USRE42741E1 - Lithographic apparatus and device manufacturing method - Google Patents

Lithographic apparatus and device manufacturing method Download PDF

Info

Publication number
USRE42741E1
USRE42741E1 US12/073,908 US7390808A USRE42741E US RE42741 E1 USRE42741 E1 US RE42741E1 US 7390808 A US7390808 A US 7390808A US RE42741 E USRE42741 E US RE42741E
Authority
US
United States
Prior art keywords
liquid
substrate
projection system
radiation
configured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US12/073,908
Inventor
Aleksey Yurievich Kolesnychenko
Jan Evert Van Der Werp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP03254116 priority Critical
Priority to EP03254116A priority patent/EP1491956B1/en
Priority to US10/866,077 priority patent/US7012673B2/en
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Priority to US12/073,908 priority patent/USRE42741E1/en
Application granted granted Critical
Publication of USRE42741E1 publication Critical patent/USRE42741E1/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70216Systems for imaging mask onto workpiece
    • G03F7/70341Immersion

Abstract

Liquid is supplied to a space between a projection system of a lithographic apparatus and a substrate, but there is a space between the liquid and the substrate. An evanescent field may be formed between the liquid and the substrate allowing some photons to expose the substrate. Due to the refractive index of the liquid, the resolution of the system may be improved and liquid on the substrate may be avoided.

Description

More than one reissue application has been filed for the reissue of Pat. No. 7,012,673. The reissue applications are divisional reissue application Ser. No. 13/192,070, continuation reissue application Ser No. 13/192,106, and parent reissue application Ser. No. 12/073,908 (the present application), all of which are reissue applications of Pat. No. 7,012,673.

This application claims priority from European patent application EP 03254116.1, filed Jun. 27, 2003, which is incorporated herein in its entirety.

FIELD

The present invention relates to a lithographic apparatus and a device manufacturing method.

BACKGROUND

The term “patterning device” as here employed should be broadly interpreted as referring to any device that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term “light valve” can also be used in this context. Generally, the pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). Examples of such a patterning device include:

    • A mask. The concept of a mask is well known in lithography, and it includes mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. Placement of such a mask in the radiation beam causes selective transmission (in the case of a transmissive mask) or reflection (in the case of a reflective mask) of the radiation impinging on the mask, according to the pattern on the mask. In the case of a mask, the support structure will generally be a mask table, which ensures that the mask can be held at a desired position in the incoming radiation beam, and that it can be moved relative to the beam if so desired.
    • A programmable mirror array. One example of such a device is a matrix-addressable surface having a viscoelastic control layer and a reflective surface. The basic principle behind such an apparatus is that (for example) addressed areas of the reflective surface reflect incident light as diffracted light, whereas unaddressed areas reflect incident light as undiffracted light. Using an appropriate filter, the undiffracted light can be as filtered out of the reflected beam, leaving only the diffracted light behind; in this manner, the beam becomes patterned according to the addressing pattern of the matrix-addressable surface. An alternative embodiment of a programmable mirror array employs a matrix arrangement of tiny mirrors, each of which can be individually tilted about an axis by applying a suitable localized electric field, or by employing piezoelectric actuation means. Once again, the mirrors are matrix-addressable, such that addressed mirrors will reflect an incoming radiation beam in a different direction to unaddressed mirrors; in this manner, the reflected beam is patterned according to the addressing pattern of the matrix-addressable mirrors. The required matrix addressing can be performed using suitable electronic means. In both of the situations described hereabove, the patterning device can comprise one or more programmable mirror arrays. More information on mirror arrays as here referred to can be gleaned, for example, from United States Patents U.S. Pat. No. 5,296,891 and U.S. Pat. No. 5,523,193, and PCT patent applications WO 98/38597 and WO 98/33096, which are incorporated herein by reference. In the case of a programmable mirror array, the support structure may be embodied as a frame or table, for example, which may be fixed or movable as required.
    • A programmable LCD array. An example of such a construction is given in United States Patent U.S. Pat. No. 5,229,872, which is incorporated herein by reference. As above, the support structure in this case may be embodied as a frame or table, for example, which may be fixed or movable as required.
      For purposes of simplicity, the rest of this text may, at certain locations, specifically direct itself to examples involving a mask and mask table; however, the general principles discussed in such instances should be seen in the broader context of the patterning device as hereabove set forth.

Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, the patterning device may generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist). In general, a single substrate will contain a whole network of adjacent target portions that are successively irradiated via the projection system, one at a time. In current apparatus, employing patterning by a mask on a mask table, a distinction can be made between two different types of machine. In one type of lithographic projection apparatus, each target portion is irradiated by exposing the entire mask pattern onto the target portion at one time; such an apparatus is commonly referred to as a stepper. In an alternative apparatus—commonly referred to as a step-and-scan apparatus—each target portion is irradiated by progressively scanning the mask pattern under the projection beam in a given reference direction (the “scanning” direction) while synchronously scanning the substrate table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally <1), the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned. More information with regard to lithographic devices as here described can be gleaned, for example, from U.S. Pat. No. 6,046,792, incorporated herein by reference.

In a manufacturing process using a lithographic projection apparatus, a pattern (e.g. in a mask) is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist). Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features. This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC. Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemo-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc. Further information regarding such processes can be obtained, for example, from the book “Microchip Fabrication: A Practical Guide to Semiconductor Processing,” Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997, ISBN 0-07-067250-4, incorporated herein by reference.

For the sake of simplicity, the projection system may hereinafter be referred to as the “projection lens”; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example. The radiation system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a “lens.” Further, the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such “multiple stage” devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Dual stage lithographic apparatus are described, for example, in U.S. Pat. No. 5,969,441 and WO 98/40791, incorporated herein by reference.

It has been proposed to immerse the substrate in a lithographic projection apparatus in a liquid having a relatively high refractive index, e.g. water, so as to fill a space between the final element of the projection system and the substrate. The point of this is to enable imaging of smaller features since the exposure radiation will have a shorter wavelength in the liquid. (The effect of the liquid may also be regarded as increasing the effective NA of the system.)

However, submersing the substrate or substrate and substrate table in a bath of liquid (see for example U.S. Pat. No. 4,509,852, hereby incorporated in its entirety by reference) means that there is a large body of liquid that must be accelerated during a scanning exposure. This requires additional or more powerful motors and turbulence in the liquid may lead to undesirable and unpredictable effects.

One of the solutions proposed is for a liquid supply system to provide liquid on a localized area of the substrate and in between the final element of the projection system and the substrate (the substrate generally has a larger surface area than the final element of the projection system). One way which has been proposed to arrange for this is disclosed in WO 99/49504, hereby incorporated in its entirety by reference. As illustrated in FIGS. 2 and 3, liquid is supplied by at least one inlet IN onto the substrate, preferably along the direction of movement of the substrate relative to the final element, and is removed by at least one outlet OUT after having passed under the projection system. That is, as the substrate is scanned beneath the element in a −X direction, liquid is supplied at the +X side of the element and taken up at the −X side. FIG. 2 shows the arrangement schematically in which liquid is supplied via inlet IN and is taken up on the other side of the element by outlet OUT which is connected to a low pressure source. In the illustration of FIG. 2 the liquid is supplied along the direction of movement of the substrate relative to the final element, though this does not need to be the case. Various orientations and numbers of in- and out-lets positioned around the final element are possible, one example is illustrated in FIG. 3 in which four sets of an inlet with an outlet on either side are provided in a regular pattern around the final element to form a liquid reservoir.

However this and other immersion lithography proposals can incur several difficulties. For example, the effect of immersion liquid on resist chemistry is unknown and outgassing of the resist could cause bubbles in the immersion liquid. Bubbles in the immersion liquid would alter the course of the radiation and thus affect the uniformity of the exposure. Furthermore, even with protective measures, the problem of mechanical disturbances due to coupling between the projection apparatus and the substrate via the immersion liquid remains significant.

An alternative method to improve the resolution of lithographic apparatus, as described by L. P. Ghislain et al. in “Near-Field Photolithography with Solid Immersion Lens,” App. Phys. Lett. 74, 501-503. (1999), is to provide a solid immersion lens with a high refractive index between the projection system and the substrate. The projection beam is focused on the solid immersion lens and the radiation propagates to the resist through a very thin air (or other gas) gap using an evanescent field (near-field operation mode). The distance between the solid lens and the substrate is made sufficiently small (i.e. less than the wavelength of the radiation) that some photons are transmitted across the gap and the substrate is exposed. This proposal obviously relies on a very small gap between the substrate and the solid lens and the chances of a crash between the two are high.

SUMMARY

Accordingly, it would be advantageous, for example, to provide an alternative method and apparatus with improved resolution. The alternative method and apparatus may alleviate some of the disadvantages of the presence of liquid or the presence of a solid lens.

According to an aspect of the invention, there is provided a lithographic apparatus comprising:

    • an illumination system arranged to condition a radiation beam;
    • a support structure configured to hold a patterning device, the patterning device being capable of imparting the radiation beam with a pattern in its cross-section;
    • a substrate table configured to hold a substrate;
    • a projection system arranged to project the patterned radiation beam onto a target portion of the substrate; and
    • a liquid supply system configured to supply a liquid between the projection system and the substrate and arranged, such that in use, there is a space not occupied by liquid between the liquid and the substrate.

Problems that may result from the contact between the liquid and the substrate, such as the effect on resist chemistry and outgassing of the resist can be avoided by having a space not occupied by liquid between the liquid and the substrate. Even if a crash occurs between the liquid and the substrate the consequences will not be as serious as a crash between a solid lens and the substrate. The liquid may be dispersed in the system but the substrate will likely not be permanently damaged and the lithographic apparatus will likely not need major repair work. Arrangements to catch liquid dispersed in the event of a crash may easily be provided.

The liquid supply system can include elements to control the position, quantity, shape, flow rate or any other features of the liquid.

A distance between the liquid and the substrate is, in an embodiment, smaller than the wavelength of the radiation and, in an embodiment, less than 100 nm. The distance between the liquid and the substrate should be carefully monitored because if the distance is too great insufficient radiation may be transmitted to the substrate. The distance should also be as uniform as possible to prevent variation in the amount of radiation transmitted. Similarly, the depth of the liquid should be monitored as it affects the focal plane of the entire projection system. Both the distance between the liquid and the substrate and the depth of the liquid should be carefully regulated such that any variations can be compensated for.

To prevent erroneous and unquantified refraction of the radiation, the surface of the liquid closest to the substrate should be substantially parallel to the substrate.

To confine the liquid to form a liquid lens, the liquid supply system may comprise a hydrophobic surface. The hydrophobic surface may, in an embodiment, be of a substantially annular shape to form the liquid lens in the center of the annulus. In an embodiment, a radiation-transmissive hydrophilic surface configured to define the shape of the liquid may be provided. In an embodiment, the hydrophilic surface fills the hole at the center of the annular hydrophobic surface. A metallic electrode may also be used to adjust the shape (including diameter) of the liquid.

For ease of use, the lithographic apparatus may be arranged such that the substrate table is vertically above the projection system.

According to a further aspect of the invention, there is provided a device manufacturing method comprising:

    • providing a liquid between a projection system of a lithographic apparatus and a substrate, the liquid forming a liquid lens; and
    • projecting a patterned radiation beam through the liquid, then through a space, and then onto a target portion of the substrate using the projection system.

Although specific reference may be made in this text to the use of the apparatus according to the invention in the manufacture of ICs, it should be explicitly understood that such an apparatus has many other possible applications. For example, it may be employed in the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal display panels, thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms “reticle”, “wafer” or “die” in this text should be considered as being replaced by the more general terms “mask”, “substrate” and “target portion”, respectively.

In the present document, the terms “radiation” and “beam” are used to encompass all types of electromagnetic radiation, including ultraviolet radiation (e.g. with a wavelength of 365, 248, 193, 157 or 126 nm).

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which:

FIG. 1 depicts a lithographic projection apparatus according to an embodiment of the invention;

FIG. 2 depicts a liquid supply system according to an embodiment of the invention;

FIG. 3 is an alternative view of the liquid supply system of FIG. 2;

FIG. 4 depicts a detail of a lithographic projection apparatus according to an embodiment of the invention; and

FIG. 5 depicts a detail of an alternative embodiment of a lithographic projection apparatus according to the invention.

In the Figures, corresponding reference symbols indicate corresponding parts.

DETAILED DESCRIPTION

FIG. 1 schematically depicts a lithographic projection apparatus according to a particular embodiment of the invention. The apparatus comprises:

    • a radiation system Ex, IL, for supplying a projection beam PB of radiation (e.g. UV radiation), which in this particular case also comprises a radiation source LA;
    • a first object table (mask table) MT provided with a mask holder for holding a mask MA (e.g. a reticle), and connected to a first positioning device for accurately positioning the mask with respect to item PL;
    • a second object table (substrate table) WT provided with a substrate holder for holding a substrate W (e.g. a resist-coated silicon wafer), and connected to a second positioning device for accurately positioning the substrate with respect to item PL;
    • a projection system (“lens”) PL (e.g. a refractive lens system) for imaging an irradiated portion of the mask MA onto a target portion C (e.g. comprising one or more dies) of the substrate W.

As here depicted, the apparatus is of a transmissive type (e.g. has a transmissive mask). However, in general, it may also be of a reflective type, for example (e.g. with a reflective mask). Alternatively, the apparatus may employ another kind of patterning device, such as a programmable mirror array of a type as referred to above.

The source LA (e.g. a laser-produced or discharge plasma source) produces a beam of radiation. This beam is fed into an illumination system (illuminator) IL, either directly or after having traversed conditioning means, such as a beam expander Ex, for example. The illuminator IL may comprise adjusting means AM for setting the outer and/or inner radial extent (commonly referred to as σ-outer and σ-inner, respectively) of the intensity distribution in the beam. In addition, it will generally comprise various other components, such as an integrator IN and a condenser CO. In this way, the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.

It should be noted with regard to FIG. 1 that the source LA may be within the housing of the lithographic projection apparatus (as is often the case when the source LA is a mercury lamp, for example), but that it may also be remote from the lithographic projection apparatus, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); this latter scenario is often the case when the source LA is an excimer laser. The current invention and claims encompass both of these scenarios.

The beam PB subsequently intercepts the mask MA, which is held on a mask table MT. Having traversed the mask MA, the beam PB passes through the projection lens PL, which focuses the beam PB onto a target portion C of the substrate W. With the aid of the second positioning device (and an interferometric measuring device IF), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioning device can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval of the mask MA from a mask library, or during a scan. In general, movement of the object tables MT, WT will be realized with the aid of a long-stroke module (course positioning) and a short-stroke module (fine positioning), which are not explicitly depicted in FIG. 1. However, in the case of a stepper (as opposed to a step-and-scan apparatus) the mask table MT may just be connected to a short stroke actuator, or may be fixed.

The depicted apparatus can be used in two different modes:

    • 1. In step mode, the mask table MT is kept essentially stationary, and an entire mask image is projected in one go (i.e. a single “flash”) onto a target portion C. The substrate table WT is then shifted in the x and/or y directions so that a different target portion C can be irradiated by the beam PB;
    • 2. In scan mode, essentially the same scenario applies, except that a given target portion C is not exposed in a single “flash.” Instead, the mask table MT is movable in a given direction (the so-called “scan direction”, e.g. the y direction) with a speed ν, so that the projection beam PB is caused to scan over a mask image; concurrently, the substrate table WT is simultaneously moved in the same or opposite direction at a speed V=Mν, in which M is the magnification of the projection lens PL (typically, M=¼ or ⅕). In this manner, a relatively large target portion C can be exposed, without having to compromise on resolution.

As shown in FIGS. 4 and 5, the substrate table WT is above the projection system PL (although as discussed hereafter it need not be). High precision liquid supply system 18 is provided to supply liquid via duct 17 to a space between the projection system PL and the substrate table WT. The liquid has a refractive index n and forms a liquid lens 10 or reservoir. The lens 10 is formed around the image field of the projection system PL so that liquid is confined to a space between the substrate surface and the final element of the projection system PL.

A band of a hydrophobic material 22 (e.g. a coating) is adhered to the liquid supply system 18 which confines liquid in the lens 10. Additionally, the surface of the projection system PL disposed towards the substrate surface comprises a radiation-transmissive hydrophilic material 23 (e.g. a coating) to ensure the lens 10 adheres to the projection system. The specific choice of hydrophobic and hydrophilic materials is dependent on the liquid. For example, when using substantially water as the liquid, glass has been found to be a suitable hydrophilic material and Teflon a suitable hydrophobic material. Other factors such as the degree of roughness of the surface can also be used to improve the hydrophobic quality of a material.

A liquid sensor 24 senses the depth of the liquid lens 10 and the high precision liquid supply system 18 provides enough liquid to substantially fill the space between the projection system PL and the substrate W, but such that there is a gap between the substrate W and the liquid lens 10 of less than the wavelength of the projection radiation. Liquid sensor 24 forms part of a feedback system in which more liquid can be provided into the lens 10 by the high precision liquid supply system 18 when the depth is insufficient and liquid can be removed from the lens 10 by an outlet 14 (or one of the ducts 17 can be used as an outlet) when the depth is too great. The liquid sensor 24 works by sensing radiation from within the liquid lens 10 and using internal reflections from surfaces of the liquid lens to determine the depth of the lens. As the distance between the projection system PL and the substrate W can either be set or alternatively easily measured, the gap between the lens 10 and the substrate W can be calculated by simply subtracting the depth of the lens 10 from the total distance between the projection system PL and the substrate W. Alternatively these distances can be measured by measuring the capacitance between electrodes on, for example, the substrate table WT and the projection system PL.

Radiation is thus projected through the liquid lens 10 and an evanescent field is formed between the substrate W and the surface of the liquid lens 10 disposed towards the substrate surface. The resolution of the system is therefore improved by a factor of n.

The lens 10 should, in an embodiment, have a large flat surface to prevent erroneous refraction of the radiation. By charging (e.g., metallic) electrodes 28 under the hydrophobic material, the shape (form and size of the liquid lens) can be adjusted appropriately. For example, the lens 10 can be adjusted to have a large diameter to provide a large flat area at the center.

Alternatively or additionally to the hydrophobic material 22 and/or hydrophilic material 23, a gas seal 16 may be used to confine the liquid in the lens 10. As shown in FIG. 5, the gas seal is formed by gas, e.g. air, synthetic air, N2 or another inert gas, provided under pressure via inlet 15 to the gap between the high precision liquid supply system 18 and the substrate W and extracted via outlet 14. An overpressure on the gas inlet 15, vacuum level on the outlet 14 and geometry of the gap are arranged so that there is a high-velocity gas flow inwards that confines the liquid.

If the lens 10 is sufficiently small, a lithographic apparatus with the projection system PL above the substrate table WT, as shown in FIG. 1 can be used. Surface tension and adhesion forces compensate for the force of gravity and the lens 10 remains adhered to the projection system PL leaving a space between the lens 10 and the substrate W.

Another liquid supply system which has been proposed, as described in U.S. patent application U.S. Ser. No. 10/705,783, is to provide the liquid supply system with a seal member which extends along at least a part of a boundary of the space between the final element of the projection system and the substrate table. The seal member is substantially stationary relative to the projection system in the XY plane and a seal is formed between the seal member and the surface of the substrate. In an embodiment, the seal is a contactless seal such as a gas seal.

While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. The description is not intended to limit the invention.

Claims (21)

1. A lithographic projection apparatus comprising:
an illumination system arranged to condition a radiation beam;
a support structure configured to hold a patterning device, the patterning device being capable of imparting the a radiation beam with a pattern in its cross-section;
a substrate table configured to hold a substrate;
a projection system arranged to project the patterned radiation beam onto a target portion of the substrate; and
a liquid supply system configured to supply a liquid between the projection system and the substrate and arranged, such that in use, there is a space not occupied by liquid between the liquid and the substrate.
2. An apparatus according to claim 1, wherein a distance between the liquid and the substrate is smaller than the wavelength of the radiation beam.
3. An apparatus according to claim 1, wherein a distance between the liquid and the substrate is less than 100 nm.
4. An apparatus according to claim 1, wherein the majority of the surface of the liquid closest to the substrate is substantially parallel to the substrate.
5. An apparatus according to claim 1, wherein the liquid supply system comprises a hydrophobic surface configured to define a shape of the liquid.
6. An apparatus according to claim 5, wherein the hydrophobic surface is of annular shape.
7. An apparatus according to claim 1, comprising a radiation-transmissive hydrophilic surface configured to define a shape of the liquid.
8. An apparatus according to claim 7, wherein the radiation-transmissive hydrophilic surface is circular, filling a hole at the center of an annular hydrophobic surface.
9. An apparatus according to claim 1, wherein, in use, the substrate table is vertically above the projection system.
10. An apparatus according to claim 1, comprising an electrode configured to adjust the shape of the liquid.
11. A device manufacturing method comprising:
providing a liquid between a projection system of a lithographic apparatus and a substrate, the liquid forming a liquid lens; and
projecting a patterned radiation beam through the liquid, then through a space, and then onto a target portion of the substrate using the projection system.
12. A method according to claim 11, wherein a distance between the liquid and the substrate is smaller than the wavelength of the radiation beam.
13. A method according to claim 11, wherein a distance between the liquid and the substrate is less than 100 nm.
14. A method according to claim 11, wherein the majority of the surface of the liquid closest to the substrate is substantially parallel to the substrate.
15. A method according to claim 11, comprising defining a shape of the liquid using a hydrophobic surface.
16. A method according to claim 15, wherein the hydrophobic surface is of annular shape.
17. A method according to claim 11, comprising defining a shape of the liquid using a radiation-transmissive hydrophilic surface.
18. A method according to claim 17, wherein the radiation-transmissive hydrophilic surface is circular, filling a hole at the center of an annular hydrophobic surface.
19. A method according to claim 11, wherein, in use, the substrate is vertically above the projection system.
20. A method according to claim 11, comprising adjusting the shape of the liquid using an electrode.
21. A lithographic projection apparatus comprising:
an illumination system arranged to condition a radiation beam;
a support structure configured to hold a patterning device, the patterning device being capable of imparting the a radiation beam with a pattern in its cross-section;
a substrate table configured to hold a substrate;
a projection system arranged to project the patterned radiation beam onto a target portion of the substrate; and
a liquid supply system configured to supply a peripherally confined portion of liquid between the projection system and the substrate, the substrate being vertically above the configured portion of the liquid, and wherein a space exists between the confined portion of liquid and the substrate.
US12/073,908 2003-06-27 2008-03-11 Lithographic apparatus and device manufacturing method Expired - Fee Related USRE42741E1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03254116 2003-06-27
EP03254116A EP1491956B1 (en) 2003-06-27 2003-06-27 Lithographic apparatus and device manufacturing method
US10/866,077 US7012673B2 (en) 2003-06-27 2004-06-14 Lithographic apparatus and device manufacturing method
US12/073,908 USRE42741E1 (en) 2003-06-27 2008-03-11 Lithographic apparatus and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/073,908 USRE42741E1 (en) 2003-06-27 2008-03-11 Lithographic apparatus and device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/866,077 Reissue US7012673B2 (en) 2003-06-27 2004-06-14 Lithographic apparatus and device manufacturing method

Publications (1)

Publication Number Publication Date
USRE42741E1 true USRE42741E1 (en) 2011-09-27

Family

ID=33396023

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/866,077 Active 2024-08-05 US7012673B2 (en) 2003-06-27 2004-06-14 Lithographic apparatus and device manufacturing method
US12/073,908 Expired - Fee Related USRE42741E1 (en) 2003-06-27 2008-03-11 Lithographic apparatus and device manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/866,077 Active 2024-08-05 US7012673B2 (en) 2003-06-27 2004-06-14 Lithographic apparatus and device manufacturing method

Country Status (6)

Country Link
US (2) US7012673B2 (en)
EP (1) EP1491956B1 (en)
JP (3) JP4497551B2 (en)
DE (1) DE60308161T2 (en)
TW (1) TWI252380B (en)
WO (1) WO2005001572A2 (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965330B1 (en) 2003-12-15 2010-06-22 칼 짜이스 에스엠티 아게 Objective as a microlithography projection objective with at least one liquid lens
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100568101C (en) * 2002-11-12 2009-12-09 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101036114B1 (en) * 2002-12-10 2011-05-23 가부시키가이샤 니콘 Exposure apparatus, exposure method and method for manufacturing device
DE10261775A1 (en) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Device for optical measurement of an imaging system
EP2466625B1 (en) 2003-02-26 2015-04-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP1612850B1 (en) 2003-04-07 2009-03-25 Nikon Corporation Exposure apparatus and method for manufacturing a device
EP1616220B1 (en) * 2003-04-11 2013-05-01 Nikon Corporation Apparatus and method for maintaining immersion fluid under a lithographic projection lens
KR101528016B1 (en) 2003-06-13 2015-06-12 가부시키가이샤 니콘 Exposure method, substrate stage, exposure apparatus and method for manufacturing device
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
KR101146962B1 (en) * 2003-06-19 2012-05-22 가부시키가이샤 니콘 Exposure device and device producing method
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7236232B2 (en) * 2003-07-01 2007-06-26 Nikon Corporation Using isotopically specified fluids as optical elements
EP2264532B1 (en) * 2003-07-09 2012-10-31 Nikon Corporation Exposure apparatus and device manufacturing method
CN102944981A (en) * 2003-07-09 2013-02-27 株式会社尼康 Exposure apparatus, and device fabricating method
DE10332112A1 (en) * 2003-07-09 2005-01-27 Carl Zeiss Smt Ag Manufacturing semiconductor, other finely-structured components involves setting working distance at least temporarily to less than maximum size of optical near field of emanating projection light
KR101296501B1 (en) * 2003-07-09 2013-08-13 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
WO2005010960A1 (en) 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
EP1503244A1 (en) * 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
CN102323724B (en) * 2003-07-28 2014-08-13 株式会社尼康 Liquid immersion exposure apparatus, producing method thereof, exposure apparatus and device producing method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4325622B2 (en) 2003-08-29 2009-09-02 株式会社ニコン Exposure apparatus and device manufacturing method
TWI263859B (en) * 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
KR101238114B1 (en) 2003-09-03 2013-02-27 가부시키가이샤 니콘 Apparatus and method for providing fluid for immersion lithography
US8054448B2 (en) * 2004-05-04 2011-11-08 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
EP2312395B1 (en) 2003-09-29 2015-05-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
JP2005136364A (en) * 2003-10-08 2005-05-26 Nikon Corp Substrate carrying device, exposure device and device manufacturing method
KR101111364B1 (en) 2003-10-08 2012-02-27 가부시키가이샤 니콘 Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
WO2005036623A1 (en) 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. Substrate transporting apparatus and method, exposure apparatus and method, and device producing method
TWI376724B (en) 2003-10-09 2012-11-11 Nikon Corp
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3139214B1 (en) * 2003-12-03 2019-01-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JPWO2005057635A1 (en) * 2003-12-15 2007-07-05 株式会社ニコン Projection exposure apparatus and the stage apparatus, and exposure method
US20070081133A1 (en) * 2004-12-14 2007-04-12 Niikon Corporation Projection exposure apparatus and stage unit, and exposure method
KR101499405B1 (en) 2003-12-15 2015-03-05 가부시키가이샤 니콘 Stage system, exposure apparatus and exposure method
US7324274B2 (en) * 2003-12-24 2008-01-29 Nikon Corporation Microscope and immersion objective lens
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7990516B2 (en) 2004-02-03 2011-08-02 Nikon Corporation Immersion exposure apparatus and device manufacturing method with liquid detection apparatus
US7050146B2 (en) * 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US20070165198A1 (en) * 2004-02-13 2007-07-19 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
CN100592210C (en) * 2004-02-13 2010-02-24 卡尔蔡司Smt股份公司 Projection objective for a microlithographic projection exposure apparatus
KR101330370B1 (en) * 2004-04-19 2013-11-15 가부시키가이샤 니콘 Exposure apparatus and device producing method
KR101248328B1 (en) * 2004-06-04 2013-04-01 칼 짜이스 에스엠티 게엠베하 Projection system with compensation of intensity variations and compensation element therefor
EP1774405B1 (en) 2004-06-04 2014-08-06 Carl Zeiss SMT GmbH System for measuring the image quality of an optical imaging system
US20070216889A1 (en) * 2004-06-04 2007-09-20 Yasufumi Nishii Exposure Apparatus, Exposure Method, and Method for Producing Device
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006006565A1 (en) 2004-07-12 2006-01-19 Nikon Corporation Exposure equipment and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060044533A1 (en) * 2004-08-27 2006-03-02 Asmlholding N.V. System and method for reducing disturbances caused by movement in an immersion lithography system
US7397533B2 (en) * 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1681597B1 (en) * 2005-01-14 2010-03-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US8692973B2 (en) * 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
KR101942138B1 (en) 2005-01-31 2019-01-24 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US7282701B2 (en) 2005-02-28 2007-10-16 Asml Netherlands B.V. Sensor for use in a lithographic apparatus
JP4262252B2 (en) * 2005-03-02 2009-05-13 キヤノン株式会社 Exposure apparatus
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US20060232753A1 (en) * 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
US20070004182A1 (en) * 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and system for inhibiting immersion lithography defect formation
JP2007012954A (en) * 2005-07-01 2007-01-18 Canon Inc Exposure device
US7773195B2 (en) * 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US20070124987A1 (en) * 2005-12-05 2007-06-07 Brown Jeffrey K Electronic pest control apparatus
US7649611B2 (en) * 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7714982B2 (en) * 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20070200276A1 (en) * 2006-02-24 2007-08-30 Micron Technology, Inc. Method for rapid printing of near-field and imprint lithographic features
CN100590173C (en) * 2006-03-24 2010-02-17 北京有色金属研究总院;有研稀土新材料股份有限公司 Fluorescent powder and manufacturing method and electric light source produced thereby
US20070238261A1 (en) * 2006-04-05 2007-10-11 Asml Netherlands B.V. Device, lithographic apparatus and device manufacturing method
WO2008008408A2 (en) * 2006-07-12 2008-01-17 Spectrarep System and method for managing emergency notifications over a network
US7973910B2 (en) * 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
EP2128703A1 (en) * 2008-05-28 2009-12-02 ASML Netherlands BV Lithographic Apparatus and a Method of Operating the Apparatus
GB2470049B (en) 2009-05-07 2011-03-23 Zeiss Carl Smt Ag Optical imaging with reduced immersion liquid evaporation effects
JP5470007B2 (en) * 2009-11-25 2014-04-16 株式会社日立ハイテクノロジーズ Measuring apparatus and total internal reflection fluorescence measuring device
WO2012144905A2 (en) * 2011-04-22 2012-10-26 Mapper Lithography Ip B.V. Lithography system for processing a target, such as a wafer, and a method for operating a lithography system for processing a target, such as a wafer
KR101780089B1 (en) 2011-04-22 2017-09-19 마퍼 리쏘그라피 아이피 비.브이. Position determination in a lithography system using a substrate having a partially reflective position mark
US9383662B2 (en) 2011-05-13 2016-07-05 Mapper Lithography Ip B.V. Lithography system for processing at least a part of a target
JP6384252B2 (en) * 2014-10-07 2018-09-05 株式会社ニコン Pattern exposure apparatus
JP6384372B2 (en) * 2015-03-20 2018-09-05 株式会社ニコン Wet-processing apparatus

Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243321A (en) 1962-11-02 1966-03-29 Atlas Copco Ab Method of teflon coating of metals
US3573975A (en) 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
US3648587A (en) 1967-10-20 1972-03-14 Eastman Kodak Co Focus control for optical instruments
EP0023231A1 (en) 1979-07-27 1981-02-04 Tabarelli, Werner Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
FR2474708A1 (en) 1980-01-24 1981-07-31 Dme Micro:photo:lithographic process giving high line resolution - with application of immersion oil between mask and photosensitive layer before exposure
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4390273A (en) 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
US4396705A (en) 1980-09-19 1983-08-02 Hitachi, Ltd. Pattern forming method and pattern forming apparatus using exposures in a liquid
US4405701A (en) 1981-07-29 1983-09-20 Western Electric Co. Methods of fabricating a photomask
JPS58202448A (en) 1982-05-21 1983-11-25 Hitachi Ltd Exposing device
DD206607A1 (en) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech A method and device for eliminating interference effects
US4480910A (en) 1981-03-18 1984-11-06 Hitachi, Ltd. Pattern forming apparatus
US4509852A (en) 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
DD221563A1 (en) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersion objective for stepwise projection imaging of a mask pattern
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Means for photolithographic strukturuebertragung
DD242880A1 (en) 1983-01-31 1987-02-11 Kuch Karl Heinz Means for photolithographic strukturuebertragung
JPS6265326A (en) 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPS62121417A (en) 1985-11-22 1987-06-02 Hitachi Ltd Liquid-immersion objective lens device
JPS63157419A (en) 1986-12-22 1988-06-30 Toshiba Corp Fine pattern transfer apparatus
EP0418427A2 (en) 1989-09-06 1991-03-27 Eiichi Miyake Exposure process
US5040020A (en) 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
US5121256A (en) 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305915A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH04305917A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH0560981A (en) 1991-09-02 1993-03-12 Nikon Corp Immersion objective lens for microscope
JPH06124873A (en) 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JPH06208058A (en) 1993-01-13 1994-07-26 Olympus Optical Co Ltd Microscope objective lens
JPH07132262A (en) 1992-12-21 1995-05-23 Tokyo Electron Ltd Liquid treating device of immersion type
JPH07220990A (en) 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
US5610683A (en) 1992-11-27 1997-03-11 Canon Kabushiki Kaisha Immersion type projection exposure apparatus
US5691802A (en) 1994-11-07 1997-11-25 Nikon Corporation Catadioptric optical system and exposure apparatus having the same
US5715039A (en) 1995-05-19 1998-02-03 Hitachi, Ltd. Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns
JPH10228661A (en) 1997-02-14 1998-08-25 Sony Corp Master disk manufacturing aligner for optical recording medium
JPH10255319A (en) 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10303114A (en) 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
JPH10340846A (en) 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
US5900354A (en) 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
JPH11176727A (en) 1997-12-11 1999-07-02 Nikon Corp Projection aligner
JP2000012453A (en) 1998-06-18 2000-01-14 Nikon Corp Aligner and its using method, exposure method, and manufacturing method of mask
JP2000058436A (en) 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
EP1039511A1 (en) 1997-12-12 2000-09-27 Nikon Corporation Projection exposure method and projection aligner
JP2001091849A (en) 1999-09-21 2001-04-06 Olympus Optical Co Ltd Liquid immersion objective lens for microscope
US6236634B1 (en) 1996-08-26 2001-05-22 Digital Papyrus Corporation Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US20020008862A1 (en) 2000-05-12 2002-01-24 Nikon Corporation Projection exposure method, manufacturing method for device using same, and projection exposure apparatus
US20020020821A1 (en) 2000-08-08 2002-02-21 Koninklijke Philips Electronics N.V. Method of manufacturing an optically scannable information carrier
US20020163629A1 (en) 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
US6560032B2 (en) 2000-03-27 2003-05-06 Olympus Optical Co., Ltd. Liquid immersion lens system and optical apparatus using the same
US20030123040A1 (en) 2001-11-07 2003-07-03 Gilad Almogy Optical spot grid array printer
US6600547B2 (en) 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
US6603130B1 (en) 1999-04-19 2003-08-05 Asml Netherlands B.V. Gas bearings for use with vacuum chambers and their application in lithographic projection apparatuses
US20030174408A1 (en) 2002-03-08 2003-09-18 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US6633365B2 (en) 2000-12-11 2003-10-14 Nikon Corporation Projection optical system and exposure apparatus having the projection optical system
US20040000627A1 (en) 2002-06-28 2004-01-01 Carl Zeiss Semiconductor Manufacturing Technologies Ag Method for focus detection and an imaging system with a focus-detection system
JP2004053952A (en) 2002-07-19 2004-02-19 Ricoh Co Ltd Intermediate transfer belt
US20040075895A1 (en) 2002-10-22 2004-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
US20040109237A1 (en) 2002-12-09 2004-06-10 Carl Zeiss Smt Ag Projection objective, especially for microlithography, and method for adjusting a projection objective
US20040119954A1 (en) 2002-12-10 2004-06-24 Miyoko Kawashima Exposure apparatus and method
WO2004053956A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2004053958A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053959A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Optical device and projection exposure apparatus using such optical device
WO2004053950A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053957A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Surface position detection apparatus, exposure method, and device porducing method
WO2004053954A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053955A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure system and device producing method
WO2004053953A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053951A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
US20040125351A1 (en) 2002-12-30 2004-07-01 Krautschik Christof Gabriel Immersion lithography
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US20040169834A1 (en) 2002-11-18 2004-09-02 Infineon Technologies Ag Optical device for use with a lithography method
WO2004090956A1 (en) 2003-04-07 2004-10-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US20040233405A1 (en) 2003-05-23 2004-11-25 Takashi Kato Projection optical system, exposure apparatus, and device manufacturing method
US20040239954A1 (en) 2003-05-28 2004-12-02 Joerg Bischoff Resolution enhanced optical metrology
US20040257544A1 (en) 2003-06-19 2004-12-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US20040263809A1 (en) 2003-06-27 2004-12-30 Canon Kabushiki Kaisha Immersion exposure technique
US20050007570A1 (en) 2003-05-30 2005-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050007569A1 (en) 2003-05-13 2005-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
WO2005006415A1 (en) 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
US20050018208A1 (en) 2003-07-25 2005-01-27 Levinson Harry J. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US20050018155A1 (en) 2003-06-27 2005-01-27 Asml Netherlands B. V. Lithographic apparatus and device manufacturing method
US20050018156A1 (en) 2003-06-30 2005-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050030501A1 (en) 2003-06-30 2005-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050030506A1 (en) 2002-03-08 2005-02-10 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
US20050030498A1 (en) 2003-07-28 2005-02-10 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US20050037269A1 (en) 2003-08-11 2005-02-17 Levinson Harry J. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US20050036184A1 (en) 2003-08-11 2005-02-17 Yee-Chia Yeo Lithography apparatus for manufacture of integrated circuits
US20050036121A1 (en) 2002-11-12 2005-02-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050036183A1 (en) 2003-08-11 2005-02-17 Yee-Chia Yeo Immersion fluid for immersion Lithography, and method of performing immersion lithography
US20050048223A1 (en) 2003-09-02 2005-03-03 Pawloski Adam R. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
US20050046934A1 (en) 2003-08-29 2005-03-03 Tokyo Electron Limited Method and system for drying a substrate
US20050078286A1 (en) 2003-08-29 2005-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050078287A1 (en) 2003-08-29 2005-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050175776A1 (en) 2003-11-14 2005-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050231695A1 (en) 2004-04-15 2005-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for immersion lithography using high PH immersion fluid
US7021119B2 (en) 2002-12-19 2006-04-04 Asml Holding N.V. Liquid flow proximity sensor for use in immersion lithography
US20060146306A1 (en) 2003-02-26 2006-07-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7073542B2 (en) 2002-04-04 2006-07-11 Seiko Epson Corporation Liquid quantity determination unit, photolithography apparatus, and liquid quantity determination method
US20070024832A1 (en) 2002-12-10 2007-02-01 Nikon Corporation Exposure apparatus and method for producing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE242880C (en)
KR100417567B1 (en) * 1995-06-07 2004-02-05 제이콥 엔 올스테드터 A camera for generating image of a scene in a three dimensional imaging system
AU2747999A (en) * 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP2000347005A (en) * 1999-06-02 2000-12-15 Canon Inc Variable-focus lens device
US6545815B2 (en) * 2001-09-13 2003-04-08 Lucent Technologies Inc. Tunable liquid microlens with lubrication assisted electrowetting
KR20050035890A (en) 2002-08-23 2005-04-19 가부시키가이샤 니콘 Projection optical system and method for photolithography and exposure apparatus and method using same
EP1429188B1 (en) * 2002-11-12 2013-06-19 ASML Netherlands B.V. Lithographic projection apparatus
JP4595320B2 (en) * 2002-12-10 2010-12-08 株式会社ニコン Exposure apparatus, and device manufacturing method
KR101085372B1 (en) 2002-12-10 2011-11-21 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
DE10257766A1 (en) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag A method for setting a desired optical characteristic of a projection lens and microlithographic projection exposure apparatus
JP4232449B2 (en) 2002-12-10 2009-03-04 株式会社ニコン Exposure method, an exposure apparatus, and device manufacturing method
JP2005277363A (en) * 2003-05-23 2005-10-06 Nikon Corp Exposure device and device manufacturing method
JP2005268700A (en) * 2004-03-22 2005-09-29 Nikon Corp Staging device and aligner

