ cm will flow.
  • it is preferable to increase the electromagnetic force in a preferred embodiment of the present invention, a linear motor having a large number of poles, i.e., five or more poles, which has not been used in the past, is used.
  • FIG. 27 shows the appearance of the device according to the third embodiment of the present invention.
  • the molten metal 1 is not shown in the immersion nozzle (the immersion nozzle in FIG. 5). Injected through 2), the meniscus (surface) of molten metal 1 is covered with powder 37.
  • the mold 1 is cooled by the cooling water flowing into the water box 3 4, and the molten metal 1 gradually solidifies inside from the surface in contact with the mold, and the piece (solidified shell) 4 is continuously pulled out.
  • Two linear motors 6F and 6L are provided at the meniscus level (height direction z) of molten metal 1, and these are located immediately below the meniscus level of molten metal 1 (surface area). ) Apply electromagnetic force to.
  • Fig. 28 shows a cross section of the inner wall 31 shown in Fig. 27 cut horizontally at the cores 12F and 12L of the linear motors 6F and 6L.
  • Fig. 29 shows an enlarged cross section along the line B-B in Fig. 28.
  • the ⁇ -shaped inner wall 31 is composed of opposed long sides 10 F, 10 L and opposed short sides 11 R, 11 L, and each side is a copper plate 33 F, 3 L.
  • Non-magnetic stainless steel plates 32 F, 32 L, 36 R, and 36 L are backed by 3 L, 35 R, and 35 L.
  • the cores 12 F and 12 L of the linear motors 6 F and 6 L are the effective lengths of the ⁇ -shaped long sides 10 F and 10 L (the length in the X direction where the molten metal 1 contacts). The lengths are slightly longer, and 36 slots are cut in each of them at a predetermined pitch.
  • Each slot of the core 12F of the linear motor 6F has a first group of electric coils CF1a to CF1r and a second group of electric coils CF2a to CF2r. Mounted ing.
  • each of the cores 12 L of the linear motor 6 L has the electric coils CL 1 a to 1 of the first group.
  • the linear motors 6F and 6L try to apply a thrust indicated by an arrow in FIG. 5 to the molten metal 1, and the electric coils CF1a to CF1r of the first group of the linear motor 6F are weak.
  • the thrust is applied to the second group of electrical condensers CF 2 a to CF 2 r by applying a strong thrust to the molten metal 1. Therefore, the number of turns of the first group of electric coils CF1a to CF1r may be reduced, but DC current is applied for braking control and thrust distribution in the X direction is adjusted within the group.
  • all the slots and all the electric coils of the linear motor 6F have the same specifications so that the linear motor 6F can be adapted to other controls.
  • different levels of current are applied to each group so that different thrusts are generated in the first group and the second group. This will be described later. The same applies to the 6 L linear motor.
  • Figure 30 shows the connections within the group for all the electric coils shown in Figure 28.
  • the electric coils CF1a to CFlr of the first group of the linear motor 6F are arranged in this order in FIG. 30 in the order of u, u, V, V, w, w, U, U, v, v. , "W, W, u, u, V, V, ww.”
  • U is the positive U-phase of three-phase AC.
  • U indicates the reverse phase energization of the U phase (180 ° phase shift energization from the U phase), and the electric coil “U” indicates the phase energization (the energization as it is). While the U-phase is applied at the beginning, the electric coil “u” means that the U-phase is applied at the end.
  • V indicates V-phase positive phase energization of three-phase AC
  • v indicates V-phase negative phase energization
  • W indicates W-phase positive phase energization of three-phase AC
  • w Represents reverse-phase energization of the W phase.
  • the terminals U11, VI1 and W11 shown in Fig. 30 are the electric coils of the first group of linear motor 6F.
  • CF 1 a to CF 1 r power connection terminals.
  • Terminals U 21, V 21, and W 21 are connected to the electric coil CF 2 a to 2nd group of the linear motor 6F.
  • the terminals U 12, VI 2 and W 12 are the power connection terminals of the electric coils CL 1 a to CL 1 r of the first group of the linear motor 6 L.
  • the terminals U22, V22 and W22 are power connection terminals for the second group of electric coils CF2a to CF2r of the linear motor 6L.
  • Fig. 31 shows the first group of electric motors CF1a to CF1r of the linear motor 6F and the first group of electric motors CL1a to CL1r of the linear motor 6L. Shows the power supply circuit for passing phase alternating current.
  • a thyristor bridge 42 A for DC rectification is connected to the three-phase AC power supply (three-phase power line) 41, and its output (pulsating flow) is 45 A and 40 A. It is smoothed with a capacitor of 46 A.
  • the smoothed DC voltage is used as a power transistor plunger for three-phase AC formation.
  • A is applied to A, and the U-phase of the three-phase AC output from this terminal is connected to the power connection terminals U11 and U12 shown in Fig. 30, the V-phase is connected to the power connection terminals V11 and V12, and W A phase is applied to the power connection terminals W11 and W12.
  • the electrical connections CF1a to CF1r of the first group of the linear motor 6F and the electrical connections CL1a to CLlr of the first group of the linear motor 6L are shown in the figure.
  • the coil voltage command value V dcA that generates a small thrust indicated by the arrow in Fig. 5 is given to the phase angle calculator 44 A, and the phase angle ⁇ calculator 44 ⁇ becomes the conduction phase corresponding to the command value V dcA.
  • Calculate the angle ⁇ (thyristor trigger-phase angle) and give a signal representing this to the gate driver 43 ⁇ .
  • the gate driver 43A starts the phase count from the zero cross point of each phase and conducts the thyristor of each phase at the phase angle ⁇ .
  • the DC voltage indicated by the command value VdcA is applied to the transistor bridge 47 #. '
  • the 3-phase signal generator 51 A generates a constant-voltage 3-phase AC signal of the frequency specified by the frequency command value F dc (20 Hz in this embodiment) and generates a comparator 49 A Give to.
  • the comparator 49 A is also supplied with a triangular wave generator 50 A and a 3 KHz constant voltage triangular wave.
  • the comparator 49A outputs a high level H (transistor clock) when the level is equal to or higher than the level of the triangular wave provided by the triangular wave generator 50A.
  • the low-level L (transistor-off) signal when the level is lower than the triangular wave level is addressed to the U-phase positive section (0 to 180 degrees).
  • the U-phase positive voltage output transistor (To the U-phase positive voltage output transistor) and output to the gate driver 48 A.
  • the U-phase signal level When the U-phase signal level is negative, it is output by the triangular wave generator 5 OA. High level H when the level is below the level, and low level L signal when the level exceeds the triangular wave level, to the U-phase negative section (180 to 360 degrees) (for U-phase negative voltage output). Output to the gate driver ⁇ 48 A for the transistor). The same applies to the V-phase signal and the W-phase signal.
  • the gate driver 48 A turns on / off each transistor of the transistor bridge 47 A in response to the signal addressed to each of these positive and negative sections. Energize.
  • a three-phase AC U-phase voltage is output to the power supply connection terminals U l 1 and U 12, and a three-phase AC V-phase voltage is output to the power supply connection terminals VI 1 and VI 2.
  • a three-phase AC W-phase voltage is output to the power supply connection terminals Wl1 and W12, and the level of these voltages is determined by the coil voltage command value VdcA.
  • the frequency is 20 Hz based on the frequency command value Fdc. That is, the three-phase AC voltage of 20 Hz of the voltage value specified by the coil voltage command value VdcA is the first motor of the linear motors 6F and 6L shown in FIGS. 28 and 30. Applied to the group of electrical coils CF1a to CF1r and CL1a to CLlr.
  • Fig. 32 shows the electric coils CF2a to CF2r of the second group of the linear motor 6F and the electric coils CL2a to CL2 of the second group of the linear motor 6L.
  • r shows the power supply circuit for passing three-phase AC.
  • Figure 5 shows the configuration of this power supply circuit. It is the same as the one.
  • the phase angle ⁇ calculator 44 ⁇ of the power supply circuit shown in FIG. 32 is given the coil voltage command value V dcB that generates a large thrust indicated by the arrow in FIG.
  • the U-phase voltage of the three-phase AC output from the power supply circuit shown in Fig. 32 is output to the power supply connection terminals U21 and U22, and the V-phase voltage is output to the power supply connection terminals V21 and V22.
  • the W-phase voltage is output to the power supply connection terminals W21 and W22.
  • the level of these voltages is determined by the coil voltage command value VdcB, and the frequency of this three-phase voltage is In the example, it is 20 Hz by the frequency command value Fdc. That is, the 20-Hz three-phase AC voltage of the voltage value specified by the coil voltage command value V dcB corresponds to the linear motors 6F and 6 shown in FIGS. 28 and 30 in the second group.
  • the electrical capacitors CF2a to CF2r and CL2a to CL2r Applied to the electrical capacitors CF2a to CF2r and CL2a to CL2r.
  • a three-phase alternating current of 20 Hz is applied to the 6-pole linear motor 6F, 6L, and the linear motor 6F, 6L generates
  • the thrust shown by the arrow in Fig. 5 is applied to the molten metal 1 in the inner wall 31 of the mold, and the combined flow with the flow of the molten metal from the immersion nozzle (solid arrow in Fig. 2) forms a circulating flow.
  • the linear motor has a six-pole configuration and has more poles than before, there are approximately six spirals, but the eddy current is weak and the possibility of winding the powder is low. Near the inner surface of the long side, the electromagnetic force at the outer edge of the adjacent vortex is continuous, and the y-direction component is extremely small.
  • the X-direction component of the electromagnetic force over the entire length of the long side (X direction) Average As a result, a constant surface (X direction) and constant speed creeping flow is provided, and the wiping of the inner surface of the mold becomes uniform and the floating of bubbles is promoted.
  • the frequency is 20 Hz, which is higher than before, the swirl inside the molten metal is weak. Increasing the frequency tends to increase the y-direction component and decrease the X component. However, since the number of poles is large, this tendency is suppressed.
  • the linear motor has a larger number of poles than the conventional one, so that the eddy current is weak and the possibility of winding the powder is low.
  • the electromagnetic force at the outer edge of the adjacent vortex is continuous, and the y-direction component is extremely small.
  • the X-direction component of the electromagnetic force is uniform over the entire length of the long side (X direction), and the direction is uniform. (X direction) A constant velocity creeping flow is produced, and even if the wiping of the inner surface of the ⁇ type becomes uniform, the floating of bubbles is promoted.
  • the electromagnetic force inside the molten metal is reduced, the spiral inside the molten metal is weakened, and the powder can be wrapped. Performance is reduced.
  • the outflow characteristics of the outlet 39 of the immersion nozzle 2 are such that the metal adheres to the outlet 39 during injection.
  • a considerable temperature deviation occurs.
  • the purpose of the present embodiment is to further suppress uneven temperature due to the location of the molten metal in the mold.
  • This embodiment is composed of a combination of a plurality of magnetic cores arranged along a ⁇ -shaped side surrounding the molten metal 1 and a plurality of electric coils for exciting each magnetic core.
  • ⁇ DC or AC for applying a braking force or driving force to the molten metal flow to the electromagnetic stirring coil section or linear motor 6F, 6L along the mold side and the electric coil respectively.
  • Temperature detection means for detecting the temperature distribution of the ⁇ -shaped side S11 to Sln, S21 to S2n, S31 to S3m, S41 to S4m (FIGS. 48 and 49) And giving a current command for giving a high braking force to the molten metal flow near the location where the temperature is high to the conducting means 30 F 1, 30 F 2, 30 L 1, 30 L 2.
  • Temperature distribution control means 63 (FIG. 50).
  • the flow velocity distribution of the molten metal is the temperature distribution detected by the temperature detection means S11 to S1 ⁇ , S21 to S2n, S31 to S3m, and S41 to S4m.
  • the temperature distribution control means 63 sends the current command for giving a high braking force to the molten metal flow near the high temperature portion by the current supply means 3OF1, 30F2, 30L1, 3L. Give to 0 L 2.
  • a high braking force is applied to the molten metal at a location where the flow velocity of the molten metal is high, so that the above-mentioned drift of the molten metal is suppressed. That is, the flow velocity distribution of the molten metal becomes uniform. Therefore, uneven temperature due to the location of the molten metal in the mold is suppressed.
  • Fig. 44 shows a power supply circuit 30F1 that supplies three-phase alternating current to the first group of electric coils CF1a to CF1r of the linear motor 6F.
  • the three-phase AC power supply (three-phase power line) 41 is connected to a thyristor bridge 42 A1 for DC rectification, and its output (pulsating flow) is the inductor 45A1 and the capacitor. It is smoothed by 4 6 A 1.
  • the smoothed DC voltage is applied to a power-language start-up bridge 47 A1 for three-phase AC formation.
  • the U-phase of the three-phase alternating current that is output is applied to the power supply connection terminal U11 shown in Fig. 30, the V-phase is applied to the power supply connection terminal VI1, and the W-phase is applied to the power supply connection terminal W11. .
  • the coil voltage instruction value V dcA 1 that generates a small thrust indicated by the arrow in FIG. 5 is given to the phase angle ⁇ calculator 44 A 1, and the phase angle calculator 44 A 1 outputs the command value V Calculate the conduction phase angle ⁇ (thyristor trigger one phase angle) corresponding to dcA 1, and give a signal representing this to gate driver 43 A 1.
  • the Ge-h driver 43A1 starts the phase count from the zero cross point of each phase and conducts the thyristor of each phase at the phase angle. As a result, the DC voltage indicated by the command value VdcA1 is applied to the transistor bridge 47A1.
  • the three-phase signal generator 51A1 generates a constant-voltage three-phase AC signal having a frequency specified by the frequency command value F dc (in this embodiment, 20 Hz) and biases the signal.
  • the command value B11 is level-shifted by the specified DC level and given to the comparator 49A1.
  • the comparator 49 A 1 also outputs a triangular wave generator 501 to a constant voltage triangular wave of 31 (112).
  • the comparator 49 A 1 outputs a signal when the U-phase signal is at a positive level.
  • a U-phase voltage having a three-phase AC direct current bias component (Bl 1) is output to the power supply connection terminal U l 1, and a similar V-phase voltage is output to the power supply connection terminal VI 1
  • a similar W-phase voltage is output to the power supply connection terminal W11, and the level between the upper and lower peaks of these voltages is determined by the coil voltage command valueVdcA1. Therefore, the level of the bias DC component is determined by the bias command B11.
  • the frequency of the three-phase voltage is 20 Hz based on the frequency command value Fdc. That is, 20 Hz 3 having the peak voltage value (thrust) specified by the coil voltage command value VdcA1 and the DC component (braking force) specified by the bias command B11.
  • the phase alternating voltage is applied to the first group of electric coils CF1a to CF1r of the linear motors 6F and 6L shown in FIGS. 28 and 30.
  • Fig. 45 shows a power supply circuit 30F2 for supplying a three-phase alternating current to the electrical connectors CF2a to CF2r of the second group of the linear motor 6F.
  • Fig. 46 shows the power supply circuit for the linear motor 6F.
  • Fig. 47 shows a power supply circuit 30L1 that supplies three-phase alternating current to the electric coils CL2a to CL2r, and Fig. 47 shows the electric coil of the first group of linear motor 6L.
  • a power supply circuit 30L2 that allows three-phase alternating current to flow through CL1a to CLlr is shown.
  • the coil voltage command value V dcA 4 at which C L 1 r generates a small thrust indicated by the arrow in FIG. 5 is applied to the phase angle calculator 44 B 2.
  • the noise command B11 (Fig. 44) is a three-phase AC DC bias applied to the electric coils CF1a to CF1r of the first group of the linear motor 6F. Specify the level (braking force) o
  • the bias command B21 (Fig. 45) is applied to the electric coils CF2a to CF2r of the second group of the linear motor 6F. Specify the DC bias level (braking force) of three-phase AC o
  • the bias command B22 (Fig. 46) is a three-phase AC DC bias level (braking force) applied to the second group of electric coils CL2a to CL2r of the linear motor 6L. Is specified.
  • the bias command B12 (Fig. 47) is the DC bias level (braking force) of the three-phase AC applied to the electric coils CL1a to CL1r of the first group of the linear motor 3L. Is specified.
  • FIG. 48 shows the backs of the short sides 11 L and 11 R shown in FIG. 28.
  • These short sides 11 L and 11 R are provided with thermocouples S 3l to S 3n and S 4l to S 4n, respectively, in a row in the single-drawing direction (height direction; vertical direction). Evenly spaced, each thermocouple penetrates the backing stainless steel plate and detects the temperature slightly inside the copper plate (at the surface in contact with the molten metal). That is, the signal processing circuit 61A generates an analog signal (detection signal) indicating the temperature detected by the thermocouple and supplies the analog signal to the analog gate 62.
  • the computer 63 controls the output of the analog gate 62 to connect the thermocouples S3l to S3n and S4l to S4n.
  • the detection signals are sequentially converted into AZD and read, and the highest temperature value Tm1L1 of the detection temperatures of the thermocouples S31 to S3n and the next highest temperature are detected by the high temperature value extraction processing means 64. Extract the temperature value Tm2L1 and the highest temperature value Tm1R1 and the next highest temperature value among the detected temperatures of the thermocouples S4l to S4n
  • VR is an electric coil CF1a to CFlr (left half of linear motor 6F; Fig. 28) and CL2a to (: L2r (linear motor 6L Left half; braking force component (bias component) command value for Fig. 28)
  • VL1 is the electric coil CF2a to CF2r (linear motor 6F Right half; Figure 28) and CL 1a to CL lr (right half of linear motor 6 L; Fig. 28) are the braking force component (bias component) command values.
  • These command values have a positive representative temperature difference (short side copper plate). When the temperature is higher than 35 R), the DC current level (bias) flowing through the electric coil of the left half (Fig.
  • the linear motors 6F and 6L is increased to increase the strength. Apply braking and reduce the level of DC current flowing through the right half of the electric coil to weaken braking. Conversely, the representative temperature difference is a negative value. (High), the DC current level flowing to the right half electric coil of the linear motors 6F and 6L is increased to apply strong braking, and the DC current level flowing to the left half electric coil is reduced. It means that the braking is weakened.
  • Fig. 49 shows the back of the long sides 1OF and 10L shown in Fig. 28.
  • thermocouples S11 to S1n and S21 to S2n are arranged at regular intervals in a row in the horizontal direction.
  • the thermocouple penetrates the backing stainless steel plate and detects the temperature slightly inside the copper plate (at the surface in contact with the molten metal). That is, the signal processing circuit 65 A generates an analog signal (detection signal) indicating the temperature detected by the thermocouple and supplies the analog signal to the analog gate 66.
  • the computer 63 controls the output of the analog gate 66 to perform AZD conversion on the detection signals of the thermocouples S11 to 311 and 32l to S2n sequentially.
  • the high temperature value extraction processing means 67 determines the detected temperature of the thermocouples S11 to S1n.
  • the maximum temperature value Tm1F and the next highest temperature value Tm2F are extracted, and the maximum temperature value Tm1R2 and the next maximum temperature value among the detected temperatures of the thermocouples S2l to S2n are extracted.
  • a high temperature value T m 2 R 2 is extracted. Then, the representative temperature of the long side 1 OF
  • V L2 D-VF.
  • V L 2 —Representative temperature difference X C is calculated
  • V F B—V L 2 is calculated.
  • VF is a braking force component (bias component) command value for the linear motor 6F (including electric coils CF1a to CFlr and CF2a to CF2r) on the long side 10F side.
  • VL2 is the braking force component (bias component) command value for the linear motor 6L (including the electric coils CL2a to CL2r and CL1a to CL1r) on the long side 10L side. It is.
  • the representative temperature difference is a positive value (the longer side is 10 F, the temperature is higher), the DC current level (bias) that flows through the electric coil of the linear motor 6F is used.
  • the DC current level flowing through the electric coil of the linear motor 6 L is reduced to reduce braking, and conversely, the representative temperature difference is a negative value (the temperature of the long side 10 L is higher).
  • the DC current level flowing through the 6-liter electric coil of the linear motor is increased to apply strong braking, and the DC current level flowing through the electric coil of the linear motor 6F is reduced to perform braking. It means weakening.
  • the computer 63 is
  • the flow of the molten metal from the outlet 39 to the short side 11 L is weak, and the flow of the molten metal to the short side 11 R is small.
  • a higher level of DC component is applied to the right half of the electric coil of the motors 6F and 6L than the left half of the electric coil, and a strong braking force is directed to the short side 11R. It affects the flow of molten metal and controls the speed.
  • the braking force against the flow of the molten metal toward the short side 11 L decreases, and the flow rate of the molten metal toward the short side 11 L increases.
  • the flow velocity deviation of the molten metal (in the direction X (left and right) along the long side of the ⁇ type) around the immersion nozzle 2 is suppressed, and , Direction along the short side y (on the front and rear sides in the width direction) The flow velocity deviation of the molten metal is suppressed, and the temperature distribution of the molten metal in the mold becomes uniform.
  • the present invention can be implemented in a mode in which AC is supplied to an electric coil without generating a moving magnetic field.
  • an alternating current is applied to the electric coil in a manner that generates a moving magnetic field, that is, when an alternating current that generates a moving magnetic field is applied to the linear motor, the moving magnetic field in the opposite direction to the flow of the molten metal is applied to the linear motor. This causes a braking force to be applied to the molten metal.
  • one mode of applying a braking force to the molten metal by applying a thrust by a moving magnetic field will be described. In this embodiment, as shown in FIG.
  • the connection between the linear motors 6F and 6L is changed so that an electromagnetic force (thrust) directed toward the immersion nozzle 2 is generated along the long side of the 2 type. Change as shown in 2. If the drift occurs as shown in Fig. 51B and the surface flow occurs stronger on the left side of the immersion nozzle 2 than on the right side, the temperature on the short side on the left side increases. Therefore, in this embodiment, as shown in FIG. 51C, the electromagnetic force at the higher temperature is decreased and the electromagnetic force at the lower temperature is increased.
  • VdcA3 and raise the AC voltage (VdcA2, VdcA4) where the temperature is low. That is, the acceleration thrust to the molten metal is reduced at a high temperature, and the acceleration thrust is increased at a low temperature.
  • the DC bias (B11, B22) of the above-described embodiment and the AC voltage (VdcA1, VdcA3) of this embodiment are different from each other with respect to the temperature. Or the magnitude of the current has the opposite relationship. Therefore, in this embodiment, as shown in FIG. 53, the computer 63 determines the current output coil voltage (VdcAIP to VdcA4P) as described above.
  • the computer 63 reduces VdcA1 and VdcA3 on the high-temperature side and decreases
  • the computer 63 reduces VdcA2 and VdcA4 on the high-temperature side and increases VdcA1 and VdcA3 on the low-temperature side. Therefore, the linear motor 6 F
  • the three-phase AC current values of the electric coils CF1a to CF1r of the first group of the first group and the electric coils CL2a to CL2r of the second group of the linear motor 6L are increased and the electromagnetic force is increased.
  • the deviation of the flow velocity of the molten metal X (left and right) along the long side of the ⁇ type centered on the immersion nozzle 2 is suppressed, and the ⁇ type The temperature distribution of the internal molten metal becomes uniform.
  • a strong electromagnetic force is required to generate a stable circulation flow.
  • the right half of the linear motor 6F and the left half of the linear motor 6L must give strong electromagnetic force to overcome the flow of the molten metal flowing from the immersion nozzle 2 into the mold. Therefore, a strong electromagnetic force is being obtained by changing the connection or using multiple power supplies.
  • the above-described surface drive of molten metal by a linear motor generates the above-mentioned circulating flow, but the magnitude of the current flowing through the coil is determined by the cooling capacity even if the wiring is changed to obtain a strong electromagnetic force. waiting. The reason will be described below.
  • the length in the width direction of the slot is a Cm
  • the length in the depth direction of the slot is b [m]
  • the current density j is the electric power line passing through a unit area of space.
  • j (ySxnI) / (raXrb) ... (6)
  • / 3 is the space factor of the electric coil in the slot section.
  • the current density j is proportional to the magnitude of the current, and when heated by the current flowing through the coil, the temperature increases as the current density increases.
  • the amount of current that can flow through the coil is limited by the coil cooling conditions. In other words, when copper is used for the coil, depending on the copper cooling conditions, for example, when the cooling method is water cooling, 3 to 6 e + 6 A / air cooling is used depending on the cooling capacity. It is limited to the scope of your Itewa 1 ⁇ 2 e + 6 AZ m 2 in. For this reason, if an attempt is made to change the electromagnetic force distribution, the magnitude of the current must be reduced, and a sufficiently large electromagnetic force cannot be obtained.
  • This embodiment is more effective in promoting the floating of air bubbles, avoiding entrainment of powder in molten metal, and / or ⁇
  • the purpose is to wipe the inner surface of the mold.
  • the magnetic core 1 having a plurality of slots BF1a and the like arranged along one side 1OF of a square side surrounding the molten metal 1
  • the first set of linear motors consisting of a combination of 2F and a plurality of electrical coils CF1a inserted into at least some of the plurality of slots Evening 6F:
  • a magnetic core 12 having a plurality of slots BF1a, etc., arranged along another side 10L opposite to the one side, and a plurality of slots.
  • a second set of linear motors 6L consisting of a combination of a plurality of electric coils CL la etc. inserted in at least part of the lot; and the first set and the first set
  • a continuous manufacturing apparatus provided with an energizing means for energizing two sets of linear motors 6F and 6L,
  • the first plane passes through the center of the nozzle member that supplies molten metal to the space surrounded by the ⁇ -shaped side and passes through the center of the nozzle member, and the first plane passes through the center of the nozzle member.
  • the space surrounded by the ⁇ -shaped side is divided into four by the orthogonal virtual second plane, and these divided spaces are turned clockwise around the nozzle member into the first, second, third, and fourth spaces. Then, at least a part of the slots BF1a to BF1r and BL1a to BL1r of at least a part of the linear motor facing the first and third spaces are replaced with other slots.
  • the slot BF1 a to the first space Only the BF 1 r has an electrical connection CF 1 a to CF 1 r, and the second set of linear motors 6 L has an electrical connection only to the slots BL 1 a to BL 1 r facing the third space. It is characterized by having images CL1a to CL1r.
  • the electric connectors CF1a to CF1r facing the first space of the first set of linear motors 6F and the third set of linear motors of the second set are arranged.
  • FIG. 54 is a plan view of the first embodiment of the fifth embodiment of the present invention, which is cut in the horizontal direction (parallel to the X-y plane) in the evening portion of the first embodiment.
  • FIG. 54 an enlarged plan view of a portion surrounded by a dashed line C
  • FIG. 56B is an enlarged plan view of a portion surrounded by a dashed line D of the core 12L.
  • a strong electromagnetic force is required to generate a circulating flow along the inner wall 31 of the mold on the surface of the molten metal and to stably flow the circulating flow at a constant speed.
  • the right half of the linear motor 6F and the left half of the linear motor 6L flow from the immersion nozzle 2 into the mold.
  • a strong electromagnetic force must be applied to overcome the flow of the molten metal that enters.
  • the amount of current that can flow depending on the cooling conditions of the linear motor is limited. Therefore, in the first embodiment of the present invention, by increasing the ampere conductor ⁇ , that is, by increasing the slot, the coil of the electric coil to be inserted into the slot is made deeper.
  • a strong electromagnetic force is obtained by increasing the number of turns (the number of turns X the current value).
  • the half where the coils CF1a to CFlr (hereinafter the first group) are wound and the half where the coils CF2a to CF2r are wound (the second group) are The electromagnetic force of the coil where the 1-group coil is wound.
  • the coil of the second group has twice the strength of the electromagnetic force of the coil around which it is wound. The same applies to the linear motor 6. Therefore, as shown in FIG. 61B, a surface flow corresponding to the strength of the electromagnetic force of the motor is generated at the surface of the meniscus, and the surface flow due to the injection flow shown in FIG. By canceling out or strengthening, finally a circulating flow with high uniformity of velocity distribution along the inner wall 31 shown in Fig. 61C can be generated on the surface layer of the molten metal.
  • FIG. 57 shows the distribution of the electromagnetic force applied to the surface layer of the molten metal in the mold of the first embodiment of the present example.
  • Fig. 34 the distribution of the electromagnetic force applied to the surface layer of the molten metal in the mold ⁇ in the example of the linear motor in which the slot depth is uniform.
  • Linear motors 6F and 6L in which slots of n 36 (that is, 36 electrical connectors) are arranged along the long side, with the ⁇ type interposed
  • the electromagnetic force distribution in the horizontal plane of the surface layer of the in-mold molten metal 1 is indicated by an arrow.
  • the direction of the arrow indicates the direction of the electromagnetic force, and the length indicates the strength.
  • the electromagnetic force component in the X direction in the X direction along the inner wall surface (long side inner surface) of the ⁇ type is distributed in large and small, the ⁇ type inner surface is stuffed in the X direction and partially melted. There is a risk that the metal will stay.
  • the y-direction component of the electromagnetic force is substantially eliminated, no eddy is observed anymore, and substantially only the creeping flow Is generated. Therefore, the effect of preventing powder entanglement is extremely high, and the X-direction component of the electromagnetic force is uniform over the entire length of the long side (X direction), and the constant direction (X direction) and constant speed
  • the ⁇ Since linear motors with different slot depths are used for each slot, the action and effect described with reference to FIGS. 56A and 56B and FIG. You.
  • FIG. 59 shows a second embodiment of the present embodiment.
  • the electrical connectors CF 2 a to CF 2 r (FIG. 54) of the second group of the linear motor 6 F are omitted, and The electrical coils CL2a to CL2r of the second group of the linear motor 6L are omitted.
  • substantially no linear driving force is applied to the molten metal 1 in the first space and the third space. That is, surface flow due to injection of molten metal from immersion nozzle 2 Since the linear driving force that promotes (Fig. 61A) is not applied, the linear coils of the first group of linear motors 6F and 6L have electric coils CF1a to CFlr and CL1a to CLlr.
  • the linear driving force overcomes the superficial flows in the first space and the third space due to the injection of the molten metal from the immersion nozzle 2, and the difference between the driving force and the speed of the superficial flows in the second and fourth spaces is It is sufficient that they are substantially the same. Therefore, as shown in Fig. 61B, a surface flow according to the intensity of the electromagnetic force of the motor occurs at the surface layer of the meniscus, and the surface flow due to the injection flow shown in Fig. 61A is By counteracting or strengthening, it is possible to finally generate a circulating flow with high uniformity of the velocity distribution along the inner wall 31 shown in Fig. 61C on the surface layer of the molten metal.
  • FIGS. 60A and 60B show a power supply circuit according to a third embodiment of the present embodiment.
  • the linear motor used in the third embodiment is the one shown in FIG. 54 or FIG.
  • the electric coils CF1a to CFlr and CL1a to CLlr of the first group of the linear motors 6F and 6L have linear driving force similarly to the first and second embodiments.
  • the second group of electric coils CF 2 a to CF 2 r
  • the linear driving force by C F1a to CFrl and CL1a to CLLr may be a smaller value in order to make the surface flow velocity uniform.
  • the surface flow according to the strength of the electromagnetic force of the motor is generated in the meniscus plane as shown in Fig. 61B, and the surface flow due to the injection flow shown in Fig. 61A is By counteracting or strengthening, it is possible to finally generate a circulating flow with high uniformity of the velocity distribution along the inner wall 31 shown in Fig. 61 on the surface layer of the molten metal.
  • Fig. 54 shows a cross section of the inner wall 31 shown in Fig. 27 cut horizontally at the cores 12F and 12L of the linear motors 6F and 6L.
  • the ⁇ -shaped inner wall 31 is composed of opposed long sides 10 F, 10 L and opposed short sides 11 R, 11 L, and each side is a copper plate 33 F, 33 L , 35 R, 35 L
  • Nonmagnetic stainless steel plates 32F, 32L, 36R, and 36L are backed.
  • the cores 12 F 12 L of the linear motors 6 F and 6 L are slightly longer than the effective lengths of the ⁇ type long sides 10 F and 10 L (the length in the X direction where the molten metal 1 contacts).
  • 18 slots are cut at predetermined pitches into the total length of them, for a total of 36 slots.
  • the depths of the slots BF1a to BFlr cut into the core 12F of the linear motor 6F and the slots BL1a to BLlr cut into the core 12L of the linear motor 6L are as follows.
  • each slot of the core 12F of the linear motor 6F has the electric power of the first group.
  • the coils CF1a to CF1r and the second group of electric coils CF2a to CF2r are installed.
  • each slot of the core 12L of the linear motor 6L includes electric coils CL1a to 1 of the first group.
  • the linear motors 6F and 6L are designed to apply a thrust to the molten metal 1 as indicated by a dotted arrow in FIG. 61B, and the electric coils of the first group of the linear motors 6F and 6L.
  • CF 1 a to CF lr and CL 1 a to CL lr have strong thrust, while the second group of electric coils CF 2 a to CF 2 r and CL 2 a to CL 2 r have weak thrust. Should be given.
  • Fig. 55 shows the connections of all the electric coils shown in Fig. 54.
  • the electric coils CF1a to CF1r of the first group of the linear motor 3F are w, w, w, w, w, w, w, V, VV, V, and v in this order in Figs. V, V, u, u, u, u, u, u.
  • V indicates V-phase positive-phase energization of three-phase AC
  • v indicates V-phase negative-phase energization
  • W indicates W-phase positive-phase energization of three-phase AC.
  • W indicates reverse-phase energization of the W phase.
  • the terminals U1, V1 and W1 shown in Fig. 55 are the power supply for the electric coils CF1a to CFlr and CF2a to CF2r of the first and second groups of the linear motor 6F.
  • Terminals U 2, V 2 and W 2 are connected to the first and second groups of electric coils CL 1 a to CL 1 r,
  • a three-phase AC power of 20 Hz is applied to the linear motors 6F and 6L having a two-pole configuration by the linear motors 6F and 6L.
  • the molten metal 1 in the inner wall 31 of the mold is subjected to the thrust shown by the dotted arrow in FIG. 61B, and the flow of the molten metal injected from the immersion nozzle 2 (FIG. 61A) is synthesized. It becomes the solid arrow shown in 6 1 C. In other words, it becomes a circulating flow.
  • the eddy current is weak and powder entrainment is less likely to occur, and near the inner surface of the long side of the ⁇ type, the electromagnetic force at the outer edge of the adjacent vortex is continuous and the y-direction component is extremely small.
  • the X-direction component of the electromagnetic force is uniform over the entire length of the long side (X-direction), and a constant surface (X-direction) and constant-speed creeping flow is produced. In addition, air bubbles are promoted.
  • FIG. 59 shows an enlarged cross-sectional view in which the cores 12F and 12L of the second embodiment of the present embodiment are horizontally broken.
  • the second group of slots cut into cores 12F and 12L (slots BF2a to BF2r and slots BL2a to BL 2 r) has no coil.
  • Other configurations are the same as the first embodiment.
  • the core 12 By not coiling the second group of slots (slots BF2a to BF2r and slots BL2a to BL2r), the core 12 The electromagnetic force generated in F and 12L is applied to the first group of slots (slots BF1a to BFlr and slots BL1a to BLlr). (CF1a to CFlr and CL1a to CLlr) only.
  • FIG. 58 shows the distribution of the electromagnetic force applied to the surface layer of the molten metal in the mold of the second embodiment of the present invention.
  • the magnitude of the electromagnetic force does not change so much, and a substantially creeping flow can be generated.
  • the time required to wind the coil is reduced, so that time is streamlined and costs are reduced.
  • the X-direction component of electromagnetic force is uniform over the entire length of the X-shaped long side (X direction).
  • the core without the electric coil is virtually unnecessary. Therefore, in a modification of the second embodiment of the present embodiment, the cores 12F and 12L of the linear motors 6F and 6L are connected to the electric con- nections CF1a to CF1r of the first group. And the length of the wound part of CL1a to CL1r.
  • the linear motors 6F and 6L shown in FIG. 54 or FIG. 28 are used. These linear motors 6F and 6L are connected to the power supply as shown in FIG. Connect circuit VC and VD. That is, the electric coils CF1a to CF1r and CL1a to CLlr of the first group of the linear motors 6F and 6L have the same configuration as the first and second embodiments of FIG. A three-phase alternating current is applied by a three-phase alternating current output power circuit VC with the same configuration as the power circuit shown in Fig.1. However, the DC power supply circuit VD shown in Fig. 60B applies DC to the electrical condensers CF2a to CF2r and CL2a to CL2r of the second group, Cut off.
  • the DC power supply circuit VD shown in FIG. 60B removes the transistor bridge 47 A from the power supply circuit shown in FIG. 31 and outputs the DC voltage of the capacitor 46 A as it is. That's how it works.
  • the DC output voltage of the DC power supply circuit VD shown in Fig. 60B is determined by the coil voltage command value Vcd given to the phase angle ⁇ calculator 76d.
  • Driver 7 7 d Since no trigger signal is generated, the thyristor bridge 72 d is off and the DC output voltage is 0. That is, energization of the second group of electric coils CF2a to CF2r and CL2a to CL2r is cut off.
  • the gate driver 7 7 d When the coil voltage command value V cd gradually increases, the gate driver 7 7 d generates a trigger signal before the zero cross point of the input three-phase alternating current, and the silic 7 2 d is on As a result, the DC output voltage rises as the coil voltage command value V cd rises.
  • the DC current flowing through the second group of electric coils CF2a to CF2r and CL2a to CL2r is the surface flow of molten metal 1 in the second and fourth spaces (Fig. 6). A braking force is applied to 1A), and this braking force increases as the DC output voltage of the DC power supply circuit VD increases.
  • the third embodiment of the present embodiment is provided with two sets of AC power supply circuits VC and two sets of DC power supply circuits VD as shown in FIG.
  • three-phase AC is applied to the first group of electric coils of the linear motors 6F and 6L
  • DC is applied to the second group of electric coils.
  • a three-phase alternating current is supplied to the electric coils of the first group of the linear motors 6F and 6L as a set of the alternating-current power supply circuit VC, and the direct-current power
  • the circuit VD also forms a pair and supplies DC to the second group of electric coils of the linear motors 6F and 6L.
  • the AC current value of the first group of electric coils of the near motors 6F and 6L cannot be adjusted individually, and the DC current value of the second group cannot be adjusted individually, Is substantially symmetrical with respect to the immersion nozzle 2, so that this modified example has a sufficient effect.
  • the linear motor in which the cores having different slot depths are opposed to each other is used, the y-direction component of the electromagnetic force is substantially eliminated, and the eddy current is no longer recognized. No, virtually only creeping flow occurs. Therefore, the effect of preventing powder entrapment is extremely high, and near the inner surface of the long side of the ⁇ type, the electromagnetic force at the outer edge of the adjacent vortex is continuous, and the component in the y direction is extremely small.
  • the X-direction component of the electromagnetic force is uniform over the entire length of the side (X-direction), and a constant direction (X-direction) and constant-speed creeping flow is provided. Is promoted.
  • a tangible 80 for pouring the molten metal 1 into the mold 3 is further injected with a molten metal from a ladle 79, but the ladle 7 When replacing 9, the level of molten metal in tangish dish 80 temporarily drops, which causes the injection pressure from tangish dish 80 to mold 3 to change ladle 7 9 It fluctuates at the exchange cycle X, and for example, the manufacturing speed fluctuates as shown in FIG. 62B.
  • the ⁇ piece at the time when the manufacturing speed has decreased is called a Q piece (low quality material) and becomes a downgraded or defective product.
  • An object of the present embodiment is to provide a flow velocity control device capable of adjusting or controlling the surface flow in response to a change in the operation state of a tent.
  • the continuous manufacturing apparatus of the present embodiment includes a plurality of slots BF1a and the like distributed in a direction along one side 1OF of a square side surrounding the molten metal 1.
  • a first set of linear motors 6F comprising a combination of a magnetic core 12F having a plurality of electric coils CF1a inserted into each slot; and another one facing the one side.
  • a magnetic core 12L having a plurality of slots BL1a distributed along the side 10L and a plurality of electric coils CL1a inserted into each slot.
  • the second set of linear motors 6 L consisting of
  • Flow velocity detecting means 91a to 91d, 98a for detecting the flow velocity Vs1 to vs4 of the molten metal surface layer at each of a plurality of positions on the upper surface of the molten metal in the space surrounded by the mold side. ;
  • Flow velocity conversion means 98 c for converting the detected flow velocity v sl to v s 4 into flow velocity components M s, M p M a, and M t of a plurality of preset surface velocity distribution modes;
  • Each of the converted flow velocity components Ms, Mp, Ma, Mt Compensation amount calculating means 9 8 c which compares the values of each mode with target values M so, M po, Mao and M to calculate flow component deviations d M s, d M p, d M a and d M t ;
  • Inverting means 9 for inversely converting the flow velocity component deviations d M s, d M p, d M a, and d M t into the flow velocity deviations d Vl to d V 4 of the molten metal surface layer at each of the plurality of positions. 8c; and controlling the current values of the first and second sets of linear motors 6F, 6L via the energizing means so as to make these flow rates dvl to dV4 zero.
  • the flow velocity at each part of the molten metal surface layer is a vector sum of a plurality of flow velocities (components) in a predetermined direction
  • the flow velocity of the molten metal surface part at each of a plurality of positions on the upper surface of the molten metal vs. l to vs 4 can be expressed by a combination of a plurality of surface velocity distribution modes (components).
  • the target velocity distribution can be represented by a plurality of surface velocity distribution modes (component target values). ) Can be expressed as a combination.
  • M po, Mao, and M to may be changed to those that provide the best flow velocity distribution vsl to vs4.
  • the flow velocity conversion means 98 c converts the actual flow velocity (detected values vsl to vs 4) of the surface layer into the component values of the plurality of surface velocity distribution modes (components).
  • M s M p, M a, and M t and the compensation amount calculating means 98 calculates the deviation d of these component values M s, ⁇ ⁇ , M a, and M t with respect to the target values Mso, Mpo, Mao, and M to M s, d M p, d M a, and d M t are calculated, and the inverse conversion means 98 calculates these component deviations d M s, d M p, d M a, and d M t into actual flow rates.
  • the distribution control is inversely converted to the distribution deviations dvl to dv4, and the energization control means 98c sets the flow velocity deviations dvl to dv4 to zero, that is, the flow velocity for canceling and compensating for the dvl to dv4.
  • the electromagnetic force applied to the molten metal by the linear motor is controlled so that it is applied to each part.
  • the flow velocity distribution at the surface of the molten metal is specified by the combination Mso, M po, Mao, and M to of a plurality of surface velocity distribution modes (component target values).
  • the target values Mso, M po, M ao By simply changing M to to give the desired flow velocity distribution, the target flow velocity distribution is automatically and promptly obtained. Therefore, it is easy to set, change, and adjust the flow velocity distribution. For example, while the ladle 79 is being replaced and the injection speed into the mold is decreasing, the stirring mode is used (Fig. 72A).
  • Fig. 63 shows a cross section of the inner wall 31 shown in Fig. 27 cut horizontally at the cores 12F and 12L of the linear motors 6F and 6L.
  • the ⁇ -shaped inner wall 31 is composed of opposing long sides 10 F, 10 L and opposing short sides 11 R, 11 L, and each side is a copper plate 33 F, 33 L , 35R, 35L are backed by non-magnetic stainless steel plates 32F, 32L, 36R, 36L.
  • the cores 12 F and 12 L of the linear motors 6 F and 6 L are the effective lengths of the ⁇ -shaped long sides 10 F and 10 L (the length in the X direction where the molten metal 1 contacts). It is rather long, and 36 slots are cut at a predetermined pitch in their entire length.
  • the flow velocity sensors 91 a to 91 d are suspended by being supported by a frame (not shown), and the flow velocity value is lowered by a necessary timing. Measure the flow velocity (surface flow velocity) at the surface layer in Step 1.
  • Each of the sensors 91a to 91d measures the flow velocity in each of the four divided spaces (first to fourth spaces) in the type III.
  • Fig. 64 shows the phase division and group division of the electric coil shown in Fig. 63
  • the electrical connectors (# 1: CF la to CF lr) and (# 2: CF 2a to CF 2r) of the # 1 and # 2 groups of the linear motor 6F are In the order, u, u, u, V, V, V, w, w, U, U, U, v, v, v, W, W, W
  • the coils (# 3: CL1a-CL1r) and (# 4: CL2a to CL2r) u, u, u, V, V, V, w, w, U, U, U, v, v, v, W, W, W, W, W.
  • U indicates the positive-phase energization of the U-phase of the three-phase alternating current (as-is energized), and “u” indicates the negative-phase energization of the U-phase (energized 180 degrees from the U-phase).
  • the electric coil “U” is applied with the U phase at the beginning of the winding, while the electric coil “u” is applied with the U phase at the end of the winding. Means this.
  • V indicates the positive-phase energization of the V-phase of three-phase AC
  • v indicates the negative-phase energization of the V-phase
  • W indicates the positive-phase energization of the W-phase of three-phase AC.
  • the terminals U1, VI, W1 and U2, V2, W2 shown in Fig. 65 are the # 1 and # 2 groups of electric motors CF1a to CF1r, CF2 of the linear motor 6F. a to CF 2 r power connection terminals, terminals U 3, V 3, W 3 and U 4, V 4, W 4 are the electrical coils of the # 3 and # 4 groups of linear motors 6 Power supply connection terminals for CL1a to CLlr and CL2a to CL2r.
  • Linear motor 6 F core 1 2 F slot The kit includes # 1 group of electric coils CF1a ⁇
  • each slot of core 12L of linear motor 6L has electric coils CL1a to CL1r of # 3 group and electric coils CL2a to CL of # 4 group. 2 r is attached.
  • the linear motors 6F and 6L try to apply an electromagnetic force in the direction indicated by the arrow in FIG. 72A to the molten metal 1, but as will be described later, the DC It also has a function to apply a braking force to the molten metal 1 more.
  • first and second spaces In the first and second spaces, the same direction along the ⁇ -type side, and in the third and fourth spaces, the same direction along the ⁇ -type side, but in the opposite direction to the direction in the first and second spaces. And the absolute value of the flow velocity is the same.
  • the first to fourth spaces are as shown in Fig. 63. (Fig. 72A)
  • the velocity sensors 91 a to 91 d detect the velocity of the surface flow of the molten metal 1 in the mold 3 in each of the first to fourth spaces.
  • Fig. 69 A and 69 B and Fig. 7 OA and 70 B The structure of the speed sensor 91a is shown.
  • Fig. 69A is a side view of the velocity sensor 91a with the outer cases 1339 and 140 cut away, and Fig. 69B shows a cross section taken along line E-E of Fig. 69A.
  • the flow sensor 91a has a plate body 130 made of a molybdenum cermet whose tip is immersed in the molten metal 1 when measuring the flow velocity.
  • This plate body 130 is rotatably supported by a support plate 131a via a support shaft 131b.
  • the lower end of the spring plate 133 is fixed to the support plate 131a, and the upper end of the spring plate 133 is fixed to the fixed plate 133a.
  • the fixing plate 1337a is integral with the hollow tube 144.
  • Strain gauges 135a and 135b are attached to the front and back of the spring plate 133, respectively, and the signal wires 13 connected to the strain gauges 135a and 135b are attached. 6a passes through the hollow tube 144. ′ An outer case 13 9 for sensor protection is fixed to the hollow tube 14 3, and the lower opening 13 4 is passed through the spring plate 13 3. The outer case 1 39 is attached to the end of an outer case 140 serving as a support arm.
  • the ventilation pipes 14 2 in the outer case 140 are open to the inner space of the outer case 13 9, and cooling air is blown into the outer case 13 39 through the ventilation pipes 14 2. Part of the cooling air is opened from the outer case 1 3 9
  • the other flow velocity sensors 91b to 91d have the same structure and the same function as the flow velocity sensor 91a, and are similarly connected to the flow velocity detection circuit 98a.
  • a signal representing the flow velocity V s2 to V s 4 (direction and velocity) of the surface flow is given to the CPU 98c.
  • Figure 66 shows an outline of the configuration of the electrical circuit that energizes each of the electrical coils shown in Figure 63 (and Figures 64 and 65). Further, FIG. 67 shows that the power supply coils # 1, # 2, and # 3 from the processing unit 98 to the power supply circuits 92a to 92d shown in FIG. , # 4 power connection terminals Ul, VI, W1, U2, V2, W2, U3 V3, W3, U4, V4, W4 Figure 68 shows the configuration of the power supply circuit 92a and the energization controller CC1 shown in Figure 67.
  • description will be given with reference to each figure.
  • the velocity (direction and magnitude) of the surface flow in each of the first to fourth spaces in the mold MD is measured by the velocity sensors 9 la, 91 b, 91 c and 9 Id. Then, it is given to the arithmetic processing unit 98.
  • the sensors 91a to 91d The measured flow rates are vsl to vs4.
  • the measured values Vsl to vs4 of the flow velocity measured at the flow velocity sensors 91a to 91d are input to the CPU 98c of the arithmetic processing unit 98 shown in FIG.
  • the CPU 98c calculates the set of measured values Vs1 to Vs4 into the component values Ms (stirring mode flow rate) and Mp of each mode shown in FIGS. (Translational mode flow velocity), M a (acceleration mode velocity) and M t (twist mode velocity).
  • the CPU 98c converts the target flow velocity distribution (corresponding to the four values of the measured values) inputted by the operator from an operation (not shown) connected to the CPU and the display board according to the above equation (11) into the component target of each mode.
  • the values are decomposed into values M so, M po, Mao and M to and stored in registers. Value.
  • CPU 98c then combines the set of these deviation values dMs, dMp, dMa, and dMt according to the following equation (12) to calculate flow velocity deviations dvl to dv4. That is, the mode component deviation is inversely converted into flow velocity deviations dV1 to dv4 corresponding to the measured values.
  • the conduction controller CC 2 of the power supply circuit 30 b is directed to V s 2, f 2 and VB 2, Vs3, f3 and VB3 are instructed to the energization controller CC3 of the power supply circuit 30c, and Vs4, f4 and VB4 are instructed to the energization controller CC4 of the power supply circuit 30d.
  • the CPU 98c has a data map (an area of a table memory, also known as a table memory) in which the voltage vs, the frequency f, and the DC voltage VB are written to the integrated value. By accessing, Vs1, fl and VB1, Vs2, f2 and VB2, Vs1, fl and VB1, corresponding to the integral values Vi1 to Vi4, respectively, are obtained.
  • Vs3, f3 and VB3, and Vs4, f4 and VB4 are read and output to each energization controller.
  • the integral value is positive (flow direction in the stirring mode)
  • data is stored such that f becomes lower, Vs becomes higher, and VB becomes lower as the integral value becomes larger.
  • FIG. 73 shows the measured values v s1 to c
  • the CPU 98 c calculates the calculated V s 1, f 1 and VB 1 to the energization controller CC 1, Vs 2, f 2 and VB 2 to the energization controller CC 2, Vs 3, f 3 and VB 3 is output to the energization controller CC3, and Vs4, f4 and VB4 are output to the energization controller CC4 (FIGS. 66 and 67).
  • Fig. 68 shows the energization controller CC1 and the power supply circuit 3 for energizing the # 1 group of electric coils of the linear motor 6.
  • the configuration of 0 a is shown.
  • a three-phase AC power supply (three-phase power line) 41 is connected to a thyristor bridge 42 a for DC rectification, and the output (pulsating flow) of the rectifier is made by an inductor 45 a and a capacitor 4. Smoothed at 6 a.
  • the smoothed DC voltage is applied to a power-language stapler 47 a for forming a three-phase AC, and the U-phase of the three-phase AC output from the power supply connection terminal is shown in Fig. 64.
  • the U phase is applied to the power connection terminal VI
  • the W phase is applied to the power connection terminal W 1.
  • a predetermined coil voltage command value V s 1 given to CF 1 a to CF 1 r is given to the phase angle ⁇ calculator 44 a in the energization controller CC 1, and the phase angle ⁇ calculator 44 a is
  • the conduction phase angle ⁇ (thyristor trigger phase angle) corresponding to the command value V s 1 is calculated, and a signal representing this is given to the gate driver 43a.
  • the gate driver 43a starts the phase count from the zero cross point of each phase and conducts the thyristor of each phase at the phase angle ⁇ .
  • the DC voltage indicated by the command value V s1 is applied to the transition stub bridge 47a.
  • the comparator 49a has a high level H (transistor on) when the level of the U-phase signal is higher than the level of the triangular wave provided by the triangular wave generator 50a when the level of the U-phase signal is positive.
  • H high level
  • L low-level L
  • the gate driver 48a turns on and off the transistors of the transistor stablage 47a in response to the signals for each phase, positive and negative sections.
  • the U-phase voltage of the three-phase AC is output to the power supply connection terminal U 1 and the V-phase voltage of the three-phase AC is output to the power supply connection terminal V 1.
  • the W-phase voltage of three-phase AC is output to the power supply connection terminal W1, and the level of these voltages is determined by the coil voltage command value Vs1. That is, when the f force is not 0, the coil has the voltage value specified by the coil voltage command value Vs1, the frequency specified by f1, and the DC bias specified by VB.
  • Fig. This is applied to the electric coils CF1a to CF1r of the # 1 group of the linear motor 6F shown in Fig. 63 and Fig. 64.
  • the configurations and functions of the energization controllers CC2 to CC4 and the power supply circuits 30b to 30d are the same as those of CC1 and 20a. a ⁇ CF 2 r, # 3 group electric coil CL la ⁇
  • a similar three-phase AC voltage defined by Vs2 to Vs4, 2 to 4 and ⁇ 82 to 84 is applied to the CL1r and # 4 group electric coils.
  • the flow caused by the injection of the molten metal converges to the target velocity distribution specified by the operator. Even if the flow rate of molten metal from the immersion nozzle 2 changes due to the effect of the operation of the tent, the surface flow close to the target flow velocity distribution specified by the operator is brought to the molten metal. You.
  • the yield Q piece is avoided and the Q piece length is shortened.
  • the driving pattern and / or driving force should be changed appropriately in response to changes in the operating conditions, such as.
  • the continuous manufacturing method and apparatus according to the present invention are useful for obtaining metal slabs free from surface defects such as vertical cracks in continuous manufacturing of metal slabs such as steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

連続铸造方法および装置
技術分野
本発明は、 鋼等の金属スラ ブの連続铸造において、 縦 割れ等の表面欠陥のない金属スラ ブを得るための、 連続 铸造方法およびその装置に関する。 背景技術 糸田
図 1 は、 従来の金属ス ラ ブの連続铸造に用い られる装 置の断面図である。 図 1 において、 溶融金属 1 が浸漬ノ ズル 2 からモ ー ル ド 3 内に注入され、 溶融金属は冷却さ れたモール ド 3 の壁面から次第に冷却されて凝固 シ ェル 4 を'形成 し、 この凝固シ ェルが引 き抜かれて金属スラ ブ となる。
図 2 は、 図 1 の装置を 'A — A面から見おろ した平面図 である。 図 2 において、 浸漬ノ ズル 2 はモール ド水平面 の中央部に設け られ、 モ ー ル ド内の溶融金属 1 は図 1 の 矢印のよ う にノ ズルロカ、ら吐き 出されて流動 し、 メ ニス カ ス面 (溶融金属の上面) 5 内では図 1 及び図 2 に実線 矢印 と して示す様に、 モール ド短辺 1 1 から浸漬ノ ズル 2 に向かう 反転流が生 じる。
以上述べた様な金属ス ラ ブの連続铸造に用い られる装 置において、 同一高さのモ ー ル ド壁面におけ る溶融金属 の温度が不均一である と、 凝固 シ ェ ル 4 の縦割れが発生 し易い。 こ の縦割れを防止するために、 メ ニスカ ス面 5 内で溶融金属を流動させる こ と、 及び、 溶融金属を流動 させる手段と して電磁撹拌法を用いる こ とが、 日本国特 許出願公開公報 (特開平 1 — 2 2 8 6 4 5 ) に記載され ている。
図 3 は、 こ の公開公報に記載された従来の電磁撹拌装 置を示す。 この従来の電磁撹拌装置は、 モ ー ル ド長辺 1 0 a及び 1 0 b に沿って設け られた電磁撹拌コ イ ル部 6 a '及び 6 b によ り 、 モール ド 3 内の溶融金属に一様な 電磁撹拌推力を与えて、 モ ー ル ド壁面に沿う循環流を溶 融金属に発生させる ものであ っ た。 即ち、 電磁撹拌コ ィ ノレ部 6 a は、 モ ー ル ド長辺 1 0 a に沿って配列された複 数の磁気コ ア 1 2 a と、 こ の磁気コ ア 1 2 a に形成され たス 口 ッ ト 1 3 a に巻回された コ ィ ノレ 1 4 a とを含んで お り 、 電磁撹拌コ イ ル部 6 b も同様に構成されている。 コ イ ル 1 4 a及びコ ィ ノレ 1 4 b の各々 は、 それぞれ結線 ボ ッ ク ス 7 a及び 7 b を経て 3 相電源 8 に接続され、 そ の結線の代表例は図 3 に示される も ので、 移動磁界方式 の電磁撹拌推力がメ ニスカ ス面 5 内の溶融金属に矢印の 様に一様に与え られていた。
図 3 に示される従来の電磁撹拌装置において、 3 相電 源 8 の周波数を 2 H z、 電流を 4 0 O A と したと き のメ ニ スカ ス面内の推力分布を図 4 に示す。 図 4 は、 汎用電磁 界数値解析ソ フ ト ウ ェ ア に よ り 図示 した も のであ り 、 矢 印は、 各升目の領域の推力の向 きを矢の向 きで、 推力の 大き さ を矢の長さで示 している。 図 4 力、ら分かる様に、 モール ド長辺 1 0 に沿う推力の該長辺方向成分は、 該長 辺の各位置でほぼ一定である。
この様に、 従来の金属スラ ブの連続铸造におけるモー ル ド内電磁撹拌装置では、 電磁撹拌力がモール ド長辺に 沿って溶融金属に一様に与え られるため、 実際に得られ る メ ニスカ ス面内の溶融金属の回転流は、 上記反転流と 電磁撹拌力が重な り 、 図 2 の点線矢印の様に、 モール ド 短辺 1 1 から浸漬ノ ズル 2 に向かう と き は強 く 、 浸漬ノ ズル 2 からモール ド短辺 1 1 に向かう と き は弱い流れに な っていた。
一方、 メ ニスカ ス面上には、 非金属介在物やパウ ダー が浮いているが、 溶融金属の回転流が不均一で澱みがあ る場合には、 澱み部分に非金属介在物が集積 した りバウ ダ一が巻き込まれた りする。 これらの非金属介在物ゃパ ウ ダ一は溶融金属が固体に変化する と き に C 0等の気泡 を発生させ、 ま た、 パウ ダーが金属中に残留する とブレ — ク ァゥ 卜の原因となる焼付きが発生 し易い。 従って、 従来のモール ド内電磁撹拌装置は、 同一高さのモール ド 壁面における溶融金属の温度を均一にするのには役立つ ものの、 凝固 シ ェ ル 4 の縦割れを防止するのに十分では な力、つ た。
発明の開示
本発明は、 鋼等の金属スラ ブの連続铸造において、 モ ール ド内の溶融金属をメ ニスカ ス面内で一様に回転流動 させて同一高さ のモール ド壁面における溶融金属の温度 を均一にする と と もに、 溶融金属の回転流を均一と して 非金属介在物の集積やパウ ダーの巻き込みを防止 し、 縦 割れ等の表面欠陥のないスラ ブを製造する こ とを目的と する。
上記目的を達成するために、 本発明の第 1 の観点によ る金属ス ラ ブの連続铸造方法は、 モ ール ドの水平面中央 部に設けた浸漬ノ ズルからモ ー ル ド内に溶融金属を注入 する段階と、 2 つのモ ー ル ド長辺に沿って設けた少な く と も 2 つの電磁撹拌コ イ ル部によ って、 前記 2 つのモ一 ノレ ド長辺の各々 に沿って互いに逆向きの電磁力を発生さ せる段階であ って、 前記モ ー ル ド内の該溶融金属の表層 の回転流がほぼ一様となる様に、 前記浸漬ノ ズルからモ 一ル ド短辺に向かう前記電磁力の成分と、 該モール ド短 辺から前記浸漬ノ ズルに向かう前記電磁撹拌力の成分と を異なる様に した、 前記段階と、 前記モ ー ル ドの一部を 冷却 しながら、 凝固 した金属を引 き抜く 段階とを含む。
ま た、 本発明の第 1 の観点によ る金属ス ラ ブの連続铸 造装置は、 モ ー ル ドの水平面中央部に設け られた浸漬ノ ズルから前記モ ー ル ド内に溶融金属を注入 しつつ、 前記 モ ー ル ドの一部を冷却 しながら凝固 した金属を引 き抜い て金属スラ ブを連続的に铸造する金属ス ラ ブの連続铸造 装置であ って、 2 つの モ ー ル ド長辺に沿って設け られ、 前記モ ー ル ド内の溶融金属の流動を電磁力によ り 制御す る 2 つの電磁撹拌コ イ ル部であ って、 各々 が、 前記 2 つ のモ 一 ル ド長辺の各々 に沿って配列された複数個の磁気 コ ア と、 前記磁気コ アにそれぞれ巻回された複数個のコ ィ ルとを有する前記電磁撹拌コ イ ル部と、 所定の周波数
© 2 相以上の交流を発生する少な く と も 1 つの電源回路 と、 それぞれ前記 2 つのモ ー ル ド長辺につ いて前記コ ィ ルと接続手段とで構成される 2 つの回路が前記浸漬ノ ズ ルに関 して点対称とな り 、 かつ、 前記 2 つの回路の各々 が 2 つの回路部分に分割さ る様に、 前記電磁撹拌コ イ ル 部と前記少な く と も 1 つの電源回路とを接続する接続手 段とを含む。
ま た、 本発明の第 2 の観点によ る金属ス ラ ブの連続铸 造装置は、 モ ー ル ドの水平面中央部に設け られた浸漬ノ ズルから前記モ ー ル ド内に溶融金属を注入 しつつ、 前記 モ ー ル ドの一部を冷却 しながら凝固 した金属を引 き抜い て金属スラ ブを連続的に铸造する金属スラ ブの連続铸造 装置であ って、 2 つのモ'ー ル ド長辺に沿って設け られ、 前記モ ー ル ド内の溶融金属の流動を電磁力によ り制御す る 2 つの電磁撹拌コ イ ル部であ って、 各々 が、 前記 2 つ のモ ー ル ド長辺の各々 に沿って配列された複数個の磁気 コ ア と、 該磁気コ ア の少な く と も一部にそれぞれ巻回さ れた複数個のコ イ ルとを有する前記電磁撹拌コ イ ル部と 前記 2 つの電磁撹拌コ イ ル部に電流を供給する通電手段 とを含み、 前記モ ー ル ド内外の空間を、 前記浸漬ノ ズル の中心を通り前記 2 つのモ ー ル ド長辺に平行な平面と、 前記浸漬ノ ズルの中心を通り 前記 2 つのモール ド長辺に 垂直な平面と によ り 、 第 1 の空間、 第 2 の空間、 第 3 の 空間、 第 4 の空間に仮想的に分割 し、 該第 3 の空間は前 記浸漬ノ ズルの中心に関 して該第 1 の空間と対象位置に あ り 、 該第 4 の空間は前記浸漬ノ ズルの中心に関 して該 第 2 の空間と対象位置にある場合に、 該第 1 の空間に存 在する磁気コ ア と該第 3 の空間に存在する磁気コアが該 第 2 の空間に存在する磁気コア と該第 4 の空間に存在す る磁気コ アよ り も長いか、 又は、 前記装置が、 該第 1 の 空間に存在する該コイ ルと該第 3 の空間に存在する該コ ィ ルに溶融金属をモール ド辺に沿う方向に駆動するため の交流電流を通電する通電手段と、 該第 2 の空間に存在 する該コ イ ルと該第 4 の空間に存在する該コイ ルに直流 電流を通電するかあるいは前記交流電流の通電を遮断す る回路とをさ らに含む。 又、 前記 2 つのモール ド長辺の 1 つが該第 1 の空間と該第 2 の空間に存在 し、 前記 2 つ のモール ド長辺の他の 1 つが該第 3 の空間と該第 4 の空 間に存在する場合に、 前記 2 つの電磁撹拌コイ ル部の 1 つは該第 1 の空間のみに該コ イ ルを有 し、 他の 1 っは該 第 3 の空間のみに該コ イルを有 して もよい。
さ らに、 本発明の第 3 の観点によ る金属スラ ブの連続 铸造装置は、 モール ドの水平面中央部に設け られた浸漬 ノ ズルから前記モール ド内に溶融金属を注入 しつつ、 前 記モール ドの一部を冷却 しなが ら凝固 した金属を引 き抜 いて金属スラ ブを連続的に铸造する金属スラ ブの連続铸 造装置であ って、 2 つのモール ド長辺に沿って設け られ 前記モ ー ル ド内の溶融金属の流動を電磁力によ り 制御す る 2 つの電磁撹拌コ イ ル部であ って、 各々 が、 前記 2 つ のモ ー ル ド長辺の各々 に沿って配列された複数個の磁気 コ ア と、 前記磁気コ アにそれぞれ巻回された複数個のコ ィ ルとを有する前記電磁撹拌コ イ ル部と、 前記 2 つの電 磁撹拌コ イ ル部に電流を供給する通電手段と、 モ ール ド 内の溶融金属の上表面の複数の位置において、 溶融金属 表層部の流速を検出する流速検出手段と、 該検出された 流速を、 予め設定 した複数の表層部流速分布モー ドにお けるそれぞれの流速成分に変換する流速変換手段と、 該 変換された流速成分を各モ ー ドにおけるそれぞれの目標 値と比較 し、 流速成分偏差を算出する補償量算出手段と 該流速成分偏差を、 前記複数の位置における溶融金属表 層部の流速偏差にそれぞれ逆変換する逆変換手段と、 こ れらの流速偏差を零にするよ う に、 前記通電手段を制御 する制御手段とを含む。
以上述べた様な本発明の第 1 の観点によ る金属スラ ブ の連続铸造方法ま たは装置によれば、 2 つの電磁撹拌コ ィ ル部によ り 発生された電磁撹拌力の分布を調整する こ とで、 モール ドに沿っ た一様な回転カをメ ニ ス カ ス面内 の溶融金属に与える こ とができ る。 ま た、 本発明の第 2 の観点によ る金属ス ラ ブの連続铸造装置によれば、 電磁 撹拌コ イ ル部を簡素化 し小型にする こ とができ る。 さ ら に、 本発明の第 3 の観点によ る金属スラ ブの連続铸造装 置によれば、 溶融金属の流速分布の設定、 変更、 調整が 容易 と なる。
図面の簡単な説明
図 1 は、 従来の連続铸造におけるモール ド内の状況を 示す説明図である。
図 2 は、 図 1 の A — A矢視図である。
図 3 は、 従来装置例の断面図および回路図である。 図 4 は、 従来装置例における電磁攪拌推力の分布を示 す図である。
図 5 は、 本発明の第 1 実施例の説明図である。
図 6 は、 本発明の第 1 実施例に係る装置の断面図およ び回路図である。
図 7 は、 図 6 に示す装置の回路図である。
図 8 は、 本発明の第 1 実施例に係る別の装置の断面図 および回路図である。
図 9 は、 本発明の第 1 実施例に係る さ らに別の装置の 断面図および回路図である。
図 1 0 は、 従来例 2 における電磁攪拌推力の分布を示 す図である。
図 1 1 は、 本発明例 1 における電磁攪拌推力の分布を 示す図である。
図 1 2 は、 本発明例 1 における電磁攪拌推力の分布を 示すグラ フである。
図 1 3 は、 本発明例 2 におけ る電磁攪拌推力の分布を 示す図である。
図 1 4 は、 本発明例 2 における電磁攪拌推力の分布を 示すグラ フであ る。
図 1 5 は、 本発明の第 2 実施例に係る装置の説明図で ある。
図 1 6 は、 本発明の第 2 実施例に係る別の装置の説明 図である。
図 1 7 は、 本発明の第 2 実施例に係る装置に使用する 電源回路の接続図である。
図 1 8 は、 本発明の第 2 実施例に係る装置の作用の説 明図である。
図 1 9 は、 本発明の第 2 実施例に係る装置の作用の説 明図である。
図 2 0 は、 本発明の第 2 実施例に係る装置の断面図お よび回路図である。
図 · 2 1 は、 本発明の第 2 実施例における電磁攪拌推力 の分布を示す説明図である。
図 2 2 は、 本発明の第 2 実施例における電磁攪拌推力 の分布を示す説明図である。
図 2 3 は、 本発明の第 2 実施例における電磁攪拌推力 の分布を示す説明図である。
図 2 4 は、 本発明の第 2 実施例における電磁攪拌推力 の分布を示す説明図である。
図 2 5 は、 本発明の第 2 実施例におけ る電磁攪拌推力 の分布を示す説明図である。
図 2 6 は、 本発明の第 2 実施例におけ る電磁攪拌推力 の分布を示すグラ フである。 図 2 7 は、 本発明の第 3 実施例の外観と、 中央縦断面 を示す斜視図である。
図 2 8 は、 図 2 7 に示すコア 1 7 F, 1 7 Lを水平に 破断 した拡大横断面図である。
図 2 9 は、 図 2 8 の B — B線拡大断面図である。
図 3 0 は、 図 2 8 に示す電気コ イ ルの結線を示す電気 回路図である。
図 3 1 は、 図 2 8 に示す各 リ ニアモー タの第 1 グルー プの電気コ イ ルに 3 相交流電圧を印加する電源回路を示 す電気回路図である。
図 3 2 は、 図 2 8 に示す各 リ ニアモータの第 2 グルー プの電気コ イ ルに 3 相交流を印加する電源回路を示す電 気回路図である。
図 ' 3 3 は、 リ ニアモー タの極数および印加交流の周波 数と電磁力の関係を示すグラ フである。
図 3 4 は、 2 極の リ ニアモータ 2 個によ り 発生する電 磁力分布を示す平面図である。
図 3 5 は、 4 極の リ ニアモータ 2 個によ り発生する電 磁力分布を示す平面図である。
図 3 6 は、 6 極の リ ニアモータ 2 個によ り発生する電 磁力分布を示す平面図である。
図 3 7 は、 1 2 極の リ ニアモー タ 2 個によ り 発生する 電磁力分布を示す平面図である。
図 3 8 は、 4 極の リ ニアモータ 2 個に、 1 . 8 H zの 3 相交流を印加 して現われる電磁力分布を示す平面図であ る。
図 3 9 は、 4 極の リ ニアモー タ 2 個に、 3 H zの 3 相交 流を印加 して現われる電磁力分布を示す平面図である。
図 4 0 は、 4 極の リ ニアモ一 夕 2 個に、 5 H zの 3 相交 流を印加 して現われる電磁力分布を示す平面図である。
図 4 1 は、 4 極の リ ニアモータ 2 個に、 1 0 H zの 3 相 交流を印加 して現われる電磁力分布を示す平面図である 図 4 2 は、 4 極の リ ニアモータ 2 個に、 2 0 H zの 3 相 交流を印加 して現われる電磁力分布を示す平面図である 図 4 3 Aは铸型内溶鋼の断面図。
図 4 3 B は铸型内溶鋼のメ ニスカ ス面内における表層 流を示す平面図である。
図 4 4 は、 本発明の第 4 実施例に係る連続铸造装置に おける リ ニアモータ 6 Fの第 1 グループの電気コ イ ルに 3 相交流電圧を印加する電源回路を示す電気回路図であ る o
図 4 5 は、 リ ニアモー タ 6 F の第 2 グループの電気コ ィ ルに 3 相交流を印加する電源回路を示す電気回路図で の o
図 4 6 は、 リ ニアモー タ 6 Lの第 2 グループの電気コ ィ ルに 3 相交流を印加する電源回路を示す電気回路図で ある。
図 4 7 は、 リ ニアモータ 6 Lの第 1 グループの電気コ ィ ルに 3 相交流を印加する電源回路を示す電気回路図で ある。 図 4 8 は、 铸造铸型の短辺 1 1 L, 1 1 Rの背部とそ れらに備わっ た熱電対に接続された電気回路を示すプロ ッ ク図である。
図 4 9 は、 铸造铸型の長辺 1 0 F, 1 0 Lの背部とそ れらに備わっ た熱電対に接続された電気回路を示すプロ ッ ク図である。
図 5 0 は、 図 4 8 および図 4 9 に示すコ ン ピュータ 6 3 の出力を示すプロ ッ ク図である。
図 5 1 Aは本発明の第 4 実施例の リ ニアモータの電磁 力の向 きを示す平面図。
図 5 1 B は注入流の偏流によ る表層流の強度差を示す 平面図。
図 5 1 C は図 5 1 Bの強度差を抑制するために リ ニア モー '夕が発生する電磁力を示す平面図である。
図 5 2 は、 本発明の第 4 実施例の、 リ ニアモータの電 気コ イ ルの相区分を示す水平断面図である。
図 5 3 は、 本発明の第 4 実施例のコ ン ピュータ 4 3 の 演算処理の内容を示すプロ ッ ク図である。
図 5 4 は、 本発明の第 5 実施例に係る連続铸造装置に おける コ ア 1 2 F, 1 2 Lを水平に破断 した拡大横断面 図である。
図 5 5 は、 本発明の第 5 実施例に係る連続铸造装置に おける電気コ イ ルの結線を示す電気回路図である。
図 5 6 Aは図 5 4 に示す破線 C に囲まれた部分の拡大 平面図である。 図 5 6 B は図 5 4 に示す破線 D に囲まれた部分の拡大 平面図である。
図 5 7 は、 本実施例の第 1 態様のスロ ッ ト を用いた 2 極の リ ニアモー タ 2 個によ り発生する電磁力分布を示す 平面図である。
図 5 8 は、 本実施例の第 2 態様のスロ ッ トを用いた 2 極の リ ニアモータ 2 個によ り発生する電磁力分布を示す 平面図である。
図 5 9 は、 第 2 態様の コ ア 1 2 F, 1 2 Lを水平に破 断 した拡大横断面図である。
図 6 O Aは本実施例の第 3 態様の リ ニアモータ と電源 回路の接続関係を示すプロ ッ ク 図。
図 6 0 B は図 6 O A に示す電源回路 V Dの構成を示す 電気回路図である。
図 6 1 Aは、 铸型内溶融金属のメ ニスカ ス面内における 浸漬ノ ズルからの溶融金属注入によ り生ずる表層流を示 す平面図。
図 6 1 B は 2 個の リ ニアモー タで生起 しょ う とする表 層流を点線矢印で示す平面図。
図 6 1 C は浸漬ノ ズルからの溶融金属注入によ り生ず る表層流と 2 個の リ ニアモータの推力.によ り生ずる表層 流とのべク ト ル和を実線矢印で示す平面図である。
図 6 2 Aは铸型 3 とそれに溶融金属を供給する タ ンデ ィ ッ シュ 8 0 およびそれに溶融金属を供給する取鍋 7 9 を示す縦断面図である。 図 6 2 B は、 モール ド流速の変化を連続铸造開始よ り 終了までの期間で示 したグラ フである。
図 6 3 は、 本発明の第 6 実施例の装置の コ ア 1 2 F, 1 2 Lを水平に破断 した拡大横断面図である。
図 6 4 は、 図 6 3 に示す電気コ イルの相区分と グルー プ区分を示す、 図 6 3 相当の断面図である。
図 6 5 は、 図 6 3 に示す電気コ イ ルの結線を示す電気 回路図である。
図 6 6 は、 本発明の第 6 実施例の装置の構成概要を示 すブロ ッ ク図である。
図 6 7 は、 図 6 6 に示す電源回路 3 0 a 〜 3 0 d を制 御する制御系の構成概要を示すプロ ッ ク図である。
図 6 8 は、 図 6 7 に示す電源回路 9 2 a と通電制御器 C C 1 の構成を示すプロ ッ ク図である。
図 6 9 A は図 6 3 に示す流速セ ンサ 9 1 a の、 外ケー スを破断 して示す拡大側面図。
図 6 9 B は図 6 9 Aに示す E — E線断面図である。 図 7 O Aは図 6 9 A と 6 9 B に示す流速セ ンサ 9 1 a の使用状態を示す断面図。
図 7 0 B は、 図 6 6 に示す流速検出回路 9 8 a 内部の 流速セ ンサ 9 1 a の検出信号よ り流速信号を生成する回 路要素を示すプロ ッ ク図である。
図 7 1 Aは铸型内溶融金属のメ ニスカ ス面内における 表層流を示す平面図。
図 7 1 B は図 7 1 Aの F — F線拡大断面図。 図 7 1 C は図 7 1 Aの G — G線拡大断面図である。 図 7 2 A〜 7 2 D は、 铸型内溶鋼のメ ニスカ スにおけ る表層流のべク ト ル成分を示す平面図であ り 、 図 7 2 A は攪拌モ ー ド成分を、 図 7 2 B は並進モ ー ド成分を、 図 7 2 C は加速モ ー ド成分を、 図 7 2 D はね じれモ ー ド成 分を示す。
図 7 3 は、 図 6 6 に示す C P U 9 8 c のデータ処理の 一部の概要を示すプロ ッ ク 図である。
発明を実施するための最良の形態
本発明の第 1 の実施例を図 5 によ り説明する。 図 5 は 本発明の対象とする金属スラ ブの連続铸造を、 メ ニスカ ス面上から見た図であ り 、 横断面が略長方形のモ ー ル ド 3 の該断面中央部に設け られた浸漬ノ ズル 2 から溶融金 属が注入される。 モ ー ル ド長辺 1 0 a および 1 0 b に沿 つて電磁攪拌コ イル部 6 a および 6 bが設け られており 本発明では、 この電磁攪拌コ イ ル部 6 a および 6 b によ る電磁攪拌推力の分布を調整する こ とで、 メ ニ ス カ ス面 5 内の溶融金属にモ ー ル ドに沿っ た一様な回転流を与え る ものである。
すなわち図 5 に示すよ う に、 電磁攪拌コ イ ル部 6 a に よ り 、 モ ー ル ド長辺 1 0 a に沿って、 モ ー ル ド短辺 1 1 a から浸漬ノ ズル 2 に向かう 電磁攪拌推力を P、 浸 漬ノ ズル 2 からモ ー ル ド短辺 1 1 b に向かう電磁攪拌推 力を Q と し、 電磁攪拌コ イ ル部 6 によ り 、 モ ー ル ド長 辺 1 0 b に沿って、 モ ー ル ド短辺 1 1 b から浸漬ノ ズル 2 に向かう電磁攪拌推力を R、 浸漬ノ ズル 2 からモ ー ル ド短辺 1 1 a に向かう電磁攪拌推力を S とする と き、 本 発明では、 推力 Pおよび推力 Q と推力 Rおよび推力 S と を互いに逆向きに し、 かつ推力 Qを推力 P よ り も大き く 推力 S を推力 Rよ り も大き く する。
電磁攪拌推力をこのよ う に分布させ、 推力の大き さを 調整する こ と によ り 、 メ ニスカ ス面内の溶融金属に、 上 から見て時計回 り の一様な回転流が与え られる。 なお図 5 ('こおいて、 電磁攪拌推力を逆向き に し、 推力 Pを推力 Qよ り も大き く 、 推力 Rを推力 S よ り も大き く する こ と によ り 、 反時計回り の一様な回転流を与える こ とができ る o
つぎに、 本実施例に係る連続铸造装置は、 図 6 に示す よ う に、 モ ール ド長辺 1 0 a 側において、 電磁攪拌コ ィ ル部 6 a のコ イル 1 4 a と接続手段である結線ボッ ク ス 7 a の配線で構成される回路が A と B に 2 分割され、 モ ー ル ド長辺 1 0 b側において、 電磁攪拌コ イ ル部 6 b のコ イ ル 1 4 b と接続手段である結線ボッ ク ス 7 bの配 線で構成される回路が C と Dに 2 分割されている。 そ し て、 回路 Aおよび B と、 回路 Cおよび Dは浸漬ノ ズル 2 に対 して点対称であ り 、 回路 A と回路 B は互いに並列で 異なる イ ン ピーダンスを有 し、 回路 C と回路 D も互いに 並列で異なるィ ン ピーダンスを有 している。
図 6 に示す装置の回路は、 図 7 に示すよ う に、 回路 A および C は Y結線 (星状結線) 、 回路 Bおよび 0 は 結 線 (環状結線) とな っており 、 各回路のイ ン ピ ー ダ ン ス は Aおよび C力く Bおよび Dよ り も大とな っている。 この ため、 図 6 のメ ニスカ ス面 5 内の矢印で示すよ う に、 2 つのモ ー ル ド長辺 1 0 a および 1 0 b に沿う電磁攪拌推 力が互いに逆向きで、 かつ浸漬ノ ズル 2 からモール ド短 辺に向かう 向きの電磁攪拌推力が、 モ ー ル ド短辺から浸 漬ノ ズル 2 に向かう 向きの電磁攪拌推力よ り も大き い。 そ して、 指令ボ ッ ク ス 9 で、 連続铸造の操業条件に応 じ た適正な周波数、 電圧、 電流等の電磁攪拌条件を設定す る こ と によ り 、 メ ニスカ ス面 5 内の溶融金属にモール ド に沿っ た一様な回転流が与え られる。
別の回路の例と して、 図 8 に示す装置は、 電磁攪拌コ イ ノレ部 6 のス ロ ッ ト 1 3 が片側 2 4 個あ り 、 回路 Aおよ び回路 C は、 1 5 ス ロ ッ 卜 の コ イ ル力く 5 個ずつそれぞれ 直列に接続され、 回路 Bおよび回路 D は、 9 ス ロ ッ 卜の コ イ ルが 3 個ずつそれぞれ直列に接続されており 、 各回 路のィ ン ピーダンスは Aおよび Cが Bおよび Dよ り も大 とな っている。 このため、 電磁攪拌推力は図 8 のメ ニス カ ス面 5 内の矢印で示すよ う に分布 し、 メ ニスカ ス面 5 内の溶融金属に一様な回転流が与え られる。
さ らに別の回路の例と して、 図 9 に示す装置において は、 回路 Aおよび回路 Cが構成する各コ イ ルが直列に接 続され、 回路 Bおよび回路 Dを構成する各コ イ ルが並列 に接続されており 、 各回路のィ ン ピーダンスは Aおよび C力く Bおよび D よ り も大とな っている。 このため、 電磁 攪拌推力は図 9 のメ ニスカ ス面 5 内の矢印で示すよ う に 分布 し、 メ ニ ス カ ス面 5 内の溶融金属に一様な回転流が 与え られる。
以上述べたよ う に、 従来の金属ス ラ ブの連続铸造にお いて、 浸漬ノ ズルから吐出 した溶融金属は、 モ ー ル ド短 辺に衝突 して反転流とな り 、 図 2 のよ う に、 メ ニスカ ス 面 5 内では、 実線矢印で示すよ う にモ ー ル ド短辺 1 1 か ら浸漬ノ ズル 2 に向かう流れとなるが、 本発明によれば 図 5 に示すよ う に、 メ ニスカ ス面 5 内において、 浸漬ノ ズル 2 からモ ー ル ド短辺 1 1 に向かう電磁攪拌推力 Qお よび S を、 モ ー ル ド短辺 1 1 力、ら浸漬ノ ズル 2 に向かう 電磁攪拌推力 Pおよび尺よ り も大き く する こ と によ り 、 メ ニ ス カ ス面 5 内の溶融金属に一様な回転流を与える こ とができ る。 本発明における電磁攪拌の条件は、 周波数 電圧、 電流等、 電源の条件を指令ボ ッ ク ス 9 の設定によ り調整 し、 また電磁攪拌コイ ル部 6 と結線ボッ ク スで構 成される、 分割された各回路のイ ン ピーダンス設定によ り調整する こ とができ る。
このよ う な本発明によ り、 メ ニスカ ス面内の溶融金属 に反転流を考慮 した適正な電磁攪拌推力を与え られ、 溶 融金属はモ ー ル ド壁に沿って一様に回転流動するので、 溶融金属の澱みがな く な り、 溶融金属中の非金属介在物 の集積や、 メ ニスカ ス面上のパウ ダーの巻き込み等が防 止され、 縦割れ等の表面欠陥のない金属スラ ブを得る こ とができ る。 以下に、 従来例と本発明の シ ミ ュ レ ー シ ョ ンによ る比 較を示す。
(従来例 2 ) 図 3 に示 した従来装置において、 電磁攪 拌コ イ ル部 6 a および 6 b の各コ イ ルをそれぞれ 2 コ ィ ルずつ直列に接続 した従来装置によ り 、 同様に回転推力 を与えたと きの推力の分布を図 1 0 に示す。 周波数 2 Hz. 電流 5 2 5 A、 電流密度は電磁攪拌コ イ ル部 6 a 、 6 b と もに 3. 8 9 3 x 1 0 6 AT/m2と した。 推力分布は図 4 に比べる と均一化されているが、 こ の例において も、 モ —ル ド長辺 1 0 に沿う推力の該長辺方向成分は、 該長辺 の各位置でほぼ一定であ り 、 溶鋼の反転流のため一様な 回転流は得られず、 実験によれば、 スラ ブ表面に表面欠 陥が発生 した。
(本発明例 1 ) 図 6 に示 した本発明装置において、 3 相電源の周波数 2 Hz、 電流 5 2 5 A、 電流密度は回路 A および Cを 2. 2 4 8 X 1 0 6 AT/m2 (つま り イ ン ピーダ ン ス は従来例 2 の 1 . 7 3 倍になる) 、 回路 Bおよび D を 3. 8 9 3 X 1 0 6 AT/m2 (つま り イ ン ピー ダ ン スは従 来例 2 と同 じ) と した。 このと きのメ ニスカ ス面 5 内の 電磁攪拌推力の分布を図 1 1 および図 1 2 に示す。 図 1 1 は図 1 4 および図 1 0 と同様の表示である。 図 1 2 は 推力のモ ー ル ド長辺 1 O b方向の成分をグラ フ化 した も のであ り 、 推力は最大値を 1. 0 とする比で示 してある。 図 1 1 および図 1 2 よ り 、 モ ー ル ド短辺 1 1 から浸漬ノ ズル 2 に向かう推力成分は小さ く (図 1 2 右側) 、 浸漬 ノ ズル 2 からモール ド短辺 1 1 に向かう推力成分は大き く (図 1 2 左側) な っている こ とがわかる。 したがって こ のよ う な装置によ り 電磁攪拌を行う と、 メ ニスカ ス面 内の溶鋼の反転流と同 じ向き には小さ い推力が、 反対の 向き には大き い推力が与え られるので、 モール ドに沿つ た一様な回転流が得られ、 溶鋼流に澱みが生 じる こ とが な く 、 実験によれば、 表面欠陥のない金属スラ ブが得ら れた。
(本発明例 2 ) 図 8 に示 した本発明装置において、 3 相電源の周波数 2 H z、 電流密度は回路 Aおよび Cを
2. 3 6 6 X 1 0 6 AT Z m 2 (つま り ィ ン ピ一 ダ ンスは従来 例 2 の 1 . 6 5 倍となる) 、 回路 Bおよび Dを 3. 8 9 3 X 1 0 6 AT/ m 2 (つま り ィ ン ピーダ ンスは従来例 2 と同 じ) と した。 このと きのメ ニスカ ス面 5 内の電磁攪拌推 力の分布を、 本発明例 1 と同様に して図 1 3 および図 1 4 に示す。 本例においても、 モール ド短辺 1 1 から浸漬 ノ ズル 2 に向かう推力成分は小さ く (図 1 4 右側) 、 浸 漬ノ ズル 2 からモール ド短辺 1 1 に向かう推力成分は大 き く (図 1 4 左側) な っている こ とがわかる。 したがつ て、 このよ う な装置によ り電磁攪拌を行う と、 メ ニスカ ス面内の溶鋼の反転流と同 じ向 き には小さ い推力が、 反 対の向き には大き い推力が与え られるので、 モール ドに 沿っ た一様な回転流が得られ、 溶鋼流に澱みが生 じる こ とがな く 、 実験によれば、 表面欠陥のない金属スラ ブが 得られた。 (本発明例 3 ) 図 9 に示 した本発明装置において、 3 相電源の周波数 2 H z、 電流密度は回路 Aおよび Cを 0. 9 7 3 X 1 0 6 ATZ m 2 (つま り ィ ン ピーダンスは従来 例 2 の 4 倍となる) 、 回路 Bおよび Dを 3. 8 9 3 x 1 0 6 AT/ m 2 (つま り イ ン ピー ダンスは従来例 2 と同 じ) と し た。 このと きのメ ニスカ ス面 5 内の電磁攪拌推力の分布 も、 本発明例 1 および本発明例 2 と同様、 モール ド短辺 1 1 から浸漬ノ ズル 2 に向かう推力成分は小さ く 、 浸漬 ノ ズル 2 からモール ド短辺 1 1 に向かう推力成分は大き く な つており 、 モール ドに沿っ た一様な回転流が得られ 溶鋼流に澱みが生 じる こ とがな く 、 実験によれば、 表面 欠陥のない金属スラ ブが得られた。
次に、 本発明の第 2 の実施例について説明する。
金属スラ ブの連続铸造においては、 浸漬ノ ズル 2 の吐 出口に溶融金属中の非金属介在物が付着する等の原因に よ り 、 溶融金属の吐出流速が各吐出口毎に変動する こ と がある。 この場合、 メ ニスカ ス面内の溶融金属の流動は 種々連続的に変動するので、 従来のよ う に一様な電磁攪 拌推力を付与 したのでは、 一様な回転流を安定 して得る こ とができない。 ま た、 メ ニスカ ス面内の溶融金属には 回転のほか、 反転流に対するブレーキや加速といっ た種 種の形態の推力を与える こ と も望まれる。 しか し、 従来 の電磁攪拌は 3 相 1 電源を用いて行われており 、 連続的 に変わる溶融金属の流動に対 して連続的に推力を変化さ せる こ と は困難であ っ た。 さ らに、 両モ一ル ド長辺に沿う 電磁攪拌推力が互いに 干渉 して、 推力の渦が生 じ、 その澱み部の シ ェルに縦割 れ等の表面欠陥が発生 しやすい場合もあっ た。
実施例は、 鋼等の金属スラ ブの連続铸造において、 モ 一ル ド内の溶融金属をメ ニスカ ス面内で一様に回転させ あるいは反転流に対 しブレーキや加速作用等をなす適正 な推力分布を付与する と と もに、 溶融金属の流動が連続 的に変動する場合においても、 電磁攪拌推力を連続的に 変化させ、 ま た攪拌推力の渦によ る問題も解決 して、 表 面性状の優れた金属スラ ブを得る こ とを目的とする。
本実施例に係る金属スラ ブの連続铸造装置は、 浸漬ノ ズルからモール ド内に溶融金属を注入 しつつ、 メ ニスカ ス面内の 2 つのモール ド長辺に沿って設けた電磁攪拌コ ィ ル部によ り 、 溶融金属のメ ニスカ ス面内での流動を制 御する装置であ って、 前記 2 つの電磁攪拌コ イ ル部と、 2 つあるいは 4 つの電源と、 該各電磁攪拌コ イ ル部と該 各電源を接続する結線ボ ッ ク スと、 各電源条件の制御機 構からな り 、 該各電磁攪拌コイル部は複数個の磁極がモ ール ド長辺に沿って配列され、 各磁極にはコ イ ルが巻回 された移動磁界方式であ り、 該コ イ ルと前記結線ボ ッ ク スの配線で構成される回路がそれぞれ 2 分割され、 分割 された計 4 つの回路の任意の 2 つずつの組合せがそれぞ れ別の電源に接続されているか、 あるいは前記 4 つの回 路がそれぞれ別の電源に接続されている。
本実施例に係る装置を図面によ り説明する。 図 1 5 は 本実施例に係る金属ス ラ ブの連続铸造装置をメ ニス カ ス 面上から見た断面、 および本実施例におけ る電磁攪拌コ ィ ル部の結線例を示す説明図である。 横断面が略長方形 のモール ド 3 の該断面中央部に設け られた浸漬ノ ズル 2 から溶融金属が注入され、 2 つのモール ド長辺 1 0 a お よび 1 0 b に沿ってそれぞれ電磁攪拌コ イ ル部 6 a s 6 bが設け られており 、 それぞれの電磁攪拌推力によ り メ ニスカ ス面 5 内で溶融金属の流動が制御される。
図 1 5 に示 した装置は、 2 つの電源すなわち第 1 電源 2 4 および第 2 電源 2 5 を使用する。 2 つの電磁攪拌コ ィ ル部 6 a 、 6 b の各コ イ ル 1 4 と各電源を接続する回 路はそれぞれ 2 分割され、 分割された計 4 つの回路 A , B, C, Dの任意の 2 つずつの組合せが、 それぞれ別の 電源 · 2 4 および 2 5 に接続されて、 各回路のコ イ ルによ る電磁攪拌推力が制御される。 具体的には、
①回路 Α及び回路 Cを第 1 電源 2 4 に、 回路 B及び回 路 Dを第 2 電源 2 5 に接続、
②回路 A及び回路 Bを第 1 電源 2 4 に、 回路 C及び回 路 Dを第 2 電源 2 5 に接続、
③回路 A及び回路 Dを第 1 電源 2 4 に、 回路 B及び回 路 C を第 2 電源 2 5 に接続、
の 3 通り の組合せがある。 これら 3 通り の組合せは、 ス イ ッ チボ ッ ク ス 2 1 の切替えによ り 、 操業中適宜選択 し て もよ く 、 あるいはスィ ッ チボ ッ ク ス 2 1 を使用せずに 予め設定 しておいて もよい。 本実施例に係る別の装置は、 図 1 6 に例示するよ う に 4 つの電源すなわち第 1 電源 2 6 、 第 2 電源 2 7 、 第 3 電源 2 8 および第 4 電源 2 9 を使用する。 2 つの電磁撹 拌コ イ ル部 6 a , 6 b の各コ イ ル 1 4 と各電源を接続す る回路がそれぞれ 2 分割され、 分割された計 4 つの回路 A, B, C, Dが、 それぞれ別の電源 2 6 〜 2 9 に接続 され各回路のコイ ルによる電磁撹拌推力が制御される。
本実施例において、 電磁撹拌推力分布制御は、 メ ニス カ ス面 5 の溶融金属の流動状況の観察結果に基づき、 2 つの電源 2 4, 2 5 、 あるいは 4 つの電源 2 6 ~ 2 9 の 周波数, 位相差, 電流等の条件を制御ボ ッ ク ス 2 2 によ り調整 して行われる。 溶融金属流動状況の観察は、 メ ニ スカ ス面を人が直接見てもよ く 、 テ レ ビカ メ ラ等の画像 処理結果等を出力するセ ンサー 2 3 によ って もよい。 ま た各回路 A, B, C, Dの結線は、 各コィ ノレ 1 4 が直列 に接続されている もの、 並列に接続されている もの、 あ るいは直列と並列が混在 して接続されている もの等、 適 宜目的に応 じた回路とする こ とができ、 操業中一定の回 路に固定されていてもよ く 、 適宜切り替えて もよい。 各 電源 2 4 〜 2 9 は図 1 5 および図 1 6 に示 した ものの他 図 1 7 のよ う に構成する こ と もでき る。 またこのよ う な イ ンバータ方式の他、 サイ ク ロ コ ンバータ方式で もよい 上記第 2 の実施例によれば、 分割された計 4 つの回路 A , B, C , D によ り、 2 電源あるいは 4 電源を使用 し て電磁撹拌推力の制御を行う ので、 メ ニスカ ス面内の溶 融金属に種々 の形態の推力分布を付与する こ とができ、 かつ連続的に変化する連続铸造の状況に応 じた適切な流 動制御ができ る。 図 1 8 に、 電磁撹拌推力の種々 の形態 について、 従来の 1 電源方式、 本発明の 2 電源方式およ び 4 電源方式によ る推力分布を示す。 図の長方形はモー ル ドで囲まれたメ ニスカ ス面を示 し、 矢の向 き は推力の 向き、 矢の長さ は推力の大き さを示す。 回転はメ ニスカ ス面内で溶融金属に回転作用を及ぼすもの、 ブレーキは 反転流に対 しブレーキ作用を及ぼすもの、 加速は反転流 に対 し加速作用を及ぼすもの、 並進は一方のモール ド短 辺から他方のモール ド短辺に向かう流動作用を及ぼすも のである。 なお図 1 8 は、 各回路 A, B, C, Dのイ ン ピーダンスは同 じ と し、 各回路の結線によ って推力形態 を変えている。 従来の 1 電源方式では、 各回路によ る推 力の大き さ は同 じであるが、 本発明の 2 電源を使用する 場合は、 両電源の電流値を変える こ とで 2 組の推力の大 き さ を任意に変える こ とができ る。 また本発明の 4 電源 を使用する場合は、 各回路の推力の大き さを回路毎に変 える こ とができ る。
したがって、 連続铸造の操業中、 浸漬ノ ズルの吐出口 の状況等によ り 、 モール ド内の溶融金属の流動が変化す る場合において も、 本発明によ り連続的に流動制御を行 つて、 所望の溶融金属の流動を得る こ とができ る。 例え ば、 モール ドの横断面中央部に設けた浸漬ノ ズルの吐出 口に介在物が付着 して、 モール ド内の溶融金属の流動が 変化する と き、 メ ニスカ ス面内で溶融金属が常に一様な 回転流となるよ う に制御する場合を図 1 9 に示す。 ( 1 ) は浸漬ノ ズルの吐出口が左右と も付着物がな く 清浄な場 合で、 電磁撹拌 しない と きのメ ニスカ ス面内の溶融金属 の流動は左右対象な反転流となる。 この場合、 電磁撹拌 によ り一様な回転流を得るためには、 電磁撹拌推力は、 反転流に対向する向き、 すなわちモール ド中央部からモ —ル ド短辺に向かう 向き には強 く し、 反転流の向き、 す なわちモール ド短辺からモール ド中央部に向かう 向き に は弱 く する。 このよ う な推力分布は、 図 1 5 ある いは図 1 6 において、 各回路に供給する電流値を、 A = C < B = D とする こ と によ り得られ、 本発明の 2 電源あるいは 4 電源方式で達成される。 (2 ) は一方の吐出口の片側に 介在物等が付着 した場合で、 電磁撹拌 しないと きの溶融 金属の流動は、 付着物のある側が弱 く なるので、 本実施 例の 4 電源方式で各回路に供給する電流値を、 A < C < B < D とする こ とによ り 、 図示のよ う に推力を分布させ て、 一様な回転流を得る こ とができ る。 (3 ) は一方の吐 出口の両側に付着物がある場合で、 この場合も本発明の 4 電源方式で、 A く C く B < D とする こ と によ り、 図示 のよ う に推力を分布させて、 一様な回転流を得る こ とが でき る。 (4 ) は一方の吐出口が付着物で閉塞された場合 で、 電磁撹拌 しない と きの溶融金属の流動は、 一方のモ ール ド短辺から他方のモール ド短辺に向かう並進流とな るので、 電磁撹拌推力は、 各回路に供給する電流値を、 A 二 B < C = D と し、 図示のよ う に分布させる こ と によ り 、 一様な回転流が得られ、 本実施例の 2 電源あるいは 4 電源方式で達成される。 これらの推力分布を得るため の制御は、 メ ニスカ ス面の溶融金属の流動を観察 し、 電 源条件あるいは結線を適宜変更する こ と によ り行う 。 な お、 図 1 9 において、 (2 ) および(3 ) の場合、 不完全な がら、 2 電源方式で も ほぼ一様な回転流を得る こ と もで
3 な
つぎに、 相対する電磁撹拌コ イ ル部によ る推力が互い に干渉 して推力の渦が生 じた場合、 本発明によ り 、 各電 源の位相差を調整 して渦の位置を変える こ とができ る。 したがって、 渦の間の澱み部に溶融金属中の非金属介在 物等が集積する こ とがな く 、 縦割れ等の表面欠陥のない スラ ブが得られる。
また、 本実施例において複数の電源を使用 しても、 総 電源容量は 1 電源の場合と変わ らず、 全体の設備費用は む しろ安価となる。
以下に、 本実施例の シ ミ ュ レ ー シ ョ ン結果を示す。 図 2 0 に示すよ う に、 2 つの電源 2 4 および 2 5 を使 用 し、 回路 Aおよび回路 Cを第 1 電源 2 4 に、 回路 Bお よび回路 Dを第 2 電源 2 5 に接続 した装置によ り 、 溶鋼 を メ ニ ス カ ス面 5 内で回転流動させた。 第 1 電源 2 4 お よび第 2 電源 2 5 と もに、 周波数 1 . 8 H zである。 第 1 電 源 2 4 の電流密度しを 8. 3 1 9 X 1 0 6 AT/ m 2 ( ピー ク 値) と し、 第 2 電源 2 5 の電流密度 1 2を変化させたと き の、 メ ニ ス カ ス面内の電磁撹拌推力分布を、 図 2 1 ~ 2 5 に示す。 これら各図は、 いずれも図 4 と同様の表示で 図中の α はし 1 2である。 ま た図 2 6 に、 図 2 1 ~ 2 5 における推力のモ ー ル ド長辺 1 5 a 方向の成分を、 推力 の最大値を、 1 . 0 とする比で示す。
図 2 1 〜図 2 5 力、らわかるよ う に、 2 つの電源の電流 を変化させる こ とによ り 、 メ ニスカ ス面内の電磁撹拌推 力分布を変化させる こ とができ る。 メ ニ ス カ ス面上から 溶鋼流を観察 しつつ、 αの値を調節するによ り 、 メ ニス カ ス面内の溶鋼に一様な回転流を与えた結果、 実験によ り 、 表面欠陥のない鋼スラ ブが得られた。
さ らに、 図 2 0 の本発明装置において、 電源 2 4 、 2 5 の位相差を変化させる こ と によ り、 メ ニスカ ス面内の 推力'の渦の位置を変化させた結果、 実験によ り、 さ らに 優れた表面性状のスラ ブが得られた。
ま た、 図 1 6 に示 した本発明装置において、 メ ニスカ ス面上から溶鋼流を観察 しつつ、 各電源 2 6 〜 2 9 の電 流を調整 し、 溶鋼をメ ニスカ ス面 5 内で回転流動させた 铸造完了後の浸漬ノ ズル 2 は、 図 1 9 の(4 ) のよ う に一 方が閉塞 していたが、 铸造中、 常に一様な回転流が得ら れ、 表面性状の良好なスラ ブが得られた。
本実施例によ り 、 鋼等の金属スラ ブの連続铸造におい て、 モール ド内の溶融金属をメ ニスカ ス面内で一様に回 転させ、 ある いは反転流に対 しブレーキや加速作用等を 与える こ とができ る。 ま た溶融金属の流動が連続的に変 動する場合において も、 電磁撹拌推力を連続的に変化さ せ、 さ らに撹拌推力の渦によ る問題も解決 して、 表面性 状の優れた金属スラ ブを得る こ とができ る。 その う え、 2 電源あるいは 4 電源を使用 しても総電源容量は変わ ら ず、 設備費用はむ しろ安価となる。
次に、 本発明の第 3 の実施例について説明する。
以上述べた第 1 から第 2 の実施例において、 安定 した 循環流を起こすには、 強い電磁力が必要である。 例えば 図 2' 7 において、 電磁撹拌コ イ ル部と して働 く リ ニアモ 一夕 6 Fの右半分と リ ニアモー タ 6 Lの左半分は、 浸漬 ノ ズルから铸型内に流れ込む溶鋼流に打勝つ強い電磁力 を与えなければな らない。 そ こで通常は、 リ ニアモータ 6 F , 6 Lの極数 Nは、 2 極又は 4 極と少ない数と して いる'。 この理由を説明する。 1 つの铸型辺に沿う リ ニア モ ー タ の ス ロ ッ ト (電気コ イ ルを卷回 (揷入) する溝) の配列 ピ ッ チを て s 、 ス ロ ッ ト 数を n 、 リ ニ ア モー タ の 铸型辺に沿う長さを L、 およびコ イ ルを通電する交流の 相数を M (通常 M = 3 ) 、 ポー ルピ ッ チを て P 、 および 極数を N とする と、
L = て s X n …(1 )
= て p X N … ( 2 )
P = m X r s …(3 )
m = n / M …(4 ) なる関係があ り 、 電磁力を大き く する には漏れイ ンダク タ ンス成分を小さ く するのが良 く 、 この為ポールピ ッ チ τ を大き く する。 すなわち(3 ) 式よ り ス ロ ッ ト ピ ッ チ r s を大き く する。 する と(1 ), (2 ) 式よ り、 L は一定 (所要長) であるので、 極数 Nが少な く な る。 このよ う な理由で従来は リ ニアモータの極数 Nは 2 極又は 4 極と 少ない極数であ っ た。
また、 電気コ イ ルに通電する交流の周波数は、 少ない 極数で強い電磁力を得るために、 従来は、 l 〜 2 H zと し てレ、る。 図 3 3 に示すよ う に、 2 極の場合には略 1 H zの 周波数で電磁力が最大とな り、 4 極の場合には略 2 H zの 周波数で電磁力が最大となるので、 1 〜 2 H zの周波数が 用い られている。
本実施例は、 よ り大き な電磁力を得て、 気泡の浮上促 進、 溶鋼中へのパウ ダ巻き込み回避、 および又は、 表層 付近の铸型内面のぬ ぐい、 をさ らに良好に行な う こ とを 目的とする。
本実施例は、 図 2 7 〜 3 2 に示す様に、 溶融金属 1 を 取り 囲むモール ド 3 の周辺に沿って配列 した複数個の磁 極と各磁極を励磁するための複数個の電気コ イ ルの組合 せでなる、 铸型辺に沿っ た リ ニアモータ 6 F, 6 L ; お よび電気コ イ ルそれぞれに リ ニア駆動力を発生する交流 電流を通電する通電手段 3 0 A , 3 0 B ; を備える溶融 金属の連続铸造装置において、
前記 リ ニアモー タ 6 F , 6 Lが 5 極以上の極数の リ ニ ァモータである こ とを第 1 の特徴と し、 前記通電手段 3 0 A , 3 0 B力く 4 H z以上の交流電流を電気コ ィ ルに通電 する通電手段である こ とを第 2 の特徴と し、 ア ンペア導 電数を 1 2 0 0 AT/ cmにする こ とを第 3 の特徴とする。
铸型内溶融金属の表層部に加わる電磁力の分布を、 磁 極 Nの値対応で図 3 4 ( N = 2 ) , 図 3 5 ( N = 4 ) , 図 3 6 ( 1^ = 6 ) ぉょび図 3 7 ( N = 1 2 ) に示す。 こ れらの図面は、 铸型の一長辺に沿って n = 3 6 (すなわ ち 3 6 個の電気コ イ ル) のス ロ ッ トを配列 した リ ニアモ 一夕 6 F と 6 Lを铸型を間に置いて図 2 7 に示すよ う に 配列 した場合の、 铸型内溶融金属 1 の表層部の水平面に おける電磁力分布を矢印で示すものであ り 、 矢印の方向 が電磁力の方向を示 し、 長さが強さを示す。 なおこれは . 1. 8 Hzの 3 相交流 (M = 3 ) を通電 した場合の、 1 周期 間に発生する電磁力 (積算値) を計算によ り求めた もの である。
図 3 4 に示す 2 極の場合には、 電磁力は大きいが、 y 方向 (铸型の短辺に沿う方向) の電磁力成分が強 く (図 中で y方向に矢印が長 く ) 、 左右 ( y方向) 各 1 箇所計 2 箇所で電磁力が反時計方向の渦卷き となる。 こ のよ う な力は溶融金属 1 に渦流を もた ら し、 これがパウ ダ巻き 込みを もた ら し易い。 ま た铸型内壁面 (長辺の内面) に 沿う X方向での、 X方向電磁力成分が大小に分布するの で、 X方向で铸型内面のぬ ぐいむらがあ り 、 部分的に溶 鋼が滞留 しがちである。 図 3 5 に示す 4 極の場合は、 左 右 ( y方向) 各 2 箇所計 4 箇所で電磁力が反時計方向の 渦巻き と なる。 渦巻きの数が増えた分、 y方向 (铸型の 短辺に沿う方向) の電磁力成分が弱 く な つているが、 y 方向成分がまだ大き く 、 パウ ダ巻き込みを起こす可能性 があ り 、 ま た、 铸型内壁面 (長辺の内面) に沿う X方向 での、 X方向電磁力成分が大小に分布するので、 X方向 で铸型内面のぬ ぐいむらがかな り生ずる。 このよ う に従 来の、 2 極および 4 極の場合には、 パウ ダ巻き込み防止 ゃ铸型内面のぬ ぐいが不十分である こ とが分かっ た。
図 3 6 に示す 6 極の場合には、 略 6 箇の渦巻きが認め られる ものの、 渦流が弱 く パウ ダの巻込みはその分可能 性が低 く 、 しかも、 铸型長辺の内面近 く では、 隣り合う 渦の外縁の電磁力が連続 して、 y方向成分が極く 小さ く いわば長辺全長 ( X方向) に渡って電磁力の X方向成分 が均等で、 定方向 ( X方向) かつ定速度の沿面流がもた らされ、 铸型内面のぬ ぐいが均一にな り しかも気泡の浮 上が促される。 図 3 7 に示す 1 2 極の場合には、 電磁力 の y方向成分が実質上な く な り 、 もはや渦巻きは認め ら れず、 実質上沿面流のみを生ずる。 したがってパウ ダの 巻込み防止効果が極 く 高 く 、 铸型長辺全長 ( X方向) に 渡って電磁力の X方向成分が均等で、 定方向 ( X方向) かつ定速度の沿面流がもた らされ、 铸型内面のぬ ぐいが 均一にな り しかも気泡の浮上が促される。
本実施例の第 1 の特徵によれば、 従来用い られていな い多い極数すなわち 5 極以上の リ ニアモー タを用いるの で、 上述の図 3 6 および図 3 7 を参照 して説明 した作用 効果がもた ら される。 先に説明 したよ う に、 従来は 2 極又は 4 極の リ ニアモ 一 夕を用いるので、 ま たこれらの場合には図 3 3 に示す よ う に、 2 極の場合には 1 Hzの周波数で最大の電磁力が 得られ、 4 極の場合には 2 Hzの周波数で最大の電磁力が 得られるので、 従来は 1 〜 2 Hzの 3 相交流を リ ニアモ一 夕 に流 している。 と こ ろで、 周波数がこのよ う に低い場 合には、 溶融金属内部への磁力の浸透深さが深いので、 溶融金属内部でも強い電磁力が溶融金属に作用する。 こ れは図 3 4 , 図 3 5 に示す強い渦流を起こすこ と になる 铸型内溶鋼の表層部に加わる電磁力の分布を、 電気コ ィ ルに印加する交流の周波数の値対応で図 3 8 ( 1. 8 Hz) , 図 3 9 ( 3 Hz) , 図 4 0 ( 5 Hz) , 図 4 1 ( 1 0 Hz) および図 4 2 ( 2 0 Hz) に示す。 これらの図面は、 铸型の一長辺に沿って n = 3 6 (すなわち 3 6 個の電気 コ ィ ノレ) のス ロ ッ トを配列 した リ ニアモータ 6 F と 6 L を铸型を間に置いて図 2 '7 に示すよ う に配列 した場合の 铸型内溶融金属 1 の表層部の水平面における電磁力分布 を矢印で示すものであ り 、 矢印の方向が電磁力の方向を 示 し、 長さが強さを示す。 なおこれは、 4 極 ( N = 4 ) の リ ニアモータ に 3 相交流 ( M = 3 ) を通電 した場合の 1 周期間に発生する電磁力 (積算値) を計算によ り求め た ものである。
図 3 8 〜図 4 2 と この順に見較べる と、 周波数が高 く なる に従い、 y方向成分が増えて X成分が減少する もの の、 溶鋼内部の電磁力が低下 し、 溶鋼内部の渦巻きが弱 く な る こ とが分かる。 渦巻きが弱ま る こ と によ り パウ ダ の巻込み可能性が低 く なる。 本発明の第 2 の特徴によれ ば、 従来よ り も高い 4 Hz以上の周波数の交流を リ ニアモ 一タ に印加するので、 パウ ダ巻込みの可能性が低減する , 極数を増や し、 周波数を大き く する こ と は、 図 3 3 よ り 電磁力が小さ く なる こ と になる。 このため、 電磁力は従 来と同等程度に して、 撹拌速度をある程度確保するため には、 電流値、 一般的には次式で示される ア ンペア導電 数 ('磁界の強さ) :
ア ンペア導電数 = ( I X N S ) Z TT S - (5)
I : コ イ ルに流れる電流値、 N s : 1 ス ロ ッ ト 当た り の卷数
を大き く しなければな らない。 従来のア ンペア導電数 は、 8 0 0 AT/ cmなので、 極数をあげ、 周波数を上げた 場合には、 少な く と もア ンペア導電数 : 1 2 0 0 ATZ cm 以上の電流を流して、 電磁力を大き く するのが好ま しい ( 本発明の好ま しい実施例では、 従来用い られていない 多い極数すなわち 5 極以上の リ ニアモータを用い、 かつ .
4 Hz以上の周波数の交流を リ ニァモータに印加 して溶融 金属内部の渦巻きを大幅に低減 し、 周波数を高 く する こ と によ る y方向成分の増大を、 極数を多 く する こ と によ り相殺する。
図 2 7 に、 本発明の第 3 実施例に係る装置の外観を示 す。 連続铸造モ一ル ド 3 の内壁 3 1 で囲まれる空間には 溶融金属 1 が図示 しない浸漬ノ ズル (図 5 の浸漬ノ ズル 2 ) を通 して注入され、 溶融金属 1 の メ ニス カ ス (表面) はパウ ダ 3 7 で覆われる。 铸型は水箱 3 4 に流れる冷却 水で冷却され、 溶融金属 1 は铸型に接する表面から次第 に内部に固ま って行き铸片 (凝固 シ ェ ル) 4 が連続的に 引 き抜かれるが、 铸型内に溶融金属が注がれるので、 铸 型内には常時溶融金属 1 がある。 溶融金属 1 のメ ニスカ ス レベル (高さ方向 z ) の位置に 2 個の リ ニアモータ 6 Fおよび 6 Lが設け られており 、 これらが溶融金属 1 の メ ニス カ ス レベル直下の部分 (表層域) に電磁力を与え る。
図 2 8 に、 図 2 7 に示す内壁 3 1 を、 リ ニアモータ 6 F, 6 Lのコア 1 2 F, 1 2 L部で水平に破断 した断面 を示す。 図 2 9 には、 図 2 8 の B — B線拡大断面を示す。 铸型の内壁 3 1 は、 相対向する長辺 1 0 F, 1 0 Lおよ び相対向する短辺 1 1 R, 1 1 Lで構成されており 、 各 辺は銅板 3 3 F , 3 3 L , 3 5 R , 3 5 L に、 非磁性ス テ ン レ ス板 3 2 F, 3 2 L , 3 6 R , 3 6 Lを裏当て し た ものであ る。
こ の実施例では、 リ ニアモー タ 6 F, 6 Lの コ ア 1 2 F , 1 2 L は、 铸型長辺 1 0 F , 1 0 Lの実効長 (溶融 金属 1 が接する X方向長さ) よ り やや長 く 、 それらの全 長に所定ピ ッ チでそれぞれ 3 6 個のスロ ッ 卜が切 られて いる。 リ ニアモータ 6 Fのコア 1 2 Fの各ス ロ ッ ト には、 第 1 グループの電気コ イ ル C F 1 a ~ C F 1 r および第 2 グループの電気コ イ ル C F 2 a〜 C F 2 r が装着され ている。 同様に、 リ ニアモータ 6 Lのコ ア 1 2 Lの各ス ロ ッ 卜 には、 第 1 グループの電気コ イル C L 1 a〜
C L 1 r および第 2 グループの電気コ イ ル C L 2 a〜 C L 2 r が装着されている。
リ ニアモータ 6 F , 6 L は、 図 5 に矢印で示す推力を 溶融金属 1 に与えよ う とする もので、 リ ニアモータ 6 F の第 1 グループの電気コ イ ル C F 1 a〜 C F 1 r は弱い 推力を、 第 2 グループの電気コ ィ ノレ C F 2 a〜 C F 2 r は強い推力を溶融金属 1 に与えればよい。 したがって第 1 グループの電気コ イ ル C F 1 a〜 C F 1 r の卷回数は 少 く して もよいが、 制動制御のための直流通電をする と か、 X方向の推力分布をグループ内でも調整する とか、 他の制御に も適応 し う るよ う に、 この実施例では、 リ ニ ァモー タ 6 Fの全ス ロ ッ トおよび全電気コ イ ルはすべて 同一仕様の ものである。 第 1 グループと第 2 グループで 異な っ た推力を発生するよ う に、 この実施例では、 各グ ループに異なっ た レベルの電流を通電する。 この内容は 後述する。 リ ニアモータ 6 L に関 しても同様である。
図 3 0 に、 図 2 8 に示す全電気コ イ ルの、 グループ内 の結線を示す。 こ の結線は 6 極 ( N = 6 ) の ものであ り 電気コ イ ルに 3 相交流 ( M = 3 ) を通電する。 例えば、 リ ニアモー タ 6 Fの第 1 グループの電気コ イ ル C F 1 a 〜 C F l r は、 図 3 0 ではこの順に、 u, u , V, V, w , w, U, U , v, v, "W, W , u, u, V, V, w wと表わ している。 そ して 「 U」 は 3 相交流の U相の正 相通電 (そのま まの通電) を 「 u」 は U相の逆相通電 ( U相よ り 1 8 0 度の位相ずれ通電) を表わ し、 電気コ ィ ル 「 U」 にはその巻始め端に U相が印加されるのに対 し、 電気コ イ ル 「 u」 にはその巻終り端に U相が印加さ れる こ とを意味する。 同様に、 「 V」 は 3相交流の V相 の正相通電を、 「 v」 は V相の逆相通電を、 「W」 は 3 相交流の W相の正相通電を、 「w」 は W相の逆相通電を 表わす。 図 3 0 に示す端子 U 1 1 , V I 1 および W 1 1 は、 リ ニアモータ 6 Fの第 1 グループの電気コ イ ル
C F 1 a〜 C F 1 rの電源接続端子であ り 、 端子 U 2 1 , V 2 1 およ び W 2 1 は、 リ ニアモー タ 6 Fの第 2 グルー プの電気コ イ ル C F 2 a〜 C F 2 r の電源接続端子であ り 、 端子 U 1 2 , V I 2 および W 1 2 は、 リ ニ ア モータ 6 Lの第 1 グループの電気コ イ ル C L 1 a〜 C L 1 rの 電源接続端子であ り 、 端子 U 2 2, V 2 2 および W 2 2 は、 リ ニアモー タ 6 Lの第 2 グループの電気コ イ ル C F 2 a〜 C F 2 rの電源接続端子である。
図 3 1 に、 リ ニアモー タ 6 Fの第 1 グループの電気コ ィ ノレ C F 1 a〜 C F l r な らびに リ ニアモータ 6 Lの第 1 グループの電気コ イ ル C L 1 a〜 C L 1 r に 3 相交流 を流す電源回路を示す。 3 相交流電源 ( 3相電力線) 4 1 には直流整流用のサイ リ ス タ ブ リ ッ ジ 4 2 Aが接続さ れており 、 その出力 (脈流) はイ ングク タ 4 5 Aおよび コ ンデ ンサ 4 6 Aで平滑化される。 平滑化された直流電 圧は 3 相交流形成用のパワー ト ラ ン ジスタプ リ ッ ジ 4 7 Aに印加され、 これが出力する 3 相交流の U相が図 3 0 に示す電源接続端子 U 1 1 および U 1 2 に、 V相が電源 接続端子 V 1 1 および V 1 2 に、 ま た W相が電源接続端 子 W 1 1 および W 1 2 に印加される。
リ ニ ア モ ー タ 6 Fの第 1 グルー プの電気コ ィ ノレ C F 1 a 〜 C F 1 r な らびに リ ニアモータ 6 Lの第 1 グループ の電気コ ィ ノレ C L 1 a 〜 C L l r が、 図 5 に矢印で示す 小さ い推力を発生する コ イ ル電圧指令値 V dcAが位相角 算出器 4 4 Aに与え られ、 位相角 α算出器 4 4 Αが指 令値 V dcAに対応する導通位相角 α (サイ リ スタ ト リ ガ —位相角) を算出 し、 これを表わす信号をゲー ト ドラ イ バ 4 3 Αに与える。 ゲー ト ドラ イ ノく' 4 3 Aは、 各相のサ イ リ スタを、 各相のゼロ ク ロ ス点から位相カ ウ ン トを開 始 して位相角 αで導通 ト リ ガーする。 これによ り、 ト ラ ン ジ ス タ ブ リ ッ ジ 4 7 Αに は、 指令値 V d c Aが示す直流 電圧が印加される。 '
—方、 3 相信号発生器 5 1 Aは、 周波数指令値 F dcで 指定された周波数 ( こ の実施例では 2 0 Hz) の、 定電圧 3 相交流信号を発生 して比較器 4 9 Aに与える。 比較器 4 9 Aにはま た、 三角波発生器 5 0 A力く 3 KHz の、 定電 圧三角波を与える。 比較器 4 9 Aは、 U相信号の レベル が正のと き には、 それが三角波発生器 5 0 Aが与える三 角波の レベル以上のと き高 レベル H ( ト ラ ン ジ ス タ オ ン) で、 三角波の レベル未満のと き低レベル L ( ト ラ ン ジ ス タオフ) の信号を、 U相の正区間 ( 0 〜 1 8 0 度) 宛て ( U相正電圧出力用 ト ラ ン ジス タ宛て) にゲー ト ドラ イ バ 4 8 A に出力 し、 U相信号の レベルが負のと き には、 それが三角波発生器 5 O Aが与える三角波の レベル以下 のと き高 レベル Hで、 三角波の レベルを越える と き低レ ベル Lの信号を、 U相の負区間 ( 1 8 0 〜 3 6 0 度) 宛 て ( U相負電圧出力用 ト ラ ン ジ ス タ宛て) にゲー ト ドラ イ ノ < 4 8 Aに出力する。 V相信号および W相信号に関 し て も同様である。 ゲー ト ドラ イバ 4 8 Aは、 これら各相 正、'負区間宛ての信号に対応 して ト ラ ン ジスタ ブ リ ッ ジ 4 7 Aの各 ト ラ ン ジ ス タをオ ン、 オ フ に付勢する。
これによ り 、 電源接続端子 U l 1 および U 1 2 には 3 相交流の U相電圧が出力され、 電源接続端子 V I 1 およ び V I 2 に 3 相交流の V相電圧が出力され、 ま た電源接 続端子 W l 1 および W 1 2 に 3 相交流の W相電圧が出力 され、 これらの電圧の レベルはコ イ ル電圧指令値 V dcA で定ま り 、 こ の 3 相電圧の周波数は こ の実施例では周波 数指令値 F dcによ り 2 0 Hzである。 すなわち、 コ イ ル電 圧指令値 V dc Aで指定された電圧値の、 2 0 Hzの 3 相交 流電圧が、 図 2 8 および図 3 0 に示す リ ニアモータ 6 F および 6 Lの、 第 1 グループの電気コ イ ル C F 1 a 〜 C F 1 r および C L 1 a 〜 C L l r に印加される。
図 3 2 に、 リ ニアモータ 6 Fの第 2 グループの電気コ ィ ノレ C F 2 a 〜 C F 2 r な らびに リ ニ ア モー タ 6 Lの第 2 グループの電気コ イ ル C L 2 a ~ C L 2 r に 3 相交流 を流す電源回路を示す。 こ の電源回路の構成は図 5 に示 すもの と同 じである。 しか し、 図 3 2 に示す電源回路の 位相角 α算出器 4 4 Β には、 図 5 に矢印で示す大き い推 力を発生する コ イ ル電圧指令値 V dcBが与え られる。 図 3 2 に示す電源回路が出力する 3 相交流の U相電圧が、 電源接続端子 U 2 1 および U 2 2 に出力され、 V相電圧 は電源接続端子 V 2 1 および V 2 2 に出力され、 ま た W 相電圧は電源接続端子 W 2 1 および W 2 2 に出力される これらの電圧の レベルはコ ィ ル電圧指令値 V dcBで定ま り 、 この 3 相電圧の周波数は こ の実施例では周波数指令 値 F dcによ り 2 0 Hzである。 すなわち、 コ イ ル電圧指令 値 V dcBで指定された電圧値の、 2 0 Hzの 3 相交流電圧 が、 図 2 8 および図 3 0 に示す リ ニアモータ 6 Fおよび 6 し の、 第 2 グループの電気コ ィ ノレ C F 2 a〜 C F 2 r および C L 2 a〜 C L 2 r に印加される。
以上によ り 、 こ の実施例では、 6 極構成の リ ニアモ一 夕 6 F, 6 L に 2 0 Hzの 3 相交流が印加され、 これらの リ ニアモータ 6 F, 6 L によ り 、 鋅型内壁 3 1 内の溶融 金属 1 には、 図 5 に矢印で示す推力が加わり、 浸漬ノ ズ ルからの溶融金属の注入による流れ (図 2 の実線矢印) との合成は循環流となる。 リ ニアモータが 6 極構成で従 来よ り も極数が多いので、 略 6 箇の渦巻きが認め られる ものの、 渦流が弱 く パウ ダの巻込みはその分可能性が低 く 、 しかも、 铸型長辺の内面近 く では、 隣り合う渦の外 縁の電磁力が連続 して、 y方向成分が極 く 小さ く 、 いわ ば長辺全長 ( X方向) に渡って電磁力の X方向成分が均 等で、 定方向 ( X方向) かつ定速度の沿面流がもた ら さ れ、 铸型内面のぬ ぐいが均一にな り しかも気泡の浮上が 促される。 ま た、 周波数が 2 0 H zと従来よ り も高いので、 溶融金属内部の渦巻きが弱い。 周波数を高 く する こ と に よ り y方向成分が増え X成分が減少する傾向を示すが、 極数が多いので、 こ の傾向が抑制される。
本実施例の第 1 の特徴によれば、 リ ニアモータが従来 よ り も極数が多いので、 渦流が弱 く パウ ダの巻込みはそ の分可能性が低く 、 しかも、 铸型長辺の内面近 く では、 隣り 合う 渦の外縁の電磁力が連続 して、 y方向成分が極 く 小さ く 、 いわば長辺全長 ( X方向) に渡って電磁力の X方向成分が均等で、 定方向 ( X方向) かつ定速度の沿 面流がもた ら され、 铸型内面のぬ ぐいが均一にな り しか も気泡の浮上が促される。
本実施例の第 2 の特徴によれば、 交流周波数が従来よ り も高いので、 溶融金属内部の電磁力が低下 し、 溶融金 属内部の渦巻きが弱 く な り 、 パウ ダの巻込み可能性が低 く なる。
次に、 本発明の第 4 の実施例について説明する。
金属スラ ブの連続铸造においては、 図 4 3 Aに示すよ う に、 浸漬ノ ズル 2 の 2 つの流出口 3 9 から铸型内空間 に流出する溶融金属の流動の一方が強 く 他方が弱 く なる と、 すなわち対称性が く ずれる と、 これに伴って表層流 3 8 も、 図 4 3 B に示すよ う に、 溶融金属の流動が弱い 流出口の上に位置する表層流が弱 く な る。 こ のよ う な溶 融金属の流動の乱れ (偏流) は铸型内の溶融金属 1 に、 高温部と低温部を生ずる こ と になる。 すなわち溶融金属 の流動が強い箇所では温度が高 く 、 弱い箇所では温度が 低い。 同一高さの铸型壁面における温度が不均一である と、 表面割れやシ ェル破断を生 じ易い。
リ ニァモー タ によ る溶融金属の駆動によ り温度の不均 一性はある程度回避される ものの、 浸漬ノ ズル 2 の流出 口 3 9 の流出特性は注入中に流出口 3 9 への金属付着に よ り変化 し、 この変化、 特に 2 つの流出口の流出特性差 が大き く な つ たと き には、 かな り の温度偏差を生ずる。
本実施例は、 さ らに、 铸型内溶融金属の場所によ る温 度むらを抑制する こ とを目的とする。
本実施例は、 溶融金属 1 を取り 囲む鋅型辺に沿って配 列 し'た複数個の磁気コ ア と各磁気コ アを励磁するための 複数個の電気コ イ ルの組合せでなる、 铸型辺に沿っ た電 磁撹拌コ イ ル部または リ ニアモーター 6 F, 6 L、 およ び、 電気コ イ ルそれぞれに溶融金属流に制動力を又は駆 動力を加えるための直流あるいは交流を通電する手段 3 0 F 1 , 3 0 F 2 , 3 0 L 1 , 3 0 L 2 (図 4 4 〜 4 7 ) を備える連続铸造装置において、
前記鍀型辺の温度分布を検出する温度検出手段 S 1 1 〜 S l n , S 2 1 〜 S 2 n, S 3 1 〜 S 3 m, S 4 1 〜 S 4 m (図 4 8 と 4 9 ) ; および、 温度が高い箇所の近 く の溶融金属流に高い制動力を与える電流指令を前記通 電手段 3 0 F 1 , 3 0 F 2 , 3 0 L 1 , 3 0 L 2 に与え る温度分布制御手段 6 3 (図 5 0 ) ; を備える。
溶融金属の流速が高い所では铸型内壁の温度が高 く 、 流速が低い所では铸型内壁の温度が低い。 したがって、 溶融金属の流速分布は、 温度検出手段 S 1 1 〜 S 1 η , S 2 1 〜 S 2 n , S 3 1 〜 S 3 m, S 4 1 〜 S 4 mが検 出する温度分布に対応する。 本発明では、 温度分布制御 手段 6 3 が、 温度が高い箇所の近 く の溶融金属流に高い 制動力を与える電流指令を前記通電手段 3 O F 1 , 3 0 F 2 , 3 0 L 1 , 3 0 L 2 に与える。 すなわち溶融金属 の流速が高い箇所で、 高い制動力を溶融金属に与えるの で、 溶融金属の上述の偏流が抑制される。 すなわち溶融 金属の流速分布が均一化する。 したがって铸型内の溶融 金属の場所によ る温度むらが抑制される。
本実施例に係る装置の外観及び中央縦断面は、 図 2 7 に示すものと ほぼ同一であ り、 本実施例に係る装置の磁 気コ アを水平に破断 した拡大横断面は図 2 8 に示すもの と ほぼ同一であ り、 本実施例に係る装置の電気コ イ ルの 結線は図 3 0 に示すものと ほぼ同一である。
図 4 4 に、 リ ニアモータ 6 Fの第 1 グループの電気コ ィ ル C F 1 a 〜 C F 1 r に 3 相交流を流す電源回路 3 0 F 1 を示す。 3 相交流電源 ( 3 相電力線) 4 1 には直流 整流用のサイ リ スタブ リ ッ ジ 4 2 A 1 が接続されており その出力 (脈流) はイ ンダク タ 4 5 A 1 およびコ ンデン サ 4 6 A 1 で平滑化される。 平滑化された直流電圧は 3 相交流形成用のパワ ー ト ラ ン ジ ス タ プ リ ッ ジ 4 7 A 1 に 印加され、 これが出力する 3 相交流の U相が図 3 0 に示 す電源接続端子 U 1 1 に、 V相が電源接続端子 V I 1 に また W相が電源接続端子 W 1 1 に印加される。
図 5 に矢印で示す小さ い推力を発生する コ イ ル電圧お 令値 V dcA 1 が位相角 α算出器 4 4 A 1 に与え られ、 位 相角 算出器 4 4 A 1 が、 指令値 V dcA 1 に対応する導 通位相角 α (サイ リ スタ ト リ ガ一位相角) を算出 し、 こ れを表わす信号をゲー ト ドラ イバ 4 3 A 1 に与える。 ゲ - h ドラ イバ 4 3 A 1 は、 各相のサイ リ スタを、 各相の ゼロ ク ロ ス点から位相カ ウ ン トを開始 して位相角 で導 通 ト リ ガ一する。 こ れによ り 、 ト ラ ン ジス タ ブ リ ッ ジ 4 7 A 1 には、 指令値 V d c A 1 が示す直流電圧が印加され る。
一方、 3 相信号発生器 5 1 A 1 は、 周波数指令値 F dc で指定された周波数 (こ の実施例では 2 0 Hz) の、 定電 圧 3 相交流信号を発生 してこれをバイ アス指令値 B 1 1 が指定する直流レベル分、 レベルシフ ト して、 比較器 4 9 A 1 に与える。 比較器 4 9 A 1 には、 ま た、 三角波発 生器 5 0 1 が 3 1(112 の、 定電圧三角波を与える。 比較 器 4 9 A 1 は、 U相信号が正レベルのと き には、 それ力く 三角波発生器 5 O A 1 が与える三角波の レベル以上のと き高 レベル H ( ト ラ ン ジス タ オ ン) で、 三角波の レベル 未満の と き低レベル L ( ト ラ ン ジ ス タ オフ ) の信号を、 U相の正区間宛て ( U相正電圧出力用 ト ラ ン ジスタ宛て) にゲー ト ドラ イバ 4 8 A 1 に出力 し、 U相信号が負 レべ ルのと き には、 それが三角波発生器 5 0 A 1 が与える三 角波の レベル以下の と き高 レベル Hで、 三角波の レベル を越える と き低レベル Lの信号を、 U相の負区間宛て ( U相負電圧出力用 ト ラ ン ジス タ宛て) にゲー ト ドラ イ バ 4 8 A 1 に出力する。 V相信号および W相信号に関 し ても同様である。 ゲー ト ドラ イバ 4 8 A 1 は、 これら各 相, 正, 負区間宛ての信号に対応 して ト ラ ン ジスタプ リ ッ ジ 4 7 A 1 の各 ト ラ ン ジ ス タ をオ ン, オフ付勢する。
これによ り 、 電源接続端子 U l 1 には、 3 相交流の直 流バイ ア ス成分 ( B l 1 ) を有する U相電圧が出力され 電源接続端子 V I 1 に同様な V相電圧が出力され、 ま た 電源接続端子 W 1 1 に同様な W相電圧が出力され、 これ らの電圧の上ピー ク z下ピー ク 間 レベルはコ イ ル電圧指 令値 · V d c A 1 で定ま り 、 バイ アス直流成分の レベルはバ ィ ァス指令 B 1 1 で定ま る。 こ の 3 相電圧の周波数はこ の実施例では周波数指令値 F dcによ り 2 0 Hzである。 す なわち、 コ イ ル電圧指令値 V dcA 1 で指定されたピー ク 電圧値 (推力) およびバイ ア ス指令 B 1 1 で指定された 直流成分 (制動力) を有する、 2 0 Hzの 3 相交流電圧が 図 2 8 および図 3 0 に示す リ ニアモータ 6 Fおよび 6 L の、 第 1 グループの電気コ イ ル C F 1 a 〜 C F 1 r に印 加される。
図 4 5 に、 リ ニアモー タ 6 Fの第 2 グループの電気コ ィ ノレ C F 2 a 〜 C F 2 r に 3 相交流を流す電源回路 3 0 F 2 を示 し、 図 4 6 に、 リ ニアモータ 6 Lの第 2 グルー プの電気コ イ ル C L 2 a 〜 C L 2 r に 3 相交流を流す電 源回路 3 0 L 1 を示 し、 図 4 7 に、 リ ニアモ ー夕 6 Lの 第 1 グループの電気コ イ ル C L 1 a 〜 C L l r に 3 相交 流を流す電源回路 3 0 L 2 を示す。 これらの電源回路 3 0 F 2 , 3 0 L 1 および 3 0 L 2 の構成は、 上述の 3 0 F 1 と同一であるが、 コ イ ル電圧指令値 ( V dcA 2 〜 4 ) およびバイ ア ス指令 ( B 2 1 , B 2 2 , B 1 2 ) が異な る o
すなわち、 リ ニ ア モ ー タ 6 Fの第 2 グルー プの電気コ ィ ル C F 2 a 〜 C F 2 r が図 5 に矢印で示す大き い推力 を発生する コ イ ル電圧指令値 V dcA 2 が、 位相角 α算出 器 4 4 Α 2 に与え られる。 リ ニアモータ 6 Lの第 2 グル ープの電気コ イ ル C L 2 a 〜 C L 2 r が図 5 に矢印で示 す大き い推力を発生する コ イ ル電圧指令値 V dcA 3 が、 位相角 な算出器 4 4 B 1 に与え られる。 ま た、 リ ニ ア モ 一 夕 6 Lの第 1 グルー プの電気コ イ ル C L 1 a 〜
C L 1 r が図 5 に矢印で示す小さ い推力を発生する コ ィ ル電圧指令値 V dcA 4 が、 位相角 算出器 4 4 B 2 に与 ん り し る 。
ノくィ ァ ス指令 B 1 1 (図 4 4 ) は、 リ ニ ア モータ 6 F の第 1 グルー プの電気コ イ ル C F 1 a 〜 C F 1 r に印加 する 3 相交流の直流バイ ア ス レベル (制動力) を指定す る o
バイ ア ス指令 B 2 1 (図 4 5 ) は、 リ ニ ア モー タ 6 F の第 2 グルー プの電気コ イ ル C F 2 a 〜 C F 2 r に印加 する 3 相交流の直流バイ ア ス レベル (制動力) を指定す る o
ィ ァ ス指令 B 2 2 (図 4 6 ) は、 リ ニアモータ 6 L の第 2 グループの電気コ イ ル C L 2 a 〜 C L 2 r に印加 する 3 相交流の直流バイ ア ス レベル (制動力) を指定す る。
ィ ァ ス指令 B 1 2 (図 4 7 ) は、 リ ニアモータ 3 L の第 1 グループの電気コ イ ル C L 1 a 〜 C L 1 r に印加 する 3 相交流の直流バイ ア ス レベル (制動力) を指定す る。
これ らのバイ ア ス指令 B 1 1 (図 4 4 ) , B 2 1 (図 4 5 ) , B 2 2 (図 4 6 ) および B 1 2 (図 4 7 ) は、 図 4 8 〜 5 0 に示すコ ン ピュ ー タ 6 3 が、 各電源回路 3 0 F 1 , 3 0 F 2 , 3 0 L 1 および 3 0 L 2 に与える。 図 4 8 に、 図 2 8 に示す铸型短辺 1 1 Lおよび 1 1 R の背部を示す。 これらの短辺 1 1 L, 1 1 Rには、 熱電 対 S 3 l 〜 S 3 n および S 4 l 〜 S 4 nが、 それぞれ铸 片引抜き方向 (高さ方向 ; 上下方向) に各一列で等間隔 に配列され、 それぞれの熱電対は、 裏当てステ ン レス板 を貫通 し銅板のやや内部の (溶融金属に接する表面部 の) 温度を検出する。 すなわち信号処理回路 6 1 Aが熱 電対が検出する温度を表わすアナロ グ信号 (検出信号) を発生 してアナロ グゲー ト 6 2 に与える。
コ ン ピュー タ 6 3 は、 アナロ グゲー ト 6 2 の出力を制 御 して、 熱電対 S 3 l 〜 S 3 nおよび S 4 l 〜 S 4 n の 検出信号を順次に AZD変換 して読込み、 高温値抽出処 理手段 6 4 によ り 、 熱電対 S 3 1 〜 S 3 nの検出温度の 中の最高温度値 T m 1 L 1 および次に高い温度値 T m 2 L 1 を抽出 し、 かつ、 熱電対 S 4 l 〜 S 4 nの検出温度 の中の最高温度値 T m 1 R 1 および次に高い温度値
T m 2 R l を抽出する。 そ して、 短辺 1 1 Rの代表温度
( T m l R l - T m 2 R l ) x O. 7 + T M 2 R 1 を算出 し、 短辺 1 1 Lの代表温度
( T m l L l — T m 2 L l ) x O. 7 + T M 2 L 1 を算出 し、 両者の差すなわち短辺 1 1 R、 1 1 L間の代 表温度差
(TmlRl-Tm2Rl) X 0.7 + TM2R 1 - (Tml L 1 -Tm2 L 1 ) x 0.7- TM2L1
を算出 して、 それが正値 ( 0以上) である (短辺銅板 3 5 Rの方が温度が高い) と き には、 ¥尺 =代表温度差 A ( Aは係数) を算出 し; かつ、 V L 1 = B— V Rを算 出する。 代表温度差が負値である (短辺銅板 3 5 Lの方 が温度が高い) と き には、 V L 1 = —代表温度差 X Aを 算出 し、 かつ V R = B— V L 1 を算出する。
V Rは、 短辺銅板 3 5 R側の電気コ イ ル C F 1 a〜 C F l r ( リ ニアモータ 6 Fの左半分 ; 図 2 8 ) および C L 2 a〜(: L 2 r ( リ ニアモータ 6 Lの左半分 ; 図 2 8 ) に対する制動力成分 (バイ ア ス成分) 指令値であ り V L 1 は短辺銅板 3 5 L側の電気コ イ ル C F 2 a〜 C F 2 r ( リ ニアモータ 6 Fの右半分 ; 図 2 8 ) および C L 1 a 〜 C L l r ( リ ニアモータ 6 Lの右半分 ; 図 2 8 ) に対する制動力成分 (バイ ア ス成分) 指令値である , これらの指令値は、 代表温度差が正値 (短辺銅板 3 5 R の方が温度が高い) と き には リ ニアモー タ 6 F, 6 Lの 左半分 (図 2 8 ) の電気コ イ ルに流す直流電流レベル (バイ アス) を大き く して強い制動をかけ、 右半分の電 気コ イ ルに流す直流電流レベルを小さ く して制動を弱 く し、 逆に、 代表温度差が負値 (短辺銅板 3 5 Lの方が温 度が高い) と き には リ ニアモータ 6 F , 6 Lの右半分の 電気コ イ ルに流す直流電流 レベルを大き く して強い制動 をかけ、 左半分の電気コ イ ルに流す直流電流レベルを小 さ く して制動を弱 く する こ とを意味する。
図 4 9 に、 図 2 8 に示す铸型長辺 1 O Fおよび 1 0 L の背部を示す。 これ らの長辺 1 0 F, 1 0 L には、 熱電 対 S 1 1 〜 S 1 nおよび S 2 1 〜 S 2 nが、 それぞれ水 平方向に各一列で等間隔に配列され、 それぞれの熱電対 は、 裏当てステ ン レス板を貫通 し銅板のやや内部の (溶 融金属に接する表面部の) 温度を検出する。 すなわち信 号処理回路 6 5 Aが熱電対が検出する温度を表わすアナ ロ グ信号 (検出信号) を発生 してアナ ロ グゲー ト 6 6 に 与える。
コ ン ピュ ータ 6 3 は、 アナロ グゲー ト 6 6 の出力を制 御 して、 熱電対 S 1 1 〜 3 1 11 ぉょび 3 2 l ~ S 2 n の 検出信号を順次に A Z D変換 して読込み、 高温値抽出処 理手段 6 7 によ り 、 熱電対 S 1 1 〜 S 1 n の検出温度の 中の最高温度値 T m 1 Fおよび次に高い温度値 T m 2 F を抽出 し、 かつ、 熱電対 S 2 l 〜 S 2 n の検出温度の中 の最高温度値 T m 1 R 2 および次に高い温度値 T m 2 R 2 を抽出する。 そ して、 長辺 1 O Fの代表温度
( T m l F - T m 2 F ) X 0. 7 + T M 2 F
を算出 し、 長辺 1 0 Lの代表温度
( T m l L 2 - T m 2 L 2 ) 0. 7 + T M 2 L 2 を算出 して、 両者の差すなわち長辺 1 0 F, 1 0 L間の 代表温度差
(TmlF-Tm2F) x 0.7+T 2F- (Tml L2-Tm2L2) x 0.7-TM2L2 を算出 して、 それが正値 ( 0 以上) である (長辺 1 O F の方が温度が高い) と き には、 ? =代表温度差 〇
( C は係数) を算出 し、 かつ、 V L 2 = D — V Fを算出 する。 代表温度差が負値である (長辺 1 0 Lの方が温度 が高い) と きには、 V L 2 = —代表温度差 X Cを算出 し、 かつ V F = B — V L 2 を算出する。
V F は、 長辺 1 0 F側の リ ニアモータ 6 F (電気コィ ル C F 1 a 〜 C F l r および C F 2 a 〜 C F 2 r を含む) に対する制動力成分 (バイ ア ス成分) 指令値であ り、 V L 2 は長辺 1 0 L側の リ ニアモータ 6 L (電気コイ ル C L 2 a 〜 C L 2 r および C L 1 a 〜 C L 1 r を含む) に 対する制動力成分 (バイ ア ス成分) 指令値である。 これ らの指令値は、 代表温度差が正値 (長辺 1 0 Fの方が温 度が高い) と き には リ ニアモー タ 6 Fの電気コ イ ルに流 す直流電流レベル (バイ ア ス) を大き く して強い制動を かけ、 リ ニアモータ 6 Lの電気コ イ ルに流す直流電流レ ベルを小さ く して制動を弱 く し、 逆に、 代表温度差が負 値 (長辺 1 0 Lの方が温度が高い) と き には リ ニアモー 夕 6 Lの電気コ イ ルに流す直流電流レベルを大き く して 強い制動をかけ、 リ ニアモータ 6 Fの電気コ イ ルに流す 直流電流レベルを小さ く して制動を弱 く する こ とを意味 する。
図 5 0 に示すよ う に コ ン ピュ ータ 6 3 は、
B 1 1 = V R + V F B 2 1 = V L 1 + V F B 2 2 = V R + V L 2 B l 2 = V L 1 + V L 2 を算出 し、 これらをそれぞれ電源回路 3 O F 1 (図 4 4 ) , 3 0 F 2 (図 4 5 ) , 3 0 L 1 (図 4 6 ) および 3 0 L 2 (図 4 7 ) に与える。
以上によ り 、 例えば図 4 3 A と 4 3 B に示すよ う に、 流出口 3 9 から短辺 1 1 L に向かう溶融金属の流動が弱 く 短辺 1 1 Rに向かう溶融金属の流動が強い ( 1 1 Rが 1 1 L よ り高温) と き には、 V Rが大き く V L 1 が小さ いので、 B l l , B 2 2 > B 2 1 , B 1 2 とな り、 リ ニ ァモー タ 6 Fおよび 6 Lの右半分の電気コ イ ルには、 左 半分の電気コ イ ルよ り も、 高 レベルの直流成分が通電さ れて強い制動力が短辺 1 1 Rに向かう溶融金属の流動に 作用 し速度が制御される。 短辺 1 1 L に向かう溶融金属 の流動に対する制動力は弱 く な り 、 短辺 1 1 L に向かう 溶融金属の流速が上昇する。
流出口 3 9 から短辺 1 1 L に向かう溶融金属の流動と 短辺 1 1 Rに向かう溶融金属の流動が実質上同速度であ つても、 仮に浸漬ノ ズル 2 から出る溶融金属の流動が長 辺 1 0 F側に偏 っている と、 長辺 1 0 Fの温度が長辺 1 0 L よ り も高 く なる。 この場合には、 V Fが大き く V L 2 が小さ いので、 B 1 1 , B 2 1 > B 2 2 , B 1 2 とな り 、 リ ニ ア モー タ 6 F の電気コ ィ ノレには、 リ ニ ア モータ 6 Lの電気コ イ ルよ り も、 高 レベルの直流成分が通電さ れて強い制動力が長辺 1 0 F に沿う溶融金属に作用 し速 度が抑制される。 長辺 1 0 L に沿う溶融金属の流動に対 する制動力は弱 く な り 、 長辺 1 0 L に沿う溶融金属の流 速が上昇する。
以上のよ う な原理によ り、 上記実施例によれば、 浸漬 ノ ズル 2 を中心と して、 铸型長辺に沿う方向 X (左右の) 溶融'金属の流速偏差が抑制され、 かつ、 短辺に沿う方向 y (幅方向手前側と後側の) 溶融金属の流速偏差が抑制 され、 铸型内溶融金属の温度分布が均一化する。
以上は、 直流印加について述べたが、 移動磁界を生 じ ない態様で電気コ イ ルに交流を通電する態様でも本発明 は実施 し う る。 加えて、 移動磁界を生ずる態様で電気コ ィ ルに交流を通電する場合、 すなわち リ ニアモータに、 移動磁界を生ずる交流を通電する場合には、 溶融金属の 流動と逆方向の移動磁界を リ ニアモータ に発生させる こ と によ り 制動力が溶融金属に加わる。 次に、 移動磁界に よ り推力を加える こ と によ り溶融金属に制動力を加える 1 つの態様を説明する。 この態様では、 図 5 1 Aの ごと く 、 铸型長辺に沿って 浸漬ノ ズル 2 に向かう電磁力 (推力) が発生する よ う に、 リ ニアモータ 6 F, 6 Lの結線を、 図 5 2 に示すよ う に 変更する。 図 5 1 B に示すよ う に偏流が起こ り 、 浸漬ノ ズル 2 の左側のほう が右側よ り 強 く 表層流が生 じた場合、 左側の短辺の温度が高 く なる。 そ こでこの実施例では、 図 5 1 C に示すよ う に、 温度が高い方の電磁力を下げ低 い方の電磁力を上げる。
これを行な う コ ン ピュ ー タ 6 3 の演算処理を図 5 3 に 示す。 前述の直流によ る制動力を加える場合には、 温度 が高い所で直流バ イ ア ス ( B 1 1 , B 2 2 ) を高 く し低 い所で直流バイ ア ス ( B 2 1 , B 1 2 ) を低 く するが、 この実施例では温度が高い所で交流電圧 ( V dc A 1 ,
V dcA 3 ) を低く し温度が低い所で交流電圧 ( V dcA 2, V dc A 4 ) を高 く する。 すなわち温度が高い所で溶融金 属への加速推力を下げ、 温度が低い所で加速推力を上げ る。 このよ う に、 前述の実施例の直流バイ アス ( B 1 1 , B 2 2 ) と この実施例の交流電圧 ( V dcA l , V dc A 3 ) と は、 温度の高低に関 して電圧ま たは電流の大小が逆の 関係となる。 したがつてこの実施例では、 コ ン ピュ ータ 6 3 は、 図 5 3 に示すよ う に、 現在出力 している コ イ ル 電圧 ( V dcA l P〜 V dcA 4 P ) よ り 、 前述の実施例と 同様に算出 した所要制動力対応値を減算 し、 得た値を、 新たな コ イ ル電圧指令値 V dcA 1 〜 V dcA 4 と して更新 し、 これらをそれぞれ電源回路 3 0 F 1 , 3 0 F 2 , 3 0 L I および 3 0 L 2 に出力 し、 現在出力 している コ ィ ル電圧を表わす値 ( レ ジスタのデータ) V dcA l P〜
V dc A 4 Pを該出力値に更新する。
図 5 1 B に示すよ う に偏流が起こ り 、 浸漬ノ ズル 2 の 左側のほうが右側よ り 強 く 表層流が生 じた場合、 左側の 短辺の温度が高 く なる。 する と コ ン ピュータ 6 3 が、 高 温側の V d c A 1 及び V d c A 3 を小さ く し、 低温側の
V dc A 2 , V dcA 4 を大き く する。 従って、 リ ニアモー タ 6 Fの第 1 グルー プの電気コ イ ル C F 1 a 〜 C F 1 r および リ ニアモー タ 6 Lの第 2 グループの電気コイル C L 2 a 〜 C L 2 r の 3 相交流電流値が減少 して電磁力 (推力) 力く下力くり 、 リ ニアモータ 6 Fの第 2 グループの 電気コ ィ ノレ C F 2 a ~ C F 2 r および リ ニアモータ 6 L の第 1 グルー プの電気コ イ ル C L 1 a ~ C L 1 r の 3 相 交流電流値が増加 して電磁力 (推力) が上がり 、 リ ニア モータ 6 F , 6 L によ る電磁力は図 5 1 Cのごと く にな る。 する と、 偏流によ って弱かっ た右側の表層流は強 く な り、 メ ニスカ ス面内で均一な流れが得られる こ と にな 。
図 5 1 B に示す偏流と は逆の偏流を生じた場合には、 すなわち浸漬ノ ズル 2 の左側の表層流が弱 く 右側の表層 流が強い場合には、 右側短辺の温度が左側短辺の温度よ り 高 く なる。 これに応答 してコ ン ピュ ータ 6 3 が、 高温 側の V d c A 2 及び V d c A 4 を小さ く し、 低温側の V d c A 1 , V dcA 3 を大き く する。 従って、 リ ニアモータ 6 F の第 1 グループの電気コ イ ル C F 1 a ~ C F 1 r および リ ニアモー タ 6 L の第 2 グループの電気コ イ ル C L 2 a 〜 C L 2 r の 3 相交流電流値が増大 して電磁力 (推力) が上がり 、 リ ニアモータ 6 F の第 2 グループの電気コ ィ ノレ C F 2 a 〜 C F 2 r および リ ニアモータ 6 L の第 1 グ ループの電気コ イ ル C L 1 a 〜 C L 1 r の 3 相交流電流 値が減少 して電磁力 (推力) が下がる。 これによ り 、 偏 流によ って弱かっ た左側の表層流は強 く な り、 メ ニスカ ス面内で均一な流れが得られる こ とになる。
以上のよ う な原理によ り 、 上記実施例によれば、 浸漬 ノ ズル 2 を中心と して、 铸型長辺に沿う方向 X (左右の) 溶融金属の流速偏差が抑制され、 铸型内溶融金属の温度 分布が均一化する。
溶融金属の流速が高い箇所で、 高い制動力を溶融金属 の流動に与えるので、 溶融金属の偏流が抑制される。 す なわち溶融金属の流速分布が均一化する。 したがって铸 型内溶融金属の場所によ る温度むらが抑制される。
次に、 本発明の第 5 の実施例について説明する。
以上述べた実施例等において、 安定 した循環流を起こ すには、 強い電磁力が必要である。 例えば、 リ ニアモー 夕 6 F の右半分と リ ニアモータ 6 L の左半分は、 浸漬ノ ズル 2 から铸型内に流れ込む溶融金属の流動に打勝つ強 い電磁力を与えなければな らない。 そ こで、 結線をかえ たり 、 複数電源にする こ と によ り 、 強い電磁力を得よ う と している。 上述の リ ニアモータ によ る溶融金属の表層駆動は、 上 述の循環流を発生するが、 強い電磁力を得るために結線 替え して も コ イ ルに流れる電流の大き さ は冷却能力で決 ま っている。 以下にこの理由を説明する。
リ ニアモー タの コ ィ ノレに切られた各ス ロ ッ 卜 において ス ロ ッ ト の幅方向の長さを て a Cm , ス ロ ッ ト の深さ 方向の長さ を て b 〔m〕 , コアに巻き回された コ ィ ノレの ター ン数を n と し、 ま た電流の大き さを I 〔 A〕 とする と、 電流密度 j は空間の単位面積あた り を通過する電気 力線の総数であ り 、 次の様に表される。
j = ( yS x n I ) / ( r a X r b ) …(6) なお、 /3 は、 ス ロ ッ ト断面における電気コ イ ルの占積 率である。
と こ ろで、 (6) 式よ り電流密度 j は電流の大き さ に比 例 し、 また、 コ イ ルが流れる電流によ り加熱された場合 その温度は電流密度が高い程上昇するのでコ イ ルの冷却 条件によ ってコイ ルに流せる電流の量には自 と制限があ る。 つま り 、 コ イ ルに銅を使用 した場合、 銅の冷却条件 によ り 、 例えば、 冷却方法が水冷の場合においてその冷 却能力によ り 3 〜 6 e + 6 A / ま た空冷の場合にお いては 1 〜 2 e + 6 A Z m2の範囲に制限されている。 こ の為、 電磁力分布を変えよ う とする と電流の大き さ を小 さ く する しかな く 、 十分大きな電磁力は得られない。
本実施例は、 よ り効果的に、 気泡の浮上促進、 溶融金 属中へのパウ ダ巻き込み回避、 および又は、 表層付近の 铸型内面のぬ ぐい、 を行な う こ とを目的とする。
本実施例は、 図 5 4 に示す様に、 溶融金属 1 を取り 囲 む铸型辺の一辺 1 O F に沿って配置される、 複数個のス ロ ッ ト B F 1 a等を有する磁気コア 1 2 F と、 複数個の ス ロ ッ トの少 く と も一部の ものに揷入された複数個の電 気コ イ ル C F 1 a 等の組合せでなる第 1 組の リ ニ ア モ ー 夕 6 F ; 前記一辺に対向する も う一つの辺 1 0 L に沿つ て配置される、 複数個のスロ ッ ト B F 1 a等を有する磁 気コ ア 1 2 し と、 複数個のス ロ ッ 卜の少 く と も一部の も のに挿入された複数個の電気コ イ ル C L l a 等の組合せ でなる第 2 組の リ ニアモー タ 6 L ; および、 第 1 組およ び第 2 組の リ ニアモータ 6 F , 6 L に通電する通電手段 を備える連続铸造装置において、
第' 1 態様では、 铸型辺が取り 囲む空間に溶融金属を供 給する ノ ズル部材の中心を通り前記一辺に直交する仮想 上の第 1 平面と ノ ズル部材の中心を通り第 1 平面に直交 する仮想上の第 2 平面で铸型辺が取り 囲む空間を 4 分割 し これらの分割 した空間をノ ズル部材を中心に時計廻り で第 1 空間, 第 2 空間, 第 3 空間および第 4 空間とする と、 前記 リ ニアモー タの、 第 1 および第 3 空間に対向す る部位の少 く と も一部のスロ ッ ト B F 1 a 〜 B F 1 r , B L 1 a 〜 B L 1 r を他の もの B F 2 a 〜 B F 2 r 、 B L 2 a 〜 B L 2 r よ り深 く 構成 したこ とを特徴とする 第 2 態様では、 図 5 9 に示す様に、 第 1 組の リ ニアモ 一 夕 6 F は第 1 空間に対向する ス ロ ッ ト B F 1 a 〜 B F 1 r のみに電気コ ィ ノレ C F 1 a 〜 C F 1 r を有 し、 第 2 組の リ ニアモー タ 6 L は第 3 空間に対向するスロ ッ ト B L 1 a 〜 B L 1 r のみ に電気コ イ ル C L 1 a 〜 C L 1 r を有する こ とを特徴とする。
第 3 態様では、 図 6 O Aに示す様に、 第 1 組の リ ニア モータ 6 Fの第 1 空間に対向する電気コ ィ ノレ C F 1 a - C F 1 r および第 2 組の リ ニアモータの第 3 空間に対向 する電気コ ィ ノレ C L 1 a 〜 C L l r に、 それらの空間内 の溶融金属を铸型辺に沿う方向に駆動するための交流電 流を通電する第 1 組の通電手段 V C、 および、 第 1 組の リ ニアモータ 6 Fの第 2 空間に対向する電気コ イ ル C F 2 a 〜 C F 2 r および第 2 組の リ ニアモータ 6 Lの第 4 空間に対向する電気コ イ ル C L 2 a 〜 C L 2 r に直流電 流を通電するかあるいは通電を遮断する回路 V D、 を備 える こ とを特徴とする。
第 1 態様の作用
図 5 4 は、 本発明の第 5 実施例の第 1 態様の リ ニアモ —夕部分において横手方向 ( X — y面に平行) に切断 し た平面図、 図 5 6 Aはコア 1 2 Lの図 5 4 において一点 鎖線 Cで囲まれた部分の拡大平面図、 図 5 6 B はコア 1 2 Lの一点鎖線 Dで囲まれた部分の拡大平面図である。 铸型内壁 3 1 に沿う循環流を溶融金属の表層に生起させ 循環流を定速度で安定 して流す為には、 強い電磁力が必 要である。 例えば、 リ ニアモー タ 6 Fの右半分と リ ニア モータ 6 Lの左半分は、 浸漬ノ ズル 2 から铸型内に流れ 込む溶融金属の流動に打勝つ強い電磁力を与えなければ な らない。 しか し、 リ ニアモー タ の冷却条件によ り流す こ とのでき る電流の量は限 られている。 そ こで本発明の 第 1 態様においては、 ア ンペア コ ンダク タ α を大き く す る こ と によ り 、 すなわちス ロ ッ トを深 く してそ こ に挿入 する電気コ イ ルのア ンペア タ ー ン (卷回数 X通電電流値) を大き く する こ と によ り 、 強い電磁力を得る。
ア ンペア コ ンダク タ ε と電磁力 f の間には f oc £ 2 の 関係があ り 、 電流密度を j 、 占積率を yS、 ま た、 図 5 6 A において、 ボーノレ ピ ッ チを て s , 、 ス ロ ッ ト の X方向 幅を て a , 、 ス ロ ッ ト の y方向深さ て b , とする と、 ε は次式で表される。
ε = ( n x l ) / て S i
= j ( て a , / て s 1 ) x r b , x β 〔 A / m〕 …… (7) こ の と き、 電流密度 j 及び占積率 は リ ニアモー タの冷 却条件によ っ て決定する定数であ り、 て a , / て s , も 定数である とする と、 ε を大き く する には、 r b , を大 き く すればよい こ と になる。 図 5 6 A と図 5 6 Bを比較 する と、 て S i = て S i 、 r a ι = て a i であ る力く、 て = 2 て b 2 と な っ ており 、 コア 1 2 F において、 コ イ ル C F 1 a 〜 C F l r (以下第 1 グループ) が巻き 回されている半分と コイ ル C F 2 a 〜 C F 2 r が巻き回 されている半分 (以下第 2 グループ) とでは、 第 1 グル —プのコ イ ルが巻き回されている コ イ ル部分の電磁力は 第 2 グループの コ イ ルが巻き回されている コ イ ル部分の 電磁力の 2 倍の強さ を持っている。 リ ニアモータ 6 に 関 して も同様である。 従って、 図 6 1 B に示すよ う にメ ニスカ ス表層部において、 モータの電磁力の強さ に従つ た表層流が発生 し、 図 6 1 Aに示す注入流によ る表層流 を、 打ち消 しま たは強めて最終的には図 6 1 C に示す铸 型内壁 3 1 に沿う速度分布の均一性が高い循環流を溶融 金属の表層に生起させる こ とができ る。
本実施例の第 1 態様の铸型内溶融金属の表層部に加わ る電磁力の分布を図 5 7 に示す。 また、 スロ ッ トの深さ が均一である リ ニァモー タの例における铸型内溶融金属 の表層部に加わる電磁力の分布と して図 3 4 を参照する これらの図面は、 铸型の一長辺に沿って n = 3 6 (すな ゎぢ 3 6 個の電気コ ィ ノレ) のス ロ ッ トを配列 した リ ニア モータ 6 F と 6 Lを铸型を間に置いて配列 した場合の、 铸型内溶融金属 1 の表層部の水平面における電磁力分布 を矢印で示すも のであ り 、 矢印の方向が電磁力の方向を 示 し、 長さが強さを示す。 なおこれは、 1 . 8 H zの 3 相交 流を通電 した場合の、 1 周期間に発生する電磁力 (積算 値) を計算によ り求めた ものである。 図 3 4 に示す従来 例の様に、 極数が少な く ( 2 極) 、 スロ ッ 卜 に特に何ら かの工夫が見られない場合には、 電磁力は大き いが、 y 方向 (铸型の短辺に沿う方向) の電磁力成分が強 く (図 中で y方向に矢印が長 く ) 、 左右 ( y方向) 各 1 箇所計 2 箇所で電磁力が反時計方向の渦巻き となる。 このよ う な力は溶融金属 1 に渦流を もた ら し、 これがパウ ダ巻き 込みを もた らす恐れがある。 ま た铸型内壁面 (長辺の内 面) に沿う X方向での、 X方向電磁力成分が大小に分布 するので、 X方向で铸型内面のぬ ぐいむらがあ り 、 部分 的に溶融金属が滞留する恐れがある。
図 5 7 に示す本発明の第 1 態様 (図示例は 2 極) の場 合には、 電磁力の y方向成分が実質上な く な り 、 もはや 渦巻き は認められず、 実質上沿面流のみを生ずる。 した がってパウ ダの巻込み防止効果が極く 高 く 、 铸型長辺全 長 ( X方向) に渡って電磁力の X方向成分が均等で、 定 方向 ( X方向) かつ定速度の沿面流がもた ら され、 铸型 内面のぬ ぐいが均一にな り しかも気泡の浮上が促される 本発明の第 1 態様の特徴によれば、 従来用い られてい ない'スロ ッ ト形状すなわち対向する ス ロ ッ ト同士でスロ ッ ト深さの違う リ ニアモータを用いるので、 上述の図 5 6 A と図 5 6 B及び図 5 ' 7 を参照 して説明 した作用効果 力 <もた ら される。
第 2 態様の作用
図 5 9 に本実施例の第 2 態様を示すが、 これにおいて は、 リ ニアモー タ 6 F の第 2 グループの電気コ ィ ノレ C F 2 a 〜 C F 2 r (図 5 4 ) が省略され、 かつ リ ニ ア モ ー タ 6 L の第 2 グループの電気コ イ ル C L 2 a 〜 C L 2 r が省略されている。 これによ り第 1 空間および第 3 空間 の溶融金属 1 には実質上 リ ニア駆動力が加わ らない。 す なわち浸漬ノ ズル 2 よ り の溶融金属注入によ る表層流 (図 6 1 A ) を助長する リ ニア駆動力が加わ らないので リ ニアモー タ 6 F , 6 Lの第 1 グループの電気コ イ ル C F 1 a〜 C F l r, C L 1 a〜 C L l r によ る リ ニア 駆動力は、 浸漬ノ ズル 2 よ り の溶融金属注入によ る第 1 空間および第 3 空間の表層流に打勝ちかつその差分が第 2 空間および第 4 空間の表層流の速度と実質上同 じ く な る程度の ものであればよい。 したがって、 図 6 1 B に示 すよ う にメ ニスカ ス表層部において、 モータの電磁力の 強さ に従っ た表層流が発生 し、 図 6 1 Aに示す注入流に よ る表層流を、 打ち消 しま たは強めて最終的には図 6 1 C に示す铸型内壁 3 1 に沿う速度分布の均一性が高い循 環流を溶融金属の表層に生起させる こ とができ る。
第 3 態様の作用
図 '6 0 A と 6 0 B に本実施例の第 3 態様の電源回路を 示す。 こ の第 3 態様で用い られる リ ニアモータ は図 5 4 又は図 2 8 に示す態様の ものである。 これにおいては、 リ ニアモー タ 6 F , 6 Lの第 1 グループの電気コ イ ル C F 1 a〜 C F l r , C L 1 a〜 C L l r には第 1 , 第 2 実施例と同様に リ ニァ駆動力を生ずる交流が通電される 力く、 第 2 グループの電気コ イ ル C F 2 a〜 C F 2 r,
C L 2 a〜 C L 2 r には、 直流通電回路 V D (図 6 O A と 6 0 B ) によ り 直流が通電されるか、 又は通電が遮断 される (直流電流値 = 0 と等価) 。 これによ り第 2 空間 および第 4 空間の溶融金属 1 には実質上 リ ニア駆動力が 加わ らない。 0 レベルを越える直流を通電する と、 第 2 空間および第 4 空間の浸漬ノ ズル 2 よ り の溶融金属注入 によ る表層流 (図 6 1 A ) を止めよ う とする制動力が加 わる。 リ ニアモータ 6 F , 6 Lの第 1 グループの電気コ ィ ノレ C F 1 a〜 C F l r、 C L 1 a〜 C L l r による リ ニァ駆動力は、 浸漬ノ ズル 2 よ り の溶融金属の注入によ る第 1 空間および第 3 空間の表層流に打勝ちかつその差 分が第 2 空間および第 4 空間の表層流の速度と実質上同 じ く なる程度の ものであればよい。 0 レベルを越える直 流を通電する態様では第 2 空間および第 4 空間の表層流 の速度が下がるので、 第 1 グループの電気コ イル
C F 1 a〜 C F l r 、 C L 1 a〜 C L l r によ る リ ニア 駆動力は、 表層流の流速を均一化する上では、 よ り 小さ い値で もよい こ と になる。 した力くつて、 図 6 1 B に示す よ う にメ ニスカ ス面内において、 モータの電磁力の強さ に従っ た表層流が発生 し、 図 6 1 Aに示す注入流による 表層流を、 打ち消 しまたは強めて最終的には図 6 1 じ に 示す铸型内壁 3 1 に沿う速度分布の均一性が高い循環流 を溶融金属の表層に生起させる こ とができ る。
本実施例の各態様について、 さ らに詳 し く 説明する。 —第 1 態様一
図 5 4 に、 図 2 7 に示す内壁 3 1 を、 リ ニアモータ 6 F, 6 Lの コ ァ 1 2 F, 1 2 L部で水平に破断 した断面 を示す。 铸型の内壁 3 1 は、 相対向する長辺 1 0 F, 1 0 Lおよび相対向する短辺 1 1 R , 1 1 Lで構成されて おり 、 各辺は銅板 3 3 F , 3 3 L , 3 5 R , 3 5 L に、 非磁性ステ ン レ ス板 3 2 F, 3 2 L , 3 6 R , 3 6 L を 裏当て した ものである。
この態様では、 リ ニアモータ 6 F, 6 Lのコ ア 1 2 F 1 2 L は、 铸型長辺 1 0 F, 1 0 Lの実効長 (溶融金属 1 が接する X方向長さ) よ り やや長 く 、 それらの全長に 深さ ( y方向長さ) の違う スロ ッ トが所定ピ ッ チでそれ ぞれ 1 8 個づっ計 3 6 個切られている。 リ ニアモータ 6 Fのコア 1 2 F に切 られたス ロ ッ ト B F 1 a 〜 B F l r および リ ニアモータ 6 Lのコア 1 2 L に切 られたスロ ッ ト B L 1 a 〜 B L l r の深さ は、 リ ニアモータ 6 Fの コ ァ 1 2 F に切 られたス ロ ッ ト B F 2 a ~ B F 2 r および リ ニアモータ 6 Lのコ ア 1 2 L に切 られたスロ ッ ト B L 2 a 〜 B L 2 r の深さ よ り も深 く 、 この実施例にお いて'は、 2 倍の深さ にな っている。 その分、 ス ロ ッ 卜 に 揷入されている電気コ イ ルのア ンペア タ ー ン数が大き い リ ニアモータ 6 Fのコア 1 2 Fの各ス ロ ッ 卜 には、 第 1 グループの電気コ イ ル C F 1 a〜 C F 1 r および第 2 グループの電気コ イ ル C F 2 a 〜 C F 2 r が装着されて いる。 同様に、 リ ニアモータ 6 Lのコア 1 2 Lの各ス ロ ッ 卜 には、 第 1 グループの電気コ イ ル C L 1 a 〜
C L 1 r および第 2 グループの電気コ イ ル C L 2 a 〜 C L 2 r が装着されている。
リ ニアモータ 6 F, 6 L は、 図 6 1 B に点線矢印で示 す推力を溶融金属 1 に与えるよ う とする もので、 リ ニア モータ 6 Fおよび 6 Lの第 1 グループの電気コ イ ル C F 1 a〜 C F l r および C L 1 a〜 C L l r は強い推 力を、 第 2 グループの電気コ イ ル C F 2 a〜 C F 2 rお よび C L 2 a〜 C L 2 r は弱い推力を溶融金属 1 に与え ればよい。 したがって第 1 グループのス ロ ッ トを第 2 ス ロ ッ 卜の深さ よ り も深 く すれば、 メ ニスカ ス上において 対角上に推力の大きい部分または小さ な部分が発生 し浸 漬ノ ズル 2 よ り流れ込む溶融金属によ る メ ニスカ ス面内 の流速の速度変位は加速ま たは相殺され、 均一な攪拌が 得られるよ う になる。
図 5 5 に、 図 5 4 に示す全電気コ イ ルの結線を示す。 こ の結線は 2 極 ( N = 2 ) の ものであ り 、 電気コ ィ ノレに 3相交流 (M = 3 ) を通電する。 例えば、 リ ニアモータ 3 Fの第 1 グループの電気コ イ ル C F 1 a〜 C F 1 r は 図 5·5 ではこ の順に、 w, w , w , w , w , w , V, V V, V, V, V, u , u , u , u , u , u と表わ し、 第 2 グル一プの電気コィ ル C F 2 a〜 C F 2 rでは、 この 順に、 W, W, W, W, W, W, v, v, v, v, v, v, U, U, U, U, U, Uと表わ している。 そ して 「 U」 は 3相交流の U相の正相通電 (そのま まの通電) を、 「 u」 は U相の逆相通電 ( U相よ り 1 8 0 度の位相 ずれ通電) を表わ し、 電気コ イ ル 「 U」 にはその巻始め 端に U相が印加されるのに対 し、 電気コ イ ル 「 u」 には その巻終り端に U相が印加される こ とを意味する。 同様 に、 「 V」 は 3相交流の V相の正相通電を、 「 v」 は V 相の逆相通電を、 「W」 は 3相交流の W相の正相通電を 「 w」 は W相の逆相通電を表わす。 図 5 5 に示す端子 U 1 , V 1 および W 1 は、 リ ニアモータ 6 Fの第 1 グルー プ、 第 2 グループの電気コ イ ル C F 1 a〜 C F l r , C F 2 a〜 C F 2 r の電源接続端子であ り 、 端子 U 2, V 2 および W 2 は、 リ ニアモータ 6 Lの第 1 グループ、 第 2 グループの電気コ イ ル C L 1 a〜 C L 1 r,
C L 2 a〜 C L 2 r の電源接続端子である。
以上によ り 、 この実施例では、 2 極構成の リ ニアモー 夕 6 F , 6 L に 2 0 Hzの 3 相交流力く印加され、 これ らの リ ニアモータ 6 F, 6 L によ り 、 铸型内壁 3 1 内の溶融 金属 1 には、 図 6 1 B に点線矢印で示す推力が加わり 、 浸漬ノ ズル 2 からの溶融金属の注入によ る流れ (図 6 1 A ) との合成は図 6 1 C に示す実線矢印 となる。 すなわ ち、 循環流となる。 渦流が弱 く パウ ダの巻込みはその分 可能性が低く 、 しかも、 铸型長辺の内面近 く では、 隣り 合う渦の外縁の電磁力が連続 して、 y方向成分が極 く 小 さ く 、 いわば長辺全長 ( X方向) に渡って電磁力の X方 向成分が均等で、 定方向 ( X方向) かつ定速度の沿面流 がもた らされ、 铸型内面のぬ ぐいが均一にな り しかも気 泡の浮上が促される。
一第 2 態様一
図 5 9 に、 本実施例の第 2 態様のコア 1 2 F, 1 2 L を水平に破断 した拡大横断面図を示す。 コ ア 1 2 F及び 1 2 L に切 られてい る ス ロ ッ 卜 の第 2 グループ (ス ロ ッ ト B F 2 a〜 B F 2 r 、 及びス ロ ッ ト B L 2 a ~ B L 2 r ) にはコ ィ ノレは巻かれていない。 その他の構成 は第 1 態様と同 じである。
ス ロ ッ 卜 の第 2 グルー プ ( ス ロ ッ ト B F 2 a〜 B F 2 r及びス ロ ッ ト B L 2 a〜 B L 2 r ) に コ イ ルを巻かな いこ と によ り 、 コア 1 2 F, 1 2 Lに発生する電磁力は ス ロ ッ 卜 の第 1 グループ (ス ロ ッ ト B F 1 a〜 B F l r 及びス ロ ッ ト B L 1 a〜 B L l r ) に巻き回されている コィ ノレ ( C F 1 a〜 C F l r及び C L 1 a〜 C L l r ) によ'る もののみになる。
本実施例の第 2 態様の铸型内溶融金属の表層部に加わ る電磁力の分布を図 5 8 に示す。 図 5 7 に示す第 1 態様 の場合に比べて も電磁力の大き さ にはさ ほど変り な く 、 実質上沿面流を生 じさせる こ とができ る。 ま た、 コ イ ル を巻く 手間が省けるため、 時間の合理化と コ ス トの削減 がなされ、 更に、 铸型長辺全長 ( X方向) に渡って電磁 力の X方向成分が均等で、 定方向 ( X方向) かつ定速度 の沿面流がもた らされる こ とによ り 、 パウ ダの巻込み防 止効果が高 く 、 铸型内面のぬ ぐいが均一にな り しかも気 泡の浮上が促される。
一第 2 態様の変形例一
電気コ イ ルを省略 したコ ア部分は実質上不要である。 そ こで本実施例の第 2 態様の変形例では、 リ ニアモータ 6 Fおよび 6 Lのコア 1 2 Fおよび 1 2 Lを、 第 1 グル ープの電気コ ィ ノレ C F 1 a〜 C F 1 r及び C L 1 a〜 C L l r を巻回 した部分の長さの ものとする。 一第 3 態様一
本実施例の第 3 態様では、 図 5 4 又は図 2 8 に示す リ ニァモータ 6 F, 6 Lを用いるが、 これらの リ ニアモー 夕 6 F, 6 L に、 図 6 O Aに示すよ う に電源回路 V Cお よび V Dを接続する。 すなわち リ ニアモータ 6 F, 6 L の第 1 グループの電気コ イ ル C F 1 a 〜 C F 1 r 及び C L 1 a 〜 C L l r には、 本実施例の第 1 , 第 2 態様と 同様に、 図 3 1 に示す電源回路と同 じ構成の 3 相交流出 力の電源回路 V C によ り 3 相交流を印加する。 しか し第 2 グループの電気コ ィ ノレ C F 2 a 〜 C F 2 r 及び C L 2 a 〜 C L 2 r には、 図 6 0 B に示す直流電源回路 V Dに よ り直流を通電するか、 又は通電を遮断する。
図 6 0 B に示す直流電源回路 V Dは、 図 3 1 に示す電 源回路よ り 、 ト ラ ン ジスタブリ ッ ジ 4 7 Aを削除 し、 コ ンデンサ 4 6 Aの直流電圧をそのま ま 出力するよ う に し た ものである。 図 6 0 B に示す直流電源回路 V Dの直流 出力電圧は位相角 α算出器 7 6 d に与える コ イ ル電圧指 令値 V cdによ り定ま り 、 V cdが 0 レベルである とゲー ト ドラ イバ 7 7 d力く ト リ ガー信号を発生 しないのでサイ リ スタブ リ ッ ジ 7 2 dがオフで直流出力電圧は 0 となる。 すなわち、 第 2 グループの電気コ イ ル C F 2 a 〜 C F 2 r 及び C L 2 a 〜 C L 2 r の通電は遮断となる。
コ イ ル電圧指令値 V cdが次第に上昇する と、 入力 3 相 交流のゼロ ク ロ ス点よ り前でゲー ト ドラ イバ 7 7 d力く ト リ ガ一信号を発生 しサイ リ スタブ リ ッ ジ 7 2 dがオ ンす るよ う にな り 、 コ イ ル電圧指令値 V c dの上昇に伴って直 流出力電圧が上昇する。 第 2 ·グループの電気コ イ ル C F 2 a 〜 C F 2 r 及び C L 2 a 〜 C L 2 r に流れる直 流電流は、 第 2 空間および第 4 空間の溶融金属 1 の表層 流 3 8 (図 6 1 A ) に制動力を与え、 こ の制動力は直流 電源回路 V Dの直流出力電圧の上昇に伴って強 く なる。 これを大き く 設定すれば、 図 6 1 C に実線矢印で示す循 環流の流速分布を均一化するための、 第 1 グループの電 気コ ィ ノレ C F 1 a 〜 C F l r 及び C L 1 a 〜 C L l r に 流す交流電流値 (第 1 空間および第 3 空間に及ぼす リ ニ ァ駆動力) を小さ く し う る。 ただ し表層流の流速は低 く なる。 表層流の流速を高 く する と き には制動力を下げて リ ニア駆動力を上げればよい。 このよ う な調整を、 第 1
〜 4 空間のそれぞれで行ない得るよ う に、 本実施例の第 3 態様では、 図 6 O Aに示すよ う に、 2 組の交流電源回 路 V Cおよび 2 組の直流電源回路 V Dを備えて、 それぞ れで リ ニアモータ 6 Fおよび 6 Lの第 1 グループの電気 コ イ ルに 3 相交流を、 第 2 グループの電気コ イ ルに直流 を印加するよ う に している。
一第 3 態様の変形例一
本実施例の第 3 態様の変形例では、 交流電源回路 V C を 1 組と して リ ニアモー タ 6 Fおよび 6 Lの第 1 グルー プの電気コ イ ルに 3 相交流を通電 し、 直流電源回路 V D も 1 組と して リ ニアモー タ 6 Fおよび 6 Lの第 2 グルー プの電気コ イ ルに直流を通電する。 こ の変形例では、 リ ニァモータ 6 Fおよび 6 Lの第 1 グループの電気コ イ ル の交流電流値を個別に調整 しえず、 ま た第 2 グループの 直流電流値を個別に調整 しえないが、 铸型内の空間は浸 漬ノ ズル 2 に関 して実質上左右対称であるので、 この変 形例によ って も十分な効果がある。
本実施例の各特徴によれば、 スロ ッ ト深さの違う コ ア を対向させた リ ニアモー タを用いているので、 電磁力の y方向成分が実質上な く な り 、 もはや渦流は認め られず 実質上沿面流のみを生ずる。 したがってパウ ダの巻込み 防止効果が極く 高 く 、 しかも、 铸型長辺の内面近く では 隣り合う 渦の外縁の電磁力が連続 して、 y方向成分が極 く 小さ く 、 いわば铸型長辺全長 ( X方向) に渡って電磁 力の X方向成分が均等で、 定方向 ( X方向) かつ定速度 の沿面流がもた らされ、 铸型内面のぬ ぐいが均一にな り しかも気泡の浮上が促される。
次に、 本発明の第 6 の実施例について説明する。
従来、 図 6 2 Aに示すよ う に、 モール ド 3 に溶融金属 1 を注 ぐ タ ンテ ィ ッ シ ュ 8 0 は、 更に取鍋 7 9 から溶融 金属の注入をされるが、 取鍋 7 9 を交換する と き にタ ン テ ィ ッ シュ 8 0 の溶融金属の レベルが一時低下 し、 これ によ り タ ンテ ィ ッ シュ 8 0 からモール ド 3 への注入圧が 取鍋 7 9 の交換周期 Xで変動 し、 例えば図 6 2 B に示す よ う に铸造速度が変動する。 铸造速度が下がっ た時点の 铸片は歩止ま り Q片 (低品質材) と称され、 格下げ品又 は不良品となる。 上述の従来の リ ニアモータ によ る溶融 金属の表層駆動は、 上述の循環流を発生するが、 注入圧 変動時の歩止ま り Q片の発生を抑止する程に表層流を調 整も し く は制御する こ とができない。
本実施例は、 タ ンテ ィ ッ シ ュ の操業状況の変化に対応 した表層流調整も し く は制御を行ない得る流速制御装置 を提供する こ とを目的とする。
本実施例の連続铸造装置は、 図 6 3 〜 6 8 に示す様に 溶融金属 1 を取り 囲む铸型辺の一辺 1 O F に沿う方向に 分布する複数個のス ロ ッ ト B F 1 a等を有する磁気コ ア 1 2 F と各ス ロ ッ 卜 に挿入された複数個の電気コイ ル C F 1 a 等の組合せでな る第 1 組の リ ニアモータ 6 F ; 前記一辺に対向する も う 1 つの辺 1 0 L に沿って分布す る複数個のス ロ ッ ト B L 1 a等を有する磁気コ ア 1 2 L と各ス ロ ッ 卜 に挿入された複数個の電気コ イ ル C L 1 a 等の組合せでなる第 2 組の リ ニ アモータ 6 L ;
第 1 組および第 2 組の リ ニアモータ 6 F, 6 Lの電気 コ イ ルに通電する通電手段 C C 1 , 3 0 a / C C 2 , 3 0 b / C C 3 , 3 0 c Z C C 4, 3 0 d ;
铸型辺が取り 囲む空間の溶融金属の上表面の複数の位 置のそれぞれで溶融金属表層部の流速 V s 1 〜 v s 4 を 検出する流速検出手段 9 1 a〜 9 1 d, 9 8 a ;
検出 した流速 v s l 〜 v s 4 を、 予め設定 した複数個 の表層部流速分布モー ドそれぞれの流速成分 M s , M p M a , M t に変換する流速変換手段 9 8 c ;
変換 した流速成分 M s, M p , M a, M t のそれぞれ を各モー ドの目標値 M so, M po, Mao, M toと比較 し、 流速成分偏差 d M s , d M p , d M a , d M t を算出す る補償量算出手段 9 8 c ;
流速成分偏差 d M s , d M p , d M a , d M t を、 前 記複数の位置それぞれでの溶融金属表層部の流速偏差 d V l 〜 d V 4 に逆変換する逆変換手段 9 8 c ; および これらの流速 d v l 〜 d V 4 を零にするよ う に、 前記 通電手段を介 して前記第 1 組および第 2 組の リ ニアモー タ 6 F , 6 Lの電流値を制御する通電制御手段 9 8 c ; を備える。
溶融金属表層部の各部の流速は、 複数の所定方向の流 速 (成分) のべク トル和であるので、 溶融金属の上表面 の複数の位置のそれぞれでの溶融金属表層部の流速 v s 'l 〜 v s 4 は、 複数個の表層部流速分布モー ド (成 分) の組合せで表わすこ とができ、 同様に目的とする流 速分布を複数個の表層部流速分布モー ド (成分目標値) の組合せで表わすこ とができ る。 そ して、 操業状態に対 応 して表層部流速分布を最善な ものに変える場合には、 操業状態に対応 して、 該複数個の表層部流速分布モー ド (成分目標値) の組合せ M so, M po, Mao, M toを、 最 善の流速分布 v s l 〜 v s 4 を もた らすものに変えれば よい。
本実施例の連続铸造装置によれば、 流速変換手段 9 8 c が、 表層部の実際の流速 (検出値 v s l 〜 v s 4 ) を 該複数個の表層部流速分布モー ド (成分) の成分値 M s M p, M a, M t に分解 し、 補償量算出手段 9 8 じ が、 目標値 Mso, Mpo, Mao, M t oに対する これらの成分値 M s , Μ ρ , M a, M t の偏差 d M s, d M p , d M a , d M t を算出 し、 逆変換手段 9 8 じ が、 これらの成分偏 差 d M s , d M p , d M a , d M t を実際の流速分布の 偏差 d v l 〜 d v 4 に逆変換 して、 通電制御手段 9 8 c が、 これらの流速偏差 d v l 〜 d v 4 を零とするよ う に、 すなわち d v l 〜 d v 4 を相殺捕償する流速を表層各部 に与える よ う に、 リ ニアモータが溶融金属に加える電磁 力を、 制御する。 これによ り 、 溶融金属の表層部の流速 分布は、 複数個の表層部流速分布モー ド (成分目標値) の組合せ Mso, M po, Mao, M toで指定された もの
( M so, M po, M ao, M toを実際の流速に逆変換 した も の) となる。
溶融金属の表層部の各部の流速を個別に調整又は制御 する場合には、 ある部位の調整によ る流速変化が他部に は外乱と して波及するので、 各部の一意的な調整又は制 御では所望の流速分布が得られないとか、 調整又は収束 に時間がかかる とかの問題があるが、 本実施例に係る連 続铸造装置の場合には、 目標値 Mso, M po, M ao, M to を所望の流速分布を もた らすものに変更するだけで、 自 動的かつすみやかに目標の流速分布がもた らされる。 し たがって流速分布の設定、 変更、 調整が容易であ り 、 例 えば、 取鍋 7 9 の交換によ り铸型への注入速度が低下 し ている間は攪拌モー ド (図 7 2 A ) を強 く してノ ズル部 材 2 からの注入速度低下によ る表層流の低下をおぎな う こ と によ り 、 歩留 り Q片の発生を回避する とか Q片長を 短 く するなどの、 操業状態の変化に対応 した駆動パ夕 一 ンおよび又は駆動力の変更をタ イ ミ ング良 く 適切に行な い う る。
本実施例について、 さ らに詳 し く 説明する。
図 6 3 に、 図 2 7 に示す内壁 3 1 を、 リ ニアモータ 6 F , 6 L のコア 1 2 F, 1 2 L部で水平に破断 した断面 を示す。 铸型の内壁 3 1 は、 相対向する長辺 1 0 F, 1 0 Lおよび相対向する短辺 1 1 R , 1 1 Lで構成されて おり、 各辺は銅板 3 3 F, 3 3 L , 3 5 R , 3 5 L に、 非磁性ステ ン レス板 3 2 F, 3 2 L , 3 6 R , 3 6 Lを 裏当て した ものである。
この実施例では、 リ ニアモー タ 6 F, 6 Lのコア 1 2 F, 1 2 L は、 铸型長辺 1 0 F, 1 0 L の実効長 (溶融 金属 1 が接する X方向長さ) よ り やや長 く 、 それらの全 長にスロ ッ 卜が所定ピ ッ チで 3 6 個切 られている。
溶融金属 1 の上方には、 流速セ ンサ 9 1 a〜 9 1 d力く 図示 しない架台で支持されて吊 り下げられており 、 流速 値が必要なタ イ ミ ングで下げられて、 溶融金属 1 の表層 部の流速 (表層流速) を測定する。 各セ ンサ 9 1 a〜 9 1 d は、 铸型内の 4 分割された各空間 (第 1 〜第 4 空間) のそれぞれの流速を測定する。
図 6 4 に、 図 6 3 に示す電気コ イ ルの相区分およびグ ループ区分を示 し、 図 6 5 には図 6 3 に示す全電気コ ィ ノレの結線を示す。 こ の結線は 4 極 ( N = 4 ) の ものであ り 、 電気コ イ ルに 3 相交流を通電する。 例えば、 リ ニア モー タ 6 Fの # 1 , # 2 グループの電気コ ィ ノレ ( # 1 : C F l a〜 C F l r ) , ( # 2 : C F 2 a〜 C F 2 r ) は、 図 6 5 ではこの順に、 u, u , u , V, V, V, w , w , w, U , U, U, v, v, v, W, W, Wと表わ し . # 3 , # 4 グループの電気コ イ ル ( # 3 : C L 1 a - C L 1 r ) , ( # 4 : C L 2 a〜 C L 2 r ) では、 こ の 順に、 u, u , u, V, V, V, w, w , w , U, U , U, v , v, v , W, W , W, と表わ している。 そ して 「 U」 は 3 相交流の U相の正相通電 (そのま まの通電) を、 「 u」 は U相の逆相通電 ( U相よ り 1 8 0 度の位相 ずれ通電) を表わ し、 電気コ イ ル 「 U」 にはその巻始め 端に U相が印加されるのに対 し、 電気コ イ ル 「 u」 には その巻終り端に U相が印加される こ とを意味する。 同様 に、 「 V」 は 3 相交流の V相の正相通電を、 「 v」 は V 相の逆相通電を、 「W」 は 3相交流の W相の正相通電を 「 w」 は W相の逆相通電を表わす。 図 6 5 に示す端子 U 1 , V I , W 1 および U 2, V 2, W 2 は リ ニアモータ 6 Fの # 1 グループ, # 2 グループの電気コ ィ ノレ C F 1 a〜 C F 1 r, C F 2 a〜 C F 2 rの電源接続端子であ り 、 端子 U 3 , V 3 , W 3 および U 4, V 4 , W 4 は リ ニァモー タ 6 しの # 3 グループ, # 4 グループの電気コ ィ ル C L 1 a〜 C L l r , C L 2 a〜 C L 2 r の電源接 続端子である。 リ ニアモータ 6 Fのコア 1 2 Fの各スロ ッ 卜 には、 # 1 グループの電気コ イ ル C F 1 a 〜
C F 1 r および # 2 グループの電気コ イ ル C F 2 a 〜 C F 2 r が装着されている。 同様に、 リ ニアモータ 6 L のコア 1 2 Lの各ス ロ ッ ト には、 # 3 グループの電気コ ィ ノレ C L 1 a 〜 C L 1 r および # 4 グループの電気コ ィ ル C L 2 a 〜 C L 2 r が装着されている。
なお、 リ ニアモータ 6 F, 6 L は、 図 7 2 Aに矢印に よ り 示される方向の電磁力を溶融金属 1 に与えよ う とす る ものであるが、 後述するよ う に、 直流通電によ り溶融 金属 1 に制動力を加える機能もある。
浸漬ノ ズル 2 から铸型内への溶融金属注入によ り、 铸 型内溶融金属には図 7 1 C に示す溶融金属の流動が生 じ これによ り 図 7 1 A に示す表層流 3 8 が生ずる。 図 7 1 C と ·7 1 Αには、 浸漬ノ ズル 2 を中心に溶融金属の流動 は対称に示 しているが、 実際には、 浸漬ノ ズル 2 からの 溶融金属の注入が左右で非対称になる こ とがあ り 、 その 場合には表層流も非対称になる。 溶融金属の表層の攪拌 は、 図 7 2 Aに示す態様が好ま し く 、 大略で言う と リ ニ ァモータ 6 Fおよび 6 で、 図 7 1 Aに示す表層流を図 7 2 Aに示す表層流に変えるよ う な電磁力を、 溶融金属 1 に加えるが、 溶融金属の表層流は図 7 1 Aあるいは図 7 2 Aに示す態様と は限 らない。 そ こで溶融金属の表層 流の分析のために、 この実施例では、 現実の表層流が、 図 7 2 A に示す攪拌モー ドの表層流 (成分 s ) , 図 7 2 B に示す並進モー ドの表層流 (成分 p ) , 図 7 2 C に示 す加速モー ドの表層流 (成分 a ) および図 7 2 D に示す ね じれモー ドの表層流 (成分 t ) のべク ト ル和と見なす, なお、 各モー ドの中で、 各表層流 ( 4 個の矢印) は、 絶 対値 (スカ ラ量) は同一と定めている。
(a) 攪拌モー ドの表層流
第 1 , 第 2 空間では铸型辺に沿い同一方向、 第 3 , 第 4 空間で も铸型辺に沿い同一方向であるが第 1 , 第 2 空 間での方向 と は逆方向の全空間で流速の絶対値は同一で ある。 なお、 第 1 〜第 4 空間は図 6 3 に示すものである, (図 7 2 A )
(b) 並進モー ドの表層流
第 1 〜第 4 空間の全空間で铸型辺に沿い同一方向で流 速が同一である。 (図 7 2 B )
(c) 加速モー ドの表層流
第 1 〜第 4 空間の全空間で铸型辺に沿いかつノ ズル部 材に向かう方向で流速が同一である。 (図 7 2 C )
(d) ね じれモー ドの表層流
第 1 , 第 2 空間では铸型辺に沿いノ ズル部材から離れ る方向で第 3 , 第 4 空間では铸型辺に沿いノ ズル部材に 向かう方向で流速の絶対値が全空間で同一である。 (図 7 2 D )
再度図 6 3 を参照する。 本実施例において、 モール ド 3 内の溶融金属 1 の、 第 1 〜第 4 空間のそれぞれの表層 流の速度を、 流速セ ンサ 9 1 a 〜 9 1 d のそれぞれが検 出する。 図 6 9 A と 6 9 Bおよび図 7 O A と 7 0 B に流 速セ ンサ 9 1 a の構造を示す。
図 6 9 A は流速セ ンサ 9 1 a の、 外ケース 1 3 9 , 1 4 0 を破断 した側面図であ り、 図 6 9 B は図 6 9 Aの E 一 E線断面を示す。 流速セ ンサ 9 1 a は、 流速測定時に は先端が溶融金属 1 に浸される、 モ リ ブデンサーメ ッ ト で作られた板体 1 3 0 を有する。 この板体 1 3 0 は支持 軸 1 3 1 b を介 して支持板 1 3 1 a で回動自在に支持さ れている。 支持板 1 3 1 a にはばね板 1 3 3 の下端が固 着されており、 ばね板 1 3 3 の上端は固定板 1 3 7 a に 固着されている。 固定板 1 3 7 a は中空管 1 4 3 と一体 である。 ばね板 1 3 3 の表, 裏には歪ゲー ジ 1 3 5 a , 1 3 5 b が貼着されており 、 歪ゲー ジ 1 3 5 a , 1 3 5 b に接続された信号線 1 3 6 a は中空管 1 4 3 を通って いる。' 中空管 1 4 3 にはセ ンサ保護用の外ケース 1 3 9 が固着されており、 その下開口 1 3 4 をばね板 1 3 3 が 付通 している。 外ケース 1 3 9 は支持アームである外ケ —ス 1 4 0 の先端に揷人されている。 外ケース 1 4 0 内 の通風管 1 4 2 は外ケース 1 3 9 の内空間に開いており この通風管 1 4 2 を通 して冷却空気が外ケース 1 3 9 に 吹込まれる。 冷却空気の一部は外ケース 1 3 9 から開口
1 3 4 を通 して外部に出るが、 他部は外ケー ス 1 3 9 か ら開口 1 3 4 を通 して外ケース 1 4 0 に入り 、 外ケース
1 4 0 の内空間を通って、 外ケース 1 4 0 の支持基部 (図示せず) から外部に放出される。
外ケー ス 1 4 0 を測定位置まで降下させる と、 板体 1 3 0 の下端部が、 図 7 O A に示すよ う に、 溶融金属 1 に 浸り 、 表層流によ り押される。 こ の力がばね板 1 3 3 に 加わり 、 ばね板 1 3 3 が歪ゲー ジ 1 3 5 a , 1 3 5 b部 で曲 り 、 これによ り歪ゲー ジ 1 3 5 a , 1 3 5 b の一方 には圧縮応力が、 他方には引張応力が作用する。 これら の歪ゲー ジ 1 3 5 a , 1 3 5 b は、 図 7 O A と 7 0 B
(および図 6 6 ) に示すよ う に流速検出回路 9 8 a の動 歪計 1 8 1 に接続されており 、 動歪計 1 8 1 が歪ゲー ジ 1 3 5 a , 1 3 5 b の検出信号の差分を表わす信号を発 生する。 差分信号はフ ィ ルタ ー 1 8 2 を通 して低周波分 のみがア ンプ 1 8 3 に与え られる。 ア ンプ 1 8 3 は、 差 分信号を流速信号 V s 1 (方向 と速度) に変換 して、 入 力イ ンタ 一フ ェ イ ス 9 8 b (図 6 6 ) を介 して C P U 9 8 c (図 6 6 ) の A Z D変換入力ポー ト に与える。
例えば、 溶融金属 1 の流れが図 7 0 Aにおいて矢印の 方向である とする と、 板体 1 3 0 には力 F 〔 N〕 が加わ る。 こ の時、 抵抗係数を C d、 溶融金属の比熱を ρ、 断 面積を S 、 更に流速を v s とする と、 F は次式であ らわ される。
F = C d X p X V 2 X S / 2 g (8) この力 F によ り 、 板体 1 3 0 が溶融金属 1 の流れる方 向に押され傾斜する。 こ の力を歪ゲー ジが検出する。 歪 ゲー ジの検出値を ε とする と、
ε = k X F X L (9) (8)式を(9) 式に代入 して、 £ = k x C d X /o X v s 2 x S / 2 g x L (10)
(10)式よ り
v s = ^ { ε / C k x C d X iO X S / 2 g x L ) } で示される。 歪ゲー ジから流速検出回路 9 8 a までの電 気回路は、 このよ う な原理に従って流速 v s を算出 し こ れを表わす信号 V s 1 を C P U 9 8 c に与える。
他の流速セ ンサ 9 1 b〜 9 1 d も、 流速セ ンサ 9 1 a と同一構造および同一機能であ り 、 同様に流速検出回路 9 8 a に接続されており 、 それぞれ第 2 〜 4 空間の表層 流の流速 V s 2 〜 V s 4 (方向 と速度) を表わす信号を C P U 9 8 c に与える。
図 6 6 に、 図 6 3 (および図 6 4 , 図 6 5 ) に示す電 気コ ィ ルのそれぞれに通電する電気回路の構成概要を示 す。 また、 図 6 7 には、 図 6 6 に示す演算処理装置 9 8 から電源回路 9 2 a〜 9 2 d までの、 すなわち演算処理 装置 9 8 から電源コ イ ル # 1 , # 2, # 3 , # 4 の各電 源接続端子 U l , V I , W 1 , U 2, V 2 , W 2 , U 3 V 3 , W 3 , U 4 , V 4 , W 4 までの電気回路をやや詳 細に示 し、 図 6 8 には、 図 6 7 に示す電源回路 9 2 a お よび通電制御器 C C 1 の構成を示す。 以下、 各図に従つ て説明する。
本実施例において、 モール ド M D内の第 1 〜第 4 空間 のそれぞれの表層流の速度 (方向 と大き さ) は流速セ ン サ 9 l a , 9 1 b , 9 1 c , 9 I dで測定 して、 演算処 理装置 9 8 に与える。 こ こで、 セ ンサ 9 1 a〜 9 1 d に よ って測定された流速を v s l 〜 v s 4 とする。 各流速 セ ンサ 9 1 a ~ 9 1 d において測定された流速の測定値 V s l 〜 v s 4 は、 図 6 6 に示す演算処理装置 9 8 の C P U 9 8 c に入力される。
C P U 9 8 c は、 次式に従い、 測定値 V s 1 〜 V s 4 の集合を、 図 7 2 A〜 7 2 Dに示す各モー ドの成分値 M s (攪拌モー ド流速) , M p (並進モー ド流速) , M a (加速モー ド流速) および M t (ね じれモー ド流速) に分解する。
Ms 1 1 1 1 V s 1
Mp 1 1 -1 - 1 vs2
Ma = (1/4) 1 - 1 1 - 1 vs3 (11)
Mt - 1 1 1 -1 v s 4 そ して、 各モー ドの成分値 M s , M p , M a および M t の、 C P U 9 8 c に設定されているそれぞれの目標値 M so, Mpo, M aoおよび M toに対する偏差
d M s = M s o — M s ,
d M p = M p o — M p ,
d M a = M s a — M a ,
d M t = M t o - M t
を算出する。 なお、 C P U 9 8 c は、 それに接続された 図示 しない操作、 表示ボー ドからオペレータが入力 した 目標流速分布 (上記測定値の 4 値対応) を、 上記( 11 )式 に従って各モー ドの成分目標値 M so, M po, Maoおよび M toに分解 して レ ジスタ に保持 してお り 、 これらが目標 値となる。
C P U 9 8 c は次いで、 下記(12)式に従って、 これら の偏差値の集合 d M s, d M p , d M a , d M t を合成 して、 流速偏差 d v l 〜 d v 4 を算出する。 すなわちモ 一 ド成分偏差を、 測定値対応の流速偏差 d V 1 〜 d v 4 に逆変換する。
dvl 1 1 1 -1 dMs
dv2 1 1 - 1 1 dMp
dv3 1 - 1 1 1 dMa (12) dv4 1 -1 -1 - 1 dMt これらの流速偏差 d v l 〜 d v 4 が、 # 1 〜 # 4 グル ープの電気コ ィ ルのそれぞれで補償すべき流速であ る。 C P U 9 8 c は次に、 流動制御を開始 してから こ こ まで の流速偏差の積分値 (これは現在の、 リ ニアモータ駆動 状態、 すなわち リ ニアモータで加えている電磁力を表わ す) のそれぞれを、 算出 した d v l 〜 d v 4 に加えて、 得た値 V i 1 〜 V i 4 を新たな積分値と してセーブ し
(積分値 レ ジ ス タの内容を更新 し) 、 積分値 V i 1 〜 V i 4 で表わされる流速を もた らすために必要な、 # 1 〜 # 4 の電気コ イ ルグループに接続された電源回路 9 2 a〜 9 2 d の出力電圧 V s l 〜V s 4 , 通電周波数 f 1 - f 4 および直流電圧 (直流バイ アス) V B 1 〜 V B 4 を算出 し、 電源回路 3 0 a の通電制御器 C C 1 には V s
1 , f 1 および V B 1 を指示 し、 電源回路 3 0 bの通電 制御器 C C 2 には V s 2 , f 2 および V B 2 を指示 し、 電源回路 3 0 c の通電制御器 C C 3 には V s 3 , f 3 お よび V B 3 を指示 し、 電源回路 3 0 d の通電制御器 C C 4 には V s 4, f 4 および V B 4 を指示する。 なお、 C P U 9 8 c は、 積分値宛てで電圧 v s , 周波数 f およ び直流電圧 V B を書込んだデー タマ ッ プ (別称テーブル メ モ リ の一領域) があ り、 このデータマ ッ プをア ク セス する こ と によ り 、 積分値 V i 1 〜 V i 4 に対応 した V s 1 , f l および V B 1 , V s 2 , f 2 および V B 2,
V s 3, f 3 および V B 3 , な らびに, V s 4 , f 4 お よび V B 4 を読出 して、 各通電制御器に出力する。 デー タマ ッ プは、 積分値が負 (攪拌モー ドの流れ方向 と逆方 向) では周波数 f = 0 、 積分値の絶対値が大き いに従つ て V s, V B は高とな り 、 積分値が正 (攪拌モー ドの流 れ方向) のと き には積分値が大き いに従って f は低、 V s は高、 V B は低となるデータを格納 している。
図 7 3 に、 C P U 9 8 c の、 上述の、 測定値 v s 1 〜
V s 4 力、ら、 指令値 V s l 〜V s 4, f l 〜 f 4 および V B 1 〜 V B 4 を生成するまでの演算過程を示す。
C P U 9 8 c は、 算出 した V s 1 , f 1 および V B 1 は 通電制御器 C C 1 に、 V s 2 , f 2 および V B 2 は通電 制御器 C C 2 に、 V s 3, f 3 および V B 3 は通電制御 器 C C 3 に、 V s 4 , f 4 および V B 4 は通電制御器 C C 4 に出力する (図 6 6 、 図 6 7 ) 。
図 6 8 に、 リ ニアモータ 6 の # 1 グループの電気コ ィ ルに通電を行な う通電制御器 C C 1 および電源回路 3 0 a の構成を示す。 3 相交流電源 ( 3 相電力線) 4 1 に は直流整流用のサイ リ スタブ リ ッ ジ 4 2 a が接続されて おり 、 その出力 (脈流) はイ ングク タ 4 5 a およびコ ン デンサ 4 6 a で平滑化される。 平滑化された直流電圧は 3 相交流形成用のパワ ー ト ラ ン ジ ス タプ リ ッ ジ 4 7 a に 印加され、 これが出力する 3 相交流の U相が図 6 4 に示 す電源接続端子 U 1 に、 V相が電源接続端子 V I に、 ま た W相が電源接続端子 W 1 に印加される。
リ ニアモー タ 6 F の # 1 グループの電気コ イ ル
C F 1 a 〜 C F 1 r に与え られる所定のコイ ル電圧指令 値 V s 1 が通電制御器 C C 1 において、 位相角 α算出器 4 4 a に与え られ、 位相角 α算出器 4 4 a が、 指令値 V s 1 に対応する導通位相角 α (サイ リ スタ ト リ ガー位 相角) を算出 し、 これを表わす信号をゲー ト ドラ イバ 4 3 a に与える。 ゲー ト ドラ イバ 4 3 a は、 各相のサイ リ スタを、 各相のゼロ ク ロ ス点から位相カ ウ ン トを開始 し て位相角 αで導通 ト リ ガーする。 これによ り 、 ト ラ ン ジ スタブ リ ッ ジ 4 7 a には、 指令値 V s 1 が示す直流電圧 が印加される。
一方、 通電制御器 C C 1 において 3 相信号発生器 5 1 a は、 周波数指令値 f 1 で指定された周波数 (こ の実施 例では 0 〜 2 0 0 H z ) で しかも直流バイ アス指令 V B 1 で指定された直流バイ アス電圧を有する山 ピー ク /谷ピ ー ク 間電圧が一定 (ただ し f = 0 のと きは 0 ) の 3 相交 流信号を発生 して比較器 4 9 a に与える。 比較器 4 9 a にはま た、 三角波発生器 5 0 a が、 一定周波数 (高周波 数, こ の実施例では 3 K H z ) を持つ定電圧三角波を与え る。 比較器 4 9 a は、 U相信号の レベルが正のと き には それが三角波発生器 5 0 aが与える三角波の レベル以上 のと き高 レベル H ( ト ラ ンジスタオ ン) で、 三角波の レ ベル未満の と き低 レベル L ( ト ラ ン ジスタオフ) の信号 を、 U相の正区間 ( 0 〜 1 8 0 度) 宛て ( U相正電圧出 力用 ト ラ ン ジス タ宛て) にゲー ト ドラ イ ノく' 4 8 a に出力 し、 ' U相信号の レベルが負のと き には、 それが三角波発 生器 5 0 a が与える三角波の レベル以下の と き高 レベル Hで、 三角波の レベルを越える と き低レベル Lの信号を U相の負区間 ( 1 8 0 〜 3 6 0 度) 宛て ( U相負電圧出 力用 ト ラ ン ジスタ宛て) にゲー ト ドラ イバ 4 8 a に出力 する。 V相信号および W相信号に関 しても同様である。 ゲー ト ドラ イバ 4 8 a は、 これら各相, 正, 負区間宛て の信号に対応 して ト ラ ンジスタブ リ ッ ジ 4 7 a の各 ト ラ ン ジスタをオ ン, オ フ付勢する。
これによ り 、 f = 0 でないと き には、 電源接続端子 U 1 には 3 相交流の U相電圧が出力され、 電源接続端子 V 1 に 3 相交流の V相電圧が出力され、 ま た電源接続端子 W 1 に 3 相交流の W相電圧が出力され、 これらの電圧の レベルはコ イ ル電圧指令値 V s 1 で定ま る。 すなわち、 f 力 0 でない と き には、 コ イ ル電圧指令値 V s 1 で指定 された電圧値、 f 1 で指定された周波数、 な らびに V B で指定された直流バイ ア スを有する 3 相交流電圧が、 図 6 3 および図 6 4 に示す リ ニアモータ 6 Fの # 1 グルー プの電気コ イ ル C F 1 a 〜 C F 1 r に印加される。
通電制御器 C C 2 〜 C C 4 および電源回路 3 0 b 〜 3 0 d の構成と機能は、 C C 1 および 2 0 a のそれと同一 であ り 、 これら力く # 2 グループの電気コ イ ル C F 2 a 〜 C F 2 r 、 # 3 グループの電気コ イ ル C L l a 〜
C L 1 r および # 4 グループの電気コ イ ルに同様な、 V s 2 〜 V s 4 , 2 〜 4 ぉょび ¥ 8 2 〜 8 4 で定 ま る 3 相交流電圧を印加する。
以上によ り 、 こ の実施例では、 4 極構成の リ ニアモー タ 6 F, 6 L に、 f = 0 でない と き には 3 相交流が印加 され、 これらの リ ニアモータ 6 F, 6 L によ り 、 铸型内 壁 3 1 内の溶融金属 1 には、 積分値 V i l 〜 V i 4 に対 応する推力が加わり f = 0 のと きには制動力が加わり 、 浸漬ノ ズル 2 からの溶融金属の注入によ る流れは、 オペ レー夕が指定する 目標流速分布に収束する。 タ ンテ ィ ッ シュの操業状況の影響を受けて浸漬ノ ズル 2 からの溶融 金属の流入速度が変化 しても、 オペレータが指定する 目 標流速分布に近い表層流が溶融金属に もた らされる。
溶融金属の表層部の各部の流速を個別に調整又は制御 する場合には、 ある部位の調整によ る流速変化が他部に は外乱と して波及するので、 各部の一意的な調整又は制 御では所望の流速分布が得られない とか、 調整又は収束 に時間がかかる とかの問題があるが、 本実施例の連続铸 造装置の場合には、 目標値 M so, M o, Mao, M toを所 望の流速分布を もた らすものに変更するだけで、 自動的 かつすみやかに目標の流速分布がもた ら される。 したが つて流速分布の設定、 変更、 調整が容易であ り 、 例えば 取鍋 7 9 の交換によ り铸型への注入速度が低下 している 間は攪拌モ ー ド (図 7 2 A ) を強 く して浸漬ノ ズル 2 か らの注入速度低下によ る表層流の低下をおぎな う こ と に よ り 、 歩留 り Q片の発生を回避する とか Q片長を短 く す るなどの、 操業状態の変化に対応 した駆動パター ンおよ び又は駆動力の変更を適切に行ない う る。
産業上の利用可能性
以上の様に、 本発明に係る連続铸造方法および装置は 鋼等の金属スラ ブの連続铸造において、 縦割れ等の表面 欠陥のない金属スラ ブを得るために有用である。

Claims

請 求 の 範 囲
1 . 金属スラ ブの連続铸造方法であって、
モ ー ル ド ( 3 ) の水平面中央部に設けた浸漬ノ ズル ( 2 ) 力、らモ ー ル ド ( 3 ) 内に溶融金属 ( 1 ) を注入す る段階と、
2 つの モ ー ル ド長辺 ( 1 0 a 、 1 O b ) に沿って設け た少な く と も 2 つの電磁撹拌コ イ ル部 ( 6 a 、 6 b ) に よ つて、 前記 2 つのモ ー ル ド長辺の各々 に沿って互いに 逆向きの電磁力を発生させる段階であって、 前記モ ー ル ド ( 3 ) 内の該溶融金属 ( 1 ) の表層の回転流がほぼ一 様とな る様に、 前記浸漬ノ ズル ( 2 ) からモ ー ル ド短辺 に向かう前記電磁力の成分と、 該モール ド短辺から前記 浸漬ノ ズル ( 2 ) に向かう前記電磁力の成分とを異なる 様に した、 前記段階と、
前記モ ー ル ド ( 3 ) の一部を冷却 しながら、 凝固 した 金属を引 き抜く 段階と、 を含む方法。
2. 電磁力を発生させる前記段階が、 前記浸漬ノ ズル からモール ド短辺に向かう前記電磁力の成分を、 該モ一 ル ド短辺から前記浸漬ノ ズルに向かう前記電磁力の成分 よ り も大き く した、 請求項 1 に記載の方法。
3. モ ー ル ド ( 3 ) の水平面中央部に設け られた浸漬 ノ ズル ( 2 ) から前記モ ー ル ド内に溶融金属 ( 1 ) を注 入 しつつ、 前記モ ー ル ドの一部を冷却 しながら凝固 した 金属を引 き抜いて金属スラ ブを連続的に铸造する金属ス ラ ブの連続铸造装置であ って、
2 つのモ ー ル ド長辺 ( 1 0 a 、 1 O b ) に沿って設け られ、 前記モ ー ル ド ( 3 ) 内の溶融金属 ( 1 ) の流動を 電磁力によ り 制御する 2 つの電磁撹拌コ イ ル部 ( 6 a 、 6 b ) であ って、 各々 が、 前記 2 つのモ ー ル ド長辺の各 々 に沿って配列された複数個の磁気コ ア ( 1 2 a 、 1 2 b ) と、 前記磁気コ アにそれぞれ巻回された複数個のコ ィ ノレ ( 1 4 a 、 1 4 b ) とを有する前記電磁撹拌コ イ ル 部と、
所定の周波数の 2 相以上の交流を発生する少な く と も 1 つの電源回路 ( 8 ) と、
それぞれ前記 2 つのモール ド長辺について前記コ イ ル と接続手段とで構成される 2 つの回路が前記浸漬ノ ズル ( 2 ) に関 して点対称とな り、 かつ、 前記 2 つの回路の 各々 が 2 つの回路部分に分割される様に、 前記電磁撹拌 コ イ ル部 ( 6 a 、 6 b ) と前記少な く と も 1 つの電源回 路 ( 8 ) とを接続する接続手段 ( 7 a 、 7 b ) と、 を含む装置。
4. 前記接続手段は、 該分割された 2 つの回路部分が 異なる イ ン ピ ー ダ ン スを有 して互いに並列接続される様 に、 前記電磁撹拌コ イ ル部と前記少な く と も 1 つの電源 回路とを接続する、 請求項 3 に記載の装置。
5. 該分割された 2 つの回路部分を構成する コ イ ルが 一方の回路部分では Y結線で接続され、 他方の回路部分 では△結線で接続されている、 請求項 4 に記載の装置。
6. 該分割された 2 つの回路部分を構成する コ イ ルが それぞれ直列に接続され、 かつ、 コ イ ルの数において異 な っている、 請求項 4 に記載の装置。
7 . 該分割された 2 つの回路部分を構成する コイ ルが 一方の回路部分では直列に接続され、 他方の回路部分で は並列に接続されている、 請求項 4 に記載の装置。
8. 請求項 1 に記載の方法であ って、
前記電磁撹拌コイ ル部の各々 が電気的に 2 つの部分に 分割され、
電磁力を発生させる前記段階が、 前記電磁撹拌コイ ル 部の分割された計 4 つの部分の任意の 2 つずつの組み合 わせをそれぞれ別の電源回路に接続 して前記電磁力を発 生させる、 前記方法。
9. · 請求項 2 に記載の方法であ って、
前記電磁撹拌コ イ ル部の各々 が電気的に 2 つの部分に 分割され、
電磁力を発生させる前記段階が、 前記電磁撹拌コ イ ル 部の分割された計 4 つの部分の任意の 2 つずつの組み合 わせをそれぞれ別の電源回路に接続 して前記電磁力を発 生させる、 前記方法。
1 0 . 請求項 1 に記載の方法であって、
前記電磁撹拌コ イ ル部の各々 が電気的に 2 つの部分に 分割され、
電磁力を発生させる前記段階が、 前記電磁撹拌コ イ ル 部の分割された計 4 つの部分をそれぞれ別の電源回路に 接続 して前記電磁力を発生させる、 前記方法。
1 1 . 請求項 2 に記載の方法であ って、
前記電磁撹拌コ イ ル部の各々 が電気的に 2 つの部分に 分割され、
電磁力を発生させる前記段階が、 前記電磁撹拌コイル 部の分割された計 4 つの部分をそれぞれ別の電源回路に 接続 して前記電磁力を発生させる、 前記方法。
1 2. 請求項 3 に記載の装置であ って、
前記少な く と も 1 つの電源回路が 2 つの電源回路を含 み、
該分割された計 4 つの回路部分の任意の 2 つずつの組 み合わせが、 それぞれ別の電源回路に接続されている、 前記装置。
1 3 ; 請求項 3 に記載の装置であ って、
前記少な く と も 1 つの電源回路が 4 つの電源回路を含 み、
該分割された計 4 つの回路部分が、 それぞれ別の電源 回路に接続されている、 前記装置。
1 4. 前記電磁撹拌コイ ル部が 5 極以上の前記磁気コア を有する、 請求項 3 に記載の装置。
1 5. 前記少な く と も 1 つの電源回路が発生する前記 2 相以上の交流の前記所定の周波数が 4 H z以上である、 請 求項 3 に記載の装置。
1 6. 前記少な く と も 1 つの電源回路が発生する前記 2 相以上の交流の前記所定の周波数が 4 H z以上である、 請 求項 1 4 に記載の装置。
1 7. 前記電磁撹拌コ イ ル部の発生する磁界の強さが
1 2 0 0 A T / c m以上である、 請求項 1 4 に記載の装置。
1 8. 請求項 3 に記載の装置であ って、
前記少な く と も 1 つの電源回路は、 前記溶融金属に制 動力を与えるための直流電流を前記 2 相以上の交流に重 畳 して発生する手段を有 し、
前記装置は、
前記モ ール ドの温度分布を検出する温度検出手段と、 前記温度検出手段の出力を受けて、 前記モ ー ル ドの温 度が高い箇所の近 く の溶融金属に前記モ ール ドの温度が 低い箇所の近 く の溶融金属よ り も大き い制動力を与える 様に、 前記少な く と も 1 つの電源回路を制御する制御手 段と、'
をさ らに含む装置。
1 9 . 請求項 1 8 に記載の装置であ って、
前記温度検出手段は、 2 つのモ ー ル ド短辺の温度をそ れぞれ検出する温度セ ンサを含み、
前記制御手段は、 前記 2 つのモ ー ル ド短辺の温度差に 対応して、 温度が高い短辺に近い前記回路部分に温度が 低い短辺に近い前記回路部分よ り も大き い前記直流電流 を通電する様に、 前記少な く と も 1 つの電源回路を制御 する、
m記装置。
2 0 . 請求項 1 9 に記載の装置であ って、 前記温度セ ンサは、 前記凝固 した金属を引 き抜 く 方向 に分布 した複数の温度検出素子を含み、
前記制御手段は、 前記温度検出素子が検出 した温度の 内最も高い温度を、 前記モール ドの各辺の代表温度と し て選択する、 前記装置。
2 1 . 請求項 1 8 に記載の装置であ って、
前記温度検出手段は、 2 つのモール ド長辺の温度をそ れぞれ検出する温度セ ンサを含み、
前記制御手段は、 前記 2 つのモール ド長辺の温度差に 対応 して、 温度が高い長辺に近い前記回路部分に温度が 低い長辺に近い前記回路部分よ り も大き い前記直流電流 を通電する様に、 前記少な く と も 1 つの電源回路を制御 する、
前記装置。
2 2 . 請求項 3 に記載の装置であ って、
前記モール ドの温度分布を検出する温度検出手段と、 前記温度検出手段の出力を受けて、 前記モール ドの温 度が低い箇所の近 く の溶融金属に前記モール ドの温度が 高い箇所の近 く の溶融金属よ り も大きい駆動力を与える 様に、 前記少な く と も 1 つの電源回路を制御する制御手 段と、
をさ らに含む装置。
2 3. 請求項 2 2 に記載の装置であって、
前記温度検出手段は、 2 つのモール ド短辺の温度をそ れぞれ検出する温度セ ンサを含み、 前記制御手段は、 前記 2 つのモール ド短辺の温度差に 対応 して、 温度が低い短辺に近い前記回路部分に温度が 高い短辺に近い前記回路部分よ り も大き い前記 2 相以上 の交流を通電する様に、 前記少な く と も 1 つの電源回路 を制御する、 前記装置。
24. 請求項 2 3 に記載の装置であって、
前記温度セ ンサは、 前記凝固 した金属を引 き抜く 方向 に分布 した複数の温度検出素子を含み、
前記制御手段は、 前記温度検出素子が検出 した温度の 内最 も高い温度を、 前記モール ドの各辺の代表温度と し て選択する、 前記装置。
25. 請求項 2 2 に記載の装置であって、
前記温度検出手段は、 2 つのモール ド長辺の温度をそ れぞれ検出する温度セ ンサを含み、
前記制御手段は、 前記 2 つのモール ド長辺の温度差に 対応 して、 温度が低い長辺に近い前記回路部分に温度が 高い長辺に近い前記回路部分よ り も大き い前記 2 相以上 の交流を通電する様に、 前記少な く と も 1 つの電源回路 を制御する、 前記装置。
26. モール ドの水平面中央部に設け られた浸漬ノ ズル ( 2 ) から前記モール ド内に溶融金属 ( 1 ) を注入 しつ つ、 前記モール ドの一部を冷却 しながら凝固 した金属を 引 き抜いて金属スラ ブを連続的に铸造する金属スラ ブの 連続铸造装置であ つて、
2 つのモール ド長辺 ( 1 0 F、 1 0 L ) に沿って設け られ、 前記モール ド内の溶融金属 ( 1 ) の流動を電磁力 によ り制御する 2 つの電磁撹拌コ イ ル部 ( 6 F 、 6 L ) であ って、 各々 が、 前記 2 つのモール ド長辺の各々 に沿 つて配列された複数個の磁気コ ア ( 1 2 F 、 1 2 L ) と . 前記磁気コアの少な ぐと も一部にそれぞれ巻回された複 数個のコ イ ルとを有する前記電磁撹拌コイ ル部と、
前記 2 つの電磁撹拌コ イ ル部 ( 6 F、 6 L ) に電流を 供給する通電手段と、 を含み、
前記モール ド内外の空間を、 前記浸漬ノ ズルの中心を 通り前記 2 つのモール ド長辺に平行な平面と、 前記浸漬 ノ ズルの中心を通り前記 2 つのモール ド長辺に垂直な平 面と によ り 、 第 1 の空間、 第 2 の空間、 第 3 の空間、 第 4 の空間に仮想的に分割 し、 該第 3 の空間は前記浸漬ノ ズルの中心に関 して該第 1 の空間と対象位置にあ り、 該 第 4 の空間は前記浸漬ノ ズルの中心に関 して該第 2 の空 間と対象位置にある場合に、 該第 1 の空間に存在する磁 気コ ア と該第 3 の空間に存在する磁気コアが、 該第 2 の 空間に存在する磁気コア と該第 4 の空間に存在する磁気 コ アよ り も長い、 前記装置。
27. モール ドの水平面中央部に設け られた浸漬ノ ズル ( 2 ) から前記モール ド内に溶融金属 ( 1 ) を注入 しつ つ、 前記モール ドの一部を冷却 しながら凝固 した金属を 引 き抜いて金属スラ ブを連続的に铸造する金属スラ ブの 連続铸造装置であ って、
2 つのモール ド長辺 ( 1 0 F、 1 0 L ) に沿って設け られ、 前記モール ド内の溶融金属 ( 1 ) の流動を電磁力 によ り制御する 2 つの電磁撹拌コ イ ル部 ( 6 F、 6 L ) であ って、 各々 が、 前記 2 つのモール ド長辺の各々 に沿 つて配列された複数個の磁気コア ( 1 2 F、 1 2 L ) と 前記磁気コアにそれぞれ巻回された複数個のコ イ ルとを 有する前記電磁撹拌コ イ ル部と、
前記 2 つの電磁撹拌コ イ ル部 ( 6 F、 6 L ) に電流を 供給する通電手段と、 を含み、
前記モール ド内外の空間を、 前記浸漬ノ ズルの中心を 通り前記 2 つのモール ド長辺に平行な平面と、 前記浸漬 ノ ズルの中心を通り前記 2 つのモール ド長辺に垂直な平 面と によ り 、 第 1 の空間、 第 2 の空間、 第 3 の空間、 第 4 の空間に仮想的に分割 し、 該第 3 の空間は前記浸漬ノ ズルの中心に関 して該第 1 の空間と対象位置にあ り 、 該 第 4 の空間は前記浸漬ノ ズルの中心に関 して該第 2 の空 間と対象位置にあ り 、 前記 2 つのモール ド長辺の 1 つは 該第 1 の空間と該第 2 の空間に存在 し、 前記 2 つのモー ル ド長辺の他の 1 つは該第 3 の空間と該第 4 の空間に存 在する場合に、 前記 2 つの電磁撹拌コ イ ル部の 1 つ ( 6 F ) は該第 1 の空間のみに該コ イ ルを有 し、 前記 2 つの 電磁撹拌コ イ ル部の他の 1 つ ( 6 L ) は該第 3 の空間の みに該コ イ ルを有する、 前記装置。
28. 請求項 2 7 に記載の装置であ って、
前記電磁撹拌コ イ ル部の前記 1 つは、 該第 1 の空間に 存在する溶融金属のみに電磁力を及ぼす長さ を有 し、 前記電磁撹拌コ イ ル部の前記他の 1 つは、 該第 3 の空 間に存在する溶融金属のみに電磁力を及ぼす長さ を有す る、 刖 sヒ装 。
29. モール ドの水平面中央部に設け られた浸漬ノ ズル ( 2 ) から前記モール ド内に溶融金属 ( 1 ) を注入 しつ つ、 前記モール ドの一部を冷却 しながら凝固 した金属を 引 き抜いて金属スラ ブを連続的に铸造する金属スラ ブの 連続铸造装置であって、
2 つのモール ド長辺 ( 1 0 F 、 1 0 L ) に沿って設け られ、 前記モール ド内の溶融金属 ( 1 ) の流動を電磁力 によ り制御する 2 つの電磁撹拌コイル部 ( 6 F 、 6 L ) であ って、 各々 が、 前記 2 つのモール ド長辺の各々 に沿 つて配列された複数個の磁気コア ( 1 2 F 、 1 2 L ) と 前記磁気コアにそれぞれ巻回された複数個のコ イ ルとを 有する前記電磁撹拌コ イ ル部と、
前記モール ド内外の空間を、 前記浸漬ノ ズルの中心を 通り前記 2 つのモール ド長辺に平行な平面と、 前記浸漬 ノ ズルの中心を通り前記 2 つのモール ド長辺に垂直な平 面とによ り 、 第 1 の空間、 第 2 の空間、 第 3 の空間、 第 4 の空間に仮想的に分割 し、 該第 3 の空間は前記浸漬ノ ズルの中心に関 して該第 1 の空間と対象位置にあ り 、 該 第 4 の空間は前記浸漬ノ ズルの中心に関 して該第 2 の空 間と対象位置にある場合に、 該第 1 の空間に存在する該 コ イ ルと該第 3 の空間に存在する該コ イ ルに、 溶融金属 をモール ド辺に沿う方向に駆動するための交 流電流を 通電する通電手段と、 該第 2 の空間に存在する該コ イ ル と該第 4 の空間に存在する該コ イ ルに、 直流電流を通電 するかあるいは前記交流電流の通電を遮断する回路と、 を含む、 前記装置。
30. モ ー ル ドの水平面中央部に設け られた浸漬ノ ズル ( 2 ) から前記モー ル ド内に溶融金属 ( 1 ) を注入 しつ つ、 前記モ ール ドの一部を冷却 しながら凝固 した金属を 引 き抜いて金属スラ ブを連続的に铸造する金属スラ ブの 連続铸造装置であ つて、
2 つのモ ール ド長辺 ( 1 0 F、 1 0 L ) に沿って設け られ、 前記モ ー ル ド内の溶融金属 ( 1 ) の流動を電磁力 によ り制御する 2 つの電磁撹拌コ イ ル部 ( 6 F、 6 L ) であ って、 各々 が、 前記 2 つのモ ー ル ド長辺の各々 に沿 つて配列された複数個の磁気コ ア ( 1 2 F、 1 2 L ) と 前記磁気コアにそれぞれ巻回された複数個のコ イルとを 有する前記電磁撹拌コ イ ル部と、
前記 2 つの電磁撹拌コ イ ル部 ( 6 F、 6 L ) に電流を 供給する通電手段と、
モ ー ル ド ( 3 ) 内の溶融金属 ( 1 ) の上表面の複数の 位置において、 溶融金表層部の流速を検出する流速検出 手段と、
該検出された流速を、 予め設定 した複数の表層部流速 分布モ 一 ドにおけるそれぞれの流速成分に変換する流速 変換手段と、
該変換された流速成分を各モ ー ドにおけるそれぞれの 目標値と比較 し、 流速成分偏差を算出する補償量算出手 段と、
該流速成分偏差を、 前記複数の位置における溶融金属 表層部の流速偏差にそれぞれ逆変換する逆変換手段と、 これらの流速偏差を零にするよ う に、 前記通電手段を 制御する制御手段と、 を含む前記装置。
3 1 . 請求項 3 0 に記載の装置であ って、
前記モール ド内外の空間を、 前記浸漬ノ ズルの中心を 通り前記 2 つのモール ド長辺に平行な平面と、 前記浸漬 ノ ズルの中心を通り前記 2 つのモール ド長辺に垂直な平 面と によ り 、 第 1 の空間、 第 2 の空間、 第 3 の空間、 第 4 の空間に仮想的に分割 し、 該第 3 の空間は前記浸漬ノ ズルの中心に関 して該第 1 の空間と対象位置にあ り 、 該 第 4 ·の空間は前記浸漬ノ ズルの中心に関 して該第 2 の空 間と対象位置にあ り 、 前記 2 つのモール ド長辺の 1 つは 該第 1 の空間と該第 2 の'空間に存在 し、 前記 2 つのモ一 ル ド長辺の他の 1 つは該第 3 の空間と該第 4 の空間に存 在する場合に、 前記装置は、 第 1 〜 4 の空間のそれぞれ において溶融金属表層部の流速を検出する複数の流速セ ンサを含み、
前記複数の表層部流速分布モー ドは、
該第 1 の空間と該第 2 の空間においてはモール ド辺に 沿い第 1 の方向の流速成分を有 し、 該第 3 の空間と該第 4 の空間においてはモール ド辺に沿い第 1 の方向 と反対 の第 2 の方向の流速成分を有 し、 全空間において流速成 分の絶対値が等 しい撹拌モー ドと、
全空間においてモール ド辺に沿い同一方向で同一大き さ の流速成分を有する並進モー ドと、
全空間においてモール ド辺に沿いかつ前記浸漬ノ ズル に向かう方向で同一大き さの流速成分を有する加速モー ド と、
該第 1 の空間と該第 2 の空間においてはモール ド辺に 沿い前記浸漬ノ ズルから離れる方向の流速成分を有 し、 該第' 3'の空間と該第 4 の空間においてはモール ド辺に沿 い前記浸漬ノ ズルに向かう方向の流速成分を有 し、 全空 間において流速成分の絶対値が等 しいね じれモー ドと、 を含み、
前記通電手段は、 該第 1 〜 4 の空間にそれぞれ存在す る前記 2 つの電磁撹拌コイ ル部の 4 つの部分に通電する 第 1 〜 4 の電源回路を含む、 前記装置。
3 2. 前記通電手段は、 出力電流レベルを調整でき る電 源回路を含む、 請求項 3 0 に記載の装置。
33 . 前記通電手段は、 出力電流レベルを調整でき る電 源回路を含む、 請求項 3 1 に記載の装置。
34 . 前記通電手段は、 出力電流の周波数を調整でき る 電源回路を含む、 請求項 3 0 に記載の装置。
3 5. 前記通電手段は、 出力電流の周波数を調整でき る 電源回路を含む、 請求項 3 1 に記載の装置。
3 6. 前記通電手段は、 出力電流の直流成分を調整でき る電源回路を含む、 請求項 3 0 に記載の装置。
37. 前記通電手段は、 出力電流の直流成分を調整でき る電源回路を含む、 請求項 3 1 に記載の装置。
PCT/JP1995/000027 1994-03-07 1995-01-12 Procede et appareil de coulage continu WO1995024285A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/646,230 US5746268A (en) 1994-03-07 1995-01-12 Continuous casting method and apparatus
BR9506647A BR9506647A (pt) 1994-03-07 1995-01-12 Processo de lingotamento continuo para lingotar uma placa de metal e aparelho de lingotamentoi contínuo para lingotar continuamente uma placa de metal
EP95905764A EP0750958B1 (en) 1994-03-07 1995-01-12 Continuous casting method and apparatus
DE69528969T DE69528969T2 (de) 1994-03-07 1995-01-12 Verfahren und vorrichtung zum stranggiessen
KR1019960703013A KR100202471B1 (ko) 1994-03-07 1995-01-12 연속 주조 방법 및 장치

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP6/35704 1994-03-07
JP6035704A JP3041182B2 (ja) 1994-03-07 1994-03-07 溶融金属の流動制御装置
JP6/35541 1994-03-07
JP6035541A JP3006991B2 (ja) 1994-03-07 1994-03-07 連続鋳造装置
JP6/41575 1994-03-11
JP6041575A JPH07246444A (ja) 1994-03-11 1994-03-11 溶融金属の流動制御装置
JP6049257A JP3067941B2 (ja) 1994-03-18 1994-03-18 溶融金属の流動制御装置
JP6/49257 1994-03-18

Publications (1)

Publication Number Publication Date
WO1995024285A1 true WO1995024285A1 (fr) 1995-09-14

Family

ID=27460107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000027 WO1995024285A1 (fr) 1994-03-07 1995-01-12 Procede et appareil de coulage continu

Country Status (7)

Country Link
US (1) US5746268A (ja)
EP (1) EP0750958B1 (ja)
KR (1) KR100202471B1 (ja)
CN (1) CN1077470C (ja)
BR (1) BR9506647A (ja)
DE (1) DE69528969T2 (ja)
WO (1) WO1995024285A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774313A1 (de) * 1995-11-13 1997-05-21 Sms Schloemann-Siemag Aktiengesellschaft Elektromagnetische Rühreinrichtung für eine Brammenstranggiesskokille
KR101576201B1 (ko) 2010-03-23 2015-12-10 로뗄렉 연속 슬래브 주조 장치를 위한 교반 롤러

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443219B1 (en) * 1997-12-08 2002-09-03 Nippon Steel Corporation Method for casting molten metal
SE514946C2 (sv) * 1998-12-01 2001-05-21 Abb Ab Förfarande och anordning för kontinuerlig gjutning av metaller
KR100433580B1 (ko) * 1999-12-21 2004-05-31 주식회사 포스코 빌렛 연속주조공정의 몰드 전자기 교반장치
US6929055B2 (en) * 2000-02-29 2005-08-16 Rotelec Equipment for supplying molten metal to a continuous casting ingot mould
CA2325808C (en) * 2000-07-10 2010-01-26 Kawasaki Steel Corporation Method and apparatus for continuous casting of metals
DE60304080T2 (de) * 2003-06-13 2006-11-09 Mpc Metal Process Control Ab Verfahren und Vorrichtung zum Erkennen von Schlacken
JP4519600B2 (ja) * 2004-10-15 2010-08-04 新日本製鐵株式会社 電磁攪拌コイル
FR2893868B1 (fr) * 2005-11-28 2008-01-04 Rotelec Sa Reglage du mode de brassage electromagnetique sur la hauteur d'une lingotiere de coulee continue
EP1990929A1 (en) * 2007-05-08 2008-11-12 Feelux Co., Ltd. Power line communication apparatus, and method and apparatus for controlling electric devices
BRPI0812138B1 (pt) * 2007-06-06 2016-11-08 Nippon Steel & Sumitomo Metal Corp método de lingotamento contínuo de aço e controlador de fluxo de liga de aço fundido no molde
BRPI0722296B1 (pt) * 2007-12-17 2016-10-04 Rotelec Sa método e equipamento eletromagnetico associado para a colocação em rotação de um metal em fusão no meio de uma lingoteira de lingotamento contínuo de lingotes
DE102008007802A1 (de) * 2008-02-06 2009-08-13 Sms Demag Ag Verfahren und Einrichtung zur Regelung von Stellgrößen in hütten-technischen Anlagen
EP2269750B1 (en) * 2008-04-28 2016-07-20 Nippon Steel & Sumitomo Metal Corporation Method for continuous casting of steel and electromagnetic stirrer to be used therefor
CN102554165B (zh) * 2012-01-10 2014-01-29 辽宁科技大学 金属熔体螺旋电磁搅拌装置
DE102014214727A1 (de) * 2014-07-25 2016-01-28 Zf Friedrichshafen Ag Kühlung einer elektrischen Spule
KR101654206B1 (ko) * 2014-11-25 2016-09-05 주식회사 포스코 노즐 막힘 측정 장치, 측정 방법 및 이를 이용한 용강 유동 제어 방법
CN106475537A (zh) * 2015-08-25 2017-03-08 宝山钢铁股份有限公司 搅拌区域可调的电磁搅拌装置及方法
CN108284208B (zh) * 2017-01-09 2020-01-31 宝山钢铁股份有限公司 一种自适应拉速变化的电磁搅拌系统和搅拌方法
CN108465792B (zh) * 2018-03-29 2019-09-03 东北大学 一种差相位脉冲磁场电磁连铸方法
BR112020019226B1 (pt) * 2018-07-17 2024-01-23 Nippon Steel Corporation Equipamento de molde e método de lingotamento contínuo
CN113399638B (zh) * 2021-06-29 2022-09-16 上海二十冶建设有限公司 一种板坯连铸机扇形段电气系统的分区分步调试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104763A (ja) * 1986-10-20 1988-05-10 Nkk Corp 連続鋳造用電磁攪拌装置
JPH0333055B2 (ja) * 1986-02-28 1991-05-15 Nippon Steel Corp
JPH03275256A (ja) * 1990-03-22 1991-12-05 Kawasaki Steel Corp 連続鋳造鋳型内における溶鋼の偏流制御方法
JPH04284956A (ja) * 1991-03-12 1992-10-09 Nkk Corp 鋼の連続鋳造方法
JPH0523804A (ja) * 1990-12-26 1993-02-02 Nkk Corp 鋼のスラブ用鋳片の製造方法
JPH05329594A (ja) * 1992-05-27 1993-12-14 Nippon Steel Corp 連続鋳造モールド内溶鋼流動制御方法
JPH06182517A (ja) * 1992-12-18 1994-07-05 Nippon Steel Corp 溶融金属の流動制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2109724A (en) * 1981-11-20 1983-06-08 British Steel Corp Improvements in or relating to electromagnetic stirring in the continuous casting of steel
JPS62207543A (ja) * 1986-03-05 1987-09-11 Mitsubishi Heavy Ind Ltd 連続鋳造用電磁撹拌方法
JPH01228645A (ja) * 1988-03-09 1989-09-12 Nippon Steel Corp 連続鋳造鋳型における凝固シェル表面の縦割れ防止方法
JP2618046B2 (ja) * 1989-06-29 1997-06-11 財団法人国際超電導産業技術研究センター 酸化物超電導材料とその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333055B2 (ja) * 1986-02-28 1991-05-15 Nippon Steel Corp
JPS63104763A (ja) * 1986-10-20 1988-05-10 Nkk Corp 連続鋳造用電磁攪拌装置
JPH03275256A (ja) * 1990-03-22 1991-12-05 Kawasaki Steel Corp 連続鋳造鋳型内における溶鋼の偏流制御方法
JPH0523804A (ja) * 1990-12-26 1993-02-02 Nkk Corp 鋼のスラブ用鋳片の製造方法
JPH04284956A (ja) * 1991-03-12 1992-10-09 Nkk Corp 鋼の連続鋳造方法
JPH05329594A (ja) * 1992-05-27 1993-12-14 Nippon Steel Corp 連続鋳造モールド内溶鋼流動制御方法
JPH06182517A (ja) * 1992-12-18 1994-07-05 Nippon Steel Corp 溶融金属の流動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0750958A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774313A1 (de) * 1995-11-13 1997-05-21 Sms Schloemann-Siemag Aktiengesellschaft Elektromagnetische Rühreinrichtung für eine Brammenstranggiesskokille
CN1066653C (zh) * 1995-11-13 2001-06-06 Sms舒路曼-斯玛公司 板坯连铸结晶器中的电磁搅拌装置
KR101576201B1 (ko) 2010-03-23 2015-12-10 로뗄렉 연속 슬래브 주조 장치를 위한 교반 롤러

Also Published As

Publication number Publication date
EP0750958A1 (en) 1997-01-02
EP0750958A4 (en) 1999-03-10
DE69528969T2 (de) 2003-09-04
BR9506647A (pt) 1997-09-02
DE69528969D1 (de) 2003-01-09
US5746268A (en) 1998-05-05
CN1077470C (zh) 2002-01-09
KR100202471B1 (ko) 1999-06-15
KR960706383A (ko) 1996-12-09
CN1138836A (zh) 1996-12-25
EP0750958B1 (en) 2002-11-27

Similar Documents

Publication Publication Date Title
WO1995024285A1 (fr) Procede et appareil de coulage continu
JPS6188950A (ja) 融解金属電磁撹拌装置
JP2009542442A (ja) 鋳型内の溶鋼の流動を制御するための方法および装置
TWI406720B (zh) 預鑄型鋼的連續鑄造方法及裝置,特別是預鑄i型鋼
CN1158770A (zh) 板坯连铸结晶器中的电磁搅拌装置
JP3533042B2 (ja) 溶融金属の流動制御装置
JP3510101B2 (ja) 溶融金属の流動制御装置
JP2005238276A (ja) 電磁攪拌鋳造装置
JP3504649B2 (ja) 連続鋳造鋳型内の電磁攪拌方法および装置
JP3006991B2 (ja) 連続鋳造装置
JP3089176B2 (ja) 溶融金属の流動制御装置
JP3273107B2 (ja) 溶融金属の流動制御装置
JP3124217B2 (ja) 溶融金属の流動制御装置
JP3501997B2 (ja) 連続鋳造鋳片の製造方法および連続鋳造鋳型における電磁撹拌装置
US4452297A (en) Process and apparatus for selecting the drive frequencies for individual electromagnetic containment inductors
KR20120043332A (ko) 전자기 교반 장치를 이용한 연속 주조 장치 및 방법
JP3542872B2 (ja) 溶融金属の流動制御装置
JP3124214B2 (ja) 溶融金属の流動制御装置
JP3138611B2 (ja) 連続鋳造鋳型内溶融金属の流動制御装置
JP3545540B2 (ja) 溶融金属の流動制御装置
JPS589751A (ja) スラブの連続鋳造における電磁撹拌装置
WO2020017224A1 (ja) 鋳型設備及び連続鋳造方法
JPH1034297A (ja) 溶融金属の流動制御装置
JPH0453610B2 (ja)
JP2002263800A (ja) 溶融金属の流動制御装置及び方式

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191244.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1995905764

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08646230

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019960703013

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995905764

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995905764

Country of ref document: EP