US20150152099A1 - Methods of manufacturing benzoquinoline compounds - Google Patents

Methods of manufacturing benzoquinoline compounds Download PDF

Info

Publication number
US20150152099A1
US20150152099A1 US14/551,909 US201414551909A US2015152099A1 US 20150152099 A1 US20150152099 A1 US 20150152099A1 US 201414551909 A US201414551909 A US 201414551909A US 2015152099 A1 US2015152099 A1 US 2015152099A1
Authority
US
United States
Prior art keywords
canceled
compound
formula
vol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/551,909
Other languages
English (en)
Inventor
Chengzhi Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auspex Pharmaceuticals Inc
Original Assignee
Auspex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auspex Pharmaceuticals Inc filed Critical Auspex Pharmaceuticals Inc
Priority to US14/551,909 priority Critical patent/US20150152099A1/en
Assigned to AUSPEX PHARMACEUTICALS, INC. reassignment AUSPEX PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHANG, CHENGZHI
Publication of US20150152099A1 publication Critical patent/US20150152099A1/en
Priority to US15/464,938 priority patent/US20170190654A1/en
Priority to US15/472,779 priority patent/US10513488B2/en
Priority to US15/952,031 priority patent/US20180230083A1/en
Priority to US16/205,525 priority patent/US20190092719A1/en
Priority to US16/680,674 priority patent/US20200331846A1/en
Priority to US16/849,603 priority patent/US20200347008A1/en
Priority to US17/879,600 priority patent/US20230060294A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C223/00Compounds containing amino and —CHO groups bound to the same carbon skeleton
    • C07C223/02Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • C07D217/04Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D455/00Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/03Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/04Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing a quinolizine ring system condensed with only one six-membered carbocyclic ring, e.g. julolidine
    • C07D455/06Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing a quinolizine ring system condensed with only one six-membered carbocyclic ring, e.g. julolidine containing benzo [a] quinolizine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • Tetrabenazine (Nitoman, Xenazine, Ro 1-9569), 1,3,4,6,7,11b-Hexahydro-9,10-dimethoxy-3-(2-methylpropyl)-2H-benzo[a]quinoline, is a vesicular monoamine transporter 2 (VMAT2) inhibitor. Tetrabenazine is commonly prescribed for the treatment of Huntington's disease (Savani et al., Neurology 2007, 68(10), 797; and Kenney et al., Expert Review of Neurotherapeutics 2006, 6(1), 7-17).
  • d 6 -Tetrabenazine is a deuterated analog of tetrabenazine which has improved pharmacokinetic properties when compared to the non-deuterated drug and is currently under clinical development.
  • Tetrabenazine is a VMAT2 inhibitor.
  • the carbon-hydrogen bonds of tetrabenazine contain a naturally occurring distribution of hydrogen isotopes, namely 1 H or protium (about 99.9844%), 2 H or deuterium (about 0.0156%), and 3 H or tritium (in the range between about 0.5 and 67 tritium atoms per 10 18 protium atoms).
  • Increased levels of deuterium incorporation may produce a detectable Deuterium Kinetic Isotope Effect (DKIE) that could affect the pharmacokinetic, pharmacologic and/or toxicologic profiles of tetrabenazine in comparison with tetrabenazine having naturally occurring levels of deuterium.
  • DKIE Deuterium Kinetic Isotope Effect
  • tetrabenazine is metabolized in humans at the isobutyl and methoxy groups.
  • the current approach reduces metabolism at some or all of these sites.
  • Limiting the production of these metabolites has the potential to decrease the danger of the administration of such drugs and may even allow increased dosage and/or increased efficacy.
  • All of these transformations can occur through polymorphically-expressed enzymes, exacerbating interpatient variability. Further, some disorders are best treated when the subject is medicated around the clock or for an extended period of time. For all of the foregoing reasons, a medicine with a longer half-life may result in greater efficacy and cost savings.
  • Various deuteration patterns can be used to (a) reduce or eliminate unwanted metabolites, (b) increase the half-life of the parent drug, (c) decrease the number of doses needed to achieve a desired effect, (d) decrease the amount of a dose needed to achieve a desired effect, (e) increase the formation of active metabolites, if any are formed, (f) decrease the production of deleterious metabolites in specific tissues, and/or (g) create a more effective drug and/or a safer drug for polypharmacy, whether the polypharmacy be intentional or not.
  • the deuteration approach has demonstrated the ability to slow the metabolism of tetrabenazine and attenuate interpatient variability.
  • Novel methods of manufacturing benzoquinoline compounds including tetrabenazine and deuterated tetrabenazine analogs such as d 6 -tetrabenazine are disclosed herein.
  • R 7 -R 12 and R 15 are independently selected from the group consisting of hydrogen and deuterium;
  • Y 1 is selected from the group consisting of acetoxy, alkoxy, halogen, haloalkoxy, perhaloalkoxy, heteroalkoxy, and aryloxy, any of which may be optionally substituted.
  • Y 1 is acetoxy
  • Y 1 is C 1 -C 4 alkoxy.
  • Y 1 is ethoxy
  • Y 1 is selected from the group consisting of fluorine, chlorine, and bromine.
  • said base is selected from the group consisting of alkali metal alkoxides, alkali metal hydroxides, alkali metal hydrides, alkali metal carbonates, and trialkylamines.
  • said base is an alkali metal alkoxide.
  • said base is sodium tert-butoxide.
  • Y 1 is ethoxy
  • R 1 -R 12 and R 15 are independently selected from the group consisting of hydrogen and deuterium;
  • Y 2 is selected from the group consisting of halogen, alkyl sulfate, alkyl sulfonate, halosulfonate, perhaloalkyl sulfonate, aryl sulfonate, alkylaryl sulfonate, dialkyloxonium, alkylphosphate, and alkylcarbonate, any of which may be optionally substituted.
  • Y 2 is iodide or methylsulfate.
  • Y 2 is iodide
  • said base is selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates, alkali metal alkoxides, alkali metal hydroxides, alkali metal hydrides, and trialkylamines.
  • said base is an alkali metal carbonate.
  • said base is potassium carbonate.
  • said solvent is selected from the group consisting of acetone, acetonitrile, dimethyl formamide, 2-methyltetrahydrofuran, and tetrahydrofuran.
  • said solvent is acetone.
  • the volume of said solvent is between about 5 to about 15 times the mass of the compound of Formula IV.
  • the volume of said solvent is between about 6 to about 10 times the mass of the compound of Formula IV.
  • the volume of said solvent is about 8 times the mass of the compound of Formula IV.
  • said reaction step is carried out in the presence of a phase transfer catalyst.
  • said phase transfer catalyst is selected from the group consisting of tetrabutylammonium bromide, tetrabutylammonium iodide, and 18-crown-6.
  • said phase transfer catalyst is tetrabutylammonium bromide.
  • R 1 -R 12 and R 15 are independently selected from the group consisting of hydrogen and deuterium.
  • said salt of the compound of Formula I is the hydrochloride salt.
  • said dehydrating agent is selected from the group consisting of phosphorous oxychloride, phosphorus pentachloride, and thionyl chloride.
  • the amount of said phosphorous oxychloride is between about 0.5 to about 4 molar equivalents relative to the compound of Formula VI.
  • the amount of said phosphorous oxychloride is between about 1.6 to about 2.0 molar equivalents relative to the compound of Formula VI.
  • the amount of said phosphorous oxychloride is about 1.8 molar equivalents relative to the compound of Formula VI.
  • said reaction solvent is selected from the group consisting of methyl tert-butyl ether, toluene, and acetonitrile.
  • said reaction solvent is acetonitrile.
  • the volume of said acetonitrile is between about 1 to about 4 times the mass of the compound of Formula VI.
  • the volume of said acetonitrile is between about 1.5 to about 2.5 times the mass of the compound of Formula VI.
  • the volume of said acetonitrile is about 2 times the mass of the compound of Formula VI.
  • said quenching solvent is anprotic solvents selected from the group consisting of water, an alcohol, and a protic acid.
  • said quenching solvent is selected from the group consisting of ethanol, 1-propanol, isopropanol, 1-butanol, 2-methylpropanol, tert-butanol, and 1-pentanol.
  • said quenching solvent is 1-butanol.
  • the amount of said 1-butanol is between about 2 to about 8 molar equivalents relative to the compound of Formula VI.
  • the amount of said 1-butanol is between about 2.4 to about 6 molar equivalents relative to the compound of Formula VI.
  • the amount of said 1-butanol is between about 3.4 to about 4.2 molar equivalents relative to the compound of Formula VI.
  • the amount of said 1-butanol is about 3.8 molar equivalents relative to the compound of Formula VI.
  • said quenching solvent is selected from the group consisting of hydrogen chloride, hydrogen bromide, hydrogen iodide, phosphoric acid, sulfuric acid, methanesulfonic acid, formic acid, acetic acid, and trifluoroacetic acid.
  • said antisolvent is selected from the group consisting of methyl tert-butyl ether, ethyl acetate, isopropyl acetate, 2-methyltetrahydrofuran, diethyl ether, toluene, hexane, pentane, and cyclohexane.
  • said antisolvent is methyl tert-butyl ether.
  • the volume of said methyl tert-butyl ether is between about 1 to about 10 times the mass of the compound of Formula VI.
  • the volume of said methyl tert-butyl ether is between about 3 to about 5 times the mass of the compound of Formula VI.
  • the volume of said methyl tert-butyl ether is about 4 times the mass of the compound of Formula VI.
  • said first reaction step is carried out at reflux.
  • said first reaction step is held at a temperature of between about 0° C. to about 100° C.
  • said first reaction step is held at a temperature of between about 75° C. to about 95° C.
  • said first reaction step is held at a temperature of between about 80° C. to about 85° C.
  • said first reaction step is held at a temperature of between about 80° C. to about 85° C. for about 2 hours.
  • the reaction mixture is cooled to a temperature between about 25° C. to about 35° C.
  • said second reaction step is carried out at between about 0° C. to about 100° C.
  • said second reaction step is carried out at between about 10° C. to about 50° C.
  • said second reaction step is carried out at between about 25° C. to about 35° C.
  • the reaction mixture is held at a temperature between about 25° C. to about 35° C. for about 12 hours after the addition of said quenching solvent and said antisolvent.
  • said salt of the compound of Formula VII is isolated by filtration.
  • R 1 -R 12 and R 15 are independently selected from the group consisting of hydrogen and deuterium.
  • said solvent is selected from the group consisting of ethanol, 1-propanol, isopropanol, 2-methylpropanol, tert-butanol, 1-butanol, 1-pentanol, acetone, acetonitrile, ethyl acetate, methyl tert-butyl ether, hydrogen chloride, hydrogen bromide, hydrogen iodide, phosphoric acid, sulfuric acid, methanesulfonic acid, formic acid, acetic acid, and trifluoroacetic acid.
  • said solvent is a mixture of ethanol and methyl tert-butyl ether.
  • said solvent is a mixture of 10% ethanol and 90% methyl tert-butyl ether.
  • said first mixing step is carried out at between about 0° C. to about 60° C.
  • said first mixing step is carried out at between about 20° C. to about 40° C.
  • said first mixing step is carried out at between about 28° C. to about 32° C.
  • R 1 -R 27 are independently selected from the group consisting of hydrogen and deuterium;
  • X is selected from the group consisting of halogen, alkyl sulfate, alkyl sulfonate, halosulfonate, perhaloalkyl sulfonate, aryl sulfonate, alkylaryl sulfonate, dialkyloxonium, alkylphosphate, and alkylcarbonate, any of which may be optionally substituted.
  • said solvent is selected from the group consisting of water, methanol, and ethanol.
  • said solvent is a mixture of methanol and water.
  • said methanol and water mixture is between about five parts methanol to one part water and about one part methanol to one part water.
  • said methanol and water mixture is between about four parts methanol to one part water and about two parts methanol to one part water.
  • said methanol and water mixture is about three parts methanol to one part water.
  • the volume of said mixture of methanol and water is between about 2 and about 10 times the mass of the compound of Formula VII.
  • the volume of said mixture of methanol and water is between about 4 and about 8 times the mass of the compound of Formula VII.
  • the volume of said mixture of methanol and water is about 6 times the mass of the compound of Formula VII.
  • said solvent is a mixture of ethanol and water.
  • said ethanol and water mixture is between about five parts ethanol to one part water and about one part ethanol to one part water.
  • said ethanol and water mixture is between about four parts ethanol to one part water and about two parts ethanol to one part water.
  • said ethanol and water mixture is about three parts ethanol to one part water.
  • the volume of said mixture of ethanol and water is between about 2 and about 10 times the mass of the compound of Formula VII.
  • the volume of said mixture of ethanol and water is between about 4 and about 8 times the mass of the compound of Formula VII.
  • the volume of said mixture of ethanol and water is about 6 times the mass of the compound of Formula VII.
  • said reaction step is held at a temperature of between about 0° C. to about 100° C.
  • said reaction step is held at a temperature of between about 25° C. to about 70° C.
  • said reaction step is held at a temperature of between about 40° C. to about 60° C.
  • said reaction step is held at a temperature of between about 45° C. to about 50° C.
  • said reaction step is carried out for about 1 to about 96 hours.
  • said reaction step is carried out for about 24 to about 72 hours.
  • said reaction step is carried out for about 48 hours.
  • the compound of Formula VII is the hydrochloride salt and a base is added during the reaction step.
  • said base is selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates, alkali metal alkoxides, alkali metal hydroxides, alkali metal hydrides, and trialkylamines.
  • said base is an alkali metal carbonate.
  • said base is potassium carbonate.
  • R 16 -R 27 are independently selected from the group consisting of hydrogen and deuterium.
  • the base used in the first hydrolysis step or the fifth pH adjustment step is selected from the group consisting of alkali metal carbonates and alkali metal hydroxides.
  • said base is an alkali metal hydroxide.
  • said base is potassium hydroxide.
  • said dimethylamine is dimethylamine hydrochloride.
  • said formaldehyde equivalent is selected from the group consisting of formaldehyde, aqueous formaldehyde solution, paraformaldehyde, and trioxane.
  • said formaldehyde equivalent is aqueous formaldehyde solution.
  • the acid used in the second pH adjustment step or the fourth pH adjustment step is selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, and methanesulfonic acid.
  • said acid is hydrochloric acid.
  • a phase transfer catalyst is added during the third reaction step.
  • said phase transfer catalyst is tetrabutylammonium bromide.
  • the amount of said tetrabutylammonium bromide is about 0.1 molar equivalents relative to said compound of Formula X.
  • said solvent is water.
  • the first hydrolysis step is carried out by the addition of about 1 to about 2 molar equivalents of potassium hydroxide relative to said compound of Formula X.
  • the first hydrolysis step is carried out by the addition of about 1 to about 1.2 molar equivalents of potassium hydroxide relative to said compound of Formula X.
  • the first hydrolysis step is carried out by the addition of about 1.1 molar equivalents of potassium hydroxide relative to said compound of Formula X.
  • the first hydrolysis step is carried out at a temperature of between about 0° C. to about 100° C.
  • the first hydrolysis step is carried out at a temperature of between about 20° C. to about 40° C.
  • the second pH adjustment step results in a pH of about 6 to about 8.
  • the second pH adjustment step results in a pH of about 6.8 to about 7.2.
  • the second pH adjustment step is carried out at a temperature of between about 10° C. to about 60° C.
  • the third addition step is carried out by the addition of about 1 to about 2 molar equivalents of dimethylamine and formaldehyde equivalents relative to said compound of Formula X.
  • the third addition step is carried out by the addition of about 1.25 to about 1.75 molar equivalents of dimethylamine and about 1.25 to about 1.75 molar equivalents of formaldehyde equivalents relative to said compound of Formula X.
  • the third addition step is carried out by the addition of about 1.5 molar equivalents of dimethylamine and about 1.68 molar equivalents of formaldehyde equivalents relative to said compound of Formula X.
  • the third addition step is carried out at a temperature of between about 10° C. to about 60° C.
  • the third addition step is carried out at a temperature of between about 25° C. to about 35° C.
  • reaction temperature is maintained for about 1 to about 24 hours after third addition step.
  • the reaction temperature is maintained for about 9 to about 15 hours after third addition step.
  • reaction temperature is maintained for about 12 hours after third addition step.
  • the fourth pH adjustment step results in a pH of less than 3.
  • the fourth pH adjustment step results in a pH of less than 1.
  • the fourth pH adjustment step is carried out at a temperature of between about 10° C. to about 60° C.
  • the fourth pH adjustment step is carried out at a temperature of between about 25° C. to about 35° C.
  • the fifth pH adjustment step results in a pH of greater than 10.
  • the fifth pH adjustment step results in a pH of about 12 to about 13.
  • the fifth pH adjustment step is carried out at a temperature of between about 10° C. to about 60° C.
  • the fifth pH adjustment step is carried out at a temperature of between about 25° C. to about 35° C.
  • the sixth addition step is carried out by the addition of about 1 to about 2 molar equivalents of dimethylamine relative to said compound of Formula X.
  • the sixth addition step is carried out by the addition of about 1.25 to about 1.75 molar equivalents of dimethylamine relative to said compound of Formula X.
  • the sixth addition step is carried out by the addition of about 1.5 molar equivalents of dimethylamine relative to said compound of Formula X.
  • the sixth addition step is carried out at a temperature of between about 10° C. to about 60° C.
  • the sixth addition step is carried out at a temperature of between about 25° C. to about 35° C.
  • reaction temperature is maintained for about 1 to about 96 hours after third addition step.
  • the reaction temperature is maintained for about 24 to about 48 hours after third addition step.
  • reaction temperature is maintained for about 36 hours after third addition step.
  • the compounds as disclosed herein may also contain less prevalent isotopes for other elements, including, but not limited to, 13 C or 14 C for carbon, 33 S, 34 S, or 36 S for sulfur, 15 N for nitrogen, and 17 O or 18 O for oxygen.
  • deuterium enrichment refers to the percentage of incorporation of deuterium at a given position in a molecule in the place of hydrogen. For example, deuterium enrichment of 1% at a given position means that 1% of molecules in a given sample contain deuterium at the specified position. Because the naturally occurring distribution of deuterium is about 0.0156%, deuterium enrichment at any position in a compound synthesized using non-enriched starting materials is about 0.0156%. The deuterium enrichment can be determined using conventional analytical methods known to one of ordinary skill in the art, including mass spectrometry and nuclear magnetic resonance spectroscopy.
  • deuterium when used to describe a given position in a molecule such as R 1 -R 27 or the symbol “D”, when used to represent a given position in a drawing of a molecular structure, means that the specified position is enriched with deuterium above the naturally occurring distribution of deuterium.
  • deuterium enrichment is no less than about 1%, in another no less than about 5%, in another no less than about 10%, in another no less than about 20%, in another no less than about 50%, in another no less than about 70%, in another no less than about 80%, in another no less than about 90%, or in another no less than about 98% of deuterium at the specified position.
  • isotopic enrichment refers to the percentage of incorporation of a less prevalent isotope of an element at a given position in a molecule in the place of the more prevalent isotope of the element.
  • non-isotopically enriched refers to a molecule in which the percentages of the various isotopes are substantially the same as the naturally occurring percentages.
  • 3S,11bS enantiomer or the term “3R,11bR enantiomer” refers to either of the d 6 -tetrabenazine stereoisomers having the structural formulas shown below:
  • a chemical structure may be drawn as either the 3S,11bS enantiomer or the 3R,11bR enantiomer, but the text of the specification may indicate that the 3S,11bS enantiomer, the 3R,11bR enantiomer, a racemic mixture thereof (which may be described as (RR, SS)-d6-tetrabenazine), or all of the foregoing may be intended to be described.
  • bonds refers to a covalent linkage between two atoms, or two moieties when the atoms joined by the bond are considered to be part of larger substructure.
  • a bond may be single, double, or triple unless otherwise specified.
  • a dashed line between two atoms in a drawing of a molecule indicates that an additional bond may be present or absent at that position.
  • alkoxy refers to an alkyl ether radical, wherein the term alkyl is as defined below.
  • suitable alkyl ether radicals include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, and the like.
  • alkyl refers to a straight-chain or branched-chain alkyl radical containing from 1 to 20 carbon atoms. In certain embodiments, said alkyl will comprise from 1 to 10 carbon atoms. In further embodiments, said alkyl will comprise from 1 to 6 carbon atoms. Alkyl groups may be optionally substituted as defined herein. Examples of alkyl radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl, noyl and the like.
  • alkylene refers to a saturated aliphatic group derived from a straight or branched chain saturated hydrocarbon attached at two or more positions, such as methylene (—CH 2 —). Unless otherwise specified, the term “alkyl” may include “alkylene” groups.
  • alkylamino refers to an alkyl group attached to the parent molecular moiety through an amino group. Suitable alkylamino groups may be mono- or dialkylated, forming groups such as, for example, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-ethylmethylamino and the like.
  • amino refers to NRR′, wherein R and R′ are independently selected from the group consisting of hydrogen, alkyl, acyl, heteroalkyl, aryl, cycloalkyl, heteroaryl, and heterocycloalkyl, any of which may themselves be optionally substituted. Additionally, R and R′ may combine to form heterocycloalkyl, either of which may be optionally substituted.
  • aryl as used herein, alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such polycyclic ring systems are fused together.
  • aryl embraces aromatic groups such as phenyl, naphthyl, anthracenyl, and phenanthryl.
  • halo or halogen, as used herein, alone or in combination, refers to fluorine, chlorine, bromine, or iodine.
  • haloalkoxy refers to a haloalkyl group attached to the parent molecular moiety through an oxygen atom.
  • haloalkyl refers to an alkyl radical having the meaning as defined above wherein one or more hydrogens are replaced with a halogen. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals.
  • a monohaloalkyl radical for one example, may have an iodo, bromo, chloro or fluoro atom within the radical.
  • Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals.
  • haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl.
  • Haloalkylene refers to a haloalkyl group attached at two or more positions. Examples include fluoromethylene (—CFH—), difluoromethylene (—CF 2 —), chloromethylene (—CHCl—) and the like.
  • perhaloalkoxy refers to an alkoxy group where all of the hydrogen atoms are replaced by halogen atoms.
  • perhaloalkyl refers to an alkyl group where all of the hydrogen atoms are replaced by halogen atoms.
  • sulfonate refers the —SO 3 H group and its anion or the —SO 3 — group.
  • sulfate refers the HOS( ⁇ O) 2 OH group and its mono- or dianion or the —SO 4 — group.
  • phosphate phosphoric acid
  • phosphoric phosphoric
  • carbonate as used herein, alone or in combination, refer the —OC( ⁇ O)O— group.
  • VMAT2 refers to vesicular monoamine transporter 2, an integral membrane protein that acts to transport monoamines—particularly neurotransmitters such as dopamine, norepinephrine, serotonin, and histamine—from cellular cytosol into synaptic vesicles.
  • VMAT2-mediated disorder refers to a disorder that is characterized by abnormal VMAT2 activity.
  • a VMAT2-mediated disorder may be completely or partially mediated by modulating VMAT2.
  • a VMAT2-mediated disorder is one in which inhibition of VMAT2 results in some effect on the underlying disorder e.g., administration of a VMAT2 inhibitor results in some improvement in at least some of the patients being treated.
  • VMAT2 inhibitor refers to the ability of a compound disclosed herein to alter the function of VMAT2.
  • a VMAT2 inhibitor may block or reduce the activity of VMAT2 by forming a reversible or irreversible covalent bond between the inhibitor and VMAT2 or through formation of a noncovalently bound complex. Such inhibition may be manifest only in particular cell types or may be contingent on a particular biological event.
  • VMAT2 inhibitor also refers to altering the function of VMAT2 by decreasing the probability that a complex forms between a VMAT2 and a natural substrate
  • VMAT2-mediated disorders include, but are not limited to chronic hyperkinetic movement disorders, which can be psychogenic (e.g., tics), idiopathic (as in, e.g., Tourette's syndrome and Parkinson's Disease, genetic (as in, e.g., the chorea characteristic of Huntington's Disease), infectious (as in, e.g., Sydenham's Chorea), or, drug induced, as in tardive dyskinesia.
  • chronic hyperkinetic movement disorders refers to and includes all psychogenic, idiopathic, genetic, and drug-induced movement disorders.
  • VMAT2 disorders also include disorders such as oppositional defiant disorder.
  • the compounds disclosed herein can exist as therapeutically acceptable salts.
  • the term “therapeutically acceptable salt,” as used herein, represents salts or zwitterionic forms of the compounds disclosed herein which are therapeutically acceptable as defined herein.
  • the salts can be prepared during the final isolation and purification of the compounds or separately by reacting the appropriate compound with a suitable acid or base.
  • Therapeutically acceptable salts include acid and basic addition salts.
  • Suitable acids for use in the preparation of pharmaceutically acceptable salts include, but are not limited to, acetic acid, 2,2-dichloroacetic acid, acylated amino acids, adipic acid, alginic acid, ascorbic acid, L-aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, boric acid, (+)-camphoric acid, camphorsulfonic acid, (+)-(1S)-camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, cinnamic acid, citric acid, cyclamic acid, cyclohexanesulfamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid,
  • Suitable bases for use in the preparation of pharmaceutically acceptable salts including, but not limited to, inorganic bases, such as magnesium hydroxide, calcium hydroxide, potassium hydroxide, zinc hydroxide, or sodium hydroxide; and organic bases, such as primary, secondary, tertiary, and quaternary, aliphatic and aromatic amines, including L-arginine, benethamine, benzathine, choline, deanol, diethanolamine, diethylamine, dimethylamine, dipropylamine, diisopropylamine, 2-(diethylamino)-ethanol, ethanolamine, ethylamine, ethylenediamine, isopropylamine, N-methyl-glucamine, hydrabamine, 1H-imidazole, L-lysine, morpholine, 4-(2-hydroxyethyl)-morpholine, methylamine, piperidine, piperazine, propylamine, pyrrolidine, 1-(2-hydroxyethyl
  • compositions which comprise one or more of certain compounds disclosed herein, or one or more pharmaceutically acceptable salts, prodrugs, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients.
  • pharmaceutical compositions which comprise one or more of certain compounds disclosed herein, or one or more pharmaceutically acceptable salts, prodrugs, or solvates thereof, together with one or more pharmaceutically acceptable carriers thereof and optionally one or more other therapeutic ingredients.
  • Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences.
  • compositions disclosed herein may be manufactured in any manner known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or compression processes.
  • the pharmaceutical compositions may also be formulated as a modified release dosage form, including delayed-, extended-, prolonged-, sustained-, pulsatile-, controlled-, accelerated- and fast-, targeted-, programmed-release, and gastric retention dosage forms.
  • dosage forms can be prepared according to conventional methods and techniques known to those skilled in the art (see, Remington: The Science and Practice of Pharmacy , supra; Modified - Release Drug Deliver Technology , Rathbone et al., Eds., Drugs and the Pharmaceutical Science, Marcel Dekker, Inc., New York, N.Y., 2002; Vol. 126).
  • Isotopic hydrogen can be introduced into a compound as disclosed herein by synthetic techniques that employ deuterated reagents, whereby incorporation rates are pre-determined; and/or by exchange techniques, wherein incorporation rates are determined by equilibrium conditions, and may be highly variable depending on the reaction conditions.
  • Synthetic techniques where tritium or deuterium is directly and specifically inserted by tritiated or deuterated reagents of known isotopic content, may yield high tritium or deuterium abundance, but can be limited by the chemistry required.
  • Exchange techniques on the other hand, may yield lower tritium or deuterium incorporation, often with the isotope being distributed over many sites on the molecule.
  • the compounds as disclosed herein can be prepared by methods known to one of skill in the art and routine modifications thereof, and/or following procedures similar to those described in the Example section herein and routine modifications thereof, and/or procedures found in WO 2005077946; WO 2008/058261; EP 1716145; Lee et al., J. Med. Chem., 1996, (39), 191-196; Kilbourn et al., Chirality, 1997, (9), 59-62; Boldt et al., Synth. Commun., 2009, (39), 3574-3585; Rishel et al., J. Org. Chem., 2009, (74), 4001-4004; DaSilva et al., Appl. Radiat.
  • Compound 1 is reacted with compound 2, wherein Y 1 is as defined in paragraph [0008], in the presence of an appropriate basic catalyst, such as sodium tert-butoxide, at an elevated temperature to give compound 3.
  • Compound 3 is reacted with compound 4 in the presence of an appropriate base, such as potassium carbonate, in an appropriate solvent, such as acetone, to afford compound 5.
  • Compound 5 is reacted with an appropriate dehydrating agent, such as phosphorous oxychloride, in an appropriate solvent, such as acetonitrile, at an elevated temperature to give compound 6.
  • Compound 7 is reacted with an appropriate methylating agent, such as methyl iodide, in an appropriate solvent, such as methyl tert-butyl ether, at an elevated temperature to give compound 8.
  • Compound 6 is reacted with compound 8, in the presence of an appropriate base, such as potassium carbonate, in an appropriate solvent, such as a mixture of methanol and water, at an elevated temperature to afford compound 9 of Formula I.
  • an appropriate base such as potassium carbonate
  • an appropriate solvent such as a mixture of methanol and water
  • Compound 9 may be optionally purified by recrystallization from an appropriate solvent, such as ethanol.
  • Deuterium can be incorporated to different positions synthetically, according to the synthetic procedures as shown in Scheme I, by using appropriate deuterated intermediates.
  • compound 1 with the corresponding deuterium substitutions can be used.
  • compound 2 with the corresponding deuterium substitution can be used.
  • compound 4 with the corresponding deuterium substitutions can be used.
  • compound 7 with the corresponding deuterium substitutions can be used.
  • Deuterium can also be incorporated to various positions having an exchangeable proton, via proton-deuterium equilibrium exchange.
  • Compound 10 is reacted with compound 11, in the presence of an appropriate base, such as potassium carbonate, an optional alkylation catalyst, such as potassium iodide, and an optional phase transfer catalyst, such as tetrabutylammonium bromide, in an appropriate solvent, such as dimethylformamide, at an elevated temperature to give compound 12.
  • an appropriate base such as potassium carbonate
  • an optional alkylation catalyst such as potassium iodide
  • an optional phase transfer catalyst such as tetrabutylammonium bromide
  • Compound 12 is reacted with an appropriate base, such as potassium hydroxide, in an appropriate solvent, such as water, to afford an intermediate carboxylic acid which is further reacted with an appropriate secondary amine or salt thereof, such as dimethylamine hydrochloride, and an appropriate formaldehyde equivalent, such as aqueous formaldehyde solution, in the presence of an appropriate acid, such as hydrochloric acid, and an optional phase transfer catalyst, such as tetrabutylammonium bromide, to give a mixture of compound 7 and compound 13.
  • the mixture of compound 7 and compound 13 is further reacted with an appropriate secondary amine or salt thereof, such as dimethylamine hydrochloride, in the presence of an appropriate base, such as potassium hydroxide, in an appropriate solvent, such as water, to give compound 7.
  • an appropriate base such as potassium hydroxide
  • Deuterium can be incorporated to different positions synthetically, according to the synthetic procedures as shown in Scheme I, by using appropriate deuterated intermediates.
  • compound 10 with the corresponding deuterium substitutions can be used.
  • compound 11 with the corresponding deuterium substitutions can be used.
  • Deuterium can also be incorporated to various positions having an exchangeable proton, via proton-deuterium equilibrium exchange.
  • Dopamine hydrochloride is suspended in ethyl formate at 25-30° C. The suspension is cooled to 10-15° C. and sodium tert-butoxide is added portionwise maintaining the same temperature. The reaction mixture is warmed to 50-55° C. for 12 hours. After completion of the reaction, ethanol is added to the reaction mass and the temperature is maintained for 2 hours. The reaction mass is filtered and washed with 2 volumes of ethanol. The filtrate is concentrated under vacuum and water (0.5 volumes) is added to the residue and stirred for 1 hour at 25-30° C. The solid is filtered and washed with water (0.25 volumes) and dried in an hot air oven at 55-60° C. for 8 hours.
  • Dopamine hydrochloride (250.0 g, 1.323 mol, 1.0 eq) was suspended in ethyl formate (2.5 L, 10.0 vol) at 25-30° C. The suspension was cooled to 10-15° C. and sodium tert-butoxide (202 g, 2.12 mol, 1.60 eq) was added portionwise maintaining the same temperature. The reaction mixture was warmed to 55-60° C. for 12 hours and then concentrated under reduced pressure. To the remaining residue, water (125 mL, 0.5 vol) was added and stirred for 15 minutes. The volatile organic solvents were distilled under vacuum whereupon the product precipitated. The suspension was cooled to 25-30° C. and purified water (500 mL, 2.0 vol) was added.
  • N-(2-(3,4-dihydroxy-phenyl)-ethyl)-formamide is charged with solvent, base, phase transfer catalyst if any, and d 3 -methyl iodide (CD 3 I) at 25-30° C.
  • the reaction temperature is set and maintained for the specified time.
  • the reaction is filtered, the filtrate distilled under reduced pressure, and the crude product partitioned between dichloromethane (6.0 vol) and water (4.0 vol).
  • the layers are separated and the organic layer is washed twice with 3% aqueous NaOH solution (2 ⁇ 4.0 vol) followed by water (4.0 vol).
  • the organic layer is distilled under reduced pressure to give crude d 6 -N-(2-(3,4-dimethoxy-phenyl)-ethyl)-formamide.
  • N-(2-(3,4-dihydroxy-phenyl)-ethyl)-formamide (190 g, 1.049 mol, 1.00 eq) was charged with acetone (1.52 L, 8.0 vol), followed by K 2 CO 3 (434 g, 3.149 mol, 3.00 eq) at 25-30° C.
  • CD 3 I (334 g, 2.309 mol, 2.20 eq) was added to the reaction mixture over 1 hour at 25-30° C. The reaction temperature was maintained for 36 hours at 25-35° C. The reaction was filtered, the filtrate was distilled under reduced pressure, and the crude product was partitioned between dichloromethane (1.14 L, 6.0 vol) and water (760 mL, 4.0 vol).
  • N-(2-(3,4-dimethoxy-phenyl)-ethyl)-formamide is charged with solvent and POCl 3 at 10-15° C.
  • the mixture is heated to an elevated temperature for 1 or 2 hours and then is cooled to ambient temperature, after which a quenching solvent (for example, a protic solvent such as an alcohol) is added and the mixture is stirred for 1 hour followed by addition of an anti-solvent if applicable.
  • a quenching solvent for example, a protic solvent such as an alcohol
  • d 6 -6,7-dimethoxy-3,4-dihydroisoquinoline hydrochloride precipitates in the form of a salt directly from the reaction mixture.
  • d 6 -6,7-dimethoxy-3,4-dihydroisoquinoline is isolated after acid-base workup.
  • the precipitated product was filtered, washed with ethyl acetate (632 mL, 4.0 vol), and dried under vacuum.
  • 2-acetyl-N,N,N,4-tetramethyl-1-pentanaminium iodide is charged to a suspension containing d 6 -6,7-dimethoxy-3,4-dihydroisoquinoline (hydrochloride or freebase, 1.00 eq) and solvent. If d 6 -6,7-dimethoxy-3,4-dihydroisoquinoline hydrochloride is used, a base is added to the reaction mixture at room temperature. The reaction mixture is stirred at the appropriate temperature, cooled, and water is added. The reaction mass is filtered and the solids are washed with water and dried to afford the title compound [The (RR, SS)-diastereomer of d 6 -tetrabenazine is the desired product].
  • the 2-acetyl-N,N,N,4-tetramethyl-1-pentanaminium iodide from step 1 (146 g) was charged to a suspension containing d 6 -6,7-dimethoxy-3,4-dihydroisoquinoline hydrochloride (90 g, 0.385 mol, 1.00 eq), methanol (405 mL, 4.5 vol) and water (135 mL, 1.5 vol) at 25-30° C.
  • K 2 CO 3 54 g, 0.385 mol, 1.00 eq
  • the reaction mixture was cooled and water (270 mL, 3.0 vol) was added.
  • the ester was hydrolyzed using potassium hydroxide (212 g, 3.78 mol, 1.1 eq) in water (3.84 L, 6.0 vol). After the hydrolysis, the reaction mixture was washed with methyl tert-butyl ether (2 ⁇ 2.56 L, 2 ⁇ 4.0 vol) and the pH of the reaction mixture was adjusted to 6.8-7.2 using concentrated HCl (96 mL, 0.15 vol).
  • Dimethylamine hydrochloride solution (420 g, 5.16 mol, 1.50 eq dissolved in 0.224 L, 0.35 vol of purified water), and formaldehyde solution (0.428 L, 5.763 mol, 1.675 eq) and tetrabutylammonium bromide (110 g, 0.344 mol, 0.10 eq) were added to the reaction mixture, and the pH was adjusted to below 1 using concentrated HCl (0.352 L, 0.55 vol) over 1 hour at 25-35° C. The reaction mixture was stirred for 15 hours at 25-35° C. and the pH was adjusted to 12.0-13.0 using 20% aqueous KOH (3.20 L, 5.0 vol) solution at 25-35° C.
  • dimethylamine hydrochloride (420 g, 5.16 mol, 1.5 eq) was added.
  • the reaction mixture was stirred for 36 hours at 25-35° C. and the pH of the reaction mixture was adjust to below 1 using concentrated HCl (0.84 L, 0.13 vol) at 25-35° C. over 1 h.
  • the reaction mixture was washed with methyl tert-butyl ether (2 ⁇ 2.56 L, 2 ⁇ 4.0 vol) and the pH of the reaction mixture was adjusted to 9-10 by using 20% aqueous KOH solution (1.72 L, 2.68 vol) at 25-35° C.
  • the product was extracted with ethyl acetate (2 ⁇ 2.56 L, 2 ⁇ 4.0 vol and 1 ⁇ 1.28 L, 1 ⁇ 2.0 vol) and the combined organic layers were washed sequentially with purified water (2 ⁇ 1.92 L, 2 ⁇ 3.0 vol) and 10% ammonium chloride solution (2 ⁇ 3.2 L, 2 ⁇ 5.0 vol).
  • Activated carbon 32 g, 0.05% w/w was added to the organic layer and the mixture was stirred for 30-45 minutes at 25-35° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
US14/551,909 2013-12-03 2014-11-24 Methods of manufacturing benzoquinoline compounds Abandoned US20150152099A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/551,909 US20150152099A1 (en) 2013-12-03 2014-11-24 Methods of manufacturing benzoquinoline compounds
US15/464,938 US20170190654A1 (en) 2013-12-03 2017-03-21 Methods of manufacturing benzoquinoline compounds
US15/472,779 US10513488B2 (en) 2013-12-03 2017-03-29 Methods of manufacturing benzoquinoline compounds
US15/952,031 US20180230083A1 (en) 2013-12-03 2018-04-12 Methods of manufacturing benzoquinoline compounds
US16/205,525 US20190092719A1 (en) 2013-12-03 2018-11-30 Methods of manufacturing benzoquinoline compounds
US16/680,674 US20200331846A1 (en) 2013-12-03 2019-11-12 Methods of manufacturing benzoquinoline compounds
US16/849,603 US20200347008A1 (en) 2013-12-03 2020-04-15 Methods of manufacturing benzoquinoline compounds
US17/879,600 US20230060294A1 (en) 2013-12-03 2022-08-02 Methods of manufacturing benzoquinoline compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361911214P 2013-12-03 2013-12-03
US14/551,909 US20150152099A1 (en) 2013-12-03 2014-11-24 Methods of manufacturing benzoquinoline compounds

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/464,938 Division US20170190654A1 (en) 2013-12-03 2017-03-21 Methods of manufacturing benzoquinoline compounds
US15/472,779 Continuation US10513488B2 (en) 2013-12-03 2017-03-29 Methods of manufacturing benzoquinoline compounds

Publications (1)

Publication Number Publication Date
US20150152099A1 true US20150152099A1 (en) 2015-06-04

Family

ID=53264424

Family Applications (8)

Application Number Title Priority Date Filing Date
US14/551,909 Abandoned US20150152099A1 (en) 2013-12-03 2014-11-24 Methods of manufacturing benzoquinoline compounds
US15/464,938 Abandoned US20170190654A1 (en) 2013-12-03 2017-03-21 Methods of manufacturing benzoquinoline compounds
US15/472,779 Active US10513488B2 (en) 2013-12-03 2017-03-29 Methods of manufacturing benzoquinoline compounds
US15/952,031 Abandoned US20180230083A1 (en) 2013-12-03 2018-04-12 Methods of manufacturing benzoquinoline compounds
US16/205,525 Abandoned US20190092719A1 (en) 2013-12-03 2018-11-30 Methods of manufacturing benzoquinoline compounds
US16/680,674 Abandoned US20200331846A1 (en) 2013-12-03 2019-11-12 Methods of manufacturing benzoquinoline compounds
US16/849,603 Abandoned US20200347008A1 (en) 2013-12-03 2020-04-15 Methods of manufacturing benzoquinoline compounds
US17/879,600 Pending US20230060294A1 (en) 2013-12-03 2022-08-02 Methods of manufacturing benzoquinoline compounds

Family Applications After (7)

Application Number Title Priority Date Filing Date
US15/464,938 Abandoned US20170190654A1 (en) 2013-12-03 2017-03-21 Methods of manufacturing benzoquinoline compounds
US15/472,779 Active US10513488B2 (en) 2013-12-03 2017-03-29 Methods of manufacturing benzoquinoline compounds
US15/952,031 Abandoned US20180230083A1 (en) 2013-12-03 2018-04-12 Methods of manufacturing benzoquinoline compounds
US16/205,525 Abandoned US20190092719A1 (en) 2013-12-03 2018-11-30 Methods of manufacturing benzoquinoline compounds
US16/680,674 Abandoned US20200331846A1 (en) 2013-12-03 2019-11-12 Methods of manufacturing benzoquinoline compounds
US16/849,603 Abandoned US20200347008A1 (en) 2013-12-03 2020-04-15 Methods of manufacturing benzoquinoline compounds
US17/879,600 Pending US20230060294A1 (en) 2013-12-03 2022-08-02 Methods of manufacturing benzoquinoline compounds

Country Status (14)

Country Link
US (8) US20150152099A1 (pt)
EP (2) EP3424504A1 (pt)
JP (1) JP6542222B2 (pt)
KR (1) KR102391134B1 (pt)
CN (1) CN105873589B (pt)
AU (4) AU2014357518A1 (pt)
BR (1) BR112016012747B1 (pt)
CA (1) CA2930744A1 (pt)
EA (2) EA201791466A1 (pt)
HK (2) HK1223020A1 (pt)
IL (1) IL245539B (pt)
MX (1) MX369956B (pt)
NZ (1) NZ720301A (pt)
WO (1) WO2015084622A1 (pt)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233959B2 (en) 2012-09-18 2016-01-12 Auspex Pharmaceuticals, Inc. Formulations and pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US9550780B2 (en) 2012-09-18 2017-01-24 Auspex Pharmaceuticals, Inc. Formulations pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
WO2017182916A1 (en) 2016-04-22 2017-10-26 Lupin Limited Novel process for preparation of tetrabenazine and deutetrabenazine
WO2018170214A1 (en) 2017-03-15 2018-09-20 Zhang Chengzi Analogs of deutetrabenazine, their preparation and use
WO2019150387A1 (en) * 2018-02-01 2019-08-08 Alaparthi Lakshmi Prasad A novel process for preparation of deutetrabenazine
WO2019130252A3 (en) * 2017-12-29 2019-08-08 Mylan Laboratories Ltd Methods and intermediates for preparing deutetrabenazine
WO2020086765A1 (en) * 2018-10-24 2020-04-30 Neurocrine Biosciences, Inc. Processes for preparing a vmat2 inhibitor
US11357772B2 (en) 2015-03-06 2022-06-14 Auspex Pharmaceuticals, Inc. Methods for the treatment of abnormal involuntary movement disorders

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424504A1 (en) 2013-12-03 2019-01-09 Auspex Pharmaceuticals, Inc. Methods of manufacturing benzoquinoline compounds
EP3568394A1 (en) 2017-01-10 2019-11-20 Sandoz AG Crystalline valbenazine free base
US10954235B2 (en) 2017-02-27 2021-03-23 Sandoz Ag Crystalline forms of valbenazine salts
CN111960999B (zh) * 2020-07-20 2021-11-02 暨明医药科技(苏州)有限公司 一种丁苯那嗪中间体的合成方法

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2830993A (en) 1958-04-15 Quinolizine derivatives
US2843591A (en) 1958-07-15 Method for preparing same
US3045021A (en) 1959-09-24 1962-07-17 Hoffmann La Roche Preparation of substituted 2-oxobenzoquinolizines
GB999095A (en) * 1961-02-21 1965-07-21 Wellcome Found The preparation of quinolizine derivatives
HU175890B (en) 1977-06-15 1980-11-28 Chinoin Gyogyszer Es Vegyeszet Process for producing new 1,2,3,4,6,7-hexahydro-11-b-alpha-benzo-square bracket-a-square brecket closed-quinolyzine derivatives
US4316897A (en) 1980-09-10 1982-02-23 Hoffmann-La Roche Inc. Method of lowering serum prolactin
DE3407955A1 (de) 1984-03-03 1985-09-05 Dr. Karl Thomae Gmbh, 7950 Biberach Arzneimittel, enthaltend quartaere 3,4-dihydroisochinoliniumsalze
US5451409A (en) 1993-11-22 1995-09-19 Rencher; William F. Sustained release matrix system using hydroxyethyl cellulose and hydroxypropyl cellulose polymer blends
US6221335B1 (en) 1994-03-25 2001-04-24 Isotechnika, Inc. Method of using deuterated calcium channel blockers
WO1995026325A2 (en) 1994-03-25 1995-10-05 Isotechnika Inc. Enhancement of the efficacy of drugs by deuteration
GB9817028D0 (en) 1998-08-05 1998-09-30 Smithkline Beecham Plc Novel compounds
US6440710B1 (en) 1998-12-10 2002-08-27 The Scripps Research Institute Antibody-catalyzed deuteration, tritiation, dedeuteration or detritiation of carbonyl compounds
DE60001623T2 (de) 1999-12-03 2003-12-18 Pfizer Products Inc., Groton Sulfamoylheteroarylpyrazolverbindungen zur Verwendung als analgetisches/entzündungshemmendes Mittel
EP1134290A3 (en) 2000-03-14 2004-01-02 Pfizer Products Inc. Pharmacophore models for the identification of the CYP2D6 inhibitory potency of selective serotonin reuptake inhibitors
US6488962B1 (en) 2000-06-20 2002-12-03 Depomed, Inc. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms
US6287599B1 (en) 2000-12-20 2001-09-11 Shire Laboratories, Inc. Sustained release pharmaceutical dosage forms with minimized pH dependent dissolution profiles
CA2409552A1 (en) 2001-10-25 2003-04-25 Depomed, Inc. Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract
TW200413273A (en) 2002-11-15 2004-08-01 Wako Pure Chem Ind Ltd Heavy hydrogenation method of heterocyclic rings
EP2529730A1 (en) 2003-06-16 2012-12-05 ANDRX Pharmaceuticals LLC. Oral sustained-release composition
JP2007512338A (ja) 2003-11-21 2007-05-17 メモリー・ファーマシューティカルズ・コーポレイション L型カルシウムチャンネルブロッカーとコリンエステラーゼ阻害剤を用いた組成物及び処置方法
US7367953B2 (en) 2003-11-26 2008-05-06 Ge Medical Systems Global Technology Company Method and system for determining a period of interest using multiple inputs
GB2410947B (en) 2004-02-11 2008-09-17 Cambridge Lab Ltd Pharmaceutical compounds
WO2006053067A2 (en) 2004-11-09 2006-05-18 Prestwick Pharmaceuticals, Inc. Combination of amantadine and a tetrabenazine compound for treating hyperkinetic disorders
DE602006010979D1 (de) 2005-01-19 2010-01-21 Rigel Pharmaceuticals Inc Prodrugs aus 2,4-pyrimidindiamin-verbindungen und ihre verwendungen
EP1901720A2 (en) 2005-06-23 2008-03-26 Spherics, Inc. Improved dosage forms for movement disorder treatment
US20080033011A1 (en) 2005-07-29 2008-02-07 Concert Pharmaceuticals Inc. Novel benzo[d][1,3]-dioxol derivatives
US7750168B2 (en) 2006-02-10 2010-07-06 Sigma-Aldrich Co. Stabilized deuteroborane-tetrahydrofuran complex
CA2642593C (en) 2006-02-17 2014-11-04 Birds Pharma Gmbh Berolina Innovative Research & Development Services Deuterated catecholamine derivatives and medicaments comprising said compounds
BRPI0711481A8 (pt) 2006-05-02 2017-11-28 Univ Michigan Regents derivados radiomarcados de dihidrotetrabenzeno e seu uso como agente de imagens
HU227610B1 (en) 2006-09-18 2011-09-28 Richter Gedeon Nyrt Pharmaceutical compositions containing rosuvastatin potassium
MX2009003743A (es) 2006-10-12 2009-06-18 Novartis Ag Uso de ciclosporinas modificadas.
AU2007317242B2 (en) * 2006-11-08 2013-08-01 Neurocrine Biosciences, Inc. Substituted 3-isobutyl-9, 10-dimethoxy-1,3,4,6,7,11B-hexahydro-2H-pyrido[2,1-a] isoquinolin-2-ol compounds and methods relating thereto
JP5264759B2 (ja) 2006-11-21 2013-08-14 ライジェル ファーマシューティカルズ, インコーポレイテッド 2,4−ピリミジンジアミン化合物のプロドラッグ塩およびそれらの使用
US20100204258A1 (en) 2007-03-12 2010-08-12 The Trustees Of Columbia University In The City Of New York Methods and compositions for modulating insulin secretion and glucose metabolism
US7897768B2 (en) 2007-06-08 2011-03-01 General Electric Company Method for making tetrabenazine compounds
DK2173344T3 (en) 2007-06-29 2016-07-25 Clarencew Pty Ltd TREATMENT OR PROPHYLAXIS OF NEUROLOGICAL OR NEURO PSYCHIATRIC DISORDERS USING ocular administration
US8053578B2 (en) 2007-11-29 2011-11-08 General Electric Company Alpha-fluoroalkyl dihydrotetrabenazine imaging agents and probes
US7902364B2 (en) 2007-11-29 2011-03-08 General Electric Company Alpha-fluoroalkyl tetrabenazine and dihydrotetrabenazine imaging agents and probes
WO2009124357A1 (en) 2008-04-10 2009-10-15 Malvin Leonard Eutick Fast dissolving oral formulations for critical drugs
WO2009126305A1 (en) 2008-04-11 2009-10-15 The Trustees Of Columbia University Glucose metabolism modulating compounds
PL2318035T3 (pl) 2008-07-01 2019-10-31 Curemark Llc Sposoby i kompozycje do leczenia objawów zaburzeń neurologicznych i zaburzeń zdrowia psychicznego
US20110053866A1 (en) 2008-08-12 2011-03-03 Biovail Laboratories International (Barbados) S.R.L. Pharmaceutical compositions
GB2462611A (en) 2008-08-12 2010-02-17 Cambridge Lab Pharmaceutical composition comprising tetrabenazine
PL3061760T3 (pl) * 2008-09-18 2018-07-31 Auspex Pharmaceuticals, Inc. Deuterowane pochodne benzochinoliny jako inhibitory pęcherzykowego transportera monoamin 2
US20100113496A1 (en) 2008-09-25 2010-05-06 Auspex Pharmaceuticals, Inc. Piperidine modulators of vmat2
US20120053159A1 (en) 2009-02-11 2012-03-01 Muller George W Isotopologues of lenalidomide
JP2013501810A (ja) 2009-08-12 2013-01-17 ヴァリーント インターナショナル(バルバドス)エスアールエル 医薬組成物
JP4679658B2 (ja) 2009-10-10 2011-04-27 株式会社オーバル フィールド機器の光電センシング感度調整
CN102120742B (zh) 2010-01-08 2013-03-13 中国药科大学 一种丁苯那嗪的制备方法
CN102892770A (zh) 2010-02-24 2013-01-23 奥斯拜客斯制药有限公司 酪氨酸激酶三甲氧苯基抑制剂
US20110206782A1 (en) 2010-02-24 2011-08-25 Auspex Pharmaceuticals, Inc. Piperidine modulators of dopamine receptor
AU2011261551B2 (en) 2010-06-01 2016-10-20 Auspex Pharmaceutical, Inc. Benzoquinolone inhibitors of VMAT2
WO2012006551A2 (en) 2010-07-08 2012-01-12 The Brigham And Women's Hospital, Inc. Neuroprotective molecules and methods of treating neurological disorders and inducing stress granules
WO2012079022A1 (en) 2010-12-10 2012-06-14 Concert Pharmaceuticals, Inc. Substituted dioxopiperidinyl phthalimide derivatives
WO2012081031A1 (en) 2010-12-15 2012-06-21 Enaltec Labs Pvt. Ltd. Process for preparing tetrabenazine
CN102260255B (zh) 2011-07-07 2013-07-10 江苏省原子医学研究所 一种9,10-二甲氧基-1,3,4,6,7,11b-六氢-3-异丁基-2H-苯并[a]喹嗪-2-酮的简便合成方法
US20130116215A1 (en) 2011-10-28 2013-05-09 Mireia Coma Combination therapies for treating neurological disorders
KR101362482B1 (ko) 2012-01-31 2014-02-12 한국과학기술연구원 테트라베나진과 다이하이드로테트라베나진의 제조방법
EP3884937A1 (en) 2012-03-23 2021-09-29 Cardero Therapeutics, Inc. Compounds and compositions for the treatment of muscular disorders
CN111728971A (zh) 2012-09-18 2020-10-02 奥斯拜客斯制药有限公司 D6-四苯喹嗪固体口服剂型、化合物、及其药物组合物、制备及治疗方法
CN102936246A (zh) * 2012-11-08 2013-02-20 江苏暨明医药科技有限公司 丁苯那嗪的合成方法
CA2899707A1 (en) 2013-01-31 2014-08-07 Auspex Pharmaceuticals, Inc. Benzoquinolone inhibitors of vmat2
CA2925562A1 (en) 2013-09-27 2015-04-02 Auspex Pharmaceuticals, Inc. Benzoquinolone inhibitors of vmat2
CA2930167A1 (en) 2013-11-22 2015-05-28 Auspex Pharmaceuticals, Inc. Methods of treating abnormal muscular activity
WO2015077521A1 (en) 2013-11-22 2015-05-28 Auspex Pharmaceuticals, Inc. Benzoquinoline inhibitors of vesicular monoamine transporter 2
EP3424504A1 (en) 2013-12-03 2019-01-09 Auspex Pharmaceuticals, Inc. Methods of manufacturing benzoquinoline compounds
AU2015209330A1 (en) 2014-01-27 2016-07-28 Auspex Pharmaceuticals, Inc. Benzoquinoline inhibitors of vesicular monoamine transporter 2

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of Emetine and Related compounds, Openshaw and Whittaker. 1963 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11033540B2 (en) 2012-09-18 2021-06-15 Auspex Pharmaceuticals, Inc. Formulations and pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US9296739B2 (en) 2012-09-18 2016-03-29 Auspex Pharmaceuticals, Inc. Formulations and pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US9346800B2 (en) 2012-09-18 2016-05-24 Auspex Pharmaceuticals, Inc. Formulations pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US9550780B2 (en) 2012-09-18 2017-01-24 Auspex Pharmaceuticals, Inc. Formulations pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US11666566B2 (en) 2012-09-18 2023-06-06 Auspex Pharmaceuticals, Inc. Formulations and pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US9814708B2 (en) 2012-09-18 2017-11-14 Auspex Pharmaceuticals, Inc. Formulations and pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US9233959B2 (en) 2012-09-18 2016-01-12 Auspex Pharmaceuticals, Inc. Formulations and pharmacokinetics of deuterated benzoquinoline inhibitors of vesicular monoamine transporter 2
US11446291B2 (en) 2015-03-06 2022-09-20 Auspex Pharmaceuticals, Inc. Methods for the treatment of abnormal involuntary movement disorders
US11564917B2 (en) 2015-03-06 2023-01-31 Auspex Pharmaceuticals, Inc. Methods for the treatment of abnormal involuntary movement disorders
US12016858B2 (en) 2015-03-06 2024-06-25 Auspex Pharmaceuticals, Inc. Methods for the treatment of abnormal involuntary movement disorders
US11648244B2 (en) 2015-03-06 2023-05-16 Auspex Pharmaceuticals, Inc. Methods for the treatment of abnormal involuntary movement disorders
US11357772B2 (en) 2015-03-06 2022-06-14 Auspex Pharmaceuticals, Inc. Methods for the treatment of abnormal involuntary movement disorders
US20190135803A1 (en) * 2016-04-22 2019-05-09 Lupin Limited Novel process for preparation of tetrabenazine and deutetrabenazine
US10479787B2 (en) 2016-04-22 2019-11-19 Lupin Limited Process for preparation of tetrabenazine and deutetrabenazine
WO2017182916A1 (en) 2016-04-22 2017-10-26 Lupin Limited Novel process for preparation of tetrabenazine and deutetrabenazine
US11179386B2 (en) * 2017-03-15 2021-11-23 Auspex Pharmaceuticals, Inc. Analogs of deutetrabenazine, their preparation and use
WO2018170214A1 (en) 2017-03-15 2018-09-20 Zhang Chengzi Analogs of deutetrabenazine, their preparation and use
US11813232B2 (en) * 2017-03-15 2023-11-14 Auspex Pharmaceuticals, Inc. Analogs of deutetrabenazine, their preparation and use
WO2019130252A3 (en) * 2017-12-29 2019-08-08 Mylan Laboratories Ltd Methods and intermediates for preparing deutetrabenazine
US11505549B2 (en) * 2018-02-01 2022-11-22 Lakshmi Prasad ALAPARTHI Process for preparation of Deutetrabenazine
WO2019150387A1 (en) * 2018-02-01 2019-08-08 Alaparthi Lakshmi Prasad A novel process for preparation of deutetrabenazine
WO2020086765A1 (en) * 2018-10-24 2020-04-30 Neurocrine Biosciences, Inc. Processes for preparing a vmat2 inhibitor

Also Published As

Publication number Publication date
MX369956B (es) 2019-11-27
NZ720301A (en) 2022-01-28
HK1224222A1 (zh) 2017-08-18
EP3076970A4 (en) 2017-07-26
HK1223020A1 (zh) 2017-07-21
US20230060294A1 (en) 2023-03-02
WO2015084622A1 (en) 2015-06-11
CN105873589B (zh) 2019-11-01
KR20160087904A (ko) 2016-07-22
EA201791466A1 (ru) 2017-11-30
US20180230083A1 (en) 2018-08-16
EP3076970A1 (en) 2016-10-12
MX2016007056A (es) 2017-01-06
US20170197957A1 (en) 2017-07-13
US10513488B2 (en) 2019-12-24
BR112016012747B1 (pt) 2022-07-12
US20170190654A1 (en) 2017-07-06
AU2021209150A1 (en) 2021-08-19
KR102391134B1 (ko) 2022-04-28
IL245539A0 (en) 2016-06-30
US20200331846A1 (en) 2020-10-22
EA032920B1 (ru) 2019-08-30
CN105873589A (zh) 2016-08-17
IL245539B (en) 2021-06-30
AU2020201091A1 (en) 2020-03-05
CA2930744A1 (en) 2015-06-11
AU2023203246A1 (en) 2023-06-15
JP2017501141A (ja) 2017-01-12
AU2014357518A1 (en) 2016-06-09
US20200347008A1 (en) 2020-11-05
EP3424504A1 (en) 2019-01-09
AU2020201091B2 (en) 2021-04-29
US20190092719A1 (en) 2019-03-28
EA201691162A1 (ru) 2016-11-30
JP6542222B2 (ja) 2019-07-10
BR112016012747A2 (pt) 2017-08-08

Similar Documents

Publication Publication Date Title
US10513488B2 (en) Methods of manufacturing benzoquinoline compounds
KR102575964B1 (ko) 알코올레이트 염기의 존재 하에서의 에틸 니코티네이트와 n-비닐피롤리돈의 반응 및 후속 공정 단계에 의한 라세미 니코틴의 제법
CA2759026C (en) Piperidine inhibitors of janus kinase 3
CZ293971B6 (cs) Dimethyl-(3-arylbut-3-enyl)aminosloučeniny a způsob jejich výroby
KR20170102204A (ko) 테트라하이드로퀴놀린 유도체 제조용의 합성 중간체를 제조하기 위한 방법
WO2012028861A1 (en) Pure erlotinib
EP3233814A2 (en) Novel process for the preparation of ranolazine
WO1996002524A1 (en) Phenylcarbamate derivatives suitable to the use as anticholinesterase substances
US20130211089A1 (en) Indenopyridine derivatives
US10131624B2 (en) Process for the preparation of (1S,2R)-Milnacipran
WO2007014973A2 (es) Procedimiento para la obtención de carbamatos de fenilo
CN111051302B (zh) 作为纯5-ht6受体拮抗剂的氟哌啶化合物
WO2012012139A1 (en) Synthesis and use of kinase inhibitors
RU2537361C1 (ru) Оптические изомеры (+) и (-)-бензгидрилмочевин и (+) и (-)-1-[(3-хлорфенил)-фенил-метил]мочевины, фармацевтическая композиция на их основе и способ их получения
CN103755624A (zh) 一种哌啶衍生物的合成方法
WO2019179920A1 (en) Process for the manufacturing of pimavanserin
SK104595A3 (en) Cyclohexadiene derivatives, method of their production, their use and medicaments containing these matters
CN104355981A (zh) 一种他喷他多中间体间甲氧基苯丙酮的制备方法
US20140296528A1 (en) 4-aryl-1-(biarylmethylene) piperidine compounds
WO2013072703A1 (en) Antibacterial drug derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: AUSPEX PHARMACEUTICALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHANG, CHENGZHI;REEL/FRAME:034633/0497

Effective date: 20131204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION