US20130089626A1 - Treating Cancer with ATR Inhibitors - Google Patents

Treating Cancer with ATR Inhibitors Download PDF

Info

Publication number
US20130089626A1
US20130089626A1 US13/633,114 US201213633114A US2013089626A1 US 20130089626 A1 US20130089626 A1 US 20130089626A1 US 201213633114 A US201213633114 A US 201213633114A US 2013089626 A1 US2013089626 A1 US 2013089626A1
Authority
US
United States
Prior art keywords
cells
cancer
gemcitabine
therapy
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/633,114
Other languages
English (en)
Inventor
John Robert Pollard
Philip Michael Reaper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertex Pharmaceuticals Inc
Original Assignee
Vertex Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Inc filed Critical Vertex Pharmaceuticals Inc
Priority to US13/633,114 priority Critical patent/US20130089626A1/en
Publication of US20130089626A1 publication Critical patent/US20130089626A1/en
Assigned to VERTEX PHARMACEUTICALS INCORPORATED reassignment VERTEX PHARMACEUTICALS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POLLARD, JOHN ROBERT, REAPER, PHILIP MICHAEL
Assigned to VERTEX PHARMACEUTICALS INCORPORATED reassignment VERTEX PHARMACEUTICALS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VERTEX PHARMACEUTICALS (EUROPE) LIMITED
Priority to US14/193,845 priority patent/US10813929B2/en
Assigned to MACQUARIE US TRADING LLC reassignment MACQUARIE US TRADING LLC SECURITY INTEREST Assignors: VERTEX PHARMACEUTICALS (SAN DIEGO) LLC, VERTEX PHARMACEUTICALS INCORPORATED
Assigned to VERTEX PHARMACEUTICALS INCORPORATED, VERTEX PHARMACEUTICALS (SAN DIEGO) LLC reassignment VERTEX PHARMACEUTICALS INCORPORATED RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MACQUARIE US TRADING LLC
Priority to US17/003,554 priority patent/US20200390761A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1098Enhancing the effect of the particle by an injected agent or implanted device

Definitions

  • Pancreatic cancer is the tenth most common site of new cancers and is responsible for 6% of all cancer related deaths.
  • the 5-year survival rate is less than 5% .
  • Non-small cell lung cancer is the most common form of lung cancer, accounting for about 85% of all lung cancer cases. Most patients present with advanced stage III or IV NSCLC with a 5-year survival of 24% and 4% respectively. Because of the advanced nature of disease on presentation, surgical resection is often not an option. For the majority of patients therapy involves chemotherapy and/or radiation treatment. The selection of chemotherapy is highly variable based on disease stage, patient performance criteria and geographical regional preference. In most cases chemotherapy is based on a doublet that includes a platinating agent such as Cisplatin or carboplatin and a second cytotoxic drug such as gemcitabine, etoposide or taxotere.
  • a platinating agent such as Cisplatin or carboplatin
  • a second cytotoxic drug such as gemcitabine, etoposide or taxotere.
  • therapy can include treatment with agents that target specific proteins that are mutated or disregulated such as ALK and EGFR (eg crizotinib, gefitinib and erlotinib).
  • agents that target specific proteins that are mutated or disregulated such as ALK and EGFR (eg crizotinib, gefitinib and erlotinib).
  • ALK and EGFR eg crizotinib, gefitinib and erlotinib.
  • ATR (“ATM and Rad3 related”) kinase is a protein kinase involved in cellular responses to certain forms of DNA damage (eg double strand breaks and replication stress).
  • ATR kinase acts with ATM (“ataxia telangiectasia mutated”) kinase and many other proteins to regulate a cell's response to double strand DNA breaks and replication stress, commonly referred to as the DNA Damage Response (“DDR”).
  • DDR DNA Damage Response
  • the DDR stimulates DNA repair, promotes survival and stalls cell cycle progression by activating cell cycle checkpoints, which provide time for repair. Without the DDR, cells are much more sensitive to DNA damage and readily die from DNA lesions induced by endogenous cellular processes such as DNA replication or exogenous DNA damaging agents commonly used in cancer therapy.
  • Healthy cells can rely on a host of different proteins for DNA repair including the DDR kinases ATR and ATM. In some cases these proteins can compensate for one another by activating functionally redundant DNA repair processes. On the contrary, many cancer cells harbour defects in some of their DNA repair processes, such as ATM signaling, and therefore display a greater reliance on their remaining intact DNA repair proteins which include ATR.
  • ATR has been implicated as a critical component of the DDR in response to disrupted DNA replication. As a result, these cancer cells are more dependent on ATR activity for survival than healthy cells. Accordingly, ATR inhibitors may be useful for cancer treatment, either used alone or in combination with DNA damaging agents, because they shut down a DNA repair mechanism that is more important for cellular survival in many cancer cells than in healthy normal cells.
  • ATR inhibitors may be effective both as single agents and as potent sensitizers to radiotherapy or genotoxic chemotherapy.
  • hypoxic cancer cells are known to be resistant to treatment, most notably IR treatment, and are highly aggressive.
  • components of the DDR can be activated under hypoxic conditions and it has also been shown that hypoxic cells are more reliant on components of the DDR for survival.
  • This invention relates to uses of ATR inhibitors for treating pancreatic cancer and non-small cell lung cancer.
  • this invention relates to methods of treating pancreatic cancer in a patient (e.g., a human) with an ATR inhibitor in combination with gemcitabine and/or radiation therapy.
  • Applicants have demonstrated synergistic efficacy of ATR inhibitors in combination with gemcitabine and/or radiation therapy in clonogenic and viability assays on the pancreatic cancer cell lines, (e.g. PSN-1, MiaPaCa-2 and Panc-1) as well as in a primary tumor line (e.g., Panc-M).
  • Disruption of ATR activity was measured by assessing DNA damage induced phosphorylation of Chk1 (Ser 345) and by assessing DNA damage foci and RAD51 foci following irradiation.
  • non-small cell lung cancer With respect to non-small cell lung cancer, his invention relates to methods of treating non-small cell lung cancer with an ATR inhibitor in combination with cisplatin or carboplatin, etoposide, and ionizing radiation.
  • Applicants have demonstrated synergy of ATR inhibitors in combination with cisplatin, etoposide, gemcitabine, oxaplatin and irinotecan in viability assays against a panel of 35 human lung cancer cell lines as well as demonstrated in vivo efficacy in a lung cancer mouse model in combination with cisplatin.
  • FIG. 1 VE-821 radiosensitises pancreatic tumour cells.
  • Cells were treated with 100 nM gemcitabine for 1 h, 1 ⁇ M VE-821 was added 1 h later and cells were irradiated (6 Gy) 1 h after that. Drugs were left for the duration of the experiment and cells were lysed at 2 h post-irradiation and subjected to Western blot analysis.
  • VE-821 radiosensitizes pancreatic tumour cells but not normal fibroblasts.
  • PSN-1, Panc-1, MiaPaCa-2 pancreatic cancer cell lines and MRC5 fibroblasts were treated with increasing concentrations of VE-821 for 96 h combined with or without 4 Gy radiation at 1 h after VE-821 addition.
  • Cell viability was measured after 8 days and shown as normalized to DMSO-treated cells.
  • PSN-1 cells were plated as single cells, treated with 1 ⁇ M VE-821 at different time points in relation to 4 Gy irradiation and assessed for colony formation after 10 days.
  • the survival fraction at 4 Gy for each of the treatment schedules was determined by taking into account the relevant plating efficiency of unirradiated cells.
  • FIG. 2 VE-821 radiosensitises pancreatic tumour cells under hypoxic conditions.
  • FIG. 3 VE-821 sensitises pancreatic cancer cells to gemcitabine treatment.
  • Cells were treated with increasing concentrations of gemcitabine for 24 h followed by 72 h treatment of 1 ⁇ M VE-821. Colony forming ability was assessed after 10 to 21 days.
  • FIG. 4 VE-821 perturbs the irradiation-induced cell cycle checkpoint in pancreatic cancer cells.
  • VE-821 (1 ⁇ M) was added 1 h prior to 6 Gy irradiation and left for the duration of the experiment.
  • FIG. 5 VE-821 increases 53BP1 and ⁇ H2AX foci number and reduces RAD51 foci formation.
  • FIG. 1 Effect of VE-821 incubation time on plating efficiency.
  • PSN-1 cells were plated as single cells, treated with 1 uM VE-821 for various time periods and assessed for colony formation after 10 days.
  • VE-821 perturbs the irradiation-induced G2/M checkpoint in pancreatic cancer cells in hypoxic conditions.
  • VE-821 was added 1 h prior to irradiation (6 Gy).
  • FIG. 1X Dose response relationship for radiosensitivity induced by Compounds 821, 822, 823, and 824.
  • FIG. 2X Assessment of radiosensitivity in tumour cells and normal cells.
  • FIG. 3X Assessment of dependency of drug addition and removal timing on radiosensitivity.
  • MiaPaca cells were plated at low densities and drug was added at various time points in relation to the 4Gy radiation treatment: 1 h prior to IR, 5 min after IR, 2 h or 4 h after IR; and removed at various time points: 5 min after, 1 h after, or 19 h after IR. Clonogenic survival was assessed after 14 days. Results are shown as the surviving fraction at 4Gy (top panel) or the percentage radiosensitisation (middle panel) compared to the DMSO-treated cells. The different treatment schedules did not cause differences in plating efficiency (bottom panel).
  • FIG. 4X DNA damage foci analysis after Compound 822 treatment and irradiation.
  • FIG. 5X Cell cycle analysis of Compound 822-treated cells after 6Gy irradiation.
  • PSN1 cells were treated with 40 nM Compound 822 1 h prior to 6Gy irradiation in triplicate wells. Cells were lifted and fixed at several time points after IR, stained with propidium iodide and analysed by flow cytometry.
  • FIG. 6X MiaPaCa Tumor Volume over Time for Compound 822.
  • FIG. 1Y Lung Cancer Cell Screen: VE-822 Synergizes with Chemotoxics Across a Panel of Lung Cancer Cell Lines in Lung Cell Viability Assay
  • FIG. 2Y Lung Cancer Cell Screen: VE-822 Exhibits Greater than 3-fold Synergy with Chemotoxics in Lung Cancer Cell Lines in a Cell Viability Assay
  • FIG. 4Y Pancreatic Cancer Cell Screen: VE-822 Exhibits Greater than 3-fold Synergy with Chemotoxics in Pancreatic Cancer Cell Lines a Cell Viability Assay
  • FIG. 5Y Effect of VE-822 and cisplatin on tumor volume and body weight in a primary adenocarcinoma NSCLC xenograft in SCID mice.
  • FIG. 6Y Effect of VE-822 administered PO q2d at 10, 30 or 60 mg/kg in combination with gemcitabine (15 mg/kg IP q3d) on the tumor volume of mice bearing PSN1 pancreatic cancer xenografts.
  • ATR inhibitors examples are shown in Table 1 below:
  • Another aspect provides a method of treating pancreatic cancer by administering to pancreatic cancer cells an ATR inhibitor selected from a compound in Table 1 in combination with one or more cancer therapies.
  • the ATR inhibitor is combined with chemoradiation, chemotherapy, and/or radiation therapy.
  • chemoradiation refers to a treatment regime that includes both chemotherapy (such as gemcitabine) and radiation.
  • the chemotherapy is gemcitabine.
  • Yet another aspect provides a method of increasing the sensitivity of pancreatic cancer cells to a cancer therapy selected from gemcitabine or radiation therapy by administering an ATR inhibitor selected from a compound in Table 1 in combination with the cancer therapy.
  • the cancer therapy is gemcitabine. In other embodiments, the cancer therapy is radiation therapy. In yet another embodiment the cancer therapy is chemoradiation.
  • Another aspect provides a method of inhibiting phosphorylation of Chk1 (Ser 345) in a pancreatic cancer cell comprising administering an ATR inhibitor selected from a compound in Table 1 after treatment with gemcitabine (e.g., 100 nM) and/or radiation (e.g., 6 Gy) to a pancreatic cancer cell.
  • an ATR inhibitor selected from a compound in Table 1 after treatment with gemcitabine (e.g., 100 nM) and/or radiation (e.g., 6 Gy) to a pancreatic cancer cell.
  • Another aspect provides method of radiosensitizing hypoxic PSN-1, MiaPaCa-2 or PancM tumor cells by administering an ATR inhibitor selected from a compound in Table 1 to the tumor cell in combination with radiation therapy.
  • Yet another aspect provides a method of sensitizing hypoxic PSN-1, MiaPaCa-2 or PancM tumor cells by administering an ATR inhibitor selected from a compound in Table 1 to the tumor cell in combination with gemcitabine.
  • Another aspect provides a method of sensitizing PSN-1 and MiaPaCa-2 tumor cells to chemoradiation by administering an ATR inhibitor selected from a compound in Table 1 to the tumor cells in combination with chemoradiation.
  • Another aspect provides a method of disrupting damage-induced cell cycle checkpoints by administering an ATR inhibitor selected from a compound in Table 1 in combination with radiation therapy to a pancreatic cancer cell.
  • Another aspect provides a method of inhibiting repair of DNA damage by homologous recombination in a pancreatic cancer cell by administering an ATR inhibitor selected from a compound in Table 1 in combination with one or more of the following treatments: chemoradiation, chemotherapy, and radiation therapy.
  • the chemotherapy is gemcitabine.
  • Another aspect provides a method of inhibiting repair of DNA damage by homologous recombination in a pancreatic cancer cell by administering an ATR inhibitor selected from a compound in Table 1 in combination with gemcitabine and radiation therapy.
  • the pancreatic cancer cells are derived from a pancreatic cell line selected from PSN-1, MiaPaCa-2 or Panc-1.
  • the pancreatic cancer cells are in a cancer patient. In other embodiments, the cancer cells are part of a tumor.
  • Another embodiment provides methods for treating non-small cell lung cancer in a patient by administering to the patient an ATR inhibitor in combination with other known non-small cell lung cancer treatments.
  • One aspect of the invention includes administering to a patient an ATR inhibitor in combination with cisplatin or carboplatin, etoposide, and/or ionizing radiation.
  • Another aspect provides a method of treating non-small cell lung cancer by administering to a patient an ATR inhibitor selected from a compound in Table 1 in combination with one or more cancer therapies.
  • the ATR inhibitor is combined with chemoradiation, chemotherapy, and/or radiation therapy.
  • chemoradiation refers to a treatment regime that includes both chemotherapy (such as cisplatin, carboplatin, or etoposide) and radiation.
  • the chemotherapy comprises Cisplatin or carboplatin, and etoposide.
  • Yet another aspect provides a method of increasing the sensitivity of non-small cell lung cancer cells to a cancer therapy selected from cisplatin or carboplatin, etoposide, and ionizing radiation by administering to a patient an ATR inhibitor selected from a compound in Table 1 in combination with one or more cancer therapy.
  • the cancer therapy is cisplatin or carboplatin. In other embodiments, the cancer therapy is radiation therapy. In yet another embodiment the cancer therapy is etoposide.
  • the cancer therapy is a combination of cisplatin or carboplatin, etoposide, and ionizing radiation. In some embodiments the cancer therapy is cisplatin or carboplatin and etoposide. In other embodiments the cancer therapy is cisplatin or carboplatin and etoposide and ionizing radiation. In yet other embodiments the cancer therapy is cisplatin or carboplatin and ionizing radiation.
  • Another aspect provides a method of inhibiting phosphorylation of Chk1 (Ser 345) in a non-small cell lung cancer cell comprising administering to a patient an ATR inhibitor selected from a compound in Table 1.
  • the ATR inhibitor is administered in combination with gemcitabine (e.g., 100 nM), cisplatin or carboplatin, etoposide, ionizing radiation or radiation (e.g., 6 Gy) to a non-small cell lung cancer cell.
  • the non-small cell lung cancer cells are in a cancer patient.
  • the ATR inhibitor is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the ATR inhibitor is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Another aspect provides use of an ATR inhibitor selected from a compound in Table 1 in combination with gemcitabine and radiation therapy for treating pancreatic cancer.
  • Another aspect provides use of an ATR inhibitor selected from a compound in Table 1 in combination with cisplatin or carboplatin, etoposide, and ionizing radiation for treating non-small cell lung cancer.
  • the ATR inhibitor is Compound VI-821. In other embodiments, the ATR inhibitor is Compound VI-822.
  • Another aspect provides use of an ATR inhibitor selected from a compound in Table 1 in combination with gemcitabine and radiation therapy for the manufacture of a medicament for treating pancreatic cancer.
  • Another aspect provides use of an ATR inhibitor selected from a compound in Table 1 in combination with cisplatin or carboplatin, etoposide, and ionizing radiation for the manufacture of a medicament for treating non-small cell lung cancer.
  • the ATR inhibitor is Compound VI-821. In other embodiments, the ATR inhibitor is Compound VI-822.
  • MiaPaCa-2, PSN-1, Panc1 and MRC5 cells (5 ⁇ 104) were plated in 96-well plates and after 4 h treated with increasing concentrations of VE-821 at 1 h before irradiation with a single dose of 6 Gy. Medium was replaced 96 h post-irradiation at which point viability was measured using the using the Alamar Blue assay (Resazurin substrate, SIGMA). Cells were allowed to proliferate and cell viability was again analyzed at day 8 for the different treatment conditions. Cell viability and surviving fraction were normalized to the untreated (control) group.
  • Logarithmically growing cells were plated in triplicate in 6-well tissue culture dishes under oxic (21% O 2 ) or hypoxic conditions (0.5% O 2 ) using an InVivo2 300 chamber (Ruskinn Technology, UK). Cells were incubated for 6 hours before irradiation under oxia or hypoxia using tightly sealed chambers. The target O 2 level was achieved within 6 h of gassing and maintained during irradiation, as confirmed by an OxyLite oxygen probe (Oxford Optronix). Cells irradiated under hypoxia were exposed to normoxia at 1 h post-irradiation.
  • VE-821 (1 ⁇ M) was added 1 h prior to irradiation (6 Gy) and was washed away 72 h after irradiation.
  • cells were initially exposed to increasing concentrations of gemcitabine (5, 10 and 20 nM) for 24 h before addition of the VE-821 (1 ⁇ M) for another 72 h.
  • the effect of triple combination of irradiation with VE-821 and gemcitabine was examined as well. Cells were incubated for 10-21 days until colonies were stained with 0.5% crystal violet and counted in a CellCount automated colony counter (Oxford Optronix). Clonogenic survival was calculated and data were fitted in the GraphPad Prism 4.0 (GraphPad Software, CA).
  • MiaPaCa-2 and PSN-1 cells were exposed to gemcitabine and/or 1 ⁇ M VE-821 drug 1 h prior to irradiation with a single dose of 6 Gy.
  • Cells were lysed in RIPA buffer 2 h post-irradiation and subjected to SDS-PAGE electrophoresis and immunoblotting. Chemoluminescence (SuperSignal, Millipore) and film exposure was used to detect antibody binding. Exposed film was digitized and figures were assembled using Microsoft PowerPoint.
  • Cells growing in 6-well dishes were treated with 1 ⁇ M VE-821 drug 1 h prior to 6 Gy irradiation. Cells were incubated for 6 h before irradiation under oxia (21% O 2 ) or hypoxia (0.5% O2) using tightly sealed chambers. At multiple time points, cells were lifted in trypsin and fixed in 70% ethanol and stored at 4° C. Cells were incubated with propidium iodide (50 ⁇ g/ml in PBS containing 200 ⁇ g/ml RNAse) for 1 h at room temperature and analysed by flow cytometry (FACSort, Becton Dickinson). Cell cycle phase was quantitated using ModFit Cell Cycle Analysis software.
  • All cell lines were seeded in 30 ⁇ l of tissue culture medium containing 10% FBS into 384-well opaque-bottom assay plates. The seeding density was based on the logarithmic growth rate of each cell line. After 24 hours, compound stock solutions were added to each well to afford a matrix consisting of 5 concentrations for VE-822 and 6 concentrations for chemotoxics. Each well contains either, agent alone or a combination of both agents. The final concentration range for VE-822 was 25 nM-2 ⁇ M.
  • the concentration ranges for the chemotoxics were as follows: Etoposide, 10 nM-10 ⁇ M; Gemcitabine, 0.16 nM-160 nM; Cisplatin, 20 nM-20 ⁇ M; Oxaliplatin, 40 nM-40 ⁇ M; Irinotecan (SN-38), 0.12 nM-120 nM.
  • Etoposide 10 nM-10 ⁇ M
  • Gemcitabine 0.16 nM-160 nM
  • Cisplatin 20 nM-20 ⁇ M
  • Oxaliplatin 40 nM-40 ⁇ M
  • Irinotecan (SN-38) 0.12 nM-120 nM.
  • the cells were then incubated for 96 hours at 37° C. in an atmosphere of 5% CO 2 and 95% humidity.
  • All cell lines were seeded in 30 ⁇ l of tissue culture medium containing 10% FBS into 384-well opaque-bottom plates. The seeding density was based on the logarithmic growth rate of each cell line. After 24 hours, compound stock solutions were added to each well to afford a matrix consisting of 9 concentrations for VE-822 and 7 concentrations for Gemcitabine and Cisplatin. Each well contains either, agent alone or a combination of both agents. The final concentration ranges were as follows: VE-822, 0.3 nM-2 ⁇ M; Gemcitabine, 0.3 nM-0.22 ⁇ M; Cisplatin, 30 nM-20 ⁇ M. The cells were then incubated for 96 hours at 37° C. in an atmosphere of 5% CO 2 and 95% humidity.
  • This assay measures the number of viable cells in a culture based on the quantitation of ATP, which is present in metabolically active cells.
  • CellTiter-Glo Reagent (Promega, Madison, Wis., USA) was prepared according to the manufacturer's instructions and added 96 hours after compound addition (25 ⁇ l/well) to measure cell viability. Luminescence signal was measured with the PHERAStarFS (BMG Labtech, Cary, N.C., USA) automated plate reader. All cell lines were screened in duplicate.
  • Raw luminescence CellTiter-Glo (CTG) values were normalized to the mean CTG value for the negative control DMSO-treated samples on each assay plate.
  • IC 50 values for chemotoxic alone were calculated using DMSO-normalized cell survival values for the samples treated with chemotoxic compound alone.
  • VE-822-treated chemotoxic IC 50 values were calculated using VE-822-normalized cell survival values for all samples treated with the chemotoxic at a given concentration of VE-822. A 3 ⁇ or greater reduction in IC 50 was used to identify strongly synergistic effects between VE-822 and chemotoxics.
  • Tumor tissue was excised from a patient with a poorly differentiated adenocarcinoma. This tumor tissue was implanted subcutaneously in the flank of a SCID mouse and passaged twice before compound testing. For compound testing passage-two tumor tissue was implanted subcutaneously in the flank of SCID mice and tumors grown to a volume of about 200 mm 3 Cisplatin was dosed alone at either 1 or 3 mg/kg ip, once per week (ip, q7d, on day 2 of each week) for two weeks. VE-822 was dosed as a solution alone at 60 mg/kg po on 4 consecutive days per weekly cycle (qd4, dosed on days 1, 2, 3 and 4 each week).
  • Two combination groups received cisplatin at 1 or 3 mg/kg plus VE-822 at 60 mg/kg po on the same schedule as the single agent group.
  • a control group received vehicle alone (10% Vitamin E TPGS in water, po qd4). All drug treatment was stopped on Day 28. Vehicle, cisplatin (1 mg/kg) and VE-822 (60 mg/kg) groups were sacrificed and the remainder monitored for a further 40 days to assess tumor re-growth.
  • PSN1 cells (1 ⁇ 10 6 cells per mouse) were implanted as a mixture in Matrigel (100 ⁇ l per mouse) into the flank of female nude MF1 mice and grown to a volume of about 200 mm 3 prior to compound administration.
  • Gemcitabine was dosed alone at 15 mg/kg ip, once every three days (ip, q3d) in 0.5% methylcellulose in water for a maximum of 10 cycles.
  • VE-822 was dosed, as a suspension in 0.5% methylcellulose in water, alone at either 10, 30 or 60 mg/kg po every other day for 28 days (po q2d).
  • Three combination groups received gemcitabine at 15 mg/kg plus VE-822 either at 10, 30 or at 60 mg/kg po on the same schedule as the single agent groups.
  • a control group received vehicle alone (0.5% methylcellulose ip q3d). All drug treatment was stopped on Day 30. Vehicle and VE-822 groups were sacrificed on day 13 due to excessive tumor volumes.
  • Compound VI-821 inhibits phosphorylation of Chk1 (Ser 345) after treatment with gemcitabine (100 nM), radiation (6 Gy) or both (see FIG. 1A ).
  • Compound VI-821 radiosensitises pancreatic tumour cells but not normal cells. When cells were irradiated in the presence of Compound VI-821, a decrease in surviving fraction was observed and this radiosensitising effect increased as the drug incubation time after irradiation was extended (see FIG. 1C ).
  • Compound VI-821 radiosensitises tumour PSN-1, MiaPaCa-2 and PancM cells under hypoxic conditions (see FIG. 2A-B ). Compound VI-821 also sensitises normoxic and hypoxic cancer cells to gemcitabine (see FIG. 3B-C ). Compound VI-821 potentiates the effect of chemoradiation in both PSN-1 and MiaPaCa-2 cancer cells (see FIG. 3D ). Compound VI-821 disrupts damage-induced cell cycle checkpoints (see supplementary FIG. 2 ). Compound VI-821 inhibits repair of DNA damage by homologous recombination (see FIGS. 5A , 5 B, and 5 C).
  • Results for Compounds 821 and 822 are shown in FIGS. 1X to 8X and 1 Y to 6 Y.
  • VE-821 and VE-822 sensitize cancer cells to radiation therapy (see FIGS. 1X-5X ).
  • VE-822 enhances the antitumor effects of ionizing radiation in a MiaPaCa pancreatic cancer xenograft model (see FIG. 6X ) and in a PSN-1 pancreatic cancer xenograft model (see FIGS. 7X and 8X ).
  • VE-822 enhances the antitumor effects of cisplatin in a primary adenocarcinoma NSCLC xenograft model.
  • Black filled circles are vehicle treatment; Red filled diamonds are Cisplatin treatment (1 mg/kg q7d); Blue filled diamonds are Cisplatin treatment (3 mg/kg q7d); Green filled squares are VE-822 treatment (60 mg/kg qd4); Green empty triangles are Cisplatin (1 mg/kg) and VE-822 (60 mg/kg qd4); Blue empty triangles are Cisplatin (3 mg/kg) and VE-822 (60 mg/kg qd4) (see FIG. 5Y ).
  • VE-822 also enhances the antitumor effects of gemcitamine in a PSN1 pancreatic cancer xenograft model.
  • Red filled circles are VE-822 treatment; Black filled squares are vehicle treatment; Green filled circles are gemcitabine treatment; Blue filled circles are gemcitabine and VE-822 (10 mg/kg) treatment; Red filled circles are gemcitabine and VE-822 (30 mg/kg) treatment; Pink filled circles are gemcitabine and VE-822 (60 mg/kg) treatment;
  • VE-822 Synergizes with Chemotoxics Across a Panel of Lung Cancer Cell Lines
  • the heat map represents the maximum shift in IC 50 of each chemotoxic achieved when combined with VE-822 for 96 hours. Colors represent an IC 50 shift range from ⁇ 10 (antagonism, blue) to 10 (synergy, red) (see FIG. 1Y ). VE-822 exhibits greater than 3-fold synergy with cisplatin, etoposide, gemcitabine, oxaplatin and irinotecan in lung cancer cell lines (see FIG. 2Y ).
  • VE-822 Synergizes with Cisplatin and Gemcitabine in Pancreatic Cancer Cell Lines.
  • the heat map represents the maximum shift in IC 50 of each chemotoxic achieved when combined with VE-822 for 96 hours. Colors represent an IC 50 shift range from ⁇ 10 (antagonism, blue) to 10 (synergy, red) (see FIG. 3Y ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US13/633,114 2011-09-30 2012-10-01 Treating Cancer with ATR Inhibitors Abandoned US20130089626A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/633,114 US20130089626A1 (en) 2011-09-30 2012-10-01 Treating Cancer with ATR Inhibitors
US14/193,845 US10813929B2 (en) 2011-09-30 2014-02-28 Treating cancer with ATR inhibitors
US17/003,554 US20200390761A1 (en) 2011-09-30 2020-08-26 Treating cancer with atr inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161542084P 2011-09-30 2011-09-30
US13/633,114 US20130089626A1 (en) 2011-09-30 2012-10-01 Treating Cancer with ATR Inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/193,845 Continuation US10813929B2 (en) 2011-09-30 2014-02-28 Treating cancer with ATR inhibitors

Publications (1)

Publication Number Publication Date
US20130089626A1 true US20130089626A1 (en) 2013-04-11

Family

ID=47019166

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/633,114 Abandoned US20130089626A1 (en) 2011-09-30 2012-10-01 Treating Cancer with ATR Inhibitors
US14/193,845 Active US10813929B2 (en) 2011-09-30 2014-02-28 Treating cancer with ATR inhibitors
US17/003,554 Pending US20200390761A1 (en) 2011-09-30 2020-08-26 Treating cancer with atr inhibitors

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/193,845 Active US10813929B2 (en) 2011-09-30 2014-02-28 Treating cancer with ATR inhibitors
US17/003,554 Pending US20200390761A1 (en) 2011-09-30 2020-08-26 Treating cancer with atr inhibitors

Country Status (16)

Country Link
US (3) US20130089626A1 (zh)
EP (2) EP2750679B1 (zh)
JP (4) JP6162126B2 (zh)
KR (1) KR102056586B1 (zh)
CN (3) CN103957917A (zh)
AU (3) AU2012315384B2 (zh)
BR (1) BR112014007690B1 (zh)
CA (2) CA2850491C (zh)
ES (2) ES2899880T3 (zh)
IL (1) IL231813B (zh)
IN (1) IN2014CN02501A (zh)
MX (2) MX2014003785A (zh)
RU (2) RU2648507C2 (zh)
SG (2) SG11201401095YA (zh)
WO (1) WO2013049859A1 (zh)
ZA (1) ZA201402627B (zh)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222318A1 (en) * 2008-12-19 2010-09-02 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US8623869B2 (en) 2010-06-23 2014-01-07 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8765751B2 (en) 2011-09-30 2014-07-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8822469B2 (en) 2011-06-22 2014-09-02 Vertex Pharmaceuticals Incorporated Pyrrolo[2,3-B]pyrazines useful as inhibitors of ATR kinase
US8841450B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8841337B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8841449B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8846686B2 (en) 2011-09-30 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8846918B2 (en) 2011-11-09 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8846917B2 (en) 2011-11-09 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8853217B2 (en) 2011-09-30 2014-10-07 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8877759B2 (en) 2011-04-05 2014-11-04 Vertex Pharnaceuticals Incorporated Aminopyrazines as ATR kinase inhibitors
US8912198B2 (en) 2012-10-16 2014-12-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8962631B2 (en) 2010-05-12 2015-02-24 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8969356B2 (en) 2010-05-12 2015-03-03 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2015057461A2 (en) 2013-10-18 2015-04-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibodies that specifically bind ataxia telangiectasia-mutated and rad3-related kinase phosphorylated at position 1989 and their use
US9035053B2 (en) 2011-09-30 2015-05-19 Vertex Pharmaceuticals Incorporated Processes for making compounds useful as inhibitors of ATR kinase
US9062008B2 (en) 2010-05-12 2015-06-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9096584B2 (en) 2010-05-12 2015-08-04 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9096602B2 (en) 2011-06-22 2015-08-04 Vertex Pharmaceuticals Incorporated Substituted pyrrolo[2,3-B]pyrazines as ATR kinase inhibitors
US20150359797A1 (en) * 2014-06-17 2015-12-17 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of chk1 and atr inhibitors
US9309250B2 (en) 2011-06-22 2016-04-12 Vertex Pharmaceuticals Incorporated Substituted pyrrolo[2,3-b]pyrazines as ATR kinase inhibitors
US9334244B2 (en) 2010-05-12 2016-05-10 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9340546B2 (en) 2012-12-07 2016-05-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2016130581A3 (en) * 2015-02-09 2016-10-27 The Regents Of The University Of California Combination cancer therapy
WO2017059357A1 (en) * 2015-09-30 2017-04-06 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of dna damaging agents and atr inhibitors
US9630956B2 (en) 2010-05-12 2017-04-25 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9663519B2 (en) 2013-03-15 2017-05-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9670215B2 (en) 2014-06-05 2017-06-06 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2017123588A1 (en) * 2016-01-11 2017-07-20 Merrimack Pharmaceuticals, Inc. Inhibiting ataxia telangiectasia and rad3-related protein (atr)
US9791456B2 (en) 2012-10-04 2017-10-17 Vertex Pharmaceuticals Incorporated Method for measuring ATR inhibition mediated increases in DNA damage
WO2018049400A1 (en) * 2016-09-12 2018-03-15 University Of Florida Research Foundation, Incorporated Use of atr and chk1 inhibitor compounds
US10160760B2 (en) 2013-12-06 2018-12-25 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10478430B2 (en) 2012-04-05 2019-11-19 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase and combination therapies thereof
WO2020176349A1 (en) * 2019-02-25 2020-09-03 The Regents Of The University Of California Nnythiosemicarbazone compounds and uses thereof
US10813929B2 (en) 2011-09-30 2020-10-27 Vertex Pharmaceuticals Incorporated Treating cancer with ATR inhibitors
EA039513B1 (ru) * 2017-01-09 2022-02-04 Селатор Фармасьютикалз, Инк. Ингибитор атаксии-телеангиэкстазии и rad3-родственного белка (atr) и содержащие его липосомные композиции
US11446307B2 (en) 2020-11-02 2022-09-20 Trethera Corporation Crystalline forms of a deoxycytidine kinase inhibitor and uses thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700283B (zh) 2014-08-04 2020-08-01 德商拜耳製藥公司 2-(嗎啉-4-基)-1,7-萘啶
WO2018153972A1 (en) 2017-02-24 2018-08-30 Bayer Pharma Aktiengesellschaft Combination of atr kinase inhibitors and antiandrogens
WO2018153971A1 (en) * 2017-02-24 2018-08-30 Bayer Pharma Aktiengesellschaft Combination of atr kinase inhibitors
TW201840319A (zh) 2017-02-24 2018-11-16 德商拜耳廠股份有限公司 Atr激酶抑制劑與鐳-223鹽之組合
JOP20190197A1 (ar) 2017-02-24 2019-08-22 Bayer Pharma AG مثبط كيناز ايه تي آر للاستخدام في طريقة لعلاج مرض فرط التكاثر
WO2018206547A1 (en) 2017-05-12 2018-11-15 Bayer Pharma Aktiengesellschaft Combination of bub1 and atr inhibitors
EP3661560A1 (en) 2017-08-04 2020-06-10 Bayer Pharma Aktiengesellschaft Combination of atr kinase inhibitors and pd-1/pd-l1 inhibitors
EP3461480A1 (en) 2017-09-27 2019-04-03 Onxeo Combination of a dna damage response cell cycle checkpoint inhibitors and belinostat for treating cancer
CA3084863A1 (en) 2017-12-08 2019-06-13 Bayer Aktiengesellschaft Predictive markers for atr kinase inhibitors
KR20200106053A (ko) * 2017-12-29 2020-09-10 버텍스 파마슈티칼스 인코포레이티드 Atr 억제제를 사용한 암 치료 방법
CA3114024A1 (en) 2018-09-26 2020-04-02 Merck Patent Gmbh Combination of a pd-1 antagonist, an atr inhibitor and a platinating agent for the treatment of cancer
US20210369705A1 (en) 2018-10-15 2021-12-02 Merck Patent Gmbh Combination therapy utilizing dna alkylating agents and atr inhibitors
WO2020078788A1 (en) 2018-10-16 2020-04-23 Bayer Aktiengesellschaft Combination of atr kinase inhibitors with 2,3-dihydroimidazo[1,2-c]quinazoline compounds
US11801246B2 (en) 2018-11-09 2023-10-31 East Tennessee State University Research Foundatio Methods of treating ischemic disease by administering an ATR kinase inhibitor
CN113073139A (zh) * 2021-04-06 2021-07-06 浙江大学 一种胰腺癌肿瘤标志物及其应用
CN115300512B (zh) * 2022-08-05 2024-01-12 华中科技大学同济医学院附属协和医院 Atr抑制剂ve-822在治疗肺腺癌中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071837A1 (en) * 2008-12-19 2010-06-24 Vertex Pharmaceuticals Incorporated Pyrazine derivatives useful as inhibitors of atr kinase
WO2011143425A2 (en) * 2010-05-12 2011-11-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US20130115314A1 (en) * 2011-11-09 2013-05-09 Vertex Pharmaceuticals Incorporated Compounds Useful as Inhibitors of ATR Kinase

Family Cites Families (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309430A (en) 1980-06-27 1982-01-05 Merck & Co., Inc. Pyrazinyl-1,2,4-oxadiazole-5-ones, for treatment of edema, and processes for preparing same
JPS62270623A (ja) 1985-12-07 1987-11-25 Daicel Chem Ind Ltd ビス(4−アミノフエニル)ピラジンおよびその製法、ならびにポリイミドおよびその製法
JPS63208520A (ja) 1987-02-26 1988-08-30 Terumo Corp ピラジン誘導体を含有する血小板凝集抑制剤
US5329012A (en) 1987-10-29 1994-07-12 The Research Foundation Of State University Of New York Bis(acyloxmethyl)imidazole compounds
JP2597917B2 (ja) 1990-04-26 1997-04-09 富士写真フイルム株式会社 新規な色素形成カプラー及びそれを用いたハロゲン化銀カラー写真感光材料
US5572248A (en) 1994-09-19 1996-11-05 Teleport Corporation Teleconferencing method and system for providing face-to-face, non-animated teleconference environment
CA2253910A1 (en) 1996-05-11 1997-11-20 King's College London Pyrazines
JP2002241379A (ja) 1997-03-21 2002-08-28 Dainippon Pharmaceut Co Ltd 3−オキサジアゾリルキノキサリン誘導体
AU2790999A (en) 1998-03-03 1999-09-20 Merck & Co., Inc. Fused piperidine substituted arylsulfonamides as beta3-agonists
DE19826671A1 (de) 1998-06-16 1999-12-23 Hoechst Schering Agrevo Gmbh 1,3-Oxazolin- und 1,3-Thiazolin-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
EP1097933A4 (en) 1998-07-16 2001-11-07 Shionogi & Co PYRIMIDINE DERIVATIVES HAVING ANTI-TUMOR ACTIVITY
US7023913B1 (en) 2000-06-14 2006-04-04 Monroe David A Digital security multimedia sensor
US6790935B1 (en) 1999-02-05 2004-09-14 Debiopharm S.A. Cyclosporin derivatives and method for the production of said derivatives
US6738073B2 (en) 1999-05-12 2004-05-18 Imove, Inc. Camera system with both a wide angle view and a high resolution view
WO2000076982A1 (en) 1999-06-16 2000-12-21 University Of Iowa Research Foundation Antagonism of immunostimulatory cpg-oligonucleotides by 4-aminoquinolines and other weak bases
US7015954B1 (en) 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
US6660753B2 (en) 1999-08-19 2003-12-09 Nps Pharmaceuticals, Inc. Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists
DE60037905T2 (de) 1999-12-17 2009-01-29 Novartis Vaccines and Diagnostics, Inc., Emeryville Pyrazin-basierte hemmer der glycogen-synthase-kinase 3
US6849660B1 (en) 2000-08-01 2005-02-01 Isis Pharmaceuticals, Inc. Antimicrobial biaryl compounds
JP2002072370A (ja) 2000-08-29 2002-03-12 Fuji Photo Optical Co Ltd ペーパーマガジン及び写真焼付装置
JP2002072372A (ja) 2000-09-04 2002-03-12 Fuji Photo Film Co Ltd 画像形成用シート体の切断装置
US6829391B2 (en) 2000-09-08 2004-12-07 Siemens Corporate Research, Inc. Adaptive resolution system and method for providing efficient low bit rate transmission of image data for distributed applications
EP1217000A1 (en) 2000-12-23 2002-06-26 Aventis Pharma Deutschland GmbH Inhibitors of factor Xa and factor VIIa
US8085293B2 (en) 2001-03-14 2011-12-27 Koninklijke Philips Electronics N.V. Self adjusting stereo camera system
US6759657B2 (en) 2001-03-27 2004-07-06 Kabushiki Kaisha Toshiba Infrared sensor
WO2002080899A1 (fr) 2001-03-30 2002-10-17 Eisai Co., Ltd. Agent de traitement de maladie digestive
US6469002B1 (en) 2001-04-19 2002-10-22 Millennium Pharmaceuticals, Inc. Imidazolidine compounds
AU2002305450A1 (en) 2001-05-08 2002-11-18 Yale University Proteomimetic compounds and methods
SE0102438D0 (sv) 2001-07-05 2001-07-05 Astrazeneca Ab New compounds
SE0102439D0 (sv) 2001-07-05 2001-07-05 Astrazeneca Ab New compounds
JP2003074370A (ja) 2001-09-05 2003-03-12 Suzuki Motor Corp エンジンのベルト保護装置
AU2002331885B2 (en) 2001-09-26 2007-07-26 Merck & Co., Inc. Crystalline forms of ertapenem sodium
GB0124939D0 (en) 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
US6992087B2 (en) 2001-11-21 2006-01-31 Pfizer Inc Substituted aryl 1,4-pyrazine derivatives
DK1446387T3 (da) 2001-11-21 2009-12-21 Pharmacia & Upjohn Co Llc Substituerede aryl, 1,4-pyrazinderivater
US20030187026A1 (en) 2001-12-13 2003-10-02 Qun Li Kinase inhibitors
WO2003066629A2 (en) 2002-02-06 2003-08-14 Vertex Pharmaceuticals Incorporated Heteroaryl compounds useful as inhibitors of gsk-3
NZ534830A (en) 2002-03-13 2005-08-26 Janssen Pharmaceutica Nv Compounds with histone deacetylase HDAC inhibiting activity and oral bioavailability useful for treating proliferative diseases
GB0206860D0 (en) 2002-03-22 2002-05-01 Glaxo Group Ltd Compounds
TWI319387B (en) 2002-04-05 2010-01-11 Astrazeneca Ab Benzamide derivatives
US7043079B2 (en) 2002-04-25 2006-05-09 Microsoft Corporation “Don't care” pixel interpolation
GB0209715D0 (en) 2002-04-27 2002-06-05 Astrazeneca Ab Chemical compounds
US7704995B2 (en) 2002-05-03 2010-04-27 Exelixis, Inc. Protein kinase modulators and methods of use
AU2003234464B2 (en) 2002-05-03 2009-06-04 Exelixis, Inc. Protein kinase modulators and methods of use
WO2003101968A1 (fr) 2002-05-31 2003-12-11 Eisai Co., Ltd. Compose de pyrazole et composition medicinale le contenant
WO2004000318A2 (en) 2002-06-21 2003-12-31 Cellular Genomics, Inc. Certain amino-substituted monocycles as kinase modulators
AU2003245669A1 (en) 2002-06-21 2004-01-06 Cellular Genomics, Inc. Certain aromatic monocycles as kinase modulators
WO2004033431A2 (en) 2002-10-04 2004-04-22 Arena Pharmaceuticals, Inc. Hydroxypyrazoles for use against metabolic-related disorders
US20040075741A1 (en) 2002-10-17 2004-04-22 Berkey Thomas F. Multiple camera image multiplexer
US7385626B2 (en) 2002-10-21 2008-06-10 Sarnoff Corporation Method and system for performing surveillance
US20040100560A1 (en) 2002-11-22 2004-05-27 Stavely Donald J. Tracking digital zoom in a digital video camera
SE0203752D0 (sv) 2002-12-17 2002-12-17 Astrazeneca Ab New compounds
SE0203754D0 (sv) 2002-12-17 2002-12-17 Astrazeneca Ab New compounds
ES2401330T3 (es) 2003-02-26 2013-04-18 Sugen, Inc. Compuesto de heteroarilamino inhibidores de proteín quinasas
US7684624B2 (en) 2003-03-03 2010-03-23 Smart Technologies Ulc System and method for capturing images of a target area on which information is recorded
DE602004015429D1 (de) 2003-03-11 2008-09-11 Pfizer Prod Inc Pyrazinverbindungen als inhibitoren des transforming growth factor (tgf)
JP2006520794A (ja) 2003-03-21 2006-09-14 スミスクライン ビーチャム コーポレーション 化合物
AU2004224392A1 (en) 2003-03-24 2004-10-07 Merck & Co., Inc. Biaryl substituted 6-membered heterocyles as sodium channel blockers
GB2400101A (en) 2003-03-28 2004-10-06 Biofocus Discovery Ltd Compounds capable of binding to the active site of protein kinases
GB2400514B (en) 2003-04-11 2006-07-26 Hewlett Packard Development Co Image capture method
EP1625123A4 (en) 2003-05-15 2007-08-29 Merck & Co Inc 3- (2-AMINO-1-AZACYCLYL) -5-ARYL-1,2,4-OXADIAZOLE AS S1P RECEPTOR AGONISTS
WO2004103991A1 (fr) 2003-05-20 2004-12-02 'chemical Diversity Research Institute', Ltd. Piperidines 2-substituees, bibliotheque focalisee et composition pharmaceutique
US20050123902A1 (en) 2003-05-21 2005-06-09 President And Fellows Of Harvard College Human papillomavirus inhibitors
PE20050206A1 (es) * 2003-05-26 2005-03-26 Schering Ag Composicion farmaceutica que contiene un inhibidor de histona deacetilasa
US7986339B2 (en) 2003-06-12 2011-07-26 Redflex Traffic Systems Pty Ltd Automated traffic violation monitoring and reporting system with combined video and still-image data
JP2005020227A (ja) 2003-06-25 2005-01-20 Pfu Ltd 画像圧縮装置
AR045595A1 (es) 2003-09-04 2005-11-02 Vertex Pharma Composiciones utiles como inhibidores de proteinas quinasas
WO2005034952A2 (en) 2003-10-07 2005-04-21 The Feinstein Institute For Medical Research Isoxazole and isothiazole compounds useful in the treatment of inflammation
US20050116968A1 (en) 2003-12-02 2005-06-02 John Barrus Multi-capability display
EP1694670A1 (en) 2003-12-16 2006-08-30 GPC Biotech AG Pyrazine derivatives as effective compounds against infectious diseases
CA2555402A1 (en) 2004-02-12 2005-09-01 Celine Bonnefous Bipyridyl amides as modulators of metabotropic glutamate receptor-5
US20050276765A1 (en) 2004-06-10 2005-12-15 Paul Nghiem Preventing skin damage
JP2008502687A (ja) 2004-06-14 2008-01-31 タケダ サン ディエゴ インコーポレイテッド キナーゼ阻害剤
MX2007001126A (es) 2004-07-27 2007-09-25 Sgx Pharmaceuticals Inc Moduladores de heterociclo cinasa de anillo fusionado.
US7626021B2 (en) 2004-07-27 2009-12-01 Sgx Pharmaceuticals, Inc. Fused ring heterocycle kinase modulators
PL1786785T3 (pl) 2004-08-26 2010-08-31 Pfizer Enancjomerycznie czyste związki aminoheteroarylowe jako kinazy białkowe
BRPI0514687A (pt) 2004-08-26 2008-06-17 Pfizer compostos amino heteroarila como inibidores de proteìna tirosina cinase
US7730406B2 (en) 2004-10-20 2010-06-01 Hewlett-Packard Development Company, L.P. Image processing system and method
ATE437864T1 (de) 2004-10-22 2009-08-15 Janssen Pharmaceutica Nv Aromatische amide als hemmer der c-fms-kinase
EP1828144A2 (en) 2004-11-12 2007-09-05 OSI Pharmaceuticals, Inc. Integrin antagonists useful as anticancer agents
RU2394825C2 (ru) 2004-11-22 2010-07-20 Вертекс Фармасьютикалз Инкорпорейтед Пирролопиразины, пригодные в качестве ингибиторов киназы аврора а
JP4810669B2 (ja) 2004-11-25 2011-11-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
GB0428235D0 (en) 2004-12-23 2005-01-26 Glaxo Group Ltd Novel compounds
ZA200704959B (en) 2004-12-27 2009-04-29 Alcon Inc Aminopyrazine analogs for treating glaucoma and other rho kinase-mediated diseases
GB0500492D0 (en) 2005-01-11 2005-02-16 Cyclacel Ltd Compound
US7622583B2 (en) 2005-01-14 2009-11-24 Chemocentryx, Inc. Heteroaryl sulfonamides and CCR2
GB0501999D0 (en) 2005-02-01 2005-03-09 Sentinel Oncology Ltd Pharmaceutical compounds
RU2007134259A (ru) 2005-02-16 2009-03-27 Шеринг Корпорейшн (US) Гетероциклические замещенные пиперазины, обладающие антагонистическим действием к cxcr3
EP1874769B1 (de) 2005-04-25 2011-09-14 Merck Patent GmbH Neuartige aza-heterozyklen als kinase-inhibitoren
WO2006124874A2 (en) 2005-05-12 2006-11-23 Kalypsys, Inc. Inhibitors of b-raf kinase
WO2006135604A2 (en) 2005-06-09 2006-12-21 Merck & Co., Inc. Inhibitors of checkpoint kinases
JP2009503103A (ja) 2005-08-02 2009-01-29 レキシコン・ファーマシューティカルズ・インコーポレーテッド アリールピリジン及びその使用方法
WO2007015632A1 (en) 2005-08-04 2007-02-08 Cgk Co., Ltd. Atm and atr inhibitor
US7394926B2 (en) 2005-09-30 2008-07-01 Mitutoyo Corporation Magnified machine vision user interface
US7806604B2 (en) 2005-10-20 2010-10-05 Honeywell International Inc. Face detection and tracking in a wide field of view
AR056786A1 (es) 2005-11-10 2007-10-24 Smithkline Beecham Corp Compuesto de 1h- imidazo ( 4,5-c) piridin-2-ilo, composicion farmaceutica que lo comprende, procedimiento para preparar dicha composicion, su uso para preparar unmedicamento, uso de una combinacion que omprende al compuesto y al menos un agente antineoplasico para preparar un medicamento y dicha com
DE602006011363D1 (de) 2005-12-01 2010-02-04 Hoffmann La Roche Heteroaryl-substituierte piperidin-derivate als l-cpt1-hemmer
EP1970377A4 (en) 2005-12-09 2013-02-27 Meiji Seika Kaisha LINCOMYCIN DERIVATIVE AND ANTIBACTERIAL AGENT CONTAINING THIS AS AN ACTIVE SUBSTANCE
KR20080080168A (ko) 2005-12-14 2008-09-02 이 아이 듀폰 디 네모아 앤드 캄파니 무척추 해충 방제용 이속사졸린
CN101340912A (zh) 2005-12-22 2009-01-07 爱尔康研究有限公司 用于治疗rho激酶介导的疾病和病状的(吲唑-5-基)-吡嗪和(1,3-二氢-吲哚-2-酮)-吡嗪
PE20070978A1 (es) 2006-02-14 2007-11-15 Novartis Ag COMPUESTOS HETEROCICLICOS COMO INHIBIDORES DE FOSFATIDILINOSITOL 3-QUINASAS (PI3Ks)
ITMI20060311A1 (it) 2006-02-21 2007-08-22 Btsr Int Spa Dispositivo perfezionato di alimentazione di filo o filatio ad una macchina tessile e metodo per attuare tale alimentazione
GB0603684D0 (en) 2006-02-23 2006-04-05 Novartis Ag Organic compounds
WO2007096764A2 (en) 2006-02-27 2007-08-30 Glenmark Pharmaceuticals S.A. Bicyclic heteroaryl derivatives as cannabinoid receptor modulators
TW200800203A (en) 2006-03-08 2008-01-01 Astrazeneca Ab New use
ATE453635T1 (de) 2006-03-22 2010-01-15 Vertex Pharma C-met-proteinkinasehemmer zur behandlung proliferativer erkrankungen
US7574131B2 (en) 2006-03-29 2009-08-11 Sunvision Scientific Inc. Object detection system and method
JP2009532356A (ja) 2006-03-31 2009-09-10 シェーリング コーポレイション キナーゼ阻害物質
US7629346B2 (en) 2006-06-19 2009-12-08 Hoffmann-La Roche Inc. Pyrazinecarboxamide derivatives as CB1 antagonists
CN101472912A (zh) 2006-06-22 2009-07-01 比奥维特罗姆上市公司 作为mnk激酶抑制剂的吡啶和吡嗪衍生物
EP2038261A2 (en) 2006-06-22 2009-03-25 Mallinckrodt Inc. Pyrazine derivatives with extended conjugation and uses thereof
EP1900727A1 (en) 2006-08-30 2008-03-19 Cellzome Ag Aminopyridine derivatives as kinase inhibitors
DE602007013441D1 (de) 2006-09-29 2011-05-05 Novartis Ag Pyrazolopyrimidine als pi3k-lipidkinasehemmer
GB0619342D0 (en) 2006-09-30 2006-11-08 Vernalis R&D Ltd New chemical compounds
BRPI0717845A2 (pt) 2006-10-04 2015-06-16 Hoffmann La Roche Uso de compostos, composições farmacêuticas e métodos para o tratamento e/ou profilaxia de enfermidades que podem ser tratadas com agentes de elevação de colesterol-hdl e compostos
ES2631003T3 (es) 2006-10-19 2017-08-25 Signal Pharmaceuticals, Llc Compuestos heteroarilo, sus composiciones y métodos de tratamiento con ellos
WO2008060907A2 (en) 2006-11-10 2008-05-22 Bristol-Myers Squibb Company Pyrrolo-pyridine kinase inhibitors
US20080132698A1 (en) 2006-11-30 2008-06-05 University Of Ottawa Use of N-oxide compounds in coupling reactions
KR20090088962A (ko) 2006-12-15 2009-08-20 바이엘 쉐링 파마 악티엔게젤샤프트 3-h-피라졸로피리딘 및 그의 염, 이를 포함하는 제약 조성물, 이의 제조 방법 및 이의 용도
CA2672438A1 (en) 2006-12-20 2008-07-03 Amgen Inc. Substituted heterocycles and methods of use
PE20081581A1 (es) 2006-12-21 2008-11-12 Plexxikon Inc COMPUESTOS PIRROLO[2,3-b]PIRIDINAS COMO MODULADORES DE QUINASA
GB0625659D0 (en) 2006-12-21 2007-01-31 Cancer Rec Tech Ltd Therapeutic compounds and their use
AU2008219166B2 (en) 2007-02-16 2013-05-16 Amgen Inc. Nitrogen-containing heterocyclyl ketones and their use as c-Met inhibitors
US8822497B2 (en) 2007-03-01 2014-09-02 Novartis Ag PIM kinase inhibitors and methods of their use
JP2008260691A (ja) 2007-04-10 2008-10-30 Bayer Cropscience Ag 殺虫性アリールイソオキサゾリン誘導体
EP2181100A2 (en) 2007-04-10 2010-05-05 Bayer CropScience AG Insecticidal aryl isoxazoline derivatives
US20100234386A1 (en) 2007-05-10 2010-09-16 Chaudhari Amita Quinoxaline derivatives as pi3 kinase inhibitors
PE20090717A1 (es) 2007-05-18 2009-07-18 Smithkline Beecham Corp Derivados de quinolina como inhibidores de la pi3 quinasa
UY31137A1 (es) 2007-06-14 2009-01-05 Smithkline Beecham Corp Derivados de quinazolina como inhibidores de la pi3 quinasa
JP2009027904A (ja) 2007-06-19 2009-02-05 Hitachi Ltd 回転電機
EP2012409A2 (en) 2007-06-19 2009-01-07 Hitachi, Ltd. Rotating electrical machine
JPWO2008156174A1 (ja) 2007-06-21 2010-08-26 大正製薬株式会社 ピラジンアミド化合物
US20090005381A1 (en) 2007-06-26 2009-01-01 Philip Manton Brown Methods of treating serotonin-mediated diseases and disorders
WO2009005638A2 (en) 2007-06-27 2009-01-08 Merck & Co., Inc. Pyridyl and pyrimidinyl derivatives as histone deacetylase inhibitors
GB0713259D0 (en) 2007-07-09 2007-08-15 Astrazeneca Ab Pyrazine derivatives 954
US20100292236A1 (en) 2007-07-19 2010-11-18 H. Lundbeck A/S 5-Membered Heterocyclic Amides And Related Compounds
AR067585A1 (es) 2007-07-19 2009-10-14 Schering Corp Compuestos heterociclicos de amidas como inhibidores de la proteincinasa
KR20100038119A (ko) 2007-08-01 2010-04-12 화이자 인코포레이티드 피라졸 화합물 및 raf 억제제로서 이의 용도
WO2009024825A1 (en) 2007-08-21 2009-02-26 Astrazeneca Ab 2-pyrazinylbenzimidazole derivatives as receptor tyrosine kinase inhibitors
WO2009037247A1 (en) 2007-09-17 2009-03-26 Neurosearch A/S Pyrazine derivatives and their use as potassium channel modulators
AU2008315746A1 (en) 2007-10-25 2009-04-30 Astrazeneca Ab Pyridine and pyrazine derivatives useful in the treatment of cell proliferative disorders
EP2265270A1 (en) 2008-02-04 2010-12-29 OSI Pharmaceuticals, Inc. 2-aminopyridine kinase inhibitors
CA2712507A1 (en) 2008-02-25 2009-09-03 F. Hoffmann-La Roche Ag Pyrrolopyrazine kinase inhibitors
EP2247592B1 (en) 2008-02-25 2011-08-31 F. Hoffmann-La Roche AG Pyrrolopyrazine kinase inhibitors
CN101952296B (zh) 2008-02-25 2013-08-21 霍夫曼-拉罗奇有限公司 吡咯并吡嗪激酶抑制剂
WO2009106445A1 (en) 2008-02-25 2009-09-03 F. Hoffmann-La Roche Ag Pyrrolopyrazine kinase inhibitors
TW200940537A (en) 2008-02-26 2009-10-01 Astrazeneca Ab Heterocyclic urea derivatives and methods of use thereof
CA2716949A1 (en) 2008-02-29 2009-09-11 Array Biopharma Inc. N- (6-aminopyridin-3-yl) -3- (sulfonamido) benzamide derivatives as b-raf inhibitors for the treatment of cancer
US8268834B2 (en) 2008-03-19 2012-09-18 Novartis Ag Pyrazine derivatives that inhibit phosphatidylinositol 3-kinase enzyme
WO2009152087A1 (en) 2008-06-10 2009-12-17 Plexxikon, Inc. Bicyclic heteroaryl compounds and methods for kinase modulation, and indications therefor
GB0814364D0 (en) 2008-08-05 2008-09-10 Eisai London Res Lab Ltd Diazaindole derivatives and their use in the inhibition of c-Jun N-terminal kinase
WO2010016005A1 (en) 2008-08-06 2010-02-11 Pfizer Inc. 6 substituted 2-heterocyclylamino pyrazine compounds as chk-1 inhibitors
JP5984389B2 (ja) 2008-08-06 2016-09-06 ビオマリン プハルマセウトイカル インコーポレイテッド ポリ(adp−リボース)ポリメラーゼ(parp)のジヒドロピリドフタラジノン阻害剤
JP2010077286A (ja) 2008-09-26 2010-04-08 Aica Kogyo Co Ltd シリコーン樹脂組成物および粘着フィルム
AU2009307770A1 (en) 2008-10-21 2010-04-29 Vertex Pharmaceuticals Incorporated C-Met protein kinase inhibitors
EP2370424A1 (en) 2008-11-10 2011-10-05 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
EP3037421A3 (en) 2008-11-25 2016-11-30 University Of Rochester Mlk inhibitors and methods of use
JP5431495B2 (ja) 2008-12-05 2014-03-05 エフ.ホフマン−ラ ロシュ アーゲー ピロロピラジニル尿素キナーゼ阻害薬
CN102325767B (zh) 2008-12-22 2014-05-14 阵列生物制药公司 7-苯氧基色满羧酸衍生物
UY32351A (es) 2008-12-22 2010-07-30 Astrazeneca Ab Compuestos de pirimidinil indol para uso como inhibidores de atr
CN102264737A (zh) 2008-12-23 2011-11-30 雅培制药有限公司 抗病毒化合物
JP5602641B2 (ja) 2009-01-30 2014-10-08 富山化学工業株式会社 N−アシルアントラニル酸誘導体またはその塩
JP5353279B2 (ja) 2009-02-06 2013-11-27 Jnc株式会社 セレンテラミド又はその類縁体の製造方法
CN102388043A (zh) 2009-02-11 2012-03-21 桑诺维恩药品公司 组胺h3反相激动剂和拮抗剂及其使用方法
CN101537007A (zh) 2009-03-18 2009-09-23 中国医学科学院血液病医院(血液学研究所) N-(噻吩-2)吡唑并[1,5-a]嘧啶-3-甲酰胺类化合物在制备抗恶性肿瘤药物方面的应用
JP2012522013A (ja) 2009-03-27 2012-09-20 ザ ユーエービー リサーチ ファウンデーション 調節ires媒介翻訳
AR077468A1 (es) 2009-07-09 2011-08-31 Array Biopharma Inc Compuestos de pirazolo (1,5 -a) pirimidina sustituidos como inhibidores de trk- quinasa
DK2454892T3 (en) 2009-07-13 2015-04-20 Widex As HEARING-AID adapted to detect brain waves and a method for HOW TO ADAPT a hearing aid
EP2454262B1 (en) 2009-07-15 2014-05-14 Abbott Laboratories Pyrrolopyrazine inhibitors of kinases
ES2571327T3 (es) 2009-08-07 2016-05-24 Dow Agrosciences Llc Composiciones plaguicidas
JP2011042639A (ja) 2009-08-24 2011-03-03 Kowa Co ビフェニルピラジン化合物及びこれを有効成分として含有するエリスロポエチン産生促進剤
CN101671336B (zh) 2009-09-23 2013-11-13 辽宁利锋科技开发有限公司 芳杂环并嘧啶衍生物和类似物及其制备方法和用途
DE102009043260A1 (de) 2009-09-28 2011-04-28 Merck Patent Gmbh Pyridinyl-imidazolonderivate
ES2586856T3 (es) 2009-10-06 2016-10-19 Millennium Pharmaceuticals, Inc. Compuestos heterocíclicos útiles como inhibidores de PDK1
SI2526090T1 (sl) 2010-01-18 2015-11-30 Mmv Medicines For Malaria Venture Nova sredstva proti malariji
US8518945B2 (en) 2010-03-22 2013-08-27 Hoffmann-La Roche Inc. Pyrrolopyrazine kinase inhibitors
JP2013523805A (ja) 2010-04-08 2013-06-17 ゾエティス・エルエルシー 殺虫剤および殺ダニ剤としての置換3,5−ジフェニル−イソオキサゾリン誘導体
US20130030237A1 (en) 2010-04-15 2013-01-31 Charles Theuer Potentiation of anti-cancer activity through combination therapy with ber pathway inhibitors
WO2011138751A2 (en) 2010-05-04 2011-11-10 Pfizer Inc. Heterocyclic derivatives as alk inhibitors
AU2011253025A1 (en) 2010-05-12 2012-11-29 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
EP2568984A1 (en) 2010-05-12 2013-03-20 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
JP5856151B2 (ja) 2010-05-12 2016-02-09 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Atrキナーゼ阻害剤として有用な2−アミノピリジン誘導体
WO2011143419A1 (en) 2010-05-12 2011-11-17 Vertex Pharmaceuticals Incorporated Pyrazines useful as inhibitors of atr kinase
EP2569286B1 (en) * 2010-05-12 2014-08-20 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase
RU2012152352A (ru) 2010-05-20 2014-06-27 Ф. Хоффманн-Ля Рош Аг ПРОИЗВОДНЫЕ ПИРРОЛО[2,3-b]ПИРАЗИН-7-КАРБОКСАМИДА И ИХ ПРИМЕНЕНИЕ В КАЧЕСТВЕ ИНГИБИТОРОВ JAK И SYK
RU2012152354A (ru) 2010-05-20 2014-06-27 Ф. Хоффманн-Ля Рош Аг Производные пирролопиразина в качестве ингибиторов syk и jak
US8623869B2 (en) 2010-06-23 2014-01-07 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
CN102311396B (zh) 2010-07-05 2015-01-07 暨南大学 一种吡嗪类衍生物和其制备方法及在制药中的应用
EP2407478A1 (en) 2010-07-14 2012-01-18 GENETADI Biotech, S.L. New cyclotetrapeptides with pro-angiogenic properties
JP5782238B2 (ja) 2010-07-30 2015-09-24 ルネサスエレクトロニクス株式会社 電圧検出回路及びその制御方法
WO2012121939A2 (en) 2011-03-04 2012-09-13 Locus Pharmaceuticals, Inc. Aminopyrazine compounds
KR20140014205A (ko) 2011-03-04 2014-02-05 렉시컨 파마슈티컬스 인코퍼레이티드 Mst1 키나제 억제제 및 그의 사용 방법
CA2832100A1 (en) 2011-04-05 2012-10-11 Vertex Pharmaceuticals Incorporated Aminopyrazine compounds useful as inhibitors of tra kinase
EP2710006A1 (en) 2011-05-17 2014-03-26 Principia Biopharma Inc. Azaindole derivatives as tyrosine kinase inhibitors
WO2012178125A1 (en) 2011-06-22 2012-12-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
WO2012178124A1 (en) 2011-06-22 2012-12-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US8822469B2 (en) 2011-06-22 2014-09-02 Vertex Pharmaceuticals Incorporated Pyrrolo[2,3-B]pyrazines useful as inhibitors of ATR kinase
US8765751B2 (en) 2011-09-30 2014-07-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
ES2751741T3 (es) 2011-09-30 2020-04-01 Vertex Pharma Procedimiento para fabricar compuestos útiles como inhibidores de la quinasa ATR
US20130089626A1 (en) 2011-09-30 2013-04-11 Vertex Pharmaceuticals Incorporated Treating Cancer with ATR Inhibitors
WO2013049720A1 (en) 2011-09-30 2013-04-04 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
CA2850564A1 (en) 2011-09-30 2013-04-04 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
WO2013071090A1 (en) 2011-11-09 2013-05-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
WO2013071093A1 (en) 2011-11-09 2013-05-16 Vertex Pharmaceuticals Incorporated Pyrazine compounds useful as inhibitors of atr kinase
WO2013071088A1 (en) 2011-11-09 2013-05-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
EP2776419B1 (en) 2011-11-09 2016-05-11 Vertex Pharmaceuticals Incorporated Pyrazine compounds useful as inhibitors of atr kinase
IN2014KN02410A (zh) 2012-04-05 2015-05-01 Vertex Pharma
CN103373996A (zh) 2012-04-20 2013-10-30 山东亨利医药科技有限责任公司 作为crth2受体拮抗剂的二并环衍生物
US8999632B2 (en) 2012-10-04 2015-04-07 Vertex Pharmaceuticals Incorporated Method for measuring ATR inhibition mediated increases in DNA damage
US8912198B2 (en) 2012-10-16 2014-12-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
LT3418281T (lt) 2012-12-07 2021-01-11 Vertex Pharmaceuticals Inc. Pirazolo[1,5-a]pirimidinai, naudotini kaip atr kinazės inhibitoriai, skirti vėžinių ligų gydymui
JP6096005B2 (ja) 2013-02-26 2017-03-15 リンテック株式会社 シート剥離装置および剥離方法
KR102153886B1 (ko) 2013-12-06 2020-09-09 버텍스 파마슈티칼스 인코포레이티드 Atr 키나제 억제제로서 유용한 2-아미노-6-플루오로-n-[5-플루오로-피리딘-3-일]피라졸로[1,5-a]피리미딘-3-카복스아미드 화합물, 이의 제조 방법, 이의 상이한 고체형 및 방사성표지된 유도체
PT3152212T (pt) 2014-06-05 2020-03-13 Vertex Pharma Derivados radiomarcados de um composto de 2-amino-6-fluoro-n-[5-fluoro-piridin-3-il]-pirazolo[1,5-a]pirimidin-3-carboxamida útil como inibidor de atr quinase, preparação do dito composto e diferentes formas sólidas do mesmo
RU2736219C2 (ru) 2014-06-17 2020-11-12 Вертекс Фармасьютикалз Инкорпорейтед Способ лечения рака с использованием комбинации ингибиторов снк1 и atr

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071837A1 (en) * 2008-12-19 2010-06-24 Vertex Pharmaceuticals Incorporated Pyrazine derivatives useful as inhibitors of atr kinase
WO2011143425A2 (en) * 2010-05-12 2011-11-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US20130115314A1 (en) * 2011-11-09 2013-05-09 Vertex Pharmaceuticals Incorporated Compounds Useful as Inhibitors of ATR Kinase

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841308B2 (en) 2008-12-19 2014-09-23 Vertex Pharmaceuticals Incorporated Pyrazin-2-amines useful as inhibitors of ATR kinase
US10961232B2 (en) 2008-12-19 2021-03-30 Vertex Pharmaceuticals Incorporated Substituted pyrazines as ATR kinase inhibitors
US9365557B2 (en) 2008-12-19 2016-06-14 Vertex Pharmaceuticals Incorporated Substituted pyrazin-2-amines as inhibitors of ATR kinase
US9701674B2 (en) 2008-12-19 2017-07-11 Vertex Pharmaceuticals Incorporated Substituted pyrazines as ATR kinase inhibitors
US10479784B2 (en) 2008-12-19 2019-11-19 Vertex Pharmaceuticals Incorporated Substituted pyrazin-2-amines as inhibitors of ATR kinase
US20100222318A1 (en) * 2008-12-19 2010-09-02 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US9062008B2 (en) 2010-05-12 2015-06-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9096584B2 (en) 2010-05-12 2015-08-04 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9630956B2 (en) 2010-05-12 2017-04-25 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9334244B2 (en) 2010-05-12 2016-05-10 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8969356B2 (en) 2010-05-12 2015-03-03 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8962631B2 (en) 2010-05-12 2015-02-24 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8623869B2 (en) 2010-06-23 2014-01-07 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8877759B2 (en) 2011-04-05 2014-11-04 Vertex Pharnaceuticals Incorporated Aminopyrazines as ATR kinase inhibitors
US9096602B2 (en) 2011-06-22 2015-08-04 Vertex Pharmaceuticals Incorporated Substituted pyrrolo[2,3-B]pyrazines as ATR kinase inhibitors
US9309250B2 (en) 2011-06-22 2016-04-12 Vertex Pharmaceuticals Incorporated Substituted pyrrolo[2,3-b]pyrazines as ATR kinase inhibitors
US8822469B2 (en) 2011-06-22 2014-09-02 Vertex Pharmaceuticals Incorporated Pyrrolo[2,3-B]pyrazines useful as inhibitors of ATR kinase
US9862709B2 (en) 2011-09-30 2018-01-09 Vertex Pharmaceuticals Incorporated Processes for making compounds useful as inhibitors of ATR kinase
US8765751B2 (en) 2011-09-30 2014-07-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10813929B2 (en) 2011-09-30 2020-10-27 Vertex Pharmaceuticals Incorporated Treating cancer with ATR inhibitors
US9035053B2 (en) 2011-09-30 2015-05-19 Vertex Pharmaceuticals Incorporated Processes for making compounds useful as inhibitors of ATR kinase
US8853217B2 (en) 2011-09-30 2014-10-07 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10822331B2 (en) 2011-09-30 2020-11-03 Vertex Pharmaceuticals Incorporated Processes for preparing ATR inhibitors
US10208027B2 (en) 2011-09-30 2019-02-19 Vertex Pharmaceuticals Incorporated Processes for preparing ATR inhibitors
US8846686B2 (en) 2011-09-30 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8846917B2 (en) 2011-11-09 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8841450B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8841337B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8841449B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8846918B2 (en) 2011-11-09 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US11110086B2 (en) 2012-04-05 2021-09-07 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase and combination therapies thereof
US10478430B2 (en) 2012-04-05 2019-11-19 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase and combination therapies thereof
US9791456B2 (en) 2012-10-04 2017-10-17 Vertex Pharmaceuticals Incorporated Method for measuring ATR inhibition mediated increases in DNA damage
US8912198B2 (en) 2012-10-16 2014-12-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9718827B2 (en) 2012-12-07 2017-08-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US11117900B2 (en) 2012-12-07 2021-09-14 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US11370798B2 (en) 2012-12-07 2022-06-28 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10787452B2 (en) 2012-12-07 2020-09-29 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9650381B2 (en) 2012-12-07 2017-05-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10392391B2 (en) 2012-12-07 2019-08-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9340546B2 (en) 2012-12-07 2016-05-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9663519B2 (en) 2013-03-15 2017-05-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2015057461A2 (en) 2013-10-18 2015-04-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Antibodies that specifically bind ataxia telangiectasia-mutated and rad3-related kinase phosphorylated at position 1989 and their use
US10815239B2 (en) 2013-12-06 2020-10-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10160760B2 (en) 2013-12-06 2018-12-25 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US11485739B2 (en) 2013-12-06 2022-11-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10800781B2 (en) 2014-06-05 2020-10-13 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US10093676B2 (en) 2014-06-05 2018-10-09 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US9670215B2 (en) 2014-06-05 2017-06-06 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US20150359797A1 (en) * 2014-06-17 2015-12-17 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of chk1 and atr inhibitors
US11179394B2 (en) * 2014-06-17 2021-11-23 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of Chk1 and ATR inhibitors
WO2016130581A3 (en) * 2015-02-09 2016-10-27 The Regents Of The University Of California Combination cancer therapy
WO2017059357A1 (en) * 2015-09-30 2017-04-06 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of dna damaging agents and atr inhibitors
US11464774B2 (en) 2015-09-30 2022-10-11 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of DNA damaging agents and ATR inhibitors
RU2768621C1 (ru) * 2015-09-30 2022-03-24 Вертекс Фармасьютикалз Инкорпорейтед Способ лечения рака с использованием комбинации повреждающих днк средств и ингибиторов atr
US11028076B2 (en) 2016-01-11 2021-06-08 Celator Pharmaceuticals, Inc. Inhibiting ataxia telangiectasia and Rad3-related protein (ATR)
WO2017123588A1 (en) * 2016-01-11 2017-07-20 Merrimack Pharmaceuticals, Inc. Inhibiting ataxia telangiectasia and rad3-related protein (atr)
US10570119B2 (en) 2016-01-11 2020-02-25 Merrimack Pharmaceuticals, Inc. Inhibiting ataxia telangiectasia and Rad3-related protein (ATR)
US11787781B2 (en) 2016-01-11 2023-10-17 Celator Pharmaceuticals, Inc. Inhibiting ataxia telangiectasia and RAD3-related protein (ATR)
WO2018049400A1 (en) * 2016-09-12 2018-03-15 University Of Florida Research Foundation, Incorporated Use of atr and chk1 inhibitor compounds
US11730734B2 (en) 2016-09-12 2023-08-22 University Of Florida Research Foundation, Incorporated Use of ATR and Chk1 inhibitor compounds
EA039513B1 (ru) * 2017-01-09 2022-02-04 Селатор Фармасьютикалз, Инк. Ингибитор атаксии-телеангиэкстазии и rad3-родственного белка (atr) и содержащие его липосомные композиции
WO2020176349A1 (en) * 2019-02-25 2020-09-03 The Regents Of The University Of California Nnythiosemicarbazone compounds and uses thereof
US11446307B2 (en) 2020-11-02 2022-09-20 Trethera Corporation Crystalline forms of a deoxycytidine kinase inhibitor and uses thereof

Also Published As

Publication number Publication date
RU2648507C2 (ru) 2018-03-26
CA2850491C (en) 2020-10-27
EP3733185A1 (en) 2020-11-04
MX2019006684A (es) 2019-08-21
CN108685922A (zh) 2018-10-23
IL231813A0 (en) 2014-05-28
CA3089792C (en) 2023-03-14
CN108464983A (zh) 2018-08-31
US20140356456A1 (en) 2014-12-04
CA2850491A1 (en) 2013-04-04
JP2018119014A (ja) 2018-08-02
ES2899880T3 (es) 2022-03-15
EP3733185B1 (en) 2022-12-07
JP2017119724A (ja) 2017-07-06
CA3089792A1 (en) 2013-04-04
JP2020059753A (ja) 2020-04-16
EP2750679B1 (en) 2021-09-01
JP2014528423A (ja) 2014-10-27
AU2012315384A8 (en) 2014-05-08
AU2012315384A1 (en) 2014-04-17
SG11201401095YA (en) 2014-04-28
JP6162126B2 (ja) 2017-08-23
IN2014CN02501A (zh) 2015-06-26
JP7162585B2 (ja) 2022-10-28
ZA201402627B (en) 2015-10-28
WO2013049859A1 (en) 2013-04-04
AU2017206224A1 (en) 2017-08-03
AU2019203240B2 (en) 2021-01-28
MX2014003785A (es) 2014-07-24
CN103957917A (zh) 2014-07-30
US10813929B2 (en) 2020-10-27
RU2018108589A (ru) 2019-02-25
AU2012315384B2 (en) 2017-08-10
KR20140068254A (ko) 2014-06-05
RU2014117666A (ru) 2015-11-10
BR112014007690A2 (pt) 2017-04-18
SG10201602515QA (en) 2016-05-30
IL231813B (en) 2019-12-31
BR112014007690B1 (pt) 2022-10-04
EP2750679A1 (en) 2014-07-09
RU2018108589A3 (zh) 2021-12-03
NZ623119A (en) 2016-10-28
ES2940121T3 (es) 2023-05-03
KR102056586B1 (ko) 2019-12-18
US20200390761A1 (en) 2020-12-17
AU2019203240A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US20200390761A1 (en) Treating cancer with atr inhibitors
Mei et al. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand
Song et al. Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells
Hara et al. Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed
US10206920B2 (en) Pharmaceutical composition for treating cancer and a method of using the same
NZ623119B2 (en) Treating pancreatic cancer and non-small cell lung cancer with atr inhibitors
JP2021512934A (ja) 胆道癌を処置するための方法および併用療法
WO2022253222A1 (zh) 医药组合物治疗肺癌的用途
Manguinhas Inhibition of the redox function of APE1 as a potential strategy to improve the efficacy of cisplatin in non-small cell lung cancer cells
TW202139992A (zh) 用於癌症治療之醫藥組合
Shiell Electrical Pulse Stimulation of MCF7 Breast Cancer Coordinates Autophagy Reprogramming and Proliferative Failure Leading to Cellular Senescence
KR20230131861A (ko) 폐암 치료용 약학적 조성물
Nakahira et al. 424 Proffered Papers

Legal Events

Date Code Title Description
AS Assignment

Owner name: VERTEX PHARMACEUTICALS INCORPORATED, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POLLARD, JOHN ROBERT;REAPER, PHILIP MICHAEL;REEL/FRAME:031024/0222

Effective date: 20130513

AS Assignment

Owner name: VERTEX PHARMACEUTICALS INCORPORATED, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VERTEX PHARMACEUTICALS (EUROPE) LIMITED;REEL/FRAME:031040/0437

Effective date: 20130820

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: MACQUARIE US TRADING LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:VERTEX PHARMACEUTICALS INCORPORATED;VERTEX PHARMACEUTICALS (SAN DIEGO) LLC;REEL/FRAME:033292/0311

Effective date: 20140709

AS Assignment

Owner name: VERTEX PHARMACEUTICALS INCORPORATED, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MACQUARIE US TRADING LLC;REEL/FRAME:040357/0001

Effective date: 20161013

Owner name: VERTEX PHARMACEUTICALS (SAN DIEGO) LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MACQUARIE US TRADING LLC;REEL/FRAME:040357/0001

Effective date: 20161013