Patent Citations (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243321A (en) 1962-11-02 1966-03-29 Atlas Copco Ab Method of teflon coating of metals
US3648587A (en) 1967-10-20 1972-03-14 Eastman Kodak Co Focus control for optical instruments
US3573975A (en) 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
EP0023231A1 (en) 1979-07-27 1981-02-04 Tabarelli, Werner Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
FR2474708A1 (en) 1980-01-24 1981-07-31 Dme Micro:photo:lithographic process giving high line resolution - with application of immersion oil between mask and photosensitive layer before exposure
US4396705A (en) 1980-09-19 1983-08-02 Hitachi, Ltd. Pattern forming method and pattern forming apparatus using exposures in a liquid
US4509852A (en) 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4390273A (en) 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
US4480910A (en) 1981-03-18 1984-11-06 Hitachi, Ltd. Pattern forming apparatus
US4405701A (en) 1981-07-29 1983-09-20 Western Electric Co. Methods of fabricating a photomask
JPS58202448A (en) 1982-05-21 1983-11-25 Hitachi Ltd Exposing device
DD206607A1 (en) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech A method and device for eliminating interference effects
DD242880A1 (en) 1983-01-31 1987-02-11 Kuch Karl Heinz Means for photolithographic strukturuebertragung
DD221563A1 (en) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersion objective for stepwise projection imaging of a mask pattern
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Means for photolithographic strukturuebertragung
JPS6265326A (en) 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPS62121417A (en) 1985-11-22 1987-06-02 Hitachi Ltd Liquid-immersion objective lens device
JPS63157419A (en) 1986-12-22 1988-06-30 Toshiba Corp Fine pattern transfer apparatus
US5040020A (en) 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
EP0418427A2 (en) 1989-09-06 1991-03-27 Eiichi Miyake Exposure process
US5121256A (en) 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305915A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH04305917A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH0560981A (en) 1991-09-02 1993-03-12 Nikon Corp Immersion objective lens for microscope
JPH06124873A (en) 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
US5610683A (en) 1992-11-27 1997-03-11 Canon Kabushiki Kaisha Immersion type projection exposure apparatus
JPH07132262A (en) 1992-12-21 1995-05-23 Tokyo Electron Ltd Liquid treating device of immersion type
JPH06208058A (en) 1993-01-13 1994-07-26 Olympus Optical Co Ltd Microscope objective lens
JPH07220990A (en) 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
US5691802A (en) 1994-11-07 1997-11-25 Nikon Corporation Catadioptric optical system and exposure apparatus having the same
US5715039A (en) 1995-05-19 1998-02-03 Hitachi, Ltd. Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns
US6236634B1 (en) 1996-08-26 2001-05-22 Digital Papyrus Corporation Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
US6191429B1 (en) 1996-10-07 2001-02-20 Nikon Precision Inc. Projection exposure apparatus and method with workpiece area detection
JPH10228661A (en) 1997-02-14 1998-08-25 Sony Corp Master disk manufacturing aligner for optical recording medium
JPH10255319A (en) 1997-03-12 1998-09-25 Hitachi Maxell Ltd Master disk exposure device and method therefor
JPH10303114A (en) 1997-04-23 1998-11-13 Nikon Corp Immersion aligner
JPH10340846A (en) 1997-06-10 1998-12-22 Nikon Corp Aligner, its manufacture, exposing method and device manufacturing method
US5900354A (en) 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
JPH11176727A (en) 1997-12-11 1999-07-02 Nikon Corp Projection aligner
EP1039511A1 (en) 1997-12-12 2000-09-27 Nikon Corporation Projection exposure method and projection aligner
JP2000012453A (en) 1998-06-18 2000-01-14 Nikon Corp Aligner and its using method, exposure method, and manufacturing method of mask
JP2000058436A (en) 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
US6603130B1 (en) 1999-04-19 2003-08-05 Asml Netherlands B.V. Gas bearings for use with vacuum chambers and their application in lithographic projection apparatuses
JP2001091849A (en) 1999-09-21 2001-04-06 Olympus Optical Co Ltd Liquid immersion objective lens for microscope
US6560032B2 (en) 2000-03-27 2003-05-06 Olympus Optical Co., Ltd. Liquid immersion lens system and optical apparatus using the same
US20020008862A1 (en) 2000-05-12 2002-01-24 Nikon Corporation Projection exposure method, manufacturing method for device using same, and projection exposure apparatus
US6649093B2 (en) 2000-08-08 2003-11-18 Koninklijke Philips Electronics N.V. Method of manufacturing an optically scannable information carrier
US20020020821A1 (en) 2000-08-08 2002-02-21 Koninklijke Philips Electronics N.V. Method of manufacturing an optically scannable information carrier
US20040021844A1 (en) 2000-12-11 2004-02-05 Nikon Corporation Projection optical system and exposure apparatus having the projection optical system
US6633365B2 (en) 2000-12-11 2003-10-14 Nikon Corporation Projection optical system and exposure apparatus having the projection optical system
US20020163629A1 (en) 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
US6600547B2 (en) 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
US20030123040A1 (en) 2001-11-07 2003-07-03 Gilad Almogy Optical spot grid array printer
US20050030506A1 (en) 2002-03-08 2005-02-10 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
US20030174408A1 (en) 2002-03-08 2003-09-18 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US7073542B2 (en) 2002-04-04 2006-07-11 Seiko Epson Corporation Liquid quantity determination unit, photolithography apparatus, and liquid quantity determination method
US20040000627A1 (en) 2002-06-28 2004-01-01 Carl Zeiss Semiconductor Manufacturing Technologies Ag Method for focus detection and an imaging system with a focus-detection system
JP2004053952A (en) 2002-07-19 2004-02-19 Ricoh Co Ltd Intermediate transfer belt
US20040075895A1 (en) 2002-10-22 2004-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
US20050036121A1 (en) 2002-11-12 2005-02-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20040169834A1 (en) 2002-11-18 2004-09-02 Infineon Technologies Ag Optical device for use with a lithography method
US20040109237A1 (en) 2002-12-09 2004-06-10 Carl Zeiss Smt Ag Projection objective, especially for microlithography, and method for adjusting a projection objective
US20050237504A1 (en) 2002-12-10 2005-10-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2004053957A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Surface position detection apparatus, exposure method, and device porducing method
WO2004053954A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053955A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure system and device producing method
WO2004053953A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053951A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
WO2004053959A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Optical device and projection exposure apparatus using such optical device
US20060132736A1 (en) 2002-12-10 2006-06-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2004053950A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
US20040119954A1 (en) 2002-12-10 2004-06-24 Miyoko Kawashima Exposure apparatus and method
WO2004053958A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
US20070024832A1 (en) 2002-12-10 2007-02-01 Nikon Corporation Exposure apparatus and method for producing device
WO2004053956A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
US7021119B2 (en) 2002-12-19 2006-04-04 Asml Holding N.V. Liquid flow proximity sensor for use in immersion lithography
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US20040125351A1 (en) 2002-12-30 2004-07-01 Krautschik Christof Gabriel Immersion lithography
US20060146306A1 (en) 2003-02-26 2006-07-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20060033901A1 (en) 2003-04-07 2006-02-16 Nikon Corporation Exposure apparatus and method for manufacturing device
US20060023188A1 (en) 2003-04-07 2006-02-02 Nikon Corporation Exposure apparatus and method for manufacturing device
EP1612850A1 (en) 2003-04-07 2006-01-04 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004090956A1 (en) 2003-04-07 2004-10-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US20070064209A1 (en) 2003-04-07 2007-03-22 Nikon Corporation Exposure apparatus and method for manufacturing device
US20050007569A1 (en) 2003-05-13 2005-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20040233405A1 (en) 2003-05-23 2004-11-25 Takashi Kato Projection optical system, exposure apparatus, and device manufacturing method
US20040239954A1 (en) 2003-05-28 2004-12-02 Joerg Bischoff Resolution enhanced optical metrology
US20050007570A1 (en) 2003-05-30 2005-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20040257544A1 (en) 2003-06-19 2004-12-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US20040263809A1 (en) 2003-06-27 2004-12-30 Canon Kabushiki Kaisha Immersion exposure technique
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US6980277B2 (en) 2003-06-27 2005-12-27 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US20050254031A1 (en) 2003-06-27 2005-11-17 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US20040263808A1 (en) 2003-06-27 2004-12-30 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US20050018155A1 (en) 2003-06-27 2005-01-27 Asml Netherlands B. V. Lithographic apparatus and device manufacturing method
US20050018156A1 (en) 2003-06-30 2005-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050030501A1 (en) 2003-06-30 2005-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005006415A1 (en) 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
US20050018208A1 (en) 2003-07-25 2005-01-27 Levinson Harry J. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US20050030498A1 (en) 2003-07-28 2005-02-10 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US20050036183A1 (en) 2003-08-11 2005-02-17 Yee-Chia Yeo Immersion fluid for immersion Lithography, and method of performing immersion lithography
US20050036184A1 (en) 2003-08-11 2005-02-17 Yee-Chia Yeo Lithography apparatus for manufacture of integrated circuits
US20050037269A1 (en) 2003-08-11 2005-02-17 Levinson Harry J. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
US20050078286A1 (en) 2003-08-29 2005-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050046934A1 (en) 2003-08-29 2005-03-03 Tokyo Electron Limited Method and system for drying a substrate
US20050078287A1 (en) 2003-08-29 2005-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050048223A1 (en) 2003-09-02 2005-03-03 Pawloski Adam R. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
US20050175776A1 (en) 2003-11-14 2005-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050231695A1 (en) 2004-04-15 2005-10-20 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for immersion lithography using high PH immersion fluid

Non-Patent Citations (50)

* Cited by examiner, † Cited by third party
Title
"Depth-of-Focus Enhancement Using High Refractive Index Layer on the Imaging Layer", IBM Technical Disclosure Bulletin, vol. 27, No. 11, Apr. 1985, p. 6521.
A. Suzuki, "Lithography Advances on Multiple Fronts", EEdesign, EE Times, Jan. 5, 2004.
B. Lin, The kappa3 coefficient in nonparaxial lambda/NA scaling equations for resolution, depth of focus, and immersion lithography, J. Microlith., Microfab., Microcryst. 1(1):7-12 (2002).
B. Lin, The κ3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography, J. Microlith., Microfab., Microcryst. 1(1):7-12 (2002).
B.J. Lin, "Drivers, Prospects and Challenges for Immersion Lithography", TSMC, Inc., Sep. 2002.
B.J. Lin, "Proximity Printing Through Liquid", IBM Technical Disclosure Bulletin, vol. 20, No. 11B, Apr. 1978, p. 4997.
B.J. Lin, "The Paths To Subhalf-Micrometer Optical Lithography", SPIE, vol. 922, Optical/Laser Microlithography (1988), pp. 256-269.
B.W. Smith et al., "Immersion Optical Lithography at 193nm", FUTURE FAB International, vol. 15, Jul. 11, 2003.
English Translation of Notice of Reasons for Rejection issued for Japanese Patent Application No. 2004-188523, dated Jun. 8, 2007.
European Search Report for Application No. 04014393.5-2222, dated May 24, 2006, 4 pages.
European Search Report for European Application No. 03 25 4116.1, completed May 19, 2004.
G. Owen et al., "⅛ μm Optical Lithography", J. Vac. Sci. Technol. B., vol. 10, No. 6, Nov./Dec. 1992, pp. 3032-3036.
G. Owen et al., "1/8 mum Optical Lithography", J. Vac. Sci. Technol. B., vol. 10, No. 6, Nov./Dec. 1992, pp. 3032-3036.
G.W.W. Stevens, "Reduction of Waste Resulting from Mask Defects", Solid State Technology, Aug. 1978, vol. 21 008, pp. 68-72.
H. Hata, "The Development of Immersion Exposure Tools", Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-22.
H. Hogan, "New Semiconductor Lithography Makes a Splash", Photonics Spectra, Photonics Technology/World, Oct. 2003 Edition, pp. 1-3.
H. Kawata et al., "Fabrication of 0.2 mum Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens", Jpn. J. Appl. Phys. vol. 31 (1992), pp. 4174-4177.
H. Kawata et al., "Fabrication of 0.2 μm Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens", Jpn. J. Appl. Phys. vol. 31 (1992), pp. 4174-4177.
H. Kawata et al., "Optical Projection Lithography using Lenses with Numerical Apertures Greater than Unity", Microelectronic Engineering 9 (1989), pp. 31-36.
J.A. Hoffnagle et al., "Liquid Immersion Deep-Ultraviolet Interferometric Lithography", J. Vac. Sci. Technol. B., vol. 17, No. 6, Nov./Dec. 1999, pp. 3306-3309.
Japanese Office Action mailed Dec. 16, 2009 in corresponding Japanese patent application No. 2006-516054.
L. P. Ghislain et al., "Near-field Photolithography with a Solid Immersion Lens," Applied Physics Letters, Jan. 25, 1999, vol. 74, No. 4., pp. 501-503.
M. Switkes et al., "Immersion Lithography at 157 nm", J. Vac. Sci. Technol. B., vol. 19, No. 6, Nov./Dec. 2001, pp. 2353-2356.
M. Switkes et al., "Immersion Lithography at 157 nm", MIT Lincoln Lab, Orlando 2001-1, Dec. 17, 2001.
M. Switkes et al., "Immersion Lithography: Optics for the 50 nm Node", 157 Anvers-1, Sep. 4, 2002.
Nikon Precision Europe GmbH, "Investor Relations-Nikon's Real Solutions", May 15, 2003.
Nikon Precision Europe GmbH, "Investor Relations—Nikon's Real Solutions", May 15, 2003.
S. Owa and N. Nagasaka, "Potential Performance and Feasibility of Immersion Lithography", NGL Workshop 2003, Jul. 10, 2003, Slide Nos. 1-33.
S. Owa et al., "Advantage and Feasibility of Immersion Lithography", Proc. SPIE 5040 (2003).
S. Owa et al., "Immersion Lithography; its potential performance and issues", SPIE Microlithography 2003, 5040-186, Feb. 27, 2003.
S. Owa et al., "Update on 193nm immersion exposure tool", Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-51.
Search Report issued for Singapore Appln. No. 200403822-0, dated Nov. 28, 2004, 5 pages.
T. Matsuyama et al., "Nikon Projection Lens Update", SPIE Microlithography 2004, 5377-65, Mar. 2002.
U.S. Appl. No. 10/367,910, filed Feb. 19, 2003, Suwa et al.
U.S. Appl. No. 10/698,012, filed Oct. 31, 2003, Flagello et al.
U.S. Appl. No. 10/705,783, filed Nov. 12, 2003, Lof et al.
U.S. Appl. No. 10/705,785, filed Nov. 12, 2003, Derksen et al.
U.S. Appl. No. 10/705,804, filed Nov. 12, 2003, De Smit et al.
U.S. Appl. No. 10/705,805, filed Nov. 12, 2003, Lof et al.
U.S. Appl. No. 10/705,816, filed Nov. 12, 2003, Lof et al.
U.S. Appl. No. 10/715,116, filed Nov. 18, 2003, Bleeker.
U.S. Appl. No. 10/719,683, filed Nov. 24, 2003, Streefkerck et al.
U.S. Appl. No. 10/724,402, filed Dec. 1, 2003, Simon et al.
U.S. Appl. No. 10/743,266, filed Dec. 23, 2003, Mulkens et al.
U.S. Appl. No. 10/743,271, filed Dec. 23, 2003, Van Santen et al.
U.S. Appl. No. 10/773,461, filed Feb. 9, 2004, Duineveld et al.
U.S. Appl. No. 10/775,326, filed Feb. 11, 2004, Dierichs.
U.S. Appl. No. 10/820,227, filed Apr. 8, 2004, De Smit.
U.S. Appl. No. 10/857,614, filed Jun. 1, 2004, Lof et al.
U.S. Appl. No. 10/860,662, filed Jun. 4, 2004, De Smit.

Also Published As

Publication number Publication date
US7012673B2 (en) 2006-03-14
TW200525301A (en) 2005-08-01
US20050002004A1 (en) 2005-01-06
JP4497551B2 (en) 2010-07-07
JP2010141357A (en) 2010-06-24
WO2005001572A2 (en) 2005-01-06
JP5017402B2 (en) 2012-09-05
JP2012070000A (en) 2012-04-05
EP1491956B1 (en) 2006-09-06
DE60308161D1 (en) 2006-10-19
EP1491956A1 (en) 2004-12-29
DE60308161T2 (en) 2007-08-09
JP2009514183A (en) 2009-04-02
TWI252380B (en) 2006-04-01
WO2005001572A3 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US9740107B2 (en) Lithographic apparatus and device manufacturing method
US8755033B2 (en) Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
JP5270743B2 (en) Exposure apparatus
US9360765B2 (en) Lithographic apparatus and device manufacturing method
EP1429188B1 (en) Lithographic projection apparatus
US7175968B2 (en) Lithographic apparatus, device manufacturing method and a substrate
JP4429023B2 (en) Exposure apparatus and device manufacturing method
CN100446179C (en) Exposure apparatus and device manufacturing method
CN1501170B (en) Lithographic apparatus and device manufacturing method
CN101470360B (en) Immersion lithographic apparatus and device manufacturing method
US10248034B2 (en) Lithographic apparatus and device manufacturing method
US7056805B2 (en) Substrate provided with an alignment mark in a substantially transmissive process layer, mask for exposing said mark, device manufacturing method, and device manufactured thereby
EP1519231B1 (en) Lithographic apparatus and device manufacturing method
CN102290364B (en) Substrate holding apparatus, which includes an exposure apparatus, device manufacturing method
US8462312B2 (en) Lithographic apparatus and device manufacturing method
US7158211B2 (en) Lithographic apparatus and device manufacturing method
EP1500982A1 (en) Lithographic apparatus and device manufacturing method
US7038760B2 (en) Lithographic apparatus and device manufacturing method
JP4146828B2 (en) Lithographic apparatus and device manufacturing method
US6954256B2 (en) Gradient immersion lithography
JP4463863B2 (en) Lithographic apparatus and device manufacturing method
US7589818B2 (en) Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
CN1821881B (en) Lithographic apparatus and device manufacturing method
US7671965B2 (en) Lithographic projection apparatus, device manufacturing method and device manufactured thereby
US9639006B2 (en) Lithographic projection apparatus and device manufacturing method

Legal Events

Date Code Title Description
CC Certificate of correction
CC Certificate of correction
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees