US5269197A - Principle and structure of actively driving or centrifugal linear following dynamic flywheel effect - Google Patents

Principle and structure of actively driving or centrifugal linear following dynamic flywheel effect Download PDF

Info

Publication number
US5269197A
US5269197A US07/862,809 US86280992A US5269197A US 5269197 A US5269197 A US 5269197A US 86280992 A US86280992 A US 86280992A US 5269197 A US5269197 A US 5269197A
Authority
US
United States
Prior art keywords
flywheel
inertia
speed
energy
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/862,809
Other languages
English (en)
Inventor
Tai-Her Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US5269197A publication Critical patent/US5269197A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/31Flywheels characterised by means for varying the moment of inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/12Combinations of wind motors with apparatus storing energy storing kinetic energy, e.g. using flywheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19172Reversal of direction of power flow changes power transmission to alternate path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19623Backlash take-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19698Spiral
    • Y10T74/19828Worm
    • Y10T74/19842Distribution of pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/211Eccentric
    • Y10T74/2111Plural, movable relative to each other [including ball[s]]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2117Power generating-type flywheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2121Flywheel, motion smoothing-type

Definitions

  • the conventional flywheel is often used for (1) energy storage (2) pulse absorption, and its inertial energy structure is at a solid state so that its energy absorption and release always appears speed increase during continuing energy storage and appears speed decreases during energy release.
  • the present invention relates to provide a principle and structure of actively driving or centrifugal linear following dynamic flywheel effect to make fixed relationship between said energy storage, energy release and speed controllable and adjustable; when flywheel is used speed rate change can be minimized due to moment change, and due to dynamic energy is direct proportion to the square number of inertia mass times speed, where if flywheel speed is defined as 2-Rn then dynamic energy stored in the flywheel is:
  • R gyration radius, ft or m
  • n rotation per second (r/min)/60
  • FIG. 1 is a diagram showing the principle and structure of actively driving or centrifugal linear following dynamic flywheel effect.
  • FIG. 2 is a diagram showing the embodiment of worm active driving to adjust inertia block to change its inertia mass.
  • FIG. 3 is a diagram showing the embodiment of shear type link forming active drive to adjust flywheel inertia mass.
  • FIG. 4 is a diagram showing the embodiment of pneumatic cylinder and piston to form centrifugal linear following for changing inertia mass.
  • FIG. 5 is an embodiment of centrigual linear following structure comprising radially mounted tension spring in company with inertia block.
  • FIG. 6 is an embodiment of the structure of radially mounted tension spring.
  • FIG. 7 is an embodiment of centrifugal linear following structure comprising inertia block with radially stretching elastic spring arm.
  • FIG. 8 is an embodiment of inertia block with radially stretching and intermediate supporting arm and spring extensive motion type tension arm.
  • FIG. 9 is an embodiment of inertia block with radially stretching and intermediate supporting arm and spring compressive motion type tension arm.
  • FIG. 10 is an embodiment of crank link type centrifugal device comprising compressive spring.
  • flywheel is an extremely important device, except made in wheel type, which may include other geometrical shapes such as star and polygon, etc. for fitting a variety of purposes, and the capacity of energy storage for flywheel is determined subject to inertia mass speed, and due to said effect it is widely applied to steady operation so as to reduce root motion and energy storage.
  • all conventional flywheels comprise a fixed structure so that its inertia mass is permanent, and as far as a free flywheel is concerned, dynamic energy absorption would make rotational speed increasing and energy release would reduce its rotational speed.
  • the principle and structure of actively driving or centrifugal linear following dynamic flywheel effect is to breakthrough the characteristics of fixed inertia mass of said conventional flywheels, and to mount at least two sets of inertia bodies radially along the center of flywheel, and apply active driving by fluid or mechanical power externally controlled to change its inertia mass and rotational speed by driving the distance between inertia block with the center, and besides the displacing block can be mounted with spring or compressive fluid which can store energy when inertia block is displacing/sliding radially so that when energy storage is increasing in speed, with centrifugal force which makes said radially displacing inertia block displacing outward radially to increase inertia mass, and when energy is released, inertia block is pushed back toward the center to reduce inertia block is pushed back toward the center to reduce inertia mass due to speed reduction and further reducing the change in its speed against energy
  • FIG. 1 is a diagram showing the principle and structure of actively driving or centrifugal linear following dynamic flywheel effect, comprising:
  • flywheel 101 for accepting energy storage speed up or steady operation or energy release speed down, to be round shape or other geometrical shapes meeting the requirement of mechanism;
  • flywheel gyration center 102 provided as mechanism center for flywheel gyration
  • inertia block 103 radially mounted at the flywheel and permitted to displace radially in radiant manner for adjusting and driving so as to change the value of inertia mass of flywheel;
  • the principle, structure and basic structural shape of actively driving or centrifugal linear following dynamic flywheel effect according to the present invention includes: (A) inertia block is driven by fluid or mechanical power for radially radiant adjusting, the functions including:
  • the driving source for driving and adjusting the inertia block may further recover its centrifugal dynamic force during the inertia block displaces outwardly, and related recover means include mechanical type energy storage, or conversion into heat or electricity or chemical energy for recovery.
  • FIG. 2 is a diagram showing the embodiment of worm active driving to adjust inertia block to change its inertia mass comprising:
  • inertia block 203 mounted at radially radiant-type guide way on the flywheel and permitted to displace along said guide way;
  • driving worm 202 for coupling with inertia block and for driving inertia block to displace and adjust, the worm having umbrella gear for jointly accepting externally connected driving for synchronous adjustment;
  • flywheel 201 with at least two sets of radially radiant-type guide ways provided to accommodate inertia block for radially radiant-shape driving therealong;
  • driving umbrella gear 204 for accepting manpower or mechanical power drive and further driving each coupling gear set for driving worm.
  • FIG. 3 is a diagram showing the embodiment of shear type link forming active drive to adjust flywheel inertia mass, its function is same as FIG. 2, comprising:
  • flywheel main body comprising at least two pairs of shear type structures to drive folding support arm 301, and radially and outward abrupted joint is mounted with inertia block 302 for increasing flywheel effect;
  • shear type structure contacted angle adjustment device 303 the outward abrupted contacted angle adjustment of above-said shear type structure may change the radius of inertia block and axial and further to change inertia mass of flywheel, we can apply drive of linear driving device such as worm or fluid or solenoid, etc. to change contacted angle of radially outward abrupted joint of folding support arm.
  • linear driving device such as worm or fluid or solenoid, etc.
  • inertia block driving worm as shown in FIGS. 2 and 3 wherein the embodiments of inertia driven by mechanical power is only for explanation purpose, and based on the present invention we can use motor or other kind of mechanical device for driving inertia block or in substitute by fluid linear driving device comprising fluid cylinder, piston and link and use rotary fluid connector for leading in pressure fluid and use tube for guiding into said fluid linear driving device to drive/adjust inertia block.
  • fluid linear driving device comprising fluid cylinder, piston and link and use rotary fluid connector for leading in pressure fluid and use tube for guiding into said fluid linear driving device to drive/adjust inertia block.
  • FIG. 4 is a diagram showing the embodiment of pneumatic cylinder and piston to form centrifugal linear following for changing inertia mass, comprising:
  • inertia block 402 mounted at flywheel 401 and relatively driven by radially and radiant-type mounted air cylinder 403 and piston 404, and forming pressure storage chamber 405 between cylinder body and piston by means of centrifugal force externally displacement, when centrifugal force is reduced such pressure storage chamber is to push inertia block to return to axial for changing inertia mass of flywheel with pressure.
  • FIG. 5 is an embodiment of centrigual linear following structure comprising radially mounted tension spring in company with inertia block, comprising:
  • flywheel 500 for energy storage and release rotary driving and for mounting inertia block and positioning spring, etc. thereon; flywheel axial 501: as gyration center for flywheel;
  • inertia block tension positioning spring 502 one end secured near the internal rim of flywheel and stretching outward, and end portion externally stretching also connected to inertia block;
  • inertia block 503 for mounting inertia block positioning spring outward stretching end, when rotational speed of flywheel is faster, centrifugal force is increased to overcome spring force for radially displacement and when the rotational speed of flywheel is decreased gradually, it tends to return to the center to make flywheel inertia mass accompanying speed variation;
  • tension spring and inertia block sliding guiding rod structure 504 being made into guide rod type or hole groove shape.
  • radially radiant-type tension spring is provided to match inertia block to form centrifugal linear following and tension spring also can be changed into tension spring and inertia block can be mounted near the side of axial instead, and spring can be mounted at external side instead.
  • FIG. 6 is an embodiment of the structure of radially mounted tension spring wherein:
  • inertia block 603 appearing radiant-type radially displacement and mounted near the axial and for accepting tension pre-pressure of spring.
  • FIG. 7 is an embodiment of centrifugal linear following structure comprising inertia block with radially stretching elastic spring arm comprising:
  • flywheel 700 for energy storage and release rotary driving and provided to mount inertia block and positioning spring etc. thereon;
  • flywheel axial 701 gyration center for flywheel
  • At least two sets of positioning sheet type spring 702 for inertia block one end secured near outer rim of flywheel and the other end stretching inward, and its inward stretching end provided for coupling inertia block;
  • inertia blocks 703 for mounting inertia block positioning spring outward stretching end, when rotational speed of flywheel is faster, centrifugal force is increased to overcome spring force for radially displacement and when the rotational speed of flywheel is decreased gradually, it tends to return to the center to make flywheel inertia mass accompanying speed variation;
  • FIG. 8 is an embodiment of inertia block with radially stretching and intermediate supporting arm and spring extensive motion type tension arm comprising:
  • inertia block set permitted for radial displacement for energy storage and release rotary driving radially and radiant-type uniform externally radial arm 801, and external end at one side of its radial arm has inertia block 803 with greater weight, and same side has tension spring 804 (or another side with spring appearing thrust with axial) appearing tension against axial to make spring at tension state when inertia block 803 extending outward during speed up, and another side of radial arm contracts inward; when speed down the resilience of spring would enable radial arm and inertia block to return and release energy.
  • the device has a body 806 which is rotatably connected to a shaft 805 line portion as shown in FIG. 8 is the embodiment of energy storage of matched fluid-pressure driving wing piece and related structure of driving device wherein radial arm 801 swings along swinging (pivotal) axial 802 and the radial arm with inertia block 803 has tension spring 804, tail end of axis 805 has oriented tail wing B, and frontal end has commutator hood M facing air stream, and fluid tail wing (fin F) mounted at radial arm 801, once facing air fluid it would be engaged in relative operation to employ the axis 805 as the center; when speed is increased, inertia block extending outward due to centrifugal force to enable radial arm to lean backward whereby gyration inertia mass of the whole device is increased; when fluid speed down and rotational speed is reduced, inertia block contracts inward gradually to release energy and accomplish speed regulation at rather stable condition.
  • FIG. 9 is an embodiment of inertia block with radially stretching and intermediate supporting arm and spring compressive motion type tension arm.
  • the spring of the embodiments as shown in FIGS. 8 and 9 also can be in substitute by compressive fluid cylinder, piston and link, and besides the principle and structure of actively driving or centrifugal linear following dynamic flywheel effect can combine with other machines to construct jointly centrifugal linear following adjustment effect.
  • FIG. 10 is an embodiment of crank link type centrifugal device comprising compressive spring, comprising at least two sets of crank links 1001 jointly connected to sliding block and inertia block 1002 mounted at crank abrupted joint, compressive spring 1004 can be mounted between two sliding rings 1003 to enable inertia block 1002 to lean closely against turning axis 1005 due to tension propping open two sliding rings when sliding rings 1003 keep still at turning axis, and due to centrifugal force inertia block displaces outward and further forces two sliding blocks clamp inward said spring to obtain energy storage function; when speed down the tension of spring enables inertia blocks contract inward and further speed up energy release.
  • compressive spring 1004 can be mounted between two sliding rings 1003 to enable inertia block 1002 to lean closely against turning axis 1005 due to tension propping open two sliding rings when sliding rings 1003 keep still at turning axis, and due to centrifugal force inertia block displaces outward and further forces two
  • the principle and structure of actively driving or centrifugal linear following dynamic flywheel effect relates to provide a principle and structure of actively driving or centrifugal linear following dynamic flywheel effect to make fixed relationship between said energy storage, energy release and speed controllable and adjustable; when flywheel is used speed rate change can be minimized due to moment change, and due to dynamic energy is direct proportion to the square number of inertia mass times speed, so that we can change the characteristics of inertia mass absorption or release through the variation of inertia body radius R. It is new and applicable to energy storage steady pulse, etc. to provide industrial value. Please examine it in accordance with the law.
US07/862,809 1991-04-09 1992-04-03 Principle and structure of actively driving or centrifugal linear following dynamic flywheel effect Expired - Fee Related US5269197A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9107451 1991-04-09
GB919107451A GB9107451D0 (en) 1991-04-09 1991-04-09 The principle and structure of actively driving or centrifugal linear following dynamic flywheel effect

