WO2006112321A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2006112321A1
WO2006112321A1 PCT/JP2006/307735 JP2006307735W WO2006112321A1 WO 2006112321 A1 WO2006112321 A1 WO 2006112321A1 JP 2006307735 W JP2006307735 W JP 2006307735W WO 2006112321 A1 WO2006112321 A1 WO 2006112321A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
frequency
refrigerant
control
bypass circuit
Prior art date
Application number
PCT/JP2006/307735
Other languages
English (en)
French (fr)
Inventor
Hideki Sangenya
Hidehiko Kataoka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006112321A1 publication Critical patent/WO2006112321A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner.
  • Conventional air conditioners include a refrigerant circuit including a bypass circuit that returns the refrigerant to the suction side of the compressor, and capacity control is performed by a bypass circuit opening and closing unit that opens and closes the bypass circuit (patent) Reference 1).
  • the capacity of the air conditioner is controlled mainly by the frequency control of the compressor in normal operation, and when the capacity needs to be further reduced after the compressor frequency reaches the minimum operating frequency, the bypass circuit switching unit Is opened and the capacity is reduced. Then, capacity control is performed by opening and closing the bypass circuit opening and closing section while the frequency of the compressor is kept constant.
  • Patent Document 1 JP-A-2-97853
  • the opening and closing of the bypass circuit opening and closing unit may be frequently repeated. If the opening and closing of the bypass circuit opening / closing part is repeated frequently, refrigerant noise may be repeatedly generated, which may cause discomfort to the user.
  • the subject of this invention is providing the air conditioner which can suppress generation
  • An air conditioner is an air conditioner including a refrigerant circuit including a compressor, an outdoor heat exchanger, a first expansion valve, and a first indoor heat exchanger, wherein the bypass circuit and the bypass A circuit opening / closing part and a control part are provided.
  • the bypass circuit is a circuit for bypassing the refrigerant circuit and returning the refrigerant to the suction side of the compressor.
  • the bypass circuit opening / closing unit is provided on the bypass circuit and opens and closes the bypass circuit. Then, the control unit performs capacity control by the frequency control of the compressor, and the frequency of the compressor reaches the first frequency that is the lowest operating frequency. If the capacity of the compressor needs to be further reduced after the compressor frequency is lowered, the capacity is adjusted by opening the bypass circuit opening and closing the bypass circuit opening and closing the compressor. Perform capacity control in the first control mode.
  • An air conditioner according to a second invention is the air conditioner according to the first invention, wherein the control unit opens the bypass circuit opening / closing unit and sets the frequency of the compressor to the first frequency in the first control mode.
  • the second frequency is greater than
  • An air conditioner according to a third aspect of the present invention is the air conditioner of the first aspect or the second aspect, wherein the control unit is a third unit in which the frequency of the compressor is higher than the first frequency in the first control mode.
  • the control unit is a third unit in which the frequency of the compressor is higher than the first frequency in the first control mode.
  • the air conditioner when the frequency of the compressor reaches a third frequency higher than the first frequency in the first control mode, the air conditioner switches to the second control mode. That is, when it is appropriate to perform capacity control by frequency control of the compressor regardless of the bypass circuit, appropriate capacity control can be performed by shifting to the second control mode.
  • An air conditioner according to a fourth invention is the air conditioner according to any one of the first invention and the third invention, and further includes a receiver.
  • the receiver 1 is located between the outdoor heat exchanger and the first indoor heat exchanger in the refrigerant circuit and on the opposite side of the compressor, and can store liquid refrigerant.
  • the nois circuit is connected from the receiver to the suction side of the compressor.
  • small capacity control is performed using a venting circuit connected to the suction side of the compressor. Is done. That is, the capacity of the receiver can be controlled by returning the refrigerant to the suction side of the compressor.
  • the refrigerant noise can be kept relatively small by returning the receiver as much as possible to the suction side of the compressor.
  • the air conditioner according to the fifth invention is the air conditioner according to any of the first invention and the fourth invention, wherein the bypass circuit connects the suction pipe and the discharge pipe connected to the compressor. It is a hot gas bypass circuit.
  • An air conditioner according to a sixth invention is the air conditioner according to any of the first invention and the fifth invention, wherein the refrigerant circuit is arranged in parallel with the first expansion valve and the first indoor heat exchanger.
  • a second indoor heat exchanger and a second expansion valve are arranged in parallel with the first expansion valve and the first indoor heat exchanger.
  • This air conditioner is a so-called multi-type air conditioner equipped with a plurality of indoor heat exchangers, and has a large load fluctuation. Therefore, there is a strong demand for capacity control. In this air conditioner, capacity control can be performed appropriately and refrigerant noise can be suppressed.
  • An air conditioner connects a compressor, an outdoor heat exchanger, a first expansion valve, a heat exchange in the first chamber, and a suction side and a discharge side of the compressor.
  • a control method of an air conditioner comprising a refrigerant circuit including a bypass circuit that is provided on the bypass circuit and a bypass circuit opening / closing unit that opens and closes the bypass circuit, the frequency control step, the determination step, and the first control Control mode step.
  • capacity control is performed by frequency control of the compressor.
  • the determination step it is determined whether the frequency of the compressor reaches the first frequency, which is the lowest operating frequency, and whether or not a capacity reduction is necessary.
  • the bypass circuit is opened and closed. Open the bypass circuit and open and close the bypass circuit opening / closing section. Capacity control is performed in the first control mode, which adjusts the capacity by controlling the frequency of the compressor.
  • the frequency of opening and closing the bypass circuit opening and closing unit can be reduced during small capacity control, so that the generation of refrigerant noise during small capacity control can be suppressed.
  • the compressor frequency is set to the second frequency that is higher than the first frequency, so that the capacity is excessively reduced by opening the bypass circuit. Can be suppressed.
  • the refrigerant noise can be suppressed to a relatively low level by using a venting circuit connected to the suction side of the compressor.
  • capacity control can be performed by using a hot gas bypass circuit that connects the suction pipe and the discharge pipe connected to the compressor.
  • the air conditioner pertaining to the sixth aspect of the invention can appropriately control the capacity and suppress the refrigerant noise.
  • the frequency of opening and closing the bypass circuit opening and closing unit can be reduced during small capacity control, so that the generation of refrigerant noise during small capacity control can be suppressed.
  • FIG. 1 is a refrigerant circuit diagram showing a configuration of an air conditioner.
  • FIG. 2 is a control block diagram of the air conditioner.
  • FIG. 3 is a flowchart at the time of transition from the normal control mode to the small capacity control mode.
  • FIG. 4 is a flowchart when shifting from the small capacity control mode to the normal control mode.
  • FIG. 1 shows a refrigerant circuit diagram showing a configuration of an air conditioner 100 that is effective in one embodiment of the present invention.
  • This air conditioner 100 is an air conditioner that heats and cools a house, and a plurality of indoor units 2a-2c are connected to one outdoor unit 1.
  • V a so-called multi-type air conditioner. It is.
  • the indoor units 2a-2c are connected to the outdoor unit 1 via the branch unit BP1.
  • a total of three indoor units 2a-2c including the first indoor unit 2a, the second indoor unit 2b, and the third indoor unit 2c are connected to one outdoor unit 1 via the branch unit BP1. ing.
  • the refrigerant circuit on the outdoor unit 1 side includes a compressor 10, a switching mechanism 11, an oil separator 12, a hot gas bypass circuit 13 (bypass circuit), an outdoor heat exchanger 14, an outdoor expansion valve 15, a receiver 16, and a bridge circuit. 17, a cooler 18, a supercooling bypass circuit 19, a gas vent circuit 20 (bypass circuit), a pressure equalizing circuit 21, and the like.
  • the compressor 10 is a motor-driven scroll compressor, and is a device for compressing the sucked gas refrigerant.
  • the compressor 10 can variably control the operation frequency by an inverter.
  • the mechanism 11 is a mechanism that switches the direction of the refrigerant flow when switching between the cooling cycle operation and the heating cycle operation.
  • the gas side of the discharge pipe 22, the suction pipe 23, and the outdoor heat exchanger 14 of the compressor 10 is used. And a four-way switching valve connected to the gas side of the indoor heat exchanger 3 & — 3c.
  • the mechanism 11 connects the discharge side of the compressor 10 and the gas side of the outdoor heat exchange 14 and connects the suction side of the compressor 10 and the gas shut-off valve 24 (Fig. 1). Refer to the solid line of the shelf structure 11. This state is hereinafter referred to as “cooling cycle side state”;).
  • the switching mechanism 11 can connect the discharge side of the compressor 10 and the gas shut-off valve 24 and can connect the suction side of the compressor 10 and the gas side of the outdoor heat exchanger 14 during operation by the heating cycle. Yes (Refer to the broken line in Structure 11 in Fig. 1. This state is referred to as the “heating cycle side state” hereinafter.) ⁇
  • the oil separator 12 is a mechanism for separating the lubricating oil contained in the refrigerant on the discharge side of the compressor 10 and returning it to the suction side of the compressor 10, and is provided in the middle of the discharge pipe 22. Yes.
  • the hot gas bypass circuit 13 is a circuit that connects the discharge pipe 22 and the suction pipe 23 of the compressor 10, and connects the suction side and the discharge side of the compressor 10.
  • the hot gas bypass circuit 13 has one end connected to the oil separator 12 and the other end connected to the suction pipe 23. Therefore, the hot gas bypass circuit 13 also serves as an oil recovery circuit for returning the refrigerant discharged from the compressor 10 to the suction side and returning the oil separated by the oil separator 12 to the suction side of the compressor 10. Can function.
  • a hot gas bypass circuit opening / closing part 25 bypass circuit opening / closing part
  • a firefly 26 for reducing the pressure of the refrigerant passing therethrough are provided.
  • the hot gas bin circuit open / close section 25 is an electromagnetic valve that opens and closes the hot gas bin circuit 13, and closes and opens the refrigerant flow through the hot gas bypass circuit 13. can do.
  • the outdoor heat exchanger 14 is a cross fin tube type heat exchanger, and is a device for exchanging heat with a refrigerant using air as a heat source.
  • the outdoor unit 1 includes an outdoor blower 27 that generates an air flow through the outdoor heat exchanger 14 in order to take outdoor air into the outdoor unit 1 and send it out.
  • the outdoor fan 27 exchanges heat between outdoor air and the refrigerant flowing through the outdoor heat exchanger 14 by passing air through the outdoor heat exchanger 14.
  • the outdoor expansion valve 15 is connected to the liquid side of the outdoor heat exchanger 14 and is positioned between a bridge circuit 17 and an outdoor heat exchanger 14 described later.
  • the outdoor expansion valve 15 is a motor-operated valve that can depressurize the refrigerant passing therethrough, and the flow rate of the refrigerant passing therethrough can be adjusted by controlling the opening degree of the valve.
  • Receiver 16 the outdoor heat exchange with the indoor heat exchange 3 a - a container for storing the refrigerant flowing between the 3c temporarily, it is capable of storing a refrigerant in a liquid state.
  • the receiver 16 has an inlet at the top of the container and an outlet at the bottom of the container.
  • the inlet of the receiver 16 is connected to the outdoor expansion valve 15 and the liquid closing valve 28 via the bridge circuit 17.
  • the outlet of the receiver 16 is connected to an outdoor expansion valve 15 and a liquid closing valve 28 via a cooler 18 and a bridge circuit 17.
  • the receiver 16 is located between the outdoor heat exchanger ⁇ 14 and the indoor heat exchanger 3 a — 3c, on the opposite side of the compressor 10, and is connected to the indoor expansion valve 5 a — 5 c and the outdoor heat exchanger 14. Located between. The receiver 16 is located upstream of the indoor expansion valves 5a-5c and downstream of the outdoor heat exchanger 14 in the refrigerant flow direction in the cooling cycle.
  • the bridge circuit 17 includes four check valves 17a_17d connected between the outdoor expansion valve 15 and the receiver 16, and includes an outdoor heat exchanger 14 and an indoor heat exchanger 3 & —. 3c-3c side force when the refrigerant flowing between 3c flows into the receiver 16 from the outdoor heat exchange side and when flowing into the receiver 16, the inlet of the receiver 16 force also allowed to flow into the refrigerant in the receiver 16, and the outlet force is also the outdoor heat exchange with the indoor heat exchange 3 a receiver 16 - has the function of returning the refrigerant between 3c.
  • the check valve 17a is connected to guide the refrigerant flowing from the indoor heat exchangers 3a-3c toward the outdoor heat exchanger 14 to the inlet of the receiver 16.
  • Check valve 17b is connected to guide the refrigerant flowing from the outdoor heat exchanger 14 to the indoor heat exchanger 3a-3c to the inlet of the receiver 16.
  • Check valve 17c is connected to the outlet of receiver 16.
  • the check valve 17d is connected so that the outlet force of the receiver 16 can also flow the refrigerant flowing through the cooler 18 to the outdoor heat exchange side.
  • the refrigerant flowing between the outdoor heat exchanger ⁇ 14 and the indoor heat exchanger 3 a -3c always flows in the inlet force of the receiver 16 and also flows out of the outlet force of the receiver 16 ⁇ 14
  • the indoor heat exchange ⁇ 3a-3c is now back! /
  • the cooler 18 is a double-pipe heat exchanger and is provided to cool the refrigerant condensed in the outdoor heat exchanger 14 and sent to the indoor heat exchanger-3c.
  • the cooler 18 is connected between the receiver 16 and the bridge circuit 17.
  • the supercooling no-pass circuit 19 is provided to branch a part of the refrigerant sent from the outdoor heat exchange to the indoor heat exchange 3 a to 3 c and return it to the suction side of the compressor 10. Specifically, the supercooling bypass circuit 19 is branched from the circuit portion connecting the outlet of the receiver 16 and the check valve 17d of the bridge circuit 17 and passes through the cooler 18 to the suction pipe 23 of the compressor 10. Connected to join.
  • the supercooling bypass circuit 19 is provided with a supercooling bypass expansion valve 29 for adjusting the flow rate of the refrigerant flowing through the supercooling bypass circuit 19.
  • the supercooling bypass expansion valve 29 is an electric valve for adjusting the flow rate of the refrigerant flowing through the cooler 18.
  • the refrigerant flowing through the refrigerant circuit 10 is cooled by the refrigerant returned to the suction pipe 23 of the compressor 10 in the cooler 18 as well as the outlet force of the expansion valve 29 for the supercooling no-pass! / RU
  • the degassing circuit 20 has one end connected to the upper end of the receiver 16 and the other end connected to the subcooling bypass circuit 19 and joined to the suction pipe 23 of the compressor 10.
  • the degassing circuit 20 is a circuit for sending the gaseous refrigerant in the receiver 16 to the suction side of the compressor 10.
  • a degas circuit opening / closing section 30 (bypass circuit opening / closing section) is provided on the degas circuit 20.
  • the gas vent circuit opening / closing section 30 is an electromagnetic valve that opens and closes the gas vent circuit 20, and can close and open the flow of the refrigerant flowing through the gas vent circuit 20.
  • One end of the pressure equalizing circuit 21 is connected between the degassing circuit opening / closing portion 30 and the receiver 16 in the degassing circuit 20, and the other end is connected to the discharge pipe 22.
  • the pressure equalizing circuit 21 is provided with a pressure equalizing check valve 31 that allows only one refrigerant to flow toward the other end. This pressure equalization circuit 21 prevents the receiver 16 from bursting by allowing the gas refrigerant to escape if the outside air temperature rises abnormally while the air conditioner 100 is stopped and the pressure in the receiver 16 becomes too high. Is.
  • the plurality of indoor units 2a-2c are arranged on the indoor wall and the ceiling, respectively, and blow out conditioned air into the room.
  • the indoor units 2a-2c may be arranged in different rooms or at different positions in the same room.
  • Each of the indoor units 2a-2c can be independently thermo-on / off and start / stop operation, and the operation state can be switched for each of the indoor units 2a-2c.
  • the plurality of indoor units 2a-2c are connected to the outdoor unit 1 via the branch unit BP1, and the refrigerant sent from the outdoor unit 1 is branched in the branch unit BP1, and each indoor heat exchange ⁇ 3a-3c Sent to.
  • the refrigerant that has flowed through each of the indoor heat exchangers 3a to 3c merges again in the branch unit BP1, and is sent to the outdoor unit 1.
  • the first indoor unit 2a includes a first indoor heat exchange 3 & and a first indoor blower 4a.
  • the first indoor heat exchange heat is exchanged between the refrigerant flowing inside and the air.
  • the first indoor fan 4a generates a flow of air blown from the first indoor unit 2a, and sends the air that has exchanged heat with the refrigerant flowing through the first indoor heat exchanger 3a to the room.
  • the second indoor unit 2b includes a second indoor heat exchanger 3b and a second indoor blower 4b.
  • the second indoor fan 4b generates an air flow that also blows the internal force of the second indoor unit 2b, and sends the air that has exchanged heat with the refrigerant flowing through the second indoor heat exchanger 3b to the room.
  • the third indoor unit 2c includes a third indoor heat exchanger 3c and a third indoor fan 4c.
  • the third indoor heat exchange exchanges heat between the refrigerant flowing inside and the air.
  • the third indoor fan 4c generates a flow of air blown out from the third indoor unit 2c, and sends the air that has exchanged heat with the refrigerant flowing through the third indoor heat exchanger 3c to the room.
  • the first indoor heat exchanger 3a, the second indoor heat exchanger 3b, and the third indoor heat exchanger 3c are provided in parallel with the refrigerant circuit, and are connected to the branch unit BP1. .
  • the branch unit BP1 branches the refrigerant sent from one outdoor unit 1 and distributes it to the plurality of indoor units 2a 2c, and also merges the refrigerant sent from the plurality of indoor units 2a-2c into one outdoor unit. Unit to send to 1.
  • this air conditioner 100 three indoor units 2a-2c are connected to one branch unit BP1! However, even if more indoor units or fewer indoor units are connected to one branch unit BP1 Good. Also, multiple branch units may be connected to one outdoor unit 1.
  • the branch unit BP1 has a liquid branch pipe 32 branched into three and a gas branch pipe 33 branched into three.
  • the liquid branch pipe 32 is connected to the liquid shut-off valve 28 of the outdoor unit 1 and the first indoor heat exchange 3 &
  • the gas branch pipe 33 connects the gas shut-off valve 24 of the outdoor unit 1 to the gas side of the first indoor heat exchanger 3a, the second indoor heat exchanger 3b, and the third indoor heat exchanger.
  • the first indoor expansion valve 5a first expansion valve
  • the second indoor expansion valve 5b second expansion valve
  • An indoor expansion valve 5c is provided, and the indoor expansion valves 5a-5c are provided in parallel in the refrigerant circuit.
  • the refrigerant circuit on the side of the outdoor unit 2b and the refrigerant circuit on the side of the third indoor unit 2c composed of the third indoor heat exchanger 3c and the third indoor expansion valve 5c are connected in parallel to each other via the branch unit BP1. Connected to the refrigerant circuit.
  • the first indoor expansion valve 5a, the second indoor expansion valve 5b, and the third indoor expansion valve 5c are motorized valves that can depressurize the refrigerant that passes through them, respectively, and the amount of refrigerant that passes through the opening of the valve is controlled. Can be controlled.
  • the first indoor expansion valve 5a, the second indoor expansion valve 5b, and the third indoor expansion valve 5c can be independently controlled.
  • an electric valve 6 for pressure adjustment is provided between the liquid branch pipe 32 and the first gas-liquid branch pipe.
  • the air conditioner 100 includes various sensors 40-51 such as a pressure sensor and a temperature sensor provided in each part.
  • various sensors 40-51 will be described with reference to FIG.
  • the suction pipe 23 of the compressor 10 is provided with a suction side pressure sensor 40 for detecting the pressure of the low-pressure gas refrigerant flowing on the suction side of the compressor 10 (hereinafter referred to as “suction side pressure Pe”).
  • suction side pressure Pe the pressure of the low-pressure gas refrigerant flowing on the suction side of the compressor 10
  • discharge side pressure Pe for detecting the pressure of the high-pressure gas refrigerant flowing on the discharge side of the compressor 10
  • discharge side pressure Pc discharge side pressure
  • the discharge pipe 22 of the compressor 10 is provided with a high-pressure switch 42 for detecting an excessive increase in the pressure of the high-pressure gas refrigerant.
  • the discharge pipe 22 of the compressor 10 is provided with a discharge temperature sensor 43 for detecting the discharge temperature Td of the refrigerant on the discharge side of the compressor 10, and the suction pipe 23 of the compressor 10 is provided with the compressor 10
  • An intake temperature sensor 44 is provided for detecting the intake temperature Ts of the refrigerant on the intake side.
  • an outdoor air temperature sensor 45 for detecting the temperature Ta of the outdoor air is provided at the air inlet of the outdoor fan 27 of the outdoor unit 1.
  • the outdoor heat exchanger 14 is provided with an outdoor heat exchanger temperature sensor 46 for detecting the refrigerant temperature Tb corresponding to the refrigerant condensation temperature during the cooling operation and the refrigerant evaporation temperature during the heating operation. It has been.
  • the temperature Tsh of the refrigerant flowing through the supercooling bypass circuit 19 on the outlet side of the cooler 18 is detected to detect the degree of superheat.
  • a supercooling no-pass circuit temperature sensor 47 is provided.
  • the supercooling bypass circuit temperature sensor 47 can detect the degree of superheat on the suction side of the compressor 10.
  • the air blower of the indoor unit 2a-2c indoor fan 4a-4c has the indoor air temperature Tr
  • Each room temperature sensor 48 is provided for detection.
  • the indoor temperature sensor 48 can detect the temperature of the room subject to air conditioning by the indoor units 2a-2c.
  • Each of the indoor heat exchangers 3a to 3c is provided with an indoor heat exchanger temperature sensor 49 for detecting a refrigerant temperature Tn corresponding to the evaporation temperature during the cooling operation and corresponding to the condensation temperature during the heating operation. Speak.
  • Each branch of the gas branch pipe 33 in the branch unit BP1 is provided with a gas pipe temperature sensor 50 for detecting the temperature of the refrigerant passing therethrough.
  • Gas pipe temperature sensor 50 It is provided between the 3c - inner expansion valve 5a-5c and the indoor heat exchange 3 a.
  • Each branch of the liquid branch pipe 32 is provided with a liquid pipe temperature sensor 51 for detecting the temperature of the refrigerant passing through the inside.
  • the liquid pipe temperature sensor 51 is provided between the indoor heat exchangers 3a-3c and the branch point of the liquid branch pipe.
  • the air conditioner 100 controls each device such as the compressor 10 and the switching mechanism 11 based on the signals detected by the various sensors 40-51, and performs cooling operation and heating.
  • a control unit 60 for performing air conditioning operation such as operation is provided.
  • the control unit 60 is mainly a microcomputer and a memory, and is connected so as to receive the input signals of the various sensors 40-51 described above, as well as the command input to the operation terminal 61. Can receive a signal. Based on these input signals and command signals, the control unit 60 can control the various devices 4a-4c, 10, 11, 27, valves 5a-5c, 15, 29, and various open / close units 25, 30. It is connected to the. The control unit 60 controls the various devices 4a-4c, 10, 11, 27, the valves 5a-5c, 15, 29, and the various opening / closing units 25, 30 to perform air conditioning operations such as cooling operation and heating operation. It can be carried out. In FIG. 2, a plurality of components such as valves 5a-5c, various opening / closing sections 25, 30, indoor blowers 4a-4c, and indoor expansion valves 5a-5c are displayed together in one block. However, each component can be controlled individually.
  • control unit 60 Various controls performed by the control unit 60 will be described below.
  • the control unit 60 can switch between the operation by the cooling cycle and the operation by the heating cycle.
  • the cooling cycle operation includes cooling operation, defrost operation, and oil recovery operation.
  • a heating operation is performed in which the indoor heat exchange 3a-3c becomes a condenser.
  • the mechanism 11 is in a state indicated by a broken line in FIG. Outdoor swelling
  • the tension valve 15, the outdoor blower 27, the indoor expansion valves 5a-5c of the indoor units 2a-2c in operation and the indoor blowers 4a-4c are controlled in accordance with the operating conditions of the indoor units 2a-2c.
  • the hot gas pipe path opening / closing part 25 is closed, and the supercooling bypass expansion valve 29 is appropriately opened / closed.
  • the degassing circuit opening / closing part 30 is appropriately opened and closed.
  • the refrigerant circulates through the refrigerant circuit, so that the indoor unit 2a— — 3c functions as a condenser and outdoor heat exchanger 14 functions as an evaporator. Thereby, the heated air is blown out into the room, and the heating operation is performed.
  • the refrigerant circulates in the refrigerant circuit as follows. Note that. Here, description will be made assuming that the first indoor unit 2a is in the thermo-on state and the second indoor unit 2b and the third indoor unit 2c are in the thermo-off state or the operation stopped state.
  • the refrigerant discharged from the compressor 10 is sent from the mechanism 11 to the first indoor heat exchanger 3a through the gas shut-off valve 24 and the branch unit BP1.
  • the refrigerant dissipates heat to the room air and condenses.
  • the refrigerant condensed in the first indoor heat exchanger 3a flows into the receiver 16 through the first indoor expansion valve 5a, the liquid closing valve 28, and the bridge circuit 17.
  • the refrigerant flowing out from the receiver 16 is decompressed by the outdoor expansion valve 15 and sent to the outdoor heat exchanger 14 through the bridge circuit 17.
  • the outdoor heat exchanger 14 the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger 14 is sucked into the compressor 10 through the switching mechanism 11.
  • the compressor 10 compresses the sucked refrigerant and discharges it again.
  • the corresponding second indoor expansion valve 5b and third indoor expansion valve 5c have a slight opening degree. Open and restricted inflow of refrigerant.
  • the control unit 60 performs capacity control by controlling the frequency of the compressor 10, the opening degree of the outdoor expansion valve 15, and the like according to the change in the operating state of each indoor unit 2a-2c.
  • a cooling operation is performed in which the indoor heat exchangers 3a-3c serve as an evaporator.
  • the switching mechanism 11 is in a state indicated by a solid line in FIG.
  • the outdoor expansion valve 15 is fully opened, and the indoor blower 27, the indoor expansion valves 5a-5c and 4a-4c of the indoor units 2a-2c in operation are controlled according to the operating conditions of the indoor units 2a-2c, etc. It is controlled.
  • the hot gas bypass circuit opening / closing part 25 and the supercooling bypass expansion valve 29 are appropriately opened and closed.
  • the degassing circuit opening / closing part 30 is appropriately opened and closed.
  • the refrigerant circulates in the refrigerant circuit, so that the indoor heat exchangers 3a-3c of the indoor units 2a-2c in the operating state function as an evaporator and the outdoor heat exchanger 14 functions as a condenser. Thereby, the cooled air is blown out into the room, and the cooling operation is performed.
  • the refrigerant circulates in the refrigerant circuit as follows. Note that. Here, description will be made assuming that the first indoor unit 2a is in the thermo-on state and the second indoor unit 2b and the third indoor unit 2c are in the thermo-off state or the operation stopped state.
  • the refrigerant discharged from the compressor 10 is sent from the structure 11 to the outdoor heat exchanger.
  • the outdoor heat exchanger 14 the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger 14 passes through the outdoor expansion valve 15 and the bridge circuit 17 and flows into the receiver 16.
  • the refrigerant flowing out of the receiver 16 passes through the liquid closing valve 28, is depressurized by the first indoor expansion valve 5a in the branch unit BP1, and is sent to the first indoor heat exchanger.
  • the first indoor heat exchanger 3a the refrigerant absorbs heat from the indoor air and evaporates.
  • the refrigerant evaporated in the first indoor heat exchanger 3a is sucked into the compressor 10 through the gas closing valve 24 and the switching mechanism 11.
  • the compressor 10 compresses the sucked refrigerant and discharges it again.
  • the control unit 60 performs capacity control by controlling the frequency of the compressor 10, the opening degree of the outdoor expansion valve 15, and the like according to the change in the operating state of each indoor unit 2a-2c.
  • capacity control is performed mainly by adjusting the frequency of the compressor 10.
  • the control unit 60 changes the frequency of the compressor 10 in response to a request from the indoor units 2a-2c or the branch unit BP1.
  • the operation mode for capacity control is the normal control mode.
  • (Second control mode) Force also shifts to the small capacity control mode (first control mode). Also After the shift to the small capacity control mode, when the required capacity increases and the frequency of the compressor 10 increases, the small capacity control mode returns to the normal control mode.
  • capacity control in the normal control mode is performed in the first step S1 (frequency control step).
  • capacity control is performed by performing frequency control of the compressor 10 in a state where the gas vent circuit opening / closing unit 30 and the hot gas bypass circuit opening / closing unit 25 are closed.
  • the controller 60 determines whether or not to increase the capacity in consideration of the presence / absence of a capacity control request and the operation holding time at the frequency at that time. When increasing the capacity, increase the frequency of the compressor 10 by one level. In addition, when the capacity is reduced, the control unit 60 reduces the frequency of the compressor 10 by one level.
  • the second step S2 determines whether or not to change the control mode.
  • the control unit 60 lowers the frequency of the compressor 10 until the frequency of the compressor 10 reaches the minimum operating frequency, and then opens the gas vent circuit opening / closing unit 30 when further capacity reduction is necessary. If the above conditions are not satisfied, capacity control in the normal control mode is continued.
  • the gas vent circuit opening / closing part 30 is opened and the frequency of the compressor 10 is set to a predetermined level (hereinafter referred to as “first transition initial level”).
  • first transition initial level a predetermined level
  • the frequency of the compressor 10 is set to the number (second frequency).
  • the frequency of the first transition initial level is larger than the first transition condition level. Therefore, the gas vent circuit opening / closing part 30 is opened and the frequency of the compressor 10 is increased. Thereby, the refrigerant circulation amount when the gas vent circuit opening / closing part 30 is opened can be stabilized.
  • step S4 capacity control is performed in the small capacity control mode.
  • the frequency control of the compressor 10 is performed with the gas vent circuit opening / closing part 30 opened.
  • the control unit 60 determines whether or not the capacity is increased by considering the presence / absence of a capacity control request and the operation holding time at the frequency at that time. To increase the capacity, increase the frequency of the compressor 10 by one level. In addition, when the capacity is reduced, the control unit 60 reduces the frequency of the compressor 10 by one level. At this time, as shown in FIG. 5, the frequency of the compressor 10 fluctuates, but the degassing circuit opening / closing section 30 is held open.
  • step S 11 the small capacity control mode is performed.
  • the contents of the small capacity control mode are the same as described above.
  • a twelfth step S12 determination step
  • a request to increase the capacity is received and the frequency of the compressor 10 reaches a predetermined level (hereinafter referred to as “second transition condition level”), or the frequency of the compressor 10 is other than
  • the predetermined level hereinafter referred to as “third transition condition level”
  • the process proceeds to the 13th step S13 and the 14th step S14, and the control mode is changed from the small capacity control mode to the normal control mode.
  • Changed to The second transition condition level and the third transition condition level are higher than the first transition condition level.
  • the third transition condition level is higher than the second transition condition level.
  • This third transition condition level is the frequency conversion value of the maximum capacity control amount that can be achieved with the gas vent circuit opening / closing part 30 opened, or only one indoor unit 2a-2c is operating. This is the maximum frequency that can be achieved. If the above conditions are not met, capacity control in the small capacity control mode is continued.
  • the gas vent circuit opening / closing part 30 is closed and the circumference of the compressor 10 is closed.
  • the wave number is set to a predetermined level (hereinafter referred to as “second transition initial level”), or the gas vent circuit opening / closing part 30 is closed and the frequency of the compressor 10 is set to a predetermined level from the current level. Set to a low level.
  • the frequency of the second transition initial level is the same level as the first transition condition level that is smaller than the frequency of the third transition condition level (third frequency). Therefore, when the level is changed from the level higher than the third transition condition level to the second transition initial level, the frequency of the compressor 10 is reduced.
  • step S14 frequency control step
  • capacity control is performed in the normal control mode.
  • the contents of the normal control mode are the same as described above.
  • the small capacity control mode as described above is often performed during the execution of the dew prevention control, and is performed only during the cooling operation.
  • the dew prevention control during the cooling operation, the evaporation temperature is excessive by changing the frequency of the compressor 10 so that the outlet of the indoor units 2a-2c does not condense due to a decrease in the evaporation temperature of the indoor units 2a-2c. It is the control which prevents it from dropping.
  • the outdoor blower 27 and the compressor 10 are controlled based on the temperature Tn detected by the indoor heat exchange temperature sensor 49.
  • the frequency of the compressor 10 is controlled by the dew prevention status transmitted from the indoor units 2a-2c or the branch unit BP1. Dew prevention status includes “Up” and “Drop”. “Up” is a command requesting an increase in frequency, and “droop” is a command requesting a decrease in frequency.
  • the capacity control is performed by switching the hot gas bin circuit open / close section 25 on and off while keeping the frequency of the compressor 10 at the minimum operation frequency. It has been broken.
  • the hot gas bypass circuit opening / closing unit 25 is frequently opened and closed, there is a risk of causing discomfort to the resident and the like due to the refrigerant sound at the time of opening and closing.
  • an accumulator is provided as in the air conditioner 100.
  • capacity control is generally performed by opening and closing a hot gas bypass circuit opening / closing unit 25.
  • capacity control by the hot gas no-pass circuit opening / closing unit 25 is performed to prevent low pressure drop during high capacity control and to prevent high pressure rise.
  • a refrigerant having a relatively large pressure difference flows through the hot gas bypass circuit 13
  • a loud refrigerant noise may be generated, which may cause discomfort to residents and the like.
  • three indoor units 2a-2c are connected to one outdoor unit 1, but the number of indoor units 2a-2c connected to one outdoor unit 1 is not limited to the above. If two or more indoor units 2a-2c are connected.
  • the indoor unit 2a-2c and the outdoor unit 1 are connected via the branch unit BP1, but the indoor unit 2a is not provided with the branch unit BP1 and each includes an indoor expansion valve 5a-5c. — 2c may be directly connected to outdoor unit 1.
  • outlet of the gas vent circuit 20 may be connected to the suction pipe 23 of the compressor 10 instead of being connected to the supercooling bypass circuit 19.
  • the degassing circuit opening / closing unit 30 is used in the small capacity control mode during the cooling operation.
  • cooling operation The capacity control by the small capacity control mode as described above may be performed during the heating operation.
  • the gas vent circuit opening / closing unit 30 may be used not only in the case of a small capacity as described above but also in capacity control with a large capacity.
  • control is performed to adjust the frequency of the compressor 10 with the gas vent circuit opening / closing part 30 opened.
  • the viewpoint power to reduce refrigerant frequency by reducing the frequency of opening and closing the vent circuit opening / closing part 30 is not limited to the cooling operation, and the above-described control may be performed in the capacity control during the heating operation. .
  • the hot gas no-pass circuit opening / closing unit 25 may be used instead of the degassing circuit opening / closing unit 30. Also in this case, compared to the case where capacity control is performed by turning on / off the hot gas bin circuit opening / closing unit 25 while keeping the frequency of the compressor 10 constant, the switching frequency is reduced and the refrigerant noise is suppressed. .
  • the venting circuit opening / closing part 30 is used instead of the hot gas bypass circuit opening / closing part 25 for the viewpoint power to further suppress the refrigerant noise.
  • the frequency control of the compressor 10 is performed with the gas vent circuit opening / closing part 30 opened in the small capacity control mode.
  • the frequency of the compressor 10 is kept constant even when the capacity control is performed by turning on / off the gas vent circuit opening / closing section 30 while keeping the frequency of the compressor 10 constant.
  • the refrigerant noise can be suppressed as compared with the case where capacity control is performed by turning on / off the hot gas bypass circuit opening / closing section 25 in the held state.
  • the present invention has an effect of suppressing generation of refrigerant noise in small capacity control, and is useful as an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 小容量制御における冷媒音の発生を抑えることができる空気調和機を提供する。空気調和機(100)は、圧縮機(10)と室外熱交換器(14)と第1室内膨張弁(5a)と第1室内熱交換器(3a)とを含む冷媒回路を備える空気調和機であって、ガス抜き回路(20)とガス抜き回路(20)開閉部と制御部とを備える。ガス抜き回路(20)は、冷媒回路をバイパスして冷媒を圧縮機(10)の吸入側に戻すための回路である。ガス抜き回路開閉部(30)は、ガス抜き回路(20)上に設けられ、ガス抜き回路(20)を開閉する。そして、制御部(60)は、圧縮機(10)の周波数制御によって容量制御を行い、圧縮機(10)の周波数が最低運転周波数に到達するまで圧縮機(10)の周波数を低下させた後さらに容量低減が必要な場合には、ガス抜き回路開閉部(30)を開き且つガス抜き回路開閉部(30)を開いた状態で圧縮機(10)の周波数制御を行うことによって容量の調整を行う小容量制御モードにて容量制御を行う。

Description

明 細 書
空気調和機
技術分野
[0001] 本発明は、空気調和機に関する。
背景技術
[0002] 従来の空気調和機には、冷媒を圧縮機の吸入側に戻すバイパス回路を含む冷媒 回路が備えられ、容量制御がバイパス回路を開閉するバイパス回路開閉部によって 行われるものがある(特許文献 1参照)。このような空気調和機では、通常運転では主 に圧縮機の周波数制御によって容量制御を行い、圧縮機の周波数が最低運転周波 数に到達した後にさらに容量低減が必要な場合に、バイパス回路開閉部が開かれて 容量が低減される。そして、圧縮機の周波数が一定に保持された状態でバイパス回 路開閉部が開閉されることにより容量制御が行われる。
特許文献 1 :特開平 2— 97853号公報
発明の開示
発明が解決しょうとする課題
[0003] しかし、上記のような小容量制御が行われる場合、バイパス回路開閉部の開閉が頻 繁に繰り返される場合がある。バイパス回路開閉部の開閉が頻繁に繰り返されると、 冷媒音が繰り返し発生して、使用者等に不快感を与える恐れがある。
本発明の課題は、小容量制御における冷媒音の発生を抑えることができる空気調 和機を提供することにある。
課題を解決するための手段
[0004] 第 1発明にかかる空気調和機は、圧縮機と室外熱交換器と第 1膨張弁と第 1室内熱 交換器とを含む冷媒回路を備える空気調和機であって、バイパス回路とバイパス回 路開閉部と制御部とを備える。バイパス回路は、冷媒回路をバイパスして冷媒を圧縮 機の吸入側に戻すための回路である。バイパス回路開閉部は、バイパス回路上に設 けられ、バイパス回路を開閉する。そして、制御部は、圧縮機の周波数制御によって 容量制御を行い、圧縮機の周波数が最低運転周波数である第 1周波数に到達する まで圧縮機の周波数を低下させた後さらに容量低減が必要な場合には、バイパス回 路開閉部を開き且つバイパス回路開閉部を開いた状態で圧縮機の周波数制御を行 うことによって容量の調整を行う第 1制御モードにて容量制御を行う。
この空気調和機では、第 1制御モードにおいて、バイパス回路開閉部が開かれた 状態のまま圧縮機の周波数制御が行われることによって容量制御が行われる。この ため、小容量制御時にバイパス回路開閉部の開閉頻度を低減させることができる。こ れにより、小容量制御における冷媒音の発生を抑えることができる。
[0005] 第 2発明にかかる空気調和機は、第 1発明の空気調和機であって、制御部は、第 1 制御モードにおいて、バイパス回路開閉部を開くと共に圧縮機の周波数を第 1周波 数よりも大きい第 2周波数とする。
この空気調和機では、第 1制御モードにおいてバイパス回路開閉部が開かれると、 冷媒がバイパス回路を介して圧縮機の吸入側に送られることによって容量が低下す る。このため、圧縮機の周波数を第 1周波数よりも大きい第 2周波数とすることによつ て、バイパス回路を開くことによる容量の過剰な低下を抑えることができる。また、第 2 周波数は、圧縮機の最低運転周波数よりも大きいため、その後に周波数をより小さく することが可能となり、容量をより低減させることができる。
[0006] 第 3発明にかかる空気調和機は、第 1発明または第 2発明の空気調和機であって、 制御部は、第 1制御モードにおいて圧縮機の周波数が第 1周波数よりも大きい第 3周 波数に到達した場合は、バイパス回路開閉部を閉じた状態で圧縮機の周波数制御 を行うことによって容量の調整を行う第 2制御モードに切り換える。
この空気調和機では、第 1制御モードにおいて圧縮機の周波数が第 1周波数よりも 大きい第 3周波数に到達した場合に第 2制御モードに切り換わる。すなわち、バイパ ス回路によらず圧縮機の周波数制御によって容量制御を行うことが適切な場合には 、第 2制御モードに移行することによって適切な容量制御を行うことができる。
[0007] 第 4発明にかかる空気調和機は、第 1発明力も第 3発明のいずれかの空気調和機 であって、レシーバーをさらに備える。レシーバ一は、冷媒回路において室外熱交換 器と第 1室内熱交^^との間であって圧縮機とは反対側に位置し、液体状態の冷媒 を貯留可能である。そして、ノィパス回路は、レシーバーから圧縮機の吸入側に接続 されレシーバー内の気体状態の冷媒を圧縮機の吸入側へと送るガス抜き回路である この空気調和機では、レシーバ一力 圧縮機の吸入側に接続されるガス抜き回路 を利用して小容量制御が行われる。すなわち、レシーバ一力も圧縮機の吸入側に冷 媒を戻すことによって容量制御を行うことができる。また、冷媒がレシーバ一力も圧縮 機の吸入側に戻されることによって、冷媒音を比較的小さく抑えることができる。
[0008] 第 5発明にかかる空気調和機は、第 1発明力も第 4発明のいずれかの空気調和機 であって、バイパス回路は、圧縮機に接続される吸入管と吐出管とを接続するホット ガスバイパス回路である。
この空気調和機では、圧縮機に接続される吸入管と吐出管とを接続するホットガス ノ ィパス回路を利用して小容量制御が行われる。このため、圧縮機から吐出された 冷媒を圧縮機の吸入側に戻すことによって容量制御を行うことができる。
[0009] 第 6発明にかかる空気調和機は、第 1発明力も第 5発明のいずれかの空気調和機 であって、冷媒回路は、第 1膨張弁および第 1室内熱交換器に並列に配置される第 2 室内熱交 および第 2膨張弁をさらに含む。
この空気調和機は、複数の室内熱交換器が備えられる、いわゆるマルチ型の空気 調和機であり、負荷の変動が大きい。従って、容量制御の要求が強い。この空気調 和機では、容量制御を適切に行うことができると共に冷媒音を抑えることができる。
[0010] 第 7発明にかかる空気調和機は、圧縮機と、室外熱交換器と、第 1膨張弁と、第 1室 内熱交^^と、圧縮機の吸入側と吐出側とを接続するバイパス回路と、バイパス回路 上に設けられバイパス回路を開閉するバイパス回路開閉部とを含む冷媒回路を備え る空気調和機の制御方法であって、周波数制御ステップと、判断ステップと、第 1制 御モードステップとを備える。周波数制御ステップでは、圧縮機の周波数制御によつ て容量制御が行われる。判断ステップでは、圧縮機の周波数が最低運転周波数であ る第 1周波数に到達し、且つ、さらに容量低減が必要力否かが判断される。そして、 第 1制御モードステップでは、判断ステップにおいて、圧縮機の周波数が最低運転 周波数である第 1周波数に到達し、且つ、さらに容量低減が必要であると判断された 場合には、バイパス回路開閉部を開き且つバイパス回路開閉部を開いた状態で圧 縮機の周波数制御を行うことによって容量の調整を行う第 1制御モードにて容量制御 が行われる。
この空気調和機の制御方法では、第 1制御モードにおいて、バイパス回路開閉部 が開かれた状態のまま圧縮機の周波数制御が行われることによって容量制御が行わ れる。このため、小容量制御時にバイパス回路開閉部の開閉頻度を低減させることが できる。これにより、小容量制御における冷媒音の発生を抑えることができる。
発明の効果
[0011] 第 1発明にかかる空気調和機では、小容量制御時にバイパス回路開閉部の開閉頻 度を低減させることができるため、小容量制御における冷媒音の発生を抑えることが できる。
第 2発明にかかる空気調和機では、バイパス回路開閉部が開かれるときに圧縮機 の周波数を第 1周波数よりも大きい第 2周波数とすることによって、バイパス回路を開 くことによる容量の過剰な低下を抑えることができる。
第 3発明にかかる空気調和機では、バイパス回路によらず圧縮機の周波数制御に よって容量制御を行うことが適切な場合には、第 2制御モードに移行することによって 適切な容量制御を行うことができる。
第 4発明にかかる空気調和機では、レシーバ一力も圧縮機の吸入側に接続される ガス抜き回路を利用することによって、冷媒音を比較的小さく抑えることができる。 第 5発明にかかる空気調和機では、圧縮機に接続される吸入管と吐出管とを接続 するホットガスバイパス回路を利用することによって容量制御を行うことができる。 第 6発明にかかる空気調和機は、容量制御を適切に行うことができると共に冷媒音 を抑えることができる。
第 7発明にかかる空気調和機では、小容量制御時にバイパス回路開閉部の開閉頻 度を低減させることができるため、小容量制御における冷媒音の発生を抑えることが できる。
図面の簡単な説明
[0012] [図 1]空気調和機の構成を示す冷媒回路図。
[図 2]空気調和機の制御ブロック図。
O
[図 3]通常制御モードから小容量制御モードへの移行時のフローチャート。
[図 4]小容量制御モードから通常制御モードへの移行時のフローチャート。
圆 5]本願の圧縮機周波数とガス抜き回路開閉部の開度とのタイミングチャート。 圆 6]従来の圧縮機周波数とガス抜き回路開閉部の開度とのタイミングチャート。 符号の説明
第 1室内熱交換器
3b 第 2室内熱交換器
5a 第 1室内膨張弁 (第 1膨張弁)
5b 第 2室内膨張弁 (第 2膨張弁)
10 圧縮機
11 切換機構
13 ホットガスバイパス回路(バイパス回路)
14 室外熱交
16 レシーバー
20 ガス抜き回路 (バイパス回路)
25 ホットガスバイパス回路開閉部 (バイパス回路開閉部)
30 ガス抜き回路開閉部 (バイパス回路開閉部)
60 制御部
100 空気調和機
発明を実施するための最良の形態
014] <構成 >
本発明の一実施形態に力かる空気調和機 100の構成を示す冷媒回路図を図 1に 示す。この空気調和機 100は、住宅内の冷暖房を行う空気調和機であって、一台の 室外機 1に対して複数の室内機 2a— 2cが接続される、 V、わゆるマルチ型空気調和 機である。室内機 2a— 2cは、分岐ユニット BP1を介して室外機 1に接続されている。 本実施形態では、 1つの室外機 1に対して、第 1室内機 2a、第 2室内機 2bおよび第 3 室内機 2cの合計 3台の室内機 2a— 2cが分岐ユニット BP1を介して接続されている。
〈室外機の構成〉 室外機 1側の冷媒回路は、圧縮機 10、切換機構 11、油分離器 12、ホットガスバイ パス回路 13 (バイパス回路)、室外熱交換器 14、室外膨張弁 15、レシーバー 16、ブ リッジ回路 17、冷却器 18、過冷却バイパス回路 19、ガス抜き回路 20 (バイパス回路) 、均圧回路 21などを含んでいる。
[0015] 圧縮機 10は、電動機駆動のスクロール式の圧縮機であり、吸入したガス冷媒を圧 縮するための機器である。圧縮機 10は、インバーターにより運転周波数を可変制御 可能となっている。
切 構 11は、冷房サイクルによる運転と暖房サイクルによる運転との切り換え時 に、冷媒の流れの方向を切り換える機構であり、圧縮機 10の吐出管 22、吸入管 23、 室外熱交 14のガス側および室内熱交 3&— 3cのガス側と接続された四路 切換弁によって構成されている。切 構 11は、冷房サイクルによる運転時には圧 縮機 10の吐出側と室外熱交翻14のガス側とを接続するとともに圧縮機 10の吸入 側とガス閉鎖弁 24とを接続する(図 1の切棚構 11の実線を参照。以下、この状態 を「冷房サイクル側状態」と呼ぶ。;)。また、切換機構 11は、暖房サイクルによる運転 時には圧縮機 10の吐出側とガス閉鎖弁 24とを接続するとともに圧縮機 10の吸入側 と室外熱交 14のガス側とを接続することが可能である(図 1の切 構 11の破 線を参照。以下、この状態を「暖房サイクル側状態」と呼ぶ。 ) ο
[0016] 油分離器 12は、圧縮機 10の吐出側の冷媒中に含まれる潤滑油を分離して圧縮機 10の吸入側に返すための機構であり、吐出管 22の途中に設けられている。
ホットガスバイパス回路 13は、圧縮機 10の吐出管 22と吸入管 23とを連通する回路 であり、圧縮機 10の吸入側と吐出側とを接続している。ホットガスバイパス回路 13は 、一端が油分離器 12に接続され、他端が吸入管 23に接続されている。従って、ホッ トガスバイパス回路 13は、圧縮機 10から吐出された冷媒を吸入側に戻すと共に、油 分離器 12で分離された油分を圧縮機 10の吸入側に戻すための油回収回路としても 機能することができる。また、ホットガスバイパス回路 13上には、ホットガスバイパス回 路開閉部 25 (バイパス回路開閉部)と、通過する冷媒を減圧するキヤビラリ 26とが設 けられている。ホットガスバイノ ス回路開閉部 25は、ホットガスバイノ ス回路 13を開閉 する電磁弁であり、ホットガスバイパス回路 13を流れる冷媒の流れを閉鎖および開放 することができる。
[0017] 室外熱交換器 14は、クロスフィンチューブ式の熱交換器であり、空気を熱源として 冷媒と熱交換するための機器である。室外機 1は、室外機 1内に屋外の空気を取り込 み、送り出すために室外熱交換器 14を通る空気流を生成する室外送風機 27を備え ている。室外送風機 27は、室外熱交^^ 14に空気を通すことによって屋外の空気と 室外熱交換器 14を流れる冷媒との熱交換を行わせる。
室外膨張弁 15は、室外熱交翻14の液側と接続され、後述するブリッジ回路 17と 室外熱交換器 14との間に位置している。室外膨張弁 15は、通過する冷媒を減圧可 能な電動弁であり、弁の開度が制御されることによって通過する冷媒の流量を調整 することができる。
レシーバー 16は、室外熱交 と室内熱交 3a— 3cとの間を流れる冷媒を 一時的に溜めるための容器であり、液体状態の冷媒を貯留可能である。レシーバー 16は、容器上部に入口を有しており、容器下部に出口を有している。レシーバー 16 の入口は、ブリッジ回路 17を介して室外膨張弁 15及び液閉鎖弁 28に接続されてい る。また、レシーバー 16の出口は、冷却器 18及びブリッジ回路 17を介して室外膨張 弁 15及び液閉鎖弁 28に接続されている。レシーバー 16は、室外熱交^^ 14と室 内熱交 3a— 3cとの間であって圧縮機 10とは反対側に位置しており、室内膨張 弁 5a— 5cと室外熱交 14との間に位置している。レシーバー 16は、冷房サイク ルにおける冷媒の流れ方向においては、室内膨張弁 5a— 5cの上流側であって室外 熱交^^ 14の下流側に位置している。
[0018] ブリッジ回路 17は、室外膨張弁 15とレシーバー 16との間に接続された 4つの逆止 弁 17a_ 17dから構成された回路であり、室外熱交翻14と室内熱交翻3&— 3c との間を流れる冷媒が室外熱交 側からレシーバー 16に流入する場合及び室 内熱交 3a - 3c側力 レシーバー 16に流入する場合の 、ずれの場合にぉ 、て も、レシーバー 16の入口力もレシーバー 16内に冷媒を流入させ、かつ、レシーバー 16の出口力も室外熱交 と室内熱交 3a— 3cとの間に冷媒を戻す機能を 有している。具体的には、逆止弁 17aは、室内熱交換器 3a— 3cから室外熱交換器 1 4へ向かって流れる冷媒をレシーバー 16の入口に導くように接続されている。逆止弁 17bは、室外熱交^^ 14から室内熱交^^ 3a— 3cへ向力つて流れる冷媒をレシ一 バー 16の入口に導くように接続されている。逆止弁 17cは、レシーバー 16の出口か
Figure imgf000010_0001
接続されている。逆止弁 17dは、レシーバー 16の出口力も冷却器 18を介して流れる 冷媒を室外熱交 側に流すことができるように接続されている。これにより、室 外熱交^^ 14と室内熱交 3a— 3cとの間を流れる冷媒は、常に、レシーバー 16 の入口力も流入し、レシーバー 16の出口力も流出して室外熱交^^ 14と室内熱交 ^3a - 3cとの間に戻されるようになって!/、る。
[0019] 冷却器 18は、 2重管式の熱交^^であり、室外熱交翻14において凝縮されて室 内熱交 - 3cに送られる冷媒を冷却するために設けられて 、る。冷却器 18は 、レシーバー 16とブリッジ回路 17との間に接続されている。
過冷却ノ ィパス回路 19は、室外熱交 から室内熱交 3a— 3cへ送られる 冷媒の一部を分岐させて圧縮機 10の吸入側に戻すように設けられている。具体的に は、過冷却バイパス回路 19は、レシーバー 16の出口とブリッジ回路 17の逆止弁 17d とを接続する回路部分カゝら分岐されて冷却器 18を通り圧縮機 10の吸入管 23に合流 するように接続されている。そして、過冷却バイパス回路 19には、過冷却バイパス回 路 19を流れる冷媒の流量を調節するための過冷却バイパス用膨張弁 29が設けられ ている。過冷却バイパス用膨張弁 29は、冷却器 18に流す冷媒の流量の調節を行う ための電動弁である。これにより、冷媒回路 10を流れる冷媒は、冷却器 18において 、過冷却ノ ィパス用膨張弁 29の出口力も圧縮機 10の吸入管 23に戻される冷媒によ つて冷却されるようになって!/、る。
[0020] ガス抜き回路 20は、その一端がレシーバー 16の上端部に接続され、その他端が 過冷却バイパス回路 19に接続され圧縮機 10の吸入管 23に合流している。ガス抜き 回路 20は、レシーバー 16内の気体状態の冷媒を圧縮機 10の吸入側へと送るため の回路である。また、ガス抜き回路 20上には、ガス抜き回路開閉部 30 (バイパス回路 開閉部)が設けられている。ガス抜き回路開閉部 30は、ガス抜き回路 20を開閉する 電磁弁であり、ガス抜き回路 20を流れる冷媒の流れを閉鎖および開放することがで きる。 均圧回路 21は、その一端がガス抜き回路 20におけるガス抜き回路開閉部 30とレ シーバー 16との間に接続され、その他端が吐出管 22に接続されている。また、均圧 回路 21には、その一端力 他端に向力う冷媒の流通のみを許容する均圧用逆止弁 31が設けられている。この均圧回路 21は、空気調和機 100の停止中に外気温が異 常に上昇してレシーバー 16の圧力が高くなりすぎた場合に、ガス冷媒を逃がすこと でレシーバー 16の破裂を防止するためのものである。
[0021] 〈室内機の構成〉
複数の室内機 2a— 2cは、室内の壁面や天井裏などにそれぞれ配置され、室内へ 調和された空気を吹き出す。室内機 2a— 2cは、異なる室内にそれぞれ配置されても よぐ同一室内の異なる位置にそれぞれ配置されてもよい。室内機 2a— 2cは、それ ぞれ独立してサーモオン'オフおよび運転の起動 '停止が可能となっており、室内機 2a— 2cごとに運転状態を切り換えることができる。複数の室内機 2a— 2cは、分岐ュ ニット BP1を介して室外機 1に接続されており、室外機 1から送られてきた冷媒が分岐 ユニット BP1において分岐され各室内熱交^^ 3a— 3cに送られる。また、各室内熱 交換器 3a— 3cを流れた冷媒は、分岐ユニット BP 1にお 、て再び合流して室外機 1 へと送られる。
[0022] 第 1室内機 2aは、第 1室内熱交翻3&および第 1室内送風機 4aを備えている。第 1室内熱交 は、内部を流れる冷媒と空気との間で熱交換を行う。第 1室内送 風機 4aは、第 1室内機 2a内から吹き出される空気の流れを生成し、第 1室内熱交換 器 3aを流れる冷媒と熱交換を行った空気を室内へと送る。
第 2室内機 2bは、第 2室内熱交換器 3bおよび第 2室内送風機 4bを備えている。第 2室内熱交 は、内部を流れる冷媒と空気との間で熱交換を行う。第 2室内送 風機 4bは、第 2室内機 2b内力も吹き出される空気の流れを生成し、第 2室内熱交換 器 3bを流れる冷媒と熱交換を行った空気を室内へと送る。
第 3室内機 2cは、第 3室内熱交換器 3cおよび第 3室内送風機 4cを備えている。第 3室内熱交 は、内部を流れる冷媒と空気との間で熱交換を行う。第 3室内送 風機 4cは、第 3室内機 2c内から吹き出される空気の流れを生成し、第 3室内熱交換 器 3cを流れる冷媒と熱交換を行った空気を室内へと送る。 [0023] 第 1室内熱交換器 3a、第 2室内熱交換器 3bおよび第 3室内熱交換器 3cは、冷媒 回路にぉ 、て並列に設けられており、分岐ユニット BP1に接続されて 、る。
〈分岐ユニットの構成〉
分岐ユニット BP1は、 1つの室外機 1から送られる冷媒を分岐して複数の室内機 2a 2cに分配し、また、複数の室内機 2a— 2cから送られる冷媒を合流させて 1つの室 外機 1に送るユニットである。この空気調和機 100では、 1つの分岐ユニット BP1には 3つの室内機 2a— 2cが接続されて!、るが、 1つの分岐ユニット BP1により多くの室内 機またはより少ない室内機が接続されてもよい。また、 1つの室外機 1に複数の分岐 ユニットが接続されてもょ 、。
分岐ユニット BP1は、 3つに分岐した液分岐管 32と、 3つに分岐したガス分岐管 33 とを有している。液分岐管 32は、室外機 1の液閉鎖弁 28と第 1室内熱交翻3&、第
Figure imgf000012_0001
る。また、ガス 分岐管 33は、室外機 1のガス閉鎖弁 24と第 1室内熱交換器 3a、第 2室内熱交換器 3 bおよび第 3室内熱交 のガス側とを連結している。液分岐管 32の分岐点と各 室内熱交換器 3a— 3cとの間には、第 1室内膨張弁 5a (第 1膨張弁)、第 2室内膨張 弁 5b (第 2膨張弁)および第 3室内膨張弁 5cが設けられており、各室内膨張弁 5a— 5cは冷媒回路において並列に設けられている。従って、第 1室内熱交換器 3aと第 1 室内膨張弁 5aとからなる第 1室内機 2a側の冷媒回路と、第 2室内熱交換器 3bと第 2 室内膨張弁 5bとからなる第 2室内機 2b側の冷媒回路と、第 3室内熱交換器 3cと第 3 室内膨張弁 5cとからなる第 3室内機 2c側の冷媒回路とが互いに並列に分岐ユニット BP1を介して室外機 1側の冷媒回路に接続されている。第 1室内膨張弁 5a、第 2室 内膨張弁 5bおよび第 3室内膨張弁 5cはそれぞれ通過する冷媒を減圧可能な電動 弁であり、弁の開度が制御されることによって通過する冷媒の量を制御することがで きる。第 1室内膨張弁 5a、第 2室内膨張弁 5bおよび第 3室内膨張弁 5cはそれぞれ独 立して制御可能となって 、る。
[0024] なお、液分岐管 32と第ガス液分岐管との間には、圧力調整用の電動弁 6が設けら れている。
〈各種センサ〉 空気調和機 100は、各部に設けられた圧力センサや温度センサ等の各種センサ 4 0— 51を備えている。以下、図 1を用いて、各種センサ 40— 51について説明する。 圧縮機 10の吸入管 23には、圧縮機 10の吸入側を流れる低圧のガス冷媒の圧力( 以下、「吸入側圧力 Pe」と呼ぶ。)を検出するための吸入側圧力センサ 40が設けられ ている。圧縮機 10の吐出管 22には、圧縮機 10の吐出側を流れる高圧のガス冷媒の 圧力(以下、「吐出側圧力 Pc」と呼ぶ。)を検出するための吐出側圧力センサ 41が設 けられている。また、圧縮機 10の吐出管 22には、高圧のガス冷媒の圧力の過上昇を 検出するための高圧圧力スィッチ 42が設けられている。そして、圧縮機 10の吐出管 22には、圧縮機 10の吐出側の冷媒の吐出温度 Tdを検出するための吐出温度セン サ 43が設けられ、圧縮機 10の吸入管 23には圧縮機 10の吸入側の冷媒の吸入温度 Tsを検出するための吸入温度センサ 44が設けられている。
[0025] また、室外機 1の室外送風機 27の空気吸入口には、室外空気の温度 Taを検出す るための外気温度センサ 45が設けられている。室外熱交換器 14には、冷房運転時 には冷媒の凝縮温度に相当し、かつ、暖房運転時には冷媒の蒸発温度に相当する 冷媒の温度 Tbを検出するための室外熱交温度センサ 46が設けられている。
また、過冷却バイパス回路 19の圧縮機 10の吸入側との合流部には、冷却器 18の 出口側の過冷却バイパス回路 19を流れる冷媒の温度 Tshを検出して過熱度を検出 するための過冷却ノ ィパス回路温度センサ 47が設けられて 、る。この過冷却バイパ ス回路温度センサ 47によって、圧縮機 10の吸入側の過熱度を検知することができる 室内機 2a— 2cの室内送風機 4a— 4cの空気吸込口には、室内空気の温度 Trを検 出するための室内温度センサ 48がそれぞれ設けられている。この室内温度センサ 4 8によって、各室内機 2a— 2cによる空気調和を受ける室内の温度を検知することが できる。また、室内熱交換器 3a— 3cには、冷房運転時には蒸発温度に相当し、かつ 、暖房運転時には凝縮温度に相当する冷媒の温度 Tnを検出するための室内熱交 温度センサ 49がそれぞれ設けられて ヽる。
[0026] 分岐ユニット BP1中のガス分岐管 33の各分岐には、内部を通過する冷媒温度を検 出するガス管温度センサ 50がそれぞれ設けられている。ガス管温度センサ 50は、室 内膨張弁 5a— 5cと室内熱交 3a— 3cとの間に設けられている。また、液分岐管 3 2の各分岐には、内部を通過する冷媒温度を検出する液管温度センサ 51がそれぞ れ設けられている。液管温度センサ 51は、室内熱交換器 3a— 3cと液分岐管の分岐 点との間に設けられている。
なお、各室内機 2a - 2cおよび分岐ユニット BP1に備えられた各種センサ 48 - 51 につ 、ては、簡略化のため同一機能のセンサには同一の符号を付して!/、る。
〈制御部〉
空気調和機 100は、図 2に示すように、上記の各種センサ 40— 51が検出する信号 に基づ!/、て圧縮機 10や切換機構 11などの各機器を制御して冷房運転や暖房運転 等の空調運転を行うための制御部 60を備える。
[0027] 制御部 60は、主に、マイクロコンピュータやメモリー力 なり、上述した各種センサ 4 0 - 51の入力信号を受けることができるように接続されるとともに、操作端末 61に入 力された指令信号を受けることができる。制御部 60は、これらの入力信号および指令 信号に基づいて各種機器 4a— 4c, 10, 11 , 27、弁類 5a— 5c、 15, 29、各種開閉 部 25, 30を制御することができるように接続されている。そして、この制御部 60は、 各種機器 4a— 4c, 10, 11, 27、弁類 5a— 5c、 15, 29、各種開閉部 25, 30を制御 して冷房運転や暖房運転などの空調運転を行うことができる。なお、図 2では、弁類 5 a— 5c、各種開閉部 25, 30、室内送風機 4a— 4c、室内膨張弁 5a— 5cなどの複数 の構成部品をそれぞれまとめて 1つのブロックで表示して ヽるが、各構成部品を個別 に制御することが可能である。
[0028] 以下、制御部 60が行う各種の制御について説明する。
<制御部が行う制御 >
制御部 60は、冷房サイクルによる運転と暖房サイクルによる運転とを切り換えて行う ことができる。冷房サイクルによる運転としては、冷房運転、デフロスト運転、油回収運 転などがある。暖房サイクルによる運転としては、暖房運転がある。
(暖房運転制御)
暖房運転制御では、室内熱交 3a— 3cが凝縮器となる加熱動作が行われる。 この暖房運転制御において、切 構 11は、図 1に破線で示す状態となる。室外膨 張弁 15、室外送風機 27、運転状態の室内機 2a— 2cの室内膨張弁 5a— 5cおよび 室内送風機 4a— 4cは、室内機 2a— 2cの運転状況などに応じて制御される。ホットガ スパイパス回路開閉部 25は閉じられ、過冷却バイパス用膨張弁 29は適宜開閉され る。ガス抜き回路開閉部 30は、適宜開閉される。この状態で冷媒が冷媒回路を循環 することにより、運転状態の室内機 2a—
Figure imgf000015_0001
— 3cが凝縮器として 機能し且つ室外熱交換器 14が蒸発器として機能する。これにより、加熱された空気 が室内へと吹き出され、暖房運転が行われる。
[0029] なお、上記のような暖房運転では、冷媒が以下のように冷媒回路を循環する。なお 。ここでは、第 1室内機 2aがサーモオン状態にあり、第 2室内機 2bおよび第 3室内機 2cがサーモオフまたは運転停止状態にあるとして説明する。
まず、圧縮機 10から吐出された冷媒は、切 構 11からガス閉鎖弁 24および分 岐ユニット BP1を通って第 1室内熱交換器 3aへ送られる。第 1室内熱交換器 3aでは 、冷媒が室内空気に対して放熱して凝縮する。第 1室内熱交換器 3aで凝縮した冷媒 は、第 1室内膨張弁 5a、液閉鎖弁 28、ブリッジ回路 17を通ってレシーバー 16に流入 する。レシーバー 16から流出した冷媒は、室外膨張弁 15で減圧され、ブリッジ回路 1 7を通って室外熱交換器 14へ送られる。室外熱交換器 14では、冷媒が室外空気か ら吸熱して蒸発する。室外熱交換器 14で蒸発した冷媒は、切換機構 11を通って圧 縮機 10に吸入される。圧縮機 10は吸入した冷媒を圧縮して再び吐出する。
[0030] なお、室内機 2a— 2cのうち停止している第 2室内機 2bおよび第 3室内機 2cでは、 対応する第 2室内膨張弁 5bと第 3室内膨張弁 5cとが微少開度で開かれており、冷媒 の流入が制限されている。
制御部 60は、各室内機 2a— 2cの運転状態の変更に応じて圧縮機 10の周波数お よび室外膨張弁 15の開度等を制御して容量制御を行う。
(冷房運転制御)
冷房運転制御時には、室内熱交換器 3a— 3cが蒸発器となる冷却動作が行われる 。この冷房運転制御時において、切換機構 11は、図 1に実線で示す状態となる。室 外膨張弁 15は全開にされ、室外送風機 27、運転状態の室内機 2a— 2cの室内膨張 弁 5a— 5cおよび室内送風機 4a— 4cは、室内機 2a— 2cの運転状況などに応じて制 御される。ホットガスバイパス回路開閉部 25、過冷却バイパス用膨張弁 29は適宜開 閉される。ガス抜き回路開閉部 30は、適宜開閉される。この状態で冷媒が冷媒回路 を循環することにより、運転状態の室内機 2a— 2cの室内熱交換器 3a— 3cが蒸発器 として機能し且つ室外熱交 14が凝縮器として機能する。これにより、冷却された 空気が室内へと吹き出され、冷房運転が行われる。
[0031] なお、上記のような冷房運転では、冷媒が以下のように冷媒回路を循環する。なお 。ここでは、第 1室内機 2aがサーモオン状態にあり、第 2室内機 2bおよび第 3室内機 2cがサーモオフまたは運転停止状態にあるとして説明する。
まず、圧縮機 10から吐出された冷媒は、切 構 11から室外熱交 へ送ら れる。室外熱交換器 14では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器 1 4で凝縮した冷媒は、室外膨張弁 15およびブリッジ回路 17を通って、レシーバー 16 に流入する。レシーバー 16から流出した冷媒は、液閉鎖弁 28を通り、分岐ユニット B P1内の第 1室内膨張弁 5aで減圧され、第 1室内熱交 へ送られる。第 1室内 熱交換器 3aでは、冷媒が室内空気から吸熱して蒸発する。第 1室内熱交換器 3aで 蒸発した冷媒は、ガス閉鎖弁 24、切換機構 11を通って圧縮機 10に吸入される。圧 縮機 10は吸入した冷媒を圧縮して再び吐出する。
[0032] なお、室内機 2a— 2cのうち停止している第 2室内機 2bおよび第 3室内機 2cでは、 対応する第 2室内膨張弁 5bと第 3室内膨張弁 5cとが全閉されており、冷媒の流入が 制限されている。
制御部 60は、各室内機 2a— 2cの運転状態の変更に応じて圧縮機 10の周波数お よび室外膨張弁 15の開度等を制御して容量制御を行う。
(容量制御)
上記のような暖房運転および冷房運転においては、主に圧縮機 10の周波数が調 整されることによって、容量制御が行われる。制御部 60は、室内機 2a— 2cまたは分 岐ユニット BP1からの要求に応じて圧縮機 10の周波数を変更する。このとき、要求さ れる容量が非常に小さくて圧縮機 10の周波数力 Sインバーター制御可能な最低運転 周波数であっても制御しきれない場合、容量制御を行うための運転モードが、通常制 御モード (第 2制御モード)力も小容量制御モード (第 1制御モード)に移行する。また 、小容量制御モードに移行後、要求される容量が大きくなり圧縮機 10の周波数が増 大した場合には、小容量制御モードから通常制御モードに復帰する。
[0033] まず、通常制御モードから小容量制御モードに移行する場合について説明する。
図 3に示すように、まず第 1ステップ S1 (周波数制御ステップ)において通常制御モ ードでの容量制御が行われる。ここでは、ガス抜き回路開閉部 30およびホットガスバ ィパス回路開閉部 25が閉じられた状態で圧縮機 10の周波数制御を行うことによって 容量制御が行われる。制御部 60は、室内機 2a— 2cまたは分岐ユニット BP1からの 容量制御要求に応じて圧縮機 10の周波数を所定間隔ごとに段階的に変更する。例 えば、圧縮機 10の最低運転周波数が 52Hzであって、これを第 1レベルとすると、第 2レベル = 56Hz、第 3レベル =61Hz、第 4レベル =67Hzのように各レベルの周波 数が所定間隔ごとに増大するように設定され、圧縮機 10の周波数はこのレベル単位 で増減する。なお、各レベルに設定された周波数の差は必ずしも同じ値に限るもの ではないが、近似した値となっている。また、高いレベルほど高い周波数が設定され ている。制御部 60は、容量制御要求の有無やそのときの周波数での運転保持時間 などを考慮して容量を増大させるカゝ否かを判断する。容量を増大させる場合は、圧縮 機 10の周波数を 1レベル増大させる。また、制御部 60は、容量を低下させる場合に は、圧縮機 10の周波数を 1レベル低下させる。
[0034] 次に、第 2ステップ S2 (判断ステップ)にお 、て、制御モードを変更するか否かの判 断が行われる。ここでは、容量を低下させる要求が受信され且つ圧縮機 10の周波数 がインバーター制御可能な最低運転周波数 (以下、「第 1移行条件レベル」(第 1周 波数)と呼ぶ)に達している場合は、第 3ステップ S3および第 4ステップ S4に進み、制 御モードが通常制御モード力 小容量制御モードに変更される。従って、制御部 60 は、圧縮機 10の周波数が最低運転周波数に到達するまで圧縮機 10の周波数を低 下させた後、さらに容量低減が必要な場合にガス抜き回路開閉部 30を開く。上記条 件が満たされな 、場合は、通常制御モードによる容量制御が継続される。
第 3ステップ S3では、ガス抜き回路開閉部 30が開かれると共に、圧縮機 10の周波 数が所定のレベル (以下、「第 1移行初期レベル」と呼ぶ)に設定される。すなわち、 小容量制御モードへの移行時の周波数の初期値として第 1移行初期レベルの周波 数 (第 2周波数)に圧縮機 10の周波数が設定される。この第 1移行初期レベルの周 波数は、第 1移行条件レベルよりも大きな値であり、従って、ガス抜き回路開閉部 30 が開かれると共に圧縮機 10の周波数が増大される。これにより、ガス抜き回路開閉 部 30の開放時の冷媒循環量を安定させることができる。
[0035] 第 4ステップ S4 (第 1制御モードステップ)では、小容量制御モードによる容量制御 が行われる。小容量制御モードでは、ガス抜き回路開閉部 30が開かれた状態で圧 縮機 10の周波数制御が行われる。制御部 60は、容量制御要求の有無やそのときの 周波数での運転保持時間などを考慮して容量を増大させる力否かを判断する。容量 を増大させる場合は、圧縮機 10の周波数を 1レベル増大させる。また、制御部 60は 、容量を低下させる場合には、圧縮機 10の周波数を 1レベル低下させる。このとき、 図 5に示すように、圧縮機 10の周波数は変動するが、ガス抜き回路開閉部 30は開か れた状態で保持されて!ヽる。
次に、小容量制御モードから通常制御モードに移行する場合について説明する。 まず、第 11ステップ S 11 (第 1制御モードステップ)において、小容量制御モードが 行われる。小容量制御モードの内容については上記と同様である。
[0036] 次に、第 12ステップ S12 (判断ステップ)において、周波数制御モードを変更するか 否かの判断が行われる。ここでは、容量を増大させる要求が受信され且つ圧縮機 10 の周波数が所定のレベル (以下、「第 2移行条件レベル」と呼ぶ)に達して ヽる場合、 または、圧縮機 10の周波数が他の所定のレベル (以下、「第 3移行条件レベル」と呼 ぶ)に達している場合には、第 13ステップ S13および第 14ステップ S14に進み、制 御モードが小容量制御モードから通常制御モードに変更される。なお、第 2移行条件 レベルおよび第 3移行条件レベルは、第 1移行条件レベルよりも高!、レベルである。 また、第 3移行条件レベルは、第 2移行条件レベルよりも高いレベルである。なお、こ の第 3移行条件レベルは、ガス抜き回路開閉部 30が開かれた状態で可能な最大容 量制御量の周波数換算値、または、 1つの室内機 2a— 2cのみが運転されている状 態に取りうる最大周波数である。上記条件が満たされない場合は、小容量制御モー ドによる容量制御が継続される。
[0037] 第 13ステップ S13では、ガス抜き回路開閉部 30が閉じられると共に圧縮機 10の周 波数が所定のレベル (以下、「第 2移行初期レベル」と呼ぶ)に設定されるか、または、 ガス抜き回路開閉部 30が閉じられると共に圧縮機 10の周波数がそのときのレベルか ら所定段階低いレベルに設定される。第 2移行初期レベルの周波数は、第 3移行条 件レベルの周波数 (第 3周波数)よりも小さぐ第 1移行条件レベルと同じレベルであ る。従って、第 3移行条件レベル以上のレベルから第 2移行初期レベルに変更される 場合は、圧縮機 10の周波数が低減される。
第 14ステップ S14 (周波数制御ステップ)では、通常制御モードにて容量制御が行 われる。通常制御モードの内容については上記と同様である。
(露付き防止制御)
上記のような小容量制御モードは、露付き防止制御の実行中に行われることが多く 、冷房運転時のみ行われる。露付き防止制御は、冷房運転時において室内機 2a— 2cの蒸発温度の低下によって室内機 2a— 2cの吹出口が結露しな 、ように圧縮機 1 0の周波数を変更して蒸発温度が過剰に低下しないようにする制御である。具体的 には、室内熱交温度センサ 49が検知した温度 Tnに基づき室外送風器 27および圧 縮機 10が制御される。露付き防止制御では、圧縮機 10の周波数は、室内機 2a— 2c または分岐ユニット BP1から送信される露付き防止ステータスによって制御される。露 付き防止ステータスには、「アップ」や「垂下」などがある。「アップ」は周波数の増大を 要求する指令であり、「垂下」は周波数の減少を要求する指令である。
<効果 >
(1)
従来の空気調和機における小容量の容量制御では、圧縮機 10の周波数を最低運 転周波数に保持した状態でホットガスバイノ ス回路開閉部 25のオン'オフを切り換え ることによって容量制御が行われている。この場合、図 6に示すように、ホットガスバイ パス回路開閉部 25の開閉が頻繁に行われるため、開閉時の冷媒音によって居住者 等に不快を与える恐れがある。
しかし、この空気調和機 100では、小容量制御モードにおいて、ガス抜き回路開閉 部 30が開かれた状態で圧縮機 10の周波数が制御される。このため、ガス抜き回路 開閉部 30の開閉の頻度が少なぐ冷媒音の発生を抑えることができる。また、ホットガ スバイパス回路開閉部 25のオン'オフによる容量制御の場合よりもきめ細かい制御が 可能である。このため、冷媒の循環量をより適切に制御することができ、室内機 2a— 2cの運転の安定性を向上させることができる。
[0039] (2)
従来、この空気調和機 100のようにアキュムレーターが備えられて 、な 、空気調和 機では、容量制御はホットガスバイパス回路開閉部 25の開閉によって行うことが一般 的である。例えば、小容量の容量制御時の低圧低下防止や、高圧上昇防止のため にホットガスノ ィパス回路開閉部 25による容量制御が行われる。しかし、ホットガスバ ィパス回路 13には圧力差が比較的大きい冷媒が流れるため、大きな冷媒音が発生 して居住者等に不快感を与える恐れがある。
しかし、この空気調和機 100では、ホットガスノ ィパス回路開閉部 25ではなぐガス 抜き回路開閉部 30によって容量制御が行われる。このため、圧縮機 10の吐出側か らレシーバーまでの圧損分だけ圧力差が低減し、冷媒音を抑えることができる。
[0040] <他の実施形態 >
(1)
上記の実施形態では、 1つの室外機 1に 3つの室内機 2a— 2cが接続されているが 、 1つの室外機 1に接続される室内機 2a— 2cの数は上記のものに限られず 1つ以上 の室内機 2a - 2cが接続されればょ 、。
(2)
上記の実施形態では、分岐ユニット BP1を介して室内機 2a— 2cと室外機 1とが接 続されているが、分岐ユニット BP1が備えられず室内膨張弁 5a— 5cをそれぞれ内蔵 した室内機 2a— 2cが直接的に室外機 1に接続されてもよい。
さらに、ガス抜き回路 20の出口は過冷却バイパス回路 19に接続されるのではなぐ 圧縮機 10の吸入管 23に接続されてもよい。
[0041] (3)
上記の実施形態では、冷房運転時の小容量制御モードにお!、てガス抜き回路開 閉部 30が利用されている。しかし、ホットガスバイパス回路開閉部 25に代えてガス抜 き回路開閉部 30を利用することによって冷媒音を抑えるという観点からは、冷房運転 に限らず暖房運転時に上記のような小容量制御モードによる容量制御が行われても よい。また、上記のような小容量の場合に限らず容量の大きい容量制御においてガス 抜き回路開閉部 30が利用されてもよい。
(4)
上記の実施形態では、冷房運転時の小容量制御モードにおいて、ガス抜き回路開 閉部 30が開かれた状態で圧縮機 10の周波数を調整する制御が行われている。しか し、ガス抜き回路開閉部 30の開閉頻度を低減して冷媒音を抑制する観点力もは、冷 房運転に限らず暖房運転時の容量制御において上記のような制御が行われてもよ い。
[0042] また、開閉頻度を低減して冷媒音を抑制する観点力もは、ガス抜き回路開閉部 30 に代えてホットガスノ ィパス回路開閉部 25が利用されてもよい。この場合も、圧縮機 10の周波数を一定にしてホットガスバイノ ス回路開閉部 25のオン'オフによって容量 制御が行われる場合と比べて、開閉の頻度が低減されて冷媒音が抑制される。ただ し、冷媒音をより抑制する観点力もは、ホットガスバイパス回路開閉部 25ではなくガス 抜き回路開閉部 30が利用されることが望ましい。
(5)
上記の実施形態では、小容量制御モードにおいてガス抜き回路開閉部 30が開か れた状態で圧縮機 10の周波数制御が行われている。しかし、小容量制御モードに おいて圧縮機 10の周波数を一定に保持した状態でガス抜き回路開閉部 30のオン' オフによって容量制御を行う場合であっても、圧縮機 10の周波数を一定に保持した 状態でホットガスバイパス回路開閉部 25のオン'オフによって容量制御を行う場合と 比べると冷媒音を抑制することが可能である。
産業上の利用可能性
[0043] 本発明は、小容量制御における冷媒音の発生を抑えることができる効果を有し、空 気調和機として有用である。

Claims

請求の範囲
[1] 圧縮機(10)と室外熱交 (14)と第 1膨張弁 (5a)と第 1室内熱交 (3a)とを 含む冷媒回路を備える空気調和機(100)であって、
前記冷媒回路をバイパスして冷媒を前記圧縮機(10)の吸入側に戻すバイパス回 路(13, 20)と、
前記バイパス回路(13, 20)上に設けられ前記バイパス回路(13, 20)を開閉する バイパス回路開閉部(25, 30)と、
前記圧縮機(10)の周波数制御によって容量制御を行!、、前記圧縮機(10)の周 波数が最低運転周波数である第 1周波数に到達するまで前記圧縮機(10)の周波数 を低下させた後さらに容量低減が必要な場合には、前記バイパス回路開閉部(25, 30)を開き且つ前記バイパス回路開閉部(25, 30)を開 、た状態で前記圧縮機(10 )の周波数制御を行うことによって容量の調整を行う第 1制御モードにて容量制御を 行う制御部(60)と、
を備える空気調和機(100)。
[2] 前記制御部(60)は、前記第 1制御モードにおいて、前記バイパス回路開閉部(25 , 30)を開くと共に前記圧縮機(10)の周波数を前記第 1周波数よりも大きい第 2周波 数とする、
請求項 1に記載の空気調和機( 100)。
[3] 前記制御部(60)は、前記第 1制御モードにお!、て前記圧縮機(10)の周波数が前 記第 1周波数よりも大きい第 3周波数に到達した場合は、前記バイパス回路開閉部(
25, 30)を閉じた状態で前記圧縮機(10)の周波数制御を行うことによって容量の調 整を行う第 2制御モードに切り換える、
請求項 1または 2に記載の空気調和機(100)。
[4] 前記冷媒回路において前記室外熱交 (14)と前記第 1室内熱交 (3a)との 間であって前記圧縮機(10)とは反対側に位置し、液体状態の冷媒を貯留可能なレ シーバー(16)をさらに備え、
前記バイパス回路(20)は、前記レシーバー(16)から前記圧縮機(10)の吸入側に 接続され前記レシーバー(16)内の気体状態の前記冷媒を前記圧縮機(10)の吸入 側へと送るガス抜き回路(20)である、
請求項 1から 3の 、ずれかに記載の空気調和機(100)。
[5] 前記バイパス回路(13)は、前記圧縮機(10)に接続される吸入管(23)と吐出管(2
2)とを接続するホットガスバイパス回路(13)である、
請求項 1から 4の 、ずれかに記載の空気調和機(100)。
[6] 前記冷媒回路は、前記第 1膨張弁 (5a)および前記第 1室内熱交換器 (3a)に並列 に配置される第 2室内熱交 (3b)および第 2膨張弁 (5b)をさらに含む、 請求項 1から 5の 、ずれかに記載の空気調和機(100)。
[7] 圧縮機(10)と、室外熱交換器 (14)と、第 1膨張弁 (5a)と、第 1室内熱交換器 (3a) と、前記圧縮機(10)の吸入側と吐出側とを接続するバイパス回路(13, 20)と、前記 バイパス回路(13, 20)上に設けられ前記バイパス回路(13, 20)を開閉するバイパ ス回路開閉部(25, 30)とを含む冷媒回路を備える空気調和機(100)の制御方法で あって、
前記圧縮機(10)の周波数制御によって容量制御が行われる周波数制御ステップ ( SI, S14)と、
前記圧縮機(10)の周波数が最低運転周波数である第 1周波数に到達し、且つ、さ らに容量低減が必要力否かが判断される判断ステップ (S2, S12)と、
前記判断ステップ(S2, S12)において、圧縮機(10)の周波数が最低運転周波数 である第 1周波数に到達し、且つ、さらに容量低減が必要であると判断された場合に は、前記バイパス回路開閉部(25, 30)を開き且つ前記バイパス回路開閉部(25, 3 0)を開 、た状態で前記圧縮機(10)の周波数制御を行うことによって容量の調整を 行う第 1制御モードにて容量制御が行われる第 1制御モードステップ (S4, S11)と、 を備える空気調和機(100)の制御方法。
PCT/JP2006/307735 2005-04-18 2006-04-12 空気調和機 WO2006112321A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-119543 2005-04-18
JP2005119543A JP2006300373A (ja) 2005-04-18 2005-04-18 空気調和機

Publications (1)

Publication Number Publication Date
WO2006112321A1 true WO2006112321A1 (ja) 2006-10-26

Family

ID=37115045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307735 WO2006112321A1 (ja) 2005-04-18 2006-04-12 空気調和機

Country Status (2)

Country Link
JP (1) JP2006300373A (ja)
WO (1) WO2006112321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226112B2 (en) * 2018-09-28 2022-01-18 Daikin Industries, Ltd. Air-conditioning system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106536B2 (ja) * 2007-08-28 2012-12-26 三菱電機株式会社 空気調和装置
KR101611315B1 (ko) 2008-12-31 2016-04-26 엘지전자 주식회사 공기조화기 및 그 동작방법
KR100985618B1 (ko) 2009-01-29 2010-10-05 엘에스엠트론 주식회사 난방 저부하 운전 특성이 개선된 공기조화기
CN106440227B (zh) * 2016-10-20 2020-01-31 珠海格力电器股份有限公司 用于控制空调器的运行的控制方法和空调器
JP6847239B2 (ja) * 2017-09-07 2021-03-24 三菱電機株式会社 空気調和装置
CN108518821B (zh) * 2018-06-19 2021-08-20 广东美的制冷设备有限公司 空调的控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424186A (en) * 1987-07-20 1989-01-26 Daikin Ind Ltd Compressor capacity control device for refrigerating unit
JPH02154945A (ja) * 1988-12-07 1990-06-14 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2003269808A (ja) * 2002-03-15 2003-09-25 Hitachi Ltd 空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424186A (en) * 1987-07-20 1989-01-26 Daikin Ind Ltd Compressor capacity control device for refrigerating unit
JPH02154945A (ja) * 1988-12-07 1990-06-14 Daikin Ind Ltd 空気調和装置の運転制御装置
JP2003269808A (ja) * 2002-03-15 2003-09-25 Hitachi Ltd 空気調和機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226112B2 (en) * 2018-09-28 2022-01-18 Daikin Industries, Ltd. Air-conditioning system

Also Published As

Publication number Publication date
JP2006300373A (ja) 2006-11-02

Similar Documents

Publication Publication Date Title
JP3864980B2 (ja) 空気調和機
JP3925545B2 (ja) 冷凍装置
CN108027179B (zh) 空气调节机
JP4497234B2 (ja) 空気調和装置
JP5402027B2 (ja) 空気調和機
EP2128535A1 (en) Air conditioner
WO2006112322A1 (ja) 空気調和機
JP4001149B2 (ja) 空気調和機
JP5318057B2 (ja) 冷凍機、冷凍装置及び空気調和装置
WO2018185841A1 (ja) 冷凍サイクル装置
JP6590026B2 (ja) 空気調和装置
WO2006112321A1 (ja) 空気調和機
WO2019053876A1 (ja) 空気調和装置
JP3941817B2 (ja) 空気調和機
JP2007232265A (ja) 冷凍装置
JP5593905B2 (ja) 冷凍装置
US8769968B2 (en) Refrigerant system and method for controlling the same
JP3750520B2 (ja) 冷凍装置
WO2018221652A1 (ja) 空気調和装置
JP3835478B1 (ja) 空気調和機
JP2009264612A (ja) 冷凍装置
JP7063940B2 (ja) 冷凍装置
JP2002243307A (ja) 空気調和装置
JP2003240365A (ja) 冷凍装置
KR100696712B1 (ko) 멀티 에어컨의 압축기 보호 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731681

Country of ref document: EP

Kind code of ref document: A1