US20150028247A1 - Rigid foam and associated article and method - Google Patents

Rigid foam and associated article and method Download PDF

Info

Publication number
US20150028247A1
US20150028247A1 US13/948,416 US201313948416A US2015028247A1 US 20150028247 A1 US20150028247 A1 US 20150028247A1 US 201313948416 A US201313948416 A US 201313948416A US 2015028247 A1 US2015028247 A1 US 2015028247A1
Authority
US
United States
Prior art keywords
polyurethane
polyisocyanurate foam
phenylene ether
particulate poly
diisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/948,416
Other languages
English (en)
Inventor
Edward Norman Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Global Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV filed Critical SABIC Global Technologies BV
Priority to US13/948,416 priority Critical patent/US20150028247A1/en
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PETERS, EDWARD NORMAN
Priority to CN201910204954.7A priority patent/CN110041690A/zh
Priority to PCT/US2014/043773 priority patent/WO2015012989A1/en
Priority to US14/900,428 priority patent/US9493621B2/en
Priority to JP2016515976A priority patent/JP6158431B2/ja
Priority to KR1020167002816A priority patent/KR101669073B1/ko
Priority to EP14828964.8A priority patent/EP3036288B1/en
Priority to CN201480039997.XA priority patent/CN105377988A/zh
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CORRECTIVE ASSIGNMENT TO CORRECT REMOVE 10 APPL. NUMBERS PREVIOUSLY RECORDED AT REEL: 033591 FRAME: 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CORRECTIVE ASSIGNMENT TO CORRECT THE 12/116841, 12/123274, 12/345155, 13/177651, 13/234682, 13/259855, 13/355684, 13/904372, 13/956615, 14/146802, 62/011336 PREVIOUSLY RECORDED ON REEL 033591 FRAME 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Publication of US20150028247A1 publication Critical patent/US20150028247A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/14Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3218Polyhydroxy compounds containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/147Halogen containing compounds containing carbon and halogen atoms only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • E04C2/205Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics of foamed plastics, or of plastics and foamed plastics, optionally reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • E04C2/243Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20 one at least of the material being insulating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/10Block- or graft-copolymers containing polysiloxane sequences
    • C08J2483/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences

Definitions

  • Polyurethanes are prepared from compounds with at least two hydroxyl groups and compounds with at least two isocyanate groups. See, e.g., D. Randall and S. Lee, “The Polyurethanes Book”, New York: John Wiley & Sons, 2003; and K. Uhlig, “Discovering Polyurethanes”, New York: Hanser Gardner, 1999.
  • the isocyanate groups of the isocyanate compound react with the hydroxyl groups of the hydroxyl compound to form urethane linkages.
  • the hydroxyl compound is a low molecular weight polyether or polyester.
  • the isocyanate compound can be aliphatic or aromatic, and in the preparation of linear polyurethanes is typically difunctional (i.e., it is a diisocyanate).
  • isocyanate compounds with greater functionality are used in preparing thermoset polyurethanes.
  • the family of polyurethane resins is very complex because of the enormous variation in the compositional features of the hydroxyl compounds and isocyanate compounds. This variety results in a large numbers of polymer structures and performance profiles. Indeed, polyurethanes can be rigid solids, soft and elastomeric, or a have a foam (cellular) structure.
  • Rigid polyurethane and polyisocyanurate foams are particularly effective thermal insulators. Most applications are as insulating materials in construction. However, the inherent ability of polyurethane and polyisocyanurate foams to burn creates a need for reduced flammability. See, e.g., S. V. Levchik, E. D. Weil, “Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature”, Polymer International, volume 53, pages 1585-1610 (2004). Polyurethane and polyisocyanurate foams also exhibit high moisture absorption, with the absorbed moisture acting as a plasticizer that detracts from the physical properties of the foams.
  • One embodiment is a polyurethane or polyisocyanurate foam comprising 1 to 50 weight percent, based on the total weight of the polyurethane or polyisocyanurate foam, of a particulate poly(phenylene ether) having a mean particle size of 1 to 40 micrometers; wherein the polyurethane or polyisocyanurate foam has a core density of 0.03 to 0.7 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03.
  • Another embodiment is an article comprising thermal insulation comprising polyurethane or polyisocyanurate foam comprising 1 to 50 weight percent, based on the total weight of the polyurethane or polyisocyanurate foam, of a particulate poly(phenylene ether) having a mean particle size of 1 to 40 micrometers; wherein the polyurethane or polyisocyanurate foam has a core density of 0.03 to 0.7 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03.
  • Another embodiment is a method of forming a polyurethane or polyisocyanurate foam, the method comprising: reacting a polyol and an isocyanate compound in the presence of a blowing agent and a particulate poly(phenylene ether) to form a polyurethane or polyisocyanurate foam; wherein the isocyanate compound comprises, on average, at least two isocyanate groups per molecule; wherein the particulate poly(phenylene ether) has a mean particle size of 1 to 40 micrometers; and wherein the polyurethane or polyisocyanurate foam comprises 1 to 50 weight percent of the particulate poly(phenylene ether).
  • the present inventor has determined that rigid polyurethane and polyisocyanurate foams exhibiting improved resistance to burning and/or reduced moisture absorption are obtained by incorporating particulate poly(phenylene ether) into the foams.
  • One embodiment is a polyurethane or polyisocyanurate foam comprising 1 to 50 weight percent, based on the total weight of the polyurethane or polyisocyanurate foam, of a particulate poly(phenylene ether) having a mean particle size of 1 to 40 micrometers; wherein the polyurethane or polyisocyanurate foam has a core density of 0.03 to 0.7 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03.
  • the polyurethane or polyisocyanurate foam comprises a particulate poly(phenylene ether).
  • Poly(phenylene ether)s include those comprising repeating structural units having the formula
  • each occurrence of Z 1 is independently halogen, unsubstituted or substituted C 1 -C 12 hydrocarbyl provided that the hydrocarbyl group is not tertiary hydrocarbyl, C 1 -C 12 hydrocarbylthio, C 1 -C 12 hydrocarbyloxy, or C 2 -C 12 halohydrocarbyloxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each occurrence of Z 2 is independently hydrogen, halogen, unsubstituted or substituted C 1 -C 12 hydrocarbyl provided that the hydrocarbyl group is not tertiary hydrocarbyl, C 1 -C 12 hydrocarbylthio, C 1 -C 12 hydrocarbyloxy, or C 2 -C 12 halohydrocarbyloxy wherein at least two carbon atoms separate the halogen and oxygen atoms.
  • hydrocarbyl refers to a residue that contains only carbon and hydrogen.
  • the residue can be aliphatic or aromatic, straight-chain, cyclic, bicyclic, branched, saturated, or unsaturated. It can also contain combinations of aliphatic, aromatic, straight chain, cyclic, bicyclic, branched, saturated, and unsaturated hydrocarbon moieties.
  • the hydrocarbyl residue when described as substituted, it may, optionally, contain heteroatoms over and above the carbon and hydrogen members of the substituent residue.
  • the hydrocarbyl residue when specifically described as substituted, can also contain one or more carbonyl groups, amino groups, hydroxyl groups, or the like, or it can contain heteroatoms within the backbone of the hydrocarbyl residue.
  • Z 1 can be a di-n-butylaminomethyl group formed by reaction of a terminal 3,5-dimethyl-1,4-phenyl group with the di-n-butylamine component of an oxidative polymerization catalyst.
  • the poly(phenylene ether) can comprise molecules having aminoalkyl-containing end group(s), typically located in a position ortho to the hydroxyl group. Also frequently present are tetramethyldiphenoquinone (TMDQ) end groups, typically obtained from 2,6-dimethylphenol-containing reaction mixtures in which tetramethyldiphenoquinone by-product is present.
  • TMDQ tetramethyldiphenoquinone
  • the poly(phenylene ether) can be in the form of a homopolymer, a copolymer, a graft copolymer, an ionomer, or a block copolymer, as well as combinations thereof.
  • the poly(phenylene ether) comprises a poly(phenylene ether)-polysiloxane block copolymer.
  • poly(phenylene ether)-polysiloxane block copolymer refers to a block copolymer comprising at least one poly(phenylene ether) block and at least one polysiloxane block.
  • the poly(phenylene ether)-polysiloxane block copolymer is prepared by an oxidative copolymerization method.
  • the poly(phenylene ether)-polysiloxane block copolymer is the product of a process comprising oxidatively copolymerizing a monomer mixture comprising a monohydric phenol and a hydroxyaryl-terminated polysiloxane.
  • the monomer mixture comprises 70 to 99 parts by weight of the monohydric phenol and 1 to 30 parts by weight of the hydroxyaryl-terminated polysiloxane, based on the total weight of the monohydric phenol and the hydroxyaryl-terminated polysiloxane.
  • the hydroxyaryl-diterminated polysiloxane can comprise a plurality of repeating units having the structure
  • each occurrence of R 8 is independently hydrogen, C 1 -C 12 hydrocarbyl or C 1 -C 12 halohydrocarbyl; and two terminal units having the structure
  • each occurrence of R 9 is independently hydrogen, C 1 -C 12 hydrocarbyl or C 1 -C 12 halohydrocarbyl.
  • each occurrence of R 8 and R 9 is methyl, and Y is methoxyl.
  • the monohydric phenol comprises 2,6-dimethylphenol, 2,3,6-trimethylphenol, or a combination thereof, and the hydroxyaryl-terminated polysiloxane has the structure
  • n is, on average, 5 to 100, specifically 30 to 60.
  • the oxidative copolymerization method produces poly(phenylene ether)-polysiloxane block copolymer as the desired product and poly(phenylene ether) (without an incorporated polysiloxane block) as a by-product. It is not necessary to separate the poly(phenylene ether) from the poly(phenylene ether)-polysiloxane block copolymer.
  • the poly(phenylene ether)-polysiloxane block copolymer can thus be utilized as a “reaction product” that includes both the poly(phenylene ether) and the poly(phenylene ether)-polysiloxane block copolymer.
  • the poly(phenylene ether) has an intrinsic viscosity of 0.25 to 1 deciliter per gram measured by Ubbelohde viscometer at 25° C. in chloroform. Within this range, the poly(phenylene ether) intrinsic viscosity can be 0.3 to 0.65 deciliter per gram, more specifically 0.35 to 0.5 deciliter per gram, even more specifically 0.4 to 0.5 deciliter per gram.
  • the poly(phenylene ether) comprises a homopolymer or copolymer of monomers selected from the group consisting of 2,6-dimethylphenol, 2,3,6-trimethylphenol, and combinations thereof.
  • the poly(phenylene ether) comprises a poly(phenylene ether)-polysiloxane block copolymer.
  • the poly(phenylene ether)-polysiloxane block copolymer can, for example, contribute 0.05 to 2 weight percent, specifically 0.1 to 1 weight percent, more specifically 0.2 to 0.8 weight percent, of siloxane groups to the composition as a whole.
  • the particulate poly(phenylene ether) has a mean particle size of 1 to 40 micrometers. Within this range, the mean particle size can be 1 to 20 micrometers, specifically 2 to 8 micrometers. In some embodiments, 90 percent of the particle volume distribution of the particulate poly(phenylene ether) is less than or equal to 23 micrometers, specifically less than or equal to 17 micrometers, more specifically 1 to 8 micrometers. In some embodiments, fifty percent of the particle volume distribution of the particulate poly(phenylene ether) is than or equal to 15 micrometers, specifically less than or equal to 10 micrometers, more specifically less than or equal to 6 micrometers.
  • ten percent of the particle volume distribution of the particulate poly(phenylene ether) is less than or equal to 9 micrometers, specifically less than or equal to 6 micrometers, more specifically less than or equal to 4 micrometers. In some embodiments, less than 10 percent, specifically less than 1 percent, and more specifically less than 0.1 percent, of the particle volume distribution is less than or equal to 38 nanometers. In some embodiments, the particles of the particulate poly(phenylene ether) have a mean aspect ratio of 1:1 to 2:1. Equipment to determine particle size and shape characteristics is commercially available as, for example, the CAMSIZERTM and CAMSIZERTM XT Dynamic Image Analysis Systems from Retsch Technology, and the QICPICTM Particle Size and Shape Analyzer from Sympatec.
  • Particulate poly(phenylene ether) can be obtained according to methods readily available to the skilled artisan, for example by jet milling, ball milling, pulverizing, air milling, or grinding commercial grade poly(phenylene ether).
  • “Classification” is defined as the sorting of a distribution of particles to achieve a desired degree of particle size uniformity.
  • a classifier is often used together with milling for the continuous extraction of fine particles from the material being milled.
  • the classifier can be, for example, a screen of certain mesh size on the walls of the grinding chamber. Once the milled particles reach sizes small enough to pass through the screen, they are removed. Larger particles retained by the screen remain in the milling chamber for additional milling and size reduction.
  • Air classification is another method of removing the finer particles from milling.
  • Air classifiers include static classifiers (cyclones), dynamic classifiers (single-stage, multi-stage), cross-flow classifiers, and counter-flow classifiers (elutriators).
