US20130129560A1 - Ferritic stainless steel - Google Patents
Ferritic stainless steel Download PDFInfo
- Publication number
- US20130129560A1 US20130129560A1 US13/813,511 US201113813511A US2013129560A1 US 20130129560 A1 US20130129560 A1 US 20130129560A1 US 201113813511 A US201113813511 A US 201113813511A US 2013129560 A1 US2013129560 A1 US 2013129560A1
- Authority
- US
- United States
- Prior art keywords
- less
- black spots
- stainless steel
- amount
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 39
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 39
- 239000010959 steel Substances 0.000 claims abstract description 39
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 28
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 25
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 238000012360 testing method Methods 0.000 description 69
- 238000005260 corrosion Methods 0.000 description 52
- 230000007797 corrosion Effects 0.000 description 52
- 239000010936 titanium Substances 0.000 description 39
- 238000003466 welding Methods 0.000 description 33
- 239000011575 calcium Substances 0.000 description 31
- 206010027146 Melanoderma Diseases 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 15
- 239000011651 chromium Substances 0.000 description 15
- 239000010955 niobium Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 12
- 239000011572 manganese Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 9
- 239000011324 bead Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 8
- 239000007921 spray Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004299 exfoliation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/082—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
- F28F21/083—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
Definitions
- the present invention relates to a ferritic stainless steel that generates only a small amount of black spots in the TIG weld zone.
- Ferritic stainless steel generally has properties such as a small expansion coefficient relative to the austenitic stainless steel and excellent resistance to stress corrosion cracking in addition to excellent corrosion resistance. Therefore, the ferritic stainless steel is widely used in tableware, kitchen equipment, building exterior materials such as roof materials, water or hot water container materials or the like. Further, there is increasing demand for replacement of austenitic stainless steel due to recent increasing price of nickel raw material, and the uses of ferritic stainless steel have expanded.
- Patent Reference 3 discloses a technique of improving crevice corrosion resistance of the weld zone by adding a certain amount or more of Si in addition to combined addition of Al and Ti.
- Patent Reference 4 discloses a technique to improve the corrosion resistance of a weld zone by satisfying 4Al+Ti ⁇ 0.32 (wherein each of Ti and Al denotes amount of each component in the steel), thereby reducing heat input during the welding and suppressing generation of scale in the weld zone, and improving corrosion resistance of the weld zone.
- Patent Reference 5 there is a technique to improve the weather resistance and crevice corrosion resistance of not the weld zone but the material itself by intentionally adding P and appropriate amounts of Ca and Al (for example, see Patent Reference 5).
- Ca and Al are added to control the shapes and distribution of non-metallic inclusions in the steel.
- the most important feature of Patent Reference 5 is the addition of P in excess of 0.04%, and Patent Reference 5 describes nothing about an effect during welding.
- Patent Reference 1 Japanese Examined Patent Application, Second Publication No. S55-21102.
- Patent Reference 2 Japanese Unexamined Patent Application, First Publication No. 1105-70899.
- Patent Reference 3 Japanese Unexamined Patent Application, First Publication No. 2006-241564.
- Patent Reference 4 Japanese Unexamined Patent Application, First Publication No. 2007-270290.
- Patent Reference 5 Japanese Unexamined Patent Application, First Publication No. H07-34205.
- black spots In the conventional ferritic stainless steel, dark spots (so called black spots or slag spots) occasionally occurred on the surfaces of back beads after the welding even though shielding conditions in the weld zone were controlled appropriately.
- Elements such as Al, Ti, Si, Ca have a strong affinity to oxygen.
- Black spots are oxides of these elements that are solidified on the surface of the weld metal during the solidification process of the weld metal formed by Tungsten Inert Gas (TIG) welding.
- Tungsten Inert Gas (TIG) welding Tungsten Inert Gas
- the black spot itself is an oxide
- the black spots are generated in a large amount or generated in a continuously linked manner, the appearance of the weld material used without polishing the weld zone is worsened.
- exfoliation of the black spots portion occasionally occurs during working of the weld zone.
- problems such as deterioration of workability and/or occurrence of crevice corrosion in the interstitial area between the weld metal and the exfoliated black spots occasionally occur.
- exfoliation of the black spots and the resultant deterioration of corrosion resistance occasionally occur in the member having a structure in which stress is loaded on the weld zone.
- the corrosion resistance of the TIG weld zone it is important to not only improve the corrosion resistance of the weld bead portion itself and weld scale portion itself, but also to control the occurrence of black spots in the weld zone.
- the scale that is generated during the welding and accompanies the change of color can be mostly suppressed by the method of enhancing shielding conditions during welding.
- the black spots generated in the TIG weld zone could not be suppressed sufficiently in accordance with the prior arts even when the shielding conditions were enhanced.
- an object of the present invention is to provide a ferritic stainless steel that is resistant to the generation of black spots in the TIG weld zone and exhibits excellent corrosion resistance and workability in the weld zone.
- the inventors performed extensive research to suppress the amount of generation of black spots. As a result, the inventors found that the generation of black spots in the TIG weld zone could be suppressed by optimizing the amounts of Al, Ti , Si, and Ca, and reached the invention of the ferritic stainless steel in which black spots are generated only in a small amount.
- a first aspect of the present invention is a ferritic stainless steel containing, in mass %, 0.020% or less of C, 0.025% or less of N, 1.0% or less of Si, 1.0% or less of Mn, 0.035% or less of P, 0.01% or less of S, 16.0 to 25.0% of Cr, 0.12% or less of Al, 0.05 to 0.35% of Ti, and 0.0015% or less of Ca, and the balance consisting of Fe and unavoidable impurities, wherein the following formula 1 is satisfied.
- Al, Ti, Si, and Ca in the formula 1 each denotes an amount of each element in mass % of the steel.
- a second aspect of the present invention is a ferritic stainless steel according to the above-described first aspect, and further contains, in mass %, 0.6% or less of Nb.
- a third aspect of the present invention is a ferritic stainless steel according to the above-described first or second aspect, and further contains, in mass %, 3.0% or less of Mo.
- a fourth aspect of the present invention is a ferritic stainless steel according to any one of the above-described first to third aspects, and further contains, in mass %, one or two selected from 2.0% or less of Cu and 2.0% or less of Ni.
- a fifth aspect of the present invention is a ferritic stainless steel according to any one of the above-described first to fourth aspects, and further contains, in mass %, one or two selected from 0.2% or less of V and 0.2% or less of Zr.
- a sixth aspect of the present invention is a ferritic stainless steel according to any one of the above-described first to fifth aspects, and further contains, in mass %, 0.005% or less of B.
- FIG. 1A is a photograph that shows appearance of black spots that were generated in the back side during TIG welding.
- FIG. 1B is a schematic drawing that corresponds to the photograph of FIG. 1A and shows an appearance of black spots that were generated in the back side during TIG welding.
- FIG. 2A is a graph that shows a result of AES measurement of depth profile of elements (concentration distributions of elements in the depth direction) of the weld bead portion in the back side of a test piece.
- FIG. 2B is a graph that shows a result of AES measurement of depth profile of elements (concentration distributions of elements in the depth direction) of a black spot in the back side of a test piece.
- FIG. 3 is a graph that shows a relationship between the BI value and the formation length ratio of black spots.
- FIG. 4 is a graph showing the relationship between the BI value and corrosion, where concentric double circles ( ⁇ ) show excellent results, circles ( ⁇ ) show good results, and crosses (x) show bad results.
- a ferritic stainless steel according to the present invention that generates only a small amount of black spot satisfies the below described formula 1.
- Al, Ti, Si, and Ca in the formula 1 each denotes an amount of each element in the steel in mass %.
- Al, Ti, Si, and Ca are elements that have a specifically strong affinity with oxygen and that generate black spots at the time of TIG welding. As the amount of Al, Ti, Si, and Ca contained in the steel increases, black spots are easily generated.
- the coefficients of the amounts of Al, Ti, Si, and Ca in the above-described formula 1 are determined based on the degree (strength) of the effect of enhancing the generation of black spots and the amounts in the steel. Specifically, as it is shown in the following experimental example, Al is an element that is included in the black spot at the highest concentration and has a specifically large effect of enhancing the generation of black spots. Therefore, coefficient of the Al content in the above-described formula 1 is determined to be 3.
- the coefficient of the Ca content is determined to be 200.
- the generation of black spots is prominent.
- the BI value is 0.8 or less
- the generation of black spots in the TIG weld zone is sufficiently reduced, and an excellent corrosion resistance is obtained.
- the BI value is 0.6 or less
- the BI value is 0.4 or less
- the generation of black spots is mostly suppressed, and it is possible to further improve the corrosion resistance of the TIG weld zone.
- the black spot portion Under conditions in which a large amount of black spots tend to occur, the black spot portion has a large thickness. It is considered that such a portion is easily exfoliated at the time of working, and that severe working such as bulging causes the exfoliation and provides a starting point for corrosion. On the contrary, the black spots have thin thickness under conditions in which black spots are generated in a small amount. Therefore, it is considered that even when black spots are generated, the black spots are not exfoliated easily. Therefore, it is considered that corrosion resistance of the weld zone can be suppressed by suppressing the generation of black spots.
- Al is important as an deoxidizing element and has an effect in grain-refinement of the microstructure of the steel by controlling the composition of non-metallic inclusion.
- Al is an element that has the largest contribution to the generation of black spots.
- excessive addition of Al causes coarsening of the non-metallic inclusions that may act as starting points of scratching in the product. Therefore, the upper limit of the amount of Al was determined to be 0.12%. It is preferable for the steel to contain 0.01% or more of Al with the purpose of deoxidization. More preferably, the amount of Al is 0.03% to 0.10%.
- Ti is an very important element for fixing C and N and suppressing grain boundary corrosion in the weld zone, thereby improving workability.
- excessive addition of Ti results in not only generation of black spots but also occurrence of surface scratches during the production process. Therefore, the range of the amount of Ti was determined to be 0.05% to 0.35%. More preferable range is 0.07% to 0.20%.
- Si is an important element as an deoxidizing element and is effective in improvement of corrosion resistance and oxidation resistance.
- excessive addition of Si results in not only enhancement of generation of black spots but also deterioration of workability and productivity. Therefore, the upper limit of the amount of Si was determined to be 1.0%. It is preferable to make the steel contain 0.01% or more of Si for the purpose of deoxidization. Preferably, the amount of Si is 0.05% to 0.55%.
- Ca is very important as an deoxidizing element and is contained in the steel in small amount in the form of non-metallic inclusion.
- Ca since Ca is oxidized very easily, Ca behaves as strong cause of generation of black spots in the time of welding.
- the amount of Ca it is preferable to control the amount of Ca to be as small as possible, and the upper limit of the amount of Ca was determined to be 0.0015%. More preferably, the amount of Ca is 0.0012% or less.
- the amount of C must be suppressed since C deteriorates grain boundary corrosion resistance and workability. Therefore the upper limit of C was determined to be 0.020%. On the other hand, excessive reduction of C causes an increase in the refining cost. Therefore, the amount of C is preferably 0.002% to 0.015%.
- the amount of N is preferably 0.002% to 0.015%.
- the amount of Mn was controlled to be 1.0% or less.
- the steel it is preferable for the steel to contain 0.01% or more of Mn.
- the amount of Mn is 0.05% to 0.5%, and more preferably, 0.05% to 0.3%.
- the amount of P must be suppressed to low value since P deteriorates weldability and workability and makes the grain boundary corrosion easily occur. Therefore, the amount of P was controlled to be 0.035% or less. A more preferable amount of P is 0.001% to 0.02%.
- the amount of S must be reduced since S generates water-soluble inclusions such as CaS and MnS that act as starting points of corrosion. Therefore, the amount of S is controlled to be 0.01% or less. On the other hand, excessive reduction of S results in deterioration of the cost. Therefore, the amount of S is preferably 0.0001% to 0.005%.
- Cr is the most important element for ensuring corrosion resistance of the stainless steel. In order to stabilize the ferrite microstructure, it is necessary for the steel to contain 16.0% or more of Cr. On the other hand Cr deteriorates the workability and productivity of the steel. Therefore, the upper limit of Cr content was determined to be 25.0%. Preferably, the amount of Cr is 16.5% to 23.0%, and more preferably, 18.0% to 22.5%.
- Nb has properties such that Nb may be added alone, or in combination with Ti. Where Nb and Ti are added in combination, it is preferable that the formula: (Ti+Nb)/(C+N) ⁇ 6 is satisfied, where Ti, Nb, C, and N in the formula each denote the amount in mass % of each element in the steel.
- Nb fixes C and N, suppress grain boundary corrosion of weld-zone, and improves workability.
- excessive addition of Nb deteriorates workability of the steel. Therefore, it is preferable to control the upper limit of the amount of Nb to be 0.6%.
- the steel In order to improve the above-described properties by the content of Nb, it is preferable for the steel to contain 0.05% or more of Nb.
- the amount of Nb is 0.15% to 0.55%.
- Mo is an element that has an effect of repairing the passive film and is very effective in improvement of corrosion resistance.
- Mo has an effect of improving pitting corrosion resistance of the steel.
- Mo has an effect of improving the resistance to outflow rust.
- increased Mo reduces workability and increases the cost. Therefore, it is preferable to control the upper limit of the amount of Mo to be 3.0%.
- the steel it is preferable for the steel to contain 0.30% or more of Mo.
- the amount of Mo is 0.60% to 2.5%, more preferably, 0.9% to 2.0%.
- Ni has an effect of suppressing active dissolution rate, and is excellent in repassivation properties because of the small hydrogen overvoltage. On the other hand, excessive addition of Ni deteriorates workability and destabilizes the ferrite microstructure. Therefore, it is preferable to control the upper limit of the amount of Ni to be 2.0%. In order to improve the above-described properties by the content of Ni, it is preferable for the steel to contain 0.05% or more of Ni. Preferably, the amount of Ni is 0.1% to 1.2%, more preferably, 0.2% to 1.1%.
- the steel In the same manner as Ni, Cu reduces the active dissolution rate, and has an effect of enhancing repassivation. However, an excessive addition of Cu deteriorates the workability. Therefore, where Cu is added, it is preferable to control the upper limit of the amount to be 2.0%. In order to improve the above-described property by the content of Cu, it is preferable for the steel to contain 0.05% or more of Cu. Preferably, the amount of Cu is 0.2% to 1.5%, more preferably, 0.25% to 1.1%.
- V Vanadium
- Zr Zirconium
- V and Zr improve weather resistance and crevice corrosion resistance.
- V is added while suppressing the use of Cr and Mo, it is possible to ensure an excellent workability.
- excessive addition of V and/or Zr deteriorates workability, and saturates the effect of improving corrosion resistance. Therefore, where V and/or Zr is contained, it is preferable to control the upper limit of the amount to be 0.2%.
- the steel In order to improve the above-described properties by the content of V and/or Zr, it is preferable for the steel to contain 0.03% or more of V and/or Zr. More preferably, the amount of V and/or Zr is 0.05% to 0.1%.
- B is an element that strengthens grain boundary and is effective in improvement of secondary working embrittlement.
- excessive addition of B causes reduction of ductility by solution-strengthening of ferrite. Therefore, where B is added, it is preferable to control the lower limit to be 0.0001%, and the upper limit to be 0.005%. More preferably, the amount of B is controlled to be 0.0002% to 0.0020%.
- Test pieces composed of ferritic stainless steel each having a chemical component (composition) shown in Table 1 were produced in accordance with the below described method. Firstly, a cast steel having a chemical component (composition) shown in Table 1 was molten by vacuum melting, and an ingot having a thickness of 40 mm was produced from the melt. The ingot was rolled to a thickness of 5 mm by hot rolling. After that, in accordance with the recrystallization behavior of each steel, the rolled steel was heat treated for one minute at a temperature of 800 to 1000° C. After removing a scale by grinding, steel plates having a thickness of 0.8 mm were produced by cold rolling After removing the surface oxide scale by pickling (acid cleaning), test materials were obtained.
- test pieces of Nos. 1 to 28 were produced.
- the amount of each element is shown in mass %, and the balance is iron and unavoidable impurities.
- the under-line shows that the value is outside the range of the present invention.
- test pieces of Nos. 1 to 28 were subjected to TIG welding under the following welding conditions, and formation length ratio of black spot was measured in accordance with the following manner. In addition, corrosion experiment was performed for the test piece of Nos. 1 to 28.
- Pieces of the same steel were butted and subjected to TIG welding with feed rate of 50 cm/min, and heat input of 550 to 650 J/cm 2 .
- Argon was used both in shielding of torch side and shielding of back side.
- the formation length ratio of black spots was determined as a standard for showing the amount of generated black spots after the TIG welding.
- the formation length ratio of black spots was obtained by integrating length of each black spot along the welding direction, and dividing the integrated value by the total welding length. Practically, photograph of a 10 cm length weld zone was taken by a digital camera, length of each black spot was measured, and ratio of the integrated length of black spots to the welding length was calculated using image processing.
- TIG weld zones of test pieces were subjected to bulging and were used as test pieces for corrosion test. Erichsen test conditions in accordance with JIS2247 were used as the bulging conditions. The penetration side was used as the surface, and a punch of 20 mm ⁇ was used in the bulging. The working of each test piece was paused so as to adjust the working conditions with respect to the height of the bulge. The paused height (height of bulge) was standardized to 6 mm and 7 mm Each test piece was subjected to continuous spray test of 5% NaCl in accordance with JIS Z 2371, and corrosion was evaluated by presence or absence of outflow rust in the test piece at 48 hours after the spray test.
- formation length ratios of black spots were small, that is, amounts of generated black spots after the TIG welding were small in the test pieces Nos. 1 to 21 that had chemical component (composition) within the range of the present invention and BI value of 0.8 or less.
- test pieces Nos. 22, 24, 26 to 28 having BI value exceeding 0.8 showed large formation length ratio of black spots after the TIG welding and rust from the weld zone was observed in each specimen in the corrosion test.
- Magnified images of rust portions of test pieces Nos. 22, 24, 26 to 28 were observed using a magnifying glass. As a result, exfoliation was observed in the boundary between the black spots and the weld bead portion.
- Rust was generated in corrosion test of Nos. 22, 26, 27, and 28 in which concentrations of Al, Ti, Si, and Ca exceeded the regulated values.
- Test materials were produced in accordance with the same manner as test piece No.1 except for that steel plates of 1 mm thick were produced by cold-rolling of ferritic stainless steels having the below described chemical components (compositions). Test piece A and test piece B were obtained using the test materials.
- test piece A and test piece B were subjected to TIG welding under the similar welding conditions as the test piece No. 1, and appearance of black spots generated in the back side during TIG welding was observed.
- FIG. 1A and FIG. 1B The results are shown in FIG. 1A and FIG. 1B .
- FIG. 1A is a photograph that shows an appearance of black spots generated in back side during TIG welding.
- FIG. 1B is a schematic drawing that shows an appearance of black spots generated in back side during TIG welding and that corresponds to FIG. 1A .
- FIG. 1A and FIG. 1B the left-side figures show a photograph and a drawing of test piece A in which BI value is 0.49, and the right-side figures show a photograph and a drawing of test piece B in which BI value is 1.07.
- a FE (Field Emission) Auger Electron Spectroscopy was used in the AES analysis, and the analysis was performed until intensity of oxygen spectrum was almost not detected under conditions of an acceleration voltage of 10 keV, a spot diameter of 40 nm, and a sputtering rate of 15 nm/min. Although a position dependent error may occur due to small spot of AES measurement, the results were applied as values showing approximate thickness.
- FIG. 2A and FIG. 2B are graphs that show depth profile of elements (concentration distribution of elements in depth direction) in the black spot and the weld bead portion on the back side of the test piece as a result of AES analysis.
- FIG. 2A is a result of weld bead portion
- FIG. 2B is a result of a black spot.
- the weld bead portion was an oxide having a thickness of several hundred A that mainly contained Ti, and also contained Al and Si.
- the black spot was a thick oxide having a thickness of several thousand A that mainly contained Al, and also contained Ti, Si, and Ca. From the graph of black spot shown in FIG. 2B , it was confirmed that Al was contained in the black spot at the highest concentration and Ca was contained in the black spot at high concentration irrespective of its small amount in the steel.
- Test materials of ferritic stainless steel having various component ratios (compositions) were produced in accordance with the production method similar to that of test piece A, where each steel had a basic composition of C: 0.002 to 0.015%, N: 0.02 to 0.015%, Cr: 16.5 to 23%, Ni: 0 to 1.5%, Mo: 0 to 2.5%, and also contained main components of black spots such as Al, Ti, Si, and Ca in different amount. Using the test materials, a plurality of test pieces was obtained.
- test piece No. 1 The thus obtained plurality of test pieces were subjected to TIG welding under similar welding conditions as the test piece No. 1, and ratios of formation length of black spots were calculated in accordance with the same manner as the test piece No. 1.
- the formation length ratio of black spots tended to increase in accordance with the increasing amounts of Al, Ti, Si, and Ca. Those elements are elements having specifically strong affinity with oxygen. It was found that Al had the highest effect, and Ca had a strong influence on black spots irrespective of its small amount in the steel. It was also confirmed that Ti and Si also contributed to the generation of black spots.
- BI value shown by the below described formula 1 was calculated for the plurality of test pieces, and the relationship between the BI value and the ratio of formation length of black spots was examined.
- Al, Ti, Si, and Ca in the formula 1 respectively denotes an amount of each element in mass % of the steel.
- FIG. 3 is a graph showing the relationship between the BI value and the ratio of formation length of black spots. As shown in FIG. 3 , it is recognized that the ratio of formation length of black spots increases with an increasing BI value.
- FIG. 4 is a graph that shows a relationship between the BI values and the results of corrosion resistance evaluation after the spray test after working.
- double circles ( ⁇ ) show excellent results
- circles ( ⁇ ) show good results
- crosses (x) show bad results.
- corrosion did not occur in the specimen with bulge height of 6 mm where BI value was 0.8 or less.
- BI value was 0.4 or less
- specifically good results were achieved such that corrosion was not observed in the specimen with bulge height of 7 mm.
- the ferritic stainless steel of the present invention can be appropriately used in members requiring corrosion resistance in a structure of, for example, exterior materials, building materials, water or hot water containers, consumer electronics, kitchen equipment, drain water collectors and heat exchanger of gas condensing boiler, various welded pipes or the like that are formed by TIG welding and used in general indoor or outdoor environment.
- the ferritic stainless steel of the present invention is appropriately used in a member that is subjected to working after the welding. Since the ferritic stainless steel of the present invention is excellent not only in corrosion resistance but also in workability of TIG weld zone, the steel can be widely used in the usage suffering severe working conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Arc Welding In General (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010177998A JP5793283B2 (ja) | 2010-08-06 | 2010-08-06 | ブラックスポットの生成の少ないフェライト系ステンレス鋼 |
JP2010-177998 | 2010-08-06 | ||
PCT/JP2011/067850 WO2012018074A1 (ja) | 2010-08-06 | 2011-08-04 | フェライト系ステンレス鋼 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130129560A1 true US20130129560A1 (en) | 2013-05-23 |
Family
ID=45559570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/813,511 Abandoned US20130129560A1 (en) | 2010-08-06 | 2011-08-04 | Ferritic stainless steel |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130129560A1 (zh) |
EP (1) | EP2602351B1 (zh) |
JP (1) | JP5793283B2 (zh) |
KR (1) | KR20130034042A (zh) |
CN (1) | CN103052731A (zh) |
AU (1) | AU2011286685A1 (zh) |
TW (1) | TWI526549B (zh) |
WO (1) | WO2012018074A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150020933A1 (en) * | 2012-03-30 | 2015-01-22 | Nippon Steel & Sumikin Stainless Steel Corporation | Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same |
US20160281184A1 (en) * | 2012-11-20 | 2016-09-29 | Outokumpu Oyj | Ferritic stainless steel |
US20170266751A1 (en) * | 2014-07-31 | 2017-09-21 | Jfe Steel Corporation | Ferritic stainless steel sheet for plasma arc welding and welding method therefor (as amended) |
US9885099B2 (en) | 2012-03-09 | 2018-02-06 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel sheet |
US10385429B2 (en) | 2013-03-27 | 2019-08-20 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip |
US11220732B2 (en) | 2016-06-27 | 2022-01-11 | Jfe Steel Corporation | Ferritic stainless steel sheet |
US11230756B2 (en) | 2016-09-02 | 2022-01-25 | Jfe Steel Corporation | Ferritic stainless steel |
CN114746569A (zh) * | 2019-12-20 | 2022-07-12 | 株式会社Posco | 具有改善的磁化强度的铁素体不锈钢及其制造方法 |
US12084406B2 (en) | 2019-07-05 | 2024-09-10 | Stamicarbon B.V. | Ferritic steel parts in urea plants |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104685089B (zh) * | 2012-12-07 | 2016-08-17 | 杰富意钢铁株式会社 | 铁素体系不锈钢板 |
JP5935792B2 (ja) * | 2013-12-27 | 2016-06-15 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP5987821B2 (ja) * | 2013-12-27 | 2016-09-07 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
US20190106775A1 (en) * | 2016-03-29 | 2019-04-11 | Jfe Steel Corporation | Ferritic stainless steel sheet |
JP6699670B2 (ja) | 2016-09-02 | 2020-05-27 | Jfeスチール株式会社 | フェライト系ステンレス鋼 |
JP2019044255A (ja) * | 2017-09-07 | 2019-03-22 | Jfeスチール株式会社 | フェライト系ステンレス鋼板 |
JP7042057B2 (ja) | 2017-10-25 | 2022-03-25 | 日鉄ステンレス株式会社 | スラグスポット発生抑止能に優れるステンレス鋼材並びに溶接構造部材およびその製造法 |
TWI801538B (zh) | 2018-03-27 | 2023-05-11 | 日商日鐵不銹鋼股份有限公司 | 肥粒鐵系不鏽鋼及其製造方法、肥粒鐵系不鏽鋼板及其製造方法、以及燃料電池用構件 |
EP3670692B1 (en) * | 2018-12-21 | 2022-08-10 | Outokumpu Oyj | Ferritic stainless steel |
JP7118015B2 (ja) * | 2019-01-16 | 2022-08-15 | 日鉄ステンレス株式会社 | ステンレス鋼材のスラグスポット発生量の予測評価方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009091654A (ja) * | 2007-09-18 | 2009-04-30 | Jfe Steel Kk | 溶接性に優れたフェライト系ステンレス鋼 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5188413A (en) | 1975-02-01 | 1976-08-03 | Kotaishokuseifueraitosutenresuko | |
JP2739531B2 (ja) * | 1991-09-17 | 1998-04-15 | 日新製鋼株式会社 | 溶接部耐食性に優れるフェライト系ステンレス鋼 |
JP2880906B2 (ja) | 1993-05-19 | 1999-04-12 | 川崎製鉄株式会社 | 耐候性、耐隙間腐食性に優れたフェライト系ステンレス鋼 |
JPH08144021A (ja) * | 1994-11-18 | 1996-06-04 | Sumitomo Metal Ind Ltd | フェライトステンレス鋼およびその冷延鋼板の製造方法 |
JPH1012212A (ja) * | 1996-06-18 | 1998-01-16 | Yuasa Corp | 密閉形鉛蓄電池 |
JPH10102212A (ja) * | 1996-09-30 | 1998-04-21 | Kawasaki Steel Corp | 溶接溶け込み性に優れるフェライト系ステンレス鋼板 |
JP3190290B2 (ja) * | 1997-09-26 | 2001-07-23 | 日新製鋼株式会社 | 溶接部の耐食性に優れるフェライト系ステンレス鋼 |
JP4465853B2 (ja) * | 2000-10-30 | 2010-05-26 | Jfeスチール株式会社 | 耐食性および耐水垢付着性に優れたジャーポット容器用フェライト系ステンレス冷延鋼板およびジャーポット用フェライト系ステンレス鋼製容器 |
JP3976660B2 (ja) * | 2002-10-10 | 2007-09-19 | 新日鐵住金ステンレス株式会社 | 容器材料用クロム含有鋼およびその溶接方法、ならびに容器材料 |
JP4025171B2 (ja) * | 2002-10-29 | 2007-12-19 | 日本冶金工業株式会社 | 耐食性、溶接性および表面性状に優れるステンレス鋼およびその製造方法 |
JP4397772B2 (ja) * | 2004-09-24 | 2010-01-13 | 新日鐵住金ステンレス株式会社 | 加工性に優れるフェライト系ステンレス鋼板の製造方法 |
JP4784239B2 (ja) * | 2005-02-28 | 2011-10-05 | Jfeスチール株式会社 | ティグ溶接用フェライト系ステンレス鋼溶加棒 |
JP2006241564A (ja) | 2005-03-07 | 2006-09-14 | Nisshin Steel Co Ltd | 溶接構造物用フェライト系ステンレス鋼 |
JP5119605B2 (ja) * | 2006-03-31 | 2013-01-16 | Jfeスチール株式会社 | 溶接部の耐食性に優れたフェライト系ステンレス鋼 |
JP5010323B2 (ja) * | 2006-04-10 | 2012-08-29 | 日新製鋼株式会社 | 溶接構造温水容器用フェライト系ステンレス鋼および温水容器並びにその製造法 |
EP2100983B1 (en) * | 2007-01-12 | 2012-10-31 | JFE Steel Corporation | Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness |
JP5010301B2 (ja) * | 2007-02-02 | 2012-08-29 | 日新製鋼株式会社 | 排ガス経路部材用フェライト系ステンレス鋼および排ガス経路部材 |
JP5111910B2 (ja) * | 2007-03-23 | 2013-01-09 | 新日鐵住金ステンレス株式会社 | 溶接部加工性および耐すき間腐食性に優れた表面疵の少ないフェライト系ステンレス鋼 |
JP4651682B2 (ja) * | 2008-01-28 | 2011-03-16 | 新日鐵住金ステンレス株式会社 | 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法 |
JP5305289B2 (ja) | 2009-01-29 | 2013-10-02 | 日本電信電話株式会社 | ユーザ認証方法、ユーザ認証システム、ユーザ端末、ユーザ認証装置、ユーザ端末用プログラム及びユーザ認証装置用プログラム |
JP5489759B2 (ja) * | 2009-02-09 | 2014-05-14 | 新日鐵住金ステンレス株式会社 | ブラックスポットの生成の少ないフェライト系ステンレス鋼 |
-
2010
- 2010-08-06 JP JP2010177998A patent/JP5793283B2/ja active Active
-
2011
- 2011-08-04 WO PCT/JP2011/067850 patent/WO2012018074A1/ja active Application Filing
- 2011-08-04 CN CN2011800382369A patent/CN103052731A/zh active Pending
- 2011-08-04 TW TW100127716A patent/TWI526549B/zh active
- 2011-08-04 EP EP11814699.2A patent/EP2602351B1/en active Active
- 2011-08-04 US US13/813,511 patent/US20130129560A1/en not_active Abandoned
- 2011-08-04 AU AU2011286685A patent/AU2011286685A1/en not_active Abandoned
- 2011-08-04 KR KR1020137003262A patent/KR20130034042A/ko not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009091654A (ja) * | 2007-09-18 | 2009-04-30 | Jfe Steel Kk | 溶接性に優れたフェライト系ステンレス鋼 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9885099B2 (en) | 2012-03-09 | 2018-02-06 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel sheet |
US20150020933A1 (en) * | 2012-03-30 | 2015-01-22 | Nippon Steel & Sumikin Stainless Steel Corporation | Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same |
US10260134B2 (en) | 2012-03-30 | 2019-04-16 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot rolled ferritic stainless steel sheet for cold rolling raw material |
US20160281184A1 (en) * | 2012-11-20 | 2016-09-29 | Outokumpu Oyj | Ferritic stainless steel |
US11384405B2 (en) * | 2012-11-20 | 2022-07-12 | Outokumpu Oyj | Ferritic stainless steel |
US10385429B2 (en) | 2013-03-27 | 2019-08-20 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip |
US20170266751A1 (en) * | 2014-07-31 | 2017-09-21 | Jfe Steel Corporation | Ferritic stainless steel sheet for plasma arc welding and welding method therefor (as amended) |
US10272513B2 (en) * | 2014-07-31 | 2019-04-30 | Jfe Steel Corporation | Ferritic stainless steel sheet for plasma arc welding and welding method therefor |
US11220732B2 (en) | 2016-06-27 | 2022-01-11 | Jfe Steel Corporation | Ferritic stainless steel sheet |
US11230756B2 (en) | 2016-09-02 | 2022-01-25 | Jfe Steel Corporation | Ferritic stainless steel |
US12084406B2 (en) | 2019-07-05 | 2024-09-10 | Stamicarbon B.V. | Ferritic steel parts in urea plants |
CN114746569A (zh) * | 2019-12-20 | 2022-07-12 | 株式会社Posco | 具有改善的磁化强度的铁素体不锈钢及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103052731A (zh) | 2013-04-17 |
TWI526549B (zh) | 2016-03-21 |
KR20130034042A (ko) | 2013-04-04 |
JP2012036444A (ja) | 2012-02-23 |
JP5793283B2 (ja) | 2015-10-14 |
WO2012018074A1 (ja) | 2012-02-09 |
TW201213559A (en) | 2012-04-01 |
EP2602351A4 (en) | 2017-04-05 |
AU2011286685A1 (en) | 2013-02-28 |
EP2602351B1 (en) | 2019-10-02 |
EP2602351A1 (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130129560A1 (en) | Ferritic stainless steel | |
US8894924B2 (en) | Ferrite stainless steel with low black spot generation | |
EP3438310B1 (en) | Ferritic stainless steel sheet used for tig welding | |
US9487849B2 (en) | Ferritic stainless steel | |
JP2008190035A (ja) | 温水器用フェライト系ステンレス鋼板 | |
JP4687531B2 (ja) | 原油タンク用鋼およびその製造方法 | |
JP2007077496A (ja) | 耐食性に優れたフェライト系ステンレス鋼板およびその製造方法 | |
WO2013099132A1 (ja) | フェライト系ステンレス鋼 | |
WO2014119189A1 (ja) | 被覆アーク溶接棒 | |
TWI629366B (zh) | 肥粒鐵系不銹鋼板 | |
CN102933732B (zh) | 焊接部耐腐蚀性优异的结构用不锈钢板及其制造方法 | |
US11674194B2 (en) | Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor | |
JP2006110581A (ja) | 高強度高靭性ガスシールドアーク溶接用ワイヤ。 | |
US7429302B2 (en) | Stainless steel sheet for welded structural components and method for making the same | |
JP6262893B1 (ja) | フェライト系ステンレス鋼および溶接構造物 | |
JP2008285718A (ja) | 溶接継手強度が高い温水器用フェライト系ステンレス鋼板およびその製造方法 | |
WO2021201122A1 (ja) | 溶接構造体及び貯蔵タンク | |
WO2012172808A1 (ja) | フェライト系ステンレス鋼 | |
JPH07108375A (ja) | 溶接変形の少ないガスシールドアーク溶接方法 | |
JP2000273591A (ja) | 高温強度および耐粒界腐食性に優れた高耐食性クロム含有鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUHASHI, TOORU;NAKATA, MICHIO;REEL/FRAME:029730/0274 Effective date: 20130129 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |