US20150329952A1 - Methods for producing a pre-lacquered metal sheet having zn-al-mg coatings and corresponding metal sheet - Google Patents

Methods for producing a pre-lacquered metal sheet having zn-al-mg coatings and corresponding metal sheet Download PDF

Info

Publication number
US20150329952A1
US20150329952A1 US14/397,093 US201314397093A US2015329952A1 US 20150329952 A1 US20150329952 A1 US 20150329952A1 US 201314397093 A US201314397093 A US 201314397093A US 2015329952 A1 US2015329952 A1 US 2015329952A1
Authority
US
United States
Prior art keywords
outer surfaces
metal coatings
metal
coatings
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/397,093
Other languages
English (en)
Inventor
Tiago Machado Amorim
Joëlle Richard
Eric Jacqueson
Audrey Lhermeroult
Pascale Feltin
Jean-Michel Lemaire
Christian Allely
Luc Diez
Jean-Michel Mataigne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Investigacion y Desarrollo SL
Original Assignee
ArcelorMittal Investigacion y Desarrollo SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48577184&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150329952(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ArcelorMittal Investigacion y Desarrollo SL filed Critical ArcelorMittal Investigacion y Desarrollo SL
Assigned to ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L. reassignment ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLELY, CHRISTIAN, Diez, Luc, FELTIN, Pascale, JACQUESON, ERIC, MACHADO AMORIM, Tiago, LEMAIRE, Jean-Michel, Mataigne, Jean-Michel, RICHARD, Joëlle, LHERMEROULT, Audrey
Publication of US20150329952A1 publication Critical patent/US20150329952A1/en
Assigned to ArcelorMittal Investigación y Desarrollo, S.L. reassignment ArcelorMittal Investigación y Desarrollo, S.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLELY, CHRISTIAN, Diez, Luc, FELTIN, Pascale, JACQUESON, ERIC, MACHADO AMORIM, Tiago, LEMAIRE, Jean-Michel, Mataigne, Jean-Michel, RICHARD, Joëlle, LHERMEROULT, Audrey
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/10Applying the material on both sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component

Definitions

  • the present invention relates to a metal sheet comprising a steel substrate having two faces each coated with a metal coating comprising zinc, magnesium and aluminum and a paint film.
  • pre-lacquered Such metal sheets are commonly referred to as “pre-lacquered” and are for example intended for the household appliance field or construction.
  • the metal coatings essentially comprising zinc and aluminum in small proportions (typically approximately 0.1 wt %), are traditionally used for good corrosion protection. These metal coatings are currently subject to competition in particular from coatings comprising zinc, magnesium and aluminum.
  • Such metal coatings will be globally referred to hereinafter as zinc-aluminum-magnesium or ZnAlMg coatings.
  • An object of the present invention is to provide a method that makes it possible to produce pre-lacquered metal sheets with ZnAlMg coatings, those metal sheets having a still further increased corrosion resistance.
  • the present invention first provides a method for producing a metal sheet.
  • the method includes providing a steel substrate having two faces each coated with a metal coating obtained by dipping the substrate in a bath and cooling, each metal coating comprising zinc, between 0.1 and 20 wt % of aluminum, and between 0.1 and 10 wt % of magnesium, the substrate ( 3 ) thus coated having been subjected to a skin-pass step, degreasing the outer surfaces of the metal coatings, rinsing and drying the outer surfaces of the metal coatings, altering layers of magnesium oxide or magnesium hydroxide formed on the outer surfaces of the metal coatings, said alteration step comprising the application of an acid solution on the outer surfaces of the metal coatings, rinsing and optionally drying the outer surfaces of the metal coatings, applying a conversion solution on the outer surfaces of the metal coatings, drying the outer surfaces of the metal coatings, and painting the outer surfaces of the metal coatings to cover each of them with a paint film comprising at least one polymer chosen from the group consisting of
  • the present invention provides another method for producing a metal sheet.
  • the method includes providing a steel substrate having two faces each coated with a metal coating obtained by dipping the substrate in a bath and cooling, each metal coating comprising zinc, between 0.1 and 20 wt % of aluminum, and between 0.1 and 10 wt % of magnesium, the substrate thus coated having been subjected to a skin-pass step, degreasing the outer surfaces of the metal coatings, rinsing and drying the outer surfaces of the metal coatings, applying an acid conversion solution not containing chromium on the outer surfaces of the metal coatings, said conversion solution having a pH comprised between 1 and 2, drying the outer surfaces of the metal coatings, painting the outer surfaces of the metal coatings to cover each of them with a paint film comprising at least one polymer chosen from the group consisting of melamine-cross-linking polyesters, isocyanate-cross-linking polyesters, polyurethanes and halogenated derivatives of vinyl polymers, excluding cataphoretic paints.
  • the present invention provides a further method for producing a metal sheet.
  • the further method includes providing a steel substrate having two faces each coated with a metal coating obtained by dipping the substrate in a bath and cooling, each metal coating comprising zinc, between 0.1 and 20 wt % of aluminum, and between 0.1 and 10 wt % of magnesium, the substrate thus coated having been subjected to a skin-pass step, altering layers of magnesium oxide or magnesium hydroxide formed on the outer surfaces of the metal coatings, said alteration step comprising applying mechanical forces on the outer surfaces of the metal coatings, and optionally applying an acid solution on the outer surfaces of the metal coatings, if the alteration step comprises applying an acid solution, rinsing and optionally drying the outer surfaces of the metal coatings, non-oxidizing degreasing the outer surfaces of the metal coatings, rinsing and drying the outer surfaces of the metal coatings, applying a conversion solution on the outer surfaces of the metal coatings, drying the outer surfaces of the metal coatings, painting the outer surfaces of the metal
  • the present invention also provides a metal sheet.
  • the metal sheet has two faces each coated with a metal coating comprising zinc, aluminum and magnesium and by a paint film comprising at least one polymer chosen from the group consisting of melamine-cross-linking polyesters, isocyanate-cross-linking polyesters, polyurethanes and halogenated derivatives of vinyl polymers, excluding cataphoretic paints.
  • the metal coatings comprise between 0.1 and 20 wt % of aluminum and 0.1 and 10 wt % of magnesium. The metal sheet being obtained by one of the methods of the present invention.
  • FIG. 1 is a diagrammatic cross-sectional view illustrating the structure of a metal sheet obtained using a method according to the present invention.
  • FIGS. 2 and 3 show the results of XPS spectroscopy analysis of the outer surfaces of the metal sheets.
  • the metal sheet 1 of FIG. 1 comprises a steel substrate 3 covered on each of its two faces 5 by a metal coating 7 .
  • the coatings 7 are respectively covered by an upper paint film 9 and a lower paint film 11 .
  • the coatings 7 present on the two faces 5 are similar, and only one will be described in detail below.
  • the coating 7 generally has a thickness smaller than or equal to 25 ⁇ m, for example, and traditionally aims to protect the substrate 3 from corrosion.
  • the coating 7 comprises zinc, aluminum and magnesium. It is in particular preferred for the coating 7 to comprise, for example, between 0.1 and 10 wt % of magnesium and between 0.1 and 20 wt % of aluminum.
  • the coating 7 comprises more than 0.3 wt % of magnesium, or even between 0.3 wt % and 4 wt % of magnesium and/or between 0.5 and 11 wt % or even between 0.7 and 6 wt % of aluminum.
  • the Mg/Al weight ratio between the magnesium and the aluminum in the coating 7 is less than or equal to 1, or even strictly less than 1, or even strictly less than 0.9.
  • the paint films 9 and 11 are for example polymer-based. Preferably, they comprise at least one polymer chosen from the group consisting of melamine-cross-linking polyesters, isocyanate-cross-linking polyesters, polyurethanes and halogenated derivatives of vinyl polymers, excluding cataphoretic paints.
  • the films 9 and 11 typically have thicknesses comprised between 1 and 200 ⁇ m.
  • the following method may for example be used.
  • the installation used may comprise a single line or, for example, two different lines to carry out the metal coatings and the painting, respectively.
  • two different lines may be situated on the same site or different sites.
  • an alternative will be considered as an example where two separate lines are used.
  • a substrate 3 is used that is for example obtained by hot, then cold rolling.
  • the substrate 3 is in the form of a band that is caused to pass through a bath to deposit the coatings 7 by hot dipping.
  • the bath is a molten zinc bath containing magnesium and aluminum.
  • the bath may also contain up to 0.3 wt % of each of the optional additional elements, such as Si, Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr or Bi.
  • the bath may lastly contain residual elements coming from supply ingots or resulting from the passage of the substrate 3 in the bath, such as iron with a content of up to 5 wt %, and generally comprised between 2 and 4 wt %, for example.
  • the substrate 3 is for example spun dry using nozzles projecting a gas on either side of the substrate 3 .
  • the coatings 7 are then left to cool in a controlled manner.
  • the band thus treated may next undergo a so-called skin-pass step, which makes it possible to cold work it so as to erase the elasticity plateau, set the mechanical characteristics and give it a roughness suitable for the stamping operations and the painted surface quality one wishes to obtain.
  • the means for adjusting the skin-pass operation is the elongation level, which must be sufficient to achieve the aims and small enough to preserve the subsequent deformation capacity.
  • the elongation level is typically comprised between 0.3 and 3 wt %, and preferably between 0.3 and 2.2%.
  • the band may optionally be wound before being sent to a pre-lacquering line.
  • the outer surfaces 15 of the coatings 7 are subjected to the following steps therein:
  • the purpose of the degreasing step is to clean the outer surfaces 15 and therefore remove the traces of organic dirtying, metal particles and dust.
  • this step does not alter the chemical nature of the outer surfaces 15 , with the exception of altering any aluminum oxide/hydroxide surface layer.
  • the solution used for this degreasing step is non-oxidizing.
  • no magnesium oxide or magnesium hydroxide is formed on the outer surfaces 15 during the degreasing step, and more generally before the painting step.
  • the surface treatment step comprises applying, on the outer surfaces 15 , a conversion solution that reacts chemically with the outer surfaces 15 and thus makes it possible to form conversion layers on the outer surfaces 15 .
  • the conversion solution does not contain chromium. It may thus be a hexafluorotitanic or hexafluorozirconic acid-based solution.
  • the painting may for example be done by depositing two successive layers of paint, i.e., a layer of primer and a topcoat layer, which is generally the case to produce the upper film 9 , or by depositing a single layer of paint, which is generally the case to produce the lower film 11 .
  • a layer of primer and a topcoat layer which is generally the case to produce the upper film 9
  • a single layer of paint which is generally the case to produce the lower film 11 .
  • Other numbers of layers can be used in certain alternatives.
  • the layers of paint are for example deposited using roller coaters.
  • Each deposition of a layer of paint is generally followed by baking in a furnace.
  • the metal sheet 1 thus obtained can once again be wound before being cut, optionally shaped and assembled with other metal sheets 1 or other elements by users.
  • the inventors have shown that the use of a step for altering a magnesium oxide or magnesium hydroxide layer present on the outer surface 15 of each coating 7 makes it possible to improve the corrosion resistance of the metal sheet 1 , and in particular to limit the bubbling phenomenon of the paint films 9 and 11 when the metal sheet 1 is subjected to a corrosive environment.
  • a magnesium oxide or magnesium hydroxide layer here refers to a layer that may contain compounds of the Mg x O y type, or compounds of the Mgx(OH)y type, or a mixture of those two types of compounds.
  • XPS X-ray Photoemission Spectroscopy
  • XPS spectroscopy has also been used to measure the thickness of the layers of magnesium oxide or magnesium hydroxide present on the outer surfaces 15 before painting. It appears that these layers have a thickness of several nm.
  • FIGS. 2 and 3 respectively illustrate the spectrums of the elements for energy levels C1s (curve 17 ), O1s (curve 19 ), Mg1s (curve 21 ), A12p (curve 23 ) and Zn2p3 (curve 25 ) during an XPS spectroscopic analysis.
  • the corresponding atomic percentages are shown on the y-axis and the analysis depth on the x-axis.
  • the sample analyzed in FIG. 2 corresponds to coatings 7 comprising 3.7 wt % of aluminum and 3 wt % of magnesium and subjected to a traditional skin-pass step with an elongation of 0.5%, while the specimen of FIG. 3 has not been subjected to such a step.
  • the thickness of the layers of magnesium oxide or magnesium hydroxide is approximately 5 nm.
  • the method for producing the metal sheet 1 comprises, before painting, a step for altering layers of magnesium oxide or magnesium hydroxide present on the outer surfaces 15 of the coatings 7 .
  • Such an alteration step may take place before or during the surface treatment step. It may for example take place on the production line for the coatings 7 or the pre-lacquering line.
  • the alteration step comprises applying an acid solution, for example with a pH comprised between 1 and 4, preferably between 1 and 3.5, and still more preferably between 1 and 3, on the outer surfaces 15 .
  • the solution may for example comprise hydrochloric acid, sulfuric acid or phosphoric acid.
  • the application duration of the acid solution may be comprised between 0.2 s and 30 s, preferably between 0.2 s and 15 s, and still more preferably between 0.5 s and 15 s, as a function of the pH of the solution, and the moment and manner in which it is applied.
  • the solution may be applied by immersion, aspersion or any other system.
  • the temperature of the solution may for example be the ambient temperature or any other temperature.
  • the step for applying the acid solution takes place after the rinsing and drying step following the degreasing step.
  • the application of the acid solution is followed by a rinsing and optionally drying step of the outer surfaces 15 before the application step for the conversion solution.
  • the step for applying the conversion solution constitutes the alteration step for magnesium oxide or magnesium hydroxide layers present on the outer surfaces 15 of the coatings 7 .
  • the conversion solution used has a pH comprised between 1 and 2.
  • the alteration step comprises the application of mechanical forces, and optionally the application of an acid solution, on the outer surfaces 15 of the metal coatings 7 .
  • Such mechanical forces may be applied by a roller leveler, brushing devices, shot-blasting devices, etc.
  • a roller leveler which is characterized by the application of a plastic deformation by bending between rollers, may be adjusted to deform the metal sheet that passes through it enough to create cracks in the layers of magnesium oxide or magnesium hydroxide.
  • the mechanical forces will preferably be applied before the acid solution or while it is present on the outer surfaces 15 to favor the action of the acid solution.
  • the mechanical forces may be less intense.
  • the acid solution may then be applied in the roller leveler.
  • the pH of the acid solution may be higher, and in particular greater than 3.
  • the alteration step takes place before the degreasing step.
  • alteration step of the third embodiment comprises applying an acid solution
  • rinsing and optionally drying step for the outer surfaces 15 of the metal coatings 7 .
  • Specimens of the metal sheets 1 obtained using a method according to the invention i.e., with a step for altering the layers of magnesium oxide or magnesium hydroxide present on the metal coatings, and metal sheets obtained traditionally, were subjected to corrosion resistance tests. It appears that the metal sheets 1 obtained using a method according to the invention have a better corrosion resistance.
US14/397,093 2012-04-25 2013-04-25 Methods for producing a pre-lacquered metal sheet having zn-al-mg coatings and corresponding metal sheet Abandoned US20150329952A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/FR2012/050910 WO2013160567A1 (fr) 2012-04-25 2012-04-25 Procédé de réalisation d'une tôle prélaquée à revêtements znalmg et tôle correspondante.
FRPCT/FR2012/050910 2012-04-25
PCT/IB2013/053279 WO2013160866A1 (fr) 2012-04-25 2013-04-25 PROCÉDÉS DE RÉALISATION D'UNE TÔLE PRÉLAQUÉE À REVÊTEMENTS ZnAlMg ET TÔLE CORRESPONDANTE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/053279 A-371-Of-International WO2013160866A1 (fr) 2012-04-25 2013-04-25 PROCÉDÉS DE RÉALISATION D'UNE TÔLE PRÉLAQUÉE À REVÊTEMENTS ZnAlMg ET TÔLE CORRESPONDANTE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/052,365 Division US10612118B2 (en) 2012-04-25 2016-02-24 Methods for producing a pre-lacquered metal sheet having Zn—Al—Mg coatings and corresponding metal sheet

Publications (1)

Publication Number Publication Date
US20150329952A1 true US20150329952A1 (en) 2015-11-19

Family

ID=48577184

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/397,093 Abandoned US20150329952A1 (en) 2012-04-25 2013-04-25 Methods for producing a pre-lacquered metal sheet having zn-al-mg coatings and corresponding metal sheet
US15/052,365 Active US10612118B2 (en) 2012-04-25 2016-02-24 Methods for producing a pre-lacquered metal sheet having Zn—Al—Mg coatings and corresponding metal sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/052,365 Active US10612118B2 (en) 2012-04-25 2016-02-24 Methods for producing a pre-lacquered metal sheet having Zn—Al—Mg coatings and corresponding metal sheet

Country Status (13)

Country Link
US (2) US20150329952A1 (fr)
EP (1) EP2841613B1 (fr)
JP (1) JP6348107B2 (fr)
CN (1) CN104364411B (fr)
BR (1) BR112014026680B1 (fr)
CA (1) CA2871561C (fr)
ES (1) ES2716302T3 (fr)
IN (1) IN2014DN09952A (fr)
PL (1) PL2841613T3 (fr)
RU (1) RU2625927C2 (fr)
TR (1) TR201903632T4 (fr)
WO (2) WO2013160567A1 (fr)
ZA (1) ZA201407671B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216317A1 (de) * 2018-09-25 2020-03-26 Thyssenkrupp Ag Verfahren zur Modifikation von feuerverzinkten Oberflächen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727391C1 (ru) * 2020-02-03 2020-07-21 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства коррозионностойкого окрашенного стального проката с цинк-алюминий-магниевым покрытием
EP3858495A1 (fr) 2020-02-03 2021-08-04 Public Joint-Stock Company NOVOLIPETSK STEEL Procédé de production d'une bande d'acier résistant à la corrosion
CN114645232A (zh) * 2020-12-18 2022-06-21 广东美的制冷设备有限公司 一种涂层板和家用电器
EP4148163A1 (fr) 2021-09-13 2023-03-15 Henkel AG & Co. KGaA Procédé de nettoyage et/ou de prétraitement de protection contre la corrosion d'une pluralité de composants comprenant de l'acier galvanisé (zm)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436081A (en) * 1991-02-18 1995-07-25 Sumitomo Metal Industries, Ltd. Plated aluminum sheet having improved spot weldability
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
US20030000846A1 (en) * 2001-05-25 2003-01-02 Shipley Company, L.L.C. Plating method
US20030148136A1 (en) * 2000-04-26 2003-08-07 Mitsui Mining & Smelting Co. Ltd. Surface treated copper foil, electrodeposited copper foil with carrier, manufacture method for the electrodeposited copper foil with carrier, and copper clad laminate
US6773516B2 (en) * 2000-03-20 2004-08-10 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface I
US20040166360A1 (en) * 2001-10-23 2004-08-26 Kazuhito Imai Hot press forming method, and a plated steel material therefor and its manufacturing method
US20040238081A1 (en) * 2001-08-24 2004-12-02 Naoki Yoshinaga Steel plate exhibiting excellent workability and method for producing the same
US20040244875A1 (en) * 2003-06-09 2004-12-09 Mitsuhiro Yasuda Method of surface treating metal and metal surface treated thereby
US20090297881A1 (en) * 2004-06-29 2009-12-03 Corus Staal Bv Steel sheet with hot dip galvanized zinc alloy coating and process to produce it
US20100040906A1 (en) * 2007-01-29 2010-02-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) High-strength hot-dip galvannealed steel sheet with superior phosphatability

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1081058A (fr) * 1976-11-05 1980-07-08 Robert F. Hunter Pretraitement d'une partie d'une bande de metal ferreux au moyen d'une solution d'acide phosphorique afin d'en empecher la galvanisation
US6794060B2 (en) * 1992-03-27 2004-09-21 The Louis Berkman Company Corrosion-resistant coated metal and method for making the same
DE19923084A1 (de) 1999-05-20 2000-11-23 Henkel Kgaa Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren
JP2001348678A (ja) * 2000-04-03 2001-12-18 Nisshin Steel Co Ltd 耐久性の良好な塗装鋼板
AU2001286971A1 (en) 2000-09-01 2002-03-13 Bethlehem Steel Corporation Process for applying a coating to a continuous steel sheet and a coated steel sheet product therefrom
JP2002241962A (ja) 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd 溶融Zn−Al−Mg合金めっき鋼板とその製造方法
JP2002317257A (ja) * 2001-04-19 2002-10-31 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
JP3600804B2 (ja) * 2001-06-27 2004-12-15 新日本製鐵株式会社 成形性に優れた溶融亜鉛めっき鋼板
JP3779941B2 (ja) * 2002-01-09 2006-05-31 新日本製鐵株式会社 塗装後耐食性と塗装鮮映性に優れた亜鉛めっき鋼板
CN100585024C (zh) 2002-09-09 2010-01-27 克罗莱国际有限公司 镁及其合金的表面处理
JP4374289B2 (ja) 2004-07-07 2009-12-02 新日本製鐵株式会社 加工部耐食性に優れた表面処理鋼板
JP2006062214A (ja) 2004-08-27 2006-03-09 Kunio Nakamura 鉱石積層体及びその製造方法
JP4969831B2 (ja) * 2004-10-26 2012-07-04 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
BRPI0518645B8 (pt) * 2004-12-08 2017-03-21 Nippon Steel & Sumitomo Metal Corp chapa metálica pré-revestida e métodos de produção de chapa metálica pré-revestida
DE102005005858A1 (de) 2005-02-08 2006-08-17 Henkel Kgaa Verfahren zur Beschichtung von Metallblech, insbesondere Zinkblech
DE102005027633A1 (de) * 2005-06-14 2006-12-21 Basf Ag Verfahren zum Herstellen von lackierten, flächenförmigen, metallischen Formkörpern
JP4800682B2 (ja) 2005-06-22 2011-10-26 矢崎総業株式会社 吊下ユニット及び吊下具
JP4757608B2 (ja) * 2005-11-09 2011-08-24 新日本製鐵株式会社 Zn系合金めっき鋼材
RU2417273C2 (ru) * 2006-03-20 2011-04-27 Ниппон Стил Корпорейшн Стальной материал с высокой коррозионной стойкостью, получаемый с помощью горячего цинкования методом погружения
DE102007021364A1 (de) 2007-05-04 2008-11-06 Henkel Ag & Co. Kgaa Metallisierende Vorbehandlung von Zinkoberflächen
US20110008644A1 (en) * 2008-03-17 2011-01-13 Taisei Plas Co., Ltd. Bonded body of galvanized steel sheet and adherend, and manufacturing method thereof
JP2011206646A (ja) 2010-03-29 2011-10-20 Nisshin Steel Co Ltd 塗装鋼板およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436081A (en) * 1991-02-18 1995-07-25 Sumitomo Metal Industries, Ltd. Plated aluminum sheet having improved spot weldability
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
US6773516B2 (en) * 2000-03-20 2004-08-10 Commonwealth Scientific And Industrial Research Organisation Process and solution for providing a conversion coating on a metallic surface I
US20030148136A1 (en) * 2000-04-26 2003-08-07 Mitsui Mining & Smelting Co. Ltd. Surface treated copper foil, electrodeposited copper foil with carrier, manufacture method for the electrodeposited copper foil with carrier, and copper clad laminate
US20030000846A1 (en) * 2001-05-25 2003-01-02 Shipley Company, L.L.C. Plating method
US20040238081A1 (en) * 2001-08-24 2004-12-02 Naoki Yoshinaga Steel plate exhibiting excellent workability and method for producing the same
US20040166360A1 (en) * 2001-10-23 2004-08-26 Kazuhito Imai Hot press forming method, and a plated steel material therefor and its manufacturing method
US20040244875A1 (en) * 2003-06-09 2004-12-09 Mitsuhiro Yasuda Method of surface treating metal and metal surface treated thereby
US20090297881A1 (en) * 2004-06-29 2009-12-03 Corus Staal Bv Steel sheet with hot dip galvanized zinc alloy coating and process to produce it
US20100040906A1 (en) * 2007-01-29 2010-02-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) High-strength hot-dip galvannealed steel sheet with superior phosphatability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216317A1 (de) * 2018-09-25 2020-03-26 Thyssenkrupp Ag Verfahren zur Modifikation von feuerverzinkten Oberflächen