  • a flow of air is used to convey the particles from the mill to the classifier, where the fine particles are further conveyed to a collector.
  • the coarse particles, being too heavy to be carried by the air stream, are returned to the mill for further milling and size reduction.
  • air classification is more efficient, while in smaller operations a screen can be used.
  • the polyurethane or polyisocyanurate foam comprises the particulate poly(phenylene ether) in an amount of 1 to 50 weight percent, based on the total weight of the polyurethane or polyisocyanurate foam (which is equivalent to the total weight of the reaction mixture from which the foam is prepared).
  • the amount of particulate poly(phenylene ether) can be 3 to 40 weight percent, specifically 5 to 30 weight percent.
  • the polyurethane or polyisocyanurate foam has a core density of 0.03 to 0.7 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03. Within this range, the core density can be 0.03 to 0.2 grams/centimeter 3 , specifically 0.03 to 0.06 grams/centimeter 3 .
  • polyurethane and polyisocyanurate foams Both are prepared from polyisocyanates and polyols. Reaction mixtures used to prepare polyurethane and polyisocyanurate foams are characterized by an isocyanate index, which is calculated according to the equation
  • Isocyanate ⁇ ⁇ Index Moles NCO Moles OH + Moles HOH + Moles NH ⁇ 100
  • Moles NCO is the moles of isocyanate groups in the reaction mixture
  • Moles OH is the moles of OH groups in the reaction mixture from sources other than water (including OH groups from alcohols and carboxylic acid)
  • Moles HOH is the moles of OH groups in the reaction mixture from water
  • Moles NH is the moles of NH groups in the reaction mixture.
  • the products of reaction mixtures having an isocyanate index of 100 to 125, specifically 105 to 125, are typically characterized as polyurethanes, while the products of reaction mixtures having an isocyanate index of 180 to 350 are typically characterized as polyisocyanurates.
  • Formation of isocyanurate groups is favored not only by high isocyanate indices, but also by use of catalysts for isocyanurate formation, such as N-hydroxyalkyl quaternary ammonium carboxylates.
  • the polyurethane or polyisocyanurate foam is a product of a method comprising reacting a polyol and an isocyanate compound in the presence of a blowing agent and a particulate poly(phenylene ether) to form the polyurethane or polyisocyanurate foam, wherein the isocyanate compound comprises, on average, at least two isocyanate groups per molecule.
  • the polyol can comprise, on average, at least two hydroxyl groups per molecule and often comprises three or more hydroxyl groups per molecule.
  • Polyols useful in the method include polyether polyols prepared by reacting an initiator containing 2 to 8 hydroxyl groups per molecule, specifically 3 to 8 hydroxyl groups per molecule, with an alkoxylating agent such as ethylene oxide, propylene oxide, or butylene oxide.
  • polyols include ethoxylated saccharides, propoxylated saccharides, butoxylated saccharides, ethoxylated glycerins, propoxylated glycerins, butoxylated glycerins, ethoxylated diethanolamines, propoxylated diethanolamines, butoxylated diethanolamines, ethoxylated triethanolamines, propoxylated triethanolamines, butoxylated triethanolamines, ethoxylated trimethylolpropanes, propoxylated trimethylolpropanes, butoxylated trimethylolpropanes, ethoxylated erythritols, propoxylated erythritols, butoxylated erythritols, ethoxylated pentaerythritols, propoxylated pentaerythritols, butoxylated pentaerythritols, and combinations
  • the polyol is selected from propoxylated saccharides, propoxylated glycerins, propoxylated diethanolamines, propoxylated triethanolamines, propoxylated trimethylolpropanes, propoxylated erythritols, propoxylated pentaerythritols, and combinations thereof.
  • Polyols further include aliphatic polyester diols, aromatic polyester polyols, and combinations thereof.
  • the polyol comprises a propoxylated sucrose, a propoxylated glycerin, an aromatic polyester diol, or a combination thereof.
  • Isocyanate compounds useful in the method include, for example, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3-diisocyanate, and cyclohexane-1,4-diisocyanate, 1-isocyanato-2-isocyanatomethyl cyclopentane, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl-cyclohexane, bis(4-isocyanatocyclohexyl)methane, 2,4′-dicyclohexyl-methane diisocyanate, 1,3-bis(isocyanatomethyl)-cyclohexane, 1,4-bis-(isocyanatomethyl)-cyclohexane, bis(4-isocyanato
  • Blowing agents useful in the method including physical blowing agents, chemical blowing agents, and combinations thereof.
  • Physical blowing agents can be, for example, C 3 -C 5 hydrofluoroalkanes and C 3 -C 5 hydrofluoroalkenes.
  • the hydrofluoroalkane and hydrofluoroalkene blowing agents can also contain one or more hydrogen atoms and/or halogen atoms other than fluorine.
  • the hydrofluoroalkane and hydrofluoroalkene blowing agents have a boiling point of 10 to 40° C. at 1 atmosphere.
  • Specific physical blowing agents include 1,1-difluoroethane, 1,1,1,2-tetrafluoroethane, pentafluoroethane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, 2-bromopentafluoropropene, 1-bromopentafluoropropene, 3-bromopentafluoropropene, 3,4,4,5,5,5-heptafluoro-1-pentene, 3-bromo-1,1,3,3-tetrafluoropropene, 2-bromo-1,3,3,3-tetrafluoropropene, 1-bromo-2,3,3,3-tetrafluoropropene, 1,1,2,3,3,4,4-heptafluorobut-1-ene, 2-bromo-3,3,3-trifluoropropene, E-1-bromo-3,3,3-trifluoropropene-1, (Z)-1,
  • Chemical blowing agents include water and carboxylic acids that reaction with isocyanate groups to liberate carbon dioxide.
  • chemical blowing agents and specifically water, can be used in an amount of 0.2 to 5 weight percent, based on the total weight of the reaction mixture. Within this range, the chemical blowing agent amount can be 0.2 to 3 weight percent.
  • the reaction mixture can include additives such as, for example, catalysts, surfactants, fire retardants, smoke suppressants, fillers and/or reinforcements other than the particulate poly(phenylene ether), antioxidants, UV stabilizers, antistatic agents, infrared radiation absorbers, viscosity reducing agents, pigments, dyes, mold release agents, antifungal agents, biocides, and combinations thereof.
  • additives such as, for example, catalysts, surfactants, fire retardants, smoke suppressants, fillers and/or reinforcements other than the particulate poly(phenylene ether), antioxidants, UV stabilizers, antistatic agents, infrared radiation absorbers, viscosity reducing agents, pigments, dyes, mold release agents, antifungal agents, biocides, and combinations thereof.
  • Catalysts include urethane catalysts, isocyanurate catalysts, and combinations thereof.
  • Suitable catalysts include tertiary amine catalysts such as dimethylcyclohexylamine, benzyldimethylamine, N,N,N′,N′′,N′′-pentamethyldiethylenetriamine, 2,4,6-tris-(dimethylaminomethyl)-phenol, triethylenediamine, N,N-dimethyl ethanolamine, and combinations thereof, organometallic compounds such as potassium octoate (2-ethyl hexanoate), potassium acetate, dibutyltin dilaurate, dibutlytin diacetate, and combinations thereof; quaternary ammonium salts such as 2-hydroxpropyl trimethylammonium formate; N-substituted triazines such as N,N′,N′′-dimethylaminopropylhexahydrotriazine; and combinations thereof.
  • Suitable surfactants include, for example, polyorganosiloxanes, polyorganosiloxane polyether copolymers, phenol alkoxylates (such as ethoxylated phenol), alkylphenol alkoxylates (such as ethoxylated nonylphenol), and combinations thereof.
  • the surfactants can function as emulsifiers and/or foam stabilizers.
  • the particulate poly(phenylene ether) contributes to the flame retardancy of the foam. Flame retardancy is also promoted by the use of aromatic polyester polyols, when employed, and isocyanurate groups, when formed. One or more additional flame retardants can, optionally, be included in the reaction mixture.
  • Such additional flame retardants include, for example, organophosphorous compounds such as organic phosphates (including trialkyl phosphates such as triethyl phosphate and tris(2-chloropropyl)phosphate, and triaryl phosphates such as triphenyl phosphate and diphenyl cresyl phosphate), phosphites (including trialkyl phosphites, triaryl phosphites, and mixed alkyl-aryl phosphites), phosphonates (including diethyl ethyl phosphonate, dimethyl methyl phosphonate), polyphosphates (including melamine polyphosphate, ammonium polyphosphates), polyphosphites, polyphosphonates, phosphinates (including aluminum tris(diethyl phosphinate); halogenated fire retardants such as tetrabromophthalate esters and chlorinated paraffins; metal hydroxides such as magnesium hydroxide, aluminum hydroxide, cobalt
  • the flame retatrdant can be a reactive type flame-retardant (including polyols which contain phosphorus groups, 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phospha-phenanthrene-10-oxide, phosphorus-containing lactone-modified polyesters, ethylene glycol bis(diphenyl phosphate), neopentylglycol bis(diphenyl phosphate), amine- and hydroxyl-functionalized siloxane oligomers). These flame retardants can be used alone or in conjunction with other flame retardants.
  • additives are typically used in a total amount of 0.01 to 30 weight percent, based on the total weight of the reaction mixture. Within this range, the total additive amount can be 0.02 to 10 weight percent.
  • the polyurethane or polyisocyanurate foam has a core density of 0.02 to 0.06 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03;
  • the particulate poly(phenylene ether) is a particulate poly(2,6-dimethyl-1,4-phenylene ether);
  • the particulate poly(phenylene ether) has a mean particle size of 2 to 8 micrometers;
  • the particulate poly(phenylene ether) has a particle size distribution wherein 90 percent of the particle volume distribution is in the range of 1 to 8 micrometers;
  • the polyurethane or polyisocyanurate foam comprises 5 to 30 weight percent of the particulate poly(phenylene ether);
  • the polyurethane or polyisocyanurate foam is a product of a method comprising reacting a polyol and an isocyanate compound in the presence of a blowing agent and a particulate poly(pheny)
  • the polyurethane or polyisocyanurate foam is particularly useful as a thermal insulation material.
  • one embodiment is an article comprising thermal insulation comprising polyurethane or polyisocyanurate foam comprising 1 to 50 weight percent, based on the total weight of the polyurethane or polyisocyanurate foam, of a particulate poly(phenylene ether) having a mean particle size of 1 to 40 micrometers; wherein the polyurethane or polyisocyanurate foam has a core density of 0.03 to 0.7 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03. All of the variations of the foam described above apply as well to the foam as a component of the article.
  • thermo insulation material examples include domestic appliances (such as domestic and commercial refrigerators and freezers, and hot water tanks); building materials (such as wall and roofing panels, cut-to-size pieces from slab stock, and spray-in-place foam for insulation and sealing); thermally insulated tanks and containers, pipelines, heating pipes, cooling pipes, and cold stores; and thermally insulated refrigerated vehicles for road and rail including containers.
  • domestic appliances such as domestic and commercial refrigerators and freezers, and hot water tanks
