WO1994018293A1 - Feste wasch-, spül- und reinigungsmittel - Google Patents

Feste wasch-, spül- und reinigungsmittel Download PDF

Info

Publication number
WO1994018293A1
WO1994018293A1 PCT/EP1994/000208 EP9400208W WO9418293A1 WO 1994018293 A1 WO1994018293 A1 WO 1994018293A1 EP 9400208 W EP9400208 W EP 9400208W WO 9418293 A1 WO9418293 A1 WO 9418293A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
average molecular
nonionic surfactants
sulfates
ether
Prior art date
Application number
PCT/EP1994/000208
Other languages
English (en)
French (fr)
Inventor
Karl Schmid
Andreas Syldath
Ditmar Kischkel
Thomas Krohnen
Michael Neuss
Michael Langen
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6479622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1994018293(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP94906151A priority Critical patent/EP0682691B2/de
Priority to JP6517588A priority patent/JPH08506367A/ja
Priority to DE59402383T priority patent/DE59402383D1/de
Priority to KR1019950703105A priority patent/KR960700333A/ko
Publication of WO1994018293A1 publication Critical patent/WO1994018293A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/10Amino carboxylic acids; Imino carboxylic acids; Fatty acid condensates thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/126Acylisethionates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/16Sulfonic acids or sulfuric acid esters; Salts thereof derived from divalent or polyvalent alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/34Derivatives of acids of phosphorus
    • C11D1/345Phosphates or phosphites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups

Definitions

  • the invention relates to new solid detergents, dishwashing detergents and cleaning agents, a process for their preparation in which mixtures of anionic and nonionic surfactants are mixed with selected polymeric solidifying agents and the use of the mixtures of anionic and nonionic surfactants and polymeric solidifying agents as raw materials for the production of solid washing and rinsing agents and cleaning agents which are resistant to bleeding.
  • Solid washing, rinsing and cleaning agents usually come onto the market in the form of powders, granules or extrudates.
  • surface-active constituents they usually contain combinations of anionic and nonionic surfactants, which ideally complement each other in terms of cleaning effect and dirt-carrying capacity [Chemie iuZeit, 2. ⁇ 292 (1992)]. While the anionic surfactants were present in excess in the past, there is now a need for recipes with an increased content of non- ionic surfactants. This includes in particular those formulations in which the proportion of nonionic surfactants compared to that of anionic surfactants 100 to
  • Solid detergents, dishwashing detergents and cleaning agents of this type not only show excellent performance, but also advantages in compacting for the production of heavy powders with bulk densities of 600 to 900 g / 1. It is disadvantageous, however, that the anionic surfactants, together with the other solid formulation components, have only a limited capacity to "absorb" the mostly liquid nonionic surfactants and to bind them permanently. Especially in the case of the desired formulations with a particularly high nonionic surfactant content, there is therefore a risk of "bleeding out", ie. H. the liquid nonionic surfactants are gradually released from the present solid mixture. The result is a decrease in the washing performance of the recipe and a gradual greasing of the standard cardboard packaging; the latter can also be used as an indication of the degree of bleeding or the resistance to bleeding.
  • solid detergents with a high bulk density and improved solubility are obtained by mixing mixtures of anionic and nonionic surfactants with a polyethylene glycol ether Molecular weight in the range of 200 to 12,000, preferably 200 to 600, and then drying and / or solidifying.
  • the rate of dissolution of the resulting solid detergents is still unsatisfactory.
  • the presence of the large amounts of polymer required is not desirable.
  • spray-dried detergent compositions are disclosed in general form which, in addition to anionic surfactants, contain nonionic surfactants, polyacrylates and polyethylene glycol ethers with an average molecular weight in the range from 1,000 to 20,000.
  • the teaching of this document is that the dispersibility of anionic surfactants can be improved by adding nonionic surfactants, polyethylene glycol ethers and polyacrylates to them.
  • the PEGs actually used are of low molecular weight and preferably have molecular weights in the range from 4,000 to 20,000 (see page 4, section 2).
  • the only exemplary embodiment describes a mixture comprising alkylbenzenesulfonate and fatty alcohol sulfate, to which a Ci2 / i3-oxoalcohol-6.5 EO adduct, sodium polyacrylate and polyethylene glycol with a molecular weight of approximately 8,000 are added.
  • the weight ratio between nonionic surfactant and PEG is 1: 1.
  • DE-OS 21 24 526 relates to detergent and cleaning agent mixtures with controlled foam behavior. According to Example 6, compositions are disclosed which contain tallow alcohol sulfate, alkylbenzenesulfonate and polyethylene glycol with a molecular weight of approximately 20,000.
  • the object of the invention was to provide solid washing, rinsing and cleaning agents with an increased content of nonionic surfactants which are permanently resistant to the bleeding out of the nonionic surfactants.
  • the invention relates to solid washing, rinsing and cleaning agents containing mixtures of
  • anionic and nonionic surfactants in a weight ratio of 9: 1 to 1: 9, preferably 1: 1 to 1: 5 and b) 1 to 50% by weight, based on the nonionic surfactants, of polymeric solidifying agents selected from the group pe, which is formed by
  • polyethylene glycol ethers with an average molecular weight of 12,000 to 500,000
  • esters of dicarboxylic acids with an average molecular weight of 400 to 20,000
  • transesterification products of dialkyl carbonate with polyethylene glycol ethers with an average molecular weight of 400 to 20,000
  • oligosaccharides or polysaccharides with a degree of condensation of 5 to 1000.
  • the invention includes the knowledge that there is a critical limit of 12,000 with regard to the suitability of polyethylene glycol ethers as polymeric hardening agents with regard to the molecular weight.
  • the desired effect the significant improvement in the resistance to bleeding, is not achieved below this range.
  • Another object of the invention relates to a process for the production of solid washing, rinsing and cleaning agents, in which mixtures of anionic and nonionic surfactants in a weight ratio of 9: 1 to 1: 9, preferably 1: 1 to 1: 5 with 1 to 50% by weight, based on the nonionic surfactants, of polymeric strengthening agents which are selected from the group formed by bl) polyethylene glycol ethers with an average molecular weight of 12,000 to 500,000, b2) esters of dicarboxylic acids with an average molecular weight of 400 to 20,000, b3) transesterification products of dialkyl carbonate with polyethylene glycol ethers with an average molecular weight of 400 to 20,000 and b4) Oligosaccharides or polysaccharides with a degree of condensation of 5 to 1000.
  • polymeric strengthening agents which are selected from the group formed by bl) polyethylene glycol ethers with an average molecular weight of 12,000 to 500,000, b2) esters of dicarboxy
  • the anionic surfactants can be selected from the group consisting of alkylbenzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, o-methyl ester sulfonates, sulfo fatty acids, fatty alcohol sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, sulfate ethersulfate sulfates, Fatty acid amide (ether) sulfates, sulfosuccinates, sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids, isethionates, sarcosinates, taurides, alkyl oligoglucoside sulfates and alkyl (ether) phosphates.
  • fatty alcohol sulfates of the formula (I) is preferred among the anionic surfactants,
  • R 1 is a linear or branched alkyl and / or alkenyl radical having 12 to 22 carbon atoms and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammoniamine.
  • R 1 in formula (I) is an alkyl radical having 16 to 18 carbon atoms and X is sodium.
  • nonionic surfactants are fatty alcohol polyglycol ethers of the formula (II)
  • n stands for 0 or numbers from 1 to 3 and for numbers from 1 to 10.
  • Typical examples are addition products of on average 1 to 3 mol propylene oxide and / or 1 to 10, preferably 2 to 7 mol ethylene oxide to capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, Isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, erucyl alcohol and behenyl alcohol.
  • the adducts can have a conventional or even narrow homolog distribution and, due to the production process, can also contain free fatty alcohol. It is particularly preferred to use addition products of an average of 2 to 7 mol of ethylene oxide with technical C12 14 or Ci2 / ⁇ g coconut fatty alcohol cuts.
  • nonionic surfactants are also alkyl oligoglycosides of the formula (III).
  • R ⁇ is an alkyl radical having 6 to 22 carbon atoms
  • G is a sugar radical having 5 or 6 carbon atoms
  • p is a number from 1 to 10.
  • Alkyl oligoglycosides are known substances that can be obtained by the relevant methods of preparative organic chemistry. As representative of the extensive literature, reference is made here to the documents EP-A1-0 301 298 and WO 90/3977 (Henkel).
  • the alkyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl oligoglycosides are thus alkyl oligoglucosides.
  • Alkyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the anionic and nonionic surfactants can be used in a weight ratio of 1: 1 to 1: 5, preferably 1: 1 to 1: 2.
  • Polyethylene glycol ethers with an average molecular weight of 12,000 to 500,000 are suitable as polymeric solidifying agents. Typical examples are polyethylene glycols with an average molecular weight of 12,000 to 100,000. In this context, the use of PEG 12,000 to PEG 35,000 has proven to be particularly advantageous.
  • y stands for 0 or numbers from 1 to 12, with polyethylene glycol ethers which have an average molecular weight of 400 to 20,000.
  • Typical examples are esters and polyesters of oxalic acid, succinic acid and adipic acid with PEG 400, PEG 5000 and PEG 12,000. Products of this type are characterized by a particularly advantageous biodegradability.
  • b3) Another group of suitable polymeric strengthening agents are transesterification products of dialkyl carbonate with polyethylene glycol ethers, which have an average molecular weight of 400 to 20,000.
  • Typical examples are transesterification products of dimethyl carbonate with PEG 400, PEG 5000 and PEG 12,000. The products are usually mono / di-ester mixtures which - according to statistics - can still contain portions of the alkyl radicals of the dialkyl carbonate used as the starting material.
  • oligosaccharides or polysaccharides with a degree of condensation of 5 to 1000 are suitable as further polymeric solidifying agents. It is preferably polyglucose or polysorbitol.
  • the polymeric strengthening agents can be added to the nonionic surfactants in amounts of 1 to 50, preferably 2 to 30% by weight, based on the nonionic surfactants. Although it is fundamentally possible to produce ternary mixtures of anionic surfactants, nonionic surfactants and polymeric strengthening agents, it is i. a. It is more advantageous first to add the polymeric solidifying agents to the non-ionic surfactants and to further process this preformed mixture after hardening with the anionic surfactants.
  • the polymeric solidifying agents selected can be added to the nonionic surfactants, intimate mixing with stirring or kneading having to be ensured, if necessary with heating.
  • the nonionic surfactants is a polyglycol ether and the polymeric solidifying agent is a PEG
  • the mixture can also be generated in situ by alkoxylating a mixture of fatty alcohol and PEG together.
  • the anionic surfactants can be used in the form of aqueous pastes or dry powders and then treated with the solidified nonionic surfactants.
  • Anionic surfactants are usually reacted by reacting corresponding starting materials with sulfur trioxide or chlorosulfonic acid to give acidic half-esters of sulfuric acid or sulfonic acids, which are then neutralized with aqueous bases and optionally hydrolyzed.
  • the resulting aqueous pastes with a solids content of 5 to 65% by weight, based on the paste, are suitable starting materials for further processing in the sense of the invention.
  • the aqueous pastes can also be used as spray-dried powders, as they are accessible by conventional tower powder processes.
  • a variant is not to use the aqueous, neutralized products of a spray subject to drying, but to spray the acid sulfation products together with aqueous bases and thus to neutralize and dry in one step.
  • anionic surfactants in the form of spray-neutralized as well as spray-dried or steam-dried powder are suitable as starting materials.
  • spray drying or spray neutralization of surfactants reference is made to ROEMPP Chemistry Lexicon, 9th edition, Thie e-Verlag, Stuttgart, 1992, pp. 259/4260.
  • the preferred starting material is tallow alcohol sulfate in the form of aqueous pastes with a solids content of 5 to 65, preferably 50 to 65% by weight, or spray-neutralized, spray or steam-dried powder.
  • the new solid washing, rinsing and cleaning agents can be produced in a variety of ways.
  • a particularly simple embodiment of the method consists in presenting the anionic surfactant in powder form and intimately mixing it with the required amount of the solidified nonionic surfactant.
  • Components for this process such as, for example, paddle mixers from Lödige or in particular spray mixers from Schugi, are advantageous, in which the anionic surfactant is placed in the mixing chamber and the solidified nonionic surfactants are sprayed on. It is also possible to carry out the drying of the anionic surfactant pastes and the mixing simultaneously in a fluidized bed dryer. Dry, easily soluble powders are obtained which - if required - can be charged with other common detergent additives and processed, for example, to detergent extrudates.
  • anionic surfactants to so-called SKET granulation.
  • SKET granulation This is to be understood as granulation with simultaneous drying, which is preferably carried out batchwise or continuously in the fluidized bed.
  • the aqueous pastes of the anionic surfactants and the solidified nonionic surfactants can be introduced into the fluidized bed simultaneously or successively via one or more nozzles.
  • Fluidized bed apparatuses which are preferably used have base plates with dimensions of 0.4 to 5 m.
  • the SKET granulation is preferably carried out at fluidizing air speeds in the range from 1 to 8 m / s.
  • the granules are discharged from the fluidized bed preferably via a size classification of the granules.
  • the classification can take place, for example, by means of a screening device or by means of an opposed air flow (classifier air) which is regulated in such a way that only particles of a certain particle size are removed from the fluidized bed and smaller particles are retained in the fluidized bed.
  • the inflowing air is usually composed of the heated or unheated classifier air and the heated soil air.
  • the soil air temperature is between 80 and 400, preferably 90 and 350 ° C.
  • a starting mass for example a SKET granulate from an earlier test batch, is advantageously introduced at the beginning of the SKET granulation.
  • the water evaporates from the anionic surfactant paste, producing dried to dried germs that coexist further amounts of anionic surfactant and solidified nonionic surfactant are encased, granulated and again dried simultaneously.
  • the anionic surfactants are mixed in powder form with the solidified nonionic surfactants and the mixture is homogenized and solidified in a screw press.
  • the extrusion takes place via a perforated disk, so that press strands are formed which can be mechanically comminuted by known methods to extrudates or needles of the desired shape and dimension. Extrudates of this form show a particularly high dissolving speed and very good washing-up behavior in the washing machine.
  • the new solid washing, rinsing and cleaning agents can contain further customary auxiliaries and additives, for example zeolites, phosphates, phosphonates, polycarboxylates, water glass, soda and borates, that can be added to them before, during or after solidification.
  • auxiliaries and additives for example zeolites, phosphates, phosphonates, polycarboxylates, water glass, soda and borates, that can be added to them before, during or after solidification.
  • the solid washing, rinsing and cleaning agents according to the invention based on anionic and nonionic surfactants and polymeric strengthening agents are stable against the bleeding out of the nonionic surfactants and have excellent detergent properties.
  • Another object of the invention therefore relates to the use of mixtures containing
  • anionic and nonionic surfactants in a weight ratio of 9: 1 to 1: 9, preferably 1: 1 to 1: 5 and b) the selected polymeric solidifying agents described above
  • a universal detergent formulation with a high content of non-ionic surfactants and without or with polymeric solidifying agents with a composition according to Table 1 was extruded over a screw roller and pressed into extrusions via a perforated disc (diameter of the openings: 0.9 mm) works that have been continuously crushed to extrudates with a grain size of 0.9 mm.
  • Tab. 1 Composition of the detergent formulations, percentages as% by weight auxiliaries ad 100%.

Abstract

Feste Wasch-, Spül- und Reinigungsmittel, enthaltend a) Mischungen von anionischen und nichtionischen Tensiden im Gewichtsverhältnis 9:1 bis 1:9 sowie b) 1 bis 50 Gew.-% - bezogen auf die nichtionischen Tenside - ausgewählte polymere Verfestigungsmittel, sind gegen das Ausbluten der nichtionischen Tenside beständig. Das Durchfetten enthaltender Kartonagen wird zuverlässig verhindert.

Description

Feste Wasch-, Spül- und Reinigungsmittel
Gebiet der Erfindung
Die Erfindung betrifft neue feste Wasch-, Spül- und Reini¬ gungsmittel, ein Verfahren zu ihrer Herstellung, bei dem man Mischungen aus anionischen und nichtionischen Tensiden mit ausgewählten polymeren Verfestigungsmitteln versetzt sowie die Verwendung der Mischungen .aus anionischen und nichtioni¬ schen Tensiden sowie den polymeren Verfestigungsmitteln als Rohstoffe zur Herstellung fester und gegen Ausbluten bestän¬ diger Wasch-, Spül- und Reinigungsmittel.
Stand der Technik
Feste Wasch-, Spül- und Reinigungsmittel gelangen üblicher¬ weise in Form von Pulvern, Granulaten oder Extrudaten auf den Markt. Als oberflächenaktive Bestandteile enthalten sie in der Regel Kombinationen aus anionischen und nichtionischen Tensiden, die sich im Hinblick auf Reinigungswirkung und Schmutztragevermögen ideal ergänzen [Chemie i.u.Zeit, 2 .ι 292 (1992)]. Während in der Vergangenheit die anionischen Tenside im Überschuß enthalten waren, besteht heute jedoch ein Be¬ dürfnis nach Rezepturen mit einem erhöhten Gehalt an nicht- ionischen Tensiden. Hierunter sind insbesondere solche Rezep¬ turen zu verstehen, bei denen der Anteil der nichtionischen Tenside im Vergleich zu dem der anionischen Tenside 100 bis
200 Gew.-% ausmacht. Während bei den anionischen Tensiden bislang Alkylbenzolsulfonate und zunehmend Fettalkoholsulfate im Vordergrund stehen, geht der Trend bei den nichtionischen Tensiden hin zu niedrig alkoxylierten Fettalkoholpolyglycol- ethern und Alkyloligoglucosiden [Seifen-Öle-Fette-Wachse, 117, 554 (1991)].
Feste Wasch-, Spül- und Reinigungsmittel dieser Art zeigen nicht nur ausgezeichnete anwendungstechnische Leistungen, sondern auch Vorteile bei der Kompaktierung zur Herstellung von Schwerpulvern mit Schüttgewichten von 600 bis 900 g/1. Von Nachteil ist jedoch, daß die anionischen Tenside zusammen mit den übrigen festen Rezepturbestandteilen nur eine be¬ grenzte Kapazität besitzen, die meist flüssigen nichtioni¬ schen Tenside "aufzusaugen" und dauerhaft zu binden. Gerade bei den erwünschten Rezepturen mit besonders hohem Niotensid- gehalt besteht somit die Gefahr des "Ausblutens", d. h. die flüssigen nichtionischen Tensiden werden von dem vorliegenden Feststoffgemisch allmählich freigesetzt. Die Folge ist eine Abnahme der Waschleistung der Rezeptur und ein allmähliches Durchfetten der handelsüblichen Kartonverpackungen; letzteres kann im übrigen als Indiz für den Grad des Ausblutens oder der Ausblutbeständigkeit herangezogen werden.
Gemäß der Lehre der DE-Al 41 24 701 (Henkel) werden feste Waschmittel mit hohem Schüttgewicht und verbesserter Löslich¬ keit erhalten, indem man Mischungen von anionischen und nichtionischen Tensiden Polyethylenglycolether mit einem Molekulargewicht im Bereich von 200 bis 12.000, vorzugsweise 200 bis 600 zusetzt, und anschließend trocknet und/oder in feste Form bringt. Gemäß dem Ausführungsbeispiel 1 wird eine Waschmittelzubereitung, enthaltend Ci2/18~Fettalkonolsulfatr 12/18-Fettalkono1-5 EO-/Ci6/18- algfettalkoho1-5 EO-Addukt und - bezogen auf die Niotenside - Polyethylenglycol mit ei¬ nem Molekulargewicht von ca. 400 offenbart, die nach Homoge¬ nisierung extrudiert und zu Granulaten verarbeitet wird. Die Auflösegeschwindigkeit der resultierenden festen Waschmittel ist jedoch noch immer nicht zufriedenstellend. Zudem ist die Anwesenheit der erforderlichen großen Mengen an Polymer nicht erwünscht.
Gemäß der EP-A2 0 208 534 werden in allgemeiner Form sprüh¬ getrocknete Waschmittelzusammensetzungen offenbart, die neben anionischen Tensiden, nichtionische Tenside, Polyacrylate und Polyethylenglycolether mit einem durchschnittlichen Moleku¬ largewicht im Bereich von 1.000 bis 20.000 enthalten. Die Lehre dieser Schrift geht dahin, daß man die Dispergierbar- keit von anionischen Tensiden verbessern kann, indem man ih¬ nen Niotenside, Polyethylenglycolether und Polyacrylate zu¬ setzt. Die tatsächlich eingesetzten PEG sind jedoch nieder¬ molekular und weisen Molekulargewichte vorzugsweise im Be¬ reich von 4.000 bis 20.000 auf (vgl. Seite 4, 2. Abschnitt). Im einzigen Ausführungsbeispiel wird eine Mischung enthaltend Alkylbenzolsulfonat und Fettalkoholsulfat beschrieben, der man ein Ci2/i3-Oxoalkohol-6,5 EO-Addukt, Natriumpolyacrylat und Polyethylenglycol mit einem Molekulargewicht von ca. 8.000 zusetzt. Das Gewichtsverhältnis zwischen Niotensid und PEG beträgt 1 : 1. Gegenstand der DE-OS 21 24 526 sind Wasch- und Reinigungsmit¬ telmischungen mit geregeltem Schaumverhalten. Gemäß Beispiel 6 werden Zusammensetzungen offenbart, die Talgalkoholsulfat, Alkylbenzolsulfonat sowie Polyethylenglycol mit einem Mole¬ kulargewicht von ca. 20.000 aufweisen.
Die Aufgabe der Erfindung hat nun darin bestanden, feste Wasch-, Spül- und Reinigungsmittel mit erhöhtem Gehalt an nichtionischen Tensiden zur Verfügung zu stellen, die gegen das Ausbluten der Niotenside dauerhaft beständig sind.
Beschreibung der Erfindung
Gegenstand der Erfindung sind feste Wasch-, Spül- und Reini¬ gungsmittel, enthaltend Mischungen von
a) anionischen und nichtionischen Tensiden im Gewichtsver¬ hältnis 9 : 1 bis 1 : 9, vorzugsweise 1 : 1 bis 1 : 5 sowie b) 1 bis 50 Gew.-% - bezogen auf die nichtionischen Tenside - polymere Verfestigungsmittel ausgewählt aus der Grup¬ pe, die gebildet wird von
