US9270414B2 - Multiple-field based code generator and decoder for communications systems - Google Patents

Multiple-field based code generator and decoder for communications systems Download PDF

Info

Publication number
US9270414B2
US9270414B2 US11/674,655 US67465507A US9270414B2 US 9270414 B2 US9270414 B2 US 9270414B2 US 67465507 A US67465507 A US 67465507A US 9270414 B2 US9270414 B2 US 9270414B2
Authority
US
United States
Prior art keywords
symbols
finite field
input
finite
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/674,655
Other languages
English (en)
Other versions
US20070195894A1 (en
Inventor
M. Amin Shokrollahi
Michael G. Luby
Mark Watson
Lorenz Minder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Digital Fountain Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/674,655 priority Critical patent/US9270414B2/en
Application filed by Digital Fountain Inc filed Critical Digital Fountain Inc
Priority to ES07757111.5T priority patent/ES2563290T3/es
Priority to CN2007800139722A priority patent/CN101427495B/zh
Priority to KR1020087022501A priority patent/KR101355761B1/ko
Priority to PCT/US2007/062302 priority patent/WO2007098397A2/fr
Priority to EP07757111.5A priority patent/EP1980041B1/fr
Priority to JP2008555514A priority patent/JP5329239B2/ja
Assigned to DIGITAL FOUNTAIN, INC. reassignment DIGITAL FOUNTAIN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MINDER, LORENZ, SHOKROLLAHI, M. AMIN, LUBY, MICHAEL G., WATSON, MARK
Publication of US20070195894A1 publication Critical patent/US20070195894A1/en
Application granted granted Critical
Publication of US9270414B2 publication Critical patent/US9270414B2/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIGITAL FOUNTAIN, INC.
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3761Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 using code combining, i.e. using combining of codeword portions which may have been transmitted separately, e.g. Digital Fountain codes, Raptor codes or Luby Transform [LT] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0065Serial concatenated codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/19Single error correction without using particular properties of the cyclic codes, e.g. Hamming codes, extended or generalised Hamming codes

Definitions

  • the present invention relates to encoding and decoding data in communications systems and more specifically to communication systems that encode and decode data to account for errors and gaps in communicated data.
  • Communication is used in a broad sense, and includes but is not limited to transmission of digital data of any form through space and/or time.
  • a recipient desires to receive an exact copy of data transmitted over a channel by a sender with some level of certainty.
  • the channel does not have perfect fidelity (which covers most all physically realizable systems)
  • one concern is how to deal with data lost or garbled in transmission.
  • Lost data (erasures) are often easier to deal with than corrupted data (errors) because the recipient cannot always tell when corrupted data is data received in error.
  • Many error-correcting codes have been developed to correct for erasures and/or for errors.
  • the particular code used is chosen based on some information about the infidelities of the channel through which the data is being transmitted and the nature of the data being transmitted. For example, where the channel is known to have long periods of infidelity, a burst error code might be best suited for that application. Where only short, infrequent errors are expected a simple parity code might be best.
  • Data transmission is straightforward when a transmitter and a receiver have all of the computing power and electrical power needed for communications and the channel between the transmitter and receiver is clean enough to allow for relatively error-free communications.
  • the problem of data transmission becomes more difficult when the channel is in an adverse environment or the transmitter and/or receiver has limited capability.
  • FEC forward error correcting
  • a reverse channel from the receiver to the transmitter allows for the receiver to communicate about errors to the transmitter, which can then adjust its transmission process accordingly.
  • a reverse channel is not available or feasible or is available only with limited capacity.
  • the communication channel may be a storage medium and thus the transmission of the data is forward through time and, unless someone invents a time travel machine that can go back in time, a reverse channel for this channel is infeasible.
  • communication protocols often need to be designed without a reverse channel or with a limited capacity reverse channel and, as such, the transmitter may have to deal with widely varying channel conditions without a full view of those channel conditions.
  • a wireless network might be set up to deliver files or streams from a stationary transmitter to a large or indeterminate number of portable or mobile receivers either as a broadcast or multicast where the receivers are constrained in their computing power, memory size, available electrical power, antenna size, device size and other design constraints.
  • Another example is in storage applications where the receiver retrieves data from a storage medium which exhibits infidelities in reproduction of the original data.
  • Such receivers are often embedded with the storage medium itself in devices, for example disk drives, which are highly constrained in terms of computing power and electrical power.
  • considerations to be addressed include having little or no reverse channel, limited memory, limited computing cycles, power, mobility and timing.
  • the design should minimize the amount of transmission time needed to deliver data to potentially a large population of receivers, where individual receivers and might be turned on and off at unpredictable times, move in and out of range, incur losses due to link errors, mobility, congestion forcing lower priority file or stream packets to be temporarily dropped, etc.
  • a file, stream or other block of data to be transmitted over a packet network is partitioned into equal size input symbols, encoding symbols the same size as the input symbols are generated from the input symbols using an FEC code, and the encoding symbols are placed and sent in packets.
  • the “size” of a symbol can be measured in bits, whether or not the symbol is actually broken into a bit stream, where a symbol has a size of M bits when the symbol is selected from an alphabet of 2 M symbols.
  • a packet oriented erasure FEC coding scheme might be suitable.
  • a file transmission is called reliable if it allows the intended recipient to recover an exact copy of the original file even in the face of erasures in the network.
  • a stream transmission is called reliable if it allows the intended recipient to recover an exact copy of each part of the stream in a timely manner even in the face of erasures in the network.
  • Both file transmission and stream transmission can also be somewhat reliable, in the sense that some parts of the file or stream are not recoverable or for streaming if some parts of the stream are not recoverable in a timely fashion. Packet loss often occurs because sporadic congestion causes the buffering mechanism in a router to reach its capacity, forcing it to drop incoming packets. Protection against erasures during transport has been the subject of much study.
  • a block of data to be transmitted over a data transmission channel is partitioned into equal size input symbols, encoding symbols of the same size are generated from the input symbols and the encoding symbols are sent over the channel.
  • the size of a symbol is typically one bit or a few bits, whether or not a symbol is actually broken into a bit stream.
  • a bit-stream oriented error-correction FEC coding scheme might be suitable.
  • a data transmission is called reliable if it allows the intended recipient to recover an exact copy of the original block even in the face of errors (symbol corruption, either detected or undetected in the channel).
  • the transmission can also be somewhat reliable, in the sense that some parts of the block may remain corrupted after recovery. Symbols are often corrupted by sporadic noise, periodic noise, interference, weak signal, blockages in the channel, and a variety of other causes. Protection against data corruption during transport has been the subject of much study.
  • Chain reaction codes are FEC codes that allow for generation of an arbitrary number of output symbols from the fixed input symbols of a file or stream. Sometimes, they are referred to as fountain or rateless FEC codes, since the code does not have an a priori fixed transmission rate. Chain reaction codes have many uses, including the generation of an arbitrary number of output symbols in an information additive way, as opposed to an information duplicative way, wherein the latter is where output symbols received by a receiver before being able to recover the input symbols duplicate already received information and thus do not provide useful information for recovering the input symbols. Novel techniques for generating, using and operating chain reaction codes are shown, for example, in Luby I, Luby II, Shokrollahi I and Shokrollahi II.
  • One property of the output symbols produced by a chain reaction encoder is that a receiver is able to recover the original file or block of the original stream as soon as enough output symbols have been received. Specifically, to recover the original K input symbols with a high probability, the receiver needs approximately K+A output symbols. The ratio A/K is called the “relative reception overhead.” The relative reception overhead depends on the number K of input symbols, and on the reliability of the decoder.
  • Multi-stage chain reaction codes such as those described in Shokrollahi I and/or II and developed by Digital Fountain, Inc. under the trade name “Raptor” codes.
  • Multi-stage chain reaction codes are used, for example, in an encoder that receives input symbols from a source file or source stream, generates intermediate symbols from the input symbols and encodes the intermediate symbols using chain reaction codes. More particularly, a plurality of redundant symbols is generated from an ordered set of input symbols to be communicated.
  • a plurality of output symbols are generated from a combined set of symbols including the input symbols and the redundant symbols, wherein the number of possible output symbols is much larger than the number of symbols in the combined set of symbols, wherein at least one output symbol is generated from more than one symbol in the combined set of symbols and from less than all of the symbols in the combined set of symbols, and such that the ordered set of input symbols can be regenerated to a desired degree of accuracy from any predetermined number, N, of the output symbols. It is also known to use the techniques described above to encode and decode systematic codes, in which the input symbols are includes amongst the possible output symbols of the code.
  • the MSCR codes and chain reaction codes described above are extremely efficient in terms of their encoding and decoding complexity.
  • One of the reasons for their efficiency is that the operations that are performed are linear operations over the field GF(2), i.e., the simple field over one bit where the operation of adding two field elements is simply the logical XOR operation, and the operation of multiplying two field elements is simply the logical AND operation.
  • these operations are performed over multiple bits concurrently, e.g., 32 bits at a time or 4 bytes at a time, and such operations are supported natively on all modern CPU processors.
  • FEC codes that operate over larger fields
  • Reed-Solomon codes that operate over GF(4), or over GF(8), or over GF(256), or more generally over GF(2 L ) for any L>1
  • LDPC codes that operate over larger fields.
  • the advantage of such FEC codes is that, for example in the case of erasure FEC codes, the chance of decoding failure decreases much more rapidly as a function of A than FEC codes over GF(2).
  • FEC codes are typically much less efficient in terms of encoding and decoding complexity, and one of the primary reasons for that is because the operations over larger fields are much more complex and/or are not natively supported on modern CPUs, and the complexity typically grows as the field size grows.
  • FEC codes that operate over larger finite fields are often much slower or impractical compared to FEC codes that operate over GF(2).
  • a method of encoding data for transmissions from a source to a destination over a communications channel operates on an ordered set of input symbols and may generate zero or more redundant symbols from the input symbols, each redundant symbol being equal to a linear combination of a number of the input symbols with coefficients taken from one or more finite fields, wherein the finite field used may differ as between different input symbols and between different redundant symbols.
  • the method includes generation of a plurality of output symbols from the combined set of symbols including the input symbols, and the redundant symbols if there are any redundant symbols, wherein each output symbol may be generated from one or more of the combined input and redundant symbols, wherein each output symbol is generated as a linear combination of a number of the input and redundant symbols with coefficients taken from one or more finite fields wherein the finite field used may differ as between different input and redundant symbols, between different output symbols and between the output symbols and the redundant symbols and such that the ordered set of input symbols can be regenerated to a desired degree of accuracy from any predetermined number of the output symbols.
  • the methods can also be used to generate output symbols, wherein the number of possible output symbols that can be generated from a fixed set of input symbols may be much larger than the number of input symbols.
  • the method includes receiving at a destination at least some of the output symbols sent from a source over a communications channel, where the transmission over the channel may result in the loss or corruption of some of the sent symbols, and where some of the received symbols may be known to be correctly received and information about the degree of corruption of symbols may also be provided.
  • the method includes regenerating at the destination the ordered set of input symbols to a desired degree of accuracy that depends on how many symbols are received and the knowledge of the corruption of the received symbols.
  • This embodiment can also include receiving at a destination at least some of the output symbols, wherein the number of possible output symbols that can be received may be much larger than the number of input symbols.
  • a method of encoding data for transmission from a source to a destination over a communications channel operates on an ordered set of input symbols and includes generating a plurality of redundant symbols from the input symbols.
  • the method also includes generating a plurality of output symbols from a combined set of symbols including the input symbols and the redundant symbols, wherein the operation applied in the generation of output symbols is over a small finite field (for example GF(2)) and such that the ordered set of input symbols can be regenerated to a desired degree of accuracy from any predetermined number of the output symbols.
  • a small finite field for example GF(2)
  • the plurality of redundant symbols is generated from the ordered set of input symbols, wherein the operations to generate the redundant symbols is over a finite field that is not GF(2) (for example, GF(256)) or is over a mix of more than one finite field (for example, some operations over GF(2), some operations over GF(256)).
  • a system for receiving data transmitted from a source over a communications channel comprises a receive module coupled to a communications channel for receiving output symbols transmitted over the communications channel, wherein each output symbol is generated from at least one symbol in the combined set of symbols including the input symbols and the redundant symbols, wherein the operation applied in the generation of output symbols is over a small finite field (for example GF(2)) and such that the ordered set of input symbols can be regenerated to a desired degree of accuracy from any predetermined number of the output symbols, wherein the input symbols are from an ordered set of input symbols, wherein the redundant symbols are generated from the input symbols and wherein the plurality of redundant symbols is generated from the ordered set of input symbols, wherein the operations to generate the redundant symbols is over a finite field that is not GF(2) (for example, GF(256)) or is over a mix of more than one finite field (for example, some operations over GF(2), some operations over GF(256)).
  • GF(2) for example, GF(256)
  • a computer data signal embodied in a carrier wave is provided.
  • the computational expense of encoding data for transmission over a channel is reduced.
  • the computational expense of decoding such data is reduced.
  • the error probability of the decoder is reduced, while keeping the computational expense of encoding and decoding low.
  • one or more of these benefits may be achieved.
  • FIG. 1 is a block diagram of a communications system according to one embodiment of the present invention.
  • FIG. 2 is a block diagram an encoder according to one embodiment of the present invention.
  • FIG. 3 is a simplified block diagram of a method of generating redundant symbols according to one embodiment of the present invention.
  • FIG. 4 is a simplified block diagram of the basic operation of a static encoder according to one embodiment of the present invention.
  • FIG. 5 is a simplified block diagram of a dynamic encoder according to one embodiment of the present invention.
  • FIG. 6 is a simplified block diagram of a basic operation of a dynamic encoder according to one embodiment of the present invention.
  • FIG. 7 is a simplified block diagram of a static encoder according to one embodiment of the present invention.
  • FIG. 8 is a simplified block diagram of the basic operation a static encoder according to one embodiment of the present invention.
  • FIG. 9 is a simplified diagram of a method for calculating encoding parameters according to one specific embodiment of a static encoder.
  • FIG. 10 is a simplified flow diagram of a static encoder according to another embodiment of the present invention.
  • FIG. 11 is a simplified block diagram of a decoder according to one embodiment of the present invention.
  • FIG. 12 is a simplified flow diagram of an operation of a decoder according to one embodiment of the present invention.
  • FIG. 13 is a simplified flow diagram of an operation of a decoder according to another embodiment of the present invention.
  • FIG. 14 is a simplified flow diagram of an operation of a decoder according to yet another embodiment of the present invention.
  • FIG. 15 is a simplified block diagram of a dynamic decoder according to one embodiment of the present invention.
  • FIG. 16 is a simplified block diagram of a static decoder according to one embodiment of the present invention.
  • FIG. 17 illustrates source symbol from sub-symbol mappings.
  • FIG. 18 illustrates possible settings of file download parameters for various file sizes.
  • FIG. 19 illustrates possible settings of streaming parameters for various source block sizes.
  • FIG. 20 illustrates a form of a matrix that represents a relationship between source and intermediate symbols.
  • FIG. 21 illustrates a degree distribution for the degree generator.
  • FIG. 22 illustrates a form of the matrix A that can be used for decoding.
  • FIG. 23 illustrates a block decomposition of the matrix A that can be used for decoding.
  • FIG. 24 a illustrates a block decomposition of the matrix X that can be used for decoding.
  • FIG. 24 b illustrates a block decomposition of the matrix X after several steps of the first phase of the decoding process.
  • FIG. 25 illustrates a block decomposition of the matrix X after some elimination steps.
  • FIG. 26 illustrates a block decomposition of a sub-matrix of X after further elimination steps.
  • FIG. 27 illustrates a block decomposition of the matrix A after elimination and deletion steps.
  • FIG. 28 illustrates a block decomposition of the matrix A after further elimination and deletion steps.
  • FIG. 29 illustrates a block decomposition of the matrix A after further elimination steps.
  • FIG. 30 illustrates a block decomposition of the matrix A after yet further elimination steps.
  • FIG. 31 shows a table of code failure probabilities for a (120,100) code constructed according to one preferred embodiment of the invention.
  • FIG. 32 shows a table of code failure probabilities for a (110,100) code constructed according to one preferred embodiment of the invention.
  • Appendix A contains example values for systematic indices J(K); Appendix B.1 contains example values for table V 0 ; and Appendix B.2 contains example values for table V 1 .
  • Finite fields are finite algebraic structures for which the four arithmetic operations are defined, and which form a field with respect to these operations. Their theory and their construction are well understood by those of skill in the art.
  • the multiplication process is defined between an element a from a finite field GF(2 M ) and a symbol S that is M bits in length.
  • symbol refers to a piece of data that is typically smaller than the source block. The size of a symbol can often be measured in bits, where a symbol has the size of M bits and the symbol is selected from an alphabet of 2 M symbols. In applications of reliable transmission of information over packet networks, for example, the size of a symbol could be equal to the packet size, or it could be smaller, so that each packet contains one or more symbols.
  • the symbol S is interpreted as an element of GF(2 M ), and the multiplication a*S is defined as the normal multiplication in the field GF(2 M ).
  • the operation performed on the symbol is called a “simple transformation” of the symbol.
  • the field GF(4) Elements of GF(4) can be represented with 2 bits, for example according to their binary expansion.
  • the field GF(4) has four field elements 00, 01, 10, 11, wherein addition is the normal exclusive-or of bit strings, and multiplication is defined via the table:
  • a ring is a set on which two operations, addition and multiplication, are defined such that these operations satisfy the distributive laws.
  • the set considered with addition alone forms an abelian group, i.e., the result of an addition is independent of the ordering of the summands, there is a neutral element 0 for addition, and for each element there is another element such that the sum of these elements is 0.
  • the other requirement is that the multiplication has a neutral element 1, such that multiplication of any element with 1 does not change the value of that element.
  • a mapping (symbol-wise sum) is a logical construct implementable in hardware, software, data storage, etc. that maps pairs of symbols of the same size to another symbol of that size. We denote this mapping by ⁇ , and the image of this map on the pair (S,T) of symbols by S ⁇ T.
  • An example of such a mapping is the bit-wise exclusive-or (XOR).
  • A is a set equipped with a commutative addition operation “+” that has a neutral element and that, for every element, contains its additive inverse.
  • A is also commonly called an abelian group.
  • An “action” of this group on the set of symbols is a mapping that maps a pair, comprising a group element r and a symbol S, to another symbol.
  • the field opertes” on the set of symbols.
  • the operation performed on symbols in this way is called an “interleaved transformation.”
  • the multiplication table of the field describes an operation that coincides with the operation defined above in the case of 2-bit symbols.
  • the field GF(4) can operate on symbols of even size in the following way: for such a symbol S we denote by S[ 0 ] the concatenation of the bits at even positions within S and similarly we denote by S[ 1 ] the concatenation of the bits at odd positions within S (where positions are numbered sequentially starting with zero).
  • S we denote by S[ 0 ] the concatenation of the bits at even positions within S
  • S[ 1 ] the concatenation of the bits at odd positions within S (where positions are numbered sequentially starting with zero).
  • interleaved transformations described above can be viewed as a particular case of an interleaved transformation in which the binary length of an element of the field coincides with the length of the symbols in bits, and the operation of field elements on symbols is the same as the multiplication in the finite field.
  • K is an extension field of GF(2) of degree d
  • an operation of the field can be defined on symbols whose size is divisible by d.
  • Such an operation is described in the paper “An XOR-based erasure resilient coding scheme”, by Bloemer, Kalfane, Karpinksi, Karp, Luby, and Zuckerman, published as Technical Report Number TR-95-048 of the International Computer Science Institute in Berkeley, 1995.
  • This scheme uses the so-called “regular representation” of the field K as d ⁇ d matrices with binary entries.
  • the first interleaved transformation partitions S, a string that is d*I bits in length, into d equal-size parts, where the first part S[ 0 ] is the first I bits of S, S[ 1 ] is the next I bits of S, and S[d ⁇ 1] is the last I bits of S.
  • the transformation operates on the d parts of S and produces d parts that are concatenated together to form the result of the operation.
  • the second interleaved transformation partitions S into d equal-size parts, where the first part S[ 0 ] is the concatenation of each dth bit of S starting at position 0 in S, the second part S[ 1 ] is the concatenation of each dth bit of S starting at position 1 in S, the dth part S[d ⁇ 1] is the concatenation of each dth bit of S starting at position L ⁇ 1 in S.
  • This second transformation operates on the d parts of S (exactly the same as the first transformation) and produces d parts that are interleaved together to form the result of the operation.
  • the first interleaved transformation can be computed by XORing consecutive bits of the original string S together, and this is a benefit for software implementations where typically a CPU supports such operations natively.
  • the values of the bits in particular positions in the result of the operation depend on the length of the original string S, and this is somewhat of a disadvantage if one wants to implement the operation in hardware that supports variable length symbols, as the operation of the hardware needs to be different depending on the symbol length.
  • the second interleaved transformation involves XORing non-consecutive bits of the original string together, and this is somewhat of a disadvantage for software implementations where typically a CPU does not support such XORs as a native operation.
  • the second interleaved transformation does not depend on the length of the original string S, and this is a benefit if one wants to implement the operation in hardware that supports variable length symbols, as the operation of the hardware can be independent of the symbol length.
  • the second interleaved transformation does have some overall advantages over the first interleaved transformation.
  • a linear transformation can be defined with reference to the simple or interleaved transformations.
  • a linear transformation induced by the operation maps vectors of n symbols into vectors of m symbols using the space of matrices with entries in the specified field.
  • a matrix over the field F is a 2-dimensional collection of entries, whose entries belong to F. If a matrix has m rows and n columns, then it is commonly referred to as an m ⁇ n matrix.
  • the pair (m,n) is called the “format” of the matrix. Matrices of the same format can be added and subtracted, using the addition and subtraction in the underlying field or ring.
  • a matrix of format (m,n) can be multiplied with a matrix of format (n,k) as is commonly known.
  • S could be the source symbols of the source block to be encoded
  • X could be the encoded version of S
  • B could be a generator matrix for the code.
  • X could be the redundant symbols of the encoding of S
  • B could be the matrix describing the dependency of the redundant symbols on the source symbols.
  • a matrix is constructed whose elements are taken from one or more finite fields. Different elements may be taken from different finite fields, with the property that there is a single field in which all the fields can be embedded and specific such embeddings are chosen. Some or all of the output symbols may be identical to some of the input or redundant symbols, or may be distinct from the input and redundant symbols depending on the particular embodiment chosen as will be illustrated further below.
  • a one-to-one correspondence is made between the input symbols of the code and some of the columns of the matrix.
  • a further one-to-one correspondence is made between the redundant symbols of the code and the remaining columns of the matrix.
  • a number of rows of the matrix equal to the number of redundant symbols are designated as static rows.
  • Remaining rows of the matrix are designated as dynamic rows.
  • a one to one correspondence is made between the dynamic rows of the matrix and the output symbols of the code.
  • static rows represent constraints which are required to hold between the input and the redundant symbols and the static rows fully define the relationship between input and redundant symbols such that knowledge of the input symbols and the static rows is sufficient to construct the redundant symbols.
  • Dynamic rows represent the output symbols which are actually sent on the channel.
  • the input and/or redundant symbols themselves are sent and this is represented in this description by adding a dynamic row for each input and redundant symbol that is to be transmitted, said dynamic row having a non-zero entry in the column corresponding to the required input or redundant symbol and zero entries in the remaining columns.
  • the non-zero entry is the identity. In other embodiments, this non-zero entry need not be the identity element.
  • a matrix of the form described above may be used to determine a method of encoding data for transmission from a source to a destination over a communications channel, the method comprising generating a plurality of redundant symbols from an ordered set of input symbols, wherein each redundant symbol is generated based on a set of linear constraints over one or more of the input symbols and other redundant symbols with coefficients over finite fields, said linear constraints corresponding to the static rows of the matrix description, generating a plurality of output symbols from the combined set of input and redundant symbols, wherein each output symbol is generated as a linear combination of one or more of the combined set of input and redundant symbols with coefficients chosen from finite fields, said linear constraints corresponding to the dynamic rows of the matrix description and sending at least some of the plurality of generated output symbols.
  • a method comprising the above steps may be described in terms of a matrix of the kind described above in which the static rows correspond to the linear constraints over one or more of the input symbols and redundant symbols and the dynamic rows correspond to the linear combinations of the input and redundant symbols which are used to form the output symbols.
  • embodiments of the method described above may not involve explicit or implicit representation or construction of the matrix described.
  • the generalized matrix can be constructed from the parity check matrix by designating every row of the parity check matrix as a static row and adding a further dynamic row for each input and redundant symbol as described above.
  • Another example might use the single-stage chain reaction codes described in Luby I and Luby II, in which the number of static rows in the matrix is zero and the dynamic rows comprise a standard chain reaction matrix.
  • Another example is the use of MSCR codes, in which case the generalized description here is equivalent to the standard matrix presentation of such codes.
  • Reed-Solomon codes such as those derived from Vandermonde matrices in which the input symbols are the source symbols, the generalized matrix is equal to the Vandermonde matrix and all rows are dynamic, where in this case each entry is a finite field element from a field that has at least as many elements in its multiplicative group as there are rows and columns in total, e.g., the finite field GF(256) when the number of rows and columns in total is less than 256.
  • Another example is systematic Reed-Solomon codes over a finite field such as GF(256) which are derived from Vandermonde matrices in which case the input symbols are the source symbols, the redundant symbols are the parity symbols, and the matrix is the rows corresponding to the parity symbols within the systematic form of the Vandermonde matrix with all such rows considered static and additional dynamic rows are added for each source and parity symbol as described above since these are exactly the symbols sent over the channel
  • desirable properties of error and erasure correcting include low encoding complexity, low decoding complexity, low decoding error probability and low error floor.
  • the complexity of a code is a measure of the computational resources required to encode or decode the code. Low complexity is of especial value in applications where encoding or decoding is to be performed by resource constrained devices such as mobile terminals, consumer electronics devices, storage devices or devices which may process many encoding or decoding operations simultaneously.
  • Computational complexity is a function in part of the density of the matrix used to encode and decode the code and of the size of the finite field from which the matrix elements are taken.
  • Dense matrices generally result in higher complexity and this has led to many designs of codes based on sparse matrices, for example Low Density Parity Check codes and chain reaction codes. Larger finite fields also result in higher complexity, which has led to many designs of code based on small fields, most commonly GF(2).
  • Error probability in this context is the probability that completely successful decoding is not possible. Error probability for a given error correcting or erasure correcting code is a function of the information received over the channel, and the specific algorithm used for decoding. In the case of erasure correction codes the error probability is one whenever fewer symbols are received than the number of input symbols. Ideal erasure codes have the property that the error probability is zero whenever the number of symbols received is greater than or equal to the number of input symbols. Other codes have non-zero probability of failure in this case.
  • the error probability for successful decoding decreases exponentially at some rate.
  • the error floor of such a code is the error probability at which receipt of additional output symbols decreases the error probability at a much slower rate than when the number of received output symbols first exceeds the number of input symbols. It is known that use of a small number of high density rows or columns and/or the use of a larger finite field for the matrix can result in lower error floor at the cost of higher computational complexity. A disadvantage of many known error and erasure correction codes with low complexity is that the error floor is higher than desirable.
  • the entries are chosen from GF(2) and for the remainder of the rows the entries are chosen from GF(256). In another embodiment, for each row exactly one entry is chosen from GF(256) and the remaining elements are chosen from GF(2).
  • file refers to any data that is stored at one or more sources and is to be delivered as a unit to one or more destinations.
  • a document, an image, and a file from a file server or computer storage device are all examples of “files” that can be delivered.
  • Files can be of known size (such as a one megabyte image stored on a hard disk) or can be of unknown size (such as a file taken from the output of a streaming source). Either way, the file is a sequence of input symbols, where each input symbol has a position in the file and a value.
  • the term “stream” refers to any data that is stored or generated at one or more sources and is delivered at a specified rate at each point in time in the order it is generated to one or more destinations.
  • Streams can be fixed rate or variable rate.
  • An MPEG video stream, AMR audio stream, and a data stream used to control a remote device are all examples of “streams” that can be delivered.
  • the rate of the stream at each point in time can be known (such as 4 megabits per second) or unknown (such as a variable rate stream where the rate at each point in time is not known in advance). Either way, the stream is a sequence of input symbols, where each input symbol has a position in the stream and a value.
  • Transmission is the process of transmitting data from one or more senders to one or more recipients through a channel in order to deliver a file or stream.
  • a sender is also sometimes referred to as the encoder. If one sender is connected to any number of recipients by a perfect channel, the received data can be an exact copy of the input file or stream, as all the data will be received correctly.
  • the channel is not perfect, which is the case for most real-world channels.
  • two imperfections of interest are data erasure and data incompleteness (which can be treated as a special case of data erasure). Data erasure occurs when the channel loses or drops data.
  • Data incompleteness occurs when a recipient does not start receiving data until some of the data has already passed it by, the recipient stops receiving data before transmission ends, the recipient chooses to only receive a portion of the transmitted data, and/or the recipient intermittently stops and starts again receiving data.
  • a moving satellite sender might be transmitting data representing an input file or stream and start the transmission before a recipient is in range. Once the recipient is in range, data can be received until the satellite moves out of range, at which point the recipient can redirect its satellite dish (during which time it is not receiving data) to start receiving the data about the same input file or stream being transmitted by another satellite that has moved into range.
  • data incompleteness is a special case of data erasure, since the recipient can treat the data incompleteness (and the recipient has the same problems) as if the recipient was in range the entire time, but the channel lost all the data up to the point where the recipient started receiving data. Also, as is well known in communication systems design, detectable errors can be considered equivalent to erasures by simply dropping all data blocks or symbols that have detectable errors.
  • a recipient receives data generated by multiple senders, or by one sender using multiple connections. For example, to speed up a download, a recipient might simultaneously connect to more than one sender to transmit data concerning the same file.
  • multiple multicast data streams might be transmitted to allow recipients to connect to one or more of these streams to match the aggregate transmission rate with the bandwidth of the channel connecting them to the sender. In all such cases, a concern is to ensure that all transmitted data is of independent use to a recipient, i.e., that the multiple source data is not redundant among the streams, even when the transmission rates are vastly different for the different streams, and when there are arbitrary patterns of loss.
  • a communication channel is that which connects the sender and the recipient for data transmission.
  • the communication channel could be a real-time channel, where the channel moves data from the sender to the recipient as the channel gets the data, or the communication channel might be a storage channel that stores some or all of the data in its transit from the sender to the recipient.
  • An example of the latter is disk storage or other storage device.
  • a program or device that generates data can be thought of as the sender, transmitting the data to a storage device.
  • the recipient is the program or device that reads the data from the storage device.
  • the mechanisms that the sender uses to get the data onto the storage device, the storage device itself and the mechanisms that the recipient uses to get the data from the storage device collectively form the channel. If there is a chance that those mechanisms or the storage device can lose data, then that would be treated as data erasure in the communication channel.
  • An encoder is a circuit, device, module or code segment that handles that task.
  • One way of viewing the operation of the encoder is that the encoder generates output symbols from input symbols, where a sequence of input symbol values represents the input file or a block of the stream. Each input symbol would thus have a position, in the input file or block of the stream, and a value.
  • a decoder is a circuit, device, module or code segment that reconstructs the input symbols from the output symbols received by the recipient. In multi-stage coding, the encoder and the decoder are further divided into sub-modules each performing a different task.
  • the encoder and the decoder can be further divided into sub-modules, each performing a different task.
  • the encoder comprises what is referred to herein as a static encoder and a dynamic encoder.
  • a “static encoder” is an encoder that generates a number of redundant symbols from a set of input symbols, wherein the number of redundant symbols is determined prior to encoding. Examples of static encoding codes include Reed-Solomon codes, Tornado codes, Hamming codes, Low Density Parity Check (LDPC) codes, etc.
  • LDPC Low Density Parity Check
  • the term “static decoder” is used herein to refer to a decoder that can decode data that was encoded by a static encoder.
  • a “dynamic encoder” is an encoder that generates output symbols from a set of input symbols and possibly a set of redundant symbols. In one preferred embodiment described here, the number of possible output symbols is orders of magnitude larger than the number of input symbols, and the number of output symbols to be generated need not be fixed.
  • a dynamic encoder is a chain reaction encoder, such as the encoders described in Luby I and Luby II.
  • the term “dynamic decoder” is used herein to refer to a decoder that can decode data that was encoded by a dynamic encoder.
  • Embodiments of multi-field coding need not be limited to any particular type of input symbol.
  • the values for the input symbols are selected from an alphabet of 2 M symbols for some positive integer M.
  • an input symbol can be represented by a sequence of M bits of data from the input file or stream.
  • the value of M is often determined based on, for example, the uses of the application, the communication channel, and/or the size of the output symbols.
  • the size of an output symbol is often determined based on the application, the channel, and/or the size of the input symbols.
  • the coding process might be simplified if the output symbol values and the input symbol values were the same size (i.e., representable by the same number of bits or selected from the same alphabet).
  • the input symbol value size is limited when the output symbol value size is limited. For example, it may be desired to put output symbols in packets of limited size. If some data about a key associated with the output symbols were to be transmitted in order to recover the key at the receiver, the output symbol would preferably be small enough to accommodate, in one packet, the output symbol value and the data about the key.
  • an input file is a multiple megabyte file
  • the input file might be broken into thousands, tens of thousands, or hundreds of thousands of input symbols with each input symbol encoding thousands, hundreds, or only few bytes.
  • a packet with a payload of size of 1024 bytes might be appropriate (a byte is 8 bits).
  • an output symbol size of 8128 bits ((1024 ⁇ 8)*8) would be appropriate.
  • some video distribution systems use the MPEG packet standard, where the payload of each packet comprises 188 bytes.
  • the application-specific parameters such as the input symbol size (i.e., M, the number of bits encoded by an input symbol), might be variables set by the application.
  • the symbol size might be chosen to be rather small so that each source packet can be covered with an integral number of input symbols that have aggregate size at most slightly larger than the source packet.
  • Each output symbol has a value.
  • each output symbol also has associated therewith an identifier called its “key.”
  • the key of each output symbol can be easily determined by the recipient to allow the recipient to distinguish one output symbol from other output symbols.
  • the key of an output symbol is distinct from the keys of all other output symbols.
  • keying discussed in previous art. For example, Luby I describes various forms of keying that can be employed in embodiments described herein.
  • Multi-field Multi-stage coding is particularly useful where there is an expectation of data erasure or where the recipient does not begin and end reception exactly when a transmission begins and ends. The latter condition is referred to herein as “data incompleteness.”
  • multi-stage coding shares many of the benefits of chain reaction coding described in Luby I.
  • multi-stage codes may be fountain codes, or rateless codes, in which case many times more distinct output symbols than there are input symbols can be generated for a set of fixed-value input symbols, and any suitable number of distinct output symbols can be used to recover the input symbols to a desired degree of accuracy. These conditions do not adversely affect the communication process when multi-field multi-stage coding is used, because the output symbols generated with multi-field multi-stage coding are information additive.
  • a receiver is not constrained to pickup any particular set of packets, so it can receive some packets from one transmitter, switch to another transmitter, lose some packets, miss the beginning or end of a given transmission and still recover an input file or block of a stream.
  • the ability to join and leave a transmission without receiver-transmitter coordination helps to simplify the communication process.
  • transmitting a file or stream using multi-field multi-stage coding can include generating, forming or extracting input symbols from an input file or block of a stream, computing redundant symbols, encoding input and redundant symbols into one or more output symbols, where each output symbol is generated based on its key independently of all other output symbols, and transmitting the output symbols to one or more recipients over a channel.
  • receiving (and reconstructing) a copy of the input file or block of a stream using multi-field multi-stage coding can include receiving some set or subset of output symbols from one of more data streams, and decoding the input symbols from the values and keys of the received output symbols.
  • Suitable FEC erasure codes as described herein can be used to overcome the above-cited difficulties and would find use in a number of fields including multimedia broadcasting and multicasting systems and services.
  • An FEC erasure code hereafter referred to as “a multi-field multi-stage chain reaction code” has properties that meet many of the current and future requirements of such systems and services.
  • Some basic properties of multi-field multi-stage chain reaction codes are that, for any packet loss conditions and for delivery of source files of any relevant size or streams of any relevant rate: (a) reception overhead of each individual receiver device (“RD”) is minimized; (b) the total transmission time needed to deliver source files to any number of RDs can be minimized (c) the quality of the delivered stream to any number of RDs can be maximized for the number of output symbols sent relative to the number of input symbols, with suitable selection of transmission schedules.
  • the RDs might be handheld devices, embedded into a vehicle, portable (i.e., movable but not typically in motion when in use) or fixed to a location.
  • Multi-field Multi-stage chain reaction codes are fountain codes, i.e., as many encoding packets as needed can be generated on-the-fly, each containing unique encoding symbols that are equally useful for recovering a source file or block of a stream.
  • fountain codes versus other types of FEC codes.
  • One advantage is that, regardless of packet loss conditions and RD availability, fountain codes minimize the number of encoding packets each RD needs to receive to reconstruct a source file or block of a stream. This is true even under harsh packet loss conditions and when, for example, mobile RDs are only intermittently turned-on or available over a long file download session.
  • Another advantage is the ability to generate exactly as many encoding packets as needed, making the decision on how many encoding packets to generate on-the-fly while the transmission is in progress. This can be useful if for example there is feedback from RDs indicating whether or not they received enough encoding packets to recover a source file or block of a stream.
  • packet loss conditions are less severe than expected the transmission can be terminated early.
  • packet loss conditions are more severe than expected or RDs are unavailable more often than expected the transmission can be seamlessly extended.
  • Inverse multiplexing is when a RD is able to combine received encoding packets generated at independent senders to reconstruct a source file or block of a stream.
  • inverse multiplexing is described in below in reference to receiving encoding packets from different senders.
  • Multi-stage chain reaction codes provide a degree of flexibility unmatched by other types of FEC codes.
  • a further advantage of multi-field multi-stage codes is that the error probability and error floor of the codes is much lower than those of previously known codes with equivalent computational complexity. Equally, the computational complexity of multi-field multi-stage chain reaction codes is much lower than that of previously known codes with equivalent error probability and/or error floor.
  • multi-field multi-stage chain reaction codes Another advantage of multi-field multi-stage chain reaction codes is that parameters such as symbol size and field sizes can be chosen flexibly to achieve any desired balance between computational complexity and error probability and/or error floor.
  • FIG. 1 is a block diagram of a communications system 100 that uses multi-stage coding.
  • an input file 101 or an input stream 105 , is provided to an input symbol generator 110 .
  • Input symbol generator 110 generates a sequence of one or more input symbols (IS( 0 ), IS( 1 ), IS( 2 ), . . . ) from the input file or stream, with each input symbol having a value and a position (denoted in FIG. 1 as a parenthesized integer).
  • the possible values for input symbols i.e., its alphabet, is typically an alphabet of 2 M symbols, so that each input symbol codes for M bits of the input file or stream.
  • the value of M is generally determined by the use of communication system 100 , but a general purpose system might include a symbol size input for input symbol generator 110 so that M can be varied from use to use.
  • the output of input symbol generator 110 is provided to an encoder 115 .
  • Static key generator 130 produces a stream of static keys S 0 , S 1 , . . . .
  • the number of the static keys generated is generally limited and depends on the specific embodiment of encoder 115 . The generation of static keys will be subsequently described in more detail.
  • Dynamic key generator 120 generates a dynamic key for each output symbol to be generated by the encoder 1 15 . Each dynamic key is generated so that a large fraction of the dynamic keys for the same input file or block of a stream are unique. For example, Luby I describes embodiments of key generators that can be used.
  • the outputs of dynamic key generator 120 and the static key generator 130 are provided to encoder 115 .
  • encoder 115 From each key I provided by dynamic key generator 120 , encoder 115 generates an output symbol, with a value B(I), from the input symbols provided by the input symbol generator. The operation of encoder 115 will be described in more detail below.
  • the value of each output symbol is generated based on its key, on some function of one or more of the input symbols, and possibly on or more redundant symbols that had been computed from the input symbols.
  • the collection of input symbols and redundant symbols that give rise to a specific output symbol is referred to herein as the output symbol's “associated symbols” or just its “associates”.
  • the selection of the function (the “value function”) and the associates is done according to a process described in more detail below.
  • M is the same for input symbols and output symbols, i.e., they both code for the same number of bits.
  • the number K of input symbols is used by the encoder 115 to select the associates. If K is not known in advance, such as where the input is a streaming file, K can be just an estimate. The value K might also be used by encoder 115 to allocate storage for input symbols and any intermediate symbols generated by encoder 115 .
  • Encoder 115 provides output symbols to a transmit module 140 .
  • Transmit module 140 is also provided the key of each such output symbol from the dynamic key generator 120 .
  • Transmit module 140 transmits the output symbols, and depending on the keying method used, transmit module 140 might also transmit some data about the keys of the transmitted output symbols, over a channel 145 to a receive module 150 .
  • Channel 145 is assumed to be an erasure channel, but that is not a requirement for proper operation of communication system 100 .
  • Modules 140 , 145 and 150 can be any suitable hardware components, software components, physical media, or any combination thereof, so long as transmit module 140 is adapted to transmit output symbols and any needed data about their keys to channel 145 and receive module 150 is adapted to receive symbols and potentially some data about their keys from channel 145 .
  • the value of K if used to determine the associates, can be sent over channel 145 , or it may be set ahead of time by agreement of encoder 115 and decoder 155 .
  • channel 145 can be a real-time channel, such as a path through the Internet or a broadcast link from a television transmitter to a television recipient or a telephone connection from one point to another, or channel 145 can be a storage channel, such as a CD-ROM, disk drive, Web site, or the like.
  • Channel 145 might even be a combination of a real-time channel and a storage channel, such as a channel formed when one person transmits an input file from a personal computer to an Internet Service Provider (ISP) over a telephone line, the input file is stored on a Web server and is subsequently transmitted to a recipient over the Internet.
  • ISP Internet Service Provider
  • channel 145 is assumed to be an erasure channel, communications system 100 does not assume a one-to-one correspondence between the output symbols that exit receive module 150 and the output symbols that go into transmit module 140 .
  • channel 145 comprises a packet network
  • communications system 100 might not even be able to assume that the relative order of any two or more packets is preserved in transit through channel 145 . Therefore, the key of the output symbols is determined using one or more of the keying schemes described above, and not necessarily determined by the order in which the output symbols exit receive module 150 .
  • Receive module 150 provides the output symbols to a decoder 155 , and any data receive module 150 receives about the keys of these output symbols is provided to a dynamic key regenerator 160 .
  • Dynamic key regenerator 160 regenerates the dynamic keys for the received output symbols and provides these dynamic keys to decoder 155 .
  • Static key generator 163 regenerates the static keys S 0 , S 1 , . . . and provides them to decoder 155 .
  • the static key generator has access to random number generator 135 used both during the encoding and the decoding process. This can be in the form of access to the same physical device if the random numbers are generated on such device, or in the form of access to the same algorithm for the generation of random numbers to achieve identical behavior.
  • Decoder 155 uses the keys provided by dynamic key regenerator 160 and static key generator 163 together with the corresponding output symbols, to recover the input symbols (again IS( 0 ), IS( 1 ), IS( 2 ), . . . ). Decoder 155 provides the recovered input symbols to an input file reassembler 165 , which generates a copy 170 of input file 101 or input stream 105 .
  • a receiver is able to recover the original file or block of the original stream as soon as enough output symbols have been received. Specifically, to recover the original K input symbols with a high probability, the receiver needs approximately K+A output symbols. The ratio A/K is called the “relative reception overhead.” The relative reception overhead depends on the number K of input symbols, and on the reliability of the decoder.
  • Luby I, Luby II and Shokrollahi I provide teachings of systems and methods that can be employed in certain embodiments. It is to be understood, however, that these systems and methods are not required of the present invention, and many other variations, modifications, or alternatives can also be used.
  • FIG. 2 is a block diagram of one specific embodiment of encoder 115 shown in FIG. 1 .
  • Encoder 115 comprises a static encoder 210 , a dynamic encoder 220 , and a redundancy calculator 230 .
  • Static encoder 210 receives the following inputs: a) original input symbols IS( 0 ), IS( 1 ), . . . , IS(K ⁇ 1) provided by the input symbol generator 110 and stored in an input symbol buffer 205 ; b) the number K of original input symbols; c) static keys S 0 , S 1 , . . . provided by the static key generator 130 ; and d) a number R of redundant symbols.
  • static encoder 205 Upon receiving these inputs static encoder 205 computes R redundant symbols RE( 0 ), RE( 1 ), . . . , RE(R ⁇ 1) as will be described below. Typically, but not always, the redundant symbols have the same size as the input symbols. In one specific embodiment, the redundant symbols generated by static encoder 210 are stored in input symbol buffer 205 . Input symbol buffer 205 may be only logical, i.e., the file or block of the stream may be physically stored in one place and the positions of the input symbols within symbol buffer 205 could only be renamings of the positions of these symbols within the original file or block of the stream.
  • Dynamic encoder receives the input symbols and the redundant symbols, and generates output symbols as will be described in further detail below.
  • dynamic encoder 220 receives the input symbols and redundant symbols from input symbol buffer 205 .
  • Redundancy calculator 230 computes the number R of redundant symbols from the number K of input symbols. This computation is described in further detail below.
  • FIG. 3 is a simplified flow diagram illustrating one embodiment of a method of statically encoding.
  • a variable j which keeps track of how many redundant symbols have been generated, is set to zero.
  • a first redundant symbol RE( 0 ) is computed as a function F 0 of at least some of the input symbols IS( 0 ), . . . , IS(K ⁇ 1).
  • the variable j is incremented.
  • step 320 it is tested whether all of the redundant symbols have been generated (i.e., is j greater than R ⁇ 1?). If yes, then the flow ends. Otherwise, the flow proceeds to step 325 .
  • RE(j) is computed as a function F j of the input symbols IS( 0 ), . . . , IS(K ⁇ 1) and of the previously generated redundant symbols RE( 0 ), . . . , RE(j ⁇ 1), where F j need not be a function that depends on every one of the input symbols or every one of the redundant symbols. Steps 315 , 320 , and 325 are repeated until R redundant symbols have been computed.
  • static encoder 210 receives one or more static keys S 0 , S 1 , . . . from static key generator 130 .
  • the static encoder 210 uses the static keys to determine some or all of functions F 0 , F 1 , . . . , F j ⁇ 1 .
  • static key S 0 can be used to determine function F 0
  • static key S 1 can be used to determine function F 1 , etc.
  • one or more of static keys S 0 , S 1 , . . . can be used to determine function F 0
  • one or more of static keys S 0 , S 1 , . . . can be used to determine function F 1 , etc.
  • no static keys are needed, and thus static key generator 130 is not needed.
  • FIG. 4 is a simplified illustration of the operation of one embodiment of static encoder 210 .
  • static encoder 210 generates redundant symbol REL) as a function Fj of input symbols IS( 0 ), . . . , IS(K ⁇ 1), RE( 0 ), . . . , RE(j ⁇ 1), received from input symbol buffer 205 , and stores it back into input symbol buffer 205 .
  • the exact form of the functions F 0 , F 1 , . . . , F R ⁇ 1 depends on the particular application.
  • functions F 0 , F 1 , . . . , F R ⁇ 1 include an exclusive OR of some or all of their corresponding arguments. As described above, these functions may or may not actually employ static keys generated by static key generator 130 of FIG. 1 .
  • the first few functions implement a Hamming code and do not make any use of the static keys S 0 , S 1 , . . . , whereas the remaining functions implement a Low-Density Parity-Check code and make explicit use of the static keys.
  • dynamic encoder 220 receives input symbols IS( 0 ), . . . ,IS(K ⁇ 1) and the redundant symbols RE( 0 ), . . . , RE(R ⁇ 1) and a key I for each output symbol it is to generate.
  • the collection comprising the original input symbols and the redundant symbols will be referred to as the collection of “dynamic input symbols” hereafter.
  • FIG. 5 is a simplified block diagram of one embodiment of a dynamic encoder, including a weight selector 510 , an associator 515 , a value function selector 520 and a calculator 525 .
  • the K+R dynamic input symbols are stored in a dynamic symbol buffer 505 .
  • dynamic encoder 500 performs the action illustrated in FIG. 6 , namely, to generate an output symbol value B(I) as some value function of selected input symbols.
  • FIG. 7 is a simplified block diagram of one specific embodiment of a static encoder.
  • Static encoder 600 comprises a parameter calculator 605 , a Low-density parity-check (LDPC) encoder 610 , and a high-density-parity-check (HDPC) encoder 620 .
  • LDPC encoder 610 is coupled to receive the input symbols IS( 0 ), . . . , IS(K ⁇ 1) from an input symbol buffer 625 , the number K of input symbols, and the parameter E. In response, LDPC encoder 610 generates E redundant symbols LD( 0 ), . . . ,LD(E ⁇ 1) according to the LDPC code.
  • HDPC encoder 620 is coupled to receive the plurality of K+E symbols IS( 0 ), . . . ,IS(K ⁇ 1),LD( 0 ), . . . , LD(E ⁇ 1) and the parameter D to generate D redundant symbols HA( 0 ), HA( 1 ), . . . , HA(D ⁇ 1) according to the HDPC code.
  • FIG. 8 illustrates the operation of one embodiment that employs the static encoder shown in FIG. 7 .
  • FIG. 9 is a simplified flow diagram illustrating one embodiment of a parameter calculator, such as parameter calculator 605 of FIG. 7 , that calculates parameter D and E as described above, when the HDPC code is a Hamming code.
  • parameter D is initialized to one.
  • step 710 it is determined whether 2 D ⁇ D ⁇ 1 is less than K. If no, then the flow proceeds to step 730 . If yes, the flow proceeds to step 720 , where the parameter D is incremented. Then, the flow proceeds back to step 710 .
  • the parameter E is calculated as R ⁇ D ⁇ 1.
  • FIG. 10 is a simplified flow diagram of such an encoder according to one embodiment of the present invention, which will now be described.
  • a variable i is initialized to zero.
  • Variable i keeps track of the number of redundant symbols already generated.
  • a number t is calculated as the smallest odd integer greater than or equal to K/2.
  • values P 1 , P 2 , . . . , P t are generated based on K, t, and a static key S i .
  • the values P 1 , P 2 , . . . , P t indicate the positions of input symbols that will be used to generate a redundant symbol.
  • an associator such as associator 515 of FIG. 5 is used to generate P 1 , P 2 , . . . , P t .
  • the value t can be provided as the W(I) input
  • the value K can be provided as the K+R input
  • the static key S i can be provided as the key I input. It should be noted that many different values of t would yield similar coding effects, and thus this particular choice is only an example.
  • the value of RE(i) is computed as the XOR of the values IS(P 1 ), IS(P 2 ), . . . , IS(P t ).
  • the variable i is incremented by one to prepare computation of the next redundant symbol, and in step 830 , it is determined whether all the redundant symbols have been computed. If not, then the flow returns to step 815 .
  • FIG. 11 is a simplified block diagram illustrating one embodiment of a decoder according to the present invention.
  • Decoder 900 can be used, for example, to implement decoder 155 of FIG. 1 .
  • Decoder 900 comprises a dynamic decoder 905 and a static decoder 910 .
  • Input symbols and redundant symbols recovered by dynamic decoder 905 are stored in a reconstruction buffer 915 .
  • static decoder 910 attempts to recover any input symbols not recovered by dynamic decoder 905 , if any.
  • static decoder 910 receives input symbols and redundant symbols from reconstruction buffer 915 .
  • FIG. 12 is a simplified flow diagram illustrating one embodiment of a method for decoding according to the present invention.
  • Q output symbols are received by the decoder.
  • the value of Q can depend on the number of input symbols and the specific dynamic encoder used.
  • the value of Q can also depend on the desired degree of accuracy to which the decoder can recover the input symbols. For example, if it is desired that the decoder can recover all of the input symbols with a high probability, then Q should be chosen to be larger than the number of input symbols. Particularly, in some applications, when the number of input symbols is large, Q can be less than 3% larger than the number of original input symbols. In other applications, when the number of input symbols is small, Q can be at least 10% larger than the number of input symbols.
  • Q can be chosen as the number K of input symbols plus a number A, where A is chosen to ensure that the decoder can regenerate all of the input symbols with a high probability. Determination of the number A is described in more detail below. If it is acceptable for the decoder to be unable to decode all of the input symbols (either sometimes or always), then Q can be less than K+A, equal to K, or even less than K. Clearly, one aim of an overall coding system will often be to decrease the number Q as much as possible, while maintaining good probabilistic guarantees on the success of the decoding process with respect to the desired degree of accuracy.
  • dynamic decoder 905 regenerates input symbols and redundant symbols from the Q received output symbols. It is to be understood, that steps 1005 and 1010 can be performed substantially concurrently. For example, dynamic decoder 905 can begin regenerating input symbols and redundant symbols prior to the decoder receiving Q output symbols.
  • step 1020 static decoder 910 attempts to recover any input symbols that dynamic decoder 905 was unable to recover. After static encoder 910 has processed the input symbols and redundant symbols recovered by dynamic encoder 905 , then the flow ends.
  • FIG. 13 is a simplified flow diagram illustrating another embodiment of a method for decoding according to the present invention. This embodiment is similar to that described with respect to FIG. 11 , and includes steps 1005 , 1010 , 1015 , and 1025 in common. But, after step 1025 , the flow proceeds to step 1030 , in which it is determined whether the input symbols have been recovered to a desired degree of accuracy. If yes, then the flow ends. If no, then the flow proceeds to step 1035 . In step 1035 , one or more additional output symbols are received. Then, the flow proceeds back to step 1010 , so that dynamic decoder 905 and/or static decoder 910 can attempt to recover the remaining unrecovered input symbols.
  • FIG. 14 is a simplified flow diagram illustrating yet another embodiment of a method for decoding according to the present invention.
  • step 1055 output symbols are received by the decoder, and in step 1060 , dynamic decoder 905 regenerates input symbols and redundant symbols from the received output symbols.
  • step 1065 it is determined whether dynamic decoding should be ended. This determination can be based on one or more of the number of output symbols processed, the number of input symbols recovered, the current rate at which additional input symbols are being recovered, the time spent processing output symbols, etc.
  • step 1065 if it is determined that dynamic decoding is not to be stopped, then the flow proceeds back to step 1055 . But, if in step 1065 , it is determined to end dynamic decoding, then the flow proceeds to step 1070 .
  • step 1070 it is determined whether the input symbols have been recovered to a desired degree of accuracy. If yes, then the flow ends. If no, then the flow proceeds to step 1075 .
  • step 1075 static decoder 910 attempts to recover any input symbols that dynamic decoder 905 was unable to recover. After static encoder 910 has processed the input symbols and redundant symbols recovered by dynamic encoder 905 , the flow ends.
  • FIG. 15 shows one embodiment of dynamic decoder according to the present invention.
  • Dynamic decoder 1100 includes similar components as those of dynamic encoder 500 shown in FIG. 5 . Decoder 1100 is similar to embodiments of chain reaction decoders described in Luby I and Luby II. Dynamic decoder 1100 comprises a weight selector 510 , an associator 515 , a value function selector 520 , an output symbol buffer 1105 , a reducer 1115 , a reconstructor 1120 and a reconstruction buffer 1125 .
  • FIG. 16 is a simplified block diagram illustrating one embodiment of a static decoder. This embodiment can be used when the data is encoded with a static encoder such as described with reference to FIG. 7 .
  • Static decoder 1200 comprises a LDPC decoder 1205 and a Hamming decoder 1210 .
  • the LDPC decoder 1205 receives input symbols and redundant symbols from a reconstruction buffer 1215 , and attempts to reconstruct those symbols of reconstruction buffer 1215 unrecovered after the decoding step of the dynamic decoder.
  • reconstruction buffer 1215 is reconstruction buffer 1125 ( FIG. 15 ).
  • HDPC decoder is implemented using a Gaussian elimination algorithm.
  • Gaussian elimination algorithms are well known to those skilled in the art, and can be employed in various embodiments according to the present invention.
  • HDPC encoding Another type of HDPC encoding is now described.
  • the mathematical operation for creating redundant symbols from a given set of data is based on operations in a finite field.
  • the elements of a finite field are used to obtain redundant symbols HD[ 0 ], . . . , HD[D ⁇ 1]. These symbols are obtained by defining a multiplication process between the symbols IS[ 0 ], . . . ,IS[K ⁇ 1],LD[ 0 ], . . . , LD[E ⁇ 1] and elements of the finite field as described above.
  • the code When using an HDPC code, the code might be described by a generator matrix over a finite field GF(2 M ). Where the code is systematic, which is the case in a preferred embodiment, the generator matrix can be described using only the relationship between the K+E input symbols IS[ 0 ], . . . ,IS[K ⁇ 1],LD[ 0 ], . . . ,LD[E ⁇ 1] and the redundant symbols HD[ 0 ], . . . ,HD[D ⁇ 1].
  • This matrix, called G is of format Dx(K+E). If X denotes the column vector comprising the symbols HD[ 0 ], . . .
  • Multi-stage chain reaction codes as described above are not systematic codes, i.e., all of the original source symbols of a source block are not necessarily among the encoding symbols that are sent.
  • systematic FEC codes are useful for a file download system or service, and very important for a streaming system or service.
  • a modified code can be made to be systematic and still maintain the fountain code and other described properties.
  • a supplemental service to a file download service that allows multi-stage chain reaction codes that did not receive enough encoding packets to reconstruct a source file from the file download session to request additional encoding packets to be sent from a make-up sender, e.g., via a HTTP session.
  • the make-up sender generates encoding symbols from the source file and sends them, for example using HTTP, and all these encoding symbols can be combined with those received from the file download session to recover the source file.
  • This approach allows different senders to provide incremental source file delivery services without coordination between the senders, and ensuring that each individual receiver need receive only a minimal number of encoding packets to recover each source file.
  • Decoding of multi-stage chain reaction codes as described above may require a relatively large overhead when the number of source symbols is small, for example in the order of hundreds to a few thousands source symbols.
  • a different decoder is preferred, for example a decoder disclosed in Shokrollahi III.
  • a modified decoding algorithm can be designed for the class of codes disclosed herein that uses features of the codes and concepts disclosed in Shokrollahi III, and provides low decoding error probability for very small numbers of source symbols, while maintaining efficiency in the decoding.
  • a packet using these techniques might be represented with header information such as an FEC Payload ID of four octets comprising a Source Block Number (SBN) (16 bit integer identifier for the source block that the encoding symbols within the packet relate to) and an Encoding Symbol ID (ESI) (16 bit integer identifier for the encoding symbols within the packet).
  • SBN Source Block Number
  • EI Encoding Symbol ID
  • FEC Object Transmission information might comprise the FEC Encoding ID, a Transfer Length (F) and the parameters T, Z, N and A defined in below.
  • the parameters T and Z are 16 bit unsigned integers, N and A are 8 bit unsigned integers. If needed, other integer sizes might be used.
  • FEC encoding scheme for forward error correction is defined in the sections below. It defines two different FEC Payload ID formats, one for FEC source packets and another for FEC repair packets, but variations for nonsystematic codes are also possible.
  • the Source FEC payload ID might comprise a Source Block Number (SBN) (16 bit integer identifier for the source block that the encoding symbols within the packet relate to) and an Encoding Symbol ID (ESI) (16 bit integer identifier for the encoding symbols within the packet), while the Repair FEC Payload ID might comprise a Source Block Number (SBN) (16 bit integer identifier for the source block that the repair symbols within the packet relate to), an Encoding Symbol ID (ESI) (16 bit integer identifier for the repair symbols within the packet), and a Source Block Length (SBL) (16 bits, representing the number of source symbols in the source block.
  • SBN Source Block Number
  • EI Encoding Symbol ID
  • SBL Source Block Length
  • FEC Object Transmission information might comprise the FEC Encoding ID, the maximum source block length, in symbols, and the symbol size, in bytes.
  • the symbol size and maximum source block length might comprise a four octet field of Symbol Size (T) (16 bits representing the size of an encoding symbol, in bytes), and a Maximum Source Block Length (16 bits representing the maximum length of a source block, in symbols).
  • Multi-field MSCR codes are fountain codes, i.e., as many encoding symbols as needed can be generated by the encoder on-the-fly from the source symbols of a block.
  • the decoder is able to recover the source block from any set of encoding symbols only slightly more in number than the number of source symbols.
  • the code described in this document is a systematic code, that is, the original source symbols are sent unmodified from sender to receiver, as well as a number of repair symbols.
  • i, j, x, h, a, b, d represent positive integers v, m ceil(x) denotes the smallest positive integer which is greater than or equal to x choose(i, j) denotes the number of ways j objects can be chosen from among i objects without repetition floor(x) denotes the largest positive integer which is less than or equal to x i % j denotes i modulo j X ⁇ circumflex over ( ) ⁇ Y denotes, for equal-length bit strings X and Y, the bitwise exclusive-or of X and Y A denote a symbol alignment parameter. Symbol and sub-symbol sizes are restricted to be multiples of A.
  • a T denotes the transposed matrix of matrix A
  • a ⁇ 1 denotes the inverse matrix of matrix
  • a K denotes the number of symbols in a single source block
  • MAX denotes the maximum number of source symbols that can be in a single source block.
  • L denotes the number of pre-coding symbols for a single source block
  • S denotes the number of LDPC symbols for a single source block
  • H denotes the number of Half symbols for a single source block
  • C denotes an array of intermediate symbols, C[0], C[1], C[2], . . . , C[L ⁇ 1]
  • C′ denotes an array of source symbols, C′[0], C′[1], C′[2], . .
  • T T′ ⁇ N.
  • T′ the sub-symbol size, in bytes. If the source block is not partitioned into sub- blocks then T′ is not relevant.
  • F the file size, for file download, in bytes I the sub-block size in bytes P for file download, the payload size of each packet, in bytes, that is used in one preferred derivation of the file download transport parameters.
  • Q Q 65521, i.e., Q is the largest prime smaller than 2 16 . Note that other values might be used instead of 2 16 .
  • the MSCR forward error correction code can be applied to both file delivery and streaming applications. MSCR code aspects which are specific to each of these applications are discussed in Sections B.3 and B.4 of this document.
  • a component of the systematic MSCR code is the basic encoder described in Section B.5. First, it is described how to derive values for a set of intermediate symbols from the original source symbols such that knowledge of the intermediate symbols is sufficient to reconstruct the source symbols. Secondly, the encoder produces repair symbols which are each the exclusive OR of a number of the intermediate symbols. The encoding symbols are the combination of the source and repair symbols. The repair symbols are produced in such a way that the intermediate symbols and therefore also the source symbols can be recovered from any sufficiently large set of encoding symbols.
  • the construction of the intermediate and repair symbols is based in part on a pseudorandom number generator described in Section B.5.
  • This generator is based on a fixed set of 512 random numbers that are available to both sender and receiver.
  • An example set of numbers are those provided in Appendices B.1 and B.2.
  • the file may be broken into Z ⁇ 1 blocks, known as source blocks.
  • the MSCR encoder is applied independently to each source block.
  • Each source block is identified by a unique integer Source Block Number (SBN), where the first source block has SBN zero, the second has SBN one, etc.
  • SBN Source Block Number
  • Each source block is divided into a number, K, of source symbols of size T bytes each.
  • Each source symbol is identified by a unique integer Encoding Symbol Identifier (ESI), where the first source symbol of a source block has ESI zero, the second has ESI one, etc.
  • Each source block with K source symbols is divided into N ⁇ 1 sub-blocks, which are small enough to be decoded in the working memory.
  • Each sub-block is divided into K sub-symbols of size T′.
  • K is not necessarily the same for each source block of a file and the value of T′ may not necessarily be the same for each sub-block of a source block.
  • symbol size T is the same for all source blocks of a file and the number of symbols, K is the same for every sub-block of a source block. Exact partitioning of the file into source blocks and sub-blocks is described in B.3.1.2 below.
  • FIG. 17 shows an example source block placed into a two dimensional array, where each entry is a T′-byte sub-symbol, each row is a sub-block and each column is a source symbol.
  • T′ is the same for every sub-block.
  • the number shown in each sub-symbol entry indicates their original order within the source block.
  • the sub-symbol numbered K contains bytes T′ ⁇ K through T′ (K+1) ⁇ 1 of the source block.
  • source symbol i is the concatenation of the ith sub-symbol from each of the sub-blocks, which corresponds to the sub-symbols of the source block numbered i, K+i, 2 ⁇ K+i, . . . , (N ⁇ 1) ⁇ K+i.
  • source blocks and sub-blocks are determined based on five input parameters, F, A, T, Z and N and a function Partition[ ].
  • the five input parameters are defined as follows:
  • Partition[ ] takes a pair of integers (I, J) as input and derives four integers (I L , I S , J L , J S ) as output.
  • Partition[ ] derives parameters for partitioning a block of size I into J approximately equal sized blocks. Specifically, J L blocks of length I L and J S blocks of length I S .
  • the source file might be partitioned into source blocks and sub-blocks as follows:
  • K t ⁇ T>F then for encoding purposes, the last symbol might be padded at the end with K t ⁇ T ⁇ F zero bytes.
  • the symbol alignment parameter A ensures that sub-symbols are always a multiple of A bytes.
  • the mth symbol of a source block comprises the concatenation of the mth sub-symbol from each of the N sub-blocks.
  • Each encoding packet contains a Source Block Number (SBN), an Encoding Symbol ID (ESI) and encoding symbol(s).
  • SBN Source Block Number
  • EI Encoding Symbol ID
  • Each source block is encoded independently of the others. Source blocks are numbered consecutively from zero.
  • Encoding Symbol ID values from 0 to K ⁇ 1 identify the source symbols.
  • Encoding Symbol IDs from K onwards identify repair symbols.
  • Each encoding packet preferably either contains source symbols (source packet) or contains repair symbols (repair packet).
  • a packet may contain any number of symbols from the same source block. In the case that the last symbol in the packet includes padding bytes added for FEC encoding purposes then these bytes need not be included in the packet. Otherwise, only whole symbols might be included.
  • the Encoding Symbol ID, X, carried in each source packet is the Encoding Symbol ID of the first source symbol carried in that packet.
  • the subsequent source symbols in the packet have Encoding Symbol IDs, X+1 to X+G ⁇ 1, in sequential order, where G is the number of symbols in the packet.
  • the Encoding Symbol ID, X placed into a repair packet is the Encoding Symbol ID of the first repair symbol in the repair packet and the subsequent repair symbols in the packet have Encoding Symbol IDs X+1 to X+G ⁇ 1 in sequential order, where G is the number of symbols in the packet.
  • the G repair symbol triples (d[ 0 ], a[ 0 ], b[ 0 ]), . . . , (d[G ⁇ 1], a[G ⁇ 1], b[G ⁇ 1]) for the repair symbols placed into a repair packet with ESI X are computed using the Triple generator defined in B.5.3.4 as follows:
  • the G repair symbols to be placed in repair packet with ESI X are calculated based on the repair symbol triples as described in Section B.5.3 using the intermediate symbols C and the LT encoder LTenc[K, C, (d[i], a[i], b[i])].
  • This section describes the information exchange between the MSCR encoder/decoder and any transport protocol making use of MSCR forward error correction for file delivery.
  • the MSCR encoder and decoder for file delivery require the following information from the transport protocol: the file size, F, in bytes, the symbol alignment parameter, A, the symbol size, T, in bytes, which is a multiple of A, the number of source blocks, Z, the number of sub-blocks in each source block, N.
  • the MSCR encoder for file delivery additionally requires the file to be encoded, F bytes.
  • the MSCR encoder supplies the transport protocol with encoding packet information comprising, for each packet, the SBN, the ESI and the encoding symbol(s).
  • the transport protocol might communicate this information transparently to the MSCR decoder.
  • G min ⁇ ceil( P ⁇ K MIN /F ), P/A, G MAX ⁇ the approximate number of symbols per packet
  • T floor( P /( A ⁇ G )) ⁇
  • a K t ceil( F/T ) ⁇ the total number of symbols in the file
  • Z ceil( K t /K MAX )
  • N min ⁇ ceil(ceil( K t /Z ) ⁇ T/W ), T/A ⁇
  • G and N derived above should be considered as lower bounds. It may be advantageous to increase these values, for example to the nearest power of two.
  • the above algorithm does not guarantee that the symbol size, T, divides the maximum packet size, P, and so it may not be possible to use the packets of size exactly P. If, instead, G is chosen to be a value which divides P/A, then the symbol size, T, will be a divisor of P and packets of size P can be used.
  • a source block is constructed by the transport protocol, for example as defined in this document, making use of the Systematic MSCR Forward Error Correction code.
  • the symbol size, T, to be used for source block construction and the repair symbol construction are provided by the transport protocol.
  • the parameter T might be set so that the number of source symbols in any source block is at most K MAX .
  • each repair packet contains the SBN, ESI, SBL and repair symbol(s).
  • the number of repair symbols contained within a repair packet is computed from the packet length.
  • the ESI values placed into the repair packets and the repair symbol triples used to generate the repair symbols are computed as described in Section B.3.2.2.
  • the MSCR encoder/decoder might use the following information from the transport protocol for each source block: the symbol size, T, in bytes, the number of symbols in the source block, K, the Source Block Number (SBN) and the source symbols to be encoded, K ⁇ T bytes.
  • the MSCR encoder supplies the transport protocol with encoding packet information comprising, for each repair packet, the SBN, the ESI, the SBL and the repair symbol(s).
  • the transport protocol might communicate this information transparently to the MSCR decoder.
  • B the maximum source block size, in bytes P max the maximum Source Packet Information size, without padding P r the xth percentile Source Packet Information size, without padding (i.e. the least number, n, such that x % of the packets are expected to have Source Packet Information size n or less.
  • the value of x is 30.
  • A the symbol alignment factor, in bytes K MAX the maximum number of source symbols per source block. K MIN a minimum target on the number of symbols per source block G MAX a maximum target number of symbols per repair packet
  • T The value of T derived above should be considered as a guide to the actual value of T used. It may be advantageous to ensure that T divides into P, or it may be advantageous to set the value of T smaller to minimize wastage when full size repair symbols are used to recover partial source symbols at the end of lost source packets (as long as the maximum number of source symbols in a source block does not exceed K MAX ). Furthermore, the choice of T may depend on the source packet size distribution, e.g., if all source packets are the same size then it is advantageous to choose T so that the actual payload size of a repair packet P′, where P′ is a multiple of T, is equal to (or as few bytes as possible larger than) the number of bytes each source packet occupies in the source block.
  • the systematic MSCR encoder is used to generate repair symbols from a source block that comprises K source symbols.
  • Symbols are the fundamental data units of the encoding and decoding process. For each source block (sub-block) all symbols (sub-symbols) are the same size. The atomic operation performed on symbols (sub-symbols) for both encoding and decoding is the exclusive-or operation.
  • the first step of encoding is to generate a number, L>K, of intermediate symbols from the K source symbols.
  • K source triples (d[ 0 ], a[ 0 ], b[ 0 ]), . . . , (d[K ⁇ 1], a[K ⁇ 1], b[K ⁇ 1]) are generated using the Trip[ ] generator as described in Section B.5.4.4.
  • the K source triples are associated with the K source symbols and are then used to determine the L intermediate symbols C[ 0 ], . . . , C[L ⁇ 1] from the source symbols using an inverse encoding process. This process can be can be realized by a MSCR decoding process.
  • pre-coding relationships preferably hold within the L intermediate symbols. Section B.5.2 describes these relationships and how the intermediate symbols are generated from the source symbols.
  • repair symbols are produced and one or more repair symbols are placed as a group into a single data packet.
  • Each repair symbol group is associated with an Encoding Symbol ID (ESI) and a number, G, of encoding symbols.
  • the ESI is used to generate a triple of three integers, (d, a, b) for each repair symbol again using the Trip[ ] generator as described in Section B.5.4.4. This is done as described in Sections B.3 and B.4 using the generators described in Section B.5.4.
  • each (d,a,b)-triple is used to generate the corresponding repair symbol from the intermediate symbols using the LTEnc [K, C[ 0 ], . . . , C[L ⁇ 1], (d,a,b)] generator described in Section B.5.4.3.
  • the first encoding step is a pre-coding step to generate the L intermediate symbols C[ 0 ], . . . , C[L ⁇ 1] from the source symbols C′[ 0 ], . . . , C′[K ⁇ 1].
  • the intermediate symbols are uniquely defined by two sets of constraints:
  • Each of the K source symbols is associated with a triple (d[i], a[i], b[i]) for 0 ⁇ i ⁇ K.
  • the source symbol triples are determined using the Triple generator defined in Section B.5.4.4 as:
  • the pre-coding relationships amongst the L intermediate symbols are defined by expressing the last L ⁇ K intermediate symbols in terms of the first K intermediate symbols.
  • L ⁇ K intermediate symbols C[K], . . . ,C[L ⁇ 1] comprise SLDPC symbols and H HDPC symbols
  • the S LDPC symbols are defined to be the values of C[K], . . . , C[K+S ⁇ 1] at the end of the following process:
  • the system uses the field GF(256).
  • a denote the element x modulo f.
  • the element a is primitive, i.e., the 255 first powers of a coincide with the 255 nonzero elements of GF(256).
  • the system choose K+S integers a[ 0 ], . . . ,a[K+S ⁇ 1], and denote by ⁇ [ 0 ], . . .
  • H further integers b[ 0 ], . . . ,b[H ⁇ 1] and denote by ⁇ [ 0 ], . . . , ⁇ [H ⁇ 1] the elements ⁇ b[0] , . . . , ⁇ b[H ⁇ 1] .
  • Further preferred embodiments of the present invention will specify specific choices for these integers. However, it should be noted that are many equivalent choices of these integers.
  • Let g[i] i ⁇ (floor(i/2)) for all positive integers i.
  • g[i] is the Gray sequence, in which each element differs from the previous one in a single bit position.
  • the sequence g[j,k] has the property that the binary representations of g[j,k] and g[j+1,k] differ in exactly two positions. We denote these positions by p[j,k, 1 ] and p[j,k, 2 ].
  • the values of the HDPC symbols are defined as the values of C[K+S], . . . , C[L ⁇ 1] after the following process.
  • the construction of the HDPC symbols can be performed using only the action of the primitive element, ⁇ , along with bit-wise exclusive OR operations between symbols.
  • the generator matrix G for a code which generates N output symbols from K input symbols is an N ⁇ K matrix over GF(2), where each row corresponds to one of the output symbols and each column to one of the input symbols and where the i th output symbol is equal to the sum of those input symbols whose column contains a non-zero entry in row i.
  • the matrix A is depicted in FIG. 20 .
  • the source triples are generated such that for any K matrix A has full rank and is therefore invertible. This calculation can be realized by applying a MSCR decoding process to the K source symbols C′[ 0 ], C′[ 1 ], . . . , C′[K ⁇ 1] to produce the L intermediate symbols C[ 0 ], C[ 1 ], . . . , C[L ⁇ 1].
  • an efficient decoder implementation such as that described in Section B.6 might be used.
  • the source symbol triples are designed to facilitate efficient decoding of the source symbols using that algorithm.
  • the random number generator Rand[X, i, m] is defined as follows, where X is a non-negative integer, i is a non-negative integer and m is a positive integer and the value produced is an integer between 0 and m ⁇ 1.
  • LTEnc[K, (C[ 0 ], C[ 1 ], . . . , C[L ⁇ 1]), (d, a, b)] takes the following inputs:
  • K is the number of source symbols (or sub-symbols) for the source block (sub-block).
  • L be derived from K as described in Section B.5.2, and let L′ be the smallest prime integer greater than or equal to L.
  • (d, a, b) is a source triple determined using the Triple generator defined in Section B.5.3.4, whereby d is an integer denoting an encoding symbol degree, a is an integer between 1 and L′ ⁇ 1 inclusive and b is an integer between 0 and L′ ⁇ 1 inclusive.
  • the encoding symbol generator produces a single encoding symbol as output, according to the following algorithm:
  • the triple generator Trip[K,X] takes the following inputs:
  • the output of the triple generator is a triples, (d, a, b) determined as follows:
  • each received encoding symbol can be considered as the value of an equation amongst the intermediate symbols. From these simultaneous equations, and the known pre-coding relationships amongst the intermediate symbols, any algorithm for solving simultaneous equations can successfully decode the intermediate symbols and hence the source symbols. However, the algorithm chosen has a major effect on the computational efficiency of the decoding.
  • the decoder knows the structure of the source block it is to decode, including the symbol size, T, and the number K of symbols in the source block.
  • the received encoding symbols for the source block to be decoded are passed to the decoder.
  • the number and set of intermediate symbols whose exclusive-or is equal to the encoding symbol is passed to the decoder.
  • the source symbol triples described in Section B.5.2.2 indicate the number and set of intermediate symbols which sum to give each source symbol.
  • M ⁇ L matrix A can be derived from the information passed to the decoder for the source block to be decoded.
  • C be the column vector of the L intermediate symbols
  • D be the column vector of M symbols with values known to the receiver, where the last S+H of the M symbols are zero-valued symbols that correspond to LDPC and HDPC symbols (these are check symbols for the LDPC and HDPC symbols, and not the LDPC and HDPC symbols themselves), and the remaining N of the M symbols are the received encoding symbols for the source block.
  • the matrix A has a block structure, as shown in FIG. 23 .
  • the block structure comprises a matrix F with N rows and L columns, a matrix E with S rows and L ⁇ S ⁇ H columns, a S by S identity matrix I, a matrix O with S rows and H columns that are entirely zeros, a matrix B with H rows and L ⁇ H columns, and a H by H identity matrix J.
  • the submatrix B has entries defined over the field GF(256), while the matrices E and F have 0/1 entries, i.e., entries in the field GF(2).
  • the matrix F defines the dynamic coding process
  • the matrix E defines the LDPC coding process described above
  • the matrix B defines the HDPC coding process.
  • F[i,j] 1 if the intermediate symbol corresponding to index j is exclusive-ORed into the or encoding symbol corresponding to index i in the encoding.
  • F[i,j] 0.
  • E[i,j] 1 if the intermediate symbols corresponding to index j is exclusive-ORed into the LDPC symbol corresponding to index i.
  • B[i,j] ⁇ if the result of the action of ⁇ on the intermediate symbols corresponding to index j is exclusive-ORed into the HDPC symbol corresponding to index i.
  • Decoding a source block is equivalent to decoding C from known A and D. It is clear that C can be decoded if and only if the rank of A over GF(256) is L. Once C has been decoded, missing source symbols can be obtained by using the source symbol triples to determine the number and set of intermediate symbols which are exclusive-ORed to obtain each missing source symbol.
  • the first step in decoding C is to form a decoding schedule.
  • A is converted, using Gaussian elimination (using row operations and row and column reorderings) and after discarding M ⁇ L rows, into the L by L identity matrix.
  • the decoding schedule comprises the sequence of row operations and row and column re-orderings during the Gaussian elimination process, and only depends on A and not on D.
  • the decoding of C from D can take place concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the decoding schedule.
  • the total number of exclusive-ORs of symbols in the decoding of the source block is related to the number of row operations (not exchanges) in the Gaussian elimination. Since A is the L by L identity matrix after the Gaussian elimination and after discarding the last M ⁇ L rows, it is clear at the end of successful decoding that the L symbols D[d[ 0 ]], D[d[ 0 ]], . . . , D[d[L ⁇ 1]] are the values of the L symbols C[c[ 0 ]], C[c[ 1 ]], . . . , C[c[L ⁇ 1]].
  • Gaussian elimination is performed to form the decoding schedule has no bearing on whether or not the decoding is successful.
  • speed of the decoding depends heavily on the order in which Gaussian elimination is performed. (Furthermore, maintaining a sparse representation of A is crucial, although this is not described here). It is also clear that it is more efficient to perform GF(2)-row operations rather than GF(256)-row operations. Therefore, when performing the Gaussian elimination, it is better to pivot on rows of the matrix A which with elements taken from the field GF(2). It is also advantageous to leave the elimination of the rows of the matrix corresponding to the HDPC symbols to the end of the Gaussian elimination process. The remainder of this section describes an order in which Gaussian elimination could be performed that is relatively efficient.
  • X the matrix comprising F, E, I and O as depicted in FIG. 24 a.
  • the first phase of the Gaussian elimination the matrix X is conceptually partitioned into submatrices.
  • the submatrix sizes are parameterized by non-negative integers i and u which are initialized to 0.
  • the submatrices of X are:
  • FIG. 22 illustrates the submatrices of X.
  • V X.
  • a row of X is chosen.
  • the following graph defined by the structure of V is used in determining which row of X is chosen.
  • the columns that intersect V are the nodes in the graph, and the rows that have exactly 2 ones in V are the edges of the graph that connect the two columns (nodes) in the positions of the two ones.
  • a component in this graph is a maximal set of nodes (columns) and edges (rows) such that there is a path between each pair of nodes/edges in the graph.
  • the size of a component is the number of nodes (columns) in the component.
  • the graph is denoted by Yin the following.
  • r be the minimum integer such that at least one row of X has exactly r ones in V.
  • the first row of X that intersects V is exchanged with the chosen row so that the chosen row is the first row that intersects V.
  • the columns of X among those that intersect V are reordered so that one of the r ones in the chosen row appears in the first column of V and so that the remaining r ⁇ 1 ones appear in the last columns of V.
  • the chosen row is exclusive-ORed into all the other rows of X below the chosen row that have a one in the first column of V. In other words, we perform a GF(2)-row operation in this step.
  • i is incremented by 1 and u is incremented by r ⁇ 1, which completes the step.
  • v denote the number of columns of the matrix V at the end of this phase. After permuting the columns of the matrix B so that the columns of V correspond to the last v columns of X, the matrix X will have the form given in FIG. 24 b.
  • the submatrix U is further partitioned into the first i rows, U upper , and the remaining N+S ⁇ i rows, U lower , as depicted in FIG. 25 .
  • Gaussian elimination is performed in the second phase on U lower .
  • the matrix U lower will have the form given in FIG. 26 , i.e., after a permutation of the rows and columns, the intersection of the first s rows with the first s columns is an identity matrix, called I, the last m rows are zero, and the intersection of the first s rows with the last u ⁇ s columns forms the matrix W.
  • s+m equals the number N+S ⁇ i of rows of the matrix U lower . If the value of s is u, then the next phase may be skipped. If the value of m is larger than H ⁇ v, then a decoding error is returned, since the rank of the matrix A is less than L in this case. The last m rows of the matrix X are discarded, so that after this phase A has the form given in FIG. 27 .
  • B 1 , . . . , B 3 are matrices with H rows each and entries in GF(256). Next, GF(256)-row operations are performed on the matrices B 1 and B 2 to zero them out. This may be done in one of two ways.
  • a first method the first i rows of A are used to zero out the matrix B 1 by means of GF(256)-row operations. The next s rows of A are then used to zero out the matrix B 2 .
  • rows i to i+s ⁇ 1 inclusive are used to zero out the first s columns of U upper by means of GF(2)-row operations and then the first i+s rows of X are used to zero out both B 1 and B 2 by means of GF(256)-row operations.
  • the method algorithm described above for construction of the HDPC symbols leads to a similar algorithm for zeroing out of the matrix B 1 (in the first method) or both B 1 and B 2 (in the second method). This algorithm requires calculation of the action of a GF(256) element on a symbol only once per matrix column plus once per row of H.
  • the second method described above results in overall fewer operations to zero out the matrices B 1 and B 2 .
  • the matrix A has the form given in FIG. 28 .
  • the matrix T has H rows and u ⁇ s columns. Gaussian elimination is performed on the matrix T to transform it into an identity matrix, followed by H ⁇ u+s rows. If this is not possible, i.e., if the rank of T is smaller than u ⁇ s, then a decoding error is flagged.
  • the matrix A has the form given in FIG. 29 , after discarding the last H ⁇ u+s rows.
  • I denotes a s by s identity matrix
  • J denotes a u ⁇ s by u ⁇ s identity matrix.
  • the portions of A which need to be zeroed out to finish converting A into the L by L identity matrix are W and all u columns of U upper , in the case that the first method of zeroing out B 1 and B 2 has been followed, or W and the last u ⁇ s columns of U upper , in the case that the second method of zeroing out B 1 and B 2 has been followed.
  • W since the matrix W is generally of small size, it can be zeroed out using elementary GF(2)-row operations.
  • the matrix A has the form given in FIG. 30 . In both cases, the remaining portion of the matrix to be zeroed out is now rectangular.
  • the number of rows i′ of the remaining submatrix ⁇ is generally much larger than the number of columns u′.
  • the following precomputation matrix U′ is computed based on, the last u rows and columns of A, which we denote I u and then U′ is used to zero out ⁇ .
  • the u rows of I u are partitioned into ceil(u/z) groups of z rows each, for some integer z.
  • phase A is the L by L identity matrix and a complete decoding schedule has been successfully formed. Then, the corresponding decoding comprising exclusive-ORing known encoding symbols can be executed to recover the intermediate symbols based on the decoding schedule.
  • the triples associated with all source symbols are computed according to B.5.2.2.
  • the triples for received source symbols are used in the decoding.
  • the triples for missing source symbols are used to determine which intermediate symbols need to be exclusive-ORed to recover the missing source symbols.
  • Multi-field, single-stage (MFSS) codes have useful properties that are disclosed or suggested herein. Novel arrangements for MFSS codes, encoders and decoders are described herein.
  • data is encoded for transmission from a source to a destination in which each output symbol is generated as a linear combination of one or more of the input symbols with coefficients taken from finite fields and, for each output symbol:
  • the random process for selecting the degrees of the output symbols may be a process described in Luby I and Luby II in which the degree is selected according to a degree distribution.
  • the random process for selecting the input symbols to associate with each output symbol may be a process described in Luby I and Luby II in which the input symbols are selected randomly and uniformly.
  • random may include “pseudorandom”, “biased random” and the like.
  • the set of possible finite fields may be the set ⁇ GF(2), GF(256) ⁇ .
  • the process for selecting the finite field may be based on a parameter d 1 , such that for output symbols of degree less than d 1 , the field GF(2) is chosen for all input symbols in the neighbor set of the output symbol and for output symbols of degree d 1 or greater than the field GF(256) is chosen for at least one, some or all of the members of the neighbor set of the output symbol and the field GF(2) is chosen for the remaining elements of the neighbor set, if any.
  • the process for selecting the finite field element from the selected field may the simple random process in which an element is chosen uniformly at random from amongst the non-zero elements of the field.
  • a decoder receiving data encoded by an MFSS encoder as described above might decode the output symbols to regenerate the input symbols by forming a matrix representation of the code according to the method described above, this matrix including no static rows and one dynamic row for each output symbol of the code, and then applying Gaussian Elimination to find the inverse of this matrix, ensuring that at each stage of the Gaussian Elimination process pivot rows of minimal degree are chosen.
  • This MFSS code has several further advantages over codes known in the art. Firstly, the inclusion of elements from the field GF(256) reduces significantly the probability that any given received output symbol is not information additive with respect to previously received output symbols. As a result, the decoding error probability of this code is much lower than previous codes. For example, in some instances, the failure probability of the codes described in Luby I and Luby II is improved upon.
  • a further advantage over other codes based on large fields is that for those output symbols generated using the larger field, only one element of the neighbor set has a coefficient which is taken from the larger field and as a result only one operation between a symbol and a finite field element is required for each such output symbol. This results in low overall computational complexity.
  • inner codes and outer codes to encode input symbols using two (or more) coding procedures leads to a simple code scheme that provides benefits often found in more complex codes.
  • source symbols are first encoded using one of the codes and the output of the first encoder is provided to a coder that codes according to the other code and that result is output as the output symbols.
  • MFSS is, of course, different from the use of inner/outer codes.
  • the output symbols are derived from neighbor sets of input codes.
  • each output symbol is a linear combination of input symbols.
  • each output symbol might be a linear combination of input symbols and/or redundant and/or intermediate symbols.
  • the matrix representation of the code is a dense matrix.
  • error correction codes can be constructed from dense random matrices over finite fields.
  • a generalized matrix may be constructed in which there are no static rows and each dynamic row comprises elements from GF(2 q ), with each element chosen randomly.
  • a fixed rate code may then be constructed in which each output symbol corresponds to one of the dynamic rows and is generated as the linear combination of those input symbols for which there is a non-zero element in the corresponding column of this row of the matrix, using these elements as coefficients in the linear combination process.
  • the decoding error probability of a code with K input and K/R output symbols in which the output symbols are generated independently and randomly from the input symbols using randomly chosen coefficients from GF(2 q ) is at most 2 ⁇ qA , if the number of encoded symbols received is K+A.
  • a further embodiment allows decoding error probabilities close to those achievable using large values of q to be achieved with computational complexity close to that achievable with small values of q.
  • output symbols are generated as linear combinations of input symbols with coefficients taken from either GF(2 q ) or GF(2 q ) where p ⁇ q.
  • exactly (K ⁇ 2p/q)/R output symbols are generated using coefficients from GF(2 q ) and the remaining 2p/(qR) output symbols are generated using coefficients from GF(2 q ).
  • Data received at a destination can be decoded by determining the linear relationships between received output symbols and the input symbols of the code and solving this set of linear relationships to determine the input symbols.
  • the decoding error probability of this code is at most that of the code in which all coefficients are chosen from the field GF(2 p ) and may be significantly lower depending on the number of symbols generated using coefficients from the larger field GF(2 q ).
  • the computational complexity of encoding is only slightly greater than that of a code in which all symbols are generated using coefficients from GF(2 p ).
  • the method of decoding may be so arranged that symbols generated with coefficients form GF(2 p ) are processed first and thus the majority of the decoding operations are performed with operations exclusively in GF(2 p ).
  • the computational complexity of the decoding method is similarly close to that for codes constructed using only GF(2 p ).
  • the input and output symbols encode for the same number of bits and each output symbol is placed in one packet (a packet being a unit of transport that is either received in its entirety or lost in its entirety).
  • the communications system is modified so that each packet contains several output symbols.
  • the size of an output symbol value is then set to a size determined by the size of the input symbol values in the initial splitting of the file or blocks of the stream into input symbols, based on a number of factors.
  • the decoding process remains essentially unchanged, except that output symbols arrive in bunches as each packet is received.
  • the setting of input symbol and output symbol sizes is usually dictated by the size of the file or block of the stream and the communication system over which the output symbols are to be transmitted. For example, if a communication system groups bits of data into packets of a defined size or groups bits in other ways, the design of symbol sizes begins with the packet or grouping size. From there, a designer would determine how many output symbols will be carried in one packet or group and that determines the output symbol size. For simplicity, the designer would likely set the input symbol size equal to the output symbol size, but if the input data makes a different input symbol size more convenient, it can be used.
  • the above-described encoding process produces a stream of packets containing output symbols based on the original file or block of the stream.
  • Each output symbol in the stream is generated independently of all other output symbols, and there is no lower or upper bound on the number of output symbols that can be created.
  • a key is associated with each output symbol. That key, and some contents of the input file or block of the stream, determines the value of the output symbol. Consecutively generated output symbols need not have consecutive keys, and in some applications it would be preferable to randomly generate the sequence of keys, or pseudorandomly generate the sequence.
  • Multi-stage decoding has a property that a block of K equal-sized input symbols can be recovered from K+A output symbols on average, with very high probability, where A is small compared to K.
  • FIG. 31 shows the probability of failing to decode from K+A output symbols chosen randomly from among the first 120 output symbols generated
  • the table of FIG. 32 shows the probability of failing to decode from K+A output symbols chosen randomly from among the first 110 output symbols generated.
  • the particular output symbols are generated in a random or pseudorandom order, and the loss of particular output symbols in transit is generally unrelated to the values of the symbols, there is only a small variance in the actual number of output symbols needed to recover the input file or block. In many cases, where a particular collection of K+A output symbols are not enough to decode the a block, the block is still recoverable if the receiver can receive more output symbols from one or more sources.
  • a receiver can stop attempting to decode all of the input symbols after receiving K+A output symbols. Or, the receiver can stop receiving output symbols after receiving less than K+A output symbols. In some applications, the receiver may even only receive K or less output symbols. Thus, it is to be understood that in some embodiments of the present invention, the desired degree of accuracy need not be complete recovery of all the input symbols.
  • the data can be encoded such that all of the input symbols cannot be recovered, or such that complete recovery of the input symbols would require reception of many more output symbols than the number of input symbols.
  • Such an encoding would generally require less computational expense, and may thus be an acceptable way to decrease the computational expense of encoding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
US11/674,655 2006-02-21 2007-02-13 Multiple-field based code generator and decoder for communications systems Expired - Fee Related US9270414B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/674,655 US9270414B2 (en) 2006-02-21 2007-02-13 Multiple-field based code generator and decoder for communications systems
CN2007800139722A CN101427495B (zh) 2006-02-21 2007-02-16 用于通信系统的基于多域的码生成器和解码器
KR1020087022501A KR101355761B1 (ko) 2006-02-21 2007-02-16 통신 시스템의 다중 필드 기반 코드 발생기 및 디코더
PCT/US2007/062302 WO2007098397A2 (fr) 2006-02-21 2007-02-16 Générateur de codes et décodeur à champs multiples pour systèmes de communications
ES07757111.5T ES2563290T3 (es) 2006-02-21 2007-02-16 Generador de códigos y descodificador basados en campos múltiples para sistemas de comunicaciones
EP07757111.5A EP1980041B1 (fr) 2006-02-21 2007-02-16 Générateur de codes et décodeur à champs multiples pour systèmes de communications
JP2008555514A JP5329239B2 (ja) 2006-02-21 2007-02-16 通信システムのための多体ベース符号の生成器および復号化器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77552806P 2006-02-21 2006-02-21
US11/674,655 US9270414B2 (en) 2006-02-21 2007-02-13 Multiple-field based code generator and decoder for communications systems

Publications (2)

Publication Number Publication Date
US20070195894A1 US20070195894A1 (en) 2007-08-23
US9270414B2 true US9270414B2 (en) 2016-02-23

Family

ID=38428179

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/674,655 Expired - Fee Related US9270414B2 (en) 2006-02-21 2007-02-13 Multiple-field based code generator and decoder for communications systems

Country Status (7)

Country Link
US (1) US9270414B2 (fr)
EP (1) EP1980041B1 (fr)
JP (1) JP5329239B2 (fr)
KR (1) KR101355761B1 (fr)
CN (1) CN101427495B (fr)
ES (1) ES2563290T3 (fr)
WO (1) WO2007098397A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379858A1 (en) * 2013-06-19 2014-12-25 The Governors Of The University Of Alberta Network coding using an outer coding process
US20180115415A1 (en) * 2015-04-03 2018-04-26 Nec Corporation Secure computation system, server apparatus, secure computation method, and program
US20190207719A1 (en) * 2017-12-29 2019-07-04 Limited Liability Company "Radio Gigabit" Method of hybrid automatic repeat request implementation for data transmission with multi-level coding
US10574272B2 (en) 2017-09-19 2020-02-25 Toshiba Memory Corporation Memory system
US10673463B2 (en) * 2018-10-25 2020-06-02 Hewlett Packard Enterprise Development Lp Combined blocks of parts of erasure coded data portions
US11271685B2 (en) 2017-12-29 2022-03-08 Limited Liability Company “Radio Gigabit” Method of hybrid automatic repeat request implementation for data transmission with multilevel coding

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307487B1 (en) * 1998-09-23 2001-10-23 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US7068729B2 (en) * 2001-12-21 2006-06-27 Digital Fountain, Inc. Multi-stage code generator and decoder for communication systems
US20020129159A1 (en) * 2001-03-09 2002-09-12 Michael Luby Multi-output packet server with independent streams
EP2278719B1 (fr) * 2002-06-11 2013-12-18 Digital Fountain, Inc. Décodage de codes de réaction en chaine par inactivation
US9240810B2 (en) 2002-06-11 2016-01-19 Digital Fountain, Inc. Systems and processes for decoding chain reaction codes through inactivation
WO2004034589A2 (fr) 2002-10-05 2004-04-22 Digital Fountain, Inc. Codage et decodage systematique de codes de reaction en chaine
CN101834610B (zh) 2003-10-06 2013-01-30 数字方敦股份有限公司 通过通信信道接收从源发射的数据的方法和装置
KR101161193B1 (ko) 2004-05-07 2012-07-02 디지털 파운튼, 인크. 파일 다운로드 및 스트리밍 시스템
WO2006020826A2 (fr) * 2004-08-11 2006-02-23 Digital Fountain, Inc. Procede et appareil permettant le codage rapide de symboles de donnees en fonction de codes demi-poids
JP5550834B2 (ja) 2006-02-13 2014-07-16 デジタル ファウンテン, インコーポレイテッド 可変fecオーバヘッド及び保護期間を利用したストリーミング及びバッファリング
US9270414B2 (en) 2006-02-21 2016-02-23 Digital Fountain, Inc. Multiple-field based code generator and decoder for communications systems
WO2007134196A2 (fr) 2006-05-10 2007-11-22 Digital Fountain, Inc. Générateur de code et décodeur pour des systèmes de communication fonctionnant en utilisant des codes hybrides pour permettre plusieurs utilisations efficaces des systèmes de communication
US9432433B2 (en) 2006-06-09 2016-08-30 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US9419749B2 (en) * 2009-08-19 2016-08-16 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
US9386064B2 (en) 2006-06-09 2016-07-05 Qualcomm Incorporated Enhanced block-request streaming using URL templates and construction rules
US9178535B2 (en) 2006-06-09 2015-11-03 Digital Fountain, Inc. Dynamic stream interleaving and sub-stream based delivery
US9380096B2 (en) 2006-06-09 2016-06-28 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
US9209934B2 (en) 2006-06-09 2015-12-08 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel HTTP and forward error correction
WO2008003094A2 (fr) 2006-06-29 2008-01-03 Digital Fountain, Inc. Représentation efficace de transformations basées sur des symboles avec application de codage et décodage de codes de corrections d'erreur en avance
CN101558593A (zh) * 2006-12-14 2009-10-14 汤姆逊许可证公司 通信系统的带自适应调制的arq
JP5297387B2 (ja) 2006-12-14 2013-09-25 トムソン ライセンシング 通信システムにおける無レート・エンコード
CN101558592B (zh) * 2006-12-14 2012-07-04 汤姆逊许可证公司 通信系统中的链接编码/解码
US9716567B2 (en) 2006-12-14 2017-07-25 Thomson Licensing Rateless codes decoding method for communications systems
JP2010514259A (ja) 2006-12-14 2010-04-30 トムソン ライセンシング 通信システムのための変調指示方法
US9237101B2 (en) 2007-09-12 2016-01-12 Digital Fountain, Inc. Generating and communicating source identification information to enable reliable communications
US8370711B2 (en) 2008-06-23 2013-02-05 Ramot At Tel Aviv University Ltd. Interruption criteria for block decoding
KR101531184B1 (ko) * 2008-11-28 2015-06-24 에스케이 텔레콤주식회사 상하위 계층 간의 연동을 이용한 복호화 방법 및 장치와 그를 이용하여 데이터 송수신 시스템
GB2454606C (en) * 2009-02-02 2017-01-25 Skype Ltd Method of transmitting data in a communication system
US9281847B2 (en) 2009-02-27 2016-03-08 Qualcomm Incorporated Mobile reception of digital video broadcasting—terrestrial services
US9298722B2 (en) 2009-07-16 2016-03-29 Novell, Inc. Optimal sequential (de)compression of digital data
US9288010B2 (en) 2009-08-19 2016-03-15 Qualcomm Incorporated Universal file delivery methods for providing unequal error protection and bundled file delivery services
US9015564B2 (en) 2009-08-19 2015-04-21 Qualcomm Incorporated Content delivery system with allocation of source data and repair data among HTTP servers
US9917874B2 (en) 2009-09-22 2018-03-13 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
KR101154818B1 (ko) * 2009-10-06 2012-06-08 고려대학교 산학협력단 랩터 부호 사용 시스템을 위한 복호화 방법
US9225961B2 (en) 2010-05-13 2015-12-29 Qualcomm Incorporated Frame packing for asymmetric stereo video
US9049497B2 (en) 2010-06-29 2015-06-02 Qualcomm Incorporated Signaling random access points for streaming video data
US8918533B2 (en) 2010-07-13 2014-12-23 Qualcomm Incorporated Video switching for streaming video data
US9185439B2 (en) 2010-07-15 2015-11-10 Qualcomm Incorporated Signaling data for multiplexing video components
US9596447B2 (en) 2010-07-21 2017-03-14 Qualcomm Incorporated Providing frame packing type information for video coding
US9456015B2 (en) 2010-08-10 2016-09-27 Qualcomm Incorporated Representation groups for network streaming of coded multimedia data
TWI445323B (zh) * 2010-12-21 2014-07-11 Ind Tech Res Inst 資料傳送的混合式編解碼裝置與方法
US9270299B2 (en) 2011-02-11 2016-02-23 Qualcomm Incorporated Encoding and decoding using elastic codes with flexible source block mapping
US8958375B2 (en) 2011-02-11 2015-02-17 Qualcomm Incorporated Framing for an improved radio link protocol including FEC
US8612842B2 (en) * 2011-05-25 2013-12-17 Infineon Technologies Ag Apparatus for generating a checksum
KR101258958B1 (ko) * 2011-08-23 2013-04-29 고려대학교 산학협력단 랩터 부호를 이용하는 부호화 장치 및 부호화 방법
US9253233B2 (en) 2011-08-31 2016-02-02 Qualcomm Incorporated Switch signaling methods providing improved switching between representations for adaptive HTTP streaming
US9843844B2 (en) 2011-10-05 2017-12-12 Qualcomm Incorporated Network streaming of media data
DE102011115100B3 (de) * 2011-10-07 2012-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Wiederherstellen von verloren gegangenen und/oder beschädigten Daten
JP5795446B2 (ja) 2011-11-01 2015-10-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated Httpサーバの間でのソースデータおよび修復データの割り当てを伴うコンテンツ配送システム
DE102012200134B4 (de) * 2012-01-05 2013-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Übertragen eines analogen oder digitalen Signals
US8953612B2 (en) * 2012-03-07 2015-02-10 Cmmb Vision Usa Inc Efficient broadcasting via random linear packet combining
DE102012203653B3 (de) * 2012-03-08 2013-07-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Wiederherstellen von verloren gegangenen und/oder beschädigten Daten
US9294226B2 (en) 2012-03-26 2016-03-22 Qualcomm Incorporated Universal object delivery and template-based file delivery
CN102833051B (zh) * 2012-08-24 2014-12-10 北京理工大学 基于反馈的喷泉编码广播方法
TWI485992B (zh) * 2012-08-31 2015-05-21 Ind Tech Res Inst 猛禽碼之編碼加速裝置與方法
US10015486B2 (en) * 2012-10-26 2018-07-03 Intel Corporation Enhanced video decoding with application layer forward error correction
CN103051424B (zh) * 2013-01-07 2015-11-18 北京理工大学 一种不等错误保护喷泉码的无线传输方法
JP6539209B2 (ja) * 2013-11-15 2019-07-03 日本放送協会 符号化器、復号器、送信装置及び受信装置
TWI523465B (zh) * 2013-12-24 2016-02-21 財團法人工業技術研究院 檔案傳輸系統和方法
GB2527602A (en) * 2014-06-27 2015-12-30 Norwegian University Of Science And Technology Galois field coding techniques
US9935654B2 (en) * 2015-02-06 2018-04-03 Alcatel-Lucent Usa Inc. Low power low-density parity-check decoding
US9590657B2 (en) 2015-02-06 2017-03-07 Alcatel-Lucent Usa Inc. Low power low-density parity-check decoding
US10084567B2 (en) 2015-03-04 2018-09-25 Qualcomm Incorporated Early termination in enhanced multimedia broadcast-multicast service reception
JP5918884B1 (ja) * 2015-05-12 2016-05-18 日本電信電話株式会社 復号装置、復号方法、およびプログラム
US9672030B2 (en) * 2015-10-14 2017-06-06 International Business Machines Corporation Generating comprehensive symbol tables for source code files
US10009152B2 (en) * 2016-03-04 2018-06-26 Huawei Technologies Co., Ltd. System and method for rate-less multiple access
DE102017203202A1 (de) * 2017-02-28 2018-08-30 Robert Bosch Gmbh Verfahren zum Übertragen von Nachrichten in einem Kommunikationsnetzwerk, Gateway und Kommunikationsnetzwerk
CN107332647B (zh) * 2017-06-12 2020-09-22 华南理工大学 一种Raptor码的高效HARQ方法
WO2019011219A1 (fr) 2017-07-11 2019-01-17 上海交通大学 Procédé, dispositif, et système adaptatifs basés sur un contenu multimédia pour le codage et le décodage fec d'un code systématique, et support
EP3457601B1 (fr) * 2017-09-13 2019-12-25 Siemens Aktiengesellschaft Procédé pour envoyer des données numériques sur un certain nombre de canaux
JP6818667B2 (ja) 2017-09-20 2021-01-20 キオクシア株式会社 メモリシステム
EP3834531B1 (fr) * 2018-08-07 2024-06-12 QUALCOMM Incorporated Sélection de base modulo adaptative pour précodage non linéaire
US10785098B1 (en) 2019-04-30 2020-09-22 Alibaba Group Holding Limited Network configuration using multicast address modulation
CN110278054B (zh) * 2019-04-30 2021-11-16 创新先进技术有限公司 一种配网方法和装置
US11031956B2 (en) * 2019-06-25 2021-06-08 Samsung Electronics Co., Ltd. Generalized concatenated error correction coding scheme with locality
CN112953568B (zh) * 2021-02-02 2023-11-17 国家广播电视总局广播电视科学研究院 一种用于删除信道的前向纠错码及其构造方法

Citations (550)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909721A (en) 1972-01-31 1975-09-30 Signatron Signal processing system
US4365338A (en) 1980-06-27 1982-12-21 Harris Corporation Technique for high rate digital transmission over a dynamic dispersive channel
US4589112A (en) 1984-01-26 1986-05-13 International Business Machines Corporation System for multiple error detection with single and double bit error correction
US4901319A (en) 1988-03-18 1990-02-13 General Electric Company Transmission system with adaptive interleaving
US5136592A (en) 1989-06-28 1992-08-04 Digital Equipment Corporation Error detection and correction system for long burst errors
US5153591A (en) 1988-07-05 1992-10-06 British Telecommunications Public Limited Company Method and apparatus for encoding, decoding and transmitting data in compressed form
US5329369A (en) 1990-06-01 1994-07-12 Thomson Consumer Electronics, Inc. Asymmetric picture compression
US5331320A (en) 1991-11-21 1994-07-19 International Business Machines Corporation Coding method and apparatus using quaternary codes
US5371532A (en) 1992-05-15 1994-12-06 Bell Communications Research, Inc. Communications architecture and method for distributing information services
US5372532A (en) 1993-01-26 1994-12-13 Robertson, Jr.; George W. Swivel head cap connector
US5379297A (en) 1992-04-09 1995-01-03 Network Equipment Technologies, Inc. Concurrent multi-channel segmentation and reassembly processors for asynchronous transfer mode
US5421031A (en) 1989-08-23 1995-05-30 Delta Beta Pty. Ltd. Program transmission optimisation
US5425050A (en) 1992-10-23 1995-06-13 Massachusetts Institute Of Technology Television transmission system using spread spectrum and orthogonal frequency-division multiplex
US5432787A (en) 1994-03-24 1995-07-11 Loral Aerospace Corporation Packet data transmission system with adaptive data recovery method
JPH07183873A (ja) 1993-10-29 1995-07-21 At & T Corp 通信システムの情報伝送方法
EP0669587A2 (fr) 1994-02-24 1995-08-30 AT&T Corp. Système de réseau pour la visualisation des présentations multimédia
US5455823A (en) 1990-11-06 1995-10-03 Radio Satellite Corporation Integrated communications terminal
US5465318A (en) 1991-03-28 1995-11-07 Kurzweil Applied Intelligence, Inc. Method for generating a speech recognition model for a non-vocabulary utterance
EP0701371A1 (fr) 1994-09-08 1996-03-13 International Business Machines Corporation Media streamer pour video optimisée
US5517508A (en) 1994-01-26 1996-05-14 Sony Corporation Method and apparatus for detection and error correction of packetized digital data
US5524025A (en) 1990-11-07 1996-06-04 At&T Corp. Coding for digital transmission
JPH08186570A (ja) 1994-12-28 1996-07-16 Toshiba Corp Atm網における誤り制御方法
US5566208A (en) 1994-03-17 1996-10-15 Philips Electronics North America Corp. Encoder buffer having an effective size which varies automatically with the channel bit-rate
US5568614A (en) 1994-07-29 1996-10-22 International Business Machines Corporation Data streaming between peer subsystems of a computer system
WO1996034463A1 (fr) 1995-04-27 1996-10-31 Trustees Of The Stevens Institute Of Technology Transport haute integrite pour applications de gestion de reseau multimedia a duree critique
US5583784A (en) 1993-05-14 1996-12-10 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Frequency analysis method
US5608738A (en) 1993-11-10 1997-03-04 Nec Corporation Packet transmission method and apparatus
US5617541A (en) 1994-12-21 1997-04-01 International Computer Science Institute System for packetizing data encoded corresponding to priority levels where reconstructed data corresponds to fractionalized priority level and received fractionalized packets
US5642365A (en) 1993-07-05 1997-06-24 Mitsubishi Denki Kabushiki Kaisha Transmitter for encoding error correction codes and a receiver for decoding error correction codes on a transmission frame
EP0784401A2 (fr) 1996-01-12 1997-07-16 Kabushiki Kaisha Toshiba Dispositif terminal de réception de diffusion numérique
US5659614A (en) 1994-11-28 1997-08-19 Bailey, Iii; John E. Method and system for creating and storing a backup copy of file data stored on a computer
US5699473A (en) 1995-10-10 1997-12-16 Samsung Electronics Co., Ltd. Method for recording and reproducing intercoded data using two levels of error correction
US5701582A (en) 1989-08-23 1997-12-23 Delta Beta Pty. Ltd. Method and apparatus for efficient transmissions of programs
WO1997050183A1 (fr) 1996-06-25 1997-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Codage en longueur variable avec protection contre les erreurs
WO1998004973A1 (fr) 1996-07-26 1998-02-05 Zenith Electronics Corporation Derotateur et desentrelaceur de donnees
US5751336A (en) 1995-10-12 1998-05-12 International Business Machines Corporation Permutation based pyramid block transmission scheme for broadcasting in video-on-demand storage systems
US5754563A (en) 1995-09-11 1998-05-19 Ecc Technologies, Inc. Byte-parallel system for implementing reed-solomon error-correcting codes
US5757415A (en) 1994-05-26 1998-05-26 Sony Corporation On-demand data transmission by dividing input data into blocks and each block into sub-blocks such that the sub-blocks are re-arranged for storage to data storage means
EP0853433A1 (fr) 1994-08-24 1998-07-15 Macrovision Corporation Méthode et dispositif pour insérer des données d'identification de source dans un signal vidéo
EP0854650A2 (fr) 1997-01-17 1998-07-22 NOKIA TECHNOLOGY GmbH Méthode pour l'addressage d'un service dans un système de diffusion vidéo numérique
WO1998032256A1 (fr) 1997-01-17 1998-07-23 Telefonaktiebolaget Lm Ericsson (Publ) Dispositif et procede d'emission et de reception d'un signal de communication numerique entrelace a codage multiniveau
WO1998032231A1 (fr) 1997-01-17 1998-07-23 Qualcomm Incorporated Procede et appareil de transmission et de reception de donnees de code concatenees
US5802394A (en) 1994-06-06 1998-09-01 Starlight Networks, Inc. Method for accessing one or more streams in a video storage system using multiple queues and maintaining continuity thereof
US5805825A (en) 1995-07-26 1998-09-08 Intel Corporation Method for semi-reliable, unidirectional broadcast information services
US5835165A (en) 1995-06-07 1998-11-10 Lsi Logic Corporation Reduction of false locking code words in concatenated decoders
US5844636A (en) 1997-05-13 1998-12-01 Hughes Electronics Corporation Method and apparatus for receiving and recording digital packet data
US5852565A (en) 1996-01-30 1998-12-22 Demografx Temporal and resolution layering in advanced television
US5870412A (en) 1997-12-12 1999-02-09 3Com Corporation Forward error correction system for packet based real time media
JPH1141211A (ja) 1997-05-19 1999-02-12 Sanyo Electric Co Ltd ディジタル変調回路と変調方法、ディジタル復調回路と復調方法
EP0903955A1 (fr) 1997-09-04 1999-03-24 STMicroelectronics S.r.l. PET-décodeur à architecture modulaire pour des réseaux ATM
JPH11112479A (ja) 1997-07-17 1999-04-23 Hewlett Packard Co <Hp> 暗号化装置および暗号化方法
US5903775A (en) 1996-06-06 1999-05-11 International Business Machines Corporation Method for the sequential transmission of compressed video information at varying data rates
JPH11164270A (ja) 1997-11-25 1999-06-18 Kdd マルチチャンネルを用いるビデオデータ伝送方法及びその装置
US5917852A (en) 1997-06-11 1999-06-29 L-3 Communications Corporation Data scrambling system and method and communications system incorporating same
US5926205A (en) 1994-10-19 1999-07-20 Imedia Corporation Method and apparatus for encoding and formatting data representing a video program to provide multiple overlapping presentations of the video program
US5933056A (en) 1997-07-15 1999-08-03 Exar Corporation Single pole current mode common-mode feedback circuit
US5936949A (en) 1996-09-05 1999-08-10 Netro Corporation Wireless ATM metropolitan area network
US5936659A (en) 1996-01-31 1999-08-10 Telcordia Technologies, Inc. Method for video delivery using pyramid broadcasting
US5953537A (en) 1993-02-12 1999-09-14 Altera Corporation Method and apparatus for reducing the number of programmable architecture elements required for implementing a look-up table in a programmable logic device
US5970098A (en) 1997-05-02 1999-10-19 Globespan Technologies, Inc. Multilevel encoder
US6005477A (en) 1997-04-17 1999-12-21 Abb Research Ltd. Method and apparatus for information transmission via power supply lines
US6011590A (en) 1997-01-03 2000-01-04 Ncr Corporation Method of transmitting compressed information to minimize buffer space
US6012159A (en) 1996-01-17 2000-01-04 Kencast, Inc. Method and system for error-free data transfer
US6014706A (en) 1997-01-30 2000-01-11 Microsoft Corporation Methods and apparatus for implementing control functions in a streamed video display system
US6018359A (en) 1998-04-24 2000-01-25 Massachusetts Institute Of Technology System and method for multicast video-on-demand delivery system
WO2000014921A1 (fr) 1998-09-04 2000-03-16 At & T Corp. Combinaison du codage de voie et du codage de bloc etat dans un dispositif a plusieurs antennes
US6041001A (en) 1999-02-25 2000-03-21 Lexar Media, Inc. Method of increasing data reliability of a flash memory device without compromising compatibility
EP0986908A1 (fr) 1997-06-02 2000-03-22 Nortel Networks Limited Selection dynamique de flux de medias en vue de leur affichage
US6044485A (en) 1997-01-03 2000-03-28 Ericsson Inc. Transmitter method and transmission system using adaptive coding based on channel characteristics
JP2000151426A (ja) 1998-11-17 2000-05-30 Toshiba Corp インターリーブ・デインターリーブ回路
US6073250A (en) 1997-11-06 2000-06-06 Luby; Michael G. Loss resilient decoding technique
US6079041A (en) 1995-08-04 2000-06-20 Sanyo Electric Co., Ltd. Digital modulation circuit and digital demodulation circuit
US6081918A (en) 1997-11-06 2000-06-27 Spielman; Daniel A. Loss resilient code with cascading series of redundant layers
US6081909A (en) 1997-11-06 2000-06-27 Digital Equipment Corporation Irregularly graphed encoding technique
US6081907A (en) 1997-06-09 2000-06-27 Microsoft Corporation Data delivery system and method for delivering data and redundant information over a unidirectional network
US6088330A (en) 1997-09-09 2000-07-11 Bruck; Joshua Reliable array of distributed computing nodes
US6097320A (en) 1998-01-20 2000-08-01 Silicon Systems, Inc. Encoder/decoder system with suppressed error propagation
EP1024672A1 (fr) 1997-03-07 2000-08-02 Sanyo Electric Co., Ltd. Recepteur de telediffusion numerique et afficheur
JP2000216835A (ja) 1999-01-22 2000-08-04 Hitachi Denshi Ltd 畳み込み符号軟判定復号方式の受信装置
WO2000052600A1 (fr) 1999-03-03 2000-09-08 Sony Corporation Emetteur, recepteur, systeme d'emetteur/recepteur, procede de transmission et procede de reception
US6134596A (en) 1997-09-18 2000-10-17 Microsoft Corporation Continuous media file server system and method for scheduling network resources to play multiple files having different data transmission rates
US6141788A (en) 1998-03-13 2000-10-31 Lucent Technologies Inc. Method and apparatus for forward error correction in packet networks
US6141053A (en) 1997-01-03 2000-10-31 Saukkonen; Jukka I. Method of optimizing bandwidth for transmitting compressed video data streams
US6141787A (en) 1997-05-19 2000-10-31 Sanyo Electric Co., Ltd. Digital modulation and demodulation
JP2000307435A (ja) 1999-04-06 2000-11-02 Internatl Business Mach Corp <Ibm> 符号化回路、回路、パリティ生成方法及び記憶媒体
EP1051027A1 (fr) 1999-05-06 2000-11-08 Sony Corporation Appareil et méthodes de traitement de données, méthodes et appareil de reproduction de données, moyen d'enregistrement
US6154452A (en) 1999-05-26 2000-11-28 Xm Satellite Radio Inc. Method and apparatus for continuous cross-channel interleaving
JP2000353969A (ja) 1999-06-11 2000-12-19 Sony Corp デジタル音声放送の受信機
US6163870A (en) 1997-11-06 2000-12-19 Compaq Computer Corporation Message encoding with irregular graphing
US6166544A (en) 1998-11-25 2000-12-26 General Electric Company MR imaging system with interactive image contrast control
US6175944B1 (en) 1997-07-15 2001-01-16 Lucent Technologies Inc. Methods and apparatus for packetizing data for transmission through an erasure broadcast channel
US6178536B1 (en) 1997-08-14 2001-01-23 International Business Machines Corporation Coding scheme for file backup and systems based thereon
US6185265B1 (en) 1998-04-07 2001-02-06 Worldspace Management Corp. System for time division multiplexing broadcast channels with R-1/2 or R-3/4 convolutional coding for satellite transmission via on-board baseband processing payload or transparent payload
JP2001036417A (ja) 1999-07-22 2001-02-09 Japan Radio Co Ltd 誤り訂正符号化装置、方法及び媒体、並びに誤り訂正符号復号装置、方法及び媒体
US6195777B1 (en) 1997-11-06 2001-02-27 Compaq Computer Corporation Loss resilient code with double heavy tailed series of redundant layers
WO2001020786A1 (fr) 1999-09-17 2001-03-22 Digital Fountain Generateur de code de groupe additif d'information et decodeur pour systemes de communications
JP2001094625A (ja) 1999-09-27 2001-04-06 Canon Inc データ通信装置、データ通信方法及び記憶媒体
US6223324B1 (en) 1999-01-05 2001-04-24 Agere Systems Guardian Corp. Multiple program unequal error protection for digital audio broadcasting and other applications
US6226259B1 (en) 1997-04-29 2001-05-01 Canon Kabushiki Kaisha Device and method for transmitting information device and method for processing information
US6226301B1 (en) 1998-02-19 2001-05-01 Nokia Mobile Phones Ltd Method and apparatus for segmentation and assembly of data frames for retransmission in a telecommunications system
US6229824B1 (en) 1999-05-26 2001-05-08 Xm Satellite Radio Inc. Method and apparatus for concatenated convolutional endcoding and interleaving
US6243846B1 (en) 1997-12-12 2001-06-05 3Com Corporation Forward error correction system for packet based data and real time media, using cross-wise parity calculation
RU99117925A (ru) 1997-01-17 2001-07-27 Телефонактиеболагет Лм Эрикссон (Пабл) Способ передачи и приема сигнала цифровой связи, подвергаемого многоступенчатому кодированию и перемежению, и устройство для его осуществления
US6272658B1 (en) 1997-10-27 2001-08-07 Kencast, Inc. Method and system for reliable broadcasting of data files and streams
WO2001057667A1 (fr) 2000-02-03 2001-08-09 Bandwiz, Inc. Transmission de donnees
WO2001058131A2 (fr) 2000-02-03 2001-08-09 Bandwiz, Inc. Systeme de diffusion
EP1124344A1 (fr) 1999-08-20 2001-08-16 Matsushita Electric Industrial Co., Ltd. Dispositif de communication ofdm
JP2001223655A (ja) 1999-12-16 2001-08-17 Lucent Technol Inc 衛星デジタルオーディオラジオシステムに対するクラスタフレーム同期スキーム
US6278716B1 (en) 1998-03-23 2001-08-21 University Of Massachusetts Multicast with proactive forward error correction
US20010015944A1 (en) 1997-05-19 2001-08-23 Sony Corporation Recording method and apparatus for continuous playback of fragmented signals
JP2001251287A (ja) 2000-02-24 2001-09-14 Geneticware Corp Ltd ハードウエア保護内部秘匿鍵及び可変パスコードを利用する機密データ伝送方法
US6298462B1 (en) 1997-06-25 2001-10-02 Samsung Electronics Co., Ltd. Data transmission method for dual diversity systems
JP2001274776A (ja) 2000-03-24 2001-10-05 Toshiba Corp 情報データ伝送システムとその送信装置及び受信装置
JP2001274855A (ja) 2000-02-29 2001-10-05 Koninkl Philips Electronics Nv Dqpsk変調されかつチャネル符号化された受信信号の検波および復調のための受信機および方法
US6307487B1 (en) 1998-09-23 2001-10-23 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US20010033586A1 (en) 1996-12-17 2001-10-25 Satoru Takashimizu Receiving apparatus for digital broadcasting signal and receving/recording/reproducing apparatus thereof
US6314289B1 (en) 1998-12-03 2001-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for transmitting information and apparatus and method for receiving information
US6332163B1 (en) 1999-09-01 2001-12-18 Accenture, Llp Method for providing communication services over a computer network system
US6333926B1 (en) 1998-08-11 2001-12-25 Nortel Networks Limited Multiple user CDMA basestation modem
US20020009137A1 (en) 2000-02-01 2002-01-24 Nelson John E. Three-dimensional video broadcasting system
CN1338839A (zh) 2000-08-10 2002-03-06 扎尔林克半导体股份有限公司 结合里德-所罗门和特布技术的编码
JP2002073625A (ja) 2000-08-24 2002-03-12 Nippon Hoso Kyokai <Nhk> 放送番組に同期した情報提供の方法、サーバ及び媒体
WO2002027988A2 (fr) 2000-09-29 2002-04-04 Visible World, Inc. Systeme et procede de commutation continue
US20020053062A1 (en) 2000-03-31 2002-05-02 Ted Szymanski Transmitter, receiver, and coding scheme to increase data rate and decrease bit error rate of an optical data link
US6393065B1 (en) * 1997-08-29 2002-05-21 Canon Kabushiki Kaisha Coding and decoding methods and devices and equipment using them
WO2002047391A1 (fr) 2000-12-08 2002-06-13 Digital Fountain, Inc. Procedes et systeme de programmation, de fourniture et de reception de media sur demande pour des clients, serveurs organises selon des contraintes fondees sur les ressources
US6411223B1 (en) 2000-10-18 2002-06-25 Digital Fountain, Inc. Generating high weight encoding symbols using a basis
US20020083345A1 (en) 2000-08-16 2002-06-27 Halliday David C. Method and system for secure communication over unstable public connections
US6415326B1 (en) 1998-09-15 2002-07-02 Microsoft Corporation Timeline correlation between multiple timeline-altered media streams
US20020085013A1 (en) 2000-12-29 2002-07-04 Lippincott Louis A. Scan synchronized dual frame buffer graphics subsystem
US6421387B1 (en) 1998-05-15 2002-07-16 North Carolina State University Methods and systems for forward error correction based loss recovery for interactive video transmission
US6420982B1 (en) 2000-03-23 2002-07-16 Mosaid Technologies, Inc. Multi-stage lookup for translating between signals of different bit lengths
JP2002204219A (ja) 2000-11-07 2002-07-19 Agere Systems Guardian Corp 損失パケットのバーストを訂正するための低遅延通信路符号
US6430233B1 (en) 1999-08-30 2002-08-06 Hughes Electronics Corporation Single-LNB satellite data receiver
WO2002063461A1 (fr) 2001-02-08 2002-08-15 Nokia Corporation Procede et systeme de tamponnage de media continus
US6445717B1 (en) 1998-05-01 2002-09-03 Niwot Networks, Inc. System for recovering lost information in a data stream
US20020133247A1 (en) 2000-11-11 2002-09-19 Smith Robert D. System and method for seamlessly switching between media streams
US6459811B1 (en) 1998-04-02 2002-10-01 Sarnoff Corporation Bursty data transmission of compressed video data
US20020143953A1 (en) 2001-04-03 2002-10-03 International Business Machines Corporation Automatic affinity within networks performing workload balancing
US20020141433A1 (en) 2001-03-30 2002-10-03 Samsung Electronics Co., Ltd. Apparatus and method for efficiently distributing packet data channel in a mobile communication system for high rate packet transmission
US6466698B1 (en) 1999-03-25 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Efficient embedded image and video compression system using lifted wavelets
US6473010B1 (en) 2000-04-04 2002-10-29 Marvell International, Ltd. Method and apparatus for determining error correction code failure rate for iterative decoding algorithms
US6487692B1 (en) 1999-12-21 2002-11-26 Lsi Logic Corporation Reed-Solomon decoder
US6486803B1 (en) 2000-09-22 2002-11-26 Digital Fountain, Inc. On demand encoding with a window
US6496980B1 (en) 1998-12-07 2002-12-17 Intel Corporation Method of providing replay on demand for streaming digital multimedia
JP2002543705A (ja) 1999-04-29 2002-12-17 ノキア コーポレイション データ伝送
US20020191116A1 (en) 2001-04-24 2002-12-19 Damien Kessler System and data format for providing seamless stream switching in a digital video recorder
US6497479B1 (en) 2001-04-27 2002-12-24 Hewlett-Packard Company Higher organic inks with good reliability and drytime
US20030005386A1 (en) 2001-06-28 2003-01-02 Sanjay Bhatt Negotiated/dynamic error correction for streamed media
JP2003018568A (ja) 2001-06-29 2003-01-17 Matsushita Electric Ind Co Ltd 再生システム、サーバ装置及び再生装置
US6510177B1 (en) 2000-03-24 2003-01-21 Microsoft Corporation System and method for layered video coding enhancement
US6523147B1 (en) 1999-11-11 2003-02-18 Ibiquity Digital Corporation Method and apparatus for forward error correction coding for an AM in-band on-channel digital audio broadcasting system
US20030037299A1 (en) 2001-08-16 2003-02-20 Smith Kenneth Kay Dynamic variable-length error correction code
JP2003507985A (ja) 1999-08-04 2003-02-25 サン・マイクロシステムズ・インコーポレイテッド 2ビット・エラーを検出し、構成要素の障害によるエラーを訂正するためのシステムおよび方法
JP2003510734A (ja) 1999-09-27 2003-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ストリーミングのエミュレート用ファイル分割
US6535920B1 (en) 1999-04-06 2003-03-18 Microsoft Corporation Analyzing, indexing and seeking of streaming information
EP1298931A2 (fr) 2001-09-20 2003-04-02 Oplayo Oy Flux multimédia adaptatif
US20030086515A1 (en) 1997-07-31 2003-05-08 Francois Trans Channel adaptive equalization precoding system and method
US20030101408A1 (en) 2001-11-29 2003-05-29 Emin Martinian Apparatus and method for adaptive, multimode decoding
WO2003046742A1 (fr) 2001-11-29 2003-06-05 Nokia Corporation Systeme et procede permettant d'identifier des services de reseau et d'y acceder
US20030106014A1 (en) 2001-10-12 2003-06-05 Ralf Dohmen High speed syndrome-based FEC encoder and decoder and system using same
US6577599B1 (en) 1999-06-30 2003-06-10 Sun Microsystems, Inc. Small-scale reliable multicasting
CN1425228A (zh) 1999-11-22 2003-06-18 讯捷通讯公司 用于前向链路的变速率编码
JP2003174489A (ja) 2001-12-05 2003-06-20 Ntt Docomo Inc ストリーミング配信装置、ストリーミング配信方法
US6584543B2 (en) 1999-07-22 2003-06-24 Micron Technology, Inc. Reconfigurable memory with selectable error correction storage
WO2003056703A1 (fr) 2001-12-21 2003-07-10 Digital Fountain, Inc. Generateur et decodeur de code a etages multiples de systemes de communication
US20030138043A1 (en) 2002-01-23 2003-07-24 Miska Hannuksela Grouping of image frames in video coding
US6609223B1 (en) 1999-04-06 2003-08-19 Kencast, Inc. Method for packet-level fec encoding, in which on a source packet-by-source packet basis, the error correction contributions of a source packet to a plurality of wildcard packets are computed, and the source packet is transmitted thereafter
US6618451B1 (en) 1999-02-13 2003-09-09 Altocom Inc Efficient reduced state maximum likelihood sequence estimator
JP2003256321A (ja) 2002-02-28 2003-09-12 Nec Corp プロキシサーバ及びプロキシ制御プログラム
KR20030074386A (ko) 2002-03-15 2003-09-19 톰슨 라이센싱 소시에떼 아노님 에러 정정 코드를 삽입하며 데이터 스트림을 재구성하기위한 디바이스 및 방법, 및 해당 컴퓨터 프로그램 제품
US6631172B1 (en) * 2000-05-01 2003-10-07 Lucent Technologies Inc. Efficient list decoding of Reed-Solomon codes for message recovery in the presence of high noise levels
US6633856B2 (en) 2001-06-15 2003-10-14 Flarion Technologies, Inc. Methods and apparatus for decoding LDPC codes
US20030194211A1 (en) 1998-11-12 2003-10-16 Max Abecassis Intermittently playing a video
US6643332B1 (en) 1999-07-09 2003-11-04 Lsi Logic Corporation Method and apparatus for multi-level coding of digital signals
US6641366B2 (en) 2001-01-26 2003-11-04 Thorsten Nordhoff Wind power generating system with an obstruction lighting or night marking device
US20030207696A1 (en) 2002-05-06 2003-11-06 Serge Willenegger Multi-media broadcast and multicast service (MBMS) in a wireless communications system
JP2003318975A (ja) 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd データ受信装置及びデータ配信システム
JP2003319012A (ja) 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd データ受信装置及びデータ配信システム
JP2003333577A (ja) 2002-03-06 2003-11-21 Hewlett Packard Co <Hp> メディア・ストリーミング配信システム
US20030224773A1 (en) 2002-05-31 2003-12-04 Douglas Deeds Fragmented delivery of multimedia
WO2003105350A1 (fr) 2002-06-11 2003-12-18 Digital Fountain, Inc. Decodage de codes de reaction en chaine par inactivation de symboles recuperes
WO2003105484A1 (fr) 2002-06-11 2003-12-18 Telefonaktiebolaget L M Ericsson (Publ) Generation de chaines de signaux mixtes
US6678855B1 (en) 1999-12-02 2004-01-13 Microsoft Corporation Selecting K in a data transmission carousel using (N,K) forward error correction
US6677864B2 (en) 2002-04-18 2004-01-13 Telefonaktiebolaget L.M. Ericsson Method for multicast over wireless networks
WO2004008735A2 (fr) 2002-07-16 2004-01-22 Nokia Corporation Codage video: procede d'acces aleatoire et de rafraichissement progressif d'images
US20040031054A1 (en) 2001-01-04 2004-02-12 Harald Dankworth Methods in transmission and searching of video information
JP2004048704A (ja) 2002-07-12 2004-02-12 Sumitomo Electric Ind Ltd 伝送データ生成方法及び伝送データ生成装置
US6694476B1 (en) 2000-06-02 2004-02-17 Vitesse Semiconductor Corporation Reed-solomon encoder and decoder
WO2004015948A1 (fr) 2002-08-13 2004-02-19 Nokia Corporation Entrelacement de symboles
JP2004070712A (ja) 2002-08-07 2004-03-04 Nippon Telegr & Teleph Corp <Ntt> データ配信方法,データ配信システム,分割配信データ受信方法,分割配信データ受信装置および分割配信データ受信プログラム
WO2004019521A1 (fr) 2002-07-31 2004-03-04 Sharp Kabushiki Kaisha Dispositif de communication de donnees, son procede de communication intermittente, programme decrivant ce procede, et support d'enregistrement sur lequel le programme est enregistre
US6704370B1 (en) 1998-10-09 2004-03-09 Nortel Networks Limited Interleaving methodology and apparatus for CDMA
CN1481643A (zh) 2000-12-15 2004-03-10 ���˹���Ѷ��� 音频和/或视频资料的传输和接收
US20040049793A1 (en) 1998-12-04 2004-03-11 Chou Philip A. Multimedia presentation latency minimization
EP1406452A2 (fr) 2002-10-03 2004-04-07 NTT DoCoMo, Inc. Méthode de codage et décodage d'un signal vidéo
WO2004030273A1 (fr) 2002-09-27 2004-04-08 Fujitsu Limited Procede et systeme de distribution de donnees, procede de transfert et programme
WO2004034589A2 (fr) 2002-10-05 2004-04-22 Digital Fountain, Inc. Codage et decodage systematique de codes de reaction en chaine
US20040081106A1 (en) 2002-10-25 2004-04-29 Stefan Bruhn Delay trading between communication links
WO2004036824A1 (fr) 2002-10-14 2004-04-29 Nokia Corporation Media de diffusion
JP2004135013A (ja) 2002-10-10 2004-04-30 Matsushita Electric Ind Co Ltd 伝送装置及び伝送方法
US6732325B1 (en) 2000-11-08 2004-05-04 Digeo, Inc. Error-correction with limited working storage
WO2004040831A1 (fr) 2002-10-30 2004-05-13 Koninklijke Philips Electronics N.V. Programme de controle adaptatif d'erreur sans voie de retour
US20040096110A1 (en) 2001-04-20 2004-05-20 Front Porch Digital Inc. Methods and apparatus for archiving, indexing and accessing audio and video data
US6742154B1 (en) 2000-05-25 2004-05-25 Ciena Corporation Forward error correction codes for digital optical network optimization
JP2004516717A (ja) 2000-12-15 2004-06-03 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー オーディオおよび、またはビデオマテリアルの送信および受信
WO2004047455A1 (fr) 2002-11-18 2004-06-03 British Telecommunications Public Limited Company Transmission de video
WO2004047019A2 (fr) 2002-11-21 2004-06-03 Electronics And Telecommunications Research Institute Codeur utilisant des codes de controle de parite a faible densite et methode de codage appropriee
US6748441B1 (en) 1999-12-02 2004-06-08 Microsoft Corporation Data carousel receiving and caching
JP2004165922A (ja) 2002-11-12 2004-06-10 Sony Corp 情報処理装置および方法、並びにプログラム
US6751772B1 (en) 1999-07-06 2004-06-15 Samsung Electronics Co., Ltd. Rate matching device and method for a data communication system
US20040117716A1 (en) 2000-09-20 2004-06-17 Qiang Shen Single engine turbo decoder with single frame size buffer for interleaving/deinterleaving
JP2004192140A (ja) 2002-12-09 2004-07-08 Sony Corp データ通信システム、データ送信装置、データ受信装置、および方法、並びにコンピュータ・プログラム
JP2004193992A (ja) 2002-12-11 2004-07-08 Sony Corp 情報処理システム、情報処理装置および方法、記録媒体、並びにプログラム
US6765866B1 (en) 2000-02-29 2004-07-20 Mosaid Technologies, Inc. Link aggregation
US20040151109A1 (en) 2003-01-30 2004-08-05 Anuj Batra Time-frequency interleaved orthogonal frequency division multiplexing ultra wide band physical layer
US20040162071A1 (en) 2003-02-18 2004-08-19 Francesco Grilli Method and apparatus to track count of broadcast content recipients in a wireless telephone network
EP1455504A2 (fr) 2003-03-07 2004-09-08 Samsung Electronics Co., Ltd. Appareil et méthode pour traiter un signal audio et support d'enregistrement lisible par ordinateur d'un programme informatique utilisant la méthode
JP2004529533A (ja) 2001-02-16 2004-09-24 ヒューレット・パッカード・カンパニー 経路ダイバーシティを利用するパケット通信のための方法およびシステム
US6804202B1 (en) 1999-04-08 2004-10-12 Lg Information And Communications, Ltd. Radio protocol for mobile communication system and method
WO2004088988A1 (fr) 2003-03-31 2004-10-14 Sharp Kabushiki Kaisha Codeur video et procede de codage video
JP2004289621A (ja) 2003-03-24 2004-10-14 Fujitsu Ltd データ伝送サーバ
US20040207548A1 (en) 2003-04-21 2004-10-21 Daniel Kilbank System and method for using a microlet-based modem
US6810499B2 (en) 2000-06-02 2004-10-26 Vitesse Semiconductor Corporation Product code based forward error correction system
US6820221B2 (en) 2001-04-13 2004-11-16 Hewlett-Packard Development Company, L.P. System and method for detecting process and network failures in a distributed system
US20040231004A1 (en) 2003-05-13 2004-11-18 Lg Electronics Inc. HTTP based video streaming apparatus and method in mobile communication system
JP2004343701A (ja) 2003-04-21 2004-12-02 Matsushita Electric Ind Co Ltd データ受信再生装置、データ受信再生方法及びデータ受信再生処理プログラム
JP2004348824A (ja) 2003-05-21 2004-12-09 Toshiba Corp Eccエンコード方法、eccエンコード装置
US6831172B1 (en) 1998-11-11 2004-12-14 Farmila-Thea Farmaceutici S.P.A. Cross-linked hyaluronic acids and medical uses thereof
WO2004109538A1 (fr) 2003-06-07 2004-12-16 Samsung Electronics Co. Ltd. Appareil et procede d'organisation et d'interpretation de donnees multimedia sur un support d'enregistrement
US20040255328A1 (en) 2003-06-13 2004-12-16 Baldwin James Armand Fast start-up for digital video streams
KR20040107152A (ko) 2003-06-12 2004-12-20 엘지전자 주식회사 이동통신 단말기의 전송데이터 압축/해제 방법
JP2004362099A (ja) 2003-06-03 2004-12-24 Sony Corp サーバ装置、情報処理装置、および情報処理方法、並びにコンピュータ・プログラム
KR20050009376A (ko) 2003-07-16 2005-01-25 삼성전자주식회사 에러에 대해 강인한 특성을 가지는 데이터 기록 방법,이에 적합한 데이터 재생 방법, 그리고 이에 적합한 장치들
EP1501318A1 (fr) 2002-04-25 2005-01-26 Sharp Corporation Codeur d'images, decodeur d'images, support d'enregistrement et enregistreur d'images
US6849803B1 (en) 1998-01-15 2005-02-01 Arlington Industries, Inc. Electrical connector
US6850736B2 (en) 2000-12-21 2005-02-01 Tropian, Inc. Method and apparatus for reception quality indication in wireless communication
US20050028067A1 (en) 2003-07-31 2005-02-03 Weirauch Charles R. Data with multiple sets of error correction codes
US20050041736A1 (en) 2003-05-07 2005-02-24 Bernie Butler-Smith Stereoscopic television signal processing method, transmission system and viewer enhancements
US20050071491A1 (en) 2003-09-27 2005-03-31 Lg Electronics Inc. Multimedia streaming service system and method
US6876623B1 (en) 1998-12-02 2005-04-05 Agere Systems Inc. Tuning scheme for code division multiplex broadcasting system
JP2005094140A (ja) 2003-09-12 2005-04-07 Sanyo Electric Co Ltd 映像表示装置
US6882618B1 (en) 1999-09-07 2005-04-19 Sony Corporation Transmitting apparatus, receiving apparatus, communication system, transmission method, reception method, and communication method
WO2005036753A2 (fr) 2003-10-06 2005-04-21 Digital Fountain, Inc. Generateur de code et decodeur multi-etage a correction d'erreurs pour systemes de communication possedant un ou plusieurs emetteurs
US20050091697A1 (en) 2003-10-27 2005-04-28 Matsushita Electric Industrial Co., Ltd. Apparatus for receiving broadcast signal
US20050097213A1 (en) 2003-10-10 2005-05-05 Microsoft Corporation Architecture for distributed sending of media data
WO2005041421A1 (fr) 2003-09-30 2005-05-06 Telefonaktiebolaget L M Ericsson (Publ) Desentrelacement sur place de donnees
US20050102371A1 (en) 2003-11-07 2005-05-12 Emre Aksu Streaming from a server to a client
US6895547B2 (en) 2001-07-11 2005-05-17 International Business Machines Corporation Method and apparatus for low density parity check encoding of data
US20050105371A1 (en) 1998-11-16 2005-05-19 Johnson Mark G. Integrated circuit incorporating three-dimensional memory array with dual opposing decoder arrangement
JP2005136546A (ja) 2003-10-29 2005-05-26 Sony Corp 送信装置および方法、記録媒体、並びにプログラム
US20050123058A1 (en) 1999-04-27 2005-06-09 Greenbaum Gary S. System and method for generating multiple synchronized encoded representations of media data
US20050138286A1 (en) 2001-04-11 2005-06-23 Franklin Chris R. In-place data transformation for fault-tolerant disk storage systems
US20050160272A1 (en) 1999-10-28 2005-07-21 Timecertain, Llc System and method for providing trusted time in content of digital data files
JP2005204170A (ja) 2004-01-16 2005-07-28 Ntt Docomo Inc データ受信装置およびデータ受信方法
US20050169379A1 (en) 2004-01-29 2005-08-04 Samsung Electronics Co., Ltd. Apparatus and method for scalable video coding providing scalability in encoder part
US6928603B1 (en) 2001-07-19 2005-08-09 Adaptix, Inc. System and method for interference mitigation using adaptive forward error correction in a wireless RF data transmission system
JP2005223433A (ja) 2004-02-03 2005-08-18 Denso Corp ストリーミングデータ送信装置およびストリーミングデータ受信装置
WO2005078982A1 (fr) 2004-02-13 2005-08-25 Nokia Corporation Identification et retransmission de parties tronquees
US6937618B1 (en) 1998-05-20 2005-08-30 Sony Corporation Separating device and method and signal receiving device and method
US20050193309A1 (en) 2003-08-21 2005-09-01 Francesco Grilli Methods for forward error correction coding above a radio link control layer and related apparatus
US20050195900A1 (en) 2004-03-04 2005-09-08 Samsung Electronics Co., Ltd. Video encoding and decoding methods and systems for video streaming service
US20050195899A1 (en) 2004-03-04 2005-09-08 Samsung Electronics Co., Ltd. Method and apparatus for video coding, predecoding, and video decoding for video streaming service, and image filtering method
US20050195752A1 (en) 2004-03-08 2005-09-08 Microsoft Corporation Resolving partial media topologies
US20050207392A1 (en) 2004-03-19 2005-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Higher layer packet framing using RLP
US20050216951A1 (en) 2004-03-26 2005-09-29 Macinnis Alexander G Anticipatory video signal reception and processing
US20050216472A1 (en) 2004-03-29 2005-09-29 David Leon Efficient multicast/broadcast distribution of formatted data
US20050219070A1 (en) * 2003-12-01 2005-10-06 Digital Fountain, Inc. Protection of data from erasures using subsymbol based codes
JP2005277950A (ja) 2004-03-25 2005-10-06 Sony Corp 送信装置および方法、受信装置および方法、並びにプログラム
US6956875B2 (en) 2002-06-19 2005-10-18 Atlinks Usa, Inc. Technique for communicating variable bit rate data over a constant bit rate link
WO2005107123A1 (fr) 2004-04-29 2005-11-10 Thomson Licensing Sa Procede de transmission de paquets de donnees numeriques et dispositif de mise en oeuvre de ce procede
US6965636B1 (en) 2000-02-01 2005-11-15 2Wire, Inc. System and method for block error correction in packet-based digital communications
US20050254575A1 (en) 2004-05-12 2005-11-17 Nokia Corporation Multiple interoperability points for scalable media coding and transmission
WO2005112250A2 (fr) 2004-05-07 2005-11-24 Digital Fountain, Inc. Systeme de telechargement et d'enregistrement et lecture en continu de fichiers
RU2265960C2 (ru) 2003-06-16 2005-12-10 Федеральное государственное унитарное предприятие "Калужский научно-исследовательский институт телемеханических устройств" Способ передачи информации с использованием адаптивного перемежения
CN1714577A (zh) 2002-11-18 2005-12-28 英国电讯有限公司 视频传输
US6985459B2 (en) 2002-08-21 2006-01-10 Qualcomm Incorporated Early transmission and playout of packets in wireless communication systems
US20060015568A1 (en) 2004-07-14 2006-01-19 Rod Walsh Grouping of session objects
US20060020796A1 (en) 2003-03-27 2006-01-26 Microsoft Corporation Human input security codes
US6995692B2 (en) 2003-10-14 2006-02-07 Matsushita Electric Industrial Co., Ltd. Data converter and method thereof
WO2006013459A1 (fr) 2004-07-30 2006-02-09 Nokia Corporation Mecanisme de demande de reparation point a point pour systemes de transmission point-multipoint
US20060037057A1 (en) 2004-05-24 2006-02-16 Sharp Laboratories Of America, Inc. Method and system of enabling trick play modes using HTTP GET
WO2006020826A2 (fr) 2004-08-11 2006-02-23 Digital Fountain, Inc. Procede et appareil permettant le codage rapide de symboles de donnees en fonction de codes demi-poids
US7010052B2 (en) 2001-04-16 2006-03-07 The Ohio University Apparatus and method of CTCM encoding and decoding for a digital communication system
JP2006074421A (ja) 2004-09-02 2006-03-16 Sony Corp 情報処理装置、情報記録媒体、コンテンツ管理システム、およびデータ処理方法、並びにコンピュータ・プログラム
JP2006074335A (ja) 2004-09-01 2006-03-16 Nippon Telegr & Teleph Corp <Ntt> 伝送方法、伝送システム及び伝送装置
WO2006036276A1 (fr) 2004-07-21 2006-04-06 Qualcomm Incorporated Procedes et dispositifs pour fournir des informations de contenu a des serveurs de contenu
US7031257B1 (en) 2000-09-22 2006-04-18 Lucent Technologies Inc. Radio link protocol (RLP)/point-to-point protocol (PPP) design that passes corrupted data and error location information among layers in a wireless data transmission protocol
JP2006115104A (ja) 2004-10-13 2006-04-27 Daiichikosho Co Ltd 高能率符号化された時系列情報をパケット化してリアルタイム・ストリーミング送信し受信再生する方法および装置
US20060093634A1 (en) 2004-04-23 2006-05-04 Lonza Inc. Personal care compositions and concentrates for making the same
US20060107174A1 (en) 2004-11-16 2006-05-18 Bernd Heise Seamless change of depth of a general convolutional interleaver during transmission without loss of data
US20060109805A1 (en) 2004-11-19 2006-05-25 Nokia Corporation Packet stream arrangement in multimedia transmission
WO2006057938A2 (fr) 2004-11-22 2006-06-01 Thomson Research Funding Corporation Procede et appareil pour modifier des voies dans un systeme de lignes d'abonnes numeriques
US20060120464A1 (en) 2002-01-23 2006-06-08 Nokia Corporation Grouping of image frames in video coding
WO2006060036A1 (fr) 2004-12-02 2006-06-08 Thomson Licensing Correction d'erreur adaptative sans voie de retour
EP1670256A2 (fr) 2004-12-10 2006-06-14 Microsoft Corporation Système et procédé de contrôle du débit de codage de données média diffusées en flux continu
CN1792056A (zh) 2003-05-16 2006-06-21 高通股份有限公司 广播/组播内容的可靠接收
US7068681B2 (en) 1999-05-10 2006-06-27 Samsung Electronics Co., Ltd. Apparatus and method for exchanging variable-length data according to radio link protocol in mobile communication system
JP2006174045A (ja) 2004-12-15 2006-06-29 Ntt Communications Kk 画像配信装置、プログラム及び方法
JP2006174032A (ja) 2004-12-15 2006-06-29 Sanyo Electric Co Ltd 画像データ伝送システム、画像データ受信装置及び画像データ送信装置
US7072971B2 (en) 2000-11-13 2006-07-04 Digital Foundation, Inc. Scheduling of multiple files for serving on a server
US7073191B2 (en) 2000-04-08 2006-07-04 Sun Microsystems, Inc Streaming a single media track to multiple clients
JP2006186419A (ja) 2004-12-24 2006-07-13 Daiichikosho Co Ltd 高能率符号化された時系列情報をリアルタイム・ストリーミング送信し受信再生する装置
CN1806392A (zh) 2004-01-20 2006-07-19 三星电子株式会社 高速无线数据通讯系统中产生和解码具有可变速率的前向纠错代码的设备和方法
WO2006084503A1 (fr) 2005-02-08 2006-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Session de flux multi-voies sur demande par des reseaux a commutation par paquets
US7100188B2 (en) 1999-05-26 2006-08-29 Enounce, Inc. Method and apparatus for controlling time-scale modification during multi-media broadcasts
US20060193524A1 (en) 2005-02-18 2006-08-31 Tetsu Tarumoto Image display method, image coding apparatus, and image decoding apparatus
US7110412B2 (en) 2001-09-18 2006-09-19 Sbc Technology Resources, Inc. Method and system to transport high-quality video signals
US20060212782A1 (en) * 2005-03-15 2006-09-21 Microsoft Corporation Efficient implementation of reed-solomon erasure resilient codes in high-rate applications
US20060212444A1 (en) 2001-05-16 2006-09-21 Pandora Media, Inc. Methods and systems for utilizing contextual feedback to generate and modify playlists
US20060229075A1 (en) 2005-04-09 2006-10-12 Lg Electronics Inc. Supporting handover of mobile terminal
JP2006287422A (ja) 2005-03-31 2006-10-19 Brother Ind Ltd 配信速度制御装置、配信システム、配信速度制御方法、及び配信速度制御用プログラム
US20060248195A1 (en) 2005-04-27 2006-11-02 Kunihiko Toumura Computer system with a packet transfer device using a hash value for transferring a content request
US20060244824A1 (en) 1989-08-23 2006-11-02 Debey Henry C Method and system of program transmission optimization using a redundant transmission sequence
US20060244865A1 (en) 2005-03-02 2006-11-02 Rohde & Schwarz, Inc. Apparatus, systems, methods and computer products for providing a virtual enhanced training sequence
WO2006116102A2 (fr) 2005-04-28 2006-11-02 Qualcomm Incorporated Utilisation de porteuses multiples dans des systemes de transmission de donnees
US20060256851A1 (en) 2005-04-13 2006-11-16 Nokia Corporation Coding, storage and signalling of scalability information
US7139660B2 (en) 2004-07-14 2006-11-21 General Motors Corporation System and method for changing motor vehicle personalization settings
CN1868157A (zh) 2003-08-21 2006-11-22 高通股份有限公司 无线链路控制层上的前向纠错编码方法和相关装置
US20060262856A1 (en) 2005-05-20 2006-11-23 Microsoft Corporation Multi-view video coding based on temporal and view decomposition
JP2006319743A (ja) 2005-05-13 2006-11-24 Toshiba Corp 受信装置
US7143433B1 (en) 2000-12-27 2006-11-28 Infovalve Computing Inc. Video distribution system using dynamic segmenting of video data files
US20060279437A1 (en) 2005-06-10 2006-12-14 Digital Fountain, Inc. Forward error-correcting (fec) coding and streaming
US7151754B1 (en) 2000-09-22 2006-12-19 Lucent Technologies Inc. Complete user datagram protocol (CUDP) for wireless multimedia packet networks using improved packet level forward error correction (FEC) coding
WO2006135878A2 (fr) 2005-06-10 2006-12-21 Digital Fountain, Inc. Transformations sur place avec des applications pour le codage et pour le decodage de classes variees de codes
US7154951B2 (en) 1997-03-14 2006-12-26 Microsoft Corporation Motion video signal encoder and encoding method
RU2290768C1 (ru) 2006-01-30 2006-12-27 Общество с ограниченной ответственностью "Трафиклэнд" Система медиавещания в инфраструктуре оператора мобильной связи
US20070006274A1 (en) 2005-06-30 2007-01-04 Toni Paila Transmission and reception of session packets
US20070002953A1 (en) 2005-06-29 2007-01-04 Kabushiki Kaisha Toshiba Encoded stream reproducing apparatus
US7164370B1 (en) 2005-10-06 2007-01-16 Analog Devices, Inc. System and method for decoding data compressed in accordance with dictionary-based compression schemes
US7164882B2 (en) 2002-12-24 2007-01-16 Poltorak Alexander I Apparatus and method for facilitating a purchase using information provided on a media playing device
US20070016594A1 (en) 2005-07-15 2007-01-18 Sony Corporation Scalable video coding (SVC) file format
JP2007013675A (ja) 2005-06-30 2007-01-18 Sanyo Electric Co Ltd ストリーミング配信システム及びサーバ
US7168030B2 (en) 2003-10-17 2007-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Turbo code decoder with parity information update
US20070022215A1 (en) 2005-07-19 2007-01-25 Singer David W Method and apparatus for media data transmission
US20070028099A1 (en) 2003-09-11 2007-02-01 Bamboo Mediacasting Ltd. Secure multicast transmission
EP1755248A1 (fr) 2005-08-19 2007-02-21 BenQ Mobile GmbH & Co. OHG Indication de segments perdus à travers des délimitations de couches de transfert
US20070078876A1 (en) 2005-09-30 2007-04-05 Yahoo! Inc. Generating a stream of media data containing portions of media files using location tags
JP2007089137A (ja) 2005-09-19 2007-04-05 Sharp Corp ロバストなストリーミングを行うためのサーバメディア処理による適応型メディアプレイアウト
US20070081562A1 (en) 2005-10-11 2007-04-12 Hui Ma Method and device for stream synchronization of real-time multimedia transport over packet network
US20070081586A1 (en) 2005-09-27 2007-04-12 Raveendran Vijayalakshmi R Scalability techniques based on content information
US7219289B2 (en) 2005-03-15 2007-05-15 Tandberg Data Corporation Multiply redundant raid system and XOR-efficient method and apparatus for implementing the same
US20070110074A1 (en) 2004-06-04 2007-05-17 Bob Bradley System and Method for Synchronizing Media Presentation at Multiple Recipients
WO2007042916B1 (fr) 2005-10-11 2007-06-07 Nokia Corp Systeme et procede d'adaptation efficace de flux modulable
US20070127576A1 (en) 2005-12-07 2007-06-07 Canon Kabushiki Kaisha Method and device for decoding a scalable video stream
US7231404B2 (en) 2003-01-31 2007-06-12 Nokia Corporation Datacast file transmission with meta-data retention
US20070134005A1 (en) 2005-12-08 2007-06-14 Electronics And Telecommunication Research Institute Apparatus and method for generating return-to-zero signal
US20070140369A1 (en) 2003-07-07 2007-06-21 Limberg Allen L System of robust DTV signal transmissions that legacy DTV receivers will disregard
JP2007158592A (ja) 2005-12-02 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> 無線マルチキャスト伝送システム、無線送信装置及び無線マルチキャスト伝送方法
US7240236B2 (en) 2004-03-23 2007-07-03 Archivas, Inc. Fixed content distributed data storage using permutation ring encoding
US20070157267A1 (en) 2005-12-30 2007-07-05 Intel Corporation Techniques to improve time seek operations
JP2007174170A (ja) 2005-12-21 2007-07-05 Nippon Telegr & Teleph Corp <Ntt> パケット送信装置、受信装置、システム、およびプログラム
US7243285B2 (en) 1998-09-23 2007-07-10 Digital Fountain, Inc. Systems and methods for broadcasting information additive codes
US20070162611A1 (en) 2006-01-06 2007-07-12 Google Inc. Discontinuous Download of Media Files
WO2007078253A2 (fr) 2006-01-05 2007-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Gestion de fichiers contenant des donnees multimedias
US7249291B2 (en) 2002-02-15 2007-07-24 Digital Fountain, Inc. System and method for reliably communicating the content of a live data stream
US20070177811A1 (en) 2006-01-12 2007-08-02 Lg Electronics Inc. Processing multiview video
US20070176800A1 (en) 2006-01-30 2007-08-02 International Business Machines Corporation Fast data stream decoding using apriori information
US7254754B2 (en) 2003-07-14 2007-08-07 International Business Machines Corporation Raid 3+3
US20070185973A1 (en) 2006-02-07 2007-08-09 Dot Hill Systems, Corp. Pull data replication model
US7257764B2 (en) 2003-11-03 2007-08-14 Broadcom Corporation FEC (Forward Error Correction) decoder with dynamic parameters
WO2007090834A2 (fr) 2006-02-06 2007-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Transport de paquets
US20070204196A1 (en) 2006-02-13 2007-08-30 Digital Fountain, Inc. Streaming and buffering using variable fec overhead and protection periods
WO2007098480A1 (fr) 2006-02-21 2007-08-30 Qualcomm Incorporated Ajustement rapide dans des applications multimédia
US20070201549A1 (en) 2006-01-11 2007-08-30 Nokia Corporation Backward-compatible aggregation of pictures in scalable video coding
JP2007228205A (ja) 2006-02-23 2007-09-06 Funai Electric Co Ltd ネットワークサーバ
US20070233784A1 (en) 2001-06-26 2007-10-04 Microsoft Corporation Wrapper Playlists on Streaming Media Services
US20070230568A1 (en) 2006-03-29 2007-10-04 Alexandros Eleftheriadis System And Method For Transcoding Between Scalable And Non-Scalable Video Codecs
US20070255844A1 (en) 2006-04-27 2007-11-01 Microsoft Corporation Guided random seek support for media streaming
US7293222B2 (en) 2003-01-29 2007-11-06 Digital Fountain, Inc. Systems and processes for fast encoding of hamming codes
US7295573B2 (en) 2000-08-19 2007-11-13 Lg Electronics Inc. Method for inserting length indicator in protocol data unit of radio link control
US20070277209A1 (en) 2006-05-24 2007-11-29 Newport Media, Inc. Robust transmission system and method for mobile television applications
US7304990B2 (en) 2000-02-03 2007-12-04 Bandwiz Inc. Method of encoding and transmitting data over a communication medium through division and segmentation
US20070300127A1 (en) 2006-05-10 2007-12-27 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient users of the communications systems
US7318180B2 (en) 1998-04-17 2008-01-08 At&T Knowledge Ventures L.P. Method and system for adaptive interleaving
US20080010153A1 (en) 2006-04-24 2008-01-10 Pugh-O'connor Archie Computer network provided digital content under an advertising and revenue sharing basis, such as music provided via the internet with time-shifted advertisements presented by a client resident application
US7320099B2 (en) 2004-08-25 2008-01-15 Fujitsu Limited Method and apparatus for generating error correction data, and a computer-readable recording medium recording an error correction data generating program thereon
JP2008011404A (ja) 2006-06-30 2008-01-17 Toshiba Corp コンテンツ処理装置及びコンテンツ処理方法
WO2008011549A2 (fr) 2006-07-20 2008-01-24 Sandisk Corporation Appareil lecteur audiovisuel amélioré et système et procédé correspondants pour la diffusion de contenus
JP2008502212A (ja) 2004-06-01 2008-01-24 クゥアルコム・インコーポレイテッド 配信されたソース符号化技術に基づいたサイドチャネルを利用して予測的なビデオコデックのロバスト性を高める方法、装置、及びシステム
JP2008016907A (ja) 2006-07-03 2008-01-24 Internatl Business Mach Corp <Ibm> パケット回復のための符号化および復号化技術
US20080052753A1 (en) 2006-08-23 2008-02-28 Mediatek Inc. Systems and methods for managing television (tv) signals
KR100809086B1 (ko) 2003-07-01 2008-03-03 노키아 코포레이션 시한적 멀티미디어 콘텐츠의 점진적인 다운로딩
US20080058958A1 (en) 2006-06-09 2008-03-06 Chia Pao Cheng Knee joint with retention and cushion structures
US20080059532A1 (en) 2001-01-18 2008-03-06 Kazmi Syed N Method and system for managing digital content, including streaming media
US20080066136A1 (en) 2006-08-24 2008-03-13 International Business Machines Corporation System and method for detecting topic shift boundaries in multimedia streams using joint audio, visual and text cues
JP2008508762A (ja) 2004-07-30 2008-03-21 ノキア コーポレイション ポイント・ツー・マルチポイント伝送システムのためのポイント・トゥー・ポイントリペア応答メカニズム
US20080075172A1 (en) 2006-09-25 2008-03-27 Kabushiki Kaisha Toshiba Motion picture encoding apparatus and method
US7363048B2 (en) 2002-04-15 2008-04-22 Nokia Corporation Apparatus, and associated method, for operating upon data at RLP logical layer of a communication station
WO2008023328A3 (fr) 2006-08-24 2008-04-24 Nokia Corp Système et procédé pour indiquer des relations de pistes dans des fichiers multimédias
US20080101478A1 (en) 2006-10-31 2008-05-01 Kabushiki Kaisha Toshiba Decoding device and decoding method
WO2008054100A1 (fr) 2006-11-01 2008-05-08 Electronics And Telecommunications Research Institute Procédé et appareil pour décoder des métadonnées utilisées pour lire un contenu stéréoscopique
US7391717B2 (en) 2003-06-30 2008-06-24 Microsoft Corporation Streaming of variable bit rate multimedia content
US20080152241A1 (en) 2002-07-10 2008-06-26 Nec Corporation Stereoscopic image encoding and decoding device multiplexing high resolution added images
US7398454B2 (en) 2004-12-21 2008-07-08 Tyco Telecommunications (Us) Inc. System and method for forward error correction decoding using soft information
US20080168516A1 (en) 2007-01-08 2008-07-10 Christopher Lance Flick Facilitating Random Access In Streaming Content
US20080168133A1 (en) 2007-01-05 2008-07-10 Roland Osborne Video distribution system including progressive playback
US20080172430A1 (en) 2007-01-11 2008-07-17 Andrew Thomas Thorstensen Fragmentation Compression Management
US20080170806A1 (en) 2007-01-12 2008-07-17 Samsung Electronics Co., Ltd. 3D image processing apparatus and method
US20080170564A1 (en) 2006-11-14 2008-07-17 Qualcomm Incorporated Systems and methods for channel switching
WO2008085013A1 (fr) 2007-01-12 2008-07-17 University-Industry Cooperation Group Of Kyung Hee University Format de paquet d'une unité de couche d'abstraction de réseau, algorithme et appareil de codage et de décodage vidéo à l'aide dudit format, algorithme de contrôle de qos et appareil de commutation de label ipv6 faisant appel audit format
US20080172712A1 (en) 2007-01-11 2008-07-17 Matsushita Electric Industrial Co., Ltd. Multimedia data transmitting apparatus, multimedia data receiving apparatus, multimedia data transmitting method, and multimedia data receiving method
US20080181296A1 (en) 2007-01-16 2008-07-31 Dihong Tian Per multi-block partition breakpoint determining for hybrid variable length coding
US7409626B1 (en) 2004-07-28 2008-08-05 Ikanos Communications Inc Method and apparatus for determining codeword interleaver parameters
US20080189419A1 (en) 2007-02-02 2008-08-07 David Andrew Girle System and Method to Synchronize OSGi Bundle Inventories Between an OSGi Bundle Server and a Client
US20080192818A1 (en) 2007-02-09 2008-08-14 Dipietro Donald Vincent Systems and methods for securing media
US20080215317A1 (en) 2004-08-04 2008-09-04 Dts, Inc. Lossless multi-channel audio codec using adaptive segmentation with random access point (RAP) and multiple prediction parameter set (MPPS) capability
US20080232357A1 (en) 2007-03-19 2008-09-25 Legend Silicon Corp. Ls digital fountain code
US20080243918A1 (en) 2004-03-30 2008-10-02 Koninklijke Philips Electronic, N.V. System and Method For Supporting Improved Trick Mode Performance For Disc Based Multimedia Content
US20080256418A1 (en) 2006-06-09 2008-10-16 Digital Fountain, Inc Dynamic stream interleaving and sub-stream based delivery
US20080281943A1 (en) 2001-11-09 2008-11-13 Jody Shapiro System, method, and computer program product for remotely determining the configuration of a multi-media content user
JP2008283232A (ja) 2007-05-08 2008-11-20 Sharp Corp ファイル再生装置、ファイル再生方法、ファイル再生を実行させるプログラム及びそのプログラムを記録した記録媒体
JP2008283571A (ja) 2007-05-11 2008-11-20 Ntt Docomo Inc コンテンツ配信装置、コンテンツ配信システム、およびコンテンツ配信方法
US20080285556A1 (en) 2007-05-14 2008-11-20 Samsung Electronics Co., Ltd. Broadcasting service transmitting apparatus and method and broadcasting service receiving apparatus and method for effectively accessing broadcasting service
WO2008144004A1 (fr) 2007-05-16 2008-11-27 Thomson Licensing Appareil et procédé pour le codage et le décodage de signaux
JP2008543142A (ja) 2005-05-24 2008-11-27 ノキア コーポレイション デジタル放送における階層的な送受信のための方法および装置
US20080303893A1 (en) 2007-06-11 2008-12-11 Samsung Electronics Co., Ltd. Method and apparatus for generating header information of stereoscopic image data
US20080303896A1 (en) 2007-06-07 2008-12-11 Real D Stereoplexing for film and video applications
WO2008148708A1 (fr) 2007-06-05 2008-12-11 Thomson Licensing Dispositif et procédé servant à coder un contenu vidéo sous la forme d'un flux extensible
US20080313191A1 (en) 2007-01-09 2008-12-18 Nokia Corporation Method for the support of file versioning in file repair
WO2008156390A1 (fr) 2007-06-20 2008-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Procédé et agencement pour une gestion de session multimédia améliorée
US20090003439A1 (en) 2007-06-26 2009-01-01 Nokia Corporation System and method for indicating temporal layer switching points
US20090019229A1 (en) 2007-07-10 2009-01-15 Qualcomm Incorporated Data Prefetch Throttle
US7483489B2 (en) 2002-01-30 2009-01-27 Nxp B.V. Streaming multimedia data over a network having a variable bandwith
JP2009027598A (ja) 2007-07-23 2009-02-05 Hitachi Ltd 映像配信サーバおよび映像配信方法
US20090043906A1 (en) 2007-08-06 2009-02-12 Hurst Mark B Apparatus, system, and method for multi-bitrate content streaming
US20090055705A1 (en) 2006-02-08 2009-02-26 Wen Gao Decoding of Raptor Codes
US20090067551A1 (en) 2007-09-12 2009-03-12 Digital Fountain, Inc. Generating and communicating source identification information to enable reliable communications
US20090083806A1 (en) 2003-10-10 2009-03-26 Microsoft Corporation Media organization for distributed sending of media data
US20090089445A1 (en) 2007-09-28 2009-04-02 Deshpande Sachin G Client-Controlled Adaptive Streaming
EP2046044A1 (fr) 2007-10-01 2009-04-08 Cabot Communications Ltd Procédé et appareil de transmission de flux en continu de contenus multimédia numériques et système de communication
US20090092138A1 (en) 2007-10-09 2009-04-09 Samsung Electronics Co. Ltd. Apparatus and method for generating and parsing mac pdu in a mobile communication system
US20090100496A1 (en) 2006-04-24 2009-04-16 Andreas Bechtolsheim Media server system
US20090106356A1 (en) 2007-10-19 2009-04-23 Swarmcast, Inc. Media playback point seeking using data range requests
US20090103523A1 (en) 2007-10-19 2009-04-23 Rebelvox, Llc Telecommunication and multimedia management method and apparatus
US7525994B2 (en) 2003-01-30 2009-04-28 Avaya Inc. Packet data flow identification for multiplexing
US7529806B1 (en) 1999-11-04 2009-05-05 Koninklijke Philips Electronics N.V. Partitioning of MP3 content file for emulating streaming
US20090125636A1 (en) 2007-11-13 2009-05-14 Qiong Li Payload allocation methods for scalable multimedia servers
RU2357279C2 (ru) 2003-12-15 2009-05-27 Майкрософт Корпорейшн Система и способ управления и передачи обновлений программного обеспечения
WO2009065526A1 (fr) 2007-11-23 2009-05-28 Media Patents S.L. Processus pour la distribution en ligne de contenus audiovisuels avec des publicités, système de gestion de publicités, système de gestion de droits numériques et lecteur de contenu audiovisuel pourvu desdits systèmes
US20090150557A1 (en) 2007-12-05 2009-06-11 Swarmcast, Inc. Dynamic bit rate scaling
US20090164653A1 (en) 2007-12-24 2009-06-25 Mandyam Giridhar D Adaptive streaming for on demand wireless services
US7555006B2 (en) 2003-09-15 2009-06-30 The Directv Group, Inc. Method and system for adaptive transcoding and transrating in a video network
US7559004B1 (en) 2003-10-01 2009-07-07 Sandisk Corporation Dynamic redundant area configuration in a non-volatile memory system
JP2009171558A (ja) 2007-12-17 2009-07-30 Canon Inc 画像処理装置及び画像管理サーバ装置及びそれらの制御方法及びプログラム
JP2009527949A (ja) 2006-02-21 2009-07-30 デジタル ファウンテン, インコーポレイテッド 通信システムのための多体ベース符号の生成器および復号化器
US20090195640A1 (en) 2008-01-31 2009-08-06 Samsung Electronics Co., Ltd. Method and apparatus for generating stereoscopic image data stream for temporally partial three-dimensional (3d) data, and method and apparatus for displaying temporally partial 3d data of stereoscopic image
US20090204877A1 (en) 2008-02-13 2009-08-13 Innovation Specialists, Llc Block Modulus Coding (BMC) Systems and Methods for Block Coding with Non-Binary Modulus
US20090201990A1 (en) 2008-02-04 2009-08-13 Alcatel-Lucent Method and device for reordering and multiplexing multimedia packets from multimedia streams pertaining to interrelated sessions
EP2096870A2 (fr) 2008-02-28 2009-09-02 Seiko Epson Corporation Systèmes et procédés pour le traitement de projections multiples de données vidéo dans un fichier vidéo unique
US20090222873A1 (en) 2005-03-07 2009-09-03 Einarsson Torbjoern Multimedia Channel Switching
US7590118B2 (en) 2003-12-23 2009-09-15 Agere Systems Inc. Frame aggregation format
US20090248697A1 (en) 2008-03-31 2009-10-01 Richardson David R Cache optimization
US7597423B2 (en) 2002-11-23 2009-10-06 Silverbrook Research Pty Ltd Printhead chip with high nozzle areal density
US20090257508A1 (en) 2008-04-10 2009-10-15 Gaurav Aggarwal Method and system for enabling video trick modes
US7613183B1 (en) 2000-10-31 2009-11-03 Foundry Networks, Inc. System and method for router data aggregation and delivery
WO2009137705A2 (fr) 2008-05-07 2009-11-12 Digital Fountain, Inc. Changement de canal rapide et protection de diffusion en flux continu de haute qualité sur un canal de diffusion
US20090287841A1 (en) 2008-05-12 2009-11-19 Swarmcast, Inc. Live media delivery over a packet-based computer network
JP2009277182A (ja) 2008-05-19 2009-11-26 Ntt Docomo Inc プロキシサーバおよび通信中継プログラム、並びに通信中継方法
US20090297123A1 (en) 2008-05-30 2009-12-03 Microsoft Corporation Media streaming with enhanced seek operation
WO2009143741A1 (fr) 2008-05-29 2009-12-03 腾讯科技(深圳)有限公司 Procédé, système et appareil pour lire des fichiers de média à la demande
US7633970B2 (en) 2004-05-07 2009-12-15 Agere Systems Inc. MAC header compression for use with frame aggregation
US20090319563A1 (en) 2008-06-21 2009-12-24 Microsoft Corporation File format for media distribution and presentation
US20090328228A1 (en) 2008-06-27 2009-12-31 Microsoft Corporation Segmented Media Content Rights Management
US20100011061A1 (en) 2002-04-26 2010-01-14 Hudson Michael D Centralized selection of peers as media data sources in a dispersed peer network
US20100011117A1 (en) 2008-07-09 2010-01-14 Apple Inc. Video streaming using multiple channels
US20100011274A1 (en) 2008-06-12 2010-01-14 Qualcomm Incorporated Hypothetical fec decoder and signalling for decoding control
US7650036B2 (en) 2003-10-16 2010-01-19 Sharp Laboratories Of America, Inc. System and method for three-dimensional video coding
US20100020871A1 (en) 2008-04-21 2010-01-28 Nokia Corporation Method and Device for Video Coding and Decoding
US20100049865A1 (en) 2008-04-16 2010-02-25 Nokia Corporation Decoding Order Recovery in Session Multiplexing
US20100046906A1 (en) 2005-09-09 2010-02-25 Panasonic Corporation Image Processing Method, Image Recording Method, Image Processing Device and Image File Format
US20100061444A1 (en) 2008-09-11 2010-03-11 On2 Technologies Inc. System and method for video encoding using adaptive segmentation
KR20100028156A (ko) 2008-09-04 2010-03-12 에스케이 텔레콤주식회사 미디어 전송 시스템 및 방법
US20100067495A1 (en) 2006-10-30 2010-03-18 Young Dae Lee Method of performing random access in a wireless communcation system
EP1700410B1 (fr) 2003-12-07 2010-04-28 Adaptive Spectrum and Signal Alignment, Inc. Gestion adaptative des mots de code de correction d'erreurs sans voie de retour
US7720096B2 (en) 2005-10-13 2010-05-18 Microsoft Corporation RTP payload format for VC-1
US20100131671A1 (en) 2008-11-24 2010-05-27 Jaspal Kohli Adaptive network content delivery system
CN101729857A (zh) 2009-11-24 2010-06-09 中兴通讯股份有限公司 一种接入视频服务的方法及视频播放系统
US20100153578A1 (en) 2008-07-16 2010-06-17 Nokia Corporation Method and Apparatus for Peer to Peer Streaming
US20100165077A1 (en) 2005-10-19 2010-07-01 Peng Yin Multi-View Video Coding Using Scalable Video Coding
US20100174823A1 (en) 2006-07-31 2010-07-08 Juniper Networks, Inc. Optimizing batch size for prefetching data over wide area networks
US20100189131A1 (en) 2009-01-23 2010-07-29 Verivue, Inc. Scalable seamless digital video stream splicing
WO2010085361A2 (fr) 2009-01-26 2010-07-29 Thomson Licensing Compression de trames pour un codage vidéo
US20100198982A1 (en) 2008-03-18 2010-08-05 Clarity Systems, S.L. Methods for Transmitting Multimedia Files and Advertisements
WO2010088420A1 (fr) 2009-01-29 2010-08-05 Dolby Laboratories Licensing Corporation Procédés et dispositifs pour sous-échantillonnage et entrelacement d'images multiples, par exemple stéréoscopiques
US20100211690A1 (en) 2009-02-13 2010-08-19 Digital Fountain, Inc. Block partitioning for a data stream
US20100223533A1 (en) 2009-02-27 2010-09-02 Qualcomm Incorporated Mobile reception of digital video broadcasting-terrestrial services
US20100235472A1 (en) 2009-03-16 2010-09-16 Microsoft Corporation Smooth, stateless client media streaming
US20100235528A1 (en) 2009-03-16 2010-09-16 Microsoft Corporation Delivering cacheable streaming media presentations
WO2010120804A1 (fr) 2009-04-13 2010-10-21 Reald Inc. Codage, décodage et distribution de vidéo stéréoscopique à résolution améliorée
US7831896B2 (en) 2003-09-11 2010-11-09 Runcom Technologies, Ltd. Iterative forward error correction
US20100318632A1 (en) 2009-06-16 2010-12-16 Microsoft Corporation Byte range caching
JP2010539832A (ja) 2007-09-21 2010-12-16 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 情報信号、情報コンテンツを符号化するための装置及び方法、並びに情報信号の誤り訂正のための装置及び方法
WO2011038034A1 (fr) 2009-09-22 2011-03-31 Qualcomm Incorporated Diffusion en flux de demandes de blocs améliorée utilisant un http parallèle coopératif et une correction d'erreurs sans circuit de retour
WO2011038013A2 (fr) 2009-09-22 2011-03-31 Qualcomm Incorporated Système amélioré de diffusion en flux de demandes de blocs utilisant la signalisation ou la création de blocs
US20110083144A1 (en) 2009-10-06 2011-04-07 Bocharov John A Integrating continuous and sparse streaming data
US7924913B2 (en) 2005-09-15 2011-04-12 Microsoft Corporation Non-realtime data transcoding of multimedia content
JP2011087103A (ja) 2009-10-15 2011-04-28 Sony Corp コンテンツ再生システム、コンテンツ再生装置、プログラム、コンテンツ再生方法、およびコンテンツサーバを提供
US20110096828A1 (en) 2009-09-22 2011-04-28 Qualcomm Incorporated Enhanced block-request streaming using scalable encoding
US20110103519A1 (en) 2002-06-11 2011-05-05 Qualcomm Incorporated Systems and processes for decoding chain reaction codes through inactivation
WO2011059286A2 (fr) 2009-11-13 2011-05-19 Samsung Electronics Co.,Ltd. Procédé et appareil permettant de fournir et de recevoir des données
US20110119396A1 (en) 2009-11-13 2011-05-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data
US20110119394A1 (en) 2009-11-04 2011-05-19 Futurewei Technologies, Inc. System and Method for Media Content Streaming
WO2011070552A1 (fr) 2009-12-11 2011-06-16 Nokia Corporation Dispositif et procédés pour décrire des représentations de synchronisation dans des fichiers multimédia transmis en continu
US7979769B2 (en) 2008-04-14 2011-07-12 Lg Electronics Inc. Method and apparatus for performing random access procedures
WO2011102792A1 (fr) 2010-02-19 2011-08-25 Telefonaktiebolaget L M Ericsson (Publ) Procédé et dispositif destinés à effectuer une adaptation dans un flux http
US20110216541A1 (en) 2010-03-04 2011-09-08 Ushio Denki Kabushiki Kaisha Light source apparatus
US20110231519A1 (en) 2006-06-09 2011-09-22 Qualcomm Incorporated Enhanced block-request streaming using url templates and construction rules
US20110231569A1 (en) 2009-09-22 2011-09-22 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US8028322B2 (en) 2005-03-14 2011-09-27 Time Warner Cable Inc. Method and apparatus for network content download and recording
US8027328B2 (en) 2006-12-26 2011-09-27 Alcatel Lucent Header compression in a wireless communication network
US20110268178A1 (en) 2009-08-18 2011-11-03 Anthony Neal Park Encoding video streams for adaptive video streaming
US20110280311A1 (en) 2010-05-13 2011-11-17 Qualcomm Incorporated One-stream coding for asymmetric stereo video
US20110299629A1 (en) 2009-08-19 2011-12-08 Qualcomm Incorporated Methods and apparatus employing fec codes with permanent inactivation of symbols for encoding and decoding processes
US20110307581A1 (en) 2010-06-14 2011-12-15 Research In Motion Limited Media Presentation Description Delta File For HTTP Streaming
US8081716B2 (en) 2006-01-25 2011-12-20 Lg Electronics Inc. Digital broadcasting receiving system and method of processing data
US20120016965A1 (en) 2010-07-13 2012-01-19 Qualcomm Incorporated Video switching for streaming video data
US20120013746A1 (en) 2010-07-15 2012-01-19 Qualcomm Incorporated Signaling data for multiplexing video components
US20120023249A1 (en) 2010-07-20 2012-01-26 Qualcomm Incorporated Providing sequence data sets for streaming video data
US20120023254A1 (en) 2010-07-20 2012-01-26 University-Industry Cooperation Group Of Kyung Hee University Method and apparatus for providing multimedia streaming service
US20120020413A1 (en) 2010-07-21 2012-01-26 Qualcomm Incorporated Providing frame packing type information for video coding
US20120033730A1 (en) 2010-08-09 2012-02-09 Sony Computer Entertainment America, LLC. Random access point (rap) formation using intra refreshing technique in video coding
US20120042089A1 (en) 2010-08-10 2012-02-16 Qualcomm Incorporated Trick modes for network streaming of coded multimedia data
US20120047280A1 (en) 2010-08-19 2012-02-23 University-Industry Cooperation Group Of Kyung Hee University Method and apparatus for reducing deterioration of a quality of experience of a multimedia service in a multimedia system
US8135073B2 (en) 2002-12-19 2012-03-13 Trident Microsystems (Far East) Ltd Enhancing video images depending on prior image enhancements
US20120099593A1 (en) 2009-08-19 2012-04-26 Qualcomm Incorporated Universal file delivery methods for providing unequal error protection and bundled file delivery services
US8185809B2 (en) 2001-03-09 2012-05-22 Digital Fountain, Inc. Multi-output packet server with independent streams
US20120151302A1 (en) 2010-12-10 2012-06-14 Qualcomm Incorporated Broadcast multimedia storage and access using page maps when asymmetric memory is used
US20120185530A1 (en) 2009-07-22 2012-07-19 Jigsee Inc. Method of streaming media to heterogeneous client devices
US20120202535A1 (en) 2003-05-23 2012-08-09 Navin Chaddha Method And System For Communicating A Data File
US20120207068A1 (en) 2011-02-11 2012-08-16 Qualcomm Incorporated Framing for an improved radio link protocol including fec
US20120210190A1 (en) 2011-02-11 2012-08-16 Qualcomm Incorporated Encoding and decoding using elastic codes with flexible source block mapping
US20120208580A1 (en) 2011-02-11 2012-08-16 Qualcomm Incorporated Forward error correction scheduling for an improved radio link protocol
US8301725B2 (en) 2008-12-31 2012-10-30 Apple Inc. Variant streams for real-time or near real-time streaming
US8327403B1 (en) 2007-09-07 2012-12-04 United Video Properties, Inc. Systems and methods for providing remote program ordering on a user device via a web server
US20120317305A1 (en) 2010-02-19 2012-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement for Representation Switching in HTTP Streaming
US8340133B2 (en) 2005-10-05 2012-12-25 Lg Electronics Inc. Method of processing traffic information and digital broadcast system
US20130007223A1 (en) 2006-06-09 2013-01-03 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
US20130002483A1 (en) 2005-03-22 2013-01-03 Qualcomm Incorporated Methods and systems for deriving seed position of a subscriber station in support of unassisted gps-type position determination in a wireless communication system
US20130091251A1 (en) 2011-10-05 2013-04-11 Qualcomm Incorporated Network streaming of media data
US8422474B2 (en) 2010-03-11 2013-04-16 Electronics & Telecommunications Research Institute Method and apparatus for transceiving data in a MIMO system
US8462643B2 (en) 2002-10-25 2013-06-11 Qualcomm Incorporated MIMO WLAN system
US20130246643A1 (en) 2011-08-31 2013-09-19 Qualcomm Incorporated Switch signaling methods providing improved switching between representations for adaptive http streaming
US20130254634A1 (en) 2012-03-26 2013-09-26 Qualcomm Incorporated Universal object delivery and template-based file delivery
US8572646B2 (en) 2000-04-07 2013-10-29 Visible World Inc. System and method for simultaneous broadcast for personalized messages
US20130287023A1 (en) 2008-07-02 2013-10-31 Apple Inc. Multimedia-aware quality-of-service and error correction provisioning
US8615023B2 (en) 2010-10-27 2013-12-24 Electronics And Telecommunications Research Institute Apparatus and method for transmitting/receiving data in communication system
US8638796B2 (en) 2008-08-22 2014-01-28 Cisco Technology, Inc. Re-ordering segments of a large number of segmented service flows
US8713624B1 (en) 1981-11-03 2014-04-29 Personalized Media Communications LLC Signal processing apparatus and methods
US8737421B2 (en) 2008-09-04 2014-05-27 Apple Inc. MAC packet data unit construction for wireless systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167638B2 (ja) * 1995-08-04 2001-05-21 三洋電機株式会社 ディジタル変調方法と復調方法及びディジタル変調回路と復調回路
US8016422B2 (en) * 2008-10-28 2011-09-13 Eastman Kodak Company Etendue maintaining polarization switching system and related methods

Patent Citations (660)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909721A (en) 1972-01-31 1975-09-30 Signatron Signal processing system
US4365338A (en) 1980-06-27 1982-12-21 Harris Corporation Technique for high rate digital transmission over a dynamic dispersive channel
US8713624B1 (en) 1981-11-03 2014-04-29 Personalized Media Communications LLC Signal processing apparatus and methods
US4589112A (en) 1984-01-26 1986-05-13 International Business Machines Corporation System for multiple error detection with single and double bit error correction
US4901319A (en) 1988-03-18 1990-02-13 General Electric Company Transmission system with adaptive interleaving
US5153591A (en) 1988-07-05 1992-10-06 British Telecommunications Public Limited Company Method and apparatus for encoding, decoding and transmitting data in compressed form
US5136592A (en) 1989-06-28 1992-08-04 Digital Equipment Corporation Error detection and correction system for long burst errors
US5421031A (en) 1989-08-23 1995-05-30 Delta Beta Pty. Ltd. Program transmission optimisation
US5701582A (en) 1989-08-23 1997-12-23 Delta Beta Pty. Ltd. Method and apparatus for efficient transmissions of programs
US20060244824A1 (en) 1989-08-23 2006-11-02 Debey Henry C Method and system of program transmission optimization using a redundant transmission sequence
US5329369A (en) 1990-06-01 1994-07-12 Thomson Consumer Electronics, Inc. Asymmetric picture compression
US5455823A (en) 1990-11-06 1995-10-03 Radio Satellite Corporation Integrated communications terminal
US5524025A (en) 1990-11-07 1996-06-04 At&T Corp. Coding for digital transmission
US5465318A (en) 1991-03-28 1995-11-07 Kurzweil Applied Intelligence, Inc. Method for generating a speech recognition model for a non-vocabulary utterance
US5331320A (en) 1991-11-21 1994-07-19 International Business Machines Corporation Coding method and apparatus using quaternary codes
US5379297A (en) 1992-04-09 1995-01-03 Network Equipment Technologies, Inc. Concurrent multi-channel segmentation and reassembly processors for asynchronous transfer mode
US5371532A (en) 1992-05-15 1994-12-06 Bell Communications Research, Inc. Communications architecture and method for distributing information services
US5425050A (en) 1992-10-23 1995-06-13 Massachusetts Institute Of Technology Television transmission system using spread spectrum and orthogonal frequency-division multiplex
US5372532A (en) 1993-01-26 1994-12-13 Robertson, Jr.; George W. Swivel head cap connector
US5953537A (en) 1993-02-12 1999-09-14 Altera Corporation Method and apparatus for reducing the number of programmable architecture elements required for implementing a look-up table in a programmable logic device
US5583784A (en) 1993-05-14 1996-12-10 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Frequency analysis method
US5642365A (en) 1993-07-05 1997-06-24 Mitsubishi Denki Kabushiki Kaisha Transmitter for encoding error correction codes and a receiver for decoding error correction codes on a transmission frame
JPH07183873A (ja) 1993-10-29 1995-07-21 At & T Corp 通信システムの情報伝送方法
US5608738A (en) 1993-11-10 1997-03-04 Nec Corporation Packet transmission method and apparatus
US5517508A (en) 1994-01-26 1996-05-14 Sony Corporation Method and apparatus for detection and error correction of packetized digital data
EP0669587A2 (fr) 1994-02-24 1995-08-30 AT&T Corp. Système de réseau pour la visualisation des présentations multimédia
US5566208A (en) 1994-03-17 1996-10-15 Philips Electronics North America Corp. Encoder buffer having an effective size which varies automatically with the channel bit-rate
US5432787A (en) 1994-03-24 1995-07-11 Loral Aerospace Corporation Packet data transmission system with adaptive data recovery method
US5757415A (en) 1994-05-26 1998-05-26 Sony Corporation On-demand data transmission by dividing input data into blocks and each block into sub-blocks such that the sub-blocks are re-arranged for storage to data storage means
US5802394A (en) 1994-06-06 1998-09-01 Starlight Networks, Inc. Method for accessing one or more streams in a video storage system using multiple queues and maintaining continuity thereof
US5568614A (en) 1994-07-29 1996-10-22 International Business Machines Corporation Data streaming between peer subsystems of a computer system
EP0853433A1 (fr) 1994-08-24 1998-07-15 Macrovision Corporation Méthode et dispositif pour insérer des données d'identification de source dans un signal vidéo
EP0701371A1 (fr) 1994-09-08 1996-03-13 International Business Machines Corporation Media streamer pour video optimisée
US5926205A (en) 1994-10-19 1999-07-20 Imedia Corporation Method and apparatus for encoding and formatting data representing a video program to provide multiple overlapping presentations of the video program
US5659614A (en) 1994-11-28 1997-08-19 Bailey, Iii; John E. Method and system for creating and storing a backup copy of file data stored on a computer
US5617541A (en) 1994-12-21 1997-04-01 International Computer Science Institute System for packetizing data encoded corresponding to priority levels where reconstructed data corresponds to fractionalized priority level and received fractionalized packets
US6061820A (en) 1994-12-28 2000-05-09 Kabushiki Kaisha Toshiba Scheme for error control on ATM adaptation layer in ATM networks
JPH08186570A (ja) 1994-12-28 1996-07-16 Toshiba Corp Atm網における誤り制御方法
US6079042A (en) 1995-04-27 2000-06-20 The Trustees Of The Stevens Institute Of Technology High integrity transport for time critical multimedia networking applications
US5993056A (en) 1995-04-27 1999-11-30 Stevens Institute Of Technology High integrity transport for time critical multimedia networking applications
WO1996034463A1 (fr) 1995-04-27 1996-10-31 Trustees Of The Stevens Institute Of Technology Transport haute integrite pour applications de gestion de reseau multimedia a duree critique
US5835165A (en) 1995-06-07 1998-11-10 Lsi Logic Corporation Reduction of false locking code words in concatenated decoders
US5805825A (en) 1995-07-26 1998-09-08 Intel Corporation Method for semi-reliable, unidirectional broadcast information services
US6079041A (en) 1995-08-04 2000-06-20 Sanyo Electric Co., Ltd. Digital modulation circuit and digital demodulation circuit
US5754563A (en) 1995-09-11 1998-05-19 Ecc Technologies, Inc. Byte-parallel system for implementing reed-solomon error-correcting codes
US5699473A (en) 1995-10-10 1997-12-16 Samsung Electronics Co., Ltd. Method for recording and reproducing intercoded data using two levels of error correction
US5751336A (en) 1995-10-12 1998-05-12 International Business Machines Corporation Permutation based pyramid block transmission scheme for broadcasting in video-on-demand storage systems
EP0784401A2 (fr) 1996-01-12 1997-07-16 Kabushiki Kaisha Toshiba Dispositif terminal de réception de diffusion numérique
US6012159A (en) 1996-01-17 2000-01-04 Kencast, Inc. Method and system for error-free data transfer
US5852565A (en) 1996-01-30 1998-12-22 Demografx Temporal and resolution layering in advanced television
US5936659A (en) 1996-01-31 1999-08-10 Telcordia Technologies, Inc. Method for video delivery using pyramid broadcasting
US5903775A (en) 1996-06-06 1999-05-11 International Business Machines Corporation Method for the sequential transmission of compressed video information at varying data rates
WO1997050183A1 (fr) 1996-06-25 1997-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Codage en longueur variable avec protection contre les erreurs
JP2000513164A (ja) 1996-06-25 2000-10-03 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 誤り保護付き可変長コーディング
WO1998004973A1 (fr) 1996-07-26 1998-02-05 Zenith Electronics Corporation Derotateur et desentrelaceur de donnees
RU2189629C2 (ru) 1996-07-26 2002-09-20 Зенит Электроникс Корпорейшн Устройство обращения циклического сдвига и обращенного перемежения данных
US5936949A (en) 1996-09-05 1999-08-10 Netro Corporation Wireless ATM metropolitan area network
US20010033586A1 (en) 1996-12-17 2001-10-25 Satoru Takashimizu Receiving apparatus for digital broadcasting signal and receving/recording/reproducing apparatus thereof
US6044485A (en) 1997-01-03 2000-03-28 Ericsson Inc. Transmitter method and transmission system using adaptive coding based on channel characteristics
US6141053A (en) 1997-01-03 2000-10-31 Saukkonen; Jukka I. Method of optimizing bandwidth for transmitting compressed video data streams
US6011590A (en) 1997-01-03 2000-01-04 Ncr Corporation Method of transmitting compressed information to minimize buffer space
US5983383A (en) 1997-01-17 1999-11-09 Qualcom Incorporated Method and apparatus for transmitting and receiving concatenated code data
EP0854650A2 (fr) 1997-01-17 1998-07-22 NOKIA TECHNOLOGY GmbH Méthode pour l'addressage d'un service dans un système de diffusion vidéo numérique
WO1998032231A1 (fr) 1997-01-17 1998-07-23 Qualcomm Incorporated Procede et appareil de transmission et de reception de donnees de code concatenees
WO1998032256A1 (fr) 1997-01-17 1998-07-23 Telefonaktiebolaget Lm Ericsson (Publ) Dispositif et procede d'emission et de reception d'un signal de communication numerique entrelace a codage multiniveau
RU99117925A (ru) 1997-01-17 2001-07-27 Телефонактиеболагет Лм Эрикссон (Пабл) Способ передачи и приема сигнала цифровой связи, подвергаемого многоступенчатому кодированию и перемежению, и устройство для его осуществления
US6014706A (en) 1997-01-30 2000-01-11 Microsoft Corporation Methods and apparatus for implementing control functions in a streamed video display system
EP1024672A1 (fr) 1997-03-07 2000-08-02 Sanyo Electric Co., Ltd. Recepteur de telediffusion numerique et afficheur
US7154951B2 (en) 1997-03-14 2006-12-26 Microsoft Corporation Motion video signal encoder and encoding method
US6005477A (en) 1997-04-17 1999-12-21 Abb Research Ltd. Method and apparatus for information transmission via power supply lines
US6226259B1 (en) 1997-04-29 2001-05-01 Canon Kabushiki Kaisha Device and method for transmitting information device and method for processing information
US5970098A (en) 1997-05-02 1999-10-19 Globespan Technologies, Inc. Multilevel encoder
US5844636A (en) 1997-05-13 1998-12-01 Hughes Electronics Corporation Method and apparatus for receiving and recording digital packet data
US6141787A (en) 1997-05-19 2000-10-31 Sanyo Electric Co., Ltd. Digital modulation and demodulation
US20050163468A1 (en) 1997-05-19 2005-07-28 Takao Takahashi Signal recording method & apparatus, signal recording / reproducing method & apparatus and signal recording medium
JPH1141211A (ja) 1997-05-19 1999-02-12 Sanyo Electric Co Ltd ディジタル変調回路と変調方法、ディジタル復調回路と復調方法
US20010015944A1 (en) 1997-05-19 2001-08-23 Sony Corporation Recording method and apparatus for continuous playback of fragmented signals
EP0986908A1 (fr) 1997-06-02 2000-03-22 Nortel Networks Limited Selection dynamique de flux de medias en vue de leur affichage
US6081907A (en) 1997-06-09 2000-06-27 Microsoft Corporation Data delivery system and method for delivering data and redundant information over a unidirectional network
US5917852A (en) 1997-06-11 1999-06-29 L-3 Communications Corporation Data scrambling system and method and communications system incorporating same
US6298462B1 (en) 1997-06-25 2001-10-02 Samsung Electronics Co., Ltd. Data transmission method for dual diversity systems
US5933056A (en) 1997-07-15 1999-08-03 Exar Corporation Single pole current mode common-mode feedback circuit
US6175944B1 (en) 1997-07-15 2001-01-16 Lucent Technologies Inc. Methods and apparatus for packetizing data for transmission through an erasure broadcast channel
JPH11112479A (ja) 1997-07-17 1999-04-23 Hewlett Packard Co <Hp> 暗号化装置および暗号化方法
US20030086515A1 (en) 1997-07-31 2003-05-08 Francois Trans Channel adaptive equalization precoding system and method
US6178536B1 (en) 1997-08-14 2001-01-23 International Business Machines Corporation Coding scheme for file backup and systems based thereon
US6393065B1 (en) * 1997-08-29 2002-05-21 Canon Kabushiki Kaisha Coding and decoding methods and devices and equipment using them
EP0903955A1 (fr) 1997-09-04 1999-03-24 STMicroelectronics S.r.l. PET-décodeur à architecture modulaire pour des réseaux ATM
US6088330A (en) 1997-09-09 2000-07-11 Bruck; Joshua Reliable array of distributed computing nodes
US6134596A (en) 1997-09-18 2000-10-17 Microsoft Corporation Continuous media file server system and method for scheduling network resources to play multiple files having different data transmission rates
US6272658B1 (en) 1997-10-27 2001-08-07 Kencast, Inc. Method and system for reliable broadcasting of data files and streams
US6073250A (en) 1997-11-06 2000-06-06 Luby; Michael G. Loss resilient decoding technique
US6163870A (en) 1997-11-06 2000-12-19 Compaq Computer Corporation Message encoding with irregular graphing
US6081909A (en) 1997-11-06 2000-06-27 Digital Equipment Corporation Irregularly graphed encoding technique
US6081918A (en) 1997-11-06 2000-06-27 Spielman; Daniel A. Loss resilient code with cascading series of redundant layers
US6195777B1 (en) 1997-11-06 2001-02-27 Compaq Computer Corporation Loss resilient code with double heavy tailed series of redundant layers
JPH11164270A (ja) 1997-11-25 1999-06-18 Kdd マルチチャンネルを用いるビデオデータ伝送方法及びその装置
US6243846B1 (en) 1997-12-12 2001-06-05 3Com Corporation Forward error correction system for packet based data and real time media, using cross-wise parity calculation
US5870412A (en) 1997-12-12 1999-02-09 3Com Corporation Forward error correction system for packet based real time media
US6849803B1 (en) 1998-01-15 2005-02-01 Arlington Industries, Inc. Electrical connector
US6097320A (en) 1998-01-20 2000-08-01 Silicon Systems, Inc. Encoder/decoder system with suppressed error propagation
US6226301B1 (en) 1998-02-19 2001-05-01 Nokia Mobile Phones Ltd Method and apparatus for segmentation and assembly of data frames for retransmission in a telecommunications system
US6141788A (en) 1998-03-13 2000-10-31 Lucent Technologies Inc. Method and apparatus for forward error correction in packet networks
US6278716B1 (en) 1998-03-23 2001-08-21 University Of Massachusetts Multicast with proactive forward error correction
US6459811B1 (en) 1998-04-02 2002-10-01 Sarnoff Corporation Bursty data transmission of compressed video data
US6185265B1 (en) 1998-04-07 2001-02-06 Worldspace Management Corp. System for time division multiplexing broadcast channels with R-1/2 or R-3/4 convolutional coding for satellite transmission via on-board baseband processing payload or transparent payload
US7318180B2 (en) 1998-04-17 2008-01-08 At&T Knowledge Ventures L.P. Method and system for adaptive interleaving
US6018359A (en) 1998-04-24 2000-01-25 Massachusetts Institute Of Technology System and method for multicast video-on-demand delivery system
US6445717B1 (en) 1998-05-01 2002-09-03 Niwot Networks, Inc. System for recovering lost information in a data stream
US6421387B1 (en) 1998-05-15 2002-07-16 North Carolina State University Methods and systems for forward error correction based loss recovery for interactive video transmission
US6937618B1 (en) 1998-05-20 2005-08-30 Sony Corporation Separating device and method and signal receiving device and method
US6333926B1 (en) 1998-08-11 2001-12-25 Nortel Networks Limited Multiple user CDMA basestation modem
WO2000014921A1 (fr) 1998-09-04 2000-03-16 At & T Corp. Combinaison du codage de voie et du codage de bloc etat dans un dispositif a plusieurs antennes
US6415326B1 (en) 1998-09-15 2002-07-02 Microsoft Corporation Timeline correlation between multiple timeline-altered media streams
US7243285B2 (en) 1998-09-23 2007-07-10 Digital Fountain, Inc. Systems and methods for broadcasting information additive codes
US6307487B1 (en) 1998-09-23 2001-10-23 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US7057534B2 (en) 1998-09-23 2006-06-06 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US6614366B2 (en) 1998-09-23 2003-09-02 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US7233264B2 (en) 1998-09-23 2007-06-19 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
US6373406B2 (en) 1998-09-23 2002-04-16 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
EP1241795A2 (fr) 1998-09-23 2002-09-18 Digital Fountain Procédé et système de transmission et réception d'information utilisant un code de réaction en chaíne
JP3809957B2 (ja) 1998-09-23 2006-08-16 デジタル ファウンテン, インコーポレイテッド 損失パケットのパケット伝送プロトコル回復方法
US20080034273A1 (en) 1998-09-23 2008-02-07 Digital Fountain, Inc. Information additive code generator and decoder for communication systems
JP3976163B2 (ja) 1998-09-23 2007-09-12 デジタル ファウンテン, インコーポレイテッド 損失パケットのパケット伝送プロトコル回復方法
US6320520B1 (en) 1998-09-23 2001-11-20 Digital Fountain Information additive group code generator and decoder for communications systems
US7812743B2 (en) 1998-09-23 2010-10-12 Digital Fountain Inc. Information additive code generator and decoder for communication systems
WO2000018017A9 (fr) 1998-09-23 2001-12-20 Digital Fountain Procede de recuperation de paquets perdus pour protocoles de transmission de paquets
US6704370B1 (en) 1998-10-09 2004-03-09 Nortel Networks Limited Interleaving methodology and apparatus for CDMA
US6831172B1 (en) 1998-11-11 2004-12-14 Farmila-Thea Farmaceutici S.P.A. Cross-linked hyaluronic acids and medical uses thereof
US20030194211A1 (en) 1998-11-12 2003-10-16 Max Abecassis Intermittently playing a video
US20050105371A1 (en) 1998-11-16 2005-05-19 Johnson Mark G. Integrated circuit incorporating three-dimensional memory array with dual opposing decoder arrangement
JP2000151426A (ja) 1998-11-17 2000-05-30 Toshiba Corp インターリーブ・デインターリーブ回路
US6166544A (en) 1998-11-25 2000-12-26 General Electric Company MR imaging system with interactive image contrast control
US6876623B1 (en) 1998-12-02 2005-04-05 Agere Systems Inc. Tuning scheme for code division multiplex broadcasting system
US6314289B1 (en) 1998-12-03 2001-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for transmitting information and apparatus and method for receiving information
US20040049793A1 (en) 1998-12-04 2004-03-11 Chou Philip A. Multimedia presentation latency minimization
US6496980B1 (en) 1998-12-07 2002-12-17 Intel Corporation Method of providing replay on demand for streaming digital multimedia
US6223324B1 (en) 1999-01-05 2001-04-24 Agere Systems Guardian Corp. Multiple program unequal error protection for digital audio broadcasting and other applications
JP2000216835A (ja) 1999-01-22 2000-08-04 Hitachi Denshi Ltd 畳み込み符号軟判定復号方式の受信装置
US6618451B1 (en) 1999-02-13 2003-09-09 Altocom Inc Efficient reduced state maximum likelihood sequence estimator
US6041001A (en) 1999-02-25 2000-03-21 Lexar Media, Inc. Method of increasing data reliability of a flash memory device without compromising compatibility
WO2000052600A1 (fr) 1999-03-03 2000-09-08 Sony Corporation Emetteur, recepteur, systeme d'emetteur/recepteur, procede de transmission et procede de reception
US6466698B1 (en) 1999-03-25 2002-10-15 The United States Of America As Represented By The Secretary Of The Navy Efficient embedded image and video compression system using lifted wavelets
US6535920B1 (en) 1999-04-06 2003-03-18 Microsoft Corporation Analyzing, indexing and seeking of streaming information
JP2000307435A (ja) 1999-04-06 2000-11-02 Internatl Business Mach Corp <Ibm> 符号化回路、回路、パリティ生成方法及び記憶媒体
US6609223B1 (en) 1999-04-06 2003-08-19 Kencast, Inc. Method for packet-level fec encoding, in which on a source packet-by-source packet basis, the error correction contributions of a source packet to a plurality of wildcard packets are computed, and the source packet is transmitted thereafter
US6804202B1 (en) 1999-04-08 2004-10-12 Lg Information And Communications, Ltd. Radio protocol for mobile communication system and method
US20050123058A1 (en) 1999-04-27 2005-06-09 Greenbaum Gary S. System and method for generating multiple synchronized encoded representations of media data
JP2002543705A (ja) 1999-04-29 2002-12-17 ノキア コーポレイション データ伝送
EP1051027A1 (fr) 1999-05-06 2000-11-08 Sony Corporation Appareil et méthodes de traitement de données, méthodes et appareil de reproduction de données, moyen d'enregistrement
US7068681B2 (en) 1999-05-10 2006-06-27 Samsung Electronics Co., Ltd. Apparatus and method for exchanging variable-length data according to radio link protocol in mobile communication system
US7483447B2 (en) 1999-05-10 2009-01-27 Samsung Electronics Co., Ltd Apparatus and method for exchanging variable-length data according to radio link protocol in mobile communication system
US7100188B2 (en) 1999-05-26 2006-08-29 Enounce, Inc. Method and apparatus for controlling time-scale modification during multi-media broadcasts
US6229824B1 (en) 1999-05-26 2001-05-08 Xm Satellite Radio Inc. Method and apparatus for concatenated convolutional endcoding and interleaving
US6154452A (en) 1999-05-26 2000-11-28 Xm Satellite Radio Inc. Method and apparatus for continuous cross-channel interleaving
JP2000353969A (ja) 1999-06-11 2000-12-19 Sony Corp デジタル音声放送の受信機
US6577599B1 (en) 1999-06-30 2003-06-10 Sun Microsystems, Inc. Small-scale reliable multicasting
US6751772B1 (en) 1999-07-06 2004-06-15 Samsung Electronics Co., Ltd. Rate matching device and method for a data communication system
US6643332B1 (en) 1999-07-09 2003-11-04 Lsi Logic Corporation Method and apparatus for multi-level coding of digital signals
US6584543B2 (en) 1999-07-22 2003-06-24 Micron Technology, Inc. Reconfigurable memory with selectable error correction storage
JP2001036417A (ja) 1999-07-22 2001-02-09 Japan Radio Co Ltd 誤り訂正符号化装置、方法及び媒体、並びに誤り訂正符号復号装置、方法及び媒体
JP2003507985A (ja) 1999-08-04 2003-02-25 サン・マイクロシステムズ・インコーポレイテッド 2ビット・エラーを検出し、構成要素の障害によるエラーを訂正するためのシステムおよび方法
EP1124344A1 (fr) 1999-08-20 2001-08-16 Matsushita Electric Industrial Co., Ltd. Dispositif de communication ofdm
US6430233B1 (en) 1999-08-30 2002-08-06 Hughes Electronics Corporation Single-LNB satellite data receiver
US6332163B1 (en) 1999-09-01 2001-12-18 Accenture, Llp Method for providing communication services over a computer network system
US6882618B1 (en) 1999-09-07 2005-04-19 Sony Corporation Transmitting apparatus, receiving apparatus, communication system, transmission method, reception method, and communication method
WO2001020786A1 (fr) 1999-09-17 2001-03-22 Digital Fountain Generateur de code de groupe additif d'information et decodeur pour systemes de communications
JP2001189665A (ja) 1999-09-17 2001-07-10 Digital Fountain 通信システムのための情報付加的群符号発生器およびデコーダ
JP2003510734A (ja) 1999-09-27 2003-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ストリーミングのエミュレート用ファイル分割
JP2001094625A (ja) 1999-09-27 2001-04-06 Canon Inc データ通信装置、データ通信方法及び記憶媒体
US20050160272A1 (en) 1999-10-28 2005-07-21 Timecertain, Llc System and method for providing trusted time in content of digital data files
US7529806B1 (en) 1999-11-04 2009-05-05 Koninklijke Philips Electronics N.V. Partitioning of MP3 content file for emulating streaming
US6523147B1 (en) 1999-11-11 2003-02-18 Ibiquity Digital Corporation Method and apparatus for forward error correction coding for an AM in-band on-channel digital audio broadcasting system
CN1425228A (zh) 1999-11-22 2003-06-18 讯捷通讯公司 用于前向链路的变速率编码
US20050018635A1 (en) 1999-11-22 2005-01-27 Ipr Licensing, Inc. Variable rate coding for forward link
US6678855B1 (en) 1999-12-02 2004-01-13 Microsoft Corporation Selecting K in a data transmission carousel using (N,K) forward error correction
US6748441B1 (en) 1999-12-02 2004-06-08 Microsoft Corporation Data carousel receiving and caching
JP2001223655A (ja) 1999-12-16 2001-08-17 Lucent Technol Inc 衛星デジタルオーディオラジオシステムに対するクラスタフレーム同期スキーム
US6487692B1 (en) 1999-12-21 2002-11-26 Lsi Logic Corporation Reed-Solomon decoder
US20020009137A1 (en) 2000-02-01 2002-01-24 Nelson John E. Three-dimensional video broadcasting system
US6965636B1 (en) 2000-02-01 2005-11-15 2Wire, Inc. System and method for block error correction in packet-based digital communications
US7304990B2 (en) 2000-02-03 2007-12-04 Bandwiz Inc. Method of encoding and transmitting data over a communication medium through division and segmentation
WO2001057667A1 (fr) 2000-02-03 2001-08-09 Bandwiz, Inc. Transmission de donnees
WO2001058131A2 (fr) 2000-02-03 2001-08-09 Bandwiz, Inc. Systeme de diffusion
WO2001058130A2 (fr) 2000-02-03 2001-08-09 Bandwiz, Inc. Procede de codage
JP2001251287A (ja) 2000-02-24 2001-09-14 Geneticware Corp Ltd ハードウエア保護内部秘匿鍵及び可変パスコードを利用する機密データ伝送方法
US6765866B1 (en) 2000-02-29 2004-07-20 Mosaid Technologies, Inc. Link aggregation
JP2001274855A (ja) 2000-02-29 2001-10-05 Koninkl Philips Electronics Nv Dqpsk変調されかつチャネル符号化された受信信号の検波および復調のための受信機および方法
US6420982B1 (en) 2000-03-23 2002-07-16 Mosaid Technologies, Inc. Multi-stage lookup for translating between signals of different bit lengths
US6510177B1 (en) 2000-03-24 2003-01-21 Microsoft Corporation System and method for layered video coding enhancement
JP2001274776A (ja) 2000-03-24 2001-10-05 Toshiba Corp 情報データ伝送システムとその送信装置及び受信装置
US20020053062A1 (en) 2000-03-31 2002-05-02 Ted Szymanski Transmitter, receiver, and coding scheme to increase data rate and decrease bit error rate of an optical data link
US6473010B1 (en) 2000-04-04 2002-10-29 Marvell International, Ltd. Method and apparatus for determining error correction code failure rate for iterative decoding algorithms
US8572646B2 (en) 2000-04-07 2013-10-29 Visible World Inc. System and method for simultaneous broadcast for personalized messages
US7073191B2 (en) 2000-04-08 2006-07-04 Sun Microsystems, Inc Streaming a single media track to multiple clients
US6631172B1 (en) * 2000-05-01 2003-10-07 Lucent Technologies Inc. Efficient list decoding of Reed-Solomon codes for message recovery in the presence of high noise levels
US6742154B1 (en) 2000-05-25 2004-05-25 Ciena Corporation Forward error correction codes for digital optical network optimization
US6694476B1 (en) 2000-06-02 2004-02-17 Vitesse Semiconductor Corporation Reed-solomon encoder and decoder
US6810499B2 (en) 2000-06-02 2004-10-26 Vitesse Semiconductor Corporation Product code based forward error correction system
CN1338839A (zh) 2000-08-10 2002-03-06 扎尔林克半导体股份有限公司 结合里德-所罗门和特布技术的编码
US20020083345A1 (en) 2000-08-16 2002-06-27 Halliday David C. Method and system for secure communication over unstable public connections
US7295573B2 (en) 2000-08-19 2007-11-13 Lg Electronics Inc. Method for inserting length indicator in protocol data unit of radio link control
US7668198B2 (en) 2000-08-19 2010-02-23 Lg Electronics Inc. Method for inserting length indicator in protocol data unit of radio link control
JP2002073625A (ja) 2000-08-24 2002-03-12 Nippon Hoso Kyokai <Nhk> 放送番組に同期した情報提供の方法、サーバ及び媒体
US20040117716A1 (en) 2000-09-20 2004-06-17 Qiang Shen Single engine turbo decoder with single frame size buffer for interleaving/deinterleaving
US6486803B1 (en) 2000-09-22 2002-11-26 Digital Fountain, Inc. On demand encoding with a window
US7151754B1 (en) 2000-09-22 2006-12-19 Lucent Technologies Inc. Complete user datagram protocol (CUDP) for wireless multimedia packet networks using improved packet level forward error correction (FEC) coding
US7031257B1 (en) 2000-09-22 2006-04-18 Lucent Technologies Inc. Radio link protocol (RLP)/point-to-point protocol (PPP) design that passes corrupted data and error location information among layers in a wireless data transmission protocol
WO2002027988A2 (fr) 2000-09-29 2002-04-04 Visible World, Inc. Systeme et procede de commutation continue
US6411223B1 (en) 2000-10-18 2002-06-25 Digital Fountain, Inc. Generating high weight encoding symbols using a basis
US7613183B1 (en) 2000-10-31 2009-11-03 Foundry Networks, Inc. System and method for router data aggregation and delivery
JP2002204219A (ja) 2000-11-07 2002-07-19 Agere Systems Guardian Corp 損失パケットのバーストを訂正するための低遅延通信路符号
US6732325B1 (en) 2000-11-08 2004-05-04 Digeo, Inc. Error-correction with limited working storage
US20020133247A1 (en) 2000-11-11 2002-09-19 Smith Robert D. System and method for seamlessly switching between media streams
US7512697B2 (en) 2000-11-13 2009-03-31 Digital Fountain, Inc. Scheduling of multiple files for serving on a server
US7072971B2 (en) 2000-11-13 2006-07-04 Digital Foundation, Inc. Scheduling of multiple files for serving on a server
US20090210547A1 (en) 2000-11-13 2009-08-20 Digital Fountain, Inc. Scheduling of multiple files for serving on a server
US7240358B2 (en) 2000-12-08 2007-07-03 Digital Fountain, Inc. Methods and apparatus for scheduling, serving, receiving media-on demand for clients, servers arranged according to constraints on resources
WO2002047391A1 (fr) 2000-12-08 2002-06-13 Digital Fountain, Inc. Procedes et systeme de programmation, de fourniture et de reception de media sur demande pour des clients, serveurs organises selon des contraintes fondees sur les ressources
US20080086751A1 (en) 2000-12-08 2008-04-10 Digital Fountain, Inc. Methods and apparatus for scheduling, serving, receiving media-on-demand for clients, servers arranged according to constraints on resources
JP2004516717A (ja) 2000-12-15 2004-06-03 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー オーディオおよび、またはビデオマテリアルの送信および受信
EP2071827A2 (fr) 2000-12-15 2009-06-17 British Telecommunications Public Limited Company Transmission et réception d'un matériel audio et/ou vidéo
CN1481643A (zh) 2000-12-15 2004-03-10 ���˹���Ѷ��� 音频和/或视频资料的传输和接收
US6850736B2 (en) 2000-12-21 2005-02-01 Tropian, Inc. Method and apparatus for reception quality indication in wireless communication
US7143433B1 (en) 2000-12-27 2006-11-28 Infovalve Computing Inc. Video distribution system using dynamic segmenting of video data files
US20020085013A1 (en) 2000-12-29 2002-07-04 Lippincott Louis A. Scan synchronized dual frame buffer graphics subsystem
US20040031054A1 (en) 2001-01-04 2004-02-12 Harald Dankworth Methods in transmission and searching of video information
US20080059532A1 (en) 2001-01-18 2008-03-06 Kazmi Syed N Method and system for managing digital content, including streaming media
US6641366B2 (en) 2001-01-26 2003-11-04 Thorsten Nordhoff Wind power generating system with an obstruction lighting or night marking device
WO2002063461A1 (fr) 2001-02-08 2002-08-15 Nokia Corporation Procede et systeme de tamponnage de media continus
KR20030071815A (ko) 2001-02-08 2003-09-06 노키아 코포레이션 스트리밍된 데이터를 버퍼링하기 위한 방법 및 시스템
JP2004529533A (ja) 2001-02-16 2004-09-24 ヒューレット・パッカード・カンパニー 経路ダイバーシティを利用するパケット通信のための方法およびシステム
US6868083B2 (en) 2001-02-16 2005-03-15 Hewlett-Packard Development Company, L.P. Method and system for packet communication employing path diversity
US8185809B2 (en) 2001-03-09 2012-05-22 Digital Fountain, Inc. Multi-output packet server with independent streams
US20020141433A1 (en) 2001-03-30 2002-10-03 Samsung Electronics Co., Ltd. Apparatus and method for efficiently distributing packet data channel in a mobile communication system for high rate packet transmission
US20020143953A1 (en) 2001-04-03 2002-10-03 International Business Machines Corporation Automatic affinity within networks performing workload balancing
US20050138286A1 (en) 2001-04-11 2005-06-23 Franklin Chris R. In-place data transformation for fault-tolerant disk storage systems
US6820221B2 (en) 2001-04-13 2004-11-16 Hewlett-Packard Development Company, L.P. System and method for detecting process and network failures in a distributed system
US7010052B2 (en) 2001-04-16 2006-03-07 The Ohio University Apparatus and method of CTCM encoding and decoding for a digital communication system
US20040096110A1 (en) 2001-04-20 2004-05-20 Front Porch Digital Inc. Methods and apparatus for archiving, indexing and accessing audio and video data
US20020191116A1 (en) 2001-04-24 2002-12-19 Damien Kessler System and data format for providing seamless stream switching in a digital video recorder
US6497479B1 (en) 2001-04-27 2002-12-24 Hewlett-Packard Company Higher organic inks with good reliability and drytime
US20060212444A1 (en) 2001-05-16 2006-09-21 Pandora Media, Inc. Methods and systems for utilizing contextual feedback to generate and modify playlists
US6633856B2 (en) 2001-06-15 2003-10-14 Flarion Technologies, Inc. Methods and apparatus for decoding LDPC codes
US20070233784A1 (en) 2001-06-26 2007-10-04 Microsoft Corporation Wrapper Playlists on Streaming Media Services
JP2003092564A (ja) 2001-06-28 2003-03-28 Microsoft Corp ストリームメディアに対する交渉方式の/動的なエラー訂正
US20030005386A1 (en) 2001-06-28 2003-01-02 Sanjay Bhatt Negotiated/dynamic error correction for streamed media
JP2003018568A (ja) 2001-06-29 2003-01-17 Matsushita Electric Ind Co Ltd 再生システム、サーバ装置及び再生装置
US6895547B2 (en) 2001-07-11 2005-05-17 International Business Machines Corporation Method and apparatus for low density parity check encoding of data
US6928603B1 (en) 2001-07-19 2005-08-09 Adaptix, Inc. System and method for interference mitigation using adaptive forward error correction in a wireless RF data transmission system
US20030037299A1 (en) 2001-08-16 2003-02-20 Smith Kenneth Kay Dynamic variable-length error correction code
US7110412B2 (en) 2001-09-18 2006-09-19 Sbc Technology Resources, Inc. Method and system to transport high-quality video signals
EP1298931A2 (fr) 2001-09-20 2003-04-02 Oplayo Oy Flux multimédia adaptatif
US20030106014A1 (en) 2001-10-12 2003-06-05 Ralf Dohmen High speed syndrome-based FEC encoder and decoder and system using same
US20080281943A1 (en) 2001-11-09 2008-11-13 Jody Shapiro System, method, and computer program product for remotely determining the configuration of a multi-media content user
WO2003046742A1 (fr) 2001-11-29 2003-06-05 Nokia Corporation Systeme et procede permettant d'identifier des services de reseau et d'y acceder
US20030101408A1 (en) 2001-11-29 2003-05-29 Emin Martinian Apparatus and method for adaptive, multimode decoding
RU2297663C2 (ru) 2001-11-29 2007-04-20 Нокиа Корпорейшн Система и способ идентификации и доступа к услугам сети
JP2003174489A (ja) 2001-12-05 2003-06-20 Ntt Docomo Inc ストリーミング配信装置、ストリーミング配信方法
US7068729B2 (en) 2001-12-21 2006-06-27 Digital Fountain, Inc. Multi-stage code generator and decoder for communication systems
EP1468497A1 (fr) 2001-12-21 2004-10-20 Digital Fountain, Inc. Generateur et decodeur de code a etages multiples de systemes de communication
US20110019769A1 (en) 2001-12-21 2011-01-27 Qualcomm Incorporated Multi stage code generator and decoder for communication systems
US20080309525A1 (en) 2001-12-21 2008-12-18 Digital Fountain, Inc. Multi-stage code generator and decoder for communication systems
WO2003056703A1 (fr) 2001-12-21 2003-07-10 Digital Fountain, Inc. Generateur et decodeur de code a etages multiples de systemes de communication
US7720174B2 (en) 2001-12-21 2010-05-18 Digital Fountain, Inc. Multi-stage code generator and decoder for communication systems
US20060120464A1 (en) 2002-01-23 2006-06-08 Nokia Corporation Grouping of image frames in video coding
US20030138043A1 (en) 2002-01-23 2003-07-24 Miska Hannuksela Grouping of image frames in video coding
CN1819661A (zh) 2002-01-23 2006-08-16 诺基亚有限公司 视频编码中的图像帧编组
US7483489B2 (en) 2002-01-30 2009-01-27 Nxp B.V. Streaming multimedia data over a network having a variable bandwith
US7249291B2 (en) 2002-02-15 2007-07-24 Digital Fountain, Inc. System and method for reliably communicating the content of a live data stream
JP2003256321A (ja) 2002-02-28 2003-09-12 Nec Corp プロキシサーバ及びプロキシ制御プログラム
JP2003333577A (ja) 2002-03-06 2003-11-21 Hewlett Packard Co <Hp> メディア・ストリーミング配信システム
US20050180415A1 (en) 2002-03-06 2005-08-18 Gene Cheung Medium streaming distribution system
US20040015768A1 (en) 2002-03-15 2004-01-22 Philippe Bordes Device and method for inserting error correcting codes and for reconstructing data streams, and corresponding products
KR20030074386A (ko) 2002-03-15 2003-09-19 톰슨 라이센싱 소시에떼 아노님 에러 정정 코드를 삽입하며 데이터 스트림을 재구성하기위한 디바이스 및 방법, 및 해당 컴퓨터 프로그램 제품
US7363048B2 (en) 2002-04-15 2008-04-22 Nokia Corporation Apparatus, and associated method, for operating upon data at RLP logical layer of a communication station
US6677864B2 (en) 2002-04-18 2004-01-13 Telefonaktiebolaget L.M. Ericsson Method for multicast over wireless networks
JP2003319012A (ja) 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd データ受信装置及びデータ配信システム
US20040240382A1 (en) 2002-04-19 2004-12-02 Daiji Ido Data reception apparatus and data distribution system
JP2003318975A (ja) 2002-04-19 2003-11-07 Matsushita Electric Ind Co Ltd データ受信装置及びデータ配信システム
EP1501318A1 (fr) 2002-04-25 2005-01-26 Sharp Corporation Codeur d'images, decodeur d'images, support d'enregistrement et enregistreur d'images
US20100011061A1 (en) 2002-04-26 2010-01-14 Hudson Michael D Centralized selection of peers as media data sources in a dispersed peer network
US20030207696A1 (en) 2002-05-06 2003-11-06 Serge Willenegger Multi-media broadcast and multicast service (MBMS) in a wireless communications system
US20030224773A1 (en) 2002-05-31 2003-12-04 Douglas Deeds Fragmented delivery of multimedia
US7570665B2 (en) 2002-06-11 2009-08-04 Telefonaktiebolaget L M Ericsson (Publ) Generation of mixed media streams
US7030785B2 (en) 2002-06-11 2006-04-18 Digital Fountain, Inc. Systems and processes for decoding a chain reaction code through inactivation
US7633413B2 (en) 2002-06-11 2009-12-15 Qualcomm Incorporated Systems and processes for decoding a chain reaction code through inactivation
WO2003105350A1 (fr) 2002-06-11 2003-12-18 Digital Fountain, Inc. Decodage de codes de reaction en chaine par inactivation de symboles recuperes
US6856263B2 (en) 2002-06-11 2005-02-15 Digital Fountain, Inc. Systems and processes for decoding chain reaction codes through inactivation
US20110103519A1 (en) 2002-06-11 2011-05-05 Qualcomm Incorporated Systems and processes for decoding chain reaction codes through inactivation
US20100103001A1 (en) 2002-06-11 2010-04-29 Qualcomm Incorporated Methods and apparatus employing fec codes with permanent inactivation of symbols for encoding and decoding processes
US7956772B2 (en) * 2002-06-11 2011-06-07 Qualcomm Incorporated Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
WO2003105484A1 (fr) 2002-06-11 2003-12-18 Telefonaktiebolaget L M Ericsson (Publ) Generation de chaines de signaux mixtes
US7265688B2 (en) 2002-06-11 2007-09-04 Digital Fountain, Inc. Systems and processes for decoding a chain reaction code through inactivation
US6956875B2 (en) 2002-06-19 2005-10-18 Atlinks Usa, Inc. Technique for communicating variable bit rate data over a constant bit rate link
US20080152241A1 (en) 2002-07-10 2008-06-26 Nec Corporation Stereoscopic image encoding and decoding device multiplexing high resolution added images
JP2004048704A (ja) 2002-07-12 2004-02-12 Sumitomo Electric Ind Ltd 伝送データ生成方法及び伝送データ生成装置
US20040066854A1 (en) 2002-07-16 2004-04-08 Hannuksela Miska M. Method for random access and gradual picture refresh in video coding
WO2004008735A2 (fr) 2002-07-16 2004-01-22 Nokia Corporation Codage video: procede d'acces aleatoire et de rafraichissement progressif d'images
WO2004019521A1 (fr) 2002-07-31 2004-03-04 Sharp Kabushiki Kaisha Dispositif de communication de donnees, son procede de communication intermittente, programme decrivant ce procede, et support d'enregistrement sur lequel le programme est enregistre
JP2004070712A (ja) 2002-08-07 2004-03-04 Nippon Telegr & Teleph Corp <Ntt> データ配信方法,データ配信システム,分割配信データ受信方法,分割配信データ受信装置および分割配信データ受信プログラム
WO2004015948A1 (fr) 2002-08-13 2004-02-19 Nokia Corporation Entrelacement de symboles
US6985459B2 (en) 2002-08-21 2006-01-10 Qualcomm Incorporated Early transmission and playout of packets in wireless communication systems
WO2004030273A1 (fr) 2002-09-27 2004-04-08 Fujitsu Limited Procede et systeme de distribution de donnees, procede de transfert et programme
EP1406452A2 (fr) 2002-10-03 2004-04-07 NTT DoCoMo, Inc. Méthode de codage et décodage d'un signal vidéo
USRE43741E1 (en) 2002-10-05 2012-10-16 Qualcomm Incorporated Systematic encoding and decoding of chain reaction codes
US7394407B2 (en) 2002-10-05 2008-07-01 Digital Fountain, Inc. Systematic encoding and decoding of chain reaction codes
US7532132B2 (en) 2002-10-05 2009-05-12 Digital Fountain, Inc. Systematic encoding and decoding of chain reaction codes
US6909383B2 (en) 2002-10-05 2005-06-21 Digital Fountain, Inc. Systematic encoding and decoding of chain reaction codes
US20090189792A1 (en) 2002-10-05 2009-07-30 Shokrollahi M Amin Systematic encoding and decoding of chain reaction codes
WO2004034589A2 (fr) 2002-10-05 2004-04-22 Digital Fountain, Inc. Codage et decodage systematique de codes de reaction en chaine
JP2004135013A (ja) 2002-10-10 2004-04-30 Matsushita Electric Ind Co Ltd 伝送装置及び伝送方法
JP2006503463A (ja) 2002-10-14 2006-01-26 ノキア コーポレイション ストリーミングメディア
WO2004036824A1 (fr) 2002-10-14 2004-04-29 Nokia Corporation Media de diffusion
US20040081106A1 (en) 2002-10-25 2004-04-29 Stefan Bruhn Delay trading between communication links
US8462643B2 (en) 2002-10-25 2013-06-11 Qualcomm Incorporated MIMO WLAN system
CN1708934A (zh) 2002-10-30 2005-12-14 皇家飞利浦电子股份有限公司 自适应前向错误控制方案
WO2004040831A1 (fr) 2002-10-30 2004-05-13 Koninklijke Philips Electronics N.V. Programme de controle adaptatif d'erreur sans voie de retour
US20060031738A1 (en) 2002-10-30 2006-02-09 Koninklijke Philips Electronics, N.V. Adaptative forward error control scheme
JP2006505177A (ja) 2002-10-30 2006-02-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 適応的順方向誤り制御スキーム
JP2004165922A (ja) 2002-11-12 2004-06-10 Sony Corp 情報処理装置および方法、並びにプログラム
JP2006506926A (ja) 2002-11-18 2006-02-23 ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー ビデオの伝送方法
CN1714577A (zh) 2002-11-18 2005-12-28 英国电讯有限公司 视频传输
WO2004047455A1 (fr) 2002-11-18 2004-06-03 British Telecommunications Public Limited Company Transmission de video
WO2004047019A2 (fr) 2002-11-21 2004-06-03 Electronics And Telecommunications Research Institute Codeur utilisant des codes de controle de parite a faible densite et methode de codage appropriee
US7597423B2 (en) 2002-11-23 2009-10-06 Silverbrook Research Pty Ltd Printhead chip with high nozzle areal density
JP2004192140A (ja) 2002-12-09 2004-07-08 Sony Corp データ通信システム、データ送信装置、データ受信装置、および方法、並びにコンピュータ・プログラム
JP2004193992A (ja) 2002-12-11 2004-07-08 Sony Corp 情報処理システム、情報処理装置および方法、記録媒体、並びにプログラム
US8135073B2 (en) 2002-12-19 2012-03-13 Trident Microsystems (Far East) Ltd Enhancing video images depending on prior image enhancements
US7164882B2 (en) 2002-12-24 2007-01-16 Poltorak Alexander I Apparatus and method for facilitating a purchase using information provided on a media playing device
US7293222B2 (en) 2003-01-29 2007-11-06 Digital Fountain, Inc. Systems and processes for fast encoding of hamming codes
US7525994B2 (en) 2003-01-30 2009-04-28 Avaya Inc. Packet data flow identification for multiplexing
US20040151109A1 (en) 2003-01-30 2004-08-05 Anuj Batra Time-frequency interleaved orthogonal frequency division multiplexing ultra wide band physical layer
US7231404B2 (en) 2003-01-31 2007-06-12 Nokia Corporation Datacast file transmission with meta-data retention
US20040162071A1 (en) 2003-02-18 2004-08-19 Francesco Grilli Method and apparatus to track count of broadcast content recipients in a wireless telephone network
EP1455504A2 (fr) 2003-03-07 2004-09-08 Samsung Electronics Co., Ltd. Appareil et méthode pour traiter un signal audio et support d'enregistrement lisible par ordinateur d'un programme informatique utilisant la méthode
JP2004289621A (ja) 2003-03-24 2004-10-14 Fujitsu Ltd データ伝送サーバ
US20060020796A1 (en) 2003-03-27 2006-01-26 Microsoft Corporation Human input security codes
JP2006519517A (ja) 2003-03-31 2006-08-24 シャープ株式会社 ビデオエンコーダ及びビデオをエンコードする方法
WO2004088988A1 (fr) 2003-03-31 2004-10-14 Sharp Kabushiki Kaisha Codeur video et procede de codage video
JP2004343701A (ja) 2003-04-21 2004-12-02 Matsushita Electric Ind Co Ltd データ受信再生装置、データ受信再生方法及びデータ受信再生処理プログラム
US20040207548A1 (en) 2003-04-21 2004-10-21 Daniel Kilbank System and method for using a microlet-based modem
US20050041736A1 (en) 2003-05-07 2005-02-24 Bernie Butler-Smith Stereoscopic television signal processing method, transmission system and viewer enhancements
US20040231004A1 (en) 2003-05-13 2004-11-18 Lg Electronics Inc. HTTP based video streaming apparatus and method in mobile communication system
CN1792056A (zh) 2003-05-16 2006-06-21 高通股份有限公司 广播/组播内容的可靠接收
JP2004348824A (ja) 2003-05-21 2004-12-09 Toshiba Corp Eccエンコード方法、eccエンコード装置
US20120202535A1 (en) 2003-05-23 2012-08-09 Navin Chaddha Method And System For Communicating A Data File
JP2004362099A (ja) 2003-06-03 2004-12-24 Sony Corp サーバ装置、情報処理装置、および情報処理方法、並びにコンピュータ・プログラム
RU2312390C2 (ru) 2003-06-07 2007-12-10 Самсунг Электроникс Ко., Лтд. Устройство и способ организации и интерпретации мультимедийных данных на записываемом носителе информации
WO2004109538A1 (fr) 2003-06-07 2004-12-16 Samsung Electronics Co. Ltd. Appareil et procede d'organisation et d'interpretation de donnees multimedia sur un support d'enregistrement
KR20040107152A (ko) 2003-06-12 2004-12-20 엘지전자 주식회사 이동통신 단말기의 전송데이터 압축/해제 방법
KR20040107401A (ko) 2003-06-13 2004-12-20 마이크로소프트 코포레이션 디지털 비디오 스트림에 대한 고속 스타트업
US20040255328A1 (en) 2003-06-13 2004-12-16 Baldwin James Armand Fast start-up for digital video streams
RU2265960C2 (ru) 2003-06-16 2005-12-10 Федеральное государственное унитарное предприятие "Калужский научно-исследовательский институт телемеханических устройств" Способ передачи информации с использованием адаптивного перемежения
US7391717B2 (en) 2003-06-30 2008-06-24 Microsoft Corporation Streaming of variable bit rate multimedia content
KR100809086B1 (ko) 2003-07-01 2008-03-03 노키아 코포레이션 시한적 멀티미디어 콘텐츠의 점진적인 다운로딩
US20070140369A1 (en) 2003-07-07 2007-06-21 Limberg Allen L System of robust DTV signal transmissions that legacy DTV receivers will disregard
US7254754B2 (en) 2003-07-14 2007-08-07 International Business Machines Corporation Raid 3+3
KR20050009376A (ko) 2003-07-16 2005-01-25 삼성전자주식회사 에러에 대해 강인한 특성을 가지는 데이터 기록 방법,이에 적합한 데이터 재생 방법, 그리고 이에 적합한 장치들
US20050028067A1 (en) 2003-07-31 2005-02-03 Weirauch Charles R. Data with multiple sets of error correction codes
CN1868157A (zh) 2003-08-21 2006-11-22 高通股份有限公司 无线链路控制层上的前向纠错编码方法和相关装置
US20050193309A1 (en) 2003-08-21 2005-09-01 Francesco Grilli Methods for forward error correction coding above a radio link control layer and related apparatus
US20070028099A1 (en) 2003-09-11 2007-02-01 Bamboo Mediacasting Ltd. Secure multicast transmission
US7831896B2 (en) 2003-09-11 2010-11-09 Runcom Technologies, Ltd. Iterative forward error correction
JP2005094140A (ja) 2003-09-12 2005-04-07 Sanyo Electric Co Ltd 映像表示装置
US7555006B2 (en) 2003-09-15 2009-06-30 The Directv Group, Inc. Method and system for adaptive transcoding and transrating in a video network
US20050071491A1 (en) 2003-09-27 2005-03-31 Lg Electronics Inc. Multimedia streaming service system and method
WO2005041421A1 (fr) 2003-09-30 2005-05-06 Telefonaktiebolaget L M Ericsson (Publ) Desentrelacement sur place de donnees
US7559004B1 (en) 2003-10-01 2009-07-07 Sandisk Corporation Dynamic redundant area configuration in a non-volatile memory system
US7451377B2 (en) 2003-10-06 2008-11-11 Digital Fountain, Inc. Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters
US20090158114A1 (en) 2003-10-06 2009-06-18 Digital Fountain, Inc. Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters
US7139960B2 (en) 2003-10-06 2006-11-21 Digital Fountain, Inc. Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters
WO2005036753A2 (fr) 2003-10-06 2005-04-21 Digital Fountain, Inc. Generateur de code et decodeur multi-etage a correction d'erreurs pour systemes de communication possedant un ou plusieurs emetteurs
US20090083806A1 (en) 2003-10-10 2009-03-26 Microsoft Corporation Media organization for distributed sending of media data
US20050097213A1 (en) 2003-10-10 2005-05-05 Microsoft Corporation Architecture for distributed sending of media data
US6995692B2 (en) 2003-10-14 2006-02-07 Matsushita Electric Industrial Co., Ltd. Data converter and method thereof
US7650036B2 (en) 2003-10-16 2010-01-19 Sharp Laboratories Of America, Inc. System and method for three-dimensional video coding
US7168030B2 (en) 2003-10-17 2007-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Turbo code decoder with parity information update
US20050091697A1 (en) 2003-10-27 2005-04-28 Matsushita Electric Industrial Co., Ltd. Apparatus for receiving broadcast signal
JP2005136546A (ja) 2003-10-29 2005-05-26 Sony Corp 送信装置および方法、記録媒体、並びにプログラム
US7257764B2 (en) 2003-11-03 2007-08-14 Broadcom Corporation FEC (Forward Error Correction) decoder with dynamic parameters
US20050102371A1 (en) 2003-11-07 2005-05-12 Emre Aksu Streaming from a server to a client
US7412641B2 (en) * 2003-12-01 2008-08-12 Digital Fountain, Inc. Protection of data from erasures using subsymbol based codes
US20050219070A1 (en) * 2003-12-01 2005-10-06 Digital Fountain, Inc. Protection of data from erasures using subsymbol based codes
EP1700410B1 (fr) 2003-12-07 2010-04-28 Adaptive Spectrum and Signal Alignment, Inc. Gestion adaptative des mots de code de correction d'erreurs sans voie de retour
US7574706B2 (en) 2003-12-15 2009-08-11 Microsoft Corporation System and method for managing and communicating software updates
RU2357279C2 (ru) 2003-12-15 2009-05-27 Майкрософт Корпорейшн Система и способ управления и передачи обновлений программного обеспечения
US7590118B2 (en) 2003-12-23 2009-09-15 Agere Systems Inc. Frame aggregation format
JP2005204170A (ja) 2004-01-16 2005-07-28 Ntt Docomo Inc データ受信装置およびデータ受信方法
CN1806392A (zh) 2004-01-20 2006-07-19 三星电子株式会社 高速无线数据通讯系统中产生和解码具有可变速率的前向纠错代码的设备和方法
US20050169379A1 (en) 2004-01-29 2005-08-04 Samsung Electronics Co., Ltd. Apparatus and method for scalable video coding providing scalability in encoder part
JP2005223433A (ja) 2004-02-03 2005-08-18 Denso Corp ストリーミングデータ送信装置およびストリーミングデータ受信装置
WO2005078982A1 (fr) 2004-02-13 2005-08-25 Nokia Corporation Identification et retransmission de parties tronquees
JP2007520961A (ja) 2004-02-13 2007-07-26 ノキア コーポレイション 欠落部分の識別および再送信
US20050195900A1 (en) 2004-03-04 2005-09-08 Samsung Electronics Co., Ltd. Video encoding and decoding methods and systems for video streaming service
US20050195899A1 (en) 2004-03-04 2005-09-08 Samsung Electronics Co., Ltd. Method and apparatus for video coding, predecoding, and video decoding for video streaming service, and image filtering method
US20050195752A1 (en) 2004-03-08 2005-09-08 Microsoft Corporation Resolving partial media topologies
US20050207392A1 (en) 2004-03-19 2005-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Higher layer packet framing using RLP
US7240236B2 (en) 2004-03-23 2007-07-03 Archivas, Inc. Fixed content distributed data storage using permutation ring encoding
JP2005277950A (ja) 2004-03-25 2005-10-06 Sony Corp 送信装置および方法、受信装置および方法、並びにプログラム
US20050216951A1 (en) 2004-03-26 2005-09-29 Macinnis Alexander G Anticipatory video signal reception and processing
US20050216472A1 (en) 2004-03-29 2005-09-29 David Leon Efficient multicast/broadcast distribution of formatted data
US20080243918A1 (en) 2004-03-30 2008-10-02 Koninklijke Philips Electronic, N.V. System and Method For Supporting Improved Trick Mode Performance For Disc Based Multimedia Content
US20060093634A1 (en) 2004-04-23 2006-05-04 Lonza Inc. Personal care compositions and concentrates for making the same
WO2005107123A1 (fr) 2004-04-29 2005-11-10 Thomson Licensing Sa Procede de transmission de paquets de donnees numeriques et dispositif de mise en oeuvre de ce procede
US7418651B2 (en) 2004-05-07 2008-08-26 Digital Fountain, Inc. File download and streaming system
WO2005112250A2 (fr) 2004-05-07 2005-11-24 Digital Fountain, Inc. Systeme de telechargement et d'enregistrement et lecture en continu de fichiers
US20130067295A1 (en) 2004-05-07 2013-03-14 Digital Fountain, Inc. File download and streaming system
US20090031199A1 (en) 2004-05-07 2009-01-29 Digital Fountain, Inc. File download and streaming system
US7633970B2 (en) 2004-05-07 2009-12-15 Agere Systems Inc. MAC header compression for use with frame aggregation
US20050254575A1 (en) 2004-05-12 2005-11-17 Nokia Corporation Multiple interoperability points for scalable media coding and transmission
US20060037057A1 (en) 2004-05-24 2006-02-16 Sharp Laboratories Of America, Inc. Method and system of enabling trick play modes using HTTP GET
JP2008502212A (ja) 2004-06-01 2008-01-24 クゥアルコム・インコーポレイテッド 配信されたソース符号化技術に基づいたサイドチャネルを利用して予測的なビデオコデックのロバスト性を高める方法、装置、及びシステム
US20070110074A1 (en) 2004-06-04 2007-05-17 Bob Bradley System and Method for Synchronizing Media Presentation at Multiple Recipients
US20060015568A1 (en) 2004-07-14 2006-01-19 Rod Walsh Grouping of session objects
US7139660B2 (en) 2004-07-14 2006-11-21 General Motors Corporation System and method for changing motor vehicle personalization settings
US8544043B2 (en) 2004-07-21 2013-09-24 Qualcomm Incorporated Methods and apparatus for providing content information to content servers
WO2006036276A1 (fr) 2004-07-21 2006-04-06 Qualcomm Incorporated Procedes et dispositifs pour fournir des informations de contenu a des serveurs de contenu
US7409626B1 (en) 2004-07-28 2008-08-05 Ikanos Communications Inc Method and apparatus for determining codeword interleaver parameters
JP2008508762A (ja) 2004-07-30 2008-03-21 ノキア コーポレイション ポイント・ツー・マルチポイント伝送システムのためのポイント・トゥー・ポイントリペア応答メカニズム
WO2006013459A1 (fr) 2004-07-30 2006-02-09 Nokia Corporation Mecanisme de demande de reparation point a point pour systemes de transmission point-multipoint
JP2008508761A (ja) 2004-07-30 2008-03-21 ノキア コーポレイション ポイント・ツー・マルチポイント送信システム用のポイント・ツー・ポイントリペア要求メカニズム
US20080215317A1 (en) 2004-08-04 2008-09-04 Dts, Inc. Lossless multi-channel audio codec using adaptive segmentation with random access point (RAP) and multiple prediction parameter set (MPPS) capability
US20090307565A1 (en) 2004-08-11 2009-12-10 Digital Fountain, Inc. Method and apparatus for fast encoding of data symbols according to half-weight codes
WO2006020826A2 (fr) 2004-08-11 2006-02-23 Digital Fountain, Inc. Procede et appareil permettant le codage rapide de symboles de donnees en fonction de codes demi-poids
US7721184B2 (en) 2004-08-11 2010-05-18 Digital Fountain, Inc. Method and apparatus for fast encoding of data symbols according to half-weight codes
US7320099B2 (en) 2004-08-25 2008-01-15 Fujitsu Limited Method and apparatus for generating error correction data, and a computer-readable recording medium recording an error correction data generating program thereon
JP2006074335A (ja) 2004-09-01 2006-03-16 Nippon Telegr & Teleph Corp <Ntt> 伝送方法、伝送システム及び伝送装置
JP2006074421A (ja) 2004-09-02 2006-03-16 Sony Corp 情報処理装置、情報記録媒体、コンテンツ管理システム、およびデータ処理方法、並びにコンピュータ・プログラム
JP2006115104A (ja) 2004-10-13 2006-04-27 Daiichikosho Co Ltd 高能率符号化された時系列情報をパケット化してリアルタイム・ストリーミング送信し受信再生する方法および装置
US20060107174A1 (en) 2004-11-16 2006-05-18 Bernd Heise Seamless change of depth of a general convolutional interleaver during transmission without loss of data
US20060109805A1 (en) 2004-11-19 2006-05-25 Nokia Corporation Packet stream arrangement in multimedia transmission
WO2006057938A2 (fr) 2004-11-22 2006-06-01 Thomson Research Funding Corporation Procede et appareil pour modifier des voies dans un systeme de lignes d'abonnes numeriques
US20080134005A1 (en) 2004-12-02 2008-06-05 Izzat Hekmat Izzat Adaptive Forward Error Correction
WO2006060036A1 (fr) 2004-12-02 2006-06-08 Thomson Licensing Correction d'erreur adaptative sans voie de retour
EP1670256A2 (fr) 2004-12-10 2006-06-14 Microsoft Corporation Système et procédé de contrôle du débit de codage de données média diffusées en flux continu
JP2006174045A (ja) 2004-12-15 2006-06-29 Ntt Communications Kk 画像配信装置、プログラム及び方法
JP2006174032A (ja) 2004-12-15 2006-06-29 Sanyo Electric Co Ltd 画像データ伝送システム、画像データ受信装置及び画像データ送信装置
US7398454B2 (en) 2004-12-21 2008-07-08 Tyco Telecommunications (Us) Inc. System and method for forward error correction decoding using soft information
JP2006186419A (ja) 2004-12-24 2006-07-13 Daiichikosho Co Ltd 高能率符号化された時系列情報をリアルタイム・ストリーミング送信し受信再生する装置
WO2006084503A1 (fr) 2005-02-08 2006-08-17 Telefonaktiebolaget Lm Ericsson (Publ) Session de flux multi-voies sur demande par des reseaux a commutation par paquets
US20060193524A1 (en) 2005-02-18 2006-08-31 Tetsu Tarumoto Image display method, image coding apparatus, and image decoding apparatus
US20060244865A1 (en) 2005-03-02 2006-11-02 Rohde & Schwarz, Inc. Apparatus, systems, methods and computer products for providing a virtual enhanced training sequence
US20090222873A1 (en) 2005-03-07 2009-09-03 Einarsson Torbjoern Multimedia Channel Switching
US8028322B2 (en) 2005-03-14 2011-09-27 Time Warner Cable Inc. Method and apparatus for network content download and recording
US7219289B2 (en) 2005-03-15 2007-05-15 Tandberg Data Corporation Multiply redundant raid system and XOR-efficient method and apparatus for implementing the same
US20060212782A1 (en) * 2005-03-15 2006-09-21 Microsoft Corporation Efficient implementation of reed-solomon erasure resilient codes in high-rate applications
US20130002483A1 (en) 2005-03-22 2013-01-03 Qualcomm Incorporated Methods and systems for deriving seed position of a subscriber station in support of unassisted gps-type position determination in a wireless communication system
JP2006287422A (ja) 2005-03-31 2006-10-19 Brother Ind Ltd 配信速度制御装置、配信システム、配信速度制御方法、及び配信速度制御用プログラム
US20060229075A1 (en) 2005-04-09 2006-10-12 Lg Electronics Inc. Supporting handover of mobile terminal
US20060256851A1 (en) 2005-04-13 2006-11-16 Nokia Corporation Coding, storage and signalling of scalability information
US20060248195A1 (en) 2005-04-27 2006-11-02 Kunihiko Toumura Computer system with a packet transfer device using a hash value for transferring a content request
WO2006116102A2 (fr) 2005-04-28 2006-11-02 Qualcomm Incorporated Utilisation de porteuses multiples dans des systemes de transmission de donnees
US7961700B2 (en) 2005-04-28 2011-06-14 Qualcomm Incorporated Multi-carrier operation in data transmission systems
JP2006319743A (ja) 2005-05-13 2006-11-24 Toshiba Corp 受信装置
US20060262856A1 (en) 2005-05-20 2006-11-23 Microsoft Corporation Multi-view video coding based on temporal and view decomposition
JP2008543142A (ja) 2005-05-24 2008-11-27 ノキア コーポレイション デジタル放送における階層的な送受信のための方法および装置
US7676735B2 (en) 2005-06-10 2010-03-09 Digital Fountain Inc. Forward error-correcting (FEC) coding and streaming
WO2006135878A2 (fr) 2005-06-10 2006-12-21 Digital Fountain, Inc. Transformations sur place avec des applications pour le codage et pour le decodage de classes variees de codes
US7644335B2 (en) 2005-06-10 2010-01-05 Qualcomm Incorporated In-place transformations with applications to encoding and decoding various classes of codes
JP2008546361A (ja) 2005-06-10 2008-12-18 デジタル ファウンテン, インコーポレイテッド 前方エラー訂正(fec)符号およびストリーミング
US20060279437A1 (en) 2005-06-10 2006-12-14 Digital Fountain, Inc. Forward error-correcting (fec) coding and streaming
US20070002953A1 (en) 2005-06-29 2007-01-04 Kabushiki Kaisha Toshiba Encoded stream reproducing apparatus
JP2007013675A (ja) 2005-06-30 2007-01-18 Sanyo Electric Co Ltd ストリーミング配信システム及びサーバ
US20070006274A1 (en) 2005-06-30 2007-01-04 Toni Paila Transmission and reception of session packets
US20070016594A1 (en) 2005-07-15 2007-01-18 Sony Corporation Scalable video coding (SVC) file format
US20070022215A1 (en) 2005-07-19 2007-01-25 Singer David W Method and apparatus for media data transmission
EP1755248A1 (fr) 2005-08-19 2007-02-21 BenQ Mobile GmbH & Co. OHG Indication de segments perdus à travers des délimitations de couches de transfert
US20100046906A1 (en) 2005-09-09 2010-02-25 Panasonic Corporation Image Processing Method, Image Recording Method, Image Processing Device and Image File Format
US7924913B2 (en) 2005-09-15 2011-04-12 Microsoft Corporation Non-realtime data transcoding of multimedia content
JP2007089137A (ja) 2005-09-19 2007-04-05 Sharp Corp ロバストなストリーミングを行うためのサーバメディア処理による適応型メディアプレイアウト
US20070081586A1 (en) 2005-09-27 2007-04-12 Raveendran Vijayalakshmi R Scalability techniques based on content information
US20070078876A1 (en) 2005-09-30 2007-04-05 Yahoo! Inc. Generating a stream of media data containing portions of media files using location tags
US8340133B2 (en) 2005-10-05 2012-12-25 Lg Electronics Inc. Method of processing traffic information and digital broadcast system
US7164370B1 (en) 2005-10-06 2007-01-16 Analog Devices, Inc. System and method for decoding data compressed in accordance with dictionary-based compression schemes
US20070081562A1 (en) 2005-10-11 2007-04-12 Hui Ma Method and device for stream synchronization of real-time multimedia transport over packet network
WO2007042916B1 (fr) 2005-10-11 2007-06-07 Nokia Corp Systeme et procede d'adaptation efficace de flux modulable
US7720096B2 (en) 2005-10-13 2010-05-18 Microsoft Corporation RTP payload format for VC-1
US20100165077A1 (en) 2005-10-19 2010-07-01 Peng Yin Multi-View Video Coding Using Scalable Video Coding
JP2007158592A (ja) 2005-12-02 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> 無線マルチキャスト伝送システム、無線送信装置及び無線マルチキャスト伝送方法
US20070127576A1 (en) 2005-12-07 2007-06-07 Canon Kabushiki Kaisha Method and device for decoding a scalable video stream
US20070134005A1 (en) 2005-12-08 2007-06-14 Electronics And Telecommunication Research Institute Apparatus and method for generating return-to-zero signal
JP2007174170A (ja) 2005-12-21 2007-07-05 Nippon Telegr & Teleph Corp <Ntt> パケット送信装置、受信装置、システム、およびプログラム
US20070157267A1 (en) 2005-12-30 2007-07-05 Intel Corporation Techniques to improve time seek operations
US20100023525A1 (en) 2006-01-05 2010-01-28 Magnus Westerlund Media container file management
WO2007078253A2 (fr) 2006-01-05 2007-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Gestion de fichiers contenant des donnees multimedias
JP2009522921A (ja) 2006-01-05 2009-06-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) メディアコンテナファイルの管理
JP2009522922A (ja) 2006-01-05 2009-06-11 テレフオンアクチーボラゲット エル エム エリクソン(パブル) メディアコンテナファイルの管理
US8185794B2 (en) 2006-01-05 2012-05-22 Telefonaktiebolaget L M Ericsson (Publ) Media container file management
KR20080083299A (ko) 2006-01-05 2008-09-17 텔레폰악티에볼라겟엘엠에릭슨(펍) 미디어 컨테이너 파일 관리
US20070162611A1 (en) 2006-01-06 2007-07-12 Google Inc. Discontinuous Download of Media Files
US20070162568A1 (en) 2006-01-06 2007-07-12 Manish Gupta Dynamic media serving infrastructure
US20070201549A1 (en) 2006-01-11 2007-08-30 Nokia Corporation Backward-compatible aggregation of pictures in scalable video coding
CN101390399A (zh) 2006-01-11 2009-03-18 诺基亚公司 可伸缩视频编码中的图片的后向兼容聚合
US20070177811A1 (en) 2006-01-12 2007-08-02 Lg Electronics Inc. Processing multiview video
US8081716B2 (en) 2006-01-25 2011-12-20 Lg Electronics Inc. Digital broadcasting receiving system and method of processing data
US20070176800A1 (en) 2006-01-30 2007-08-02 International Business Machines Corporation Fast data stream decoding using apriori information
RU2290768C1 (ru) 2006-01-30 2006-12-27 Общество с ограниченной ответственностью "Трафиклэнд" Система медиавещания в инфраструктуре оператора мобильной связи
WO2007090834A2 (fr) 2006-02-06 2007-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Transport de paquets
US20070185973A1 (en) 2006-02-07 2007-08-09 Dot Hill Systems, Corp. Pull data replication model
US20090055705A1 (en) 2006-02-08 2009-02-26 Wen Gao Decoding of Raptor Codes
US20070204196A1 (en) 2006-02-13 2007-08-30 Digital Fountain, Inc. Streaming and buffering using variable fec overhead and protection periods
JP2009527949A (ja) 2006-02-21 2009-07-30 デジタル ファウンテン, インコーポレイテッド 通信システムのための多体ベース符号の生成器および復号化器
WO2007098480A1 (fr) 2006-02-21 2007-08-30 Qualcomm Incorporated Ajustement rapide dans des applications multimédia
US20070200949A1 (en) 2006-02-21 2007-08-30 Qualcomm Incorporated Rapid tuning in multimedia applications
JP2007228205A (ja) 2006-02-23 2007-09-06 Funai Electric Co Ltd ネットワークサーバ
US20070230568A1 (en) 2006-03-29 2007-10-04 Alexandros Eleftheriadis System And Method For Transcoding Between Scalable And Non-Scalable Video Codecs
US20080010153A1 (en) 2006-04-24 2008-01-10 Pugh-O'connor Archie Computer network provided digital content under an advertising and revenue sharing basis, such as music provided via the internet with time-shifted advertisements presented by a client resident application
US20090100496A1 (en) 2006-04-24 2009-04-16 Andreas Bechtolsheim Media server system
US20070255844A1 (en) 2006-04-27 2007-11-01 Microsoft Corporation Guided random seek support for media streaming
US7971129B2 (en) 2006-05-10 2011-06-28 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient users of the communications systems
US20070300127A1 (en) 2006-05-10 2007-12-27 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient users of the communications systems
US20110258510A1 (en) 2006-05-10 2011-10-20 Digital Fountain, Inc. Code generator and decoder for communications systems operating using hybrid codes to allow for multiple efficient uses of the communications systems
US20070277209A1 (en) 2006-05-24 2007-11-29 Newport Media, Inc. Robust transmission system and method for mobile television applications
US20110238789A1 (en) 2006-06-09 2011-09-29 Qualcomm Incorporated Enhanced block-request streaming system using signaling or block creation
US20110239078A1 (en) 2006-06-09 2011-09-29 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel http and forward error correction
US20140380113A1 (en) 2006-06-09 2014-12-25 Qualcomm Incorporated Enhanced block-request streaming using cooperative parallel http and forward error correction
US20080256418A1 (en) 2006-06-09 2008-10-16 Digital Fountain, Inc Dynamic stream interleaving and sub-stream based delivery
US20080058958A1 (en) 2006-06-09 2008-03-06 Chia Pao Cheng Knee joint with retention and cushion structures
US20110231519A1 (en) 2006-06-09 2011-09-22 Qualcomm Incorporated Enhanced block-request streaming using url templates and construction rules
US20130007223A1 (en) 2006-06-09 2013-01-03 Qualcomm Incorporated Enhanced block-request streaming system for handling low-latency streaming
JP2008011404A (ja) 2006-06-30 2008-01-17 Toshiba Corp コンテンツ処理装置及びコンテンツ処理方法
JP2008016907A (ja) 2006-07-03 2008-01-24 Internatl Business Mach Corp <Ibm> パケット回復のための符号化および復号化技術
JP2009544991A (ja) 2006-07-20 2009-12-17 サンディスク コーポレイション 向上されたavプレーヤ装置、並びにそれを使用したコンテンツ配信のシステムおよび方法
WO2008011549A2 (fr) 2006-07-20 2008-01-24 Sandisk Corporation Appareil lecteur audiovisuel amélioré et système et procédé correspondants pour la diffusion de contenus
US20100174823A1 (en) 2006-07-31 2010-07-08 Juniper Networks, Inc. Optimizing batch size for prefetching data over wide area networks
US20080052753A1 (en) 2006-08-23 2008-02-28 Mediatek Inc. Systems and methods for managing television (tv) signals
US20080066136A1 (en) 2006-08-24 2008-03-13 International Business Machines Corporation System and method for detecting topic shift boundaries in multimedia streams using joint audio, visual and text cues
WO2008023328A3 (fr) 2006-08-24 2008-04-24 Nokia Corp Système et procédé pour indiquer des relations de pistes dans des fichiers multimédias
US20080075172A1 (en) 2006-09-25 2008-03-27 Kabushiki Kaisha Toshiba Motion picture encoding apparatus and method
US20100067495A1 (en) 2006-10-30 2010-03-18 Young Dae Lee Method of performing random access in a wireless communcation system
US20080101478A1 (en) 2006-10-31 2008-05-01 Kabushiki Kaisha Toshiba Decoding device and decoding method
WO2008054100A1 (fr) 2006-11-01 2008-05-08 Electronics And Telecommunications Research Institute Procédé et appareil pour décoder des métadonnées utilisées pour lire un contenu stéréoscopique
US20080170564A1 (en) 2006-11-14 2008-07-17 Qualcomm Incorporated Systems and methods for channel switching
US8027328B2 (en) 2006-12-26 2011-09-27 Alcatel Lucent Header compression in a wireless communication network
US20080168133A1 (en) 2007-01-05 2008-07-10 Roland Osborne Video distribution system including progressive playback
WO2008086313A1 (fr) 2007-01-05 2008-07-17 Divx, Inc. Système de distribution de vidéos avec lecture progressive
US20080168516A1 (en) 2007-01-08 2008-07-10 Christopher Lance Flick Facilitating Random Access In Streaming Content
US20080313191A1 (en) 2007-01-09 2008-12-18 Nokia Corporation Method for the support of file versioning in file repair
KR20090098919A (ko) 2007-01-09 2009-09-17 노키아 코포레이션 Mbms 파일 복구시 파일 버저닝을 지원하는 방법
US20080172430A1 (en) 2007-01-11 2008-07-17 Andrew Thomas Thorstensen Fragmentation Compression Management
US20080172712A1 (en) 2007-01-11 2008-07-17 Matsushita Electric Industrial Co., Ltd. Multimedia data transmitting apparatus, multimedia data receiving apparatus, multimedia data transmitting method, and multimedia data receiving method
US20080170806A1 (en) 2007-01-12 2008-07-17 Samsung Electronics Co., Ltd. 3D image processing apparatus and method
WO2008085013A1 (fr) 2007-01-12 2008-07-17 University-Industry Cooperation Group Of Kyung Hee University Format de paquet d'une unité de couche d'abstraction de réseau, algorithme et appareil de codage et de décodage vidéo à l'aide dudit format, algorithme de contrôle de qos et appareil de commutation de label ipv6 faisant appel audit format
US20080181296A1 (en) 2007-01-16 2008-07-31 Dihong Tian Per multi-block partition breakpoint determining for hybrid variable length coding
US20080189419A1 (en) 2007-02-02 2008-08-07 David Andrew Girle System and Method to Synchronize OSGi Bundle Inventories Between an OSGi Bundle Server and a Client
US20080192818A1 (en) 2007-02-09 2008-08-14 Dipietro Donald Vincent Systems and methods for securing media
US20080232357A1 (en) 2007-03-19 2008-09-25 Legend Silicon Corp. Ls digital fountain code
WO2008131023A1 (fr) 2007-04-16 2008-10-30 Digital Fountain, Inc. Entrelacement de flux dynamique et fourniture sur la base d'un flux de niveau inférieur
JP2008283232A (ja) 2007-05-08 2008-11-20 Sharp Corp ファイル再生装置、ファイル再生方法、ファイル再生を実行させるプログラム及びそのプログラムを記録した記録媒体
JP2008283571A (ja) 2007-05-11 2008-11-20 Ntt Docomo Inc コンテンツ配信装置、コンテンツ配信システム、およびコンテンツ配信方法
US20080285556A1 (en) 2007-05-14 2008-11-20 Samsung Electronics Co., Ltd. Broadcasting service transmitting apparatus and method and broadcasting service receiving apparatus and method for effectively accessing broadcasting service
WO2008144004A1 (fr) 2007-05-16 2008-11-27 Thomson Licensing Appareil et procédé pour le codage et le décodage de signaux
WO2008148708A1 (fr) 2007-06-05 2008-12-11 Thomson Licensing Dispositif et procédé servant à coder un contenu vidéo sous la forme d'un flux extensible
US20080303896A1 (en) 2007-06-07 2008-12-11 Real D Stereoplexing for film and video applications
US20080303893A1 (en) 2007-06-11 2008-12-11 Samsung Electronics Co., Ltd. Method and apparatus for generating header information of stereoscopic image data
WO2008156390A1 (fr) 2007-06-20 2008-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Procédé et agencement pour une gestion de session multimédia améliorée
US20090003439A1 (en) 2007-06-26 2009-01-01 Nokia Corporation System and method for indicating temporal layer switching points
US20090019229A1 (en) 2007-07-10 2009-01-15 Qualcomm Incorporated Data Prefetch Throttle
JP2009027598A (ja) 2007-07-23 2009-02-05 Hitachi Ltd 映像配信サーバおよび映像配信方法
US20090043906A1 (en) 2007-08-06 2009-02-12 Hurst Mark B Apparatus, system, and method for multi-bitrate content streaming
US8327403B1 (en) 2007-09-07 2012-12-04 United Video Properties, Inc. Systems and methods for providing remote program ordering on a user device via a web server
US20090067551A1 (en) 2007-09-12 2009-03-12 Digital Fountain, Inc. Generating and communicating source identification information to enable reliable communications
JP2010539832A (ja) 2007-09-21 2010-12-16 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 情報信号、情報コンテンツを符号化するための装置及び方法、並びに情報信号の誤り訂正のための装置及び方法
US20090089445A1 (en) 2007-09-28 2009-04-02 Deshpande Sachin G Client-Controlled Adaptive Streaming
EP2046044A1 (fr) 2007-10-01 2009-04-08 Cabot Communications Ltd Procédé et appareil de transmission de flux en continu de contenus multimédia numériques et système de communication
US20090092138A1 (en) 2007-10-09 2009-04-09 Samsung Electronics Co. Ltd. Apparatus and method for generating and parsing mac pdu in a mobile communication system
US20090103523A1 (en) 2007-10-19 2009-04-23 Rebelvox, Llc Telecommunication and multimedia management method and apparatus
US20090106356A1 (en) 2007-10-19 2009-04-23 Swarmcast, Inc. Media playback point seeking using data range requests
US20090125636A1 (en) 2007-11-13 2009-05-14 Qiong Li Payload allocation methods for scalable multimedia servers
WO2009065526A1 (fr) 2007-11-23 2009-05-28 Media Patents S.L. Processus pour la distribution en ligne de contenus audiovisuels avec des publicités, système de gestion de publicités, système de gestion de droits numériques et lecteur de contenu audiovisuel pourvu desdits systèmes
US20100257051A1 (en) 2007-11-23 2010-10-07 Media Patents, S.L. Apparatus and methods for the on-line distribution of digital files
US20090150557A1 (en) 2007-12-05 2009-06-11 Swarmcast, Inc. Dynamic bit rate scaling
JP2009171558A (ja) 2007-12-17 2009-07-30 Canon Inc 画像処理装置及び画像管理サーバ装置及びそれらの制御方法及びプログラム
US20090164653A1 (en) 2007-12-24 2009-06-25 Mandyam Giridhar D Adaptive streaming for on demand wireless services
US20090195640A1 (en) 2008-01-31 2009-08-06 Samsung Electronics Co., Ltd. Method and apparatus for generating stereoscopic image data stream for temporally partial three-dimensional (3d) data, and method and apparatus for displaying temporally partial 3d data of stereoscopic image
US20090201990A1 (en) 2008-02-04 2009-08-13 Alcatel-Lucent Method and device for reordering and multiplexing multimedia packets from multimedia streams pertaining to interrelated sessions
US20090204877A1 (en) 2008-02-13 2009-08-13 Innovation Specialists, Llc Block Modulus Coding (BMC) Systems and Methods for Block Coding with Non-Binary Modulus
EP2096870A2 (fr) 2008-02-28 2009-09-02 Seiko Epson Corporation Systèmes et procédés pour le traitement de projections multiples de données vidéo dans un fichier vidéo unique
US20100198982A1 (en) 2008-03-18 2010-08-05 Clarity Systems, S.L. Methods for Transmitting Multimedia Files and Advertisements
US20090248697A1 (en) 2008-03-31 2009-10-01 Richardson David R Cache optimization
US20090257508A1 (en) 2008-04-10 2009-10-15 Gaurav Aggarwal Method and system for enabling video trick modes
US7979769B2 (en) 2008-04-14 2011-07-12 Lg Electronics Inc. Method and apparatus for performing random access procedures
US20100049865A1 (en) 2008-04-16 2010-02-25 Nokia Corporation Decoding Order Recovery in Session Multiplexing
US20100020871A1 (en) 2008-04-21 2010-01-28 Nokia Corporation Method and Device for Video Coding and Decoding
WO2009137705A2 (fr) 2008-05-07 2009-11-12 Digital Fountain, Inc. Changement de canal rapide et protection de diffusion en flux continu de haute qualité sur un canal de diffusion
US20090287841A1 (en) 2008-05-12 2009-11-19 Swarmcast, Inc. Live media delivery over a packet-based computer network
JP2009277182A (ja) 2008-05-19 2009-11-26 Ntt Docomo Inc プロキシサーバおよび通信中継プログラム、並びに通信中継方法
US20110055881A1 (en) 2008-05-29 2011-03-03 Tencent Technology (Shenzhen) Company Limited Media file on-demand method, system and appartus
WO2009143741A1 (fr) 2008-05-29 2009-12-03 腾讯科技(深圳)有限公司 Procédé, système et appareil pour lire des fichiers de média à la demande
US20090297123A1 (en) 2008-05-30 2009-12-03 Microsoft Corporation Media streaming with enhanced seek operation
US20090300203A1 (en) 2008-05-30 2009-12-03 Microsoft Corporation Stream selection for enhanced media streaming
US20090300204A1 (en) 2008-05-30 2009-12-03 Microsoft Corporation Media streaming using an index file
US20100011274A1 (en) 2008-06-12 2010-01-14 Qualcomm Incorporated Hypothetical fec decoder and signalling for decoding control
US20090319563A1 (en) 2008-06-21 2009-12-24 Microsoft Corporation File format for media distribution and presentation
US20090328228A1 (en) 2008-06-27 2009-12-31 Microsoft Corporation Segmented Media Content Rights Management
US20130287023A1 (en) 2008-07-02 2013-10-31 Apple Inc. Multimedia-aware quality-of-service and error correction provisioning
US20100011117A1 (en) 2008-07-09 2010-01-14 Apple Inc. Video streaming using multiple channels
US20100153578A1 (en) 2008-07-16 2010-06-17 Nokia Corporation Method and Apparatus for Peer to Peer Streaming
US8638796B2 (en) 2008-08-22 2014-01-28 Cisco Technology, Inc. Re-ordering segments of a large number of segmented service flows
KR20100028156A (ko) 2008-09-04 2010-03-12 에스케이 텔레콤주식회사 미디어 전송 시스템 및 방법
EP2323390A2 (fr) 2008-09-04 2011-05-18 Sk Telecom Co., LTD Système et procédé de transmission multimédia
US8737421B2 (en) 2008-09-04 2014-05-27 Apple Inc. MAC packet data unit construction for wireless systems
US20100061444A1 (en) 2008-09-11 2010-03-11 On2 Technologies Inc. System and method for video encoding using adaptive segmentation
US20100131671A1 (en) 2008-11-24 2010-05-27 Jaspal Kohli Adaptive network content delivery system
US8301725B2 (en) 2008-12-31 2012-10-30 Apple Inc. Variant streams for real-time or near real-time streaming
US20100189131A1 (en) 2009-01-23 2010-07-29 Verivue, Inc. Scalable seamless digital video stream splicing
WO2010085361A2 (fr) 2009-01-26 2010-07-29 Thomson Licensing Compression de trames pour un codage vidéo
WO2010088420A1 (fr) 2009-01-29 2010-08-05 Dolby Laboratories Licensing Corporation Procédés et dispositifs pour sous-échantillonnage et entrelacement d'images multiples, par exemple stéréoscopiques
US20100211690A1 (en) 2009-02-13 2010-08-19 Digital Fountain, Inc. Block partitioning for a data stream
US20100223533A1 (en) 2009-02-27 2010-09-02 Qualcomm Incorporated Mobile reception of digital video broadcasting-terrestrial services
US20100235528A1 (en) 2009-03-16 2010-09-16 Microsoft Corporation Delivering cacheable streaming media presentations
US20100235472A1 (en) 2009-03-16 2010-09-16 Microsoft Corporation Smooth, stateless client media streaming
WO2010120804A1 (fr) 2009-04-13 2010-10-21 Reald Inc. Codage, décodage et distribution de vidéo stéréoscopique à résolution améliorée
US20100318632A1 (en) 2009-06-16 2010-12-16 Microsoft Corporation Byte range caching
US20120185530A1 (en) 2009-07-22 2012-07-19 Jigsee Inc. Method of streaming media to heterogeneous client devices
US20110268178A1 (en) 2009-08-18 2011-11-03 Anthony Neal Park Encoding video streams for adaptive video streaming
US20110299629A1 (en) 2009-08-19 2011-12-08 Qualcomm Incorporated Methods and apparatus employing fec codes with permanent inactivation of symbols for encoding and decoding processes
US20120099593A1 (en) 2009-08-19 2012-04-26 Qualcomm Incorporated Universal file delivery methods for providing unequal error protection and bundled file delivery services
WO2011038034A1 (fr) 2009-09-22 2011-03-31 Qualcomm Incorporated Diffusion en flux de demandes de blocs améliorée utilisant un http parallèle coopératif et une correction d'erreurs sans circuit de retour
US20110096828A1 (en) 2009-09-22 2011-04-28 Qualcomm Incorporated Enhanced block-request streaming using scalable encoding
WO2011038013A2 (fr) 2009-09-22 2011-03-31 Qualcomm Incorporated Système amélioré de diffusion en flux de demandes de blocs utilisant la signalisation ou la création de blocs
US20110231569A1 (en) 2009-09-22 2011-09-22 Qualcomm Incorporated Enhanced block-request streaming using block partitioning or request controls for improved client-side handling
US20110083144A1 (en) 2009-10-06 2011-04-07 Bocharov John A Integrating continuous and sparse streaming data
US8812735B2 (en) 2009-10-15 2014-08-19 Sony Corporation Content reproduction system, content reproduction apparatus, program, content reproduction method, and providing content server
JP2011087103A (ja) 2009-10-15 2011-04-28 Sony Corp コンテンツ再生システム、コンテンツ再生装置、プログラム、コンテンツ再生方法、およびコンテンツサーバを提供
US20110119394A1 (en) 2009-11-04 2011-05-19 Futurewei Technologies, Inc. System and Method for Media Content Streaming
US20110119396A1 (en) 2009-11-13 2011-05-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data
WO2011059286A2 (fr) 2009-11-13 2011-05-19 Samsung Electronics Co.,Ltd. Procédé et appareil permettant de fournir et de recevoir des données
CN101729857A (zh) 2009-11-24 2010-06-09 中兴通讯股份有限公司 一种接入视频服务的方法及视频播放系统
US20110307545A1 (en) 2009-12-11 2011-12-15 Nokia Corporation Apparatus and Methods for Describing and Timing Representatives in Streaming Media Files
WO2011070552A1 (fr) 2009-12-11 2011-06-16 Nokia Corporation Dispositif et procédés pour décrire des représentations de synchronisation dans des fichiers multimédia transmis en continu
US20120317305A1 (en) 2010-02-19 2012-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement for Representation Switching in HTTP Streaming
WO2011102792A1 (fr) 2010-02-19 2011-08-25 Telefonaktiebolaget L M Ericsson (Publ) Procédé et dispositif destinés à effectuer une adaptation dans un flux http
US20110216541A1 (en) 2010-03-04 2011-09-08 Ushio Denki Kabushiki Kaisha Light source apparatus
US8422474B2 (en) 2010-03-11 2013-04-16 Electronics & Telecommunications Research Institute Method and apparatus for transceiving data in a MIMO system
US20110280316A1 (en) 2010-05-13 2011-11-17 Qualcom Incorporated Frame packing for asymmetric stereo video
US20110280311A1 (en) 2010-05-13 2011-11-17 Qualcomm Incorporated One-stream coding for asymmetric stereo video
US20110307581A1 (en) 2010-06-14 2011-12-15 Research In Motion Limited Media Presentation Description Delta File For HTTP Streaming
US20120016965A1 (en) 2010-07-13 2012-01-19 Qualcomm Incorporated Video switching for streaming video data
US20120013746A1 (en) 2010-07-15 2012-01-19 Qualcomm Incorporated Signaling data for multiplexing video components
US20120023254A1 (en) 2010-07-20 2012-01-26 University-Industry Cooperation Group Of Kyung Hee University Method and apparatus for providing multimedia streaming service
US20120023249A1 (en) 2010-07-20 2012-01-26 Qualcomm Incorporated Providing sequence data sets for streaming video data
US20120020413A1 (en) 2010-07-21 2012-01-26 Qualcomm Incorporated Providing frame packing type information for video coding
US20140009578A1 (en) 2010-07-21 2014-01-09 Qualcomm Incorporated Providing frame packing type information for video coding
US20120033730A1 (en) 2010-08-09 2012-02-09 Sony Computer Entertainment America, LLC. Random access point (rap) formation using intra refreshing technique in video coding
US20120042090A1 (en) 2010-08-10 2012-02-16 Qualcomm Incorporated Manifest file updates for network streaming of coded multimedia data
US20120042050A1 (en) 2010-08-10 2012-02-16 Qualcomm Incorporated Representation groups for network streaming of coded multimedia data
WO2012021540A1 (fr) 2010-08-10 2012-02-16 Qualcomm Incorporated Modes d'enrichissement pour la diffusion en flux continu sur le réseau de données vidéo codées
US20120042089A1 (en) 2010-08-10 2012-02-16 Qualcomm Incorporated Trick modes for network streaming of coded multimedia data
US20120047280A1 (en) 2010-08-19 2012-02-23 University-Industry Cooperation Group Of Kyung Hee University Method and apparatus for reducing deterioration of a quality of experience of a multimedia service in a multimedia system
US8615023B2 (en) 2010-10-27 2013-12-24 Electronics And Telecommunications Research Institute Apparatus and method for transmitting/receiving data in communication system
US20120151302A1 (en) 2010-12-10 2012-06-14 Qualcomm Incorporated Broadcast multimedia storage and access using page maps when asymmetric memory is used
US20120208580A1 (en) 2011-02-11 2012-08-16 Qualcomm Incorporated Forward error correction scheduling for an improved radio link protocol
WO2012109614A1 (fr) 2011-02-11 2012-08-16 Qualcomm Incorporated Codage et décodage à l'aide de codes élastiques avec mappage de bloc de source flexible
US20120210190A1 (en) 2011-02-11 2012-08-16 Qualcomm Incorporated Encoding and decoding using elastic codes with flexible source block mapping
US20120207068A1 (en) 2011-02-11 2012-08-16 Qualcomm Incorporated Framing for an improved radio link protocol including fec
US20130246643A1 (en) 2011-08-31 2013-09-19 Qualcomm Incorporated Switch signaling methods providing improved switching between representations for adaptive http streaming
US20130091251A1 (en) 2011-10-05 2013-04-11 Qualcomm Incorporated Network streaming of media data
US20130254634A1 (en) 2012-03-26 2013-09-26 Qualcomm Incorporated Universal object delivery and template-based file delivery

Non-Patent Citations (235)

* Cited by examiner, † Cited by third party
Title
"Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television; ETSI EN 300 744" ETSI Standards, LIS, Sophia Antipolis Cedex, France, V1.6.1, p. 9, Jan. 10, 2009.
"Digital Video Broadcasting (DVB); Guidelines for the implementation of DVB-IP Phase 1 specifications; ETSI TS 102 542" ETSI Standards, LIS, Sophia Antipoliscedex, France, vol. BC, No. V1.2.1, Apr. 1, 2008, XP014041619 ISSN: 0000-0001 p. 43 p. 66 pp. 70, 71.
"Joint Draft 8.0 on Multiview Video Coding", 28th JVT meeting, Hannover, Germany, Document: JVT-AB204 (rev.1), Jul. 2008. available from http:// wftp3. itu.int/av-arch/jvt-site/2008-07-Hannover/JVT-AB204.
3GPP TS 26.234 V9.1.0 ,"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (Release 9)", Dec. 2009, 179 pages.
3GPP TS 26.244 V9.1.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP), (Release 9), Mar. 2010, 55 pp.
3GPP TS 26.247, v1.5.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) (Release 10), 2010, 91 pages.
3GPP TSG-SA4 #57 S4-100015, IMS based PSS and MBMS User Service extensions, Jan 19, 2010, URL: http://www.3gpp.org/ftp/tsg-sa/WG4-CODEC/TSGS4-57/docs/S4-100015.zip.
3GPP: "3rd Generation Partnership Project; Technical Specification Group Services and system Aspects; Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs (Release 6)", Sophia Antipolis, France, Jun. 1, 2005, XP002695256, Retrieved from the Internet: URL:http://www.etsi.org/deliver/etsi-ts/126300-126399/126346/06.01.00-60/ts-126346v060100p.pdf.
3rd Generation Partnership Project, Technical Specification Group Services and System Aspects Transparent end-to-end packet switched streaming service (PSS), 3GPP file format (3GP) (Release 8) , 3GPP Standard, 3GPP TS 26.244, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre , 650, Route Des Lucioles , F-06921 Sophia-Antipolis Cedex , France, No. V8.1.0, Jun. 1, 2009, pp. 1-52, XP050370199.
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP) (Release 9) , 3GPP Standard; 3GPP TS 26.244, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. V9.2.0, Jun. 9, 2010, pp. 1-55, XP050441544, [retrieved on Jun. 6, 2010].
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) (Release 10), 3GPP Standard; 3GPP TS 26.247, 3RD Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. V10.0.0, Jun. 17, 2011, pp. 1-94, XP050553206, [retrieved on Jun. 17, 2011].
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (Release 9) 3GPP TS 26.234 V9.3.0, Jun. 23, 2010 pp. 85-102, URL:http://www.3gpp.org/ftp/TSG-SA/WG4-CODEC/TSGS4-59/Docs/S4-100511.zip, 26234-930.zip.
Afzal, et al., "Video Streaming over MBMS: A System Design Approach", Journal of Multimedia, vol. 1, No. 5, Aug. 2006, pp. 25-35.
Aggarwal, C. et al.: "A Permutation-Based Pyramid Broadcasting Scheme for Video-on-Demand Systems," Proc. IEEE Int'l Conf. on Multimedia Systems, Hiroshima, Japan (Jun. 1996).
Aggarwal, C. et al.: "On Optimal Batching Policies for Video-on-Demand Storage Servers," Multimedia Systems, vol. 4, No. 4, pp. 253-258 (1996).
Albanese, A., et al., "Priority Encoding Transmission", IEEE Transactions on Information Theory, vol. 42, No. 6, pp. 1-22, (Nov. 1996).
Alex Zambelli,"IIS Smooth Streaming Technical Overview", Microsoft Mar. 25, 2009, XP002620446, Retrieved from the Internet: URL:http://www.microsoft.com/downloads/en/details.aspx?FamilyID=03d22583-3ed6-44da-8464-blb4b5ca7520, [retrieved on Jan. 21, 2011].
Aljoscha Smolic et al., "Development of a New MPEG Standard for Advanced 3D Video Applications", IEEE International Symposium on Image and Signal Processing and Analysis, Sep. 16, 2009, pp. 400-407, XP031552049, ISBN: 978-953-184-135-1.
Almeroth, et al., "The use of multicast delivery to provide a scalable and interactive video-on-demand service", IEEE Journal on Selected Areas in Communication, 14(6): 1110-1122, (1996).
Alon, et al.: "Linear Time Erasure Codes with Nearly Optimal Recovery," Proceedings of the Annual Symposium on Foundations of Computer Science, US, Los Alamitos, IEEE Comp. Soc. Press, vol. Symp. 36, pp. 512-516 (Oct. 23, 1995) XP000557871.
Amin Shokrollahi: "LDPC Codes: An Introduction" Internet Citation 2 Apr. 1 2003, XP002360065 Retrieved from the Internet: URL : http ://www . ipm. ac . ir/IPM/homepage/Amin 2. pdf [retrieved on Dec. 19, 2005].
Amon P. et al., "File Format for Scalable Video Coding", IEEE Transactions on Circuits and Systems for Video Technology, IEEE Service Center, Piscataway, NJ, US, vol. 17, No. 9, Sep. 1, 2007, pp. 1174-1185, XP011193013, ISSN: 1051-8215, DOI:10.1109/TCSVT.2007.905521.
Anonymous: "Technologies under Consideration", 100. MPEG Meeting;30-4-2012-Apr. 5, 2012; Geneva;(Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. N12682, Jun. 7, 2012, XP030019156.
Anonymous: "Technologies under Consideration", 98. MPEG Meeting; Nov. 28, 2011-Dec. 2, 2011; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11),, No. N12330, Dec. 3, 2011, XP030018825.
Anonymous: "Text of ISO/IEC 14496-12 3rd Edition", 83 MPEG Meeting; Jan. 14, 2008-Jan. 18, 2008; Antalya; (Motion PictureExpert Group or ISO/IEC JTC1/SC29/WG11), No. N9678, Apr. 22, 2008, XP030016172.
Anonymous: "Text of ISO/IEC 14496-12:2008/PDAM 2 Sub-track selection & switching", 91. Mpeg Meeting; Jan. 18, 2010-Jan. 22, 2010; Kyoto; (Motion Picture Expertgroup or ISO/IEC JTC1/SC29/WG11), No. N11137, Jan. 22, 2010, XP030017634, ISSN: 0000-0030.
Anonymous: "Text of ISO/IEC 14496-15 2nd edition", 91 MPEG Meeting; Jan. 18, 2010-Jan. 22, 2010; Kyoto; (Motion Picture Expertgroup or ISP/IEC JTC1/SC29/WG11) No. N11139, Jan. 22, 2010, XP030017636.
Anonymous: "Text of ISO/IEC IS 23009-1 Media Presentation Description and Segment Formats", 98. MPEG Meeting; Nov. 28, 2011-Dec. 2, 2012; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. N12329, Jan. 6, 2012, XP030018824.
Anonymous: [Gruneberg, K., Narasimhan, S. and Chen, Y., editors] "Text of ISO/IEC 13818-1:2007/PDAM 6 MVC operation point descriptor", 90 MPEG Meeting; Oct. 26, 2009-Oct. 30, 2009; Xian; (Motion Picture Expertgroup or ISO/IEC JTC1/SC29/WG111), No. N10942, Nov. 19, 2009, XP030017441.
Apple Inc., "On the time-stamps in the segment-inbox for httpstreaming (26.244, R9)", TSG-SA4#58 meeting, Vancouver, Canada, Apr. 2010, p. 5.
Atis: "PTV Content on Demand Service", IIF-WT-063R44, Nov. 11, 2010, pp. 1-124, XP055045168, Retrieved from the Internet: URL:ftp://vqeg.its.bldrdoc.gov/DocumentsNOEG-Atlanta-Nov10/MeetingFiles/Liaison/IIF-WT-063R44-Content-on-Demand.pdf [retrieved on Nov. 22, 2012].
Bar-Noy et al. "Efficient algorithms for optimal stream merging for media-on-demand," Draft (Aug. 2000), pp. 1-43.
Bar-Noy, et al., "Competitive on-line stream merging algorithms for media-on-demand", Draft (Jul. 2000), pp. 1-34.
Bigloo, A. et al.: "A Robust Rate-Adaptive Hybrid ARQ Scheme and Frequency Hopping for Multiple-Access Communication Systems," IEEE Journal on Selected Areas in Communications, US, IEEE Inc, New York (Jun. 1, 1994) pp. 917-924, XP000464977.
Bitner, J.R., et al.: "Efficient Generation of the Binary Reflected Gray code and Its Applications," Communications of the ACM, pp. 517-521, vol. 19 (9), 1976.
Blomer, et al., "An XOR-Based Erasure-Resilient Coding Scheme," ICSI Technical Report No. TR-95-048 (1995) [avail. At ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-048.pdf].
Bouazizi I., et al., "Proposals for ALC/FLUTE server file format (14496-12Amd.2)", 77. MPEG Meeting; 17-07-2006-Dec. 7, 2006; Klagenfurt; (Motion Pictureexpert Group or ISO/IEC JTC1/SC29/WG11), No. M13675, Jul. 12, 2006, XP030042344, ISSN: 0000-0236.
Bross et al., "WD4: Working Draft 4 of High-Efficiency Video Coding," JCTVC-F803-d2, (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 Joint Collaborative Team on Video Coding, 6th Meeting, Torino, IT, Jul. 1-22, 2011, 226 pages.
Bross et al., "WD5: Working Draft 5 of High-Efficiency Video Coding," JCTVC-G1103-d2, (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 Joint Collaborative Team on Video Coding, 7th Meeting, Geneva, Switzerland (Nov. 2011), 214 pages.
Bross, et al., "High efficiency video coding (HEVC) text specification draft 6," JCTVC-H1003, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 8th Meeting: San José, CA, USA, Feb. 1-10, 2012, 259 pp.
Bross, et al., "High efficiency video coding (HEVC) text specification draft 6," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 JCTVC-H1003, 7th Meeting: Geneva, CH, Nov. 21-30, 2011, pp. 259.
Bross, et al., "High efficiency video coding (HEVC) text specification draft 7," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012, JCTVC-I1003-d21, pp. 290.
Bross, et al., "High efficiency video coding (HEVC) text specification draft 8," Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 10th Meeting: Stockholm, SE, Jul. 11-20, 2012, JCTVC-J1003-d7, pp. 261.
Byers, J.W. et al.: "A Digital Fountain Approach to Reliable Distribution of Bulk Data," Computer Communication Review, Association for Computing Machinery. New York, US, vol. 28, No. 4 (Oct. 1998) pp. 56-67 XP000914424 ISSN:0146-4833.
Byers, J.W. et al.: "Accessing multiple mirror sites in parallel: using Tornado codes to speed up downloads," 1999, Eighteenth Annual Joint Conference of the IEEE Comupter and Communications Socities, pp. 275-283, Mar. 21, 1999, XP000868811.
Cataldi et al., " Sliding-Window Raptor Codes for Efficient Scalable Wireless Video Broadcasting With Unequal Loss Protection", IEEE Transactions on Image Processing, Jun. 1, 2010, pp. 1491-1503, vol. 19, No. 6, IEEE Service Center, XP011328559, ISSN: 1057-7149, DOI: 10.1109/TIP.2010.2042985.
Charles Lee L.H, "Error-Control Block Codes for Communications Engineers", 2000, Artech House, XP002642221 pp. 39-45.
Chen Ying et al., "Coding techniques in Multiview Video Coding and Joint Multiview Video Model", Picture Coding Symposium, 2009, PCS 2009, IEEE, Piscataway, NJ, USA, May 6, 2009, pp. 1-4, XP031491747, ISBN: 978-1-4244-4593-6.
Chen, et al., U.S. Patent Application titled "Frame Packing for Asymmetric Stereo Video", having filed Feb. 25, 2011.
Chen, et al., U.S. Patent Application titled "One-Stream Coding for Asymmetric Stereo Video", having filed Feb. 25, 2011.
Chikara S., et al., " Add-on Download Scheme for Multicast Content Distribution Using LT Codes", IEICE. B, Communications, Aug. 1, 2006, J89-B (8), pp. 1379-1389.
Choi S: "Temporally enhanced erasure codes for reliable communication protocols" Computer Networks, Elsevier Science Publishers B.V., Amsterdam, NL, vol . 38, No. 6, Apr. 22, 2002, pp. 713-730, XP004345778, ISSN: 1389-1286, DOI:10.1016/S1389-1286(01)00280-8.
Clark G.C., et al., "Error Correction Coding for Digital Communications, System Applications," Error Correction Coding for Digital Communications, New York, Plenum Press, US, Jan. 1, 1981, pp. 339-341.
D. Gozalvez et,al. "AL-FEC for Improved Mobile Reception of MPEG-2 DVB-Transport Streams" Hindawi Publishing Corporation, International Journal of Digital Multimedia Broadcasting vol. 2009, Dec. 31, 2009, pp. 1-10, XP002582035 Retrieved from the Internet: URL:http://www.hindawi.com/journals/ijdmb/2009/614178.html> [retrieved on May 12, 2010].
Dan, A. et al.: "Scheduling Policies for an On-Demand Video Server with Batching," Proc. ACM Multimedia, pp. 391-398 (Oct. 1998).
Davey, M.C. et al.: "Low Density Parity Check Codes over GF(q)" IEEE Communications Letters, vol. 2, No. 6 pp. 165-167 (1998).
David Singer, et al., "ISO/IEC 14496-15/FDIS, International Organization for Standardization Organization Internationale De Normalization ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Audio", ISO/IEC 2003, Aug. 11, 2003, pp. 1-34.
Digital Fountain: "Raptor code specification for MBMS file download," 3GPP SA4 PSM AD-HOC #31 (May 21, 2004) XP002355055 pp. 1-6.
Digital Fountain: "Specification Text for Raptor Forward Error Correction," TDOC S4-050249 of 3GPP TSG SA WG 4 Meeting #34 [Online] (Feb. 25, 2005) pp. 1-23, XP002425167, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/tsg-sa/WG4-CODEC/TSGS4-34/Docs.
DVB-IPI Standard: DVB Blue Book A086r4 (03/07) Transport of MPEG 2 Transport Streatm (TS) Based DVB Services over IP Based Networks, ETSI Technical Specification 102 034 v1.3.1.
Eager, et al. "Minimizing bandwidth requirements for on-demand data delivery," Proceedings of the International Workshop on Advances in Multimedia Information Systems,p. 80-87 (Indian Wells, CA Oct. 1999).
Eager, et al., "Optimal and efficient merging schedules for video-on-demand servers", Proc. ACM Multimedia, vol. 7, pp. 199-203 (1999).
Esaki, et al.: "Reliable IP Multicast Communication Over ATM Networks Using Forward Error Correction Policy," IEICE Transactions on Communications, JP, Institute of Electronics Information and Comm. ENG. Tokyo, vol. E78-V, No. 12, (Dec. 1995), pp. 1622-1637, XP000556183.
European Search Report-EP10013235-Search Authority-The Hague-Aug. 20, 2012.
Feng, G., Error Correcting Codes over Z2m for Algorithm-Based Fault-Tolerance, IEEE Transactions on Computers, vol. 43, No. 3, Mar. 1994, pp. 370-374.
Fernando, et al., "httpstreaming of MPEG Media-Response to CfP", 93 MPEG Meeting; Jul. 7, 2010-Jul. 30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SCE29/WG11), No. M17756, Jul. 22, 2010, XP030046346.
Fielding et al., "RFC 2616: Hypertext Transfer Protocol HTTP/1.1", Internet Citation, Jun. 1999, pp. 165, XP002196143, Retrieved from the Internet: URL:http://www.rfc-editor-org/ [retrieved on Apr. 15, 2002].
Frojdh P., et al., "Study on 14496-12:2005/PDAM2 ALU/ FLUTE Server File Format", 78.MPEG Meeting; Oct. 23, 2006-Oct. 27, 2006; Hangzhou: (Motion Picturexpert Group or ISO/IEC JTC1/SC29/WG11),, No. M13855, Oct. 13, 2006, XP030042523, ISSN: 0000-0233.
Frojdh, et al., "File format sub-track selection and switching," ISO/IEC JTC1/SC29/WG11 MPEG2009 M16665, London UK., Jul. 2009, 14 pp.
Gao, L. et al.: "Efficient Schemes for Broadcasting Popular Videos," Proc. Inter. Workshop on Network and Operating System Support for Digital Audio and Video, pp. 1-13 (1998).
Gasiba, Tiago et al., "System Design and Advanced Receiver Techniques for MBMS Broadcast Services" PROC. 2006 International Conference on Communications (ICC 2006), Jun. 1, 2006, pp. 5444-5450, XP031025781 ISBN: 978-1-4244-0354-7.
Gemmell, et al., "A Scalable Multicast Architecture for One-To-Many Telepresentations", Multimedia Computing and Systems, 1998/Proceedings. IEEE International Conference on Austin, TX, USA Jun. 28-Jul. 1, 1998, Los Alamitos, CA USA, IEEE Comput. Soc, US, Jun. 28, 1998, pp. 128-139, XP010291559.
Gerard F., et al., "HTTP Streaming MPEG media-Response to CFP", 93. MPEG Meeting, Geneva Jul. 26, 2010 to Jul. 30, 2010.
Gil A., et al., "Personalized Multimedia Touristic Services for Hybrid Broadcast/Broadband Mobile Receivers," IEEE Transactions on Consumer Electronics, 2010, vol. 56 (1), pp. 211-219.
Goyal: "Multiple Description Coding: Compression Meets the Network," In Signal Processing Magazine, IEEE, vol. 18., Issue 5 (Sep. 2001) pp. 74-93 URL:http://www.rle.mit.edu/stir/documents/Goyal-SigProcMag2001-MD.pdf [Apr. 7, 2011].
Gozalvez D et, al: "Mobile reception of DVB-T services by means of AL-FEC protection" Proc. IEEE Intern. Symposium on Broadband Multimedia Systems and Broadcasting (BMSB '09), IEEE, Piscataway, NJ, USA, May 13, 2009, pp. 1-5, XP031480155 ISBN: 978-1-4244-2590-7.
Gracie et al., " Turbo and Turbo-Like Codes: Principles and Applications in Telecommunications", Proceedings of the IEEE, Jun. 1, 2007, pp. 1228-1254, vol. 95, No. 6, IEEE, XP011189323, ISSN: 0018-9219, DOI: 10.1109/JPR0C.2007.895197.
Grineberg, et al., "Deliverable D3.2 MVC/SVC storage format" Jan. 29, 2009, XP002599508 Retrieved from the Internet: URL:http://www.ist-sea.eu/Public/SEA-D3.2-HHI FF-20090129.pdf [retrieved on Sep. 1, 2010] paragraph [02.3].
Hagenauer, J. : "Soft is better than hard" Communications, Coding and Cryptology, Kluwer Publication May 1994, XP002606615 Retrieved from the Internet : URL: http://www. Int . ei .turn. de/veroeffentlic hungen/I994/ccc94h. pdf [retrieved on Oct. 25, 2010].
Hannuksela M. M., et al., "DASH: Indication of Subsegments Starting with SAP", 97. MPEG Meeting; Jul. 18, 2011-Jul. 22, 2011; Torino; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. m21096, Jul. 21, 2011, XP030049659.
Hannuksela M. M., et al., "ISOBMFF: SAP definitions and 'sidx' box", 97. MPEG Meeting; Jul. 18, 2011-Jul. 22, 2011; Torino; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. m21435, Jul. 22, 2011, XP030049998.
Hasan M A., et al., "Architecture for a Low Complexity Rate-Adaptive Reed-Solomon Encoder", IEEE Transactions on Computers, IEEE Service Center, Los Alamitos, CA, US, vol. 44, No. 7, Jul. 1, 1995, pp. 938-942, XP000525729, ISSN: 0018-9340, DOI: 10.1109/12.392853.
He Wenge et al., "Asymmetric Stereoscopic Video Encoding Algorithm Based on Joint Compensation Prediction", IEEE International Conference on Communications and Mobile Computing, Jan. 6, 2009, pp. 191-194, XP031434775, ISBN: 978-0-7695-3501-2.
Hershey, et al., "Random Parity Coding (RPC)", 1996 IEEE International Conference on Communications (ICC). Converging Technologies for Tomorrow'S Applications. Dallas, Jun. 23-27, 1996, IEEE International Conference on Communications (ICC), New York, IEEE, US, vol. 1, Jun. 1996, pp. 122-126, XP000625654.
Hitachi Ltd. et al., "High-Definition Multimedia Interface," Specification Version 1.4, Jun. 5, 2009, 425 pp.
Hua, et al., "Skyscraper broadcasting: A new broadcsting system for metropolitan video-on-demand systems", Proc. ACM SIGCOMM, pp. 89-100 (Cannes, France, 1997).
Huawei et al., "Implict mapping between CCE and PUCCH for ACK/NACK TDD", 3GPP Draft; R1-082359, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. Ran WG1, No. Warsaw, Poland, Jun. 24, 2008, XP050110650, [retrieved on Jun. 24, 2008] .
Ian Trow, "Is 3D Event Coverage Using Existing Broadcast Infrastructure Technically Possible?", International Broadcasting Conference, Sep. 9, 2009-Sep. 13, 2009, XP030081671, pp. 4-5, "3D transmission over broadcast infrastructure" pp. 7-8, "Screen signaling"-Conclusions on 3D systems.
IETF RFC 2733: Rosenberg, J. et al. "An RTP Payload Format for Generic Forward Error Correction," Network Working Group, RFC 2733 (Dec. 1999).
Information Technology -Generic Coding of Moving Pictures and Audio: Systems, Amendment 4: Transport of Multiview Video over ITU-T Rec H.222.0 | ISO/IEC 13818-1 "Text of ISO/IEC 13818-1:2007/FPDAM 4-Transport of Multiview Video over ITU-T Rec H.222.0 | ISO/IEC 13818-1," Lausanne, Switzerland, 2009, 21 pp.
International Search Report and Written Opinion-PCT/US2011/044745-ISA/EPO-Dec. 21, 2011 (100875WO).
International Search Report and Written Opinion-PCT/US2012/024737-ISA/EPO-May 11, 2012 (092888U1WO).
International Search Report and Written Opinion-PCT/US2012/053394-ISA/EPO-Feb. 6, 2013.
International Search Report, PCT/US2007/062302-International Search Authority-US Dec. 21, 2007.
International Standard ISO/IEC 13818-1:2000(E), "Information Technology-Generic Coding of Moving Pictures and Associated Audio Information: Systems," Second edition, Dec. 1, 2000, pp. 1-174.
International Standard ISO/IEC 14496-12, Information Technology-Coding of audio-visual objects Part 12: ISO base media file format, Third Edition, Oct. 15, 2008, 120 pp.
International Standard ISO/IEC 14496-12, Information Technology-Coding of audio-visual objects Part 12: ISO base media file format, Third Edition, Oct. 15, 2008, 120 pp.
International Telecommunication Union, "ITU-T H.264, Series H: Audiovisual and Multimedia Systems, Infrastructure of audiovisual services-Coding of moving video, Advanced video coding for generic audiovisual services," Mar. 2010, 669 pp.
ISO/IEC JTC 1/SC 29, ISO/IEC FCD 23001-6, Information technology-MPEG systems technologies-Part 6: Dynamic adaptive streaming over HTTP (DASH), Jan. 28, 2011.
ISO/IEC JTC1/SC29/WG11: "Requirements on HTTP Streaming of MPEG Media", 92. MPEG Meeting; Apr. 19, 2010-Apr. 23, 2010; DRESDEN; No. N11340, May 14, 2010, XP030017837, ISSN: 0000-0029.
ITU-T H.264, Series H: Audiovisual and Multimedia Systems, Infrastructure of audiovisual services-Coding of moving video, Advanced video coding for generic audiovisual services, The International Telecommunication Union. Jun. 2011, 674 pp.
Jiang., File Format for Scalable Video Coding, PowerPoint Presentation for CMPT 820, Summer 2008.
Jin Li, "The Efficient Implementation of Reed-Solomon High Rate Erasure Resilient Codes" Proc. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, IEEE, Piscataway, NJ, vol . 3, Mar. 18, 2005, pp. 1097-1100, XP010792442, DOI: 10.1109/ICASSP.2005.1415905 ISBN: 978-0-7803-8874-1.
Juhn, L. et al.: "Adaptive Fast Data Broadcasting Scheme for Video-on-Demand Service," IEEE Transactions on Broadcasting, vol. 44, No. 2, pp. 182-185 (Jun. 1998).
Juhn, L. et al.: "Harmonic Broadcasting for Video-on-Demand Service," IEEE Transactions on Broadcasting, vol. 43, No. 3, pp. 268-271 (Sep. 1997).
Kallel, "Complementary Punctured Convolutional (CPC) Codes and Their Applications", IEEE Transactions on Communications, IEEE Inc., New York, US, vol. 43, No. 6, Jun. 1, 1995, p. 2005-2009.
Kim J., et al., "Enhanced Adaptive Modulation and Coding Schemes Based on Multiple Channel Reportings for Wireless Multicast Systems", 62nd IEEE Vehicular Technology Conference, VTC-2005-FALL, Sep. 25-28, 2005, vol. 2, pp. 725-729, XP010878578, DOI: 1 0.11 09/VETECF.2005.1558019, ISBN: 978-0/7803-9152-9.
Kimata H et al., "Inter-View Prediction With Downsampled Reference Pictures", ITU Study Group 16-Video Coding Experts Group -ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q6), No. JVT-W079, Apr. 19, 2007, XP030007039.
Kimura et al., "A Highly Mobile SDM-0FDM System Using Reduced-Complexity-and-Latency Processing", IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Sep. 1, 2007, pp. 1-5, IEEE, XP031168836, ISBN: 978-1-4244-1143-6, DOI: 10.1109/PIMRC.2007.4394758.
Kozamernik F: "Media streaming over the Internet", Internet Citation, Oct. 2002, XP002266291, Retrieved from the Internet: URL: http://www.ebu.ch/trev-292-kozamerni k. pdf [retrieved on Jan. 8, 2004]section "Video codecs for scalable streaming".
Lee L., et al.,"VLSI implementation for low density parity check decoder", Proceedings of the 8th IEEE International Conference on Elecctronics, Circuits and Systems, 2001. ICECS 2001, Sep. 2, 2001, vol. 3, pp. 1223-1226.
Lee, J. Y., "Description of Evaluation Experiments on ISO/IEC 23001-6, Dynamic Adaptive Streaming over HTTP", ISO/IEC JTC1/SC29/WG11MPEG2010/N11450, Jul. 31, 2010, 16 pp.
Li, M., et al., "Playout Buffer and Rate Optimization for Streaming over IEEE 802.11 Wireless Networks", Aug. 2009, Worcester Polytechnic Institute, USA.
Lin, S. et al.: "Error Control Coding-Fundamentals and Applications," 1983, Englewood Cliffs, pp. 288, XP002305226.
Luby Digital Fountain A Shokrollahi Epfl M Watson Digital Fountain T Stockhammer Nomor Research M: "Raptor Forward Error Correction Scheme for Object Delivery; rfc5053.txt", IETF Standard, Internet Engineering Task Force, IETF, Ch, Oct. 1, 2007, XP015055125, ISSN: 0000-0003.
Luby et al., "Improved Low-Density Parity-Check Codes Using Irregular Graphs and Belief Propagation", Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on Cambridge, MA, USA Aug. 16-21, 1998, New York, NY, USA, IEEE, US Aug. 16, 199.
Luby et al., RaptorQ Forward Error Correction Scheme for Object Delivery draft-ietf-rmt-bb-fec-raptorq-00, Qualcomm, Inc. Jan. 28, 2010.
Luby et, al. "Layered Coding Transport (LCT) Building Block", IETF RFC 5651, pp. 1-42, (Oct. 2009).
Luby M et al: "IPTV Systems, Standards and Architectures: Part II -Application Layer FEC in IPTV Services" IEEE Communications Magazine, IEEE Service Center, Piscataway, US LNKDDOI: 10.1109/MCOM.2008.4511656, vol. 46, No. 5, May 1, 2008, pp. 94-101, XP011226858 ISSN: 0163-6804.
Luby M., "LT Codes", Foundations of Computer Science, 2002, Proceedings, The 43rd Annual IEEE Symposium on, 2002.
Luby M., "Simple Forward Error Correction (FEC) Schemes," draft-luby-rmt-bb-fec-supp-simple-00.txt, pp. 1-14, Jun. 2004.
Luby Qualcomm Incorporated, "Universal Object Delivery using RaptorQ; draft-luby-uod-raptorq-OO.txt", Internet Engineering Task Force (IETF), Standardworkingdraft, Internet Society (ISOC), Mar. 7, 2011, pp. 1-10, XP015074424, [retrieved on Mar. 7, 2011].
Luby, et al., "Analysis of Low Density Codes and Improved Designs Using Irregular Graphs", 1998, Proceedings of the 30th Annual ACM Symposium on Theory of Computing, May 23, 1998, pp. 249-258, XP000970907.
Luby, et al., "FLUTE -File Delivery over Unidirectional Transport", IETF RFC 3926, pp. 1-35, (Oct. 2004).
Luby, et al.: "Analysis of Low Density Codes and Improved Designs Using Irregular Graphs," International Computer Science Institute Technical Report TR-97-045 (Nov. 1997) [available at ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-045.pdf].
Luby, M. et al.: "Efficient Erasure Correction Codes," 2001, IEEE Transactions on Information Theory, Vo. 47, No. 2, pp. 569-584, XP002305225.
Luby, M. et al.: "Pairwise Independence and Derandomization," Foundations and Trends in Theoretical Computer Science, vol. 1, Issue 4, 2005, Print ISSN 1551-305X, Online ISSN 1551-3068.
Luby, M. et al.: "Practical Loss-Resilient Codes: Tornado Codes," 29th Annual ACM Symposium on Theory of Computing, vol. SYMP. 29, May 4, 1997, pp. 1-10, XP002271229.
Luby, M., et al., "Raptor Forward Error Correction Scheme for Object Delivery", IETF RFC5053, pp. 1-46 (Sep. 2007).
Luby, M., et al., "RaptorQ Forward Error Correction Scheme for Object Delivery", IETF draft ietf-rmt-bb-fec-raptorq-04, Reliable Multicast Transport, pp. 1-68, (Aug. 24, 2010).
Luby, M., et al., "Request for Comments: 3453: The Use of Forward Error Correction (FEC) in Reliable Multicast," Internet Article, [Online] Dec. 2002, pp. 1-19.
Luby, M., et, al. "Forward Error Correction (FEC) Building Block", IETF RFC 5052, pp. 1-31, (Aug. 2007).
Luby, Michael G. "Analysis of Random Processes via And-Or Tree Evaluation," Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,TR-97-0, 1998, pp. 364-373, (search date: Jan. 25, 2010) URL: .
Luby, Michael G. "Analysis of Random Processes via And-Or Tree Evaluation," Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,TR-97-0, 1998, pp. 364-373, (search date: Jan. 25, 2010) URL: <http://portal.acm.prg.citation.cfm?id=314722>.
Mackay, "Fountain codes Capacity approaching codes design and implementation", IEE Proceedings: Communications, Dec. 9, 2005, pp. 1062-1068, vol. 152, No. 6, Institution of Electrical Engineers, XP006025749, ISSN: 1350-2425, DOI: 10.1049/IP-C0M:20050237 .
Makoto N., et al., "On Tuning of Blocking LU decomposition for VP2000 series" The 42th Information Processing Society of Japan Conference (1st term in 1991), Feb. 25, 1991, pp. 71-72, 4B-8.
Mandelbaum D.M., "An Adaptive-Feedback Coding Scheme Using Incremental Redundancy", IEEE Trans on Information Theory, vol. May 1974, pp. 388-389, XP002628271, the whole document.
Marpe, et al., "The H.264/MPEG4 Advanced Video Coding Standard and its Applications," Standards Report, IEEE Communications Magazine, Aug. 2006, pp. 134-143.
Matsuoka H., et al., "Low-Density Parity-Check Code Extensions Applied for Broadcast-Communication Integrated Content Delivery", Research Laboratories, NTT DOCOMO, Inc., 3-6, Hikari-No-Oka, Yokosuka, Kanagawa, 239-8536, Japan, ITC-SS21, 2010 IEICE, pp. 59-63.
McCanne, et al., "Low-Complexity Video Coding for Receiver-Driven Layered Multicast", IEEE Journal on Selected Areas in Communication IEEE Service Center, Aug. 1, 1997, vol. 15, No. 6, pp. 983-1001, Piscataway, US, XP011054678, ISSN: 0733-8716.
Michael G et al., "Improved low-density parity-check codes using irregular graphs", Information Theory, IEEE Transactions on, Feb. 2001, vol. 47, No. 2, pp. 585-598.
Miller G., et al., "Bounds on the maximum likelihood decoding error probability of low density parity check codes", Information Theory, 2000. Proceedings. IEEE International Symposium on, 2000, p. 290.
Mimnaugh, A et, al. "Enabling Mobile Coverage for DVB-T" Digital Fountain Whitepaper Jan. 29, 2008, pp. 1-9, XP002581808 Retrieved from the Internet: URL:http://www.digitalfountain.com/ufiles/ library/DVB-T-whitepaper.pdf> [retrieved on May 10, 2010].
Min-Goo Kim: "On systematic punctured convolutional codes", IEEE Trans on Communications, vol. 45, No. 2, Feb. 1997, XP002628272, the whole document, pp. 133-139.
Morioka S., "A Verification Methodology for Error Correction Circuits over Galois Fields", Tokyo Research Laboratory, IBM Japan Ltd, pp. 275- 280, Apr. 22-23, 2002.
Moriyama, S., "5. Present Situation of Terrestrial Digital Broadcasting in Europe and USA", Journal of The Institute of Image Information and Television Engineers, Nov. 20, 1999, vol. 53, No. 11, pp. 1476-1478.
Motorola et al: "An Analysis of DCD Channel Mapping to BCAST File Delivery Sessions; OMA-CD-DCD-2007-0112-INP-DCD-Channel-Mapping-to-BCAST-Fi1e-Delivery", OMA-CD-DCD-2007-0112-INP-DCD-Channel-Mapping-to-BCAST-File-Delivery, Open Mobile Alliance (OMA), 4330 La Jolla Village Dr., Suite 110 Dr., Suite 110 San Diego, CA 92122; USA Oct. 2, 2007, pp. 1-13, XP064036903.
Muller, et al., "A test-bed for the dynamic adaptive streaming over HTTP featuring session mobility" MMSys '11 Proceedings of the second annual ACM conference on Multimedia systems, Feb. 23-25, 2011, San Jose, CA, pp. 271-276.
Muramatsu J., et al., "Low density parity check matrices for coding of multiple access networks", Information Theory Workshop, 2003. Proceedings. 2003 IEEE, Apr. 4, 2003, pp. 304-307.
Naguib, Ayman, et al., "Applications of Space-Time Block Codes and Interference Suppression for High Capacity and High Data Rate Wireless Systems," IEEE, 1998, pp. 1803-1810.
Narayanan, et al., "Physical Layer Design for Packet Data Over IS-136", Vehicular Technology Conference, 1997, IEEE 47th Phoenix, AZ, USA May 4-7, 1997, New York, NY, USA, IEEE, US May 4, 1997, p. 1029-1033.
Nokia Corp., "Usage of 'mfra' box for Random Access and Seeking," S4-AHI127, 3GPP TSG-SA4 Ad-Hoc Meeting, Dec. 14-16, 2009, Paris, FR, 2 pp.
Nokia: "Reed-Solomon Code Specification for. MBMS Download and Streaming Services", 3GPP Draft; 54-050265-RS-SPEC, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. SA WG4, No. San Diego, USA; 20050415, Apr. 15, 2005, XP050287675, [retrieved on Apr. 15, 2005].
Nonnenmacher, et al., "Parity-Based Loss Recovery for Reliable Multicast Transmission", IEEE / ACM Transactions on Networking, IEEE Inc. New York, US, vol. 6, No. 4, Aug. 1, 1998, p. 349-361.
Ohashi A et al., "Low-Density Parity-Check (LDPC) Decoding of Quantized Data," Technical Report of the Institute of Electronics, Information and Communication Engineers, Aug. 23, 2002, vol. 102, No. 282, pp. 47-52, RCS2002-154.
Ozden, B. et al.: "A Low-Cost Storage Service for Movie on Demand Databases," Proceedings of the 20th Very Large DataBases (VLDB) Conference, Santiago, Chile (1994).
PA. Chou, A. Mohr, A. Wang, S. Mehrotra, "FEC and Pseudo-ARQ for Receiver-Driven Layered Multicast of Audio and Video," pp. 440-449, IEEE Computer Society, Data Compression Conference (2000).
Pantos R et al., "HTTP Live Streaming; draft-pantos-http-1ive-streaming-OT.txt ", HTTP Live Streaming; Draft-Pant0s-HTTP-Live-Streaming-01.Txt, Internet Engineering Task Force, IEFT; Standardworkingdraft, Internet Society (ISOC) 4, Rue Des Falaises Ch- 1205 Geneva, Switzerland, No. 1, Jun. 8, 2009, XP015062692.
Pantos, "HTTP Live Streaming draft-pantos-http-live-streaming-02", Informational, Internet-Draft, Intended status: Informational, Expires: Apr. 8, 2010, http://tools.ietf.org/html/draft-pantos-http-live-streaming-02, pp. 1-20, Oct. 5, 2009.
Paris, et al., "A low bandwidth broadcasting protocol for video on demand", Proc. International Conference on Computer Communications and Networks, vol. 7, pp. 690-697 (Oct. 1998).
Paris, et al., "Efficient broadcasting protocols for video on demand", International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication systems (MASCOTS), vol. 6, pp. 127-132 (Jul. 1998).
Perkins, et al.: "Survey of Packet Loss Recovery Techniques for Streaming Audio," IEEE Network; Sep./Oct. 1998, pp. 40-48.
Petition decision for Petition Under 37 C.F.R. § 1.78 to Accept an Unintentionally Delayed Priority Claim under 35 U.S.C. § 120 in U.S. Patent No. 7,532,132, dated Jul. 21, 2011, 2 pages.
Petition under 37 C.F.R. § 1.78 to Accept an Unintentionally Delayed Priority Claim under 35 U.S.C. § 120 in U.S. Patent No. 7,532,132, dated May 27, 2011, 2 pages.
Plank J. S., "A Tutorial on Reed-Solomon Coding for Fault-Tolerance I N Raid-Like Systems", Software Practice & Experience, Wiley & Sons, Bognor Regis, GB, vol. 27, No. 9, Sep. 1, 1997, pp. 995-1012, XP00069594.
Pless and WC Huffman EDS V S: Algebraic geometry codes, Handbook of Coding Theory, 1998, pp. 871-961, XP002300927.
Pursley, et al.: "Variable-Rate Coding for Meteor-Burst Communications," IEEE Transactions on Communications, US, IEEE Inc. New York (1989) vol. 37, No. 11, pp. 1105-1112 XP000074533.
Pursley, M. et al.: A Correction and an Addendum for "Variable-Rate Coding for Meteor-Burst Communications," IEEE Transactions on Communications, vol. 43, No. 12 pp. 2866-2867 (Dec. 1995).
Pyle, et al., "Microsoft http smooth Streaming: Microsoft response to the Call for Proposal on httpstreaming", 93 MPEG Meeting; Jul. 27, 2010-Jul. 30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SCE29/WG11), No. M17902, Jul. 22, 2010, XP030046492.
Qualcomm Europe S A R L: "Baseline Architecture and Definitions for HTTP Streaming", 3GPP Draft; 54-090603-HTTP-Streaming-Architecture, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. Kista; 20090812, 12 Aug. 12, 2009, XP050356889.
Qualcomm Incorporated: "Adaptive HTTP Streaming: Complete Proposal", 3GPP TSG-SA4 AHI Meeting S4-AHl170, Mar. 2, 2010, URL, http://www.3gpp.org/FTP/tsg-sa/WG4-CODEC/Ad-hoc-MBS/Docs-AHI/S4-AHl170.zip, S4-AH170-CR-AdaptiveHTTPStreaming-Full.doc.
Qualcomm Incorporated: "Corrections to 3GPP Adaptive HTTP Streaming", 3GPP TSG-SA4 #59 Change Request 26.234 CR0172 S4-100403, Jun. 16, 2010, URL, http://www.3gpp.org/FTP/tsg-sa/WG4 CODEC/TSGS4-59/Docs/S4-100403.zip, S4-100403-CR-26234-0172-AdaptiveHTTPStreaming-Rel-9.doc.
Qualcomm Incorporated: "RaptorQ Technical Overview", pp. 1-12, Oct. 1, 2010.
Qualcomm Incorporated: "RatorQ Forward Error Correction Scheme for Object Delivery draft-ietf-rmt-bb-fec-raptorq-04", Internet Engineering Task Force, IETF, pp. 1-68, Aug. 24, 2010.
Qualcomm Incorporated: "Use Cases and Examples for Adaptive httpstreaming", 3GPP Draft; 54-100408-Usecases-HSD, 3rd Generation Partnership Project (JGPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. Prague, Czech Republic; 20100621, Jun. 17, 2010, XP050438085, [retrieved on Jun. 17, 2010].
Ramsey B, "HTTP Status: 206 Partial Content and Range Requests," May 5, 2008 obtained at http://benramsey.com/blog/2008/05/206-partial-content-and-randge-requests/.
Rangan, et al., "Designing an On-Demand Multimedia Service," IEEE Communication Magazine, vol. 30, pp. 56-64, (Jul. 1992).
Realnetworks Inc, et al., "Format for httpstreaming Media Presentation Description", 3GPP Draft; S4-100020, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia- Antipolis Cedex; France, vol. SA WG4, No. S t Julians, Malta; 20100125, Jan. 25, 2010, Jan. 20, 2010, XP050437753, [retrieved on Jan. 1, 2010].
Research in Motion UK Limited: "An MPD delta file for httpstreaming", 3GPP Draft; S4-100453, 3rd Generation Partnership Project (SGPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. SA WG4, No. Prague, Czech Republic; 20100621, Jun. 21, 2010, Jun. 16, 2010, XP050438066, [retrieved on Jun. 16, 2010].
Rhyu, et al., "Response to Call for Proposals on httpstreaming of MPEG Media", 93 MPEG Meeting; Jul. 26, 2010-Jul. 30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SCE29/WG11) No. M17779, Jul. 26, 2010, XP030046369.
Rizzo, L. "Effective Erasure Codes for Reliable Computer Communication Protocols," Computer Communication Review, 27 (2) pp. 24-36 (aPR. 1, 1997), XP000696916.
Roca, V. et al.: Design, Evaluation and Comparison of Four Large Block FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM Triangle, plus a Reed-Solomon Small Block FEC Codec, INRIA Research Report RR-5225 (2004).
Roca, V., et, al. "Low Density Parity Check (LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes", IETF RFC 5170 (Jun. 2008), pp. 1-34.
Rost, S. et al.: "The Cyclone Server Architecture: streamlining delivery of popular content," 2002, Computer Communications, vol. 25, No. 4, pp. 403-412.
Roth, R., "On MDS Codes via Cauchy Matrices", IEEE Transactions on Information Theory, vol. 35, No. 6, Nov. 1989, pp. 1314-1319.
Roth, R., et al., "A Construction of Non-Reed-Solomon Type MDS Codes", IEEE Transactions of Information Theory, vol. 35, No. 3, May 1989, pp. 655-657.
Roumy A., et al., "Unequal Erasure Protection and Object Bundle Protection with the Generalized Object Encoding Approach", Inria-00612583, Version 1, Jul. 29, 2011, 25 pages.
Samukawa, H. "Blocked Algorithm for LU Decomposition" Journal of the Information Processing Society of Japan, Mar. 15, 1993, vol. 34, No. 3, pp. 398-408.
Schulzrinne, et al., "Real Time Streaming Protocol (RTSP)" Network Working Group, Request for Comments: 2326, Apr. 1998, pp. 1-92.
Schwarz, Heiko et al., "Overview of the Scalable Video Coding Extension of the H.264/AVC Standard", IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 9, Sep. 2007, pp. 1103-1120.
Seshan, S. et al.: "Handoffs in Cellular Wireless Networks: The Daedalus Implementation and Experience," Wireless Personal Communications, NL; Kluwer Academic Publishers, vol. 4, No. 2 (Mar. 1, 1997) pp. 141-162, XP000728589.
Shacham: "Packet Recovery and Error Correction in High-Speed Wide-Area Networks," Proceedings of the Military Communications Conference. (Milcom), US, New York, IEEE, vol. 1, pp. 551-557 (1989) XP000131876.
Shierl T; Gruneberg K; Narasimhan S; Vetro A: "ISO/IEC 13818-1:2007/FPDAM 4-Information Technology Generic Coding of Moving Pictures and Audio Systems amendment 4: Transport of Multiview Video over ITU-T Rec H.222.0 ISO/IEC 13818-1" ITU-T REC. H.222.0(May 2006)FPDAM 4, vol. MPEG2009, No. 10572, May 11, 2009, pp. 1-20, XP002605067 p. 11, last two paragraphs sections 2.6.78 and 2.6.79 table T-1.
Shokrollahi et al., "Design of Efficient Easure Codes with Differential Evolution", IEEE International Symposium on Information Theory, Jun. 25, 2000, pp. 5-5.
Shokrollahi, A.: "Raptor Codes," Internet Citation [Online] (Jan. 13, 2004) XP002367883, Retrieved from the Internet: URL:http://www.cs.huji.ac.il/labs/danss/p2p/resources/raptor.pdf.
Shokrollahi, Amin. "Raptor Codes," IEEE Transactions on Information Theory, Jun. 2006, vol. 52, No. 6, pp. 2551-2567, (search date: Feb. 1, 2010) URL:<http://portal.acm.org/citation.cfm?id=1148681>.
Sincoskie, W. D., "System Architecture for Large Scale Video on Demand Service," Computer Network and ISDN Systems, pp. 155-162, (1991).
Stockhammer T., et al., "DASH: Improvements on Representation Access Points and related flags", 97. MPEG Meeting; Jul. 18, 2011-Jul. 22, 2011; Torino; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11) No. m20339, Jul. 24, 2011, XP030048903.
Stockhammer, "WD 0.1 of 23001-6 Dynamic Adaptive Streaming over HTTP (DASH)", MPEG-4 Systems, International Organisation for Standardisation, ISO/IEC JTC1/SC29/WG11, Coding of Moving Pictures and Audio, MPEG 2010 Geneva/m11398, Jan. 6, 2011, 16 pp.
Sullivan et al., Document: JVT-AA007, "Editors' Draft Revision to ITU-T Rec. H.264|ISO/IEC 14496-10 Advanced Video Coding-In Preparation for ITU-T SG 16 AAP Consent (in integrated form)," Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), 30th Meeting: Geneva, CH, Jan. 29-Feb. 3, 2009, pp. 1-683, http://wftp3.itu.int/av-arch/jvt-site/2009-01-Geneva/JVT-AD007.zip.
Sun, et al., "Seamless Switching of Scalable Video Bitstreams for Efficient Streaming," IEEE Transactions on Multimedia, vol. 6, No. 2, Apr. 2004, pp. 291-303.
Supplementary European Search Report-EP07757111-Search Authority-The Hague-Jan. 22, 2013.
Telefon AB LM Ericsson, et al., "Media Presentation Description in httpstreaming", 3GPP Draft; S4-100080-MPD, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia- Antipolis Cedex; France, vol. SA WG4, No. St Julians, Malta; 20100125, Jan. 20. 2010, XP050437773, [retrieved on Jan. 20, 2010].
Tetsuo M., et al., " Comparison of Loss Resilient Ability between Multi-Stage and Reed-Solomon Coding", Technical report of IEICE. CQ, Communication Quality, vol. 103 (178), Jul. 4, 2003, pp. 19-24.
Thomas Wiegand et al.," WD1: Working Draft 1 of High-Efficiency Video Coding", JCTVC-C403, Joint Collaborative Team on Video Coding (JCT-VC), of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010.
Thomas Wiegand, et al., "Joint Draft ITU-T Rec. H.264 | ISO/IEC 14496-10 / Amd.3 Scalable video coding", Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6) 24th Meeting: Geneva, Switzerland, Jun. 29-Jul. 5, 2007, pp. 1-559.
Todd, "Error Correction Coding: Mathematical Methods and Algorithms", Mathematical Methods and Algorithms, Jan. 1, 2005, pp. 451-534, Wiley, XP002618913.
Tsunoda T., et al., "Reliable Streaming Contents Delivery by Using Multiple Paths," Technical Report of the Institute of Electronics, Information and Communication Engineers, Japan, Mar. 2004, vol. 103, No. 692, pp. 187-190, NS2003-331, IN2003-286.
U.S. Appl. No. 12/840,146, by Ying Chen et al., filed Jul. 20, 2010.
U.S. Appl. No. 12/908,537, by Ying Chen et al., filed Oct. 20, 2010.
U.S. Appl. No. 12/908,593, by Ying Chen et al., filed Oct. 20, 2010.
U.S. Appl. No. 13/082,051, by Ying Chen et al., filed Apr. 7, 2011.
U.S. Appl. No. 13/205,559, by Ying Chen et al., filed Aug. 8 2011.
U.S. Appl. No. 13/205,565, by Ying Chen et al., filed Aug. 8, 2011.
U.S. Appl. No. 13/205,574, by Ying Chen et al., filed Aug. 8, 2011.
Universal Mobile Telecommunications System (UMTS); LTE; Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs (3GPP TS 26.234 version 9.3.0 Release 9), Technical Specification, European Telecommunications Standards Institute (ETSI), 650, Route Des Lucioles; F-06921 Sophia-Antipolis; France, vol. 3GPP SA, No. V9.3.0, Jun. 1, 2010, XP014047290, paragraphs [5.5.4.2], [5.5.4.3], [5.5.4.4], [5.4.5], [5.5.4.6] paragraphs [10.2.3], [11.2.7], [12.2.3], [12.4.2], [12.6.2] paragraphs [12.6.3], [12.6.3.1], [12.6.4], [12.6.6].
Viswanathan, et al., "Metropolitan area video-on-demand services using pyramid broadcasting", Multimedia Systems, 4(4): 197-208 (1996).
Viswanathan, et al., "Pyramid Broadcasting for Video-on-Demand Service", Proceedings of the SPIE Multimedia Computing and Networking Conference, vol. 2417, pp. 66-77 (San Jose, CA, Feb. 1995).
Viswanathan,Subramaniyam R., "Publishing in Wireless and Wireline Environments," Ph. D Thesis, Rutgers, The State University of New Jersey (Nov. 1994), 180pages.
Wadayama T, "Introduction to Low Density Parity Check Codes and Sum-Product Algorithm," Technical Report of the Institute of Electronics, Information and Communication Engineers, Dec. 6, 2001, vol. 101, No. 498, pp. 39-46, MR2001-83.
Wang,"On Random Access", Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC JTC1ISC29/WG11 and ITU-T SG16 Q.6), 4th Meeting: Klagenfurt, Austria, Jul. 22-26, 2002, p. 13.
Watson M., et al., "Forward Error Correction (FEC) Framework draft-ietf-fecframe-framework-11," 2011, pp. 1-38, URL, http://tools.ietf.org/pdf/draft-ietf-fecframe-framework-11.pdf.
Watson M., et al., "Raptor FEC Schemes for FECFRAME draft-ietf-fecframe-raptor-04," 2010, pp. 1-21, URL, http://tools.ietf.org/pdf/draft-ietf-fecframe-raptor-04.pdf.
Watson, M., et, al. "Asynchronous Layered Coding (ALC) Protocol Instantiation", IETF RFC 5775, pp. 1-23, (Apr. 2010).
Wenger, et al., RFC 3984, "RTP Payload Format for H.264 Video," Feb. 2005, 84 pp.
Wiegand et al., "WD3: Working Draft 3 of High-Efficiency Video Coding," Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar. 16-23, 2011,193 pp.
Wiegand T. et al., "WD2: Working Draft 2 of High-Efficiency Video Coding", Jan. 28, 2011, No. JCTVC-D503, Jan. 28, 2011, XP002679642, Retrieved from the Internet: URL: http://wftp3.itu.int/av-arch/jctvc-site/2011-01-D-Daegu/ [retrieved on Jul. 11, 2012].
Wong, J.W., "Broadcast delivery", Proceedings of the IEEE, 76(12): 1566-1577, (1988).
Written Opinion, PCT/US2007/062302-International Search Authority-US, Dec. 21, 2007.
Yamanouchi N., et al., "Internet Multimedia Transmission with Packet by Using Forward Error Correction," Proceedings of DPS Workshop, The Information Processing Society of Japan, Dec. 6, 2000, vol. 2000, No. 15, pp. 145-150.
Yamauchi, Nagamasa. "Application of Lost Packet Recovery by Front Error Correction to Internet Multimedia Transfer" Proceedings of Workshop for Multimedia Communication and Distributed Processing, Japan, Information Processing Society of Japan (IPS), Dec. 6, 2000, vol. 2000, No. 15, pp. 145-150.
Yamazaki M., et al., "Multilevel Block Modulation Codes Construction of Generalized DFT," Technical Report of the Institute of Electronics, Information and Communication Engineers, Jan. 24, 1997, vol. 96, No. 494, pp. 19-24, IT96-50.
Yin et al., "Modified Belief-Propogation algorithm for Decoding of Irregular Low-Density Parity-Check Codes", Electronics Letters, IEE Stevenage, GB, vol. 38, No. 24, Nov. 21, 2002, pp. 1551-1553.
Ying Chen et al: "Response to the CfP on HTTP Streaming: Adaptive Video Streaming based on AVC", 93 MPEG Meeting; Jul. 26, 2010-Jul. 30, 2010; Geneva; (Motion Picture Expert Group or ISO/IEC JTC1/SC29/WG11), No. M17909, Jul. 26, 2010, XP030046499.
Zorzi, et al.: "On the Statistics of Block Errors in Bursty Channels," IEEE Transactions on Communications, vol. 45, No. 6, Jun. 1997, pp. 660-667.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140379858A1 (en) * 2013-06-19 2014-12-25 The Governors Of The University Of Alberta Network coding using an outer coding process
US9749388B2 (en) * 2013-06-19 2017-08-29 The Governors Of The University Of Alberta Network coding using an outer coding process
US20180115415A1 (en) * 2015-04-03 2018-04-26 Nec Corporation Secure computation system, server apparatus, secure computation method, and program
US10749671B2 (en) * 2015-04-03 2020-08-18 Nec Corporation Secure computation system, server apparatus, secure computation method, and program
US10574272B2 (en) 2017-09-19 2020-02-25 Toshiba Memory Corporation Memory system
US20190207719A1 (en) * 2017-12-29 2019-07-04 Limited Liability Company "Radio Gigabit" Method of hybrid automatic repeat request implementation for data transmission with multi-level coding
US11271685B2 (en) 2017-12-29 2022-03-08 Limited Liability Company “Radio Gigabit” Method of hybrid automatic repeat request implementation for data transmission with multilevel coding
US10673463B2 (en) * 2018-10-25 2020-06-02 Hewlett Packard Enterprise Development Lp Combined blocks of parts of erasure coded data portions

Also Published As

Publication number Publication date
CN101427495B (zh) 2013-12-25
EP1980041A2 (fr) 2008-10-15
EP1980041B1 (fr) 2015-12-09
JP5329239B2 (ja) 2013-10-30
WO2007098397A2 (fr) 2007-08-30
KR20080100455A (ko) 2008-11-18
ES2563290T3 (es) 2016-03-14
JP2009527949A (ja) 2009-07-30
EP1980041A4 (fr) 2013-02-27
US20070195894A1 (en) 2007-08-23
CN101427495A (zh) 2009-05-06
WO2007098397A3 (fr) 2008-02-28
KR101355761B1 (ko) 2014-01-24

Similar Documents

Publication Publication Date Title
US9270414B2 (en) Multiple-field based code generator and decoder for communications systems
US7418651B2 (en) File download and streaming system
US7711068B2 (en) Multi-stage code generator and decoder for communication systems
US7721184B2 (en) Method and apparatus for fast encoding of data symbols according to half-weight codes
US9419749B2 (en) Methods and apparatus employing FEC codes with permanent inactivation of symbols for encoding and decoding processes
El-Gohary et al. Study the performance of fountain codes in wireless communication systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIGITAL FOUNTAIN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHOKROLLAHI, M. AMIN;LUBY, MICHAEL G.;WATSON, MARK;AND OTHERS;REEL/FRAME:019137/0347;SIGNING DATES FROM 20070328 TO 20070329

Owner name: DIGITAL FOUNTAIN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHOKROLLAHI, M. AMIN;LUBY, MICHAEL G.;WATSON, MARK;AND OTHERS;SIGNING DATES FROM 20070328 TO 20070329;REEL/FRAME:019137/0347

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIGITAL FOUNTAIN, INC.;REEL/FRAME:045641/0207

Effective date: 20180315

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200223