  • building materials such as wall and roofing panels, cut-to-size pieces from slab stock, and spray-in-place foam for insulation and sealing
  • thermally insulated tanks and containers pipelines, heating pipes, cooling pipes, and cold stores
  • thermally insulated refrigerated vehicles for road and rail including containers.
  • One embodiment is a method of forming a polyurethane or polyisocyanurate foam, the method comprising: reacting a polyol and an isocyanate compound in the presence of a blowing agent and a particulate poly(phenylene ether) to form a polyurethane or polyisocyanurate foam; wherein the isocyanate compound comprises, on average, at least two isocyanate groups per molecule; wherein the particulate poly(phenylene ether) has a mean particle size of 1 to 40 micrometers; and wherein the polyurethane or polyisocyanurate foam comprises 1 to 50 weight percent of the particulate poly(phenylene ether).
  • Polyols, isocyanate compounds, and blowing agents are described above in the context of the product-by-process embodiments of the foam. All variations of the foam and the process described above apply as well to the present method of forming a polyurethane or polyisocyanurate foam.
  • the polyol, the isocyanate compound, and water, if any, are present in amounts sufficient to provide an isocyanate index of 180 to 350.
  • the polyol component and the isocyanate component which have been temperature controlled and provided with additives, are thoroughly mixed together.
  • the reaction starts after a short period of time and progresses with heat development.
  • the reaction mixture is continually expanded by the blowing gases released, until the reaction product reaches the solid state as a result of progressive cross-linkage, the foam structure being retained.
  • the polyurethane or polyisocyanurate foam has a core density of 0.02 to 0.06 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03;
  • the particulate poly(phenylene ether) is a particulate poly(2,6-dimethyl-1,4-phenylene ether);
  • the particulate poly(phenylene ether) has a mean particle size of 2 to 8 micrometers;
  • the particulate poly(phenylene ether) has a particle size distribution wherein 90 percent of the particle volume distribution is in the range of 1 to 8 micrometers;
  • the polyurethane or polyisocyanurate foam comprises 5 to 30 weight percent of the particulate poly(phenylene ether);
  • the polyol comprises a propoxylated sucrose, a propoxylated glycerin, an aromatic polyester diol, or a combination thereof; and
  • the isocyanate compound comprises an oligomeric diphenylmethane diisocyanate
  • the invention includes at least the following embodiments.
  • a polyurethane or polyisocyanurate foam comprising 1 to 50 weight percent, based on the total weight of the polyurethane or polyisocyanurate foam, of a particulate poly(phenylene ether) having a mean particle size of 1 to 40 micrometers; wherein the polyurethane or polyisocyanurate foam has a core density of 0.03 to 0.7 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03.
  • polyurethane or polyisocyanurate foam of embodiment 1 or 2 wherein the polyurethane or polyisocyanurate foam is a polyurethane foam that is the product of a process characterized by an isocyanate index of 105 to 125.
  • polyurethane or polyisocyanurate foam of embodiment 1 or 2 wherein the polyurethane or polyisocyanurate foam is a polyisocyanurate foam that is the product of a process characterized by an isocyanate index of 180 to 350.
  • polyurethane or polyisocyanurate foam of any of embodiments 1-7 comprising 5 to 30 weight percent of the particulate poly(phenylene ether).
  • polyurethane or polyisocyanurate foam of any of embodiments 1-8 wherein the polyurethane or polyisocyanurate foam is a product of a method comprising reacting a polyol and an isocyanate compound in the presence of a blowing agent and a particulate poly(phenylene ether) to form the polyurethane or polyisocyanurate foam; wherein the isocyanate compound comprises, on average, at least two isocyanate groups per molecule.
  • polyol comprises an ethoxylated saccharide, a propoxylated saccharide, a butoxylated saccharide, an ethoxylated glycerin, a propoxylated glycerin, a butoxylated glycerin, an ethoxylated diethanolamine, a propoxylated diethanolamine, a butoxylated diethanolamine, an ethoxylated triethanolamine, a propoxylated triethanolamine, a butoxylated triethanolamine, an ethoxylated trimethylolpropane, a propoxylated trimethylolpropane, a butoxylated trimethylolpropane, an ethoxylated erythritol, a propoxylated erythritol, a butoxylated erythritol, an ethoxylated pentaerythritol
  • polyurethane or polyisocyanurate foam of embodiment 14 wherein the polyurethane or polyisocyanurate foam is a polyisocyanurate foam that is the product of a process characterized by an isocyanate index of 180 to 350.
  • An article comprising thermal insulation comprising polyurethane or polyisocyanurate foam comprising 1 to 50 weight percent, based on the total weight of the polyurethane or polyisocyanurate foam, of a particulate poly(phenylene ether) having a mean particle size of 1 to 40 micrometers; wherein the polyurethane or polyisocyanurate foam has a core density of 0.03 to 0.7 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03.
  • a method of forming a polyurethane or polyisocyanurate foam comprising: reacting a polyol and an isocyanate compound in the presence of a blowing agent and a particulate poly(phenylene ether) to form a polyurethane or polyisocyanurate foam; wherein the isocyanate compound comprises, on average, at least two isocyanate groups per molecule; wherein the particulate poly(phenylene ether) has a mean particle size of 1 to 40 micrometers; and wherein the polyurethane or polyisocyanurate foam comprises 1 to 50 weight percent of the particulate poly(phenylene ether).
  • the polyurethane or polyisocyanurate foam has a core density of 0.02 to 0.06 grams/centimeter 3 determined at 23° C. using ASTM D 1622-03; wherein the particulate poly(phenylene ether) is a particulate poly(2,6-dimethyl-1,4-phenylene ether); wherein the particulate poly(phenylene ether) has a mean particle size of 2 to 8 micrometers; wherein the particulate poly(phenylene ether) has a particle size distribution wherein 90 percent of the particle volume distribution is in the range of 1 to 8 micrometers; wherein the polyurethane or polyisocyanurate foam comprises 5 to 30 weight percent of the particulate poly(phenylene ether); wherein the polyol comprises a propoxylated sucrose, a propoxylated glycerin, an aromatic polyester diol, or a combination thereof; and wherein the isocyanate compound comprises an oligomeric diphenylmethan
  • TERATE TM 4026 An aromatic polyester polyol having an OH number of 200 milligrams/gram, a viscosity of 2500 centipoise at 25° C., a number average molecular weight of about 560 grams/mole, and about 2 hydroxyl groups per molecule; available as TERATE TM 4026 from Invista.
  • RUBINATE TM M An oligomeric diphenylmethane diisocyanate having 31.0 weight percent isocyanate groups and an average of 2.7 isocyanate groups per molecule; available as RUBINATE TM M from Huntsman.
  • NIAX TM A-1 70 weight percent bis(dimethylaminoethyl)ether in dipropylene glycol; available as NIAX TM A-1 from Momentive.
  • DABCO TM TMR-4 An N-hydroxyalkyl quaternary ammonium carboxylate (catalyst for formation of isocyanurate groups) having an OH number of 687 milligrams OH/gram and a viscosity of 34 centipoise at 25° C.; available as DABCO TM TMR-4 from Air Products.
  • POLYCAT TM 8 N,N-dimethylcyclohexylamine; available as POLYCAT TM 8 from Air Products.
  • DABCO TM DC193 A polysiloxane surfactant; available as DABCO TM DC193 from Air Products.
  • Particulate poly(2,6-dimethyl-1,4-phenylene ether) was obtained by jet milling commercial grade poly(phenylene ether) powder obtained as PPOTM 640 resin from Sabic Innovative Plastics. Compressed nitrogen gas was introduced into the nozzles of a jet mill to create a supersonic grinding stream. Particle-on-particle impact collisions in this grinding stream resulted in substantial particle size reductions. Large particles were held in the grinding area by centrifugal force while centripetal force drove finer particles toward the center of the discharge. A sieve of a specific upper size limit was then used in-line to recover particles with a precise size distribution and having diameters below the nominal sieve openings. Larger particles were recycled to the reduction size chamber for further grinding.
  • the particulate poly(2,6-dimethyl-1,4-phenylene ether) was classified by passing the jet-milled particles through a screen with 6 micrometer openings.
  • the particle size and shape characterization in Table 1 was determined using a CAMSIZERTM XT from Retsch Technology GmbH operating in air dispersion mode.
  • Rigid foams were prepared using a high-torque mixer (CRAFTSMAN Ten Inch Drill Press, Model No. 137.219000) at 3,100 rotations per minute. Polyol components and isocyanate components of the foam systems were mixed for 10 seconds. The resulting mixture was transferred into an open cake box before the cream time and allowed to free-rise. Foaming profile, including cream time, gel time, rise time, and tack-free time was determined on all foams.
  • CRAFTSMAN Ten Inch Drill Press Model No. 137.219000
  • Table 2 summarizes examples in which the particulate poly(phenylene ether) was added only to the polyol component of the polyurethane formulation.
  • the property results show that similar core densities were obtained for each foam, but, relative to Comparative Example A, inventive Examples 1-3 exhibited higher compressive strength values.
  • the particulate poly(phenylene ether) was added through both the polyol component and the isocyanate component of the foam systems.
  • Compositions, processes, and properties are summarized in Table 3. The property results show that, relative to Comparative Example B, inventive Examples 4-6 with particulate poly(phenylene ether) exhibited reduced flammability and reduced water absorption.
  • Examples of polyisocyanurate foam systems are summarized in Table 4.
  • the particulate poly(phenylene ether) was added through the both polyol component and isocyanate component of the foam systems.
  • the property results show that, relative to Comparative Example C, inventive Examples 7-9 with particulate poly(phenylene ether) exhibited reduced flammability and reduced water absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Emergency Medicine (AREA)
US13/948,416 2013-07-23 2013-07-23 Rigid foam and associated article and method Abandoned US20150028247A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/948,416 US20150028247A1 (en) 2013-07-23 2013-07-23 Rigid foam and associated article and method
CN201480039997.XA CN105377988A (zh) 2013-07-23 2014-06-24 硬质泡沫及相关制品和方法
JP2016515976A JP6158431B2 (ja) 2013-07-23 2014-06-24 硬質フォーム、並びに関連した物品および方法
PCT/US2014/043773 WO2015012989A1 (en) 2013-07-23 2014-06-24 Rigid foam and associated article and method
US14/900,428 US9493621B2 (en) 2013-07-23 2014-06-24 Rigid foam and associated article and method
CN201910204954.7A CN110041690A (zh) 2013-07-23 2014-06-24 硬质泡沫及相关制品和方法
KR1020167002816A KR101669073B1 (ko) 2013-07-23 2014-06-24 경질 폼 및 관련 물품과 방법
EP14828964.8A EP3036288B1 (en) 2013-07-23 2014-06-24 Rigid foam and associated article and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/948,416 US20150028247A1 (en) 2013-07-23 2013-07-23 Rigid foam and associated article and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/900,428 Continuation US9493621B2 (en) 2013-07-23 2014-06-24 Rigid foam and associated article and method

Publications (1)

Publication Number Publication Date
US20150028247A1 true US20150028247A1 (en) 2015-01-29

Family

ID=52389703

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/948,416 Abandoned US20150028247A1 (en) 2013-07-23 2013-07-23 Rigid foam and associated article and method
US14/900,428 Active US9493621B2 (en) 2013-07-23 2014-06-24 Rigid foam and associated article and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/900,428 Active US9493621B2 (en) 2013-07-23 2014-06-24 Rigid foam and associated article and method

Country Status (6)

Country Link
US (2) US20150028247A1 (ko)
EP (1) EP3036288B1 (ko)
JP (1) JP6158431B2 (ko)
KR (1) KR101669073B1 (ko)
CN (2) CN105377988A (ko)
WO (1) WO2015012989A1 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532726A (ja) * 2013-10-03 2016-10-20 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 軟質ポリウレタンフォームおよび関連する方法と物品
US9493621B2 (en) 2013-07-23 2016-11-15 Sabic Global Technologies B.V. Rigid foam and associated article and method
IT201600077120A1 (it) * 2016-07-22 2018-01-22 Doors & More S R L Poliisocianurato compatto ad alta densita’
WO2018015938A1 (en) * 2016-07-22 2018-01-25 Doors & More S.R.L. High fire-resistant polyisocyanurate, and use thereof to manufacture fire door or window frames and/or profiles therefor
IT201700020013A1 (it) * 2017-02-22 2018-08-22 Doors & More S R L Uso di poliisocianurato compatto per la realizzazione di profili per telai di serramenti di sicurezza
IT201700020006A1 (it) * 2017-02-22 2018-08-22 Doors & More S R L Uso di poliisocianurato ad esempio per la realizzazione di serramenti o compartimentazioni di sicurezza
US10333234B2 (en) 2017-08-14 2019-06-25 Shore Acres Enterprises Inc. Corrosion-protective jacket for electrode
EP3433093B1 (de) 2016-07-20 2019-09-04 Brugg Rohr Ag Holding Thermisch gedämmte mediumrohre mit hfo-haltigem zellgas
US10665364B2 (en) 2013-08-16 2020-05-26 Shore Acres Enterprises Inc. Corrosion protection of buried metallic conductors
WO2021165149A1 (de) * 2020-02-19 2021-08-26 Evonik Operations Gmbh Polyurethan-isolierschaumstoffe und ihre herstellung
US11121482B2 (en) 2017-10-04 2021-09-14 Shore Acres Enterprises Inc. Electrically-conductive corrosion-protective covering
US11421392B2 (en) 2019-12-18 2022-08-23 Shore Acres Enterprises Inc. Metallic structure with water impermeable and electrically conductive cementitous surround
US20230049261A1 (en) * 2021-07-28 2023-02-16 Momentive Performance Materials Inc. Flexible foams comprising additives for improving hardness

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892885A (zh) * 2015-05-25 2015-09-09 遵义市凤华电器有限责任公司 用于冰箱发泡层的阻燃硬质聚氨酯
CN110248978A (zh) * 2017-02-22 2019-09-17 三井化学株式会社 发泡聚氨酯弹性体原料、发泡聚氨酯弹性体及发泡聚氨酯弹性体的制造方法
TWI686527B (zh) * 2018-06-29 2020-03-01 遠東新世紀股份有限公司 輕量化面磚
KR102159783B1 (ko) * 2018-08-31 2020-09-23 (주)다담상사 저온 저장고용 벽체 구조물 및 이를 포함하는 저온 저장고
CN112644225A (zh) * 2020-12-29 2021-04-13 永佳工业车辆(苏州)有限公司 一种具有转向定位刹车机构的推车脚轮及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121338A (en) * 1997-09-25 2000-09-19 Imperial Chemical Industries Plc Process for rigid polyurethane foams
US20040092616A1 (en) * 2000-11-09 2004-05-13 Ernesto Occhiello Process for producing rigid polyurethane foams and finished articles obtained therefrom

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768994A (en) 1952-08-30 1956-10-30 Du Pont Polyoxymethylenes
US2998409A (en) 1954-04-16 1961-08-29 Du Pont Polyoxymethylene carboxylates of improved thermal stability
US3027352A (en) 1958-02-28 1962-03-27 Celanese Corp Copolymers
NL295748A (ko) 1962-07-24
GB1125620A (en) 1965-01-06 1968-08-28 Gen Electric Improvements in polymeric blends
US3383340A (en) 1965-05-12 1968-05-14 Gen Electric Reinforcing fillers for rubber
US3513114A (en) 1966-01-07 1970-05-19 Monsanto Co Intumescent coating compositions
US3836829A (en) 1969-12-29 1974-09-17 Gen Electric Polyolefin film containing therein widely dispersed fine particles of a dielectric liquid soluble material
CA927538A (en) 1970-03-09 1973-05-29 M. Summers Robert Rubber modified polyphenylene ether and process
US3972902A (en) 1971-01-20 1976-08-03 General Electric Company 4,4'-Isopropylidene-bis(3- and 4-phenyleneoxyphthalic anhydride)
US3847867A (en) 1971-01-20 1974-11-12 Gen Electric Polyetherimides
US3850885A (en) 1973-11-23 1974-11-26 Gen Electric Method for making polyetherimides
DE2359699B2 (de) 1973-11-30 1978-09-21 Hoechst Ag, 6000 Frankfurt Aufblähbare, flammhemmende Überzugsmassen
US3852242A (en) 1973-12-03 1974-12-03 Gen Electric Method for making polyetherimide
US3855178A (en) 1973-12-03 1974-12-17 Gen Electric Method for making polyetherimides
US3873477A (en) 1973-12-17 1975-03-25 Stepan Chemical Co Metallic salts of tetrazoles used as blowing and intumescent agents for thermoplastic polymers
US3955987A (en) 1974-04-19 1976-05-11 Monsanto Research Corporation Intumescent compositions and substrates coated therewith
FR2284638A1 (fr) 1974-09-10 1976-04-09 Ugine Kuhlmann Procede de fabrication de dispersions stables de polymeres thermoplastiques dans des polyols et polyurethanes prepares a partir de tels produits
JPS5165159A (ja) 1974-12-04 1976-06-05 Sumitomo Electric Industries Ganyuhoriasetaarusoseibutsu
US3983093A (en) 1975-05-19 1976-09-28 General Electric Company Novel polyetherimides
US4216261A (en) 1978-12-06 1980-08-05 The United States Of America As Represented By The Secretary Of The Army Semi-durable, water repellant, fire resistant intumescent process
US4341694A (en) 1981-07-06 1982-07-27 Borg-Warner Corporation Intumescent flame retardant compositions
US4336184A (en) 1981-08-12 1982-06-22 Borg-Warner Chemicals, Inc. Intumescent flame retardant thermoplastic polyphenylene ether compositions
US4455410A (en) 1982-03-18 1984-06-19 General Electric Company Polyetherimide-polysulfide blends
US4443591A (en) 1983-01-21 1984-04-17 General Electric Company Method for making polyetherimide
EP0119416A1 (en) 1983-02-18 1984-09-26 General Electric Company Thermoplastic molding compostions having improved dust suppression
US4623558A (en) 1985-05-29 1986-11-18 W. R. Grace & Co. Reactive plastisol dispersion
US5304593A (en) 1986-09-30 1994-04-19 Sumitomo Chemical Co., Ltd. Blends of dispersing phase of polyphenylene ether, a crystalline thermoplastic matrix resin and a mutual compatiblizer
US4801625A (en) 1987-08-27 1989-01-31 Akzo America Inc. Bicyclic phosphate ether, ester, and carbonate intumescent flame retardant compositions
JPH0198645A (ja) * 1987-10-13 1989-04-17 Nippon Petrochem Co Ltd 熱可塑性樹脂組成物およびその製造方法
DE3853801T2 (de) 1987-09-09 1996-02-15 Asahi Chemical Ind Ein gehärtetes Polyphenylenetherharz und ein härtbares Polyphenylenetherharz.
JPH01222951A (ja) 1988-03-02 1989-09-06 Toray Ind Inc 積層フィルム
US5326817A (en) 1988-03-23 1994-07-05 Nippon Petrochemicals Co. Ltd. Blend of polyphenylene ether, polycarbonate or polyoxymethylene resins and multi-phase thermoplastic resins
CA2048079A1 (en) 1988-07-15 1993-01-30 Shahid P. Qureshi Fiber-reinforced composites toughened with resin particles
US5087657A (en) 1989-02-23 1992-02-11 Amoco Corporation Fiber-reinforced composites toughened with resin particles
US5010117A (en) 1989-06-16 1991-04-23 Dow Chemical Company Flexible polyurethane foams prepared using low unsaturation polyether polyols
US5147710A (en) 1989-10-27 1992-09-15 General Electric Company Flame retardant low density foam articles
JPH03197538A (ja) 1989-12-27 1991-08-28 Idemitsu Petrochem Co Ltd ポリオレフィン系樹脂組成物
JP2591838B2 (ja) 1990-02-13 1997-03-19 東ソー株式会社 ポリフェニレンスルフィド樹脂組成物
US5032622A (en) 1990-07-02 1991-07-16 The Dow Chemical Company Densifiable and re-expandable polyurethane foam
JPH04159366A (ja) 1990-10-23 1992-06-02 Asahi Chem Ind Co Ltd Pps含有の樹脂組成物
JP2519767Y2 (ja) 1991-02-08 1996-12-11 三菱自動車工業株式会社 エアバック装置
US5169887A (en) 1991-02-25 1992-12-08 General Electric Company Method for enhancing the flame retardance of polyphenylene ethers
JP2598742B2 (ja) 1993-03-09 1997-04-09 チッソ株式会社 メラミン被覆ポリリン酸アンモニウム及びその製造法
US5424344A (en) 1994-01-05 1995-06-13 E. I. Dupont De Nemours And Company Flame retardant polyamide compositions
US6045883A (en) 1995-06-29 2000-04-04 Asahi Kasei Kogyo Kabushiki Kaisha Resin composition and resin composition for secondary battery jar
JPH09104094A (ja) 1995-10-12 1997-04-22 Matsushita Electric Works Ltd 積層板の製造方法
US5723515A (en) 1995-12-29 1998-03-03 No Fire Technologies, Inc. Intumescent fire-retardant composition for high temperature and long duration protection
DE19613979A1 (de) 1996-04-09 1997-10-16 Hoechst Ag Mischungen aus Thermoplasten und oxidierten Polyarylensulfiden
US5834565A (en) 1996-11-12 1998-11-10 General Electric Company Curable polyphenylene ether-thermosetting resin composition and process
TW550278B (en) 1996-11-12 2003-09-01 Gen Electric A curable polyphenylene ether-thermosetting resin composition
JPH10298438A (ja) * 1997-04-28 1998-11-10 Asahi Chem Ind Co Ltd 液状添加剤含有熱可塑性樹脂組成物
US6096817A (en) 1997-06-26 2000-08-01 E. I. Du Pont De Nemours And Company Mixtures of polyimides and elastomers
DE59912474D1 (de) 1998-05-22 2005-09-29 Solvay Fluor Gmbh Treibmittelzusammensetzung zur Herstellung von geschäumten thermoplastichen Kunststoffen
US6063875A (en) 1998-06-11 2000-05-16 General Electric Company Carboxy-functionalized polyphenylene ethers and blends containing them
DE19853025A1 (de) * 1998-11-18 2000-05-25 Basf Ag Halogenfrei flammgeschützte Hartschaumstoffe auf Isocyanatbasis
US6096821A (en) 1999-04-02 2000-08-01 General Electric Company Polyphenylene ether resin concentrates
CN1353739A (zh) 1999-04-02 2002-06-12 通用电气公司 共聚合物和聚苯醚树脂的组合物
JP2001019839A (ja) 1999-07-09 2001-01-23 Asahi Chem Ind Co Ltd 硬化性樹脂組成物
AU6086700A (en) 1999-07-19 2001-02-05 W.R. Grace & Co.-Conn. Thermally protective intumescent compositions
EP1081183A3 (en) 1999-08-03 2002-08-21 Lewin Prof. Menachem Flame retardation of polymeric compositions
JP2003506548A (ja) 1999-08-06 2003-02-18 パブ・サーヴィシズ・インコーポレーテッド 泡沸性重合体組成物
CA2293005A1 (en) 1999-09-29 2001-03-29 E.I. Du Pont De Nemours And Company Polyoxymethylene resin compositions having improved molding characteristics
US6576718B1 (en) 1999-10-05 2003-06-10 General Electric Company Powder coating of thermosetting resin(s) and poly(phenylene ethers(s))
US6352782B2 (en) 1999-12-01 2002-03-05 General Electric Company Poly(phenylene ether)-polyvinyl thermosetting resin
CN1209397C (zh) 2000-02-16 2005-07-06 三洋化成工业株式会社 粒度均匀的树脂分散体、树脂粒子及其制造方法
US6508910B2 (en) 2000-05-18 2003-01-21 Hexcel Corporation Self-adhesive prepreg face sheet for sandwich panels
US6756430B2 (en) 2000-06-13 2004-06-29 Mitsui Chemicals, Inc. Flame-retarding thermoplastic resin composition
JP5101782B2 (ja) 2000-08-09 2012-12-19 ルブリゾール アドバンスト マテリアルズ,インコーポレイティド 低分子量エンジニアリング熱可塑性ポリウレタン及びそのブレンド
DE60131836T2 (de) 2001-04-27 2008-12-04 Stichting Dutch Polymer Institute Polyether-Multiblock-Copolymer
EP1404766A1 (en) 2001-06-01 2004-04-07 W. &amp; J. Leigh &amp; Co. Coating compositions
US7022777B2 (en) 2001-06-28 2006-04-04 General Electric Moldable poly(arylene ether) thermosetting compositions, methods, and articles
JP2003128909A (ja) 2001-10-23 2003-05-08 Asahi Kasei Corp 難燃性熱硬化樹脂組成物
US6809129B2 (en) 2002-01-23 2004-10-26 Delphi Technologies, Inc. Elastomeric intumescent material
US6706793B2 (en) 2002-01-23 2004-03-16 Delphi Technologies, Inc. Intumescent fire retardant composition and method of manufacture thereof
JP4007828B2 (ja) 2002-03-08 2007-11-14 旭化成ケミカルズ株式会社 低分子量ポリフェニレンエーテルの製造方法
US7091266B2 (en) 2002-05-28 2006-08-15 Asahi Kasei Kabushiki Kaisha Flame retardant composition
DE10241374B3 (de) 2002-09-06 2004-02-19 Clariant Gmbh Staubarme, pulverförmige Flammschutzmittelzusammensetzung, Verfahren zu deren Herstellung und deren Verwendung, sowie flammgeschützte Polymerformmassen
US20050171266A1 (en) 2003-06-10 2005-08-04 Matthijssen Johannes G. Filled compositions and a method of making
US7041780B2 (en) 2003-08-26 2006-05-09 General Electric Methods of preparing a polymeric material composite
JP2005105009A (ja) 2003-09-26 2005-04-21 Asahi Kasei Chemicals Corp 難燃性硬化性樹脂組成物
US7022765B2 (en) 2004-01-09 2006-04-04 General Electric Method for the preparation of a poly(arylene ether)-polyolefin composition, and composition prepared thereby
US7151158B2 (en) 2004-01-30 2006-12-19 General Electric Company Method of preparing a poly(arylene ether), apparatus therefor, and poly(arylene ether) prepared thereby
US20050170238A1 (en) 2004-02-04 2005-08-04 Abu-Isa Ismat A. Fire shielding battery case
ATE439399T1 (de) 2004-05-13 2009-08-15 Basf Se Flammschutzmittel
KR101014183B1 (ko) 2004-07-21 2011-02-14 삼성전자주식회사 백라이트 어셈블리 및 이를 갖는 액정 표시 장치
JP4093216B2 (ja) 2004-08-24 2008-06-04 松下電工株式会社 プリプレグ、及びプリプレグの製造方法
US8889815B2 (en) 2004-09-01 2014-11-18 Ppg Industries Ohio, Inc. Reinforced polyurethanes and poly(ureaurethane)s, methods of making the same and articles prepared therefrom
DE102004050479A1 (de) 2004-10-15 2006-04-27 Chemische Fabrik Budenheim Kg Formmasse für die Herstellung schwer entflammbarer Gegenstände, Pigment hierfür und dessen Verwendung
DE102004050478A1 (de) 2004-10-15 2006-04-27 Chemische Fabrik Budenheim Kg Formmasse für die Herstellung schwer entflammbarer Gegenstände, Pigment hierfür und dessen Verwendung
GB0428009D0 (en) 2004-12-21 2005-01-26 W & J Leigh & Co Intumescent coating compositions
US20060292375A1 (en) 2005-06-28 2006-12-28 Martin Cary J Resin compositions with high thermoplatic loading
US7378455B2 (en) 2005-06-30 2008-05-27 General Electric Company Molding composition and method, and molded article
US7429800B2 (en) 2005-06-30 2008-09-30 Sabic Innovative Plastics Ip B.V. Molding composition and method, and molded article
US9315612B2 (en) * 2005-07-27 2016-04-19 Certainteed Corporation Composite material including rigid foam with inorganic fillers
US7825176B2 (en) 2005-08-31 2010-11-02 Sabic Innovative Plastics Ip B.V. High flow polyester composition
US20070066739A1 (en) 2005-09-16 2007-03-22 General Electric Company Coated articles of manufacture made of high Tg polymer blends
US20070093602A1 (en) * 2005-10-24 2007-04-26 Bayer Materialscience Llc Solid polyurethane compositions, infrastucture repair and geo-stabilization processes
CN101351491B (zh) 2005-10-28 2012-06-27 沙伯基础创新塑料知识产权有限公司 制备聚(亚芳基醚)的方法,以及相关的组合物
US20090275682A1 (en) 2005-11-10 2009-11-05 Asahi Kasei Chemicals Corporation Resin Composition Excellent in Flame Retardance
TWI414551B (zh) 2006-01-06 2013-11-11 Supresta Llc 不含鹵素的阻燃劑組成物,包含彼的熱塑性組成物以及製造組成物的方法
JP2008050526A (ja) 2006-08-28 2008-03-06 Matsushita Electric Works Ltd 樹脂組成物、それを用いたプリプレグ及び積層板
GB0619401D0 (en) 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
US7718721B2 (en) 2006-11-13 2010-05-18 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)/polyolefin composition, method, and article
DE102006058414A1 (de) 2006-12-12 2008-06-19 Clariant International Limited Carboxyethyl(alkyl)phosphinsäure-Alkylestersalze
US7585906B2 (en) 2007-02-28 2009-09-08 Sabic Innovative Plastics Ip B.V. Poly(arylene ether) composition, method, and article
US7576150B2 (en) 2007-02-28 2009-08-18 Sabic Innovative Plastics Ip B.V. Poly(arylene ether) composition, method, and article
GB2448514B (en) 2007-04-18 2010-11-17 Univ Sheffield Hallam Steel component with intumescent coating
WO2009003124A1 (en) 2007-06-26 2008-12-31 Seeqpod, Inc. Media discovery and playlist generation
DE102007034458A1 (de) 2007-07-20 2009-01-22 Evonik Röhm Gmbh Harzsystem für Intumeszent Beschichtung mit verbesserter Metallhaftung
US8025158B2 (en) 2008-02-21 2011-09-27 Sabic Innovative Plastics Ip B.V. High molecular weight poly(2,6-dimethyl-1,4-phenylene ether) and process therefor
JP2011519980A (ja) 2008-04-04 2011-07-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 流体不浸透性が改善された複合パネル
US8017697B2 (en) 2008-06-24 2011-09-13 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)-polysiloxane composition and method
US8039535B2 (en) 2008-07-03 2011-10-18 Cheil Industries Inc. Flame retardant and impact modifier, method for preparing the same, and thermoplastic resin composition including the same
US7847032B2 (en) 2008-12-10 2010-12-07 Sabic Innovative Plastics Ip B.V. Poly(arylene ether) composition and extruded articles derived therefrom
US7829614B2 (en) 2008-12-30 2010-11-09 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, methods of manufacture, and articles thereof
CN102414274B (zh) 2009-04-29 2014-12-31 普立万公司 阻燃性热塑性弹性体
US9567426B2 (en) 2009-05-29 2017-02-14 Cytec Technology Corp. Engineered crosslinked thermoplastic particles for interlaminar toughening
US20110028609A1 (en) 2009-08-03 2011-02-03 E. I. Du Pont De Nemours And Company Making Renewable Polyoxymethylene Compositions
US8470923B2 (en) 2010-04-21 2013-06-25 Hexcel Corporation Composite material for structural applications
DE102010018680A1 (de) 2010-04-29 2011-11-03 Clariant International Limited Flammschutzmittel-Stabilisator-Kombination für thermoplastische und duroplastische Polymere
DE102010018681A1 (de) 2010-04-29 2011-11-03 Clariant International Ltd. Flammschutzmittel-Stabilisator-Kombination für thermoplastische und duroplastische Polymere
DE102010048025A1 (de) 2010-10-09 2012-04-12 Clariant International Ltd. Flammschutzmittel- Stabilisator-Kombination für thermoplastische Polymere
CN101983987B (zh) 2010-11-02 2013-01-23 蓝星化工新材料股份有限公司 一种聚苯醚颗粒及其成粒方法
DE102011011928A1 (de) 2011-02-22 2012-08-23 Clariant International Ltd. Flammschutzmittel-Stabilisator-Kombination für thermoplastische Polymere
US8779081B2 (en) 2011-03-15 2014-07-15 Sabic Global Technologies B.V. Process for formation of poly(arylene ethers) with lower fine particle content
US20120301703A1 (en) 2011-05-27 2012-11-29 Joseph Labock Labock fire resistant paint
US8686288B2 (en) 2011-05-31 2014-04-01 Tesla Motors, Inc. Power electronics interconnection for electric motor drives
US20120305238A1 (en) 2011-05-31 2012-12-06 Baker Hughes Incorporated High Temperature Crosslinked Polysulfones Used for Downhole Devices
CN102219978A (zh) 2011-06-07 2011-10-19 东莞创盟电子有限公司 一种电线电缆覆盖材料用无卤阻燃聚烯烃弹性体组合物
US8669332B2 (en) 2011-06-27 2014-03-11 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)-polysiloxane composition and method
ES2714250T3 (es) * 2011-09-29 2019-05-27 Dow Global Technologies Llc Uso de fosfato de trialquilo como supresor de humo en espuma de poliuretano
SE535836C2 (sv) 2011-10-21 2013-01-08 Perstorp Ab Ny fosfatförening
CN102492231B (zh) 2011-12-02 2015-03-25 太原理工大学 一种无卤阻燃聚苯乙烯复合材料及其制备方法
CN103998498A (zh) * 2011-12-19 2014-08-20 陶氏环球技术有限责任公司 含溴化聚合阻燃剂的热固性聚氨酯泡沫
CN102702562A (zh) 2012-05-24 2012-10-03 中国科学院宁波材料技术与工程研究所 一种热塑性聚酰亚胺发泡粒子及其成型体的制备方法
CN102731955B (zh) 2012-06-14 2014-01-22 苏州德尔泰高聚物有限公司 无卤阻燃耐高温弹性体插头料及其制备方法
US8912261B2 (en) 2012-06-22 2014-12-16 Sabic Global Technologies B.V. Process for making particulate-free poly(phenylene ether) compositions and photovoltaic backsheet materials derived therefrom
US9611385B2 (en) 2012-06-29 2017-04-04 Sabic Global Technologies B.V. Ultrafine poly(phenylene ether) particles and compositions derived therefrom
US8703848B1 (en) 2012-10-09 2014-04-22 Sabic Innovative Plastics Blends of micronized polyphenylene ether and thermoplastic polyurethanes blend
US20150004402A1 (en) 2013-06-28 2015-01-01 Sabic Innovative Plastics Ip B.V. Intumescent coating composition comprising particulate poly(phenylene ether)
US20150028247A1 (en) 2013-07-23 2015-01-29 Sabic Innovative Plastics Ip B.V. Rigid foam and associated article and method
US9447227B2 (en) * 2013-10-03 2016-09-20 Sabic Global Technologies B.V. Flexible polyurethane foam and associated method and article
US20150191594A1 (en) 2014-01-03 2015-07-09 Sabic Innovative Plastics, Ip B.V. Non-dusting poly(phenylene ether) particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121338A (en) * 1997-09-25 2000-09-19 Imperial Chemical Industries Plc Process for rigid polyurethane foams
US20040092616A1 (en) * 2000-11-09 2004-05-13 Ernesto Occhiello Process for producing rigid polyurethane foams and finished articles obtained therefrom

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493621B2 (en) 2013-07-23 2016-11-15 Sabic Global Technologies B.V. Rigid foam and associated article and method
US10665364B2 (en) 2013-08-16 2020-05-26 Shore Acres Enterprises Inc. Corrosion protection of buried metallic conductors
JP2016532726A (ja) * 2013-10-03 2016-10-20 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 軟質ポリウレタンフォームおよび関連する方法と物品
EP3433093B1 (de) 2016-07-20 2019-09-04 Brugg Rohr Ag Holding Thermisch gedämmte mediumrohre mit hfo-haltigem zellgas
US11879586B2 (en) 2016-07-20 2024-01-23 Brugg Rohr Ag Holding Thermally insulated medium pipes having HFO-containing cell gas
IT201600077120A1 (it) * 2016-07-22 2018-01-22 Doors & More S R L Poliisocianurato compatto ad alta densita’
WO2018015938A1 (en) * 2016-07-22 2018-01-25 Doors & More S.R.L. High fire-resistant polyisocyanurate, and use thereof to manufacture fire door or window frames and/or profiles therefor
IT201700020013A1 (it) * 2017-02-22 2018-08-22 Doors & More S R L Uso di poliisocianurato compatto per la realizzazione di profili per telai di serramenti di sicurezza
IT201700020006A1 (it) * 2017-02-22 2018-08-22 Doors & More S R L Uso di poliisocianurato ad esempio per la realizzazione di serramenti o compartimentazioni di sicurezza
US10333234B2 (en) 2017-08-14 2019-06-25 Shore Acres Enterprises Inc. Corrosion-protective jacket for electrode
US11349228B2 (en) 2017-08-14 2022-05-31 Shore Acres Enterprises Inc. Corrosion-protective jacket for electrode
US11757211B2 (en) 2017-08-14 2023-09-12 Shore Acres Enterprises Inc. Electrical grounding assembly
US11121482B2 (en) 2017-10-04 2021-09-14 Shore Acres Enterprises Inc. Electrically-conductive corrosion-protective covering
US11894647B2 (en) 2017-10-04 2024-02-06 Shore Acres Enterprises Inc. Electrically-conductive corrosion-protective covering
US11421392B2 (en) 2019-12-18 2022-08-23 Shore Acres Enterprises Inc. Metallic structure with water impermeable and electrically conductive cementitous surround
WO2021165149A1 (de) * 2020-02-19 2021-08-26 Evonik Operations Gmbh Polyurethan-isolierschaumstoffe und ihre herstellung
US20230049261A1 (en) * 2021-07-28 2023-02-16 Momentive Performance Materials Inc. Flexible foams comprising additives for improving hardness

Also Published As

Publication number Publication date
US9493621B2 (en) 2016-11-15
EP3036288A1 (en) 2016-06-29
EP3036288A4 (en) 2017-03-29
CN110041690A (zh) 2019-07-23
KR20160028461A (ko) 2016-03-11
JP6158431B2 (ja) 2017-07-05
JP2016529332A (ja) 2016-09-23
WO2015012989A1 (en) 2015-01-29
KR101669073B1 (ko) 2016-10-25
EP3036288B1 (en) 2020-02-19
CN105377988A (zh) 2016-03-02
US20160145405A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
US9493621B2 (en) Rigid foam and associated article and method
US9447227B2 (en) Flexible polyurethane foam and associated method and article
US9527976B2 (en) Rigid polyurethane foam and system and method for making the same
US9266997B2 (en) Polyurethane foam and associated method and article
KR20110022585A (ko) 천연 오일 폴리올을 사용한 경질 폴리이소시아누레이트 발포물의 제조 방법
CN111732712A (zh) 阻燃聚氨酯泡沫及其制备方法
RU2629020C2 (ru) Полиуретаны на основе сахаров, способы их получения и способы их применения
CN102070412B (zh) 阻燃型聚醚多元醇及制备方法,组合聚醚及聚氨酯泡沫
EP3027667B1 (en) Rigid foam and associated article
CN109422910B (zh) 包含原甲酸醇胺盐和碳酸醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN109422911B (zh) 包含原甲酸醇胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
AU2012386487B2 (en) Sugar-based polyurethanes, methods for their preparation, and methods of use thereof
CN109422915B (zh) 包含原甲酸醇胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途

Legal Events

Date Code Title Description
AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PETERS, EDWARD NORMAN;REEL/FRAME:031097/0439

Effective date: 20130828

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033591/0673

Effective date: 20140402

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT REMOVE 10 APPL. NUMBERS PREVIOUSLY RECORDED AT REEL: 033591 FRAME: 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033649/0529

Effective date: 20140402

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 12/116841, 12/123274, 12/345155, 13/177651, 13/234682, 13/259855, 13/355684, 13/904372, 13/956615, 14/146802, 62/011336 PREVIOUSLY RECORDED ON REEL 033591 FRAME 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033663/0427

Effective date: 20140402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION