WO1995000442A1 - Method and apparatus for purifying water - Google Patents

Method and apparatus for purifying water Download PDF

Info

Publication number
WO1995000442A1
WO1995000442A1 PCT/JP1994/000518 JP9400518W WO9500442A1 WO 1995000442 A1 WO1995000442 A1 WO 1995000442A1 JP 9400518 W JP9400518 W JP 9400518W WO 9500442 A1 WO9500442 A1 WO 9500442A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
carbon fiber
water
boiling point
substance
Prior art date
Application number
PCT/JP1994/000518
Other languages
English (en)
French (fr)
Inventor
Masami Hiasa
Nobuyuki Ashie
Susumu Saito
Takayuki Ohtani
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to EP94910566A priority Critical patent/EP0657388A4/en
Priority to KR1019940704221A priority patent/KR100298977B1/ko
Priority to JP52469194A priority patent/JP3458380B2/ja
Priority to US08/338,493 priority patent/US5607595A/en
Priority to AU62918/94A priority patent/AU6291894A/en
Publication of WO1995000442A1 publication Critical patent/WO1995000442A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/2809Monomodal or narrow distribution, uniform pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/003Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/62In a cartridge

Definitions

  • the present invention fights against tap water purification methods and apparatus.
  • phytoplankton has tended to proliferate in water sources due to water pollution and eutrophication of water sources, and low concentrations of odorous organic substances, which are considered to be metabolites or secretions of plankton, in tap water. It is dissolved.
  • An odorant derived from plankton is 2-methylisoborneol CHH 2 . 0 (hereinafter referred to as “2—MIB”) and diosmin C 1 2 H 2 2 ⁇ ⁇ are known, and are called “odor substances or odor substances” because they have a nasty smell.
  • the graph in Fig. 1 shows the cumulative pore volume of three types of commercially available granular activated carbons A to C. & Inkley analysis; more than 150 people measured by mercury intrusion method).
  • the graph in FIG. 2 is obtained by differentiating the cumulative pore volume V in FIG. 1 with the pore diameter D in order to examine the pore diameter distribution of the granular activated carbon. From the graphs of FIGS.
  • granular activated carbon has a large number of pores with a diameter capable of adsorbing other substances having a different particle size from trihalomethane and odorants. Since it has an extra adsorption capacity to adsorb substances other than trihalomethane and odorants, trihalomethane and odorants are reduced to that extent. The adsorption capacity for this is limited. Therefore, from the viewpoint of intensively and selectively adsorbing and removing trihalomethane and odorous substances as targets, the adsorption performance of granular activated carbon cannot be sufficiently utilized. This means that the life of granular activated carbon for these substances (ie, target substances) is short.
  • the second difficulty is linked to the adsorption rate of granular activated carbon.
  • granular activated carbon has a pore structure as shown in the model of Fig. 3. (Ishizaki, Fibrous Activated Carbon and Its Utilization, Chemical Engineering (July 1984), Figure 7).
  • the pores of the granular activated carbon are intricately extended to the inside of the particles, and it takes time for the substance to access the pores. Therefore, the adsorption rate of the granular activated carbon is low. For this reason, it takes a considerable contact time to completely adsorb substances such as trihalomethane and odorants that are dissolved at low concentrations in water.
  • Activated carbon fibers produced by carbonizing and activating (exposing) acrylic or phenolic fibers have a faster adsorption rate and a narrower pore diameter distribution than granular activated carbon. Due to its advantages, it is being used in recent water purifiers, but even in this case, the amount of activated carbon fiber used in a small water purifier is naturally limited.
  • the container is designed to replace the activated carbon fiber cartridge every six months to one year, so regular replacement of cartridges is required and running costs increase due to purchasing expensive cartridges.
  • This method may be applicable to industrial water treatment, but requires a large amount of electric power and a pressure-resistant design of the adsorption tank to allow the passage of pressurized and superheated water vapor at which 2-MIB and diosmin can be volatilized. Therefore, it is difficult to apply to household and commercial water purifiers.
  • activated carbon fibers usually consist of very fine fibers with a diameter of 5 to 2 Ozm, and are easily burned out by heating and thermally degraded to the borobo opening, so that the temperature at which 2-MIB and diosmin can be volatilized It is not preferable to heat up to. Disclosure of the invention
  • Another object of the present invention is to reduce the activity of health-hazardous substances such as trihalomethane dissolved in tap water and high-boiling and difficult-to-desorb substances such as 2-MIB and diosmin with a limited amount of activity. It is an object of the present invention to provide a water purification method and apparatus that can be effectively removed by carbon fibers for a long period of time.
  • Another object of the present invention is to provide a small and compact water purification system capable of effectively removing chlorine-disinfected organic chlorinated compounds and water-borne microorganism-derived odorants dissolved in tap water at a low concentration. To provide equipment.
  • Another object of the present invention is to effectively remove harmful substances such as trihalomethane and odorants such as 2-MIB and diosmin, and have a long life of activated carbon fiber, and a long life of several years. It is an object of the present invention to provide a water purification method and apparatus which can be used without exchanging activated carbon fibers over a long period of time and have low running costs.
  • the invention is:
  • the most suitable activated carbon fiber for selectively and massively adsorbing substances having a molecular weight of 160 to 190 has a center of about 1.8 to 3.011111 (preferably about 2.0 to 2.7 nm) measured by the steam adsorption method.
  • the knowledge that it is a carbon fiber having a pore diameter (defined later based on FIG. 4) (optimization of the central pore diameter of the activated carbon fiber) and
  • the water purifier and the water purification method of the present invention mainly use activated carbon fibers having a central pore diameter of about 1.8 to 3.0 nm (preferably, about 2.0 to 2.7 nm) as measured by a water vapor adsorption method. Then, by contacting the tap water with the activated carbon fiber, the odorant dissolved in the tap water and having a molecular weight of about 160 to 190 is selectively adsorbed on the activated carbon fiber, and at the same time, trihalomethane having a small molecular weight is also temporarily absorbed.
  • the activated carbon fiber is heated to a temperature not lower than the boiling point of trihalomethane (preferably not lower than the boiling point of water) and not higher than the boiling point of the odorant when not in use.
  • the method is characterized in that the adsorbed trihalomethane is desorbed from the activated carbon fiber, and the activated carbon fiber is regenerated with respect to the adsorption performance for trihalomethane.
  • activated carbon fibers having a central pore diameter of about 1.8 to 3.0 nm (preferably, about 2.0 to 2.7 nm) in this manner odorants having a large molecular weight can be obtained.
  • the water purifier since a sufficient adsorption capacity is secured from the beginning, even if the water purifier is designed to be sufficiently small, it can be used for a long period of 4 to 7 years without replacing the activated carbon fiber under normal water quality conditions.
  • the odorant can be adsorbed, and the life of the carbon fiber that fights against the odorant can be significantly extended.
  • activated carbon fibers having a central pore diameter of 1.8 to 3.0 nm have sufficient adsorption performance to temporarily adsorb a small amount of trihalomethane, and have a low boiling point due to heating. Combined with the ability to volatilize the trihalomethane easily and recover the adsorption capacity for the trihalomethane at any time, the trihalomethane can be converted to the trihalomethane through a given lifetime (preferably 4 to 7 years) of the activated carbon fiber that fights off the odorant. Can be sufficiently maintained.
  • a sufficient adsorption capacity (pore volume) by optimizing the pore diameter of activated carbon fibers.
  • the adsorption performance of activated carbon fiber is doubled from the viewpoint that practically sufficient adsorption can be performed while the regeneration of activated carbon fiber is involved. Since it is fully utilized, a limited amount of activated carbon fiber can effectively remove both trihalomethane and odorous substances over a long period of time.
  • the activated carbon fiber usable in the present invention can be obtained from various manufacturers. According to the knowledge of the present inventor, the activated carbon fiber “FT-2” of Kuraray Chemical Co., Ltd. of Bizen City, Okayama Prefecture is known. 5 “and” FT-20 “and activated carbon fiber” A-20 “of Osaka Gas Co., Ltd. of Osaka City can be suitably used.
  • the activated carbon fiber "FT-25" has pore characteristics as shown in the graph of FIG.
  • the vertical axis represents the cumulative pore volume V
  • the horizontal axis representing the pore diameter D is on a logarithmic scale.
  • the cumulative pore volume V measured by the water vapor adsorption method is plotted by the solid force curve.
  • the chain line curve shows the pore diameter distribution of this activated carbon fiber, and is obtained by differentiating the cumulative pore volume V shown by the solid line curve with the pore diameter D.
  • the vertical axis is AV / Alog D).
  • central pore diameter Means the pore diameter D corresponding to this peak.
  • the cross-sectional shape of the pore is not necessarily considered to be a perfect circle, but the size in the transverse direction is expressed by the word "diameter” according to custom.) .
  • "FT-25” has a central pore diameter of about 2.7 nm.
  • the pore volume occupied by pores having a diameter of 2.4 nm to 3.0 nm is approximately 0.4 m ⁇ / g.
  • activated carbon fibers having a central pore diameter of about 2.7 nm are suitable for selectively adsorbing plankton-derived odorants (particularly, 2-MIB). This is thought to be because the diameter of the molecule of 2-MIB increases due to hydration and conforms to the pore diameter of the activated carbon fiber.
  • Activated carbon fiber can be used in the form of non-woven fabric.It can be used as a household water purifier to purify tap water at a flow rate of about 5 ⁇ Z over a period of 4-7 years without replacing the activated carbon fiber. If so, about 40 to 70 g of activated carbon fiber can be filled in the treatment tank.
  • an upstream stage equipped with a filter such as a hollow fiber membrane is installed upstream of the treatment tank, and red water in tap water is provided. It is preferable to remove particle components such as ⁇ in advance.
  • Activated carbon fiber filled processing dregs trihalomethanes above the boiling point preferably, the boiling point of water or more, for example, by heating to 100 to 120 e C, the temperature
  • the water in the treatment tank is boiled by heating, and the activated carbon fiber is sterilized by boiling.
  • the trihalomethane adsorbed up to that time is desorbed from the activated carbon fiber, and the activated carbon fiber is regenerated for the trihalomethane.
  • FIG. 1 is a graph showing the cumulative pore volume of granular activated carbon
  • FIG. 2 shows the cumulative pore volume of the graph of FIG. 1 differentiated by the pore diameter, showing the distribution of the pore diameter;
  • Fig. 3 is a schematic diagram showing a model of the pore structure of granular activated carbon
  • FIG. 4 is a graph showing the cumulative pore volume and pore diameter distribution of activated carbon fiber "FT-25";
  • FIG. 5 and FIG. 6 are graphs showing the results of Experimental Example 1, showing the outflow rate of trihalomethane and the outflow rate of 2-MIB, respectively;
  • FIG. 7 and FIG. 8 are graphs showing the results of Experimental Example 2, showing the outflow rate of trihalomethane and the outflow rate of 2-MIB, respectively.
  • FIGS. 9 and 10 are graphs showing the results of Experimental Example 3, showing the outflow rate of trihalomethane and the outflow rate of 2-MIB, respectively;
  • FIG. 11 is a graph showing the cumulative pore volume and pore diameter distribution of the activated carbon fibers used in Experimental Example 4.
  • FIGS. 12 and 13 are graphs showing the results of Experimental Example 4, showing the outflow rate of trihalomethane and the outflow rate of 2-MIB, respectively;
  • FIG. 14 is a perspective view of an embodiment of the water purifier of the present invention.
  • FIG. 15 is a sectional view taken along the line XV—XV in FIG.
  • Fig. 16 is a block diagram of the control circuit of the water purifier shown in Figs. 14 and 15;
  • Fig. 17 is a flowchart showing the operation of the control circuit.
  • the vertical axis represents the outflow concentration with respect to the initial concentration of tap water, and shows the adsorption performance of activated carbon fibers to trihalomethane and 2-MIB.
  • the horizontal axis represents the water flow multiple to the activated carbon fiber volume (the integrated water flow divided by the activated carbon fiber filling volume).
  • the graph in Fig. 5 shows the total trihalomethane (The sum of loroform, bromodichloromethane and other trihalomethanes), and the graph in Figure 6 shows the outflow rate of 2-MIB.
  • the graph in Fig. 6 shows that activated carbon fiber "A-20” having a central pore diameter of 2.73 nm adsorbs 2 _M IB well, while "A-10" activated carbon fiber with a central pore diameter of 1.65 nm 2—Indicates little effect on MIB adsorption.
  • the graph in Fig. 5 shows that for adsorption of trihalomethane, "A-10" with a central pore diameter of 1.65 n is far more than "A-20", an activated carbon fiber with a central pore diameter of 2.73 nm. It is suitable for However, it can be seen that trihalomethane can be adsorbed to some extent even with the large central pore diameter “A-20” while the water flow multiple (integrated water flow) is small.
  • activated carbon fiber "A-20" having a central pore diameter of 2.73 nm is suitable for adsorbing 2-MIB, but has no adsorption performance for trihalomethane, and can adsorb some trihalomethane.
  • This experimental example shows that the adsorption performance for trihalomethane can be regenerated on activated carbon fiber "A-20" having a central pore diameter of 2.73 nm.
  • a container having a volume of 269 m was filled with 40 g of activated carbon fiber "A-20".
  • the packing density was 0.15 gZmj ?.
  • Activated carbon fiber is boiled for 30 minutes every 150 water passages (558 times the water passage multiple), and the same treated water as in Experimental Example 1 is passed through while regenerating by boiling, and trihalomethane and 2-MIB are discharged. The concentration was measured. Also, for comparison, the outflow concentration was measured in the same manner while flowing water without performing boiling regeneration. The results are shown in the graphs of Figs.
  • the test was performed for a longer period of time while increasing the regeneration frequency and regeneration time as compared with Experimental Example 2.
  • the water to be treated is made of tap water from Chigasaki City to which 2-MIB concentration is 1 OOng /, and 2-MIB and black mouth form are added so that the trihalomethane concentration is 100 gZj ?.
  • the activated carbon fiber “FT-25” central pore diameter 2.64 nm as measured by the water vapor adsorption method) from Kuraray Chemical Co., Ltd. was used as the sample. 6.7g of "FT-25" activated carbon fiber is filled into a 45m container (filling density 0.15g / m ⁇ ) and boiled for 80 minutes every 12 ⁇ water flow (266 times the water flow multiple).
  • FIG. 11 shows the cumulative pore volume and pore diameter distribution of activated carbon fiber "FT-20".
  • the activated carbon fiber “FT-20” has a central pore diameter of 2.06 nm as measured by a water vapor adsorption method.
  • the outflow rates of trihalomethane and 2-—B are shown in the graphs of FIGS. 12 and 13.
  • the activated carbon fiber "FT-20” with a central pore diameter of 2.06 nm also effectively removes trihalomethane and 2-MIB, similar to the activated carbon fiber "FT-25".
  • the illustrated water purifier 10 generally includes a filtration stage 12 for removing particulate components such as red microorganisms floating in tap water by filtration, and a filtration stage 12 for dissolving chlorine, trihalomethane, and the like dissolved in tap water. Odorants (especially 2-MIB and diosmin) And an adsorbing stage 14 for removing harmful or undesired substances such as harmful or undesired substances by activated carbon fiber adsorption.
  • the adsorbing stage 14 is periodically ripened by an electric heater 16. Has become.
  • the water purifier 10 includes a base 18, a center housing 20 fixed to the base, an upper housing 22 snap-fitted to the center housing, and a top housing 22. And a cap 24 mounted thereon.
  • a lower casing 26 fixed to the base 18 and an upper casing 28 screwed to the lower casing in a liquid-tight manner form a cooling chamber 30.
  • Hollow fiber membrane filter module 32 is arranged interchangeably. Instead of the hollow fiber membrane filter module 32, another type of filter may be used.
  • Tap water to be purified is sent to the filtration chamber 30 through the inlet hose 34 and the inlet swivel joint 36, and is filtered through the multiple inlet openings 38 of the filter module 32.
  • the tap water that enters the inside 2 and is filtered by the hollow fiber membrane is sent to the adsorption stage 14 via the outlet swivel joint 40 and the hose 42.
  • a treatment tank in the form of a replaceable cartridge 44 containing activated carbon fibers is arranged in the adsorption stage 14.
  • the carbon fiber cartridge 44 has a bottomed cylindrical container 46 formed by deep drawing a stainless steel plate and an annular lid 48 made of a stainless steel plate, both of which extend along the periphery 50. Sealed tightly. A plurality of arc-shaped slits (not shown) are pierced in the lid 48 so that water sent from the hose 42 flows into the cartridge 44.
  • a stainless steel perforated cylinder 52 is arranged in the center of the cartridge 44, and a nonwoven fabric of activated carbon fibers 54 is wrapped around the cylinder 52 at a packing density of about 0.15 g / m ⁇ . And tied up.
  • the activated carbon fibers 54 may be formed using a binder. In order to keep the activated carbon fiber cartridge 44 as small as possible while maintaining the adsorption performance for odorants (2-MIB and diosmin) for a period of 4 to 7 years, the activated carbon fiber 54 It is preferable to use exclusively those having a central pore diameter of about 2.0 to 2.7 nm (according to the water vapor adsorption method). However, if a slight increase in the size of the cartridge 44 is allowed, a small amount of activated carbon fibers with a smaller or larger central pore diameter may be added.
  • cartridge 70 When used under average water quality conditions, cartridge 70 contains approximately 70 g of activity. It is preferable to fill the carbon fibers. From this point, the graphs in Figs. 9 and 10 showing the results of Experimental Example 3 show that the outflow rates of trihalomethane and 2-MIB are both reduced to 30% up to 90,000-fold water flow. We can see that we can do it. Assuming that the daily usage (water flow) of the water purifier is 15 / day, the cumulative water flow for seven years is
  • the activated carbon fiber cartridge 44 is supported by an annular support portion 56 of the central housing 20, and is closed by an upper lid / manifold 58.
  • the manifold 58 is provided with an inlet 60 so that water that has been filtered in the filtration stage 12 and enters from the hose 42 can pass through the slit of the lid 48 from the inlet 60 of the manifold 58 as shown by an arrow 62. Then, it flows into the cartridge 44 and fills around the activated carbon fiber 54. From there, the water passes radially inward through the activated carbon fiber 54, and at that time, chlorine and trihalomethane odorants dissolved in the water are adsorbed by the activated carbon fiber.
  • the treated water passes through the perforated cylinder 52, is collected inside, and is sent to the thermostat valve 66 from the outlet 64 of the manifold 58.
  • the thermostat valve 66 is made of a heat-expandable wax.When the temperature is, for example, 8 TC or less, the outlet 64 of the manifold 58 is connected to the outlet hose 68, and when the temperature exceeds 80, the outlet 64 is used. It communicates with a vapor discharge port 70 formed in the cap 24.
  • An electric heater 16 is brought into contact with the rear surface of the bottom of the container 46 of the activated carbon fiber cartridge 44 by a heat transfer member so that the cartridge 44 is heated when the heater is energized.
  • a conventional heater in which a nichrome wire is sandwiched between mica foils can be used.
  • the heater 16 is energized from a control circuit 72 disposed in the base 18, and power is supplied to the control circuit via an electric cord 74.
  • the control circuit 72 automatically operates at a predetermined time every day, such as midnight, as described later.
  • the heater can be programmed to be timer driven.
  • a temperature detecting element such as a thermistor 76 is disposed on the back surface of the bottom of the container 46 by a heat transfer contact member to monitor the temperature of the bottom of the container 46.
  • the center of the container 46 has a raised bottom, and the thermistor 76 is in contact with the center raised bottom.
  • the output of the thermistor 76 is sent to the control circuit 72.
  • the base 18 of the water purifier 10 is provided with an operation display section 84 having a liquid crystal display panel 78, a reproduction time setting switch 80, and a manual reproduction switch 82. It is.
  • FIG. 16 shows an example of the control circuit 72.
  • the output of the thermistor 76 is input to a control circuit 72, which is connected to a liquid crystal display panel 78 of the operation display section 84 and switches 80 and 82.
  • the control circuit 72 includes a programmed microprocessor 86, which controls energization of the heater 16 via a solid-state relay (SSR) 88. It has become.
  • the AC output of the power supply circuit 90 is supplied to the electric heater 16 via the SSR 88 and the high-temperature fuse 92.
  • the microprocessor 86 can be programmed to automatically energize the heater 16 every day when a preset time (preferably at midnight) arrives. By pressing the setting switch 80, the playback time can be incremented or decremented, for example, by one hour. ⁇ Also, the heater 16 can be energized when the user presses the manual playback switch 82.
  • the microprocessor 86 monitors the temperature of the central raised bottom of the activated carbon container 46 by monitoring the output of the thermistor 76 after the heater 16 is energized, and responds to this temperature. Control SSR 88 as described below.
  • the water purifier 10 When used at home, the water purifier 10 can be placed, for example, on a kitchen counter or in a space below a sink.
  • the inlet hose 34 can be connected to a water pipe and the outlet hose 68 can be connected to a tap.
  • the tap water from the water pipe is first pretreated by the filter 32 of the filtration stage 12, and then the chemical water of the active fiber 54 of the adsorption stage 14 is treated. Purified by adsorption and physical adsorption. The purified water can be used for drinking and cooking. Next, the regeneration of the activated carbon fibers 54 will be described with reference to the flowchart of FIG.
  • the microprocessor 86 excites the SSR 88 to start energizing the heater 16.
  • the LCD panel 78 displays a “prohibited” or “not in use” indication to prevent the user from accidentally using the water purifier.
  • the heater 16 is energized, the bottom of the activated carbon container 46 will be heated and the water remaining in the container 46 will become hot water and will eventually boil.
  • the generated steam rises from the outlet 64 of the manifold 58 toward the thermostat valve 66.
  • Temperature of thermostat valve 6 6 80 Above C, thermostatic valve 66 moves to the left in FIG. 15 to allow water vapor to be released from vapor outlet 70 to the atmosphere.
  • the activated carbon fibers 54 are boiled down and the chlorine adsorbed on the activated carbon fibers and trihalomethane whose boiling point is lower than the boiling point of water are hot water. It is easily desorbed by the action of water and steam, and the activated carbon fibers are regenerated.
  • the energization of the heater 16 is continued until the temperature at the top and bottom of the container 46 detected by the thermistor 76 exceeds 12 CTC. As the accumulated water in the vessel 46 evaporates, the level of the accumulated water drops.However, since the vessel 46 has a raised bottom, the central raised bottom is first exposed from the accumulated water due to evaporation and lowering of the water level. The temperature rises faster than the part. For this reason, even when the temperature of the central raised bottom detected by the thermistor 76 reaches 12 CTC, a small amount of retained water remains at the bottom of the container 46. By terminating the power supply to the heater when a temperature of 20 ° C. is detected, overheating of the activated carbon fiber can be prevented, and burning and ripening of the activated carbon fiber can be prevented.
  • microprocessor 86 terminates power to heater 16.
  • the thermostat valve 66 connects the outlet 64 of the manifold 58 to the hose 68, Prepare for use of water purifier.
  • the microprocessor 86 displays "Available” or "READY” on the LCD panel 78 to inform the user that the water purifier is ready for use.
  • be desorbed from the activated carbon in the normal boiling at atmospheric pressure has a large molecular weight and high boiling point compared to trihalomethanes (boiling 2 0 7 ⁇ 2 5 4 e C) not Possible 2—Activated carbon fibers with a central pore diameter of about 1.8-3.0 nm are used, targeting materials such as MIB and diosmin. A sufficient fiber adsorption capacity (pore volume) is secured from the beginning. Therefore, these substances can be selectively adsorbed on the activated carbon fiber for a long time. Furthermore, the activated carbon fiber is regenerated as needed by boiling and heating the activated carbon fiber, and the adsorption performance for trihalomethane is maintained for a long period of time.
  • the large-capacity selective adsorption performance for large molecular weight substances and the temporary adsorption performance for trihalomethane possessed by activated carbon fiber are fully utilized, so that trihalomethane and odorant are produced by a limited amount of activated carbon fiber. Can be effectively removed over a long period of time, and the life of the activated carbon fiber can be significantly extended. Whereas in the prior art, the activated carbon fiber had to be replaced every six months to one year, according to the present invention, the active carbon fiber life can be extended to 4 to 7 years.
  • the water purifier can be made small and compact, or the running cost required for the water purification treatment can be significantly reduced. it can.
  • the present invention provides for the use of a small amount of activated carbon fibers or granular activated carbon having a smaller or larger central pore diameter, in addition to activated carbon fibers having a core pore diameter of 1.8 to 3.0 nm. It is not excluded.
  • the filter stage 12 including the filter 32 is not indispensable, and the filter can be omitted.
  • the description has been made assuming that the steam generated during the regeneration of the activated carbon fiber is released into the atmosphere from the steam outlet 70 of the water purifier, the steam can be discharged to a sink or a trap through a drain pipe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

明 細 書 水の浄化方法および装置 技術分野
本発明は、 水道水の浄化方法および装置に鬨する。
背景技術
水道水は塩素ガスや次亜塩素酸ソーダなどによる塩素殺菌処理に付されている ので、 水道水には残留塩素が次亜塩素酸イオン (C 1 0 - )若しくは次亜塩素酸 ( H C 1 0 ) の形で溶存している。 残留塩素による臭いは俗にカルキ臭 (晒し粉 臭) とも言われ、 嫌われることが多い。 また、 水道水中には、 塩素と有機物との 反応により生成する微量の有機塩素化合物 (クロ口ホルム C H C 1 3やプロモジ クロロメタン C H C 1 2 B rを主とするトリハロメタン) が溶存しており、 トリハ ロメタンは発癌性を有する有害物質として注目されている。 さらに、 近年では、 水源の水質汚濁と富栄養化に伴い水源において植物性プランクトンが繁殖する傾 向にあり、 プランクトンの代謝物又は分泌物と考えられる発臭性の有機物が水道 水に低濃度で溶存している。 斯るプランクトン由来の発臭物質としては 2—メチ ルイソボルネオール C H H 2。0 (以下、 2— M I B )やジォスミン C 1 2 H 2 2〇が 知られており、 徴くさい臭いがするので徵臭物質又は臭気物質と言われ、 やはり 敬遠されている。
斯る有害物質や発臭物質を除去し、 健康的で美味しい水を得るため、 従来、 家 庭用または業務用の浄水器が使用されている。 初期の浄水器は粒状活性炭を使用 したもので、 残留塩素のほか、 一時的ではあるがトリハロメタンや有機発臭物質 を除去することができる。 残留塩素は粒状活性炭表面の活性サイ ト (C - O -結合) の化学吸着により除去されるものと考えられており、 従って塩素に対する吸着性 能は粒状活性炭の比表面積に依存するものと考えることができる。 これに対し、 トリハロメタンゃ有機発臭物質は、 水和されたそれらの分子が粒状活性炭の細孔 に捕捉されることにより、 物理的に吸着されるものと考えられている。
活性炭に水道水を接触させることより残留塩素(次亜塩素酸ィオン若しくは次 亜塩素酸) を除去すると、 浄水器の非使用時には、 活性炭にバクテリアが繁殖し、 衛生的でない。 そこで、 活性炭を 1 0 ο〜ι 5 crcの温度で煮沸することにより バクテリアを死滅させ、 活性炭を殺菌することが提案されている (特開昭 49- 704 50号;特開昭 63- 62591号) 。 また、 加熱により、 トリノ、ロメタン (クロ口ホルム の沸点は 61 .2で; プロモジクロロメタンの沸点は 90. C ) が活性炭の細孔から脱 着されて空気中に放逐されると共に、 活性炭表面の C - 0 _結合が解離して活性点 が復活するので、 トリハロメタンと塩素に鬨しては粒状活性炭が再生され、 寿命 が延長すると考えられている。 しかしながら、 2— M I Bとジォスミンはトリハ ロメタンよりも大きな分子 iを有し (夫々、 1 6 8と 1 8 2 ) 、 従って、 それら の沸点は水の沸点より高いので(夫々、 約2 0 8 と約2 5 4 ) 、 煮沸によつ ては殆ど駆逐されない。
煮沸による殺菌と再生の可能性は別とし、 塩素由来のトリハロメタンとプラン クトン由来の発臭物質 (主として、 2— M I Bとジォスミン) を長期間にわたつ て完全に除去しょうという観点から見れば、 細孔での物理吸着に基づく粒状活性 炭の吸着性能は、 次の 2つの理由により、 十分でないものと考えられる。
第 1に、 物理吸着の原理に基づいて活性炭に物質を吸着させるためには物質毎 に最適の細孔直径があると考えられているが、 粒状活性炭の細孔直径分布は、一 般に、 特定の物質を選択的に吸着するのに適していない。 第 1図および第 2図の ダラフにより説明するに、 第 1図のグラフは市販の 3種の粒状活性炭 A〜Cの累 積細孔容積 ( 1 5 0人未満は窒素吸着法により測定し Cranston & Inkley法によ り解析; 1 5 0人以上は水銀圧入法により測定) を示す。 第 2図のグラフは、 粒 状活性炭の細孔直径分布を調べるため、 第 1図の累積細孔容積 Vを細孔直径 Dで 微分したものである。 第 1図および第 2図のグラフから、 粒状活性炭においては、 細孔直径は非常に広い範囲に分布していることが分かる。 この事実は、 粒状活性 炭は、 小さな粒子サイズの物質から大きな粒子サイズの物質に至る種々のサイズ の物質を同時に吸着するには適しているが、 特定の物質にターゲットを絞りにく いことを意味している。
• より詳しくは、 トリハロメタンと上記発臭物質の吸着について言えば、 粒状活 性炭は、 トリハロメタンや発臭物質とは粒子サイズの異なる他の物質を吸着でき る直径の細孔をかなり有し、 トリハロメタンや発臭物質以外の物質を吸着できる だけの余分な吸着容量を有するが故に、 その分だけトリハロメタンと発臭物質に 対する吸着容量が限られていることになる。 従って、 トリハロメタンと発臭物質 をターゲットにし、 それらを集中的かつ選択的に吸着除去しょうという観点から は、 粒状活性炭が有する吸着性能を充分有効に利用することができない。 これは、 これらの物質 (いわば、 ターゲット物質) に対する粒状活性炭の寿命が短いこと を意味している。
第 2の難点は、 粒状活性炭の吸着速度に鬨連するものである。 粒状活性炭の細 孔構造は正確には解明されていないが、 第 2図のグラフの細孔分布から想像する と、 粒状活性炭は第 3図のモデルに示したような細孔構造を有するものと考えら れている (石崎著「繊維状活性炭とその利用」 、 『ケミカル ·エンジニアリング』 ( 1984年 7月号) 、 図 7による) 。 このように、 粒状活性炭の細孔は粒子内部ま で入り組んで延長しており、 物質が細孔へアクセスするのに時間を要するので、 粒状活性炭は吸着速度が遅い。 このため、 トリハロメタンや発臭物質のように水 道水中に低濃度で溶存する物質を完全に吸着させるにはかなりの接触時間を要す る。
このような理由により、 粒状活性炭を用いた浄水器では、 大量の活性炭を使用 するか、 或いは、 活性炭を頻繁に交換することが必要になる。 大量使用は浄水器 が大型になるという不具合がある。 家庭用であると業務用であるとを問わず、 浄 水器は台所のような環境で使用されるものであるから、 出来るだけ小型であるこ とが要請されている。
アクリル系やフエノール系等の繊維を炭化し活性化 (賦话〉 することにより製 造される活性炭素繊維は、 粒状活性炭に比べて、 吸着速度が速く、 かつ、 細孔直 径分布が狭いという利点があるので、 最近の浄水器に使用されつつある。 しかし、 この場合においても、 小型の浄水器では活性炭素繊維の充填量に自ずと限界があ るので、 今日市販されている一般的な浄水器は活性炭素繊維のカートリッジを半 年から 1年毎に交換するように設計されている。 従って、 定期的なカートリッジ 交換を要すると共に、 高額なカートリッジを購入するためにランニングコストが 嵩む。
水蒸気により活性炭素繊維を再生することは提案されている (実開昭 55- 39095 号;特開昭 60- 225641号) 。 しかし、 前述したようにプランクトン由来の発臭物 質である 2— M I Bやジォスミンの沸点は水の沸点よりかなり高いので、 これら の物質に対する吸着性能に鬨しては大気圧下の水蒸気による再生が殆ど効かない, 特開昭 61 -42394号には、 1 0 0〜2 0◦での加圧又は過熟水蒸気を用いて活性炭 素繊維を再生することが提案されている。 この方法は工業用水処理には応用可能 であろうが、 2— M I Bやジォスミンを揮散させ得るような温度の加圧 ·過熱水 蒸気を通過させるためには大きな電力と吸着槽の耐圧設計が必要となるので、 家 庭用や業務用の浄水器には適用するのが困難である。
活性炭素繊維を空気中で 3 5 0〜4 0 TCの温度で加熱し再生することも提案 されている (実開昭 58- 146595号) 。 しかし、 活性炭素繊維は、 通常、 直径 5〜 2 O z mの非常に細い繊維からなり、 加熱により容易に焼損すると共にボロボ口 に熱劣化するので、 2— M I Bやジォスミンを揮散させ得るような温度にまで加 熱するのは好ましくない。 発明の開示
本発明の目的は、 水道水中に溶存する塩素殺菌由来の有機塩素化合物と水源微 生物由来の発臭物質を、 限られた量の活性炭素繊維により長期間にわたって効果 的に除去することが可能な水浄化方法および装置を提供することにある。
本発明の他の目的は、 水道水中に溶存するトリハロメタンのような健康上有害 な物質と、 2 -MIBやジォスミンのように高い沸点を有し脱着の困難な物質を、 限 られた量の活性炭素繊維により長期間にわたって効果的に除去することが可能な 水浄化方法および装置を提供することにある。
本発明の他の目的は、 水道水中に低濃度で溶存する塩素殺菌由来の有機塩素化 合物と水源微生物由来の発臭物質を効果的に除去することが可能で、 小型でコン パクトな浄水器を提供することにある。
本発明の他の目的は、 トリハロメタンのような有害物質と 2 - MIBやジォスミン のような発臭物質を効果的に除去することが可能で、 活性炭素繊維の寿命が長く、 数年もの長期間にわたり活性炭素繊維を交換することなく使用することの可能な、 ランニングコストの小さな水浄化方法および装置を提供することにある。
本発明は:
1 ) 限られた量の活性炭素繊維を使用しながらも長期間にわたって水道水を効 果的に浄化するためには、 2— M I Bやジォスミンのような大きな分子量をもつ た発臭物質にターゲットを絞り、 これらの物質をできるだけ大量に吸着すること が可能な (つまり、 これらの物質に対する吸着容量が大きな) 活性炭素繊維を主 として使用することにより、 通常の煮沸温度では脱着しにくいこれらの物質に対 する活性炭素繊維の寿命を、 再生によることなく、 出来るだけ延長させなければ ならない (発臭物質の選択的吸着) という技術思想と、
2 ) 分子量 160〜190の物質を選択的かつ大量に吸着するのに最適な活性 炭素繊維は、 水蒸気吸着法にょる測定で約1.8〜3.011111 (好ましくは、 約 2. 0〜2.7 nm) の中心細孔直径 (第 4図に基づいて後程定義する) を有する话 性炭素繊維であるという知見 (活性炭素繊維の中心細孔直径の最適化) と、
3 ) 2-M I Bやジォスミンのような大きな分子量をもった物質を選択的に吸 着するに適した中心細孔直径を有する活性炭素繊維は、 しかしながら、 分子量の より小さなトリハロメタンの少量を一時的に吸着するに充分な吸着性能を有する
(トリハロメタンに対する一時的吸着性能の存在) という知見と、
4 )斯る活性炭素繊維のトリハロメタンに対する僅かな吸着性能を加熱により 随時回復させながら活性炭素繊維の使用を継続することにより、 トリハロメタン に対する活性炭素繊維の寿命を充分に延長させることができる (トリハロメタン に対する话性炭素繊維の吸着性能の再生) という技術思想、
に立脚している。
このため、 本発明の浄水器および浄水方法は、 水蒸気吸着法による測定で約 1. 8〜3.0 nm (好ましくは、 約 2.0〜2.7 nm) の中心細孔直径を有する话 性炭素繊維を主として使用し、 水道水を活性炭素繊維に接触させることにより水 道水中に溶存し約 160〜190の分子量を有する発臭物質を活性炭素繊維に選 択的に吸着させると同時に分子量の小さなトリハロメタンも一時的に吸着させ、 非使用時にトリハロメタンの沸点以上(好ましくは、 水の沸点以上) の温度で、 かつ、 発臭物質の沸点以下の温度に活性炭素繊維を随時加熱することにより、 活 性炭素繊維に吸着されたトリハロメタンを活性炭素繊維から脱着させ、 トリハロ メタンに対する吸着性能について活性炭素繊維を再生することを特徴とするもの である。
このように約 1.8〜3.0 nm (好ましくは、 約 2.0〜2.7 nm) の中心細 孔直径を有する活性炭素繊維を使用することにより、 分子量の大きな発臭物質に 対しては最初から充分な吸着容量が確保されているので、 浄水器を充分小型に設 計した場合でも、 通常の水質条件下では活性炭素繊維を交換することなく 4〜 7 年もの長期間にわたって発臭物質を吸着させることができ、 発臭物質に鬨する话 性炭素繊維の寿命を著しく延長させることができる。
トリハロメタンの除去については、 1 . 8〜3 . 0 n mの中心細孔直径を有する 活性炭素繊維は少量のトリハロメタンを一時的に吸着するに充分な吸着性能があ ることと、 加熱により低沸点のトリハロメタンを容易に揮発させてトリハロメタ ンに対する吸着容量を随時回復できることと相俟って、 発臭物質に鬨する活性炭 素繊維の所与の寿命期間 (好ましくは、 4〜7年) を通じてトリハロメタンに対 する吸着性能を充分に維持することができる。
このように、 加熱脱着の困難な発臭物質については活性炭素繊維の細孔直径の 最適化により充分な吸着容量 (細孔容積) を確保することができるという観点と, 加熱脱着の容易なトリハロメタンについては活性炭素繊維の再生を伴いながら実 用上充分な吸着を行うことができるという観点において、 活性炭素繊維の有する 吸着性能が二重に利用され、 従って、 活性炭素繊維の有する吸着性能が有効にフ ルに利用されるので、 限られた量の活性炭素繊維によりトリハロメタンと発臭物 質の双方を長期間にわたって効果的に除去することができる。
本発明に使用可能な活性炭素繊維は種々のメーカーから入手することができる もので、 本発明者の知るところによれば、 岡山県備前市のクラレケミカル(株) の活性炭素繊維 " F T - 2 5 " および " F T— 2 0 " や大阪市の大阪ガス (株) の活性炭素繊維 " A— 2 0 " を好適に使用することができる。
活性炭素繊維 " F T— 2 5 " は第 4図のグラフに示したような細孔特性を有す る。 第 4図のグラフにおいて縦軸は累積細孔容積 Vを表し、 細孔直径 Dを表す横 軸は対数目盛りになっている。 水蒸気吸着法によって測定した累積細孔容積 Vが 実線力ーブによりプロットしてある。 鎖線カーブはこの活性炭素繊維の細孔直径 分布を示すためのもので、 実線カーブで示された累積細孔容積 Vを細孔直径 Dで 微分したものである (従って、 細孔直径分布については、 縦軸は A V/Alog D となる) 。 この鎖線カーブから、 細孔直径分布は特定の細孔直径においてピーク を呈し、 累積細孔容積のうちでこの直径の細孔が占める割合が最も高いことが分 かる。 本明細書 (請求の範囲を含む) において使用する "中心細孔直径" の用語 は、 このピークに対応する細孔直径 Dを意味する (なお、 細孔の断面形状は必ず しも真円ではないと考えられるが、 慣習に従い横断方向サイズは "直径" の語で 表現する) 。 "FT— 25" は約 2.7 nmの中心細孔直径を有する。 また、 こ の活性炭素繊維の場合には、 直径 2.4 nmから 3.0 nmまでの細孔の占める細 孔容積はほぼ 0.4m^/gであることが分かる。
本発明者の知見によれば、 約 2.7 nmの中心細孔直径を有する活性炭素繊維 は、 プランクトン由来の発臭物質 (特に、 2— MI B) を選択的に吸着するのに 適している。 これは、 2— MI Bの分子の直径が水和によって大きくなり、 活性 炭素繊維の細孔直径に適合するからであると考えられる。
活性炭素繊維は不織布の形のものを使用することができ、 家庭用の浄水器とし て約 5 ^ Z分の流量で 4〜 7年の期間にわたり活性炭素繊維を交換することなく 水道水を浄化する場合には、 約 40〜70 gの活性炭素繊維を処理槽に充填する ことができる。 活性炭素繊維への懸濁粒子成分の負荷を軽減し、 活性炭素繊維の 寿命を延長させるため、 処理槽の上流には中空糸膜等のフィルターを備えた沪過 段を設け、 水道水中の赤鑌等の粒子成分を予め除去するのが好ましい。
活性炭素繊維を充填した処理糟をトリハロメタンの沸点以上、 好ましくは、 水 の沸点以上、 例えば、 100〜120eC、 の温度に加熱することにより、 活性炭 素繊維を随時再生することができる。 加熱は浄水器の非使用時に定期的に行うこ とができ、 例えば、 タイマー制御の電気ヒーターを使用して毎日夜間約 60分間 程度自動的に行うのが好ましい。 加熱により処理槽内の水は沸騰し、 活性炭素繊 維は煮沸殺菌されると同時に、 それまでに吸着されていたトリハロメタンは活性 炭素繊維から脱着され、 トリハロメタンについて活性炭素繊維は再生される。 図面の簡単な説明
第 1図は、 粒状活性炭の累積細孔容積を示すグラフ ;
第 2図は、 第 1図のグラフの累積細孔容積を細孔直径で微分したもので、 細孔 直径の分布を示し;
第 3図は、 粒状活性炭の細孔構造のモデルを示す模式図;
第 4図は、 活性炭素繊維 "FT— 25"の累積細孔容積と細孔直径分布を示す グラフ ; 第 5図および第 6図は、 実験例 1の結果を示すグラフで、 夫々、 トリハロメタ ンの流出率および 2—M I Bの流出率を示し;
第 7図および第 8図は、 実験例 2の結果を示すグラフで、 夫々、 トリハロメタ ンの流出率および 2— M I Bの流出率を示し;
第 9図および第 1 0図は、 実験例 3の結果を示すグラフで、 夫々、 トリハロメ タンの流出率および 2— M I Bの流出率を示し;
第 1 1図は実験例 4に用いた活性炭素繊維の累積細孔容積と細孔直径分布を示 すグラフ;
第 1 2図および第 1 3図は、 実験例 4の結果を示すグラフで、 夫々、 トリハロ メタンの流出率および 2— M I Bの流出率を示し;
第 1 4図は、 本発明の浄水器の実施例の斜視図;
第 1 5図は、 第 1 4図の XV— XV線に沿った断面図;
第 1 6図は、 第 1 4図と第 1 5図に示した浄水器の制御回路のブロック図; 第 1 7図は、 制御回路の動作を示すフローチャートである。 発明を実施するための最良の形態
最初に、 実験例 1および 2に基づいて本発明の原理をより詳しく説明する。 実験例 1
大阪ガス (株) の活性炭素繊維 " A— 1 0 " (水蒸気吸着法による測定で中心 細孔直径 1 . 6 5 n m ) 2 0 0 gと " A— 2 0 " (中心細孔直径 2 . 7 3 n m ) 2 0 0 gを、 夫々、 0 . 1 5 g /m の充填密度で容積 1 3 3 5 m の容器に別々 に充填し、 被処理水を通水しながら、 流出水中のトリハロメタンと 2— M I Bの 瀵度を測定した。 被処理水としては、 北九州市の水道水に 2— M I Bを 1 0 0 n g Z の濃度になるように添加したものを使用した。 トリハロメタンは元々水道 水に含まれている分だけであり、 添加はしなかった。 測定結果を第 5図および第 6図のグラフに示す。 これらのグラフにおいて、 縦軸は水道水の初期濃度に対す る流出濃度を表し、 トリハロメタンおよび 2— M I Bに対する活性炭素繊維の吸 着性能を示す。 横軸は活性炭素繊維容積に対する通水倍数(積算通水量を活性炭 素繊維の充填容積で割ったもの) を表す。 第 5図のグラフは総トリハロメタン (ク ロロホルム、 ブロモジクロロメタン、 その他のトリハロメタンの合計) の流出率 を示し、 第 6図のグラフは 2— M I Bの流出率を示す。
第 6図のグラフは、 2.73 nmの中心細孔直径を有する活性炭素繊維 "A— 20" は 2 _M I Bを良く吸着するが、 中心細孔直径 1.65 nmの "A- 10" 活性炭素繊維は 2— M I Bの吸着にはあまり効果がないことを示している。
他方、 第 5図のグラフは、 トリハロメタンの吸着には、 中心細孔直径 2.73 nmの活性炭素繊維 "A— 20" よりは、 中心細孔直径 1.65 n の "A— 1 0" の方が遥かに適していることを示している。 しかしながら、 通水倍数(積算 通水量) が小さい間は、 中心細孔直径の大きな "A— 20" でもある程度トリハ ロメタンを吸着できることが判る。
以上から、 中心細孔直径 2.73 nmの活性炭素繊維 "A— 20" は、 2 - M I Bの吸着に適しているが、 トリハロメタンに対する吸着性能は皆無ではなく、 多少のトリハロメタンを吸着できることが判る。 実験例 2
この実験例は、 中心細孔直径 2.73 nmの活性炭素繊維 "A— 20" におい て、 トリハロメタンに対する吸着性能が再生可能であることを示す。
容積 269m の容器に 40 gの活性炭素繊維 "A— 20" を充填した。 充填 密度は 0.15 gZmj?であった。 150 通水(通水倍数にして 558倍) 毎 に 30分間にわたり活性炭素繊維を煮沸して再生しながら、 実験例 1と同じ被処 理水を通水し、 トリハロメタンと 2— MI Bの流出濃度を測定した。 また、 比較 のため、 煮沸再生をすることなく通水しながら、 同様に流出镳度を測定した。 結 果を第 7図および第 8図のグラフに示す。
第 7図のグラフから、 煮沸を繰り返しながら中心細孔直径 2.73 n mの活性 炭素繊維 "A— 20" を使用する場合には、 煮沸しない場合に比べ、 より長期間 にわたつてトリハロメタンに対する吸着性能を維持することができることが判る。 これは、 煮沸によりトリハロメタンが活性炭素繊維から放逐されることで活性炭 素繊維が再生され、 トリハロメタンに対する吸着性能が回復するからであると考 えられる。 これに対し、 第 8図のグラフから判るように、 2— MI Bに鬨する吸 着性能については、 煮沸 ·再生の効果は顕著ではない。 以下の実験例は本発明の実施例に係わるものである。 実験例 3
実験例 2よりも再生頻度と再生時間を増加しながらより長期間にわたって試験 した。 被処理水としては茅ケ崎市の水道水に 2— M I B漶度が 1 OOng / 、 トリハロメタン濃度が 100 gZj?になるように 2— MI Bとクロ口ホルムを 添加したものを使用し、 活性炭素繊維としてはクラレケミカル (株) の活性炭素 繊維 " FT— 25" (水蒸気吸着法による測定で中心細孔直径 2.64 nm) を 用いた。 6.7gの " FT— 25"活性炭素繊維を容積 45m の容器に充填し (充填密度 0.15 g/m^ ) 、 12^通水 (通水倍数で 266倍) 毎に 80分 間煮沸することにより活性炭素繊維を再生しながら、 トリハロメタンと 2— M I Bの流出率 (%) を測定した。 結果を第 9図および第 10図のグラフに示す。 第 9図および第 10図のグラフから判るように、 実用上充分な長期間にわたつ てトリハロメタンおよび 2— MI Bを効果的に除去することができた。 実験例 4
クラレケミカル(株) の活性炭素繊維 " FT— 20" を用いた点を除いては、 実験例 3と同様の条件で試験した。 活性炭素繊維 "FT— 20" の累積細孔容積 と細孔直径分布を第 11図に示す。 第 11図のグラフから分かるように、 活性炭 素繊維 "FT— 20" は、 水蒸気吸着法による測定で、 2.06 nmの中心細孔 直径を有する。 トリハロメタンと 2— ΜΪ Bの流出率を第 12図および第 13図 のグラフに示す。 これらのグラフから分かるように、 中心細孔直径 2.06nm の活性炭素繊維 "FT— 20" によっても、 活性炭素繊維 "FT— 25" と同様 に、 トリハロメタンおよび 2—MI Bを効果的に除去することができた。 次に、 第 14図および第 15図を参照しながら、 本発明の浄水器の好適な実施 例を説明する。 図示した浄水器 10は、 概略的には、 水道水中に浮遊する赤鑌ゃ 微生物などの粒子成分を沪過作用により除去するための沪過段 12と、 水道水中 に溶存する塩素やトリハロメタンや発臭物質 (特に、 2— MI Bやジォスミン) のような有害な或いは不本意な物質を活性炭素繊維の吸着作用により除去するた めの吸着段 1 4からなり、 吸着段 1 4は電気ヒータ一 1 6により周期的に加熟さ れるようになっている。
より詳しくは、 浄水器 1 0は、 基台 1 8と、 この基台に固定された中央ハウジ ング 2 0と、 この中央ハウジングにスナップ嵌合された上ハウジング 2 2と、 こ の上ハウジングに載置されたキヤップ 2 4とを有する。 基台 1 8に固定された下 ケーシング 2 6と、 この下ケーシングに液密に螺合された上ケーシング 2 8とで、 浐過室 3 0が形成され、 この F過室 3 0には従来型の中空糸膜フィルター ·モジュ ール 3 2が交換自在に配置されている。 中空糸膜フィルター■モジュール 3 2に 代えて、 他の形式のフィルターを使用してもよい。 浄化処理すべき水道水は、 入 口ホース 3 4と入口スィベル継手 3 6を介して浐過室 3 0に送られ、 フィルター · モジュール 3 2の複数の入口開口 3 8を介してフィルター ·モジュール 3 2内に 入り、 中空糸膜により浐過された水道水は出口スィベル継手 4 0とホース 4 2を 介して吸着段 1 4に送られる。
吸着段 1 4には、 活性炭素繊維を収容した交換可能なカートリッジ 4 4の形の 処理糟が配置されている。 话性炭素繊維カートリッジ 4 4は、 ステンレス鋼板を 深絞り成形してなる有底円筒形の容器 4 6とステンレス鋼板製の円環形の蓋 4 8 とを有し、 両者は周縁 5 0に沿って気密に卷締めてある。 蓋 4 8には円弧状の複 数のスリット (図示せず) が穿孔してあり、 ホース 4 2から送られた水がカート リッジ 4 4内に流入するようになっている。 カートリッジ 4 4の中央にはステン レス製多孔円筒 5 2が配置してあり、 この円筒 5 2の周りには活性炭素繊維 5 4 の不織布が約 0 . 1 5 g /m ^の充填密度でぐるぐると卷き付けて拘束してある。 活性炭素繊維 5 4はバインダーを用いて成形してもよい。 発臭物質 ( 2— M I B やジォスミン) に対する吸着性能を 4〜7年の期間にわたって維持しながらも、 活性炭素繊維カートリッジ 4 4を出来るだけ小型にするためには、 活性炭素繊維 5 4としては、 約 2 . 0〜 2 . 7 n mの中心細孔直径(水蒸気吸着法による) を有 するものを専ら使用するのが好ましい。 しかし、 カートリッジ 4 4のサイズの若 干の増加が許容される場合には、 中心細孔直径のより小さな又はより大きな活性 炭素繊維を少量併 してもよい。
平均的な水質条件下で使用する場合には、 カートリッジ 4 4には約 7 0 gの活 性炭素繊維を充填するのが好ましい。 この点に鬨し、 前記実験例 3の結果を示す 第 9図および第 10図のグラフから、 90、000倍の通水まではトリハロメタンおよ び 2— M I Bの流出率を共に 30%に抑えることができることがわかる。 浄水器 の 1日の使用量 (通水量) を 15 /日とすると、 7年分の累積通水量は、
15^X365曰 X7年 =38、300 J?
となる。 この量が 90、000倍であるためには、 活性炭素繊維の容積は、
38.300/90, 000 = 0.426 ^=426m
を要する。 活性炭素繊維の充填密度は 0.15 gZm であるから、 重量は、
426X0.15 = 64g
となる。 同様に、 4年分では、 37 gとなる。 従って、 4〜7年間の使用に対し て、 約 40〜70 gの活性炭素繊維で充分であることがわかる。
活性炭素繊維カートリッジ 44は中央ハウジング 20の環状支持部 56によつ て支持され、 上蓋兼用マ二ホールド 58によって閉鎖されている。 マ二ホールド 58には入口 60が設けてあり、 浐過段 12で浐過されホース 42から入来する 水がマ二ホールド 58の入口 60から蓋 48のスリットを介して矢印 62で示し たようにカートリッジ 44内に流入し、 活性炭素繊維 54の周囲に充満するよう になっている。 水はそこから半径方向内向に活性炭素繊維 54を通過し、 その際、 水中に溶存する塩素やトリハロメタンゃ発臭物質は活性炭素繊維に吸着される。 処理された水は多孔円筒 52を通過してその内側に回収され、 マ二ホールド 58 の出口 64からサーモスタツト ·バルブ 66に送られる。 サーモスタツト ·バル ブ 66は熱膨脹性のワックスを用いたもので、 温度が例えば 8 TC以下の時には マ二ホールド 58の出口 64を出口ホース 68に連通し、 温度が 80 を超えた 時には出口 64をキャップ 24に形成された蒸気放出口 70に連通するようになつ ている。
活性炭素繊維カートリッジ 44の容器 46底部の裏面には電気ヒーター 16が 伝熱鬨係で接触させてあり、 ヒーターに通電したときにカートリッジ 44が加熱 されるようになつている。 ヒーター 16としては、 ニクロム線を雲母箔で挟んだ 従来型のものを使用することができる。 ヒーター 16は基台 18内に配置した制 御回路 72から通電され、 この制御回路には電気コード 74を介して電力が供給 される。 制御回路 72は、 後述するように、 毎日深夜などの所定の時刻に自動的 にヒーターをタイマー駆動するようにプログラムすることができる。 容器 4 6底 部の裏面には、 また、 伝熱接触鬨係でサーミスタ 7 6のような温度検出素子が配 置してあり、 容器 4 6の底部の溫度を監視するようになっている。 第 1 5図から よく分かるように、 容器 4 6の中央部は上げ底になっており、 この中央上げ底部 にサーミスタ 7 6が接触させてある。 サーミスタ 7 6の出力は制御回路 7 2に送 られる。 第 1 4図に示したように、 浄水器 1 0の基台 1 8には、 液晶表示パネル 7 8と再生時刻設定スイッチ 8 0と手動再生スイッチ 8 2を備えた操作表示部 8 4が設けてある。
第 1 6図に制御回路 7 2の一例を示す。 サーミスタ 7 6の出力は制御回路 7 2 に入力され、 制御回路 7 2は操作表示部 8 4の液晶表示パネル 7 8とスィッチ 8 0および 8 2に接続されている。 図示した実施例では、 制御回路 7 2はプロダラ ムされたマイクロプロセッサ 8 6を備え、 このマイクロプロセッサ 8 6はソリッ ド -ステート . リレー ( S S R ) 8 8を介してヒーター 1 6への通電を制御する ようになつている。 電源回路 9 0の交流出力は、 S S R 8 8と溫度ヒューズ 9 2 を介して電気ヒ^"ター 1 6に供耠される。
マイクロプロセッサ 8 6は、 予め設定された所定時刻(好ましくは、 深夜の所 定時刻〉が到来すると毎日自動的にヒーター 1 6に通電するようにプログラムす ることができる。 使用者は、 再生時刻設定スィツチ 8 0を押すことにより、 例え ば 1時間単位で再生時刻をィンクレメント或いはデクレメントすることができる < また、 使用者が手動再生スィツチ 8 2を押した時にもヒーター 1 6に通電される ようにプログラムすることができる。 マイクロプロセッサ 8 6は、 ヒーター 1 6 への通電開始後はサーミスタ 7 6の出力を監視することにより活性炭容器 4 6の 中央上げ底部の溫度を監視し、 この温度に応じて S S R 8 8を後述するように制 御する。
家庭で使用する場合には、 この浄水器 1 0は、 例えば、 台所のカウンターの上 に載置するか流し下の空間に設置することができる。 入口ホース 3 4は水道管に 接続し、 出口ホース 6 8は蛇口に接統することができる。 浄水器の使用時には、 水道管からの水道水は、 先ず、 沪過段 1 2のフィルター 3 2の浐過作用により予 備処理され、 次に、 吸着段 1 4の活性 素繊維 5 4の化学吸着作用と物理吸着作 用により浄化される。 浄化された水は飲用や料理に供することができる。 次に、 第 1 7図のフローチャートを併せ参照しながら、 活性炭素繊維 5 4の再 生について説明する。 設定された時刻が到来するか手動再生スィツチ 8 2が押さ れると、 マイクロプロセッサ 8 6は S S R 8 8を励磁し、 ヒーター 1 6への通電 を開始させる。 同時に、 液晶表示パネル 7 8には "再生中" 'または "準備中" な どの使用禁止表示がなされ、 使用者が誤って浄水器を使用するのを防止する。 ヒーター 1 6に通電が行われると、 活性炭容器 4 6の底部は加熱され、 容器 4 6内に滞留する水は熱水となり、 やがて沸騰するであろう。 発生した水蒸気は、 マ二ホールド 5 8の出口 6 4からサーモスタツト ·バルブ 6 6に向かって上昇す る。 サーモスタット ·バルブ 6 6の温度が 8 0。C以上になると、 サーモスタット バルブ 6 6は第 1 5図において左方に移動し、 水蒸気が蒸気放出口 7 0から大気 に放出されるのを可能にする。
活性炭容器 4 6内に滞留する水が沸騰するに伴い、 活性炭素繊維 5 4は煮沸滅 菌されると共に、 活性炭素繊維に吸着された塩素や、 沸点が水の沸点より低いト リハロメタンは熱水と水蒸気の作用により容易に脱着され、 活性炭素繊維が再生 される。
ヒーダー 1 6への通電は、 サーミスタ 7 6により検出される容器 4 6の中央上 げ底部の温度が 1 2 CTCを超えるまで継続される。 容器 4 6内の滞留水が蒸発す るにつれて滞留水の水位が下がるが、 容器 4 6は上げ底になっているので、 蒸発 と水位低下に伴い先ずこの中央上げ底部が滞留水から露出し、 他の部分より早く 温度が上昇する。 このため、 サーミスタ 7 6により検出される中央上げ底部の温 度が 1 2 CTCになった時でも、 容器 4 6の底部には少量の滞留水が残留している, 従って、 サーミスタ 7 6により 1 2 0 °Cの温度が検出された時にヒーターへの通 電を終了させることにより、 活性炭素繊維の過熱を防止し、 活性炭素繊維の焼損 と熟劣化を防止することができる。
容器 4 6の中央上げ底部の温度が 1 2 TCを超えると、 マイクロプロセッサ 8 6はヒーター 1 6への通電を終了させる。 活性炭カートリッジ 4 4が放熱により 冷却され、 サーモスタット ·バルブ 6 6の雰囲気温度が 8 CTC以下になると、 サ 一モスタツト ■バルブ 6 6はマ二ホールド 5 8の出口 6 4をホース 6 8に接続し、 浄水器の使用に備える。 容器 4 6が更に放熱冷却し、 サーミスタ 7 6の出力によ り容器底部の温度が 4 CTCに低下したことが検出されると、 マイクロプロセッサ 8 6は液晶表示パネル 7 8に "使用可能" 又は "READY" と表示させ、 浄水器が 使用可能な状態にあることを使用者に知らせる。
このように、 本発明によれば、 トリハロメタンに比較して大きな分子量と高い 沸点 (沸点 2 0 7〜2 5 4 eC ) を有し大気圧下の通常の煮沸では活性炭から脱着 することが不可能な 2— M I Bやジォスミンのような物質にターゲットを絞って、 約 1 . 8〜 3 . 0 n mの中心細孔直径を有する活性炭素繊維が使用されるので、 こ れらの物質に対する活性炭素繊維の充分な吸着容量 (細孔容積) が最初から確保 される。 従って、 これらの物質を長期閭にわたって活性炭素繊維に選択的に吸着 させることができる。 更に、 活性炭素繊維の煮沸,加熱により活性炭素繊維は随 時再生され、 トリハロメタンに対する吸着性能が長期間にわたって維持される。 このように、 活性炭素繊維の有する大きな分子量の物質に対する大容量の選択的 吸着性能とトリハロメタンに対する一時的吸着性能がフルに利用されるので、 限 られた量の活性炭素繊維によりトリハロメタンと発臭物質の双方を長期間にわたつ て効果的に除去することができ、 活性炭素繊維の寿命を著しく延長させることが できる。 従来技術において活性炭素繊維を半年〜 1年で交換しなければならなかつ たのに対し、 本発明によれば话性炭素繊維寿命を 4〜 7年にまで延長させること ができょう。
また、 このようにトリハロメタンと発臭物質の双方に関する活性炭素繊維の寿 命が延長するので、 浄水器を小型でコンパクトにすることができ、 或いは浄水処 理に要するランニングコストを著しく低減することができる。
以上には本発明の特定の実施例について説明したが、 本発明はこれに限定され るものではなく、 種々の修正や変更を加えることができる。 特に、 本発明は、 中 心細孔直径 1 . 8〜3 . 0 n mの活性炭素繊維に加えて、 中心細孔直径のより小さ な或いはより大きな少量の活性炭素繊維や粒状活性炭を使用することを排除する ものではない。 また、 本発明の目的を達成するためには、 フィルター 3 2を備え た沪過段 1 2は不可欠ではなく、 フィルタ一は省略することができる。 さらに、 活性炭素繊維の再生に当り発生した水蒸気は浄水器の蒸気放出口 7 0から大気中 に放出されるものとして説明したが、 ドレーン配管により流しやトラップなどに 排出することもできる。

Claims

請求の範囲
1 . 水蒸気吸着法による測定で約 1 . 8〜3 . 0 n mの中心細孔直径を有する 活性炭素繊維に水道水を接触させて、 水道水中に溶存する水の沸点より低い沸点 を有する有害な第 1の物質と水の沸点より高い沸点を有する発臭性の第 2の物質 を活性炭素繊維に吸着させて水道水から除去する工程と、
斯く物質を吸着した活性炭素繊維を前記第 1物質の沸点以上、 かつ、 前記第 2 物質の沸点以下の温度で加熱し、 活性炭素繊維に吸着された前記第 1物質を活性 炭素繊維から脱着することにより、 前記第 1物質に対する活性炭素繊維の吸着性 能を回復させるベく活性炭素繊維を再生する工程、
とを繰り返すことを特徴とする水道水の浄化方法。
2 . 水蒸気吸着法による測定で約 1 . 8〜3 . 0 n mの中心細孔直径を有する 活性炭素繊維に水道水を接触させて、 水道水中に溶存する水の沸点より低い沸点 を有する有機塩素化合物と水の沸点より高い沸点を有する水源微生物由来の発臭 物質を活性炭素繊維に吸着させて水道水から除去する工程と、
前記工程で使用した活性炭素繊維を水の沸点以上、 かつ、 前記発臭物質の沸点 以下の温度で加熱し、 活性炭素繊維に吸着された前記有機塩素化合物を活性炭素 織維から脱着することにより、 前記有機塩素化合物に対する活性炭素繊維の吸着 性能を回復させるベく活性炭素繊維を再生する工程、
とを繰り返すことを特徴とする水道水の浄化方法。
3 . 水の沸点より高い沸点を有する分子量約 1ら 0〜1 9 0の有機発臭物質 を選択的に吸着するに適合した中心細孔直径を有する活性炭素繊維に水道水を接 触させることにより、 水道水中に溶存する前記有機発臭物質を活性炭素繊維に選 択的に吸着させると共にトリハロメタンを活性炭素繊維に一時的に吸着させて除 去する工程と、
斯く有機発臭物質とトリハロメタンを吸着した活性炭素繊維を水の沸点以上、 かつ、 前記有機発臭物質の沸点以下の温度で加熱し、 活性炭素繊維に吸着された 卜リハロメタンを活性炭素繊維から脱着することにより、 トリハロメタンに対す る话性炭素繊維の吸着性能を回復させるベく活性炭素繊維を再生する工程、 とを繰り返すことを特徴とする水道水の浄化方法。
4 . 前記再生工程において 1 0 0〜1 2 0での温度で:^性炭素繊維を加熱す ることを特徴とする請求項 1から 3のいづれかに基づく浄化方法。
5 . 活性炭素繊維の中心細孔直径は約 2 . 0〜2 . 7 n mである請求項 1から 4のいづれかに基づく浄化方法。
6 . 活性炭素繊維に接 ¾ (させる水道水を予め沪過することを特徴とする請求 項 1から 5の t、づれかに基づく浄化方法。
7 . 水蒸気吸着法による測定で約 2 . 0〜2 . 7 n mの中心細孔直径を有する 话性炭素繊維に水道水を接触させて、 水道水中に溶存する水の沸点より低い沸点 を有する有害な第 1の物質と水の沸点より高い沸点を有する発臭性の第 2の物質 を活性炭素繊維に吸着させて水道水から除去する工程と、
斯く物質を吸着した活性炭素繊維を前記第 1物質の沸点以上、 かつ、 前記第 2 物質の沸点以下の温度で加熱し、 活性炭素繊維に吸着された前記第 1物質を活性 炭素繊維から脱着することにより、 前記第 1物質に対する活性炭素繊維の吸着性 能を回復させるベく活性炭素繊維を再生する工程、
とを繰り返すことを特徴とする水道水の浄化方法。
8 . 水蒸気吸着法による測定で約 1 . 8〜3 . 0 n mの中心細孔直径を有する 活性炭素繊維を充填した処理槽と、 前記活性炭素繊維を加熱する加熱手段と、 前 記加熱手段を制御する制御手段とを備え、
使用時には前記処理槽に水道水を通水することにより、 水道水中に溶存し水の 沸点より低い沸点を有する'第 1の物質と水の沸点より高い沸点を有する第 2の物 質を活性炭素繊維に吸着させ、
非使用時には前記制御手段は前記加熱手段を作動させて前記第 1物質の沸点以 上で第 2物質の沸点以下の温度に活性炭素繊維を加熱することにより、 活性炭素 繊維に吸着された前記第 1物質を活性炭素繊維から脱着させ、 第 1物質に対する 吸着性能について活性炭素繊維を再生するようになっていることを特徴とする浄 水器。
9 - 前記活性炭素繊維の中心細孔直径は約 2 . 0〜2 . 7 n mである請求項 8 に基づく浄水器。
1 0 . 水道水を沪過する手段を前記処理槽の上流に配置し、 活性炭素繊維へ の粒子成分の負荷を軽減するようにしたことを特徴とする請求項 8又は 9に基づ く浄水器。
1 1 . 水蒸気吸着法による測定で約 2 . 0〜2 . 7 ri mの中心細孔直径を有す る活性炭素繊維を充填した処理糟と、 前記活性炭素繊維を加熟する加熱手段と、 前記加熱手段を制御する制御手段とを備え、
使用時には前記処理糟に水道水を通水することにより、 水道水中に溶存し水の 沸点より低い沸点を有する第 1の物質と水の沸点より高い沸点を有する第 2の物 質を活性炭素繊維に吸着させ、
非使用時には前記制御手段は前記加熱手段を作動させて前記第 1物質の沸点以 上で第 2物質の沸点以下の温度に活性炭素繊維を加熱することにより、 活性炭素 繊維に吸着された前記第 1物質を活性炭素繊維から脱着させ、 第 1物質に対する 吸着性能について活性炭素繊維を再生するようになっていることを特徴とする浄 水器。
1 2 . 水を流通させるようになった処理槽と、 水蒸気吸着法による測定で約 2 . 0〜3 . 0 n mの中心細孔直径を有し前記処理糟に充填された活性炭素繊維と、 前記処理槽を加熱するための加熱手段と、 前記加熱手段を制御する制御手段とを 備え、
使用時には前記処理槽に水道水を通水することにより、 水道水中に溶存するト リハロメタンと有機発臭物質を活性炭素繊維に吸着させ、
前記制御手段は非使用時に前記加熱手段を作動させて 1 0 ο〜ι 2 crcの温度 に活性炭素繊維を加熱することにより、 活性炭素繊維に吸着されたトリハロメタ ンを活性炭素繊維から脱着させ、 トリハロメタンに対する吸着性能について活性 炭素繊維を再生することを特徴とする浄水器。
PCT/JP1994/000518 1993-03-31 1994-03-30 Method and apparatus for purifying water WO1995000442A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP94910566A EP0657388A4 (en) 1993-03-31 1994-03-30 METHOD AND DEVICE FOR PURIFYING WATER.
KR1019940704221A KR100298977B1 (ko) 1993-03-31 1994-03-30 물의정화방법및장치
JP52469194A JP3458380B2 (ja) 1993-03-31 1994-03-30 水の浄化方法および装置
US08/338,493 US5607595A (en) 1993-03-31 1994-03-30 Process for purifying water
AU62918/94A AU6291894A (en) 1993-03-31 1994-03-30 Method and apparatus for purifying water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/98866 1993-03-31
JP9886693 1993-03-31

Publications (1)

Publication Number Publication Date
WO1995000442A1 true WO1995000442A1 (en) 1995-01-05

Family

ID=14231122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000518 WO1995000442A1 (en) 1993-03-31 1994-03-30 Method and apparatus for purifying water

Country Status (8)

Country Link
US (1) US5607595A (ja)
EP (1) EP0657388A4 (ja)
JP (1) JP3458380B2 (ja)
KR (1) KR100298977B1 (ja)
AU (1) AU6291894A (ja)
CA (1) CA2136181A1 (ja)
TW (1) TW309505B (ja)
WO (1) WO1995000442A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066940A1 (en) * 1996-06-06 1999-12-29 Nouveau Technologies, Inc. Use of saponins for the treatment of mucosae
WO2009154290A1 (ja) * 2008-06-16 2009-12-23 株式会社キャタラー ガス成分調整用活性炭

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0182567B1 (ko) * 1996-04-02 1999-04-15 김광호 정수기
JPH09328308A (ja) * 1996-04-10 1997-12-22 Mitsubishi Chem Corp 活性炭及びその製造方法、並びにこれを用いたキャパシタ
US6121179A (en) * 1998-01-08 2000-09-19 Chematur Engineering Ab Supercritical treatment of adsorbent materials
US6063287A (en) * 1998-09-17 2000-05-16 Affiniti, Llc Removal of algae-associated odorants from fresh water
IL146308A0 (en) * 1999-05-20 2002-07-25 Procter & Gamble Method for removal of nano-sized pathogens from liquids
US7163625B1 (en) * 1999-12-16 2007-01-16 Kimberly-Clark Worldwide, Inc. Filtration device
US20020030008A1 (en) * 2000-03-31 2002-03-14 Kimberly-Clark Worldwide, Inc. Multi-component filter design
US6581375B2 (en) 2000-12-22 2003-06-24 Lexington Carbon Company Llc Apparatus and method for the recovery and purification of water from the exhaust gases of internal combustion engines
US7614508B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products Inc. Water filter materials, water filters and kits containing silver coated particles and processes for using the same
US20050279696A1 (en) 2001-08-23 2005-12-22 Bahm Jeannine R Water filter materials and water filters containing a mixture of microporous and mesoporous carbon particles
KR100777951B1 (ko) 2001-08-23 2007-11-28 더 프록터 앤드 갬블 캄파니 정수 필터 재료, 대응하는 정수 필터 및 그의 사용 방법
US7615152B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products, Inc. Water filter device
US7614507B2 (en) 2001-08-23 2009-11-10 Pur Water Purification Products Inc. Water filter materials, water filters and kits containing particles coated with cationic polymer and processes for using the same
US7000409B2 (en) * 2003-05-23 2006-02-21 Marit Jagtoyen Mazzetti Use of flow through capacitor in the recovery and purification of water from exhaust gases of internal combustion engines
KR100697301B1 (ko) 2005-05-25 2007-03-20 이재옥 수도물의 염소성분 제거장치
WO2007109774A2 (en) * 2006-03-22 2007-09-27 3M Innovative Properties Company Filter media
CN107983318B (zh) * 2017-12-28 2020-07-07 三峡大学 一种吸附土霉异味的吸附剂制备及其在吸附和降低淡水鱼体内土霉异味的应用
US11110397B2 (en) 2018-06-04 2021-09-07 Pure Berkey, Llc Device and method for water priming microporous-carbon water filters using negative pressure
KR20220095538A (ko) 2020-12-30 2022-07-07 최순범 키토산섬유를 이용한 무전원 중력방식 정수기용 필터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180228A (ja) * 1982-04-13 1983-10-21 Unitika Ltd 吸着材及びその製造方法
JPS60225641A (ja) * 1984-04-25 1985-11-09 Zousui Sokushin Center 繊維状活性炭の再生方法
JPS6142394A (ja) * 1984-08-07 1986-02-28 Zousui Sokushin Center 水処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909402A (en) * 1972-04-13 1975-09-30 Gartner Research & Dev Co Water purification device
JPS5123817B2 (ja) * 1972-11-09 1976-07-20
JPS5711629A (en) * 1980-06-25 1982-01-21 Matsushita Refrigeration Tablewear washing machine
JPS58146595A (ja) * 1982-02-25 1983-09-01 Satoshi Omura マクロライド系抗生物質
JPS6362591A (ja) * 1986-09-03 1988-03-18 Matsushita Electric Ind Co Ltd 電気浄水器
JPH0476751A (ja) * 1990-07-18 1992-03-11 Nec Corp 通信制御装置の通信管理方式
JPH0557276A (ja) * 1991-03-16 1993-03-09 Nippondenso Co Ltd 浄水装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180228A (ja) * 1982-04-13 1983-10-21 Unitika Ltd 吸着材及びその製造方法
JPS60225641A (ja) * 1984-04-25 1985-11-09 Zousui Sokushin Center 繊維状活性炭の再生方法
JPS6142394A (ja) * 1984-08-07 1986-02-28 Zousui Sokushin Center 水処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0657388A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066940A1 (en) * 1996-06-06 1999-12-29 Nouveau Technologies, Inc. Use of saponins for the treatment of mucosae
WO2009154290A1 (ja) * 2008-06-16 2009-12-23 株式会社キャタラー ガス成分調整用活性炭
JP2009298668A (ja) * 2008-06-16 2009-12-24 Cataler Corp ガス成分調整用活性炭

Also Published As

Publication number Publication date
JP3458380B2 (ja) 2003-10-20
TW309505B (ja) 1997-07-01
AU6291894A (en) 1995-01-17
EP0657388A4 (en) 1996-05-01
US5607595A (en) 1997-03-04
EP0657388A1 (en) 1995-06-14
CA2136181A1 (en) 1994-10-01
KR950701601A (ko) 1995-04-28
KR100298977B1 (ko) 2001-10-22

Similar Documents

Publication Publication Date Title
WO1995000442A1 (en) Method and apparatus for purifying water
JP2006314963A (ja) 浄水器
JP3112134B2 (ja) 活性炭再生式浄水器
JP3239537B2 (ja) 浄水器
JP3112133B2 (ja) 活性炭再生式浄水器
JPH0975923A (ja) 浄水器
JP3453866B2 (ja) 活性炭再生式浄水器
JP3112140B2 (ja) 活性炭再生式浄水器
JPH0810756A (ja) 浄水器用再生式活性炭カートリッジの製造方法
JP3055750B2 (ja) 活性炭再生式浄水器
JP3122499U (ja) 浄水器
JP2996073B2 (ja) 活性炭再生式浄水器
JPH07328606A (ja) 家庭用水道水集中浄化装置
JP3443955B2 (ja) 活性炭再生式浄水器
JP2800668B2 (ja) 給湯装置付き浄水器
JP3112136B2 (ja) 活性炭再生式浄水器
JP3112135B2 (ja) 活性炭再生式浄水器
JP3443956B2 (ja) 活性炭再生式浄水器
JP3112139B2 (ja) 活性炭再生式浄水器
JPH06343953A (ja) 浄水器
JPH0796276A (ja) 浄水器
JPH105748A (ja) 活性炭再生式浄水器
JP2988219B2 (ja) 活性炭再生式浄水器
JPH0819777A (ja) 活性炭再生式浄水器
JPH0810755A (ja) 活性炭再生式浄水器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2136181

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019940704221

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1994910566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08338493

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR BY CA CZ FI HU JP KR KZ LK MG MN MW NO NZ PL RO RU SD SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994910566

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1994910566

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994910566

Country of ref document: EP