WO1993025853A1 - Operation control apparatus for air-conditioner - Google Patents

Operation control apparatus for air-conditioner Download PDF

Info

Publication number
WO1993025853A1
WO1993025853A1 PCT/JP1993/000797 JP9300797W WO9325853A1 WO 1993025853 A1 WO1993025853 A1 WO 1993025853A1 JP 9300797 W JP9300797 W JP 9300797W WO 9325853 A1 WO9325853 A1 WO 9325853A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
compressor
current
holding
predetermined value
Prior art date
Application number
PCT/JP1993/000797
Other languages
English (en)
French (fr)
Inventor
Hiroto Nakajima
Tetsuya Suda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to DE69322642T priority Critical patent/DE69322642T2/de
Priority to EP93913520A priority patent/EP0645589B1/en
Priority to US08/356,270 priority patent/US5771704A/en
Priority to AU43560/93A priority patent/AU4356093A/en
Publication of WO1993025853A1 publication Critical patent/WO1993025853A1/ja
Priority to KR1019940704656A priority patent/KR950702301A/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an operation control device for an air conditioner, and more particularly to current droop control of a motor that drives a compressor.
  • an air conditioner has a compressor, a capacity controlled by an inverter, a four-way switching valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, which are connected in this order in order to control the indoor temperature.
  • the control of the current supplied to the compressor motor is performed, as shown in FIG. 7, by controlling the supply current (DC current before the inverting current) flowing to the compressor motor to be lower than the peak current Im.
  • a droop region X1 is provided to gradually lower the operating frequency, and when the supply current falls below a predetermined value Is, a holding region X2 is provided to hold the current operating frequency for 3 minutes.
  • the control is shifted to the normal control.
  • the present invention has been made in view of the above points, and has been made to stabilize an operation frequency to prevent noise hunting and improve the durability of a compressor.
  • Means taken by the present invention to achieve the above object is to gradually increase the operating frequency of the compressor after maintaining the operating frequency at a predetermined value.
  • the measures taken by the invention according to claim 1 include a variable capacity compressor (1), a heat source side heat exchanger (3), and an expansion mechanism (5). ) And a use-side heat exchanger (6) are sequentially connected, and the air conditioner is provided with a refrigerant circuit (9).
  • the operating frequency of the compressor (1) is changed at a predetermined speed to control the capacity of the compressor (1) and the frequency control means (41) flows to the compressor (1) And a current detecting means (R 2) for detecting a current. Further, upon receiving the detection signal of the current detecting means (R 2), when the supplied current of the compressor (1) becomes a predetermined value, a decrease signal for lowering the operating frequency of the compressor (1) is transmitted to the frequency control. Means for reducing the frequency supplied to the compressor (1) in response to the detection signal of the current detecting means (R 2) and the supplied current of the compressor (1) to a predetermined value. Frequency holding means (43) for terminating the lowering operation of the means (42) and holding the current operating frequency until a predetermined time elapses is provided.
  • the operating frequency is increased from the predetermined speed so that the supply current of the compressor (1) becomes a predetermined value until a predetermined time elapses.
  • a frequency increasing means (44) for outputting a rising signal for increasing the speed at a low speed to the frequency control means (41) is provided.
  • the means taken by the invention according to claim 2 is that the current detection means (R 2) A rising counting means (45) for counting the number of times the current supplied to the motor of the compressor (1) has exceeded a predetermined value in response to the signal, and as the number of times counted by the rising counting means (45) increases, An operation time extending means (46) for extending the operation time of the frequency holding means (43) and the frequency increasing means (44) is provided.
  • the operating time extending means (46) extends the operating time of the frequency holding means (43) as the number of counts of the up-counting means (45) increases.
  • the liquid refrigerant condensed and liquefied in the heat source side heat exchanger (3) is expanded by the expansion mechanism (5). After being depressurized in, it evaporates in the use side heat exchanger (6) and returns to the compressor (1).
  • the frequency control means (41) controls the capacity of the compressor (1) by changing the operating frequency of the compressor (1) at a predetermined speed, for example, The operating frequency is set so that the discharge pipe temperature of the compressor (1) becomes the optimum value.
  • the current detection means (R2) detects the supply current of the compressor (1), and the detection signal of the current detection means (R2) is used as the frequency reduction means (42).
  • the frequency control means (41) lowers the operation frequency.
  • the frequency holding means (43) holds the current operating frequency for a predetermined time.
  • the frequency increasing means (44) When the frequency holding means (43) completes the holding operation, the frequency increasing means (44) outputs a rising signal and the frequency control means (41) sets the operating frequency to a speed lower than the predetermined speed. And a sudden increase in the operating frequency Will be suppressed.
  • the operating frequency of the compressor (1) when the supplied current of the compressor (1) becomes equal to or more than a predetermined value, the operating frequency of the compressor (1) is reduced, the current frequency is maintained, and thereafter, Since the operating frequency is gradually increased as described above, hunting of the operating frequency can be prevented and the operating frequency can be stabilized. As a result, it is possible to suppress the periodic change of the noise due to the fluctuation of the operating frequency, so that the noise can be reduced and the durability of the compressor (1) due to the hunting of the above operating frequency can be improved. Can be reliably prevented from decreasing.
  • the rise counting means (45) counts the number of rises of the supplied current of the compressor (1), and the operation time extending means increases as the number of rises increases. (4 6) extends the operation time of the frequency holding means (4 3) and the frequency increasing means (4 4) so that the fluctuation cycle of the operating frequency is increased.
  • the operation time of the frequency holding means (43) and the frequency increasing means (44) is extended according to the number of times of increase of the supply current. Since the fluctuation of the frequency can be reliably suppressed, the noise can be further reduced, and the decrease in the durability of the compressor (1) can be more reliably prevented.
  • FIG. 1 is a block diagram showing the configuration of the present invention.
  • FIG. 2 is a refrigerant circuit diagram showing a refrigerant piping system of the air conditioner.
  • FIG. 3 is an electric circuit diagram showing the outdoor control unit.
  • FIG. 4 is a control flowchart showing the current drooping operation.
  • FIG. 5 is a control flow chart showing a non-change area release operation.
  • Fig. 6 is a characteristic diagram of the current supplied to the compressor motor and the frequency step N.
  • FIG. 7 is a characteristic diagram of the current supplied and the frequency step N of the motor of the conventional compressor.
  • FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, which is a so-called separate type in which one outdoor unit (A) is connected to one indoor unit (B). is there.
  • the outdoor unit (A) has a scroll-type compressor (1) whose operating frequency is variably adjusted by an inverter, and switches as shown by the solid line in the cooling operation and as shown by the broken line in the heating operation.
  • a four-way switching valve (2), an outdoor heat exchanger (3), which is a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation, and a decompression unit for depressurizing the refrigerant (20) and an accumulator (7) interposed in the suction pipe of the compressor (1) for removing liquid refrigerant in the suction refrigerant are arranged as main equipment.
  • the indoor unit (B) is provided with an indoor heat exchanger (6), which is a use-side heat exchanger that functions as an evaporator when the cooling operation is wrong and as a condenser during the heating operation.
  • a refrigerant circuit (9) is sequentially connected by a pipe (8) and generates heat by circulation of the refrigerant.
  • the pressure reducing section (20) includes a bridge-shaped rectifier circuit (8r) and a common path (8a) connected to a pair of connection points (P, Q) in the rectifier circuit (8r).
  • the common path (8a) has a receiver (4) for storing liquid refrigerant, an auxiliary heat exchanger (3a) for the outdoor heat exchanger (3), and a liquid refrigerant decompression function. And an electric expansion valve (5), which is an expansion mechanism having a flow control function, are arranged in series.
  • the other pair of connection points (R, S) in the rectifier circuit (8r) are connected to the pipe (8) on the outdoor heat exchanger (3) side and the pipe (8) on the indoor heat exchanger (6) side. (8) is connected. Further, the rectifier circuit (8r) retreats between the upstream connection point (P) of the common path (8a) and the connection point (S) on the side of the outdoor heat exchanger (3).
  • a first inflow path (8b1) provided with a first check valve (D1) that allows only refrigerant flow from the receiver (4), and an upstream connection point of the common path (8a).
  • D1 first check valve
  • (P) and the connection point (R) on the indoor heat exchanger (6) side to allow the refrigerant to flow only from the indoor heat exchanger (6) to the receiver (4).
  • a second inflow path (8b2) having a downstream connection point (Q) of the common path (8a) and a connection point (R) on the indoor heat exchanger (6) side.
  • a third check valve (D3) allowing only refrigerant flow from the valve (5) to the indoor heat exchanger (6);
  • a liquid ring prevention bypass path (8f) having a capillary tube (C) interposed therebetween.
  • the liquid ring preventing bypass path (8f) prevents liquid ringing when the compressor (1) is stopped, while the liquid ring preventing bypass path (8f) prevents the liquid ring from flowing upward when the compressor (1) is stopped and the downstream side of the common path (8a).
  • a gas vent path (4a) provided with an on-off valve (SV) is connected between them.
  • the pressure reduction degree of the above-mentioned capillary tube (C) is higher than that of the electric expansion valve (5). It is set to be sufficiently large so that the function of adjusting the refrigerant flow rate by the electric expansion valve (5) during the normal operation can be favorably maintained.
  • (F1 to F4) are filters for removing dust in the refrigerant
  • (E R) is a muffler for reducing the operation noise of the compressor (1).
  • the air conditioner is provided with sensors and the like.
  • (Thd) is a discharge pipe sensor that is disposed on the discharge pipe of the compressor (1) and detects the discharge pipe temperature Td.
  • The is located at the outdoor heat exchanger (3),
  • An external heat exchange sensor that detects the external heat exchange temperature Tc, which becomes the condensing temperature during operation and becomes the evaporating temperature during heating operation,
  • (Thr) is located at the air inlet of the indoor unit (B) and is the indoor temperature.
  • the indoor suction sensor which detects the intake air temperature Tr, is located in the indoor heat exchanger (6) and detects the internal heat exchange temperature Te, which becomes the evaporating temperature during cooling operation and the condensing temperature during heating operation.
  • the internal heat exchange sensor (HPS) detects the high pressure refrigerant pressure and detects the high pressure refrigerant pressure.
  • HPS high pressure refrigerant pressure
  • LPS low-pressure refrigerant pressure and turns on when a low-pressure refrigerant pressure drops too low to output a low-pressure signal. It is a switch.
  • the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows in from the first inflow path (8b1), and the first check valve (D After being stored in the receiver (4) through 1) and decompressed by the electric expansion valve (5), it is vaporized in the indoor heat exchanger (6) through the first outflow passage (8c1) and compressed by the compressor (1).
  • the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) flows in from the second inflow passage (8b2) and returns to the second check valve (D2).
  • FIG. 3 shows the electric circuit of the outdoor control unit (10) that controls the outdoor unit (A).
  • the three-phase AC power supply (11) has an electromagnetic switch (12) and a rectifier (13).
  • the compressor motor (MC) is connected via a DC circuit (14) and an inverter (15), while the S and T phases of the power supply (11) are connected to an electromagnetic switch (16) and
  • the fan motors (MF #, # F2) are connected via shift control relay contacts (17).
  • the power supply line (18) connected to the R and S phases of the power supply (11) has a pressure switch (19.20) operated by the high pressure switch (HPS) and low pressure switch (LPS).
  • a compressor switching circuit (23) consisting of a relay contact (21) and an exciting coil (22) of an electromagnetic switch (12) of a compressor motor (MC) connected in series, and a relay contact (24)
  • a fan opening / closing circuit (26) in which an exciting coil (25) of an electromagnetic switch (16) of a fan motor (MF1, MF2) is connected in series, a relay contact (27), and a four-way switching valve
  • a switching control circuit (29) in which the excitation coil (28) of (2) is connected in series, and a relay contact (30) and an excitation coil (31) of the on-off valve (3) are connected in series.
  • the open / close control circuit (32) is connected in parallel.
  • a transmission / reception circuit (35) having a transmitter [33] and a receiver (34) is connected to the power supply line (18), and a signal line (36) of the transmission / reception circuit (35) is connected.
  • the power supply line (18) is connected to an indoor control unit (not shown) for controlling the indoor unit (B) via a connector (37).
  • the DC circuit (14) is provided with a reactor (L), a resistor (R1), two capacitors (C1, C2), and a supply current flowing to the compressor motor (MC).
  • a detection resistor (R 2) for detecting the current is provided, and the detection resistor (R 2) constitutes current detection means.
  • the outdoor control unit (10) is provided with a controller (40), and the controller (40) is provided with a compressor mode flowing through the detection resistor (R2). And the output signal of each of the above sensors (Thd,..., The) and each of the switches (HP S. LPS) are input, based on the input signal. It is configured to control the air-conditioning operation.
  • the controller (40) is provided with a frequency control means (41) for the compressor motor (MC) as a feature of the present invention, and a frequency for controlling a supply current of the compressor motor (MC).
  • the frequency control means (41) divides the operating frequency of the inverter (15) into 20 steps N from zero to the maximum frequency, sets each frequency step N based on the discharge pipe temperature Td, and sets the compressor ( It is configured to control the capacity of 1).
  • the frequency reduction means (42) receives the detection signal from the detection resistor (R2), and when the supply current of the compressor motor (MC) reaches a predetermined value Is, for example, At 14 A, it is configured to output a lowering signal for lowering the operating frequency of the chamber (15) to the frequency control means (41) (see the droop region X1 in FIG. 6).
  • the frequency holding means (43) receives the detection signal from the detection resistor (R2), and when the supply current of the compressor motor (MC) decreases to a predetermined value Is, the frequency holding means (42) In addition to terminating the lowering operation, the current operating frequency is maintained until a predetermined time elapses (see the holding area X2 in FIG. 6).
  • the frequency increasing means (44) operates the operating frequency so that the supply current of the compressor motor (MC) becomes the predetermined value Is until a predetermined time elapses. It is configured to output a rising signal that gradually raises the frequency to the frequency control means (41) (see the relaxation region X3 in FIG. 6).
  • the counting means (45) is connected to the detection resistor (R It is configured to receive the detection signal from 2) and count the number of times that the supply current of the compressor motor (MC) has exceeded the predetermined value Is.
  • the operating time extending means (46) is configured to extend the operating time of the frequency holding means (43) and the frequency increasing means (44) as the number of counts of the rising counting means (45) increases. I have.
  • step ST1 it is determined whether or not the timer T14 has exceeded 5 seconds or is 0 seconds, that is, the timer T14 started in step ST6 to be described later is determined. It is determined whether or not 5 seconds have been counted. Until the time is up, the process proceeds from step ST1 to step ST2, where the compressor motor (MC) non-change area release processing characteristic of the present invention is performed. And return. If the supply current of the compressor motor (MC) is normal, the frequency control means (41) sets the frequency step N based on the discharge pipe temperature Td, and sets the capacity of the compressor (1). Controlling.
  • step ST4 determines whether a current droop request has been made. That is, in response to the detection signal from the detection resistor (R2), the frequency reduction means (42) determines whether or not the supply current of the compressor motor (MC) has exceeded a predetermined value.
  • step ST4 when the supply current exceeds the predetermined value Is of 14 A, the determination in step ST4 becomes YES, and the process proceeds to step ST5, where the optimum value of the current droop is calculated, and the frequency reduction means (42) The frequency step N at which the frequency is lowered is set to two steps, and a rise prohibition flag F9 described later is set. After that, the process moves to step ST6, starts timer T14, and moves to step S7. Then, it is determined whether or not the current frequency step N is the minimum current step N1. If the current frequency step N is not the minimum current step N1, the process moves from step ST7 to step ST8.
  • step ST8 a process of controlling the non-change area of the compressor (1) is performed.
  • timers T23 and T3 described later are 0, the timers T23 and T3 are started and the supply current is reduced to a predetermined value Is.
  • the counting means (45) adds 1 to the power counter C2 every time it exceeds, and in step ST9, predicts the change amount of the frequency step N in conjunction with the electric expansion valve (5) in step ST9.
  • the operation frequency of the compressor motor (MC) is controlled in step ST11. That is, the operating frequency is reduced by two steps based on the frequency step N set in step ST5.
  • the process returns to step ST2 to perform the process of releasing the non-change range.
  • the supply current of the compressor motor (MC) is currently increasing, the process returns and repeats the above operation. Will be.
  • the frequency step N is reduced by two steps in step ST5.
  • the current droop region X1 is executed by decreasing the current value by two steps every 5 seconds until the current value falls below the predetermined value Is.
  • step ST4 determines whether the supplied current of the compressor motor (MC) becomes smaller than the predetermined value Is.
  • the determination in step ST4 becomes NO, and in step ST12 to step ST14, the external heat exchange, which is the condensing temperature, is performed.
  • step ST2 which is a feature of the present invention, will be described with reference to FIG.
  • step ST31 it is determined in step ST31 whether or not the timer T23 has counted 45 minutes. In a normal state, there is no current droop request in step ST4, and in step ST14. If the external heat exchange temperature Tc does not rise rapidly, the timer T23 is set to 0, and the process proceeds to step ST34. In step ST31, if the timer T23 has exceeded 45 minutes, the process proceeds to step ST32, and the timer T23 is reset, the process proceeds to step ST33, the counter C2 is reset, and the process proceeds to step ST34.
  • This timer T23 is the maximum time for performing the process of the unchangeable range cancellation.
  • the timer T23 is started in the above-mentioned step ST8.
  • the counter C2 counts the number of times that the supply current exceeds the predetermined value Is in 45 minutes of the timer T23 in the step ST8.
  • step ST34 it is determined whether or not the counter C2 has exceeded 5. If the operation is normal, the value is 0, so that the process proceeds from step ST34 to step ST35, and whether or not the timer T3 is 0 Is determined. If the operation is normal, the timer T3 is 0, so that the process returns from the step ST35 to the flow of FIG.
  • step ST8 when the supply current of the compressor motor (MC) first exceeds the predetermined value Is, the timers T23 and T3 are started in step ST8, so the process has shifted from step ST11 to step ST2.
  • the judgments of ST34 and ST35 are both N ⁇ , and the process proceeds from step ST35 to step ST36 to judge whether or not the timer T3 has counted the time obtained by adding 5 x C2 minutes to 15 minutes. I do.
  • the timer T3 since the above-mentioned counter C2 counts the number of times the supply current exceeds the predetermined value Is for 45 minutes, it is determined whether or not the timer T3 has counted 20 minutes at the first rise. In the second time, it is determined whether or not 25 minutes have been counted, and the holding time of the frequency holding means (43) becomes longer as the number of times of ascending increases.
  • step ST36 Until the timer T3 counts a predetermined time, the determination in step ST36 becomes N ⁇ , the process proceeds to step ST37, the flag X7 is set to 10, and the process returns to FIG.
  • the flag X7 10
  • the operating frequency of the compressor motor (MC) is increased by 1 step every 2 minutes. That is, when the operating frequency is reduced step by step in step ST5, the rising prohibition flag F9 of the frequency step N is set in step ST5. Return without increasing step N.
  • step ST4 When the frequency step N is reduced and the supply current of the compressor motor (MC) becomes smaller than the predetermined value Is, the process moves from step ST4 to step ST2 via steps ST12 to ST14. At this time, the process proceeds from step ST36 to step ST37. Since the rising prohibition flag F9 is set, the frequency holding means is kept until the timer T3 counts a predetermined time. (43) will maintain the current frequency step N and execute the holding area X2.
  • step ST36 when the timer T3 of the step ST36 counts a predetermined time, for example, at the time of the first rising, after 20 minutes, The process proceeds from T36 to steps ST38 and ST39, resets the rising prohibition flag F9 and the lowering prohibition flag F10 of the frequency step N, and proceeds to step ST40. It is determined whether or not the time obtained by adding is counted. Specifically, as in step ST36 above, since the counter C2 counts the number of rises in the supply current exceeding the predetermined value Is for 45 minutes, the timer T3 is set to 25 at the first rise. In the second time, it is determined whether or not 30 minutes have been counted. As the number of rises increases, the holding time of the frequency increasing means (43) becomes longer. In this case, 5 minutes, which is the increase time of the frequency ⁇ large means (44), is secured.
  • step ST40 determines whether the timer T3 counts a predetermined time. If the timer T3 counts a predetermined time, the determination in step ST40 is NO, the process proceeds to step ST37, the flag X7 is set to 10, and the process returns to FIG.
  • the frequency step N should be raised by one step every two minutes to execute the relaxation area X3, and then restart. become.
  • the load is large because the supply current of the compressor motor (MC) increases, and the increase in the frequency step N increases under normal control, and this increase is moderated. In this way, the highest operable frequency step N is set. If the load decreases, the operating frequency of the compressor motor (MC) will decrease.
  • the frequency step N is increased until the timer T3 counts a predetermined time.
  • the determination in step ST40 becomes YES, the process proceeds to step ST41 and step ST42, and the timer T3 and the timer T3 are operated.
  • the lag X7 is reset and control returns to normal.
  • step ST36 and step ST40 the operating time extending means (46) extends the holding time of the frequency holding means (43) by 5 minutes.
  • the value of the counter C2 exceeds 5
  • the determination in the step ST34 becomes YES
  • the process proceeds to the step ST43, and the process proceeds to the step ST35 while keeping the counter C2 at 5. That is, the extension operation by the operation time extension means (46) is limited to a maximum of 5 times, and thereafter, the determination in the steps ST36 and ST40 is performed while the counter C2 is 5, and the above-described operation is performed. Will be.
  • step N of the compressor motor (MC) is the minimum current step NI in step ST7 in Fig. 4 above, the determination becomes YE S, and the process proceeds to step ST15 to execute the frequency OF.F circuit. Stop the operation of the compressor (1). Then, the process proceeds to step ST16, in which the thermostat is turned off, and the process returns to the main flow.
  • step ST14 If it is determined in step ST14 that the external heat exchange temperature Tc has exceeded 56 ° C and has increased by 2 ° C or more in 15 seconds, the process proceeds to step ST17, where it is determined whether or not the frequency step N is 4 or more. If it is 4 or more, it is set so that the frequency step N is decreased by 2 steps in step ST18, and if it is 3 or less, it is set so that the frequency step N is decreased by 1 step in step ST19. Thereafter, the process proceeds to step ST20, where the timer T15 is started.After that, the process proceeds to step ST21, where it is determined whether or not the frequency step N is 2, and when the frequency step N is 2 or more, The process proceeds to step ST8, where the frequency step N is reduced. On the other hand, if the frequency step N is 2, the process is the minimum step, so the process proceeds to step ST15 to perform thermo-off.
  • the supply current of the compressor motor (MC) is equal to the predetermined value I s or more, the frequency step N of the compressor (1) is decreased, the current frequency step N is held, and then the frequency step N is increased.
  • the operating frequency can be stabilized.
  • the current detecting means is constituted by the detecting resistor (R 2), but is not limited to this.
  • the present invention is used for an air conditioner having a compressor whose capacity is controlled by members.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Description

明 細 書
空気調和装置の運転制御装置
技術分野
本発明は、 空気調和装置の運転制御装置に関し、 特に、 圧縮機を駆動す るモータの電流垂下制御に係るものである。
背景技術
従来より、 空気調和装置には、 インバータにより容量制御される圧縮機 と、 四路切換弁と、 室外熱交換器と、 電動膨張弁と、 室内熱交換器とが順 に接続され、 室内温度と設定温度との差温に基づいて上記ィンバー夕の周 波数を制御して圧縮機の容量を増減制御するようにしているものがある (
' 8 9ダイキン スカイエア 技術ガイ ド<サービス ·パーツリスト編〉(1 9 8 9年 6月発行) P . 2 4 4 ) 。
そして、 上記圧縮機の高負荷時において、 該圧縮機に組み込まれたモー 夕への供袷電流が所定値に達すると、 運転周波数を低下して供給電流の異 常上昇を防止するようにしている。
上述した空気調和装置において、 圧縮機のモータに供給する電流の制御 は、 図 7に示すように、 圧縮機のモータに流れる供給電流(インバー夕前 の直流電流)がピーク電流 I mより低い所定値 I sになると、 運転周波数を 段階的に低下させる垂下域 X 1を設け、 供給電流が所定値 I sより低下す ると、 現在の運転周波数を 3分間保持させる保持域 X 2を設け、 該保持域 X 2を抜けると、 通常制御に移行するようにしている。
しかしながら、 このような電流制御においては、 運転周波数がハンチン グし、 これに伴って騒音が周期的に変化することになり、 耳ざわりである という問題があり、 また、 運転周波数のハンチングにより圧縮機の耐久性 が低下するという問題がある。 発明の開示
本発明は、 斯かる点に鑑みてなされたもので、 運転周波数を安定化して 騒音のハンチングを防止すると共に、 圧縮機の耐久性を向上させるように したものである。
上記の目的を達成するために、 本発明が講じた手段は、 圧縮機の運転周 波数を所定値に保持した後、 徐々に上昇させるようにしたものである。 具体的に、 図 1に示すように、 請求項 1に係る発明が講じた手段は、 先 ず、 容量可変の圧縮機(1 )と、 熱源側熱交換器(3 )と、 膨張機構(5 )と、 利用側熱交換器(6 )とが順に接続されてなる冷媒回路(9 )を備えた空気調 和装置を前提としている。
そして、 上記圧縮機(1 )の運転周波数を予め定められた速さで変更して 該圧縮機( 1 )の容量を制御する周波数制御手段( 4 1 )と、 上記圧縮機( 1 ) に流れる電流を検出する電流検出手段(R 2 )とが設けられている。 更に、 該電流検出手段(R 2 )の検出信号を受けて圧縮機( 1 )の供袷電流が所定値 になると、 上記圧縮機(1 )の運転周波数を低下させる低下信号を上記周波 数制御手段(4 1 )に出力する周波数低減手段(4 2 )と、 上記電流検出手段 (R 2 )の検出信号を受けて圧縮機(1 )の供袷電流が所定値まで低下すると、 上記周波数低減手段(4 2 )の低下動作を終了させると共に、 所定時間が経 過するまで現在の運転周波数を保持させる周波数保持手段(4 3 )とが設け られている。 加えて、 該周波数保持手段(4 3 )の保持動作が終了すると、 所定時間が経過するまで上記圧縮機( 1 )の供給電流が所定値になるように 運転周波数を上記予め定められた速さよりも遅い速さで上昇させる上昇信 号を上記周波数制御手段(4 1 )に出力する周波数増大手段(4 4 )が設けら れた構成としている。
また、 請求項 2に係る発明が講じた手段は、 電流検出手段(R 2 )の検出 信号を受けて圧縮機(1)のモータへの供給電流が所定値を越えた上昇回数 を計数する上昇計数手段(45)と、 該上昇計数手段(45)の計数回数が多 くなるに従って上記周波数保持手段(43)及び周波数増大手段(44)の動 作時間を延長させる動作時間延長手段(46)とが設けられた構成としてい る。
請求項 3では、 動作時間延長手段 (46) は、 上昇計数手段 (45) の 計数回数が多くなるに従って周波数保持手段 (43) の動作時間を延長す る。
上記の構成により、 請求項 1に係る発明では、 先ず、 冷媒回路(9)にお いては、 例えば、 熱源側熱交換器(3)で凝縮して液化した液冷媒が膨張機 構( 5 )で減圧された後、 利用側熱交換器( 6 )で蒸発して圧縮機( 1 )に戻る こととなる。
この空調運転時において、 周波数制御手段(41)は、 圧縮機(1)の運転 周波数を予め定められた速さで変更して該圧縮機(1)の容量を制御してお り、 例えば、 圧縮機(1)の吐出管温度が最適値になるように運転周波数を 設定している。
一方、 上記空調運転時においては、 電流検出手段(R 2)が圧縮機(1)の 供給電流を検出しており、 この電流検出手段(R 2)の検出信号を周波数低 減手段(42)が受け、 該供給電流が所定値以上になると、 所定の速さで低 下信号を出力して周波数制御手段(41)が運転周波数を低下させることに なる。 その後、 上記供給電流が所定値より小さくなると、 周波数保持手段 (43)が所定時間だけ現在の運転周波数を保持させる。
該周波数保持手段(43)が保持動作を終了すると、 周波数增大手段(4 4)が上昇信号を出力して周波数制御手段(41)が運転周波数を上記予め 定められた速さよりも遅い速さで増大させ、 該運転周波数の急激な上昇を 抑制することになる。
従って、 請求項 1に係る発明によれば、 圧縮機(1 )の供袷電流が所定値 以上になると、 該圧縮機(1 )の運転周波数を低下させた後、 現在周波数を 保持させ、 その後、 上記運転周波数を上記のように徐々に上昇させるよう にしたために、 運転周波数のハンチングを防止して該運転周波数を安定化 させることができる。 この結果、 この運転周波数の変動に伴う騒音の周期 的な変化を抑制することができるので、 低騒音化を図ることができると共 に、 上記運転周波数のハンチングによる圧縮機( 1 )の耐久性の低下を確実 に防止することができる。
また、 請求項 2に係る発明では、 上昇計数手段(4 5 )が圧縮機(1 )の供 袷電流の上昇回数を計数しており、 該上昇回数が多くなるに従つて動作時 間延長手段(4 6 )が上記周波数保持手段(4 3 )及び周波数増大手段(4 4 ) の動作時間を延長させ、 運転周波数の変動周期が大きくなるようにしてい る 0
従って、 請求項 2に係る発明によれば、 上記供給電流の上昇回数に伴つ て周波数保持手段(4 3 )及び周波数増大手段(4 4 )の動作時間を延長する ようにしたために、 より運転周波数の変動を確実に抑制することができる ので、 より低騒音化を図ることができると共に、 上記圧縮機(1 )の耐久性 の低下をより確実に防止することができる。
また、 請求項 3の発明でも、 供給電流の上昇回数に従って周波数保持手 段 (4 3 ) の動作時間が延長されるので、 低騒音化を達成でき、 圧縮機 (1 ) の耐久性を向上できる。
図面の簡単な説明
図 1は、 本発明の構成を示すブロック図である。
図 2は、 空気調和装置の冷媒配管系統を示す冷媒回路図である。 図 3は、 室外制御ュニッ 卜を示す電気回路図である。
図 4は、 電流垂下動作を示す制御フロー図である。
図 5は、 無変化域解除動作を示す制御フロー図である。
図 6は、 圧縮機のモータの供袷電流及び周波数ステップ Nの特性図であ る
図 7は、 従来の圧縮機のモータの供袷電流及び周波数ステッブ Nの特性 図である。
発明を実施するための最良の形態
以下、 本発明の実施例を図面に基づいて詳細に説明する。
図 2は、 本発明を適用した空気調和装置の冷媒配管系統を示し、 一台の 室外ュニッ 卜(A )に対して一台の室内ュニッ ト(B )が接続されたいわゆる セパレートタイプのものである。
上記室外ュニッ ト(A)には、 インバータにより運転周波数を可変に調節 されるスクロールタイプの圧縮機( 1 )と、 冷房運転時には図中実線のごと く、 暖房運転時には図中破線のごとく切換わる四路切換弁(2 )と、 冷房運 転時には凝縮器として、 暖房運転時には蒸発器として機能する熱源側熱交 換器である室外熱交換器(3 )と、 冷媒を減圧するための減圧部(2 0 )と、 圧縮機(1 )の吸入管に介設され、 吸入冷媒中の液冷媒を除去するためのァ キュムレー夕(7 )とが主要機器として配置されている。 また、 室内ュニッ 卜(B )には、 冷房違転時には蒸発器として、 暖房運転時には凝縮器として 機能する利用側熱交換器である室内熱交換器(6 )が配置されている。 そし て、 上記圧縮機( 1 )と四路切換弁( 2:)と室外側熱交換器( 3 )と減圧部( 2 ◦)と室内側熱交換器(6 )とアキュムレータ(7 )とは、 配管(8 )により順 次接続され、 冷媒の循環により熱移動を生ぜしめるようにした冷媒回路(9 )が ^成されている。 ここで、 上記減圧部(20)は、 ブリ ッジ状の整流回路(8 r)と、 該整流 回路(8 r)における一対の接続点(P, Q)に接続された共通路(8a)とを備 え、 該共通路(8a)には、 液冷媒を貯溜するためのレシーバ(4)と、 室外 熱交換器(3)の補助熱交換器(3 a)と、 液冷媒の減圧機能及び流量調節機 能を有する膨張機構である電動膨張弁(5)とが直列に配置されている。 そ して、 上記整流回路(8 r)における他の一対の接続点(R, S)には、 室外 熱交換器( 3 )側の配管( 8 )と室内熱交換器( 6 )側の配管( 8 )とが接続され ている。 更に、 上記整流回路(8 r)は、 上記共通路(8a)の上流側接続点(P )と室外熱交換器( 3 )側の接続点( S )とを槃ぎ外熱交換器( 3 )からレシ一 バ(4 )への冷媒流通のみを許容する第 1逆止弁(D 1 )を備えた第 1流入路 (8b 1)と、 上記共通路(8 a)の上流側接続点(P)と室内熱交換器(6)側の 接続点(R)とを繁ぎ室内熱交換器(6)からレシーバ(4)への冷媒流通のみ を許容する第 2逆止弁(D 2)を備えた第 2流入路(8b2)と、 上記共通路(8 a)の下流側接続点(Q)と室内熱交換器(6)側の接続点(R)とを繫ぎ電動膨 張弁(5)から室内熱交換器(6)への冷媒流通のみを許容する第 3逆止弁(D 3 )を備えた第 1流出路(8c 1)と、 上記共通路(8 a)の下流側接続点(Q) と、 室外熱交換器( 3 )側の接続点( S )とを繋ぎ電動膨張弁( 5 )から室外熱 交換器(3)への冷媒流通のみを許容する第 4逆止弁(D 4)を備えた第 2流 出路(8 c2)とが設けられている。
また、 上記整流回路(8 r)における共通路(8a)の両接続点(P, Q)の間 には、 キヤビラリチューブ(C)を介設してなる液封防止バイパス路(8f) が設けられて、 該液封防止バイパス路(8f)により、 圧縮機(1)の停止時 における液封を防止する一方、 上記レシーバ(4)の上部と共通路(8 a)の 下流側との間には、 開閉弁(SV)を備えたガス抜き路(4a)が接続されて いる。 尚、 上記キヤビラリチューブ(C)の減圧度は電動膨張弁(5)よりも 十分大きくなるように設定されていて、 通常運転時における電動膨張弁(5 )による冷媒流量調節機能を良好に維持しうるようになされている。
また、 (F1〜F4)は、 冷媒中の塵埃を除去するためのフィルタ、 (E R)は、 圧縮機(1)の運転音を低減させるための消音器である。
更に、 上記空気調和装置にはセンサ類が設けられていて、 (Thd)は、 圧 縮機(1)の吐出管に配置されて吐出管温度 Tdを検出するする吐出管セン サ、 (Tha)は、 室外ュニッ ト(A)の空気吸込口に配置されて外気温度であ る吸込空気温度 Taを検出する室外吸込センサ、 (The)は、 室外熱交換器(3 )に配置されて、 冷房運転時には凝縮温度となり、 暖房運転時には蒸発温 度となる外熱交温度 Tcを検出する外熱交センサ、 (Thr)は、 室内ュニッ ト(B)の空気吸込口に配置されて室内温度である吸込空気温度 Trを検出 する室内吸込センサ、 (The)は、 室内熱交換器(6)に配置されて、 冷房運 転時には蒸発温度となり、 暖房運転時には凝縮温度となる内熱交温度 Te を検出する内熱交センサ、 (HPS)は、 高圧冷媒圧力を検出して、 該高圧 冷媒圧力の過上昇によりオンとなつて高圧信号を出力する高圧圧力スィッ チ、 (LPS)は、 低圧冷媒圧力を検出して、 該低圧冷媒圧力の過低下によ りオンとなって低圧信号を出力する低圧圧力スィツチである。
そして、 上述した冷媒回路(9)において、 冷房運転時には、 室外熱交換 器(3)で凝縮して液化した液冷媒が第 1流入路(8b 1 )から流入し、 第 1 逆止弁(D 1 )を経てレシーバ( 4 )に貯溜され、 電動膨張弁( 5 )で減圧され た後、 第 1流出路( 8 c 1 )を経て室内熱交換器( 6 )で蒸発して圧縮機( 1 ) に戻る循環となる一方、 暖房運転時には、 室内熱交換器(6)で凝縮して液 化した液冷媒が第 2流入路( 8 b 2 )から流入し、 第 2逆止弁(D 2 )を経て レシーバ(4)に咛溜され、 電動膨張弁(5)で減圧された後、 第 2流出路(8 c 2)を経て室外熱交換器(3)で蒸発して圧縮機(1)に戻る循環となる。 図 3は、 上記室外ュニッ ト(A)を制御する室外制御ュニッ 卜(10)の電 気回路を示しており、 3相交流電源(11)に電磁開閉器(12)と整流器(1 3)と直流回路(14)とィンバータ(15)とを介して圧縮機モータ(MC) が接続される一方、 上記電源(11)の S相と T相とには、 電磁開閉器(1 6)及び変速制御用のリレー接点(17)を介してファンモータ(MF Ι,Μ F 2)が接続されている。 また、 上記電源(11)の R相と S相に接続され た電源ライン(18)には、 上記高圧圧力スィツチ(HPS)及び低圧圧カス ィツチ(L P S)によって作動する圧力開閉器(19.20)とリ レー接点(2 1)と圧縮機モータ(MC)の電磁開閉器(12)の励磁コイル(22)とが直 列に接続されてなる圧縮機開閉回路(23)と、 リレー接点(24)とファン モータ(MF 1,MF 2)の電磁開閉器(16)の励磁コイル(25)とが直列 に接続されてなるファン開閉回路(26)と、 リ レー接点(27)と四路切換 弁(2)の励磁コイル(28)とが直列に接铳されてなる切換制御回路(29) と、 リ レ一接点(30)と開閉弁(3 )の励磁コィル(31)とが直列に接続 されてなる開閉制御回路(32)とが並列に接続されている。
更に、 上記電源ライン(18)には、 送信器〔33)と受信器(34)とを有 する送受信回路(35)が接続されると共に、 該送受信回路(35)の信号ラ イン(36)と上記電源ライン(18)とはコネクタ(37)を介して室内ュニッ 卜(B)を制御する室内制御ュニッ 卜(図示省略)に接続されている。
また、 上記直流回路(14)には、 リアク トル(L)と抵抗(R 1)と 2つの コンデンサ(C 1, C 2)とが設けられると共に、 上記圧縮機モータ(MC) に流れる供給電流を検出するための検出用抵抗(R 2)が設けられ、 該検出 用抵抗( R 2 )が電流検出手段を構成している。
—方、 上記室外制御ュニッ 卜(10)には、 コントローラ(40)が設けら れ、 該コン トローラ(40)は、 上記検出用抵抗(R 2)を流れる圧縮機モー タ(MC)の供袷電流の検出信号が入力されると共に、 上記各センサ(Thd, 〜 , The)及び各スィツチ(HP S. L P S )の出力信号が入力されており、 該入力信号に基づいて空調運転を制御するように構成されている。
また、 上記コントローラ(40)には、 本発明の特徴として、 圧縮機モー タ(MC)の周波数制御手段(41)が設けられると共に、 圧縮機モータ(M C)の供給電流を制御するための周波数低減手段(42)と周波数保持手段(4 3)と周波数増大手段(44)と上昇計数手段(45)と動作時間延長手段(4 6)とが設けられている。
該周波数制御手段(41)は、 上記ィンバータ(15)の運転周波数を零か ら最大周波数まで 20ステップ Nに区分して、 各周波数ステップ Nを吐出 管温度 Tdに基づいて設定し、 圧縮機( 1 )の容量を制御するように構成さ れている。
上記周波数低減手段(42)は、 図 6に示すように、 検出用抵抗(R 2)か らの検出信号を受けて圧縮機モータ(MC)の供給電流が所定値 I sになる と、 例えば、 14 Aになると、 上記ィンバ一夕(15)の運転周波数を低下 させる低下信号を上記周波数制御手段(41)に出力するように構成されて いる(図 6垂下域 X 1参照)。 上記周波数保持手段(43)は、 検出用抵抗(R 2)からの検出信号を受けて圧縮機モータ(MC)の供給電流が所定値 I sま で低下すると、 上記周波数低減手段(42)の低下動作を終了させると共に、 所定時間が経過するまで現在の運転周波数を保持させるように構成されて いる(図 6保持域 X 2参照)。 上記周波数増大手段(44)は、 該周波数保持 手段(43)の保持動作が終了すると、 所定時間が経過するまで上記圧縮機 モータ(MC)の供給電流が所定値 I sになるように運転周波数を徐々に上 昇させる上昇信号を上記周波数制御手段(41)に出力するように構成され ている(図 6緩和域 X 3参照)。 上記計数手段(45)は、 上記検出用抵抗(R 2)からの検出信号を受けて圧縮機モータ(MC)の供給電流が所定値 I sを 越えた上昇回数を計数するように構成されている。 上記動作時間延長手段 (46)は、 該上昇計数手段(45)の計数回数が多くなるに従って上記周波 数保持手段(43)及び周波数増大手段(44)の動作時間を延長させるよう に構成されている。
次に、 上記圧縮機モータ(MC)の電流制御動作について、 図 4の制御フ ローに基づき説明する。
先ず、 空調運転時において、 先ず、 ステップ ST1において、 タイマ T 14が 5秒を越えたか、 又は、 0秒であるか否かを判定し、 つまり、 後述 するステップ ST 6でスタートさせたタイマ T14が 5秒を計数したか否 かを判定し、 タイムアップするまでは、 ステ.ップ ST1からステップ ST 2に移り、 本発明の特徴とする圧縮機モータ(MC)の無変化領域解除の処 理を行い、 リターンする。 そして、 上記圧縮機モータ(MC)の供給電流が 正常である場合には、 周波数制御手段(41)が、 周波数ステップ Nを吐出 管温度 Tdに基づいて設定し、 圧縮機(1)の容量を制御している。
一方、 上記タイマ T14がタイムアップすると、 上記ステップ ST1力、 らステップ ST 3に移り、 該タイマ T14をリセッ トして、 ステップ ST 4に移り、 電流垂下要求であつたか否かを判定する。 つまり、 検出用抵抗 (R 2)からの検出信号を受けて周波数低減手段(42)が圧縮機モータ(M C)の供給電流が所定値以上になったか否かを判定し、 例えば、 図 6に示 すように、 供給電流が 14 Aの所定値 I sを越えると、 該ステップ ST 4 の判定が YESとなり、 ステップ ST 5に移り、 電流垂下の最適値を算出 し、 周波数低減手段(42 )が低下させる周波数ステップ Nを 2ステップに 設定すると共に、 後述する上昇禁止フラグ F 9をセッ 卜する。 その後、 ス テツプ ST6に移り、 タイマ T14をスタートさせてステップ S丁 7に移 り、 現在の周波数ステツプ Nが最小電流ステップ N 1か否かを判定する。 そして、 現在の周波数ステップ Nが最小電流ステップ N 1でない場合には、 上記ステップ S T 7からステップ S T 8に移ることになる。
その後、 ステップ ST8において、 圧縮機(1)の無変化領域制御の処理 を行い、 後述するタイマ T23及び T3が 0の場合に、 タイマ T23及び T3をスター卜させると共に、 供給電流が所定値 Isを越えるごとに上昇 計数手段(45 )が力ゥンタ C 2に 1を加算した後、 ステップ S T 9におい て、 電動膨張弁(5)と連動して周波数ステップ Nの変化量を予測し、 ステツ プ ST10において、 電動膨張弁(5)を連動させた後、 ステップ ST11 において、 圧縮機モータ(MC)の運転周波数を制御する。 つまり、 上記ス テツプ S T 5において設定した周波数ステップ Nに基づいて 2ステップだ け運転周波数を低下させることになる。 その後、 上記ステップ ST2に戻 り、 無変化域解除の処理を行うことになるが、 現在は圧縮機モータ(MC) の供給電流が上昇しているので、 そのままリターンして上述の動作を繰返 すことになる。
つまり、 図 6に示すように、 上記圧縮機モータ(MC)の供給電流が所定 値 I sより大きくなると、 上記ステップ ST 5において周波数ステップ N を 2ステップ低下させることになり、 この供袷電流が所定値 I sより低下 するまで 5秒毎に 2ステップずつ低下させて電流の垂下域 X 1を実行する ことになる。
その後、 上記圧縮機モータ(MC)の供袷電流が所定値 I sより小さくな ると、 上記ステップ ST 4の判定が NOとなり、 ステップ ST12からス テツプ ST 14において、 凝縮温度である外熱交温度 Tcが急上昇したか 否かを判定する。 つまり、 タイマ T15が 15秒を計数するまで上記ステツ プ ST2に移り、 上述の動作を行う一方、 該タイマ T15が 15秒を計数 する又は 0のままであると、 外熱交温度 Tcが 56°Cを越えて 15秒間に 2°C以上上昇したか否かを判定し、 急上昇でない場合には、 ステップ ST 14からステップ ST 2に移ることになる。
そこで、 本発明の特徴とするステップ S T 2の無変化域解除処理につい て図 5に基づき説明する。
先ず、 このステップ ST 2に移ると、 ステップ ST31において、 タイ マ T23が 45分を計数したか否かを判定し、 正常状態においては、 上記 ステップ ST4において電流垂下要求がなく、 且つステップ ST14にお いて外熱交温度 Tcが急上昇でないときは、 タイマ T 23が 0に設定され ているので、 ステップ ST 34に移る。 上記ステップ ST 31において、 タイマ T23が 45分を越えた場合はステップ ST 32に移り、 該タイマ T 23をリセッ 卜すると共に、 ステップ ST33に移り、 カウンタ C2を リセッ トし、 ステップ ST 34に移る。 このタイマ T 23は、 無変化域解 除の処理を行う最大時間であつて、 圧縮機モータ(M C )の供給電流が一旦 所定値 Isを越えると、 上記ステップ ST 8においてスター卜することに なり、 上記カウンタ C 2はタイマ T 23の 45分間に供給電流が所定値 I sを越える回数を上記ステップ S T 8において計数している。
その後、 上記ステップ ST34で、 カウンタ C2が 5を越えているか否 かを判定し、 正常運転である場合には、 0であるので、 ステップ ST34 からステップ ST 35に移り、 タイマ T 3が 0か否かを判定する。 そして、 正常運転である場合には、 タイマ T 3が 0であるので、 該ステップ ST 3 5から図 4のフローに戻ることになる。
一方、 上記圧縮機モータ(MC)の供給電流が最初に所定値 I sを越える と、 上記ステップ S T 8において、 タイマ T23及び T 3がスター卜する ので、 上記ステップ ST11からステップ S T 2に移った際、 上記ステツ プ ST31. ST34及び ST35の判定が何れも N〇となり、 該ステツ プ ST35からステップ ST36に移り、 上記タイマ T 3が 15分に 5 x C 2分を加算した時間を計数したか否かを判定する。 具体的に、 上記カウ ンタ C 2が 45分間における供給電流の所定値 Isを越えた上昇回数を計 数しているので、 最初の上昇時は、 タイマ T3が 20分を計数したか否か を判定し、 2回目においては、 25分を計数したか否かを判定し、 上昇回 数が多くなるに従つて周波数保持手段( 43 )の保持時間が長くなる。
そして、 上記タイマ T3が所定時間を計数するまで、 上記ステップ ST 36の判定が N〇となり、 ステップ ST 37に移り、 フラグ X 7を 10に セッ 卜して図 4にリターンすることになる。 このフラグ X 7が 10である ときは、 圧縮機モータ(MC)の運転周波数を上昇に対しては 2分間で 1ス テツプずつ行うようにしている。 つまり、 上記ステップ S T 5において運 転周波数を段階的に低下しているときには、 該ステップ ST 5においては 周波数ステップ Nの上昇禁止フラグ F 9をセッ トしているので、 上記ステツ プ ST37において、 周波数ステップ Nを上昇させることなく リターンす ることに る。
また、 上記周波数ステップ Nを低下して圧縮機モータ(MC)の供給電流 が所定値 I sより小さくなると、 上記ステップ ST 4からステップ ST 1 2〜ST 14を経てステップ ST 2に移ることになる力 \ その際において も、 上記ステップ ST 36からステップ S T37に移ることになり、 上記 上昇禁止フラグ F 9がセッ トされているので、 上記タイマ T 3が所定時間 を計数するまで、 周波数保持手段(43)が現在の周波数ステップ Nを維持 し、 保持域 X 2を実行することになる。
その後、 上記ステップ ST36のタイマ T3が所定時間を計数すると、 例えば、 最初の上昇時においては、 20分を経過すると、 上記ステップ S T36からステップ ST38及び ST 39に移り、 周波数ステップ Nの上 昇禁止フラグ F 9と低下禁止フラグ F 10とをリセッ トしてステップ ST 40に移り、 上記タイマ丁 3が 20分に 5 X C 2分を加算した時間を計数 したか否かを判定する。 具体的に、 上記ステップ ST36と同様に、 カウ ンタ C 2が 45分間における供給電流の所定値 I sを越えた上昇回数を計 数しているので、 最初の上昇時は、 タイマ T 3が 25分を計数したか否か を判定し、 2回目においては、 30分を計数したか否かを判定し、 上昇回 数が多くなるに従つて周波数増大手段( 43 )の保持時間が長くなつても周 波数增大手段 (44) の増大時間の 5分が確保される。
そして、 上記タイマ T3が所定時間を計数するまで、 上記ステップ ST 40の判定が NOとなり、 上記ステップ ST37に移り、 フラグ X7を 1 0にセッ 卜して図 4にリターンすることになる。 今回においては、 上記ス テツプ ST38で上昇禁止フラグ F 9をリセッ トしているので、 周波数ス テツプ Nを 2分ごとに 1ステップずつ上昇して緩和域 X3を実行し、 リ夕 ーンすることになる。 つまり、 現在の状態においては、 圧縮機モータ(M C)の供給電流が上昇するときであるので、 負荷が大きい状態であり、 通 常の制御では周波数ステップ Nの上昇が大きくなり、 この上昇を緩和させ るようにして運転可能な最も高い周波数ステップ Nになるようにしている。 尚、 負荷が低下した場合には、 圧縮機モータ(MC)の運転周波数を低下さ せることになる。
この周波数ステップ Nの上昇動作をタイマ T 3が所定時間を計数するま で行い、 所定時間が経過すると、 上記ステップ ST40の判定が YE Sと なり、 ステップ ST41及びステップ ST42に移り、 タイマ T3及びフ ラグ X 7をリセッ 卜して通常の制御に戻ることになる。
その後、 上記タイマ T 23が 45分を計数するまでに再度供給電流が所 定値 I sを越えると、 上記力ゥンタ C 2を加算して上記ステップ S T 36 及びステップ ST40において動作時間延長手段(46)が周波数保持手段 (43)の保持時間を 5分づっ延長する一方、 上記カウンタ C 2が 5を越え ると、 上記ステップ ST 34の判定が YESとなり、 ステップ ST43に 移り、 該カウンタ C 2を 5に保持したままステップ ST35に移ることに なる。 つまり、 上記動作時間延長手段(46)による延長動作は最大 5回ま でとして、 その後は、 カウンタ C 2が 5の状態で上記ステップ S T 36及 びステップ ST40の判定を行い、 上述の動作を行うことになる。
—方、 上記図 4におけるステップ ST7において、 圧縮機モータ(MC) の周波数ステップ Nが最小電流ステップ N Iである場合、 判定が YE Sと なり、 ステップ ST15に移り、 周波数 OF. F回路を実行し、 圧縮機(1) の運転を停止する。 その後、 ステップ ST16に移り、 サーモオフ状態と して、 メインフローに戻ることになる。
また、 上記ステップ ST14において、 外熱交温度 Tcが 56°Cを越え、 且つ 15秒間に 2 °C以上上昇したと判定すると、 ステップ ST17に移り、 周波数ステップ Nが 4以上か否かを判定し、 4以上である場合にはステツ プ ST18で周波数ステップ Nを 2ステップ低下させるように設定し、 3 以下である場合にはステップ ST 19で周波数ステップ Nを 1ステップ低 下させるように設定する。 その後、 ステップ ST20に移り、 タイマ T1 5をスター卜させた後、 ステップ ST21に移り、 上記周波数ステップ N が 2であるか否かを判定し、 該周波数ステップ Nが 2以上である場合には、 上記ステップ ST 8に移り、 周波数ステップ Nを低下させる一方、 周波数 ステップ Nが 2である場合には、 最小ステップであるので、 上記ステップ ST15に移り、 サーモオフすることになる。
従って、 本実施例によれば、 圧縮機モータ(MC)の供給電流が所定値 I s以上になると、 該圧縮機(1 )の周波数ステップ Nを低下させた後、 現在 の周波数ステップ Nを保持させ、 その後、 上記周波数ステップ Nを上昇さ せるようにしたために、 運転周波数のハンチングを防止して該運転周波数 を安定化させることができる。 この結果、 この運転周波数の変動に伴う騒 音の周期的な変化を抑制することができるので、 低騒音化を図ることがで きると共に、 上記運転周波数のハンチングによる圧縮機(1 )の耐久性の低 下を確実に防止することができる。
また、 上記供給電流の上昇回数に伴って周波数保持手段(4 3 )の動作時 間を延長するようにしたために、 より運転周波数の変動を抑制することが できるので、 より低騒音化を図ることができると共に、 上記圧縮機(1 )の 耐久性の低下をより確実に防止することができる。
尚、 本各実施例においては、 セパレートタイプの空気調和装置について 説明したが、 本発明は、 各種の空気調和装置に適用できることは勿論であ
Ό
また、 電流検出手段は、 検出用抵抗(R 2 )で構成したが、 これに限られ るものではない。
産業上の利用分野
この発明は、 ィンバ一夕により容量制御される圧縮機を有する空気調和 機に利用される。

Claims

請求の範囲
1. 容量可変の圧縮機(1)と、 熱源側熱交換器(3)と、 膨張機構 (5)と、 利用側熱交換器(6)とが順に接続されてなる冷媒回路(9)を備え、 力、つ上 記圧縮機(1)を駆動するモータの運転周波数を負荷に応じた周波数になる ように予め定められた速さで変更して、 該圧縮機(1 )の容量を制御する周 波数制御手段(41)を備えた空気調和装置において、
上記圧縮機(1)の上記モータに流れる電流を検出する電流検出手段(R 2)と、
該電流検出手段(R 2 )の検出信号を受けて圧縮機( 1 )の供給電流が所定 値になると、 上記圧縮機(1)の上記モータの運転周波数を低下させる低下 信号を上記周波数制御手段(41)に出力する周波数低減手段(42)と、 上記電流検出手段(R 2 )の検出信号を受けて圧縮機( 1 )の供袷電流が所定 値まで低下すると、 上記周波数低減手段(42)の低下動作を終了させると 共に、 所定時間が経過するまで現在の運転周波数を保持させる周波数保持 手段(43)と、
該周波数保持手段(43)の保持動作が終了すると、 所定時間が経過する まで上記圧縮機( 1 )の供給電流が所定値になるように運転周波数を上記予 め定められた速さよりも遅い速さで上昇させる上昇信号を上記周波数制御 手段(41)に出力する周波数増大手段(44)とを備えていることを特徴と する空気調和装置の運転制御装置。
2. 容量可変の圧縮機(1)と、 熱源側熱交換器(3)と、 膨張機構(5)と、 利用側熱交換器(6)とが順に接続されてなる冷媒回路(9)を備え、 かつ上 記圧縮機(1)を駆動するモータの運転周波数を負荷に応じた周波数になる ように予め定められた速さで変更して、 該圧縮機(1)の容量を制御する周 波数制御手段(41)を備えた空気調和装置において、 上記圧縮機(1)の上記モータに流れる電流を検出する電流検出手段(R 2)と、
該電流検出手段(R 2 )の検出信号を受けて圧縮機( 1 )の供給電流が所定 値になると、 上記圧縮機( 1 )の上記モータの運転周波数を低下させる低下 信号を上記周波数制御手段(41)に出力する周波数低減手段(42)と、 上記電流検出手段(R 2 )の検出信号を受けて圧縮機( 1 )の供給電流が所定 値まで低下すると、 上記周波数低減手段(42)の低下動作を終了させると 共に、 所定時間が経過するまで現在の運転周波数を保持させる周波数保持 手段(43)と、
該周波数保持手段(43)の保持動作が終了すると、 所定時間が経過する まで上記圧縮機( 1 )の供給電流が所定値になるように運転周波数を上記予 め定められた速さよりも遅い速さで上昇させる上昇信号を上記周波数制御 手段(41)に出力する周波数増大手段(44)と、
上記電流検出手段(R 2)の検出信号を受けて圧縮機(1)の供給電流が所 定値を越えた上昇回数を計数する上昇計数手段(45)と、
該上昇計数手段( 45 )の計数回数が多くなるに従つて上記周波数保持手 段(43)及び周波数増大手段(44)の動作時間を延長させる動作時間延長 手段(46)とを備えていることを特徴とする空気調和装置の運転制御装置 c
3. 容量可変の圧縮機(1)と、 熱源側熱交換器(3)と、 膨張機構(5)と、 利用側熱交換器(6)とが順に接続されてなる冷媒回路(9)を備え、 かつ上 記圧縮機(1)を駆動するモータの運転周波数を負荷に応じた周波数になる ように予め定められた速さで変更して、 該圧縮機( 1 )の容量を制御する周 波数制御手段(41)を備えた空気調和装置において、
上記圧縮機( 1 )の上記モータに流れる電流を検出する電流検出手段(R 2)と、 該電流検出手段(R 2)の検出信号を受けて圧縮機(1)の供給電流が所定 値になると、 上記圧縮機(1)の上記モータの運転周波数を低下させる低下 信号を上記周波数制御手段(41)に出力する周波数低減手段(42)と、 上記電流検出手段(R 2 )の検出信号を受けて圧縮機( 1 )の供給電流が所定 値まで低下すると、 上記周波数低減手段(42)の低下動作を終了させると 共に、 所定時間が経過するまで現在の運転周波数を保持させる周波数保持 手段(43)と、
該周波数保持手段(43)の保持動作が終了すると、 所定時間が経過する まで上記圧縮機( 1 )の供給電流が所定値になるように運転周波数を上記予 め定められた速さよりも遅い速さで上昇させる上昇信号を上記周波数制御 手段(41)に出力する周波数増大手段(44)と、'
上記電流検出手段(R 2 )の検出信号を受けて圧縮機( 1 )の供袷電流が所 定値を越えた上昇回数を計数する上昇計数手段(45)と、
該上昇計数手段(45)の計数回数が多くなるに従って上記周波数保持手 段(43)の動作時間を延長させる動作時間延長手段(46)とを備えている ことを特徴とする空気調和装置の運転制御装置。
PCT/JP1993/000797 1992-06-17 1993-06-15 Operation control apparatus for air-conditioner WO1993025853A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69322642T DE69322642T2 (de) 1992-06-17 1993-06-15 Steuergerät zum betreiben einer klimaanlage
EP93913520A EP0645589B1 (en) 1992-06-17 1993-06-15 Operation control apparatus for air-conditioner
US08/356,270 US5771704A (en) 1992-06-17 1993-06-15 Operation control apparatus for air conditioner
AU43560/93A AU4356093A (en) 1992-06-17 1993-06-15 Operation control apparatus for air-conditioner
KR1019940704656A KR950702301A (ko) 1992-06-17 1994-12-16 공기조화장치의 운전제어장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4157906A JP2783065B2 (ja) 1992-06-17 1992-06-17 空気調和装置の運転制御装置
JP4/157906 1992-06-17

Publications (1)

Publication Number Publication Date
WO1993025853A1 true WO1993025853A1 (en) 1993-12-23

Family

ID=15660032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000797 WO1993025853A1 (en) 1992-06-17 1993-06-15 Operation control apparatus for air-conditioner

Country Status (9)

Country Link
US (1) US5771704A (ja)
EP (1) EP0645589B1 (ja)
JP (1) JP2783065B2 (ja)
KR (1) KR950702301A (ja)
CN (1) CN1050417C (ja)
AU (1) AU4356093A (ja)
DE (1) DE69322642T2 (ja)
ES (1) ES2125987T3 (ja)
WO (1) WO1993025853A1 (ja)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425295B2 (ja) * 1996-04-19 2003-07-14 東芝キヤリア株式会社 空気調和システム装置
JPH1114124A (ja) * 1997-06-20 1999-01-22 Sharp Corp 空気調和機
JP3861410B2 (ja) * 1997-10-28 2006-12-20 株式会社デンソー 車両用空調装置
JP4044665B2 (ja) * 1998-03-13 2008-02-06 新日本製鐵株式会社 溶接性に優れたbn析出強化型低炭素フェライト系耐熱鋼
KR100301500B1 (ko) * 1998-11-28 2001-09-22 구자홍 인버터냉장고의공진주파수제어장치및방법
US6226998B1 (en) * 1999-03-26 2001-05-08 Carrier Corporation Voltage control using engine speed
US6196012B1 (en) * 1999-03-26 2001-03-06 Carrier Corporation Generator power management
JP3703346B2 (ja) * 1999-09-24 2005-10-05 三菱電機株式会社 空気調和機
JP2002079828A (ja) * 2000-09-07 2002-03-19 Suzuki Motor Corp 電気自動車用空調装置
JP2002202064A (ja) * 2001-01-09 2002-07-19 Toyota Industries Corp 電動式圧縮機の制御方法
US6623246B2 (en) * 2001-04-13 2003-09-23 Lg Electronics Inc. Apparatus and method for controlling operation of linear motor compressor
JP4782941B2 (ja) * 2001-05-16 2011-09-28 サンデン株式会社 車両用空気調和装置
KR100429561B1 (ko) * 2001-08-07 2004-05-04 주식회사 휴로펙 인버터형 공기조화기의 입력 전류 확인 장치
JP3992195B2 (ja) * 2003-11-26 2007-10-17 株式会社日立製作所 空気調和機
US7387498B2 (en) * 2003-12-04 2008-06-17 York International Corporation System and method for noise attenuation of screw compressors
KR100860717B1 (ko) * 2004-04-12 2008-09-29 요크 인터내셔널 코포레이션 냉각장치의 소음감소 조절장치 및 조절방법
US7836715B2 (en) * 2004-09-20 2010-11-23 Nissan North America, Inc. Air conditioner control logic for compressor noise and torque management
US7739882B2 (en) * 2006-02-28 2010-06-22 Dometic, LLC Variable speed control
BRPI0702537A2 (pt) * 2007-06-01 2009-01-20 Whirlpool Sa sistema de climatizaÇço de cabine veicular
KR101470631B1 (ko) * 2008-03-12 2014-12-08 엘지전자 주식회사 공기 조화기의 제어방법
EP2321594B1 (en) * 2008-08-07 2018-12-05 Carrier Corporation Discrete frequency operation for unit capacity control
US8209057B2 (en) * 2008-11-17 2012-06-26 Liebert Corporation System and method for forming universal control panel
US8508166B2 (en) 2009-08-10 2013-08-13 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US8264192B2 (en) 2009-08-10 2012-09-11 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
JP5373532B2 (ja) * 2009-10-06 2013-12-18 アズビル株式会社 空調操作装置および空調操作方法
CN101832618B (zh) * 2010-04-29 2012-07-11 海信(山东)空调有限公司 空调器压缩机频率控制方法及控制装置
CN101865515A (zh) * 2010-05-26 2010-10-20 广东欧科空调制冷有限公司 利用电流变化来控制系统负荷的空调机组
KR101689724B1 (ko) * 2010-06-21 2017-01-02 엘지전자 주식회사 공기조화기 및 그 제어방법
CN102042648B (zh) * 2010-11-29 2012-10-03 青岛海信日立空调系统有限公司 热回收式多联空调机组
US9145893B2 (en) 2011-06-08 2015-09-29 Bendix Commercial Vehicle Systems Llc Current control via speed control for driving screw compressor under cold conditions
JP2013060907A (ja) * 2011-09-14 2013-04-04 Panasonic Corp 圧縮機の制御装置
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
EP2883302B1 (en) 2012-08-10 2020-09-30 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping
CN102937322B (zh) * 2012-11-29 2014-11-26 海信(山东)空调有限公司 空调压缩机的转速控制方法及空调器
KR101983697B1 (ko) * 2013-09-23 2019-06-04 한온시스템 주식회사 차량용 히트 펌프 시스템의 전동 압축기 제어 방법
CN104515254B (zh) * 2013-09-30 2017-02-08 海尔集团公司 一种空调压缩机频率控制方法
JP5932759B2 (ja) * 2013-11-21 2016-06-08 三菱電機株式会社 空気調和機
CN105091196B (zh) * 2014-05-09 2018-04-03 广东美的暖通设备有限公司 变频压缩机运行频率的调节方法、装置及变频空调系统
CN104410347B (zh) * 2014-09-29 2017-10-17 四川长虹电器股份有限公司 一种驱动压缩机的方法及驱动压缩机的装置
DE102014221411A1 (de) * 2014-10-22 2016-04-28 BSH Hausgeräte GmbH Kältegerät
JP6401658B2 (ja) * 2015-05-08 2018-10-10 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN105588269B (zh) * 2015-07-01 2018-11-30 青岛海信日立空调系统有限公司 一种空调节能方法、装置及系统
AU2017222697B2 (en) 2016-02-22 2022-01-20 Dometic Sweden Ab Vehicle air conditioner
WO2017143394A1 (en) 2016-02-22 2017-08-31 Dometic Sweden Ab Air-conditioner control
JP2018148772A (ja) * 2017-03-09 2018-09-20 アイシン精機株式会社 ポンプ制御装置
CN107192096A (zh) * 2017-06-05 2017-09-22 广东美的暖通设备有限公司 变频控制模块的检测系统及检测方法
CN107218702B (zh) * 2017-06-12 2020-01-14 广东美的暖通设备有限公司 空调器及空调器频率调节方法和计算机可读存储介质
WO2019097448A1 (en) * 2017-11-16 2019-05-23 Dometic Sweden Ab Air conditioning apparatus for recreational vehicles
JP7077753B2 (ja) * 2018-05-07 2022-05-31 三菱電機株式会社 除湿機
IT201900019193A1 (it) 2019-10-17 2021-04-17 Dometic Sweden Ab Apparato di condizionamento dell'aria per veicoli ricreativi
KR20210085246A (ko) * 2019-12-30 2021-07-08 엘지전자 주식회사 인버터의 주파수 조절을 통해 제어되는 온수기
CN114459131B (zh) * 2020-11-10 2023-01-24 广东美的制冷设备有限公司 一种空调控制方法、装置、设备及存储介质
CN112963950B (zh) * 2021-03-04 2022-03-08 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN115978750B (zh) * 2021-10-15 2024-08-23 广东美的制冷设备有限公司 空调器及其控制方法、计算机可读存储介质
CN115900154A (zh) * 2022-11-07 2023-04-04 珠海格力电器股份有限公司 一种压缩机降噪控制方法、装置及空调设备
CN116007253A (zh) * 2023-02-16 2023-04-25 珠海格力电器股份有限公司 压缩机的控制方法、装置和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159543A (ja) * 1984-01-26 1985-08-21 Daikin Ind Ltd 空気調和装置の運転制御装置
JPS62111800U (ja) * 1986-01-07 1987-07-16
JPS62258965A (ja) * 1986-04-01 1987-11-11 ダイキン工業株式会社 冷凍装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152853A (ja) * 1984-01-20 1985-08-12 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH082719B2 (ja) * 1985-11-12 1996-01-17 大日本印刷株式会社 感熱転写シ−ト
JPS62178832A (ja) * 1986-02-03 1987-08-05 Hitachi Ltd インバ−タ付空気調和機の制御回路
JPS6332255A (ja) * 1986-07-25 1988-02-10 株式会社東芝 空気調和機
JPH067022B2 (ja) * 1988-02-01 1994-01-26 三菱電機株式会社 空気調和機
JP2752125B2 (ja) * 1989-02-10 1998-05-18 株式会社東芝 空気調和機の制御装置
JPH03177736A (ja) * 1989-12-05 1991-08-01 Toshiba Audio Video Eng Corp 空気調和装置
KR920009180B1 (ko) * 1990-11-20 1992-10-14 삼성전자 주식회사 공기조화기의 전류 제어회로 및 그 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159543A (ja) * 1984-01-26 1985-08-21 Daikin Ind Ltd 空気調和装置の運転制御装置
JPS62111800U (ja) * 1986-01-07 1987-07-16
JPS62258965A (ja) * 1986-04-01 1987-11-11 ダイキン工業株式会社 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0645589A4 *

Also Published As

Publication number Publication date
EP0645589A1 (en) 1995-03-29
CN1084627A (zh) 1994-03-30
DE69322642D1 (de) 1999-01-28
ES2125987T3 (es) 1999-03-16
AU4356093A (en) 1994-01-04
US5771704A (en) 1998-06-30
CN1050417C (zh) 2000-03-15
EP0645589B1 (en) 1998-12-16
KR950702301A (ko) 1995-06-19
DE69322642T2 (de) 1999-06-02
JP2783065B2 (ja) 1998-08-06
JPH062926A (ja) 1994-01-11
EP0645589A4 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
WO1993025853A1 (en) Operation control apparatus for air-conditioner
JP3341404B2 (ja) 空気調和装置の運転制御装置
WO2006112322A1 (ja) 空気調和機
JP2500519B2 (ja) 空気調和装置の運転制御装置
WO2006112321A1 (ja) 空気調和機
JP2500522B2 (ja) 冷凍装置の運転制御装置
JP2002106980A (ja) 冷凍装置
JP3097323B2 (ja) 空気調和装置の運転制御装置
JP2011007482A (ja) 空気調和装置
JP4269476B2 (ja) 冷凍装置
JP2689599B2 (ja) 空気調和装置の運転制御装置
JP2551238B2 (ja) 空気調和装置の運転制御装置
JP2760218B2 (ja) 空気調和装置の油回収運転制御装置
JPH0833246B2 (ja) 冷凍装置の運転制御装置
JPH05264113A (ja) 空気調和装置の運転制御装置
JP2842020B2 (ja) 空気調和装置の運転制御装置
JP2757685B2 (ja) 空気調和装置の運転制御装置
JP2666660B2 (ja) 空気調和装置の運転制御装置
JPH06100395B2 (ja) 冷凍装置の運転制御装置
JP3214145B2 (ja) 冷凍装置の運転制御装置
JPH10132406A (ja) 冷凍装置
JPH0814698A (ja) 空気調和装置の運転制御装置
JP2768148B2 (ja) 空気調和装置の運転制御装置
JPH08100944A (ja) 空気調和機の運転制御装置
JP2701664B2 (ja) 空気調和装置の電動弁駆動制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993913520

Country of ref document: EP

Ref document number: 08356270

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993913520

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993913520

Country of ref document: EP