bl) Polyethylenglycolethern mit einem durchchnittliehen Molekulargewicht von 12.000 bis 500.000, b2) Ester von Dicarbonsäuren mit einem durchschnitt¬ lichen Molekulargewicht von 400 bis 20.000, b3) ümesterungsprodukte von Dialkylcarbonat mit Poly¬ ethylenglycolethern mit einem durchschnittlichen Molekulargewicht von 400 bis 20.000 und b4) Oligo- bzw. Polysaccharide mit einem Kondensations¬ grad von 5 bis 1000.
Überraschenderweise wurde gefunden, daß der Zusatz von aus¬ gewählten polymeren Verfestigungsmitteln zu den niotensid- reichen Rezepturen zu einer Verfestigung des Korns führt und ein Ausbluten flüssiger Komponenten dauerhaft und zuverlässig verhindert, ohne daß die anwendungstechnische Leistung der Rezepturen durch die Mitverwendung der Verfestigungsmittel nachteilig beeinflußt wird. Die Erfindung hat eine besondere Bedeutung für Mittel mit hohem Gehalt an nichtionischen Ten¬ siden; es ist jedoch auch möglich, Mittel mit vergleichsweise niedrigem Gehalt an nichtionischen Tensiden auf dem angege¬ benen Weg gegen Ausbluten zu stabilisieren.
Die Erfindung schließt die Erkenntnis ein, daß es im Hinblick auf die Eignung von Polyethylenglycolethern als polymere Ver¬ festigungsmittel hinsichtlich des Molekulargewichtes eine kritische Grenze von 12.000 gibt. Unterhalb dieses Bereiches wird der gewünschte Effekt, die signifikante Verbesserung der Beständigkeit gegen Ausbluten, nicht erreicht.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung von festen Wasch-, Spül- und Reinigungsmit¬ teln, bei dem man Mischungen von anionischen und nichtioni¬ schen Tensiden im Gewichtsverhältnis 9 : 1 bis 1 : 9, vor¬ zugsweise 1 : 1 bis 1 : 5 mit 1 bis 50 Gew.-% - bezogen auf die nichtionischen Tenside - polymerer Verfestigungsmittel versetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von bl) Polyethylenglycolethern mit einem durchchnittlichen Mo¬ lekulargewicht von 12.000 bis 500.000, b2) Ester von Dicarbonsäuren mit einem durchschnittlichen Molekulargewicht von 400 bis 20.000, b3) Umesterungsprodukten von Dialkylcarbonat mit Polyethy¬ lenglycolethern mit einem durchschnittlichen Molekular¬ gewicht von 400 bis 20.000 und b4) Oligo- bzw. Polysacchariden mit einem Kondensationsgrad von 5 bis 1000.
Anionische Tenside
Die anionischen Tenside können ausgewählt sein aus der Grup¬ pe, die von Alkylbenzolsulfonaten, Alkansulfonaten, Olefin- sulfonaten, Alkylethersulfonaten, Glycerinethersulfonaten, oc-Methylestersulfonaten, Sulfofettsäuren, Fettalkoholsulfa¬ ten, Fettalkoholethersulfaten, Glycerinethersulfaten, Hy- droxymischethersulfaten, Monoglycerid(ether)sulfaten, Fett- säureamid(ether)Sulfaten, Sulfosuccinaten, Sulfosuccinamaten, Sulfotriglyceriden, Amidseifen, Ethercarbonsäuren, Isethio- naten, Sarcosinaten, Tauriden, Alkyloligoglucosidsulfaten und Alkyl(ether)phosphaten gebildet wird.
Bei allen diesen Stoffen handelt es sich um bekannte Tenside, die nach den einschlägigen Verfahren der präparativen organi¬ schen Chemie hergestellt werden können. Zu Synthese und Ei¬ genschaften sei beispielsweise auf J.Falbe (ed.) "Surfactants in consu er products", Springer Verlag, Berlin, 1987, S. 54- 85 oder J.Falbe, U.Hasserodt, "Katalysatoren, Tenside und Mi- neralöladditive", Thieme Verlag, Stuttgart, 1978, S.126-139 verwiesen.
Unter den anionischen Tensiden ist neben den Alkylbenzolsul- fonaten, namentlich dem Dodecylbenzolsulfonat, der Einsatz von Fettalkoholsulfaten der Formel (I) bevorzugt,
RlθS03X (I)
in der R1 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 12 bis 22 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammoniiam steht. Aus der Gruppe der Fettalkoholsulfate sind wiederum Talgalkoholsulfate von be¬ sonderer Bedeutung, bei denen R1 in Formel (I) für einen Alkylrest mit 16 bis 18 Kohlenstoffatomen und X für Natrium steht.
Nichtionische Tenside
Als nichtionische Tenside kommen insbesondere Fettalkohol- polyglycolether der Formel (II) in Betracht,
CH3
I
R2θ-(CH2CHO)n(CH2CH2θ)mH (II)
in der R2 für einen linearen oder verzweigten aliphatisehen Kohlenwasserstoffrest mit 6 bis 18 Kohlenstoffatomen und 0, 1, 2 oder 3 Doppelbindungen, n für 0 oder Zahlen von 1 bis 3 und für Zahlen von 1 bis 10 steht.
Typische Beispiele sind .Anlagerungsprodukte von durchschnitt¬ lich 1 bis 3 mol Propylenoxid und/oder 1 bis 10, vorzugsweise 2 bis 7 mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2- Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Myristylal- kohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Iso- stearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinyl- alkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalko- hol, Arachylalkohol, Gadoleylalkohol, Erucylalkohol und Be- henylalkohol. sowie deren technische Gemische, wie sie bei¬ spielsweise durch Hochdruckhydrierung technischer Methyl¬ esterfraktionen oder Aldehyden aus der Roelen'sehen Oxosyn- these erhalten werden. Die Addukte können dabei eine konven¬ tionelle oder auch eingeengte Homologenverteilung aufweisen und herstellungsbedingt noch einen Gehalt an freiem Fettal¬ kohol enthalten. Besonders bevorzugt ist der Einsatz von Anlagerungsprodukten von durchschnittlich 2 bis 7 Mol Ethy¬ lenoxid an technische C12 14- bzw. Ci2/ιg-Kokosfettalkohol- schnitte.
Als weitere nichtionische Tenside kommen ferner Alkyloligo- glykoside der Formel (III) in .Betracht,
R3_O-[G]P (III)
in der R^ für einen Alkylrest mit 6 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für eine Zahl von 1 bis 10 steht. Alkyloligoglykoside stellen bekannte Stoffe dar, die nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden können. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP-A1-0 301 298 und WO 90/3977 (Henkel) verwiesen.
Die Alkyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ab¬ leiten. Die bevorzugten Alkyloligoglykoside sind somit Alkyl¬ oligoglucoside. Die Indexzahl p in der allgemeinen Formel (III) gibt den Oligomerisierungsgrad (DP-Grad) , d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein be¬ stimmtes Alkyloligoglykosid eine analytisch ermittelte rech¬ nerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus an¬ wendungstechnischer Sicht sind solche Alkyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt.
Der Alkylrest R^ kann sich von primären Alkoholen mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen ableiten. Ty¬ pische Beispiele sind Capronalkohol, Caprylalkohol, Caprin- alkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Stea- rylalkohol, Arachylalkohol und Behenylakohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hy¬ drierung von technischen Fettsäuremethylestern anfallen. Be¬ vorzugt sind Alkyloligoglucoside der Kettenlänge C_2 ^18 (DP = 1 bis 3) , die auf Basis von Kokosöl hergestellt werden können.
Die anionischen und nichtionischen Tenside können im Ge¬ wichtsverhältnis 1 : 1 bis 1 : 5, vorzugsweise 1 : 1 bis 1 : 2 eingesetzt werden.
Polymere Verfestigungsmittel
bl) Als polymere Verfestigungsmittel kommen beispielsweise Polyethylenglycolether (PEG) mit einem durchschnittli¬ chen Molekulargewicht von 12.000 bis 500.000 in Be¬ tracht. Typische Beispiele sind Polyethylenglycole mit einem durchschnittlichen Molgewicht von 12.000 bis 100.000. Als besonders vorteilhaft hat sich in diesem Zusammenhang der Einsatz von PEG 12.000 bis PEG 35.000 erwiesen.
b2) Als weitere polymere Verfestigungsmittel kommen Ester von Dicarbonsäuren der Formel (IV) in Betracht,
HOOC-(CH2)yCOOH (IV)
in der y für 0 oder Zahlen von 1 bis 12 steht, mit Poly- hylenglycolethern, die ein durchschnittliches Molekular¬ wicht von 400 bis 20.000 aufweisen. Typische Beispiele sind Ester und Polyester der Oxalsäure, Bernsteinsäure und Adipinsäure mit PEG 400, PEG 5000 und PEG 12.000. Produkte dieser Art zeichnen sich durch eine besonders vorteilhafte biologische Abbaubarkeit aus. b3) Eine weitere Gruppe von geeigneten polymeren Verfesti¬ gungsmitteln stellen Umesterungsprodukte von Dialkyl- carbonat mit Polyethylenglycolethern, die ein durch¬ schnittliches Molekulargewicht von 400 bis 20.000 auf¬ weisen, dar. Typische Beispiele sind Umesterungsprodukte von Dimethylcarbonat mit PEG 400, PEG 5000 und PEG 12.000. Bei den Produkten handelt es sich üblicherweise um Mono/Di-Estergemische, die - der Statistik folgend - noch Anteile der Alkylreste des als Ausgangsmaterial verwendeten Dialkylcarbonats enthalten können.
b4) Als weitere polymere Verfestigungsmittel kommen schlie߬ lich Oligo- bzw. Polysaccharide mit einem Kondensations- grad von 5 bis 1000 in Betracht. Vorzugsweise handelt es sich hierbei um Polyglucose oder Polysorbit.
Die polymeren Verfestigungsmitteln können den nichtionischen Tensiden in Mengen von 1 bis 50, vorzugsweise 2 bis 30 Gew.-% - bezogen auf die nichtionischen Tenside - zugesetzt werden. Obschon es grundsätzlich möglich ist, ternäre Mischungen aus anionischen Tensiden, nichtionischen Tensiden und polymeren Verfestigungsmitteln herzustellen, ist es doch i. a. vorteil¬ hafter, zunächst die polymeren Verfestigungsmittel den nicht¬ ionischen Tensiden zuzusetzen und diese präformierte Mischung nach Erhärtung mit den anionischen Tensiden weiterzuverar- beiten.
Die ausgewählten polymeren Verfestigungsmittel können den nichtionischen Tensiden zugesetzt werden, wobei eine innige Vermischung unter Rühren oder Kneten gegebenenfalls unter Erwärmen sichergestellt werden muß. Im Sonderfall, daß das nichtionische Tenside ein Polyglycolether ist und das poly¬ mere Verfestigungsmittel ein PEG darstellt, kann die Mischung auch in-situ erzeugt werden, indem man ein Gemisch aus Fett¬ alkohol und PEG gemeinsam alkoxyliert.
Für den Fall, daß eine besonders hohe Verfestigung der nicht¬ ionischen Tenside erforderlich ist und ein Ausbluten bzw. Fetten über einen sehr langen Zeitraum verhindert werden muß, hat es sich als vorteilhaft erwiesen, den polymeren Verfesti¬ gungsmitteln langkettige Fettsäuren mit 16 bis 22 Kohlen¬ stoffatomen, beispielsweise Cis/ig-Talgfettsäure zuzusetzen.
Einsatzform der anionischen Tenside
Die anionischen Tenside können in Form wäßriger Pasten oder trockener Pulver eingesetzt und anschließend mit den verfe¬ stigten nichtionischen Tensiden behandelt werden.
Üblicherweise werden anionische Tenside durch Umsetzung ent¬ sprechender Ausgangsstoffe mit Schwefeltrioxid oder Chlorsul- fonsäure zu sauren Schwefelsäurehalbestern oder Sulfonsäuren umgesetzt, die anschließend mit wäßrigen Basen neutralisiert und gegebenenfalls hydrolysiert werden. Die hierbei resultie¬ renden wäßrigen Pasten mit einem Feststoffgehalt von 5 bis 65 Gew.-% - bezogen auf die Paste - stellen im Sinne der Erfin¬ dung geeignete Ausgangsstoffe für die weitere Verarbeitung dar. Die wäßrigen Pasten können auch als sprühgetrocknete Pulver eingesetzt werden, wie sie nach konventionellen Turm¬ pulververfahren zugänglich sind. Eine Variante besteht darin, nicht die wäßrigen, neutralisierten Produkte einer Sprüh- trocknung zu unterwerfen, sondern die sauren Sulfierprodukte zusammen mit wäßrigen Basen zu versprühen und somit in einem Schritt zu neutralisiern und zu trocknen. Im Sinne der Er¬ findung kommen anionischen Tenside sowohl in Form sprühneu¬ tralisierter, als auch sprühgetrockneter oder heißdampfge¬ trockneter Pulver als Ausgangsstoffe in Betracht. Zu Einzel¬ heiten der Sprühtrocknung bzw. Sprühneutralisation von Ten¬ siden sei auf ROEMPP Chemielexikon, 9. Aufl., Thie e-Verlag, Stuttgart, 1992, S. 259/4260 verwiesen. Der bevorzugte Aus¬ gangsstoff stellt - wie schon zuvor ausgeführt - Talgalko¬ holsulfat in Form wäßriger Pasten mit einem Feststoffgehalt von 5 bis 65, vorzugsweise 50 bis 65 Gew.-%, oder sprühneu¬ tralisiertes, sprüh- bzw. heißdampfgetrocknetes Pulver dar.
Herstellung der leichtlöslichen Produkte
Die Herstellung der neuen festen Wasch-, Spül- und Reini¬ gungsmittel kann auf verschiedensten Wegen erfolgen.
Eine besonders einfache Ausgestaltung des Verfahrens besteht darin, das anionische Tensid in Pulverform vorzulegen und mit der erforderlichen Menge des verfestigten nichtionischen Tensids innig zu vermischen. Für diesen Vorgang sind Bauteile wie beispielsweise Schaufelmischer der Fa.Lödige oder insbe¬ sondere Sprühmischer der Fa.Schugi von Vorteil, bei denen man das Aniontensid in der Mischkammer vorlegt und das verfe¬ stigte nichtionische Tenside aufdüst. Ferner ist es möglich, die Trocknung der Aniontensidpasten und das Vermischen gleichzeitig in einem Wirbelschichttrockner durchzuführen. Es werden trockene, leichtlösliche Pulver erhalten, die - falls erforderlich - mit weiteren üblichen Waschmittelzusatzstoffen beaufschlagt und beispielsweise zu Waschmittel-Extrudaten verarbeitet werden können.
Eine weitere Möglichkeit besteht darin, die anionischen Ten¬ side einer sogenannten SKET-Granulierung zu unterwerfen. Hierunter ist eine Granulierung unter gleichzeitiger Trock¬ nung zu verstehen, die vorzugsweise batchweise oder kontinu¬ ierlich in der Wirbelschicht erfolgt. Dabei können die wä߬ rigen Pasten der anionischen Tenside und die verfestigten nichtionischen Tenside gleichzeitig oder nacheinander über eine oder mehrere Düsen in die Wirbelschicht eingebracht wer¬ den. Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von 0,4 bis 5 m. Vorzugsweise wird die SKET-Granulierung bei Wirbelluftgeschwindigkeiten im Bereich von 1 bis 8 m/s durchgeführt. Der Austrag der Granu¬ late aus der Wirbelschicht erfolgt vorzugsweise über eine Größenklassierung der Granulate. Die Klassierung kann bei¬ spielsweise mittels einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teil¬ chengröße aus der Wirbelschicht entfernt und kleinere Teil¬ chen in der Wirbelschicht zurückgehalten werden. Üblicher¬ weise setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei zwischen 80 und 400, vor¬ zugsweise 90 und 350°C. Vorteilhafterweise wird zu Beginn der SKET-Granulierung eine Startmasse, beispielsweise ein SKET- Granulat aus einem früheren Versuchsansatz, vorgelegt. In der Wirbelschicht verdampft das Wasser aus der Aniontensid-Paste, wobei angetrocknete bis getrocknete Keime entstehen, die mit weiteren Mengen Aniontensid und verfestigtem nichtionischem Tensid umhüllt, granuliert und wiederum gleichzeitig getrock¬ net werden.
In einer bevorzugten Ausführungsform der Erfindung werden die anionischen Tenside in Pulverform mit den verfestigten nichtionischen Tensiden vermischt und die Mischung in einer Schneckenpresse homogenisiert und verfestigt. Die Extrusion erfolgt über eine Lochscheibe, so daß Preßstränge entstehen, die nach bekannten Verfahren zu Extrudaten oder Nadeln ge¬ wünschter Form und Abmessung mechanisch zerkleinert werden können. Extrudate dieser Form zeigen eine besonders hohe Auf- lösegeschwindigkeit und ein sehr gutes Einspülverhalten in der Waschmaschine.
Unabhängig von der Anbietungsform als Pulver, Granulat oder Extrudat können die neuen festen Wasch-, Spül- und Reini¬ gungsmittel weitere übliche Hilfs- und Zusatzstoffe, bei¬ spielsweise Zeolithe, Phosphate, Phosphonate, Polycarboxy- late, Wasserglas, Soda und Borate enthalten, die ihnen vor, während oder nach der Verfestigung zugesetzt werden können.
Gewerbliche Anwendbarkeit
Die erfindungsgemäßen festen Wasch-, Spül- und Reinigungsmit¬ tel auf Basis anionischer und nichtionischer Tenside sowie polymerer Verfestigungsmitteln sind gegenüber dem Ausbluten der nichtionischen Tenside stabil und weisen ausgezeichnete Detergenseigenschaften auf. Ein weiterer Gegenstand der Erfindung betrifft daher die Ver¬ wendung von Mischungen enthaltend
a) anionische und nichtionische Tenside im Gewichtsverhält¬ nis 9 : 1 bis 1 : 9, vorzugsweise 1 : 1 bis 1 : 5 sowie b) die vorstehend beschriebenen ausgewählten polymeren Verfestigungsmittel
als Rohstoffe zur Herstellung von festen Wasch-, Spül- und Reinigungsmitteln.
Die folgenden Beispiele sollen den Gegenstand der Erfindung näher erläutern, ohne ihn darauf einzuschränken.
Beispiele
I. Rezepturbeispiele
Eine Universalwaschmittelrezeptur mit hohem Gehalt an nicht¬ ionischen Tensiden und ohne bzw. mit polymeren Verfesti¬ gungsmitteln einer Zusammensetzung gemäß Tab.l wurde über ei¬ ne Schneckenwalze extrudiert und über eine Lochscheibe (Durchmesser der Öffnungen : 0,9 mm) zu Strangpreßlingen ver¬ arbeitet, die kontinuierlich zu Extrudaten einer Korngröße von 0,9 mm zerkleinert wurden.
Tab.1: Zusammensetzung der Waschmittelrezepturen Prozentangaben als Gew.-% Hilfsstoffe ad 100 %.
Komponenten VI Bl B2 B3 B4 B5 B6
% % % % % % %
Talgalkoholsulfat 10 10 10 10 10 10 10
Kokosalkohol 3 EO 15 15 15 15 15 15 15
PEG-12.000 0 1 2 3 5 0 0
PEG-100.000 0 0 0 0 0 3 5
Zeolith A 35 35 35 35 35 35 35
Natriumperborat 16 16 16 16 16 16 16
Wasserglas 7 7 7 7 7 7 7
Die Rezepturen Bl bis B6 sind erfindungsgemäß; Rezeptur VI dient dem Vergleich. II. Anwendungstechnische Untersuchungen
Das Ausblutverhalten der Rezepturen wurde an unbedrucktem Karton der Stärke 0,4 mm bestimmt. Hierzu wurde der Karton waagerecht auf eine Rüttelunterlage montiert, jeweils 5 g der festen Rezepturen VI sowie Bl bis B6 aufgebracht und mit Hil¬ fe von Glasringen (Durchmesser 5 cm) fixiert. Durch die gleichmäßige Bewegung wurde ein Abrieb der Testmischungen auf der Kartonoberfläche bewirkt und die Fettung visuell nach t = 1, 5 und 24 h beurteilt. Die Ergebnisse sind in Tab.2 zusam¬ mengefaßt:
Tab.2: Ausblutverhalten
Bsp. t. Fettung Rezeptur h
VI Bl B2 B3 B4 B5 B6
1 1 III II I 0 0 0 0
2 5 IV II I I 0 0 0
3 24 V III II II I I I
Beurteilung: 0 = keine Fettung
1 = Fettspuren
II = leichte Fettung
III = deutliche Fettung
IV = starke Fettung
V = sehr starke Fettung

Claims

Patentansprüche
1. Feste Wasch-, Spül- und Reinigungsmittel, enthaltend Mischungen von
a) anionischen und nichtionischen Tensiden im Gewichts¬ verhältnis 9: 1 bis 1 : 9 sowie b) • 1 bis 50 Gew.-% - bezogen auf die nichtionischen
Tenside - polymere Verfestigungsmittel ausgewählt aus der Gruppe, die gebildet wird von
bl) Polyethylenglycolethern mit einem durchchnitt¬ lichen Molekulargewicht von 12.000 bis 500.000, b2) Ester von Dicarbonsäuren mit einem durchschnitt¬ lichen Molekulargewicht von 400 bis 20.000, b3) Umesterungsprodukten von Dialkylcarbonat mit Polyethylenglycolethern mit einem durchschnitt¬ lichen Molekulargewicht von 400 bis 20.000 und b4) Oligo- bzw. Polysacchariden mit einem Kondensa¬ tionsgrad von 5 bis 1000.
2. Verfahren zur Herstellung von festen Wasch-, Spül- und Reinigungsmitteln, bei dem man Mischungen von anioni¬ schen und nichtionischen Tensiden im GewichtsVerhältnis 9 : 1 bis 1 : 9 mit 1 bis 50 Gew.-% - bezogen auf die nichtionischen Tenside - polymerer Verfestigungsmittel versetzt, die ausgewählt sind aus der Gruppe, die ge¬ bildet wird von
bl) Polyethylenglycolethern mit einem durchchnittlichen Molekulargewicht von 12.000 bis 500.000, b2) Ester von Dicarbonsäuren mit einem durchschnittli¬ chen Molekulargewicht von 400 bis 20.000, b3) Umesterungsprodukten von Dialkylcarbonat mit Poly¬ ethylenglycolethern mit einem durchschnittlichen Molekulargewicht von 400 bis 20.000 und b4) Oligo- bzw. Polysacchariden mit einem Kondensa¬ tionsgrad von 5 bis 1000.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man anionische Tenside einsetzt, die ausgewählt sind aus der Gruppe, die von Alkylbenzolsulfonaten, Alkansulfo- naten, Olefinsulfonaten, Alkylethersulfonaten, Glycerin- ethersulfonaten, oc-Methylestersulfonaten, Sulfofettsäu- ren, Fettalkoholsulfaten, Fettalkoholethersulfaten, Gly- cerinethersulfaten, HydroxymisehetherSulfaten, Monogly- cerid(ether)Sulfaten, Fettsäureamid(ether)sulfaten, Sul- fosuccinaten, Sulfosuccinamaten, Sulfotriglyceriden, Amidseifen, Ethercarbonsäuren, Isethionaten, Sarcosina¬ ten, Tauriden, Alkyloligoglucosidsulfaten und Alkyl- (ether)phosphaten gebildet wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als anionische Tenside Fettalkoholsulfate der Formel (I) einsetzt,
RiosOsX (I)
in der R für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 12 bis 22 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht.
5. Verfahren nach den Ansprüchen 3 und 4, dadurch gekenn¬ zeichnet, daß man Fettalkoholsulfate der Formel (I) einsetzt, in der R1 für einen Alkylrest mit 16 bis 18 Kohlenstoffatomen und X für Natrium steht.
6. Verfahren nach den Ansprüchen 2 bis 5, dadurch gekenn¬ zeichnet, daß man als nichtionische Tenside Fettalkohol- polyglycolether der Formel (II) einsetzt,
CH3
I R20-(CH2CHO)n(CH2CH2θ)H (II)
in der R2 für einen linearen oder verzweigten aliphati- schen Kohlenwasserstoffrest mit 6 bis 18 Kohlenstoffato¬ men und 0, 1, 2 oder 3 Doppelbindungen, n für 0 oder Zahlen von 1 bis 3 und m für Zahlen von 1 bis 10 steht.
7. Verfahren nach den Ansprüchen 2 bis 5, dadurch gekenn¬ zeichnet, daß man als nichtionische Tenside Alkyloligo¬ glykoside der Formel (III) einsetzt,
R3-0-[G]p (III)
in der R3 für einen Alkylrest mit 6 bis 22 Kohlenstoff¬ atomen, G für einen Zuckerrest mit 5 oder 6 Kohlen¬ stoffatomen und p für eine Zahl von 1 bis 10 steht.
8. Verfahren nach den Ansprüchen 2 bis 7, dadurch gekenn¬ zeichnet, daß man als polymere Verfestigungsmittel Poly- ethylenglycolether mit einem durchschnittlichen Moleku¬ largewicht von 12.000 bis 500.000 einsetzt.
9. Verfahren nach den Ansprüchen 2 bis 7, dadurch gekenn¬ zeichnet, daß man als polymere Verfestigungsmittel Ester von Dicarbonsäuren der Formel (IV),
HOOC-(CH2)yCOOH (IV)
in der y für 0 oder Zahlen von 1 bis 12 steht, mit Po¬ lyethylenglycolethern, die ein durchschnittliches Mo¬ lekulargewicht von 400 bis 20.000 aufweisen, einsetzt.
10. Verfahren nach den Ansprüchen 2 bis 7, dadurch gekenn¬ zeichnet, daß man als polymere Verfestigungsmittel Umesterungsprodukte von Dialkylcarbonat mit Polyethy¬ lenglycolethern, die ein durchschnittliches Molekular¬ gewicht von 400 bis 20.000 aufweisen, einsetzt.
11. Verfahren nach den Ansprüchen 2 bis 7, dadurch gekenn¬ zeichnet, daß man als polymere Verfestigungsmittel Oli¬ go- bzw. Polysaccharide mit einem Kondensationsgrad von 5 bis 1000 einsetzt.
12. Verwendung von Mischungen erhältlich nach dem Verfahren nach den Ansprüchen 1 bis 11 als Rohstoffe zur Herstel¬ lung von festen Wasch-, Spül- und Reinigungsmitteln.
PCT/EP1994/000208 1993-02-04 1994-01-26 Feste wasch-, spül- und reinigungsmittel WO1994018293A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP94906151A EP0682691B2 (de) 1993-02-04 1994-01-26 Verfahren zur herstellung von festen, wasserfreien waschmitteln
JP6517588A JPH08506367A (ja) 1993-02-04 1994-01-26 固体の洗濯用洗剤、食器洗浄用洗剤および清浄製品
DE59402383T DE59402383D1 (de) 1993-02-04 1994-01-26 Feste, wasserfreie waschmittel
KR1019950703105A KR960700333A (ko) 1993-02-04 1994-01-26 고형의 세정, 헹굼 및 세척제(solid washing rinsing and cleaning agents)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4303176A DE4303176C2 (de) 1993-02-04 1993-02-04 Feste Wasch-, Spül- und Reinigungsmittel
DEP4303176.5 1993-02-04

Publications (1)

Publication Number Publication Date
WO1994018293A1 true WO1994018293A1 (de) 1994-08-18

Family

ID=6479622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/000208 WO1994018293A1 (de) 1993-02-04 1994-01-26 Feste wasch-, spül- und reinigungsmittel

Country Status (6)

Country Link
EP (1) EP0682691B2 (de)
JP (1) JPH08506367A (de)
KR (1) KR960700333A (de)
DE (2) DE4303176C2 (de)
ES (1) ES2100697T3 (de)
WO (1) WO1994018293A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314563A (en) * 1996-06-28 1998-01-07 Laporte Esd Ltd Surfactant compositions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1514H (en) * 1994-06-01 1996-01-02 The Procter & Gamble Company Detergent compositions with oleoyl sarcosinate and polymeric dispersing agent
TW326472B (en) * 1994-08-12 1998-02-11 Kao Corp Method for producing nonionic detergent granules
US5866530A (en) * 1995-11-25 1999-02-02 Henkel Kommanditgesellschaft Auf Aktien Non-aqueous liquid mixtures of alkyl polyglycoside and alkyl polyalkylene glycol ether useful in various detergent applications
DE19635555C2 (de) * 1996-09-02 2000-06-08 Cognis Deutschland Gmbh Wäßrige Handgeschirrspülmittel
DE19719606C2 (de) * 1997-05-09 1999-02-18 Henkel Kgaa Feststoffzubereitungen
DE19858886C2 (de) 1998-12-19 2002-10-31 Cognis Deutschland Gmbh Tensidgranulate
DE19911040A1 (de) 1999-03-12 2000-09-21 Cognis Deutschland Gmbh Tensidgranulate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803285A (en) * 1971-01-20 1974-04-09 Cpc International Inc Extrusion of detergent compositions
FR2204682A1 (de) * 1972-10-31 1974-05-24 Procter & Gamble
EP0167085A2 (de) * 1984-07-02 1986-01-08 Henkel Kommanditgesellschaft auf Aktien Mittel zur Toilettenreinigung
EP0208534A2 (de) * 1985-07-09 1987-01-14 The Procter & Gamble Company Verfahren zur Herstellung sprühgetrockneter körniger Reinigungsmittel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU60943A1 (de) * 1970-05-20 1972-02-23
JPS5241612A (en) * 1975-09-30 1977-03-31 Kao Corp Granular or powdered detergent compositions
GB8302980D0 (en) 1983-02-03 1983-03-09 Procter & Gamble Ltd Laundry additive compositions
CA2017922C (en) 1989-06-09 1995-07-11 Frank Joseph Mueller Formation of discrete, high active detergent granules using a continuous neutralization system
DE4124701A1 (de) * 1991-07-25 1993-01-28 Henkel Kgaa Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803285A (en) * 1971-01-20 1974-04-09 Cpc International Inc Extrusion of detergent compositions
FR2204682A1 (de) * 1972-10-31 1974-05-24 Procter & Gamble
EP0167085A2 (de) * 1984-07-02 1986-01-08 Henkel Kommanditgesellschaft auf Aktien Mittel zur Toilettenreinigung
EP0208534A2 (de) * 1985-07-09 1987-01-14 The Procter & Gamble Company Verfahren zur Herstellung sprühgetrockneter körniger Reinigungsmittel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314563A (en) * 1996-06-28 1998-01-07 Laporte Esd Ltd Surfactant compositions
GB2314563B (en) * 1996-06-28 2000-03-29 Laporte Esd Ltd Surfactant compositions

Also Published As

Publication number Publication date
JPH08506367A (ja) 1996-07-09
EP0682691B2 (de) 2004-01-14
EP0682691A1 (de) 1995-11-22
DE4303176C2 (de) 1997-07-31
EP0682691B1 (de) 1997-04-09
DE4303176A1 (de) 1994-08-11
DE59402383D1 (de) 1997-05-15
ES2100697T3 (es) 1997-06-16
KR960700333A (ko) 1996-01-19

Similar Documents

Publication Publication Date Title
DE4326112A1 (de) Reinigungsmittel für harte Oberflächen
EP1288281B1 (de) Geminitenside und Polyethylenglycol
EP0725813B1 (de) Verwendung von detergensgemischen zur herstellung von toilettensteinen
WO1992002609A1 (de) Verfahren zur herstellung wasch- und reinigungsaktiver granulate
EP0720644B1 (de) Detergensgemische und wasch- oder reinigungsmittel mit verbesserten löseeigenschaften
EP0682691B2 (de) Verfahren zur herstellung von festen, wasserfreien waschmitteln
EP0682690B1 (de) Anionische tenside mit verbesserter löslichkeit
WO1996023049A1 (de) Flüssigwaschmittel
DE4332373C2 (de) Wasserfreie Detergensgemische
DE10004678A1 (de) Tensidgranulate
WO1995014073A1 (de) Glycerinoctylether in tensidmischungen
EP0758374B1 (de) Heterogene tensidgranulate
DE19543990C2 (de) Flüssige Vorprodukte für Wasch-, Spül- und Reinigungsmittel
EP1188818B1 (de) Verfahren zur Herstellung von hellfarbigen Alkyl- und/oder Alkenyloligoglycosidmischungen
EP0874684B1 (de) Verfahren zur herstellung eines granularen additivs
WO1997020027A1 (de) Syndet-seifenmassen
DE19817509C2 (de) Verwendung von Fettsäurepolyglycolestersulfaten
DE19517814A1 (de) Hochkonzentrierter wasserhaltiger Grundreiniger
WO1999010470A1 (de) Verwendung von fettsäurepolyglycolestersulfaten
WO1999036495A1 (de) Homogene tensidgranulate für die herstellung von stückigen wasch- und reinigungsmitteln
DE19520105A1 (de) Verfahren zur Herstellung wasserfreier, rieselfähiger Tensidpulver

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994906151

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 491945

Date of ref document: 19950804

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994906151

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994906151

Country of ref document: EP