Publications (1)

Publication Number Publication Date
US5269197A true US5269197A (en) 1993-12-14

Family

ID=10692902

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/862,714 Expired - Fee Related US5265488A (en) 1991-04-09 1992-04-03 Double-acting type dynamic back spacing removed driving system
US07/862,809 Expired - Fee Related US5269197A (en) 1991-04-09 1992-04-03 Principle and structure of actively driving or centrifugal linear following dynamic flywheel effect

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/862,714 Expired - Fee Related US5265488A (en) 1991-04-09 1992-04-03 Double-acting type dynamic back spacing removed driving system

Country Status (10)

Country Link
US (2) US5265488A (zh)
EP (1) EP0508790B1 (zh)
JP (1) JPH05215185A (zh)
CN (3) CN2146610Y (zh)
AT (1) ATE149059T1 (zh)
DE (1) DE69217509T2 (zh)
DK (1) DK0508790T3 (zh)
ES (1) ES2097869T3 (zh)
GB (1) GB9107451D0 (zh)
GR (1) GR3023411T3 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666862A (en) * 1993-11-26 1997-09-16 Firma Carl Freudenberg Torsional vibration damper
US5680032A (en) * 1995-12-19 1997-10-21 Spinmotor, Inc. Wind-powered battery charging system
US5884735A (en) * 1996-02-06 1999-03-23 Carl Freudenberg Speed-adaptive vibration dampener
US6606922B2 (en) * 2000-04-28 2003-08-19 Schmitt Measurement Systems, Inc. Rotational imbalance compensator
US20050188783A1 (en) * 2004-02-28 2005-09-01 Stanimirovic Velimir M. Energy conservation fly wheel with variable moment of inertia (ECF-VMI)
US20070144309A1 (en) * 2004-06-28 2007-06-28 Gil Aldrete Fernando M Torque multiplier
US20090066499A1 (en) * 2007-07-17 2009-03-12 Enhanced Vehicle Acoustics, Inc. External sound generating system and method
US20100135767A1 (en) * 2007-05-16 2010-06-03 Arduini Douglas P Variable and Centrifugal Flywheel and Centrifugal Clutch
US20110120806A1 (en) * 2009-11-20 2011-05-26 Palmer Stephen T Mechanical energy storage system
US20110180358A1 (en) * 2010-01-27 2011-07-28 Gm Global Technology Operations, Inc. Vibration absorber
CN102606406A (zh) * 2012-02-27 2012-07-25 蓝星环保能源有限公司 一种叶片倾角可变的水平轴叶片式风力发电机
US20120304809A1 (en) * 2010-02-19 2012-12-06 Hiroaki Yamamoto Balancer
CN102995131A (zh) * 2012-10-30 2013-03-27 吴江新劲纺织有限公司 一种轧花皮辊
US8803487B2 (en) 2012-09-01 2014-08-12 Dehlsen Associates, Llc Rotating kinetic and potential energy frequency regulation device for fast response large scale electric power applications
US20150300437A1 (en) * 2014-04-16 2015-10-22 Ford Global Technologies, Llc Pendulum absorber with sliding joint
RU2578443C1 (ru) * 2015-02-10 2016-03-27 Евгений Александрович Киндеев Устройство для изменения момента инерции маховика
US9506518B2 (en) 2014-08-05 2016-11-29 Gm Global Technology Operations, Llc Centrifugal pendulum vibration absorber
RU2634066C2 (ru) * 2015-11-26 2017-10-23 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Дальневосточный Государственный Аграрный Университет" Инерциальное регулирующее устройство
US10316886B2 (en) 2015-05-11 2019-06-11 Honda Motor Co., Ltd. Damper device
US10487913B2 (en) 2015-11-26 2019-11-26 Evaristo GALIANA DOMÍNGUEZ Adjustable flywheel
US20200396902A1 (en) * 2016-11-10 2020-12-24 Deere & Company Crop baler with stuffer countermass
DE102019133013A1 (de) * 2019-12-04 2021-06-10 Bayerische Motoren Werke Aktiengesellschaft Rekuperationseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
RU208105U1 (ru) * 2021-07-26 2021-12-02 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») Маховик с переменным моментом инерции
US11231084B2 (en) 2017-12-12 2022-01-25 Martin W. Stryker Foldable flywheel mechanism to facilitate energy generation
US11391342B1 (en) 2021-03-24 2022-07-19 Deere & Company Variable inertia flywheel apparatus and system

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2284453A (en) * 1993-12-02 1995-06-07 Tai Her Yang Double-acting anti-backlash gearing system
US5765440A (en) * 1994-02-07 1998-06-16 Yang; Tai-Her Double-acting dynamic back clearance relief driving system
DE19907216C1 (de) * 1999-02-19 2000-10-12 Univ Hannover Drehschwingungstilger
US6447418B1 (en) 1999-10-15 2002-09-10 New Venture Gear, Inc. Variable ratio range set for a transfer case
US6582338B1 (en) 1999-10-15 2003-06-24 New Venture Gear, Inc. Differential unit with worm gearsets
US6835154B2 (en) * 1999-10-15 2004-12-28 New Venture Gear, Inc. On-demand transfer case
US6514167B1 (en) 1999-10-15 2003-02-04 New Venture Gear, Inc. Continuously variable transmission
US6464032B1 (en) 1999-10-15 2002-10-15 New Venture Gear, Inc. Worm drive axle traction assembly
US6402652B1 (en) 1999-10-15 2002-06-11 New Venture Gear, Inc. Continuously variable four-wheel drive transmission with traction control
US6645112B1 (en) 1999-10-15 2003-11-11 New Venture Gear, Inc. On-demand transfer case
GB2386668B (en) 2002-03-20 2005-06-29 Perkins Engines Co Ltd Variable inertia flywheel
KR20030087302A (ko) * 2002-05-08 2003-11-14 현대자동차주식회사 주파수 가변형 비틀림 댐퍼
US7594871B2 (en) * 2006-01-31 2009-09-29 Honda Motor Co., Ltd. Variable flywheel mechanism and flywheel apparatus
FR2935306B1 (fr) * 2008-09-02 2011-03-04 Peugeot Citroen Automobiles Sa Chaine de transmission d'un moteur a combustion interne comprenant un volant a inertie variable, son unite de commande ainsi qu'un procede de commande d'arret et de demarrage automatiques du moteur.
JP5410825B2 (ja) * 2009-04-24 2014-02-05 清水建設株式会社 回転慣性質量ダンパー
US8006794B2 (en) * 2009-04-30 2011-08-30 Gramling James T Kinetic energy storage device
US8227929B2 (en) 2009-09-25 2012-07-24 General Electric Company Multi-use energy storage for renewable sources
JP5494026B2 (ja) * 2010-03-04 2014-05-14 トヨタ自動車株式会社 振子式ダイナミックダンパ
CN101832235B (zh) * 2010-04-26 2012-05-30 江阴市江顺模具有限公司 中小型垂直轴、水平轴风力发电机离心轮智能减速装置
EP2450565A1 (en) * 2010-11-08 2012-05-09 Siemens Aktiengesellschaft Wind turbine and method of control of a wind turbine
KR101306301B1 (ko) * 2010-11-29 2013-09-09 윤병태 강철볼을 이용한 동력전달장치
ITPA20110011A1 (it) * 2011-07-19 2013-01-20 Luca Vincenzo De Volano motore con momento d'inerzia variabile.
CN103006104A (zh) * 2011-09-26 2013-04-03 德昌电机(深圳)有限公司 食物处理机、电机组件及面包机
CN102506122A (zh) * 2011-10-08 2012-06-20 江苏大学 可变惯质系数的齿轮齿条式惯容器装置
KR101314412B1 (ko) * 2011-12-22 2013-10-04 현대위아 주식회사 관성 가변형 플라이휠
CN102518746B (zh) * 2012-01-10 2013-10-09 南京工程学院 一种直槽高速内平衡变惯量飞轮
DE102012202661B4 (de) * 2012-02-21 2020-06-18 Tobias Neuwirth Schwungelementvorrichtung mit wenigstens zwei Schwungelementen und wenigstens zwei Speichereinrichtungen
RU2509241C1 (ru) * 2012-10-01 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Маховик переменного момента инерции
CN103033370A (zh) * 2012-12-19 2013-04-10 长安大学 一种可调节转动惯量的车辆制动检验台飞轮
JP2014126143A (ja) * 2012-12-26 2014-07-07 Institute Of National Colleges Of Technology Japan フライホイール
US9765865B2 (en) * 2013-02-07 2017-09-19 Medinol Ltd. Variable linear motor
CN103159010A (zh) * 2013-03-29 2013-06-19 无锡市诚信洗选设备有限公司 一种扇形结构增压减速轮
CN103159005A (zh) * 2013-03-29 2013-06-19 无锡市诚信洗选设备有限公司 一种悬垂式导轮
CN103159009A (zh) * 2013-03-29 2013-06-19 无锡市诚信洗选设备有限公司 一种停车导轮
WO2014161030A1 (en) * 2013-04-02 2014-10-09 Powerwheel Development Company Pty Ltd Energy storage system
CN103280914B (zh) * 2013-04-23 2016-04-20 中国科学院电工研究所 一种增速或恒速释能的飞轮
CN103277456B (zh) * 2013-05-29 2015-06-10 长城汽车股份有限公司 发动机飞轮
ES2633164T3 (es) * 2013-06-27 2017-09-19 Airbus Defence And Space Limited Un ensamblaje giratorio
CN103352801B (zh) * 2013-07-09 2016-01-27 张成革 离心变桨风力发电机
CN103671793A (zh) * 2013-11-25 2014-03-26 陈国安 机械发电机
CN103758916B (zh) * 2014-01-06 2016-02-10 潍柴动力股份有限公司 一种阻尼减振器
JP6273610B2 (ja) * 2014-03-03 2018-02-07 株式会社大浩 フライホイール
CN103850883A (zh) * 2014-03-25 2014-06-11 江苏理工学院 垂直轴风力发电机
WO2016031734A1 (ja) * 2014-08-26 2016-03-03 国立大学法人東京工業大学 体内発電システム
KR101693985B1 (ko) * 2015-05-11 2017-01-09 현대자동차주식회사 차량용 댐핑 장치
CN104989599A (zh) * 2015-07-31 2015-10-21 陈强生 飞轮式风力发电机
US9587699B1 (en) * 2015-08-30 2017-03-07 The Boeing Company Self-tuning tunable mass dampers
FR3043366A1 (fr) * 2015-11-05 2017-05-12 Antoine Zalcman Mecanisme de transmission de l'energie cinetique sans friction par volant a moment variable
US20160116021A1 (en) * 2015-12-29 2016-04-28 Caterpillar Inc. Variable inertia flywheel
FR3046558B1 (fr) * 2016-01-07 2018-07-27 Safran Aircraft Engines Soudage par friction inertielle a inertie variable
WO2017134608A1 (en) * 2016-02-05 2017-08-10 Honeyman Keith Vertical axis wind turbine
CN105782231B (zh) * 2016-04-01 2018-06-01 江苏大学 一种手动旋转固定装置
CN105782342B (zh) * 2016-04-27 2018-03-06 江苏科技大学 一种惯容值可调的滚珠丝杆式惯容器
CN107620779A (zh) * 2016-07-15 2018-01-23 电子科技大学 一种转动惯量可变的飞轮及带有该飞轮的运动装置
CN106593788B (zh) * 2016-12-16 2020-03-03 北京金风科创风电设备有限公司 设备维护装置、系统及设备维护方法
JP6221005B1 (ja) * 2017-05-31 2017-10-25 三桂有限会社 風力発電装置
CN107327539B (zh) * 2017-06-22 2022-11-18 金华集群科技有限公司 一种流体阻尼自适应调节飞轮及其阻尼调节方法
JP7133947B2 (ja) * 2018-03-05 2022-09-09 清水建設株式会社 浮き基礎
CN109024585A (zh) * 2018-07-19 2018-12-18 吕登敬 一种方便农村留守老人围菜园时使用的打桩设备
DE102018007549A1 (de) * 2018-09-24 2020-03-26 Sprick Gmbh Bielefelder Papier- Und Wellpappenwerke & Co. Antriebsmechanismus für einen Verpackungsmaterial-Strangwickler, Verpackungsmaterial- Strangwickler, gewickeltes Verpackungsmaterial-Polster und Verfahren zum Herstellen desselben
CN109953437B (zh) * 2019-04-04 2020-12-11 嘉兴方沐能源科技有限公司 一种智能可穿戴设备
CN109899450A (zh) * 2019-04-09 2019-06-18 凌飞 一种自动调整转动惯量的可变惯性弹簧飞轮
CN109989825A (zh) * 2019-04-09 2019-07-09 凌飞 一种基于单缸柴油机的惯性储能发电装置
CN110030168B (zh) * 2019-04-15 2021-02-19 刘帅 一种惯性动力装置
CN110748602A (zh) * 2019-11-06 2020-02-04 西南石油大学 一种两级离心式变转动惯量的储能飞轮
CN110848326B (zh) * 2019-11-19 2022-03-15 上海创功通讯技术有限公司 减振方法及减振装置
CN110994880B (zh) * 2019-12-05 2020-10-23 中交机电工程局有限公司 适用于疏浚船舶的飞轮储能系统
CN111365441A (zh) * 2020-03-17 2020-07-03 何明琼 一种旋转离心力式拉力驱动装置
CN111424832B (zh) * 2020-03-23 2021-08-17 广州大学 一种具有可调式非线性能量阱及惯容的调谐质量阻尼器
CN112594316B (zh) * 2020-12-17 2022-07-05 华中科技大学 一种惯质系数可调的惯质减振系统
CN112855447B (zh) * 2021-01-20 2022-04-08 北方民族大学 一种用于高速路的风力发电系统
RU206687U1 (ru) * 2021-05-04 2021-09-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Маховик с переменным моментом инерции
US11674503B2 (en) 2021-06-03 2023-06-13 Loubert S. Suddaby Variable mass, variable radius flywheel assembly
CN113359878B (zh) * 2021-06-07 2023-07-14 郑州创源智能设备有限公司 一种物联网承载的流量控制系统及控制方法
RU208565U1 (ru) * 2021-07-26 2021-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») Маховик с изменяемым моментом инерции
RU208153U1 (ru) * 2021-07-26 2021-12-06 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») Маховик с переменным моментом инерции
RU208106U1 (ru) * 2021-07-26 2021-12-02 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») Маховик с переменным моментом инерции
CN113890264B (zh) * 2021-10-20 2023-02-03 哈尔滨工业大学 一种月壤填充式磁悬浮飞轮储能装置
CN113944596A (zh) * 2021-11-24 2022-01-18 冉农全 一种风力发电机组
CN114427593A (zh) * 2021-12-13 2022-05-03 中国石油化工股份有限公司 一种柔性机械能储能方法
RU210770U1 (ru) * 2021-12-17 2022-04-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Маховик с переменным моментом инерции
CN114962548B (zh) * 2022-06-10 2023-06-23 中国北方发动机研究所(天津) 一种试验用液压驱动的转动惯量可调飞轮

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069669A (en) * 1976-08-18 1978-01-24 Pitkanen Alan R Inertial turbine energy storage braking and power transmission system
US4116088A (en) * 1975-08-05 1978-09-26 Institute De Recherche Des Transports Composite wheel structure capable of withstanding large centrifugal forces
US4128020A (en) * 1976-04-12 1978-12-05 Gray Archie B Energy storage and transmission apparatus
US4176563A (en) * 1976-10-27 1979-12-04 Electric Power Research Institute Inertial energy storage rotor with tension-balanced catenary spokes
JPS5569349A (en) * 1978-11-17 1980-05-24 Hitachi Ltd Flywheel
SU1020670A1 (ru) * 1980-07-28 1983-05-30 Всесоюзный научно-исследовательский и конструкторско-технологический институт компрессорного машиностроения Инерционный генератор
JPS60184745A (ja) * 1984-03-01 1985-09-20 Ishikawajima Harima Heavy Ind Co Ltd フライホイ−ル装置
JPS60222634A (ja) * 1984-04-19 1985-11-07 Mitsubishi Electric Corp フライホイ−ル
JPS61286636A (ja) * 1985-06-12 1986-12-17 Yukio Waku はずみ車の重量を移動する案内車の装置
US4643035A (en) * 1985-05-10 1987-02-17 Murphy Wesley T Energy transfer and conservation apparatus
US4730154A (en) * 1986-07-31 1988-03-08 The Boeing Company Variable inertia energy storage system
US4735382A (en) * 1983-10-28 1988-04-05 The Boeing Company Space craft cellular energy generating and storage device
US4788883A (en) * 1987-11-12 1988-12-06 Yasuyoshi Hashizume Rotor for a driving device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1274918A (en) * 1914-08-11 1918-08-06 Max Maag Worm-gearing.
US2367709A (en) * 1941-07-14 1945-01-23 Arkus-Duntov Zachar Polyharmonic self-tuning damper means
US2404515A (en) * 1944-06-16 1946-07-23 Frank W Meyer Hydraulic flywheel
DE1182504B (de) * 1959-02-02 1964-11-26 Fritz Huerxthal Maschinenfabri Einrichtung zur spielfreien Kraftuebertragung beim Hauptantrieb von spanabhebenden Werkzeugmaschinen mit umlaufendem Werkstueck- oder Werkzeugtraeger
US3248967A (en) * 1964-01-06 1966-05-03 Exxon Research Engineering Co Variable inertia liquid flywheel
JPS55126156A (en) * 1979-03-17 1980-09-29 Shin Meiwa Ind Co Ltd Worm-worm wheel device
DE3321844A1 (de) * 1983-06-16 1984-12-20 Hans-Dietrich Dipl.-Ing. 8213 Aschau Dehne Drehenergiespeicher
US4995282A (en) * 1989-07-19 1991-02-26 Schumacher Larry L Controllable inertia flywheel
US5090267A (en) * 1990-11-21 1992-02-25 Gramling James T Indexing apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116088A (en) * 1975-08-05 1978-09-26 Institute De Recherche Des Transports Composite wheel structure capable of withstanding large centrifugal forces
US4128020A (en) * 1976-04-12 1978-12-05 Gray Archie B Energy storage and transmission apparatus
US4069669A (en) * 1976-08-18 1978-01-24 Pitkanen Alan R Inertial turbine energy storage braking and power transmission system
US4176563A (en) * 1976-10-27 1979-12-04 Electric Power Research Institute Inertial energy storage rotor with tension-balanced catenary spokes
JPS5569349A (en) * 1978-11-17 1980-05-24 Hitachi Ltd Flywheel
SU1020670A1 (ru) * 1980-07-28 1983-05-30 Всесоюзный научно-исследовательский и конструкторско-технологический институт компрессорного машиностроения Инерционный генератор
US4735382A (en) * 1983-10-28 1988-04-05 The Boeing Company Space craft cellular energy generating and storage device
JPS60184745A (ja) * 1984-03-01 1985-09-20 Ishikawajima Harima Heavy Ind Co Ltd フライホイ−ル装置
JPS60222634A (ja) * 1984-04-19 1985-11-07 Mitsubishi Electric Corp フライホイ−ル
US4643035A (en) * 1985-05-10 1987-02-17 Murphy Wesley T Energy transfer and conservation apparatus
JPS61286636A (ja) * 1985-06-12 1986-12-17 Yukio Waku はずみ車の重量を移動する案内車の装置
US4730154A (en) * 1986-07-31 1988-03-08 The Boeing Company Variable inertia energy storage system
US4788883A (en) * 1987-11-12 1988-12-06 Yasuyoshi Hashizume Rotor for a driving device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666862A (en) * 1993-11-26 1997-09-16 Firma Carl Freudenberg Torsional vibration damper
US5680032A (en) * 1995-12-19 1997-10-21 Spinmotor, Inc. Wind-powered battery charging system
US5884735A (en) * 1996-02-06 1999-03-23 Carl Freudenberg Speed-adaptive vibration dampener
US6606922B2 (en) * 2000-04-28 2003-08-19 Schmitt Measurement Systems, Inc. Rotational imbalance compensator
US20050188783A1 (en) * 2004-02-28 2005-09-01 Stanimirovic Velimir M. Energy conservation fly wheel with variable moment of inertia (ECF-VMI)
US20070144309A1 (en) * 2004-06-28 2007-06-28 Gil Aldrete Fernando M Torque multiplier
US10247262B2 (en) * 2007-05-16 2019-04-02 Douglas P. Arduini Variable and centrifugal flywheel and centrifugal clutch
US20100135767A1 (en) * 2007-05-16 2010-06-03 Arduini Douglas P Variable and Centrifugal Flywheel and Centrifugal Clutch
US20090066499A1 (en) * 2007-07-17 2009-03-12 Enhanced Vehicle Acoustics, Inc. External sound generating system and method
US20110120806A1 (en) * 2009-11-20 2011-05-26 Palmer Stephen T Mechanical energy storage system
US8261884B2 (en) 2009-11-20 2012-09-11 Palmer Stephen T Mechanical energy storage system
US8424659B2 (en) * 2010-01-27 2013-04-23 GM Global Technology Operations LLC Vibration absorber
US8807305B2 (en) 2010-01-27 2014-08-19 Gm Global Technology Operations, Llc Vibration absorber
US20110180358A1 (en) * 2010-01-27 2011-07-28 Gm Global Technology Operations, Inc. Vibration absorber
US9989120B2 (en) 2010-02-19 2018-06-05 Hiroaki Yamamoto Balancer
US20120304809A1 (en) * 2010-02-19 2012-12-06 Hiroaki Yamamoto Balancer
US9206879B2 (en) * 2010-02-19 2015-12-08 Hiroaki Yamamoto Balancer
CN102606406A (zh) * 2012-02-27 2012-07-25 蓝星环保能源有限公司 一种叶片倾角可变的水平轴叶片式风力发电机
US8803487B2 (en) 2012-09-01 2014-08-12 Dehlsen Associates, Llc Rotating kinetic and potential energy frequency regulation device for fast response large scale electric power applications
CN102995131A (zh) * 2012-10-30 2013-03-27 吴江新劲纺织有限公司 一种轧花皮辊
US20150300437A1 (en) * 2014-04-16 2015-10-22 Ford Global Technologies, Llc Pendulum absorber with sliding joint
US9546706B2 (en) * 2014-04-16 2017-01-17 Ford Global Technologies, Llc Pendulum absorber with sliding joint
US9506518B2 (en) 2014-08-05 2016-11-29 Gm Global Technology Operations, Llc Centrifugal pendulum vibration absorber
RU2578443C1 (ru) * 2015-02-10 2016-03-27 Евгений Александрович Киндеев Устройство для изменения момента инерции маховика
US10316886B2 (en) 2015-05-11 2019-06-11 Honda Motor Co., Ltd. Damper device
RU2634066C2 (ru) * 2015-11-26 2017-10-23 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Дальневосточный Государственный Аграрный Университет" Инерциальное регулирующее устройство
US10487913B2 (en) 2015-11-26 2019-11-26 Evaristo GALIANA DOMÍNGUEZ Adjustable flywheel
US20200396902A1 (en) * 2016-11-10 2020-12-24 Deere & Company Crop baler with stuffer countermass
US11231084B2 (en) 2017-12-12 2022-01-25 Martin W. Stryker Foldable flywheel mechanism to facilitate energy generation
DE102019133013A1 (de) * 2019-12-04 2021-06-10 Bayerische Motoren Werke Aktiengesellschaft Rekuperationseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
US11391342B1 (en) 2021-03-24 2022-07-19 Deere & Company Variable inertia flywheel apparatus and system
RU208105U1 (ru) * 2021-07-26 2021-12-02 Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный технологический университет» (ФГБОУ ВО «КубГТУ») Маховик с переменным моментом инерции

Also Published As

Publication number Publication date
CN1030858C (zh) 1996-01-31
EP0508790B1 (en) 1997-02-19
EP0508790A1 (en) 1992-10-14
DK0508790T3 (da) 1997-08-18
JPH05215185A (ja) 1993-08-24
CN1066106A (zh) 1992-11-11
DE69217509T2 (de) 1997-06-05
ES2097869T3 (es) 1997-04-16
CN2146604Y (zh) 1993-11-17
US5265488A (en) 1993-11-30
DE69217509D1 (de) 1997-03-27
ATE149059T1 (de) 1997-03-15
GR3023411T3 (en) 1997-08-29
GB9107451D0 (en) 1991-05-22
CN2146610Y (zh) 1993-11-17

Similar Documents

Publication Publication Date Title
US5269197A (en) Principle and structure of actively driving or centrifugal linear following dynamic flywheel effect
US5035678A (en) Energy-storing bicycle sprocket drive system
US11098973B2 (en) Crossbow
JPH0698532B2 (ja) ハンマードリル
US20100199803A1 (en) Energy Storage Device
US5096381A (en) Regulating device for maintaining constant the rotary speed in turbines
JP2002531777A (ja) 回転エネルギー蓄積装置及びそれを組み入れた工具
WO2021008310A1 (zh) 振翅航行器
JPH03185273A (ja) 流体モータ
EP1210531B1 (en) Continuously variable transmission utilizing oscillating torque and one way drives
SE413048B (sv) Sett att vid en i huvudsak horisontalaxlad vidturbin med flappningnav reglerad flappingrorelsen
US6640659B1 (en) Continuously variable transmission
US6595084B2 (en) Continuously variably reciprocating transmission
JP6498467B2 (ja) 回転慣性制振装置、及び構造物の振動抑制装置
JP2011514284A (ja) 入力シャフトと出力シャフトiiの間で連続的に可変のギヤ比を有する変速機
US3013446A (en) Wholly mechanical, automatic, continuous, and substantially frictionless converters of rotational motion
US10689080B2 (en) Oscillating lever driven reversible motor
RU2800033C1 (ru) Шагающий аппарат на основе преобразования возобновляемой энергии в энергию движения
SU1523784A1 (ru) Регул тор момента
US6308611B1 (en) Variable stroke motor and valve
SU1011940A1 (ru) Механизм преобразовани вращательного движени в возвратно-поступательное
SU1087683A1 (ru) Ветродвигатель
CN107363445B (zh) 一种建筑市政道路用环保焊接机器人
SU1696743A1 (ru) Рабочий орган землеройно-фрезерной машины
SU1317214A1 (ru) Редукционна муфта

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
REIN Reinstatement after maintenance fee payment confirmed
FP Lapsed due to failure to pay maintenance fee

Effective date: 20011214

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment
PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20030619

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20051214