Also Published As

Publication number Publication date
IN2014DN09952A (fr) 2015-08-14
CA2871561C (fr) 2016-11-15
WO2013160567A1 (fr) 2013-10-31
PL2841613T3 (pl) 2019-05-31
RU2014147322A (ru) 2016-06-10
CN104364411A (zh) 2015-02-18
JP2015515379A (ja) 2015-05-28
BR112014026680A2 (pt) 2017-06-27
EP2841613B1 (fr) 2018-12-19
EP2841613A1 (fr) 2015-03-04
ES2716302T3 (es) 2019-06-11
CA2871561A1 (fr) 2013-10-31
TR201903632T4 (tr) 2019-04-22
CN104364411B (zh) 2017-11-21
BR112014026680B1 (pt) 2020-10-20
WO2013160866A1 (fr) 2013-10-31
US20160168683A1 (en) 2016-06-16
RU2625927C2 (ru) 2017-07-19
ZA201407671B (en) 2015-11-25
JP6348107B2 (ja) 2018-06-27
US10612118B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
US10865483B2 (en) Metal sheet having oiled Zn—Al—Mg coatings
US10612118B2 (en) Methods for producing a pre-lacquered metal sheet having Zn—Al—Mg coatings and corresponding metal sheet
CA2900085C (fr) Tole dotee d'un revetement znalmg ayant une microstructure particuliere et methode de production correspondante
EA030933B1 (ru) МЕТАЛЛИЧЕСКИЙ ЛИСТ С ZnAlMg ПОКРЫТИЕМ С УЛУЧШЕННОЙ ГИБКОСТЬЮ И СООТВЕТСТВУЮЩИЙ СПОСОБ ИЗГОТОВЛЕНИЯ
US11155926B2 (en) Method for the production of metal sheet having a ZnMg or ZnAlMg coating, comprising the application of a basic solution of a magnesium ion complexing agent, and resulting metal sheet
KR20160083313A (ko) 단면 내식성이 우수한 도장강판 및 그 제조방법
JP5661699B2 (ja) 樹脂被覆鋼板の製造方法
JP5101250B2 (ja) 樹脂被覆鋼板
JP6772943B2 (ja) 塗装鋼板
JPH11343554A (ja) 耐食性に優れた溶融Al−Zn系合金めっき鋼板
JP3572944B2 (ja) 耐クラック性及び耐食性に優れた溶融Al−Zn系合金めっき鋼板の製造方法
JP3329272B2 (ja) 耐クラック性及び耐食性に優れた溶融Al−Zn系合金めっき鋼板
JPH11343551A (ja) 耐食性に優れた溶融Al−Zn系合金めっき鋼板
JPH11302865A (ja) 加工性、耐傷つき性及び耐食性に優れた塗装亜鉛めっき鋼板及びその製造方法
JPH11343553A (ja) 耐食性に優れた溶融Al−Zn系合金めっき鋼板
JPH11343552A (ja) 耐食性に優れた溶融Al−Zn系合金めっき鋼板

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L., SP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIEZ, LUC;MACHADO AMORIM, TIAGO;ALLELY, CHRISTIAN;AND OTHERS;SIGNING DATES FROM 20141031 TO 20141106;REEL/FRAME:035040/0450

AS Assignment

Owner name: ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L., SPAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLELY, CHRISTIAN;LEMAIRE, JEAN-MICHEL;LHERMEROULT, AUDREY;AND OTHERS;SIGNING DATES FROM 20141031 TO 20141106;REEL/FRAME:037873/0423

Owner name: ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L., SP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLELY, CHRISTIAN;LEMAIRE, JEAN-MICHEL;LHERMEROULT, AUDREY;AND OTHERS;SIGNING DATES FROM 20141031 TO 20141106;REEL/FRAME:037873/0423

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION