US20100234386A1 - Quinoxaline derivatives as pi3 kinase inhibitors - Google Patents

Quinoxaline derivatives as pi3 kinase inhibitors Download PDF

Info

Publication number
US20100234386A1
US20100234386A1 US12/599,544 US59954408A US2010234386A1 US 20100234386 A1 US20100234386 A1 US 20100234386A1 US 59954408 A US59954408 A US 59954408A US 2010234386 A1 US2010234386 A1 US 2010234386A1
Authority
US
United States
Prior art keywords
substituted
amino
quinoxalinyl
pyridinyl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/599,544
Inventor
Amita CHAUDHARI
Dashyant Dhanak
Carla Ann DONATELLI
Thomas H. Faitg
Yanhong Feng
Steven David Knight
Cynthia A. Parrish
Jeffrey M. Ralph
Martha A. Sarpong
Domingos J. Silva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Corp
Original Assignee
SmithKline Beecham Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40002590&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100234386(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SmithKline Beecham Corp filed Critical SmithKline Beecham Corp
Priority to US12/599,544 priority Critical patent/US20100234386A1/en
Assigned to SMITHKLINE BEECHAM CORPORATION reassignment SMITHKLINE BEECHAM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FENG, YANHONG, RALPH, JEFFREY M., DHANAK, DASHYANT, DONATELLI, CARLA ANN, FAITG, THOMAS H., SARPONG, MARTHA A., CHAUDHARI, AMITA, KNIGHT, STEVEN DAVID, PARRISH, CYNTHIA A, SILVA, DOMINGOS J.
Publication of US20100234386A1 publication Critical patent/US20100234386A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • This invention relates to the use of quinoxaline derivatives for the modulation, notably the inhibition of the activity or function of the phosphoinositide 3′ OH kinase family (hereinafter PI3 kinases), suitably, PI3K ⁇ , PI3 ⁇ , PI3K ⁇ , and/or PI3K ⁇ .
  • PI3 kinases phosphoinositide 3′ OH kinase family
  • the present invention relates to the use of quinoxalines in the treatment of one or more disease states selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • PI3 kinases e.g. PI3Kalpha
  • PI3Kalpha dual-specificity kinase enzymes, meaning they display both: lipid kinase (phosphorylation of phosphoinositides) as well as protein kinase activity, shown to be capable of phosphorylation of protein as substrate, including auto-phosphorylation as intramolecular regulatory mechanism.
  • phospholipids signaling are activated in response to a variety of extra-cellular signals such as growth factors, mitogens, integrins (cell-cell interactions) hormones, cytokines, viruses and neurotransmitters such as described in Scheme A hereinafter and also by intracellular regulation by other signaling molecules (cross-talk, where the original signal can activate some parallel pathways that in a second step transmit signals to PI3Ks by intra-cellular signaling events), such as small GTPases, kinases or phosphatases for example. Intracellular regulation can also occur as a result of aberrant expression or lack of expression of cellular oncogenes or tumor suppressors.
  • extra-cellular signals such as growth factors, mitogens, integrins (cell-cell interactions) hormones, cytokines, viruses and neurotransmitters such as described in Scheme A hereinafter and also by intracellular regulation by other signaling molecules (cross-talk, where the original signal can activate some parallel pathways that in a second step transmit signals to PI3Ks by intra-cellular signal
  • the inositol phospholipid (phosphoinositides) intracellular signaling pathways begin with activation of a signaling molecules (extra cellular ligands, stimuli, receptor dimerization, transactivation by heterologous receptor (e.g. receptor tyrosine kinase)) the recruitment and activation of PI3K including the involvement of G-protein linked transmembrane receptor integrated into the plasma membrane.
  • a signaling molecules extra cellular ligands, stimuli, receptor dimerization, transactivation by heterologous receptor (e.g. receptor tyrosine kinase)
  • heterologous receptor e.g. receptor tyrosine kinase
  • PI3K converts the membrane phospholipids PI(4,5)P 2 into PI(3,4,5)P 3 that functions as a second messenger.
  • PI and PI(4)P are also substrates of PI3K and can be phosphorylated and converted into PI3P and PI(3,4)P 2 , respectively.
  • these phosphoinositides can be converted into other phosphoinositides by 5′-specific and 3′-specific phophatases, thus PI3K enzymatic activity results either directly or indirectly in the generation of two 3′-phosphoinositide subtypes that function as 2 nd messengers in intra-cellular signal transduction pathways (Trends Biochem. Sci. 22(7) p.
  • the closely related isoforms p110 ⁇ and ⁇ are ubiquitously expressed, while ⁇ and ⁇ are more specifically expressed in the haematopoietic cell system, smooth muscle cells, myocytes and endothelial cells (Trends Biochem. Sci. 22(7) p. 267-72 (1997) by Vanhaesebroeck et al.). Their expression might also be regulated in an inducible manner depending on the cellular, tissue type and stimuli as well as disease context. Inducibility of protein expression includes synthesis of protein as well as protein stabilization that is in part regulated by association with regulatory subunits.
  • class I PI3Ks can phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI4P), and phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ) to produce phosphatidylinositol-3-phosphate (PI3P), phosphatidylinositol-3,4-bisphosphate (PI(3,4)P 2 , and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P 3 , respectively.
  • PI phosphatidylinositol
  • P4P phosphatidylinositol-4-phosphate
  • PI(4,5)P 2 phosphatidylinositol-4,5-bisphosphate
  • Class II PI3Ks phosphorylate PI and phosphatidylinositol-4-phosphate.
  • Class III PI3Ks can only phosphorylate PI (Vanhaesebrokeck et al., 1997, above; Vanhaesebroeck et al., 1999, above and Leslie et al, 2001, above)
  • phosphoinositide 3-kinases phosphorylate the hydroxyl of the third carbon of the inositol ring.
  • the phosphorylation of phosphoinositides that generate PtdIns to 3,4,5-trisphosphate (PtdIns(3,4,5)P 3 ), PtdIns(3,4)P 2 and PtdIns(3)P produce second messengers for a variety of signal transduction pathways, including those essential to cell proliferation, cell differentiation, cell growth, cell size, cell survival, apoptosis, adhesion, cell motility, cell migration, chemotaxis, invasion, cytoskeletal rearrangement, cell shape changes, vesicle trafficking and metabolic pathway (Katso et al., 2001, above and Mol.
  • G-protein coupled receptors mediated phosphoinositide 3′OH-kinase activation via small GTPases such as G ⁇ and Ras, and consequently PI3K signaling plays a central role in establishing and coordinating cell polarity and dynamic organization of the cytoskeleton—which together provides the driving force of cells to move.
  • Chemotaxis the directed movement of cells toward a concentration gradient of chemical attractants, also called chemokines is involved in many important diseases such as inflammation/auto-immunity, neurodegeneration, antiogenesis, invasion/metastasis and wound healing (Immunol. Today 21(6) p. 260-4 (2000) by Wyman et al.; Science 287(5455) p. 1049-53 (2000) by Hirsch et al.; FASEB J. 15(11) p. 2019-21 (2001) by Hirsch et al. and Nat. Immunol. 2(2) p. 108-15 (2001) by Gerard et al.).
  • class I PI3 kinases e.g. class IB isoform PI3K ⁇
  • class I PI3 kinases are dual-specific kinase enzymes, means they display both: lipid kinase (phosphorylation of phospho-inositides) as well as protein kinase activity, shown to be capable of phosphorylation of other protein as substrates, including auto-phosphorylation as intra-molecular regulatory mechanism.
  • PI3-kinase activation is therefore believe to be involved in a range of cellular responses including cell growth, differentiation, and apoptosis (Parker et al., Current Biology, 5 p. 577-99 (1995); Yao et al., Science, 267 p. 2003-05 (1995)).
  • PI3-kinase appears to be involved in a number of aspects of leukocyte activation.
  • a p85-associated PI3-kinase activity has been shown to physically associate with the cytoplasmic domain of CD28, which is an important costimulatory molecule for the activation of T-cells in response to antigen (Pages et al., Nature, 369 p.
  • Activation of T cells through CD28 lowers the threshold for activation by antigen and increases the magnitude and duration of the proliferative response. These effects are linked to increases in the transcription of a number of genes including interleukin-2 (IL2), an important T cell growth factor (Fraser et al., Science 251 p. 313-16 (1991)). Mutation of CD28 such that it can longer interact with PI3-kinase leads to a failure to initiate IL2 production, suggesting a critical role for PI3-kinase in T cell activation.
  • IL2 interleukin-2
  • Mutation of CD28 such that it can longer interact with PI3-kinase leads to a failure to initiate IL2 production, suggesting a critical role for PI3-kinase in T cell activation.
  • PI3K ⁇ has been identified as a mediator of G beta-gamma-dependent regulation of JNK activity, and G beta-gamma are subunits of heterotrimeric G proteins (Lopez-Ilasaca et al., J. Biol. Chem. 273(5) p. 2505-8 (1998)).
  • Cellular processes in which PI3Ks play an essential role include suppression of apoptosis, reorganization of the actin skeleton, cardiac myocyte growth, glycogen synthase stimulation by insulin, TNF ⁇ -mediated neutrophil priming and superoxide generation, and leukocyte migration and adhesion to endothelial cells.
  • PI3K ⁇ relays inflammatory signals through various G(i)-coupled receptors and its central to mast cell function, stimuli in context of leukocytes, immunology includes cytokines, chemokines, adenosines, antibodies, integrins, aggregation factors, growth factors, viruses or hormones for example (J. Cell. Sci. 114(Pt 16) p. 2903-10 (2001) by Lawlor et al.; Laffargue et al., 2002, above and Curr. Opinion Cell Biol. 14(2) p. 203-13 (2002) by Stephens et al.).
  • PI3-kinase inhibitors Two compounds, LY294002 and wortmannin (cf. hereinafter), have been widely used as PI3-kinase inhibitors. These compounds are non-specific PI3K inhibitors, as they do not distinguish among the four members of Class I PI3-kinases.
  • the IC 50 values of wortmannin against each of the various Class I PI3-kinases are in the range of 1-10 nM.
  • the IC 50 values for LY294002 against each of these PI3-kinases is about 15-20 ⁇ M (Fruman et al., Ann. Rev. Biochem., 67, p.
  • wortmannin is a fungal metabolite which irreversibly inhibits PI3K activity by binding covalently to the catalytic domain of this enzyme. Inhibition of PI3K activity by wortmannin eliminates subsequent cellular response to the extracellular factor.
  • neutrophils respond to the chemokine fMet-Leu-Phe (fMLP) by stimulating PI3K and synthesizing PtdIns (3, 4, 5)P 3 . This synthesis correlates with activation of the respirators burst involved in neutrophil destruction of invading microorganisms.
  • Class I PI3K is a heterodimer consisting of a p110 catalytic subunit and a regulatory subunit, and the family is further divided into class Ia and Class Ib enzymes on the basis of regulatory partners and mechanism of regulation.
  • Class Ia enzymes consist of three distinct catalytic subunits (p110 ⁇ , p110 ⁇ , and p110 ⁇ ) that dimerise with five distinct regulatory subunits (p85 ⁇ , p55 ⁇ , p50 ⁇ , p85 ⁇ , and p55 ⁇ ), with all catalytic subunits being able to interact with all regulatory subunits to form a variety of heterodimers.
  • Class Ia PI3K are generally activated in response to growth factor-stimulation of receptor tyrosine kinases, via interaction of the regulatory subunit SH2 domains with specific phospho-tyrosine residues of the activated receptor or adaptor proteins such as IRS-1.
  • Small GTPases (ras as an example) are also involved in the activation of PI3K in conjunction with receptor tyrosine kinase activation. Both p110 ⁇ and p110 ⁇ are constitutively expressed in all cell types, whereas p110 ⁇ expression is more restricted to leukocyte populations and some epithelial cells.
  • the single Class Ib enzyme consists of a p110 ⁇ catalytic subunit that interacts with a p101 regulatory subunit.
  • GPCR G-protein coupled receptor
  • Class Ia PI3K enzymes contribute to tumourigenesis in a wide variety of human cancers, either directly or indirectly (Vivanco and Sawyers, Nature Reviews Cancer, 2002, 2, 489-501).
  • the p110 ⁇ subunit is amplified in some tumours such as those of the ovary (Shayesteh, et al., Nature Genetics, 1999, 21: 99-102) and cervix (Ma et al., Oncogene, 2000, 19: 2739-2744).
  • PIK3CA gene activating mutations within p110 ⁇ (PIK3CA gene) have been associated with various other tumors such as those of the colon and of the breast and lung (Samuels, et al., Science, 2004, 304, 554). Tumor-related mutations in p85 ⁇ have also been identified in cancers such as those of the ovary and colon (Philp et al., Cancer Research, 2001, 61, 7426-7429).
  • Class Ia PI3K contributes to tumourigenic events that occur upstream in signaling pathways, for example by way of ligand-dependent or ligand-independent activation of receptor tyrosine kinases, GPCR systems or integrins (Vara et al., Cancer Treatment Reviews, 2004, 30, 193-204).
  • upstream signaling pathways examples include over-expression of the receptor tyrosine kinase Erb2 in a variety of tumors leading to activation of PI3K-mediated pathways (Harari et al., Oncogene, 2000, 19, 6102-6114) and over-expression of the oncogene Ras (Kauffmann-Zeh et al., Nature, 1997, 385, 544-548).
  • Class Ia PI3Ks may contribute indirectly to tumourigenesis caused by various downstream signaling events.
  • loss of function of the PTEN tumor-suppressor phosphatase that catalyses conversion of PI(3,4,5)P3 back to PI(4,5)P2 is associated with a very broad range of tumors via deregulation of PI3K-mediated production of PI(3,4,5)P3 (Simpson and Parsons, Exp. Cell Res., 2001, 264, 29-41).
  • augmentation of the effects of other PI3K-mediated signaling events is believed to contribute to a variety of cancers, for example by activation of AKT (Nicholson and Andeson, Cellular Signaling, 2002, 14, 381-395).
  • class Ia PI3K enzymes also contributes to tumourigenesis via its function in tumor-associated stromal cells.
  • PI3K signaling is known to play an important role in mediating angiogenic events in endothelial cells in response to pro-angiogenic factors such as VEGF (abid et al., Arterioscler, Thromb. Vasc. Biol., 2004, 24, 294-300).
  • VEGF vascular endothelial growth factor
  • Class I PI3K enzymes are also involved in motility and migration (Sawyer, Expert Opinion investing. Drugs, 2004, 13, 1-19), PI3K inhibitors are anticipated to provide therapeutic benefit via inhibition of tumor cell invasion and metastasis.
  • This invention relates to novel compounds of Formula (I):
  • the invention relates to a compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • This invention also relates to a method of treating cancer, which comprises administering to a subject in need thereof an effective amount of a compound of Formula (I).
  • This invention also relates to a method of treating one or more disease states selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection and lung injuries, which comprises administering to a subject in need thereof an effective amount of a compound of Formula (I).
  • Included in the present invention are methods of co-administering the present PI3 kinase inhibiting compounds with further active ingredients.
  • This invention relates to novel compounds of Formula (I) as described above.
  • this invention relates to novel compounds of Formula (I)(A):
  • this invention relates to novel compounds of Formula (I)(B):
  • this invention relates to novel compounds of Formula (I)(C):
  • this invention relates to novel compounds of Formula (I)(D):
  • this invention relates to compounds of formula (I)(A), wherein R1 is an optionally substituted six-membered heteroaryl ring containing at least one nitrogen.
  • this invention relates to novel compounds of Formula (I)(E):
  • this invention relates to novel compounds of Formula (I)(F):
  • this invention relates to novel compounds of Formula (I)(G):
  • this invention relates to novel compounds of Formula (I)(H):
  • this invention relates to novel compounds of Formula (I)(J):
  • this invention relates to novel compounds of Formula (I)(K):
  • this invention relates to novel compounds of Formula (I)(L):
  • this invention relates to novel compounds of Formula (I)(M):
  • this invention relates to novel compounds of Formula (I)(N):
  • this invention relates to compounds of Formulas (I)M) and (I)(N), wherein
  • this invention relates to compounds of Formulas (I)M) and (I)(N), wherein
  • this invention relates to the following compounds:
  • This invention also relates to a method of treating cancer, which comprises co-administering to a subject in need thereof an effective amount of a compound of Formula (I), and/or a pharmaceutically acceptable salt thereof; and at least one anti-neoplastic agent such as one selected from the group consisting of: anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, immunotherapeutic agents, proapoptotic agents, and cell cycle signaling inhibitors.
  • anti-neoplastic agent such as one selected from the group consisting of: anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitor
  • This invention also relates to a method of treating cancer, which comprises co-administering to a subject in need thereof an effective amount of a compound of Formula (I), and/or a pharmaceutically acceptable salt thereof; and at least one signal transduction pathway inhibitor such as one selected from the group consisting of: receptor tyrosine kinase inhibitor, non-receptor tyrosine kinase inhibitor, SH2/SH3 domain blocker, serine/threonine kinase inhibitor, phosphotidyl inositol-3 kinase inhibitor, myo-inositol signaling inhibitor, and Ras oncogene inhibitor.
  • a signal transduction pathway inhibitor such as one selected from the group consisting of: receptor tyrosine kinase inhibitor, non-receptor tyrosine kinase inhibitor, SH2/SH3 domain blocker, serine/threonine kinase inhibitor, phosphotidyl inositol-3 kinas
  • the term “effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician.
  • therapeutically effective amount means any amount which, as compared to a corresponding subject who has not received such amount, results in improved treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder.
  • the term also includes within its scope amounts effective to enhance normal physiological function.
  • substituted amino is meant —NR30R40 wherein each R30 and R40 is independently selected from a group including hydrogen, C1-6alkyl, acyl, C3-C7cycloalkyl, wherein at least one of R30 and R40 is not hydrogen.
  • acyl as used herein, unless otherwise defined, is meant —C(O)(alkyl), —C(O)(cycloalkyl), —C(O)(aryl) or —C(O)(heteroaryl), wherein heteroaryl and aryl are optionally substituted.
  • aryl aromatic, hydrocarbon, ring system.
  • the ring system may be monocyclic or fused polycyclic (e.g. bicyclic, tricyclic, etc.).
  • the monocyclic aryl ring is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that form the ring system.
  • a C6 ring system i.e. a phenyl ring is a suitable aryl group.
  • the polycyclic ring is a bicyclic aryl group, where suitable bicyclic aryl groups are C8-C12, or C9-C10.
  • a naphthyl ring, which has 10 carbon atoms, is a suitable polycyclic aryl group.
  • heteroaryl an aromatic ring system containing carbon(s) and at least one heteroatom.
  • Heteroaryl may be monocyclic or polycyclic.
  • a monocyclic heteroaryl group may have 1 to 4 heteroatoms in the ring, while a polycyclic heteroaryl may contain 1 to 10 hetero atoms.
  • a polycyclic heteroaryl ring may contain fused, spiro or bridged ring junctions, for example, bicyclic heteroaryl is a polycyclic heteroaryl.
  • Bicyclic heteroaryl rings may contain from 8 to 12 member atoms.
  • Monocyclic heteroaryl rings may contain from 5 to 8 member atoms (carbons and heteroatoms).
  • heteroaryl groups include but are not limited to: benzofuran, benzothiophene, furan, imidazole, indole, isothiazole, oxazole, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, quinoline, quinazoline, quinoxaline, thiazole, and thiophene.
  • monocyclic heteroaryl as used herein, unless otherwise defined, is meant a monocyclic heteroaryl ring containing 1-5 carbon atoms and 1-4 hetero atoms.
  • alkylcarboxy as used herein, unless otherwise defined, is meant —(CH 2 ) n COOR 80 , wherein R80 is hydrogen or C1-C6alkyl, n is 0-6.
  • alkoxy as used herein is meant —O(alkyl) including —OCH 3 , —OCH 2 CH 3 and —OC(CH 3 ) 3 where alkyl is as described herein.
  • alkylthio as used herein is meant —S(alkyl) including —SCH 3 , —SCH 2 CH 3 where alkyl is as described herein.
  • cycloalkyl as used herein unless otherwise defined, is meant a nonaromatic, unsaturated or saturated, cyclic or polycyclic C3-C12.
  • cycloalkyl and substituted cycloalkyl substituents as used herein include: cyclohexyl, aminocyclohexyl, cyclobutyl, aminocyclobutyl, 4-hydroxy-cyclohexyl, 2-ethylcyclohexyl, propyl4-methoxycyclohexyl, 4-methoxycyclohexyl, 4-carboxycyclohexyl, cyclopropyl, aminocyclopentyl, and cyclopentyl.
  • heterocycloalkyl as used herein is meant a non-aromatic, unsaturated or saturated, monocyclic or polycyclic, heterocyclic ring containing at least one carbon and at least one heteroatom.
  • exemplary monocyclic heterocyclic rings include: piperidine, piperazine, pyrrolidine, and morpholine.
  • exemplary polycyclic heterocyclic rings include quinuclidine.
  • substituted as used herein, unless otherwise defined, is meant that the subject chemical moiety has one to five substituents, suitably from one to three, selected from the group consisting of: hydrogen, halogen, C1-C6alkyl, amino, urea, trifluoromethyl, —(CH 2 ) n COOH, C3-C7cycloalkyl, substituted amino, aryl, heteroaryl, arylalkyl, arylcycloalkyl, heteroarylalkyl, heterocycloalkyl, cyano, hydroxyl, alkoxy, alkylthio, aryloxy, acyloxy, acyl, acylamino, aminoacyl, arylamino, nitro, oxo, —CO 2 R 50 , —SO 2 R 70 , —NR 50 SO 2 R 70 , NR 50 C(O)R 75 and —CONR 55 R 60 , wherein R50 and R55 are each independently selected from one to three, selected from
  • substituted when referred in the definition of R60, R70, R75, “arylamino”, and “aryloxy”, is meant that the subject chemical moiety has one to five substituents, suitably from one to three substituents selected from the group consisting of: hydrogen, C1-C6alkyl, halogen, trifluoromethyl, —(CH 2 ) n COOH, amino, substituted amino, cyano, hydroxyl, alkoxy, alkylthio, aryloxy, acyloxy, acyl, acylamino, and nitro, n is 0-6.
  • acyloxy as used herein is meant —OC(O)alkyl where alkyl is as described herein.
  • Examples of acyloxy substituents as used herein include: —OC(O)CH 3 , —OC(O)CH(CH 3 ) 2 and —OC(O)(CH 2 ) 3 CH 3 .
  • acylamino as used herein is meant —N(H)C(O)alkyl, —N(H)C(O)(cycloalkyl) where alkyl is as described herein.
  • N-acylamino substituents as used herein include: —N(H)C(O)CH 3 , —N(H)C(O)CH(CH 3 ) 2 and —N(H)C(O)(CH 2 ) 3 CH 3 .
  • aminoacyl as used herein is meant —C(O)N(alkyl) n , —C(O)N(cycloalkyl) n where alkyl is as described herein, n is 1-2.
  • aryloxy as used herein is meant —O(aryl), —O(substituted aryl), —O(heteroaryl) or —O(substituted heteroaryl).
  • arylamino as used herein is meant —NR 80 (aryl), —NR 80 (substituted aryl), —NR 80 (heteroaryl) or —NR 80 (substituted heteroaryl), wherein R 80 is H, C1-6alkyl or C3-C7cycloalkyl.
  • heteroatom oxygen, nitrogen or sulfur.
  • halogen as used herein is meant a substituent selected from bromide, iodide, chloride and fluoride.
  • substituted alkyl as used herein is meant an alkyl group substituted with one to six substituents selected from the group consisting of: halogen, trifluoromethyl, alkylcarboxy, amino, substituted amino, cyano, hydroxyl, alkoxy, alkylthio, aryloxy, acyloxy, acyl, acylamino, carbamate, urea, sulfonamate, C3-7cycloheteroalkyl, C3-7cycloalkyl and nitro.
  • co-administering and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of cancer, including chemotherapy and radiation treatment.
  • further active ingredient or ingredients includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment for cancer.
  • the compounds are administered in a close time proximity to each other.
  • the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered orally.
  • compound as used herein includes all isomers of the compound. Examples of such isomers include: enantiomers, tautomers, rotamers.
  • tautomer is an oxo substituent in place of a hydroxy substituent. Also, as stated above, it is understood that all tautomers and mixtures of tautomers are included within the scope of the compounds of Formula I or II.
  • esters can be employed, for example methyl, ethyl, pivaloyloxymethyl, and the like for —COOH, and acetate maleate and the like for —OH, and those esters known in the art for modifying solubility or hydrolysis characteristics, for use as sustained release or prod rug formulations.
  • compounds of the present invention are inhibitors of the Phosphatoinositides 3-kinases (PI3Ks).
  • PI3K Phosphatoinositides 3-kinases
  • PI3K phosphatoinositides 3-kinase
  • the compounds of the present invention are therefore useful in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • the compounds of Formula (I) are useful as medicaments in particular for the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • the compounds of the present invention are used for the preparation of a medicament for the treatment of a disorder selected from multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosis, inflammatory bowel disease, lung inflammation, thrombosis or brain infection/inflammation, such as meningitis or encephalitis, Alzheimer's disease, Huntington's disease, CNS trauma, stroke or ischemic conditions, cardiovascular diseases such as athero-sclerosis, heart hypertrophy, cardiac myocyte dysfunction, elevated blood pressure or vasoconstriction.
  • a disorder selected from multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosis, inflammatory bowel disease, lung inflammation, thrombosis or brain infection/inflammation, such as meningitis or encephalitis, Alzheimer's disease, Huntington's disease, CNS trauma, stroke or ischemic conditions, cardiovascular diseases such as at
  • the compounds of Formula (I) are useful for the treatment of neurodegenerative diseases including multiple sclerosis, Alzheimer's disease, Huntington's disease, CNS trauma, stroke or ischemic conditions.
  • the compounds of Formula (I) are useful for the treatment of cardiovascular diseases such as atherosclerosis, heart hypertrophy, cardiac myocyte dysfunction, elevated blood pressure or vasoconstriction.
  • the compounds of Formula (I) are useful for the treatment of chronic obstructive pulmonary disease, anaphylactic shock fibrosis, psoriasis, allergic diseases, asthma, stroke, ischemic conditions, ischemia-reperfusion, platelets aggregation/activation, skeletal muscle atrophy/hypertrophy, leukocyte recruitment in cancer tissue, angiogenesis, invasion metastasis, in particular melanoma, Karposi's sarcoma, acute and chronic bacterial and viral infections, sepsis, transplantation rejection, graft rejection, glomerulo sclerosis, glomerulo nephritis, progressive renal fibrosis, endothelial and epithelial injuries in the lung, and lung airway inflammation.
  • the pharmaceutically active compounds of the present invention are active as PI3 kinase inhibitors, particularly the compounds that inhibit PI3K ⁇ , either selectively or in conjunction with one or more of PI3 ⁇ , PI3K ⁇ , and/or PI3K ⁇ , they exhibit therapeutic utility in treating cancer.
  • the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: brain (gliomas), glioblastomas, leukemias, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma, Rhabdomyosarcoma, ependymoma, medulloblastoma, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma, osteosarcoma, giant cell tumor of bone and thyroid.
  • brain gliomas
  • glioblastomas leukemias
  • Bannayan-Zonana syndrome Cowden disease
  • Lhermitte-Duclos disease breast
  • inflammatory breast cancer Wilm's tumor
  • Ewing's sarcoma Rhabdomyosarcoma
  • the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: Lymphoblastic T cell leukemia, Chronic myelogenous leukemia, Chronic lymphocytic leukemia, Hairy-cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, Chronic neutrophilic leukemia, Acute lymphoblastic T cell leukemia, Plasmacytoma, Immunoblastic large cell leukemia, Mantle cell leukemia, Multiple myeloma Megakaryoblastic leukemia, multiple myeloma, Acute megakaryocytic leukemia, promyelocytic leukemia and Erythroleukemia.
  • the cancer is selected from: Lymphoblastic T cell leukemia, Chronic myelogenous leukemia, Chronic lymphocytic leukemia, Hairy-cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, Chronic
  • the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: malignant lymphoma, hodgkins lymphoma, non-hodgkins lymphoma, lymphoblastic T cell lymphoma, Burkitt's lymphoma and follicular lymphoma.
  • the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: neuroblastoma, bladder cancer, urothelial cancer, lung cancer, vulval cancer, cervical cancer, endometrial cancer, renal cancer, mesothelioma, esophageal cancer, salivary gland cancer, hepatocellular cancer, gastric cancer, nasopharangeal cancer, buccal cancer, cancer of the mouth, GIST (gastrointestinal stromal tumor) and testicular cancer.
  • the cancer is selected from: neuroblastoma, bladder cancer, urothelial cancer, lung cancer, vulval cancer, cervical cancer, endometrial cancer, renal cancer, mesothelioma, esophageal cancer, salivary gland cancer, hepatocellular cancer, gastric cancer, nasopharangeal cancer, buccal cancer, cancer of the mouth, GIST (gastrointestinal stromal tumor) and testicular cancer.
  • a compound of Formula (I) When a compound of Formula (I) is administered for the treatment of cancer, the term “co-administering” and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of cancer, including chemotherapy and radiation treatment.
  • the term further active ingredient or ingredients, as used herein includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment for cancer.
  • the compounds are administered in a close time proximity to each other.
  • the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered orally.
  • any anti-neoplastic agent that has activity versus a susceptible tumor being treated may be co-administered in the treatment of cancer in the present invention.
  • examples of such agents can be found in Cancer Principles and Practice f Oncology by V. T. Devita and S. Hellman (editors), 6 th edition (Feb. 15, 2001), Lippincott Williams & Wilkins Publishers.
  • a person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved.
  • Typical anti-neoplastic agents useful in the present invention include, but are not limited to, anti-microtubule agents such as diterpenoids and vinca alkaloids; platinum coordination complexes; alkylating agents such as nitrogen mustards, oxazaphosphorines, alkylsulfonates, nitrosoureas, and triazenes; antibiotic agents such as anthracyclines, actinomycins and bleomycins; topoisomerase II inhibitors such as epipodophyllotoxins; antimetabolites such as purine and pyrimidine analogues and anti-folate compounds; topoisomerase I inhibitors such as camptothecins; hormones and hormonal analogues; signal transduction pathway inhibitors; non-receptor tyrosine kinase angiogenesis inhibitors; immunotherapeutic agents; proapoptotic agents; and cell cycle signaling inhibitors.
  • anti-microtubule agents such as diterpenoids and vinca alkaloids
  • Examples of a further active ingredient or ingredients for use in combination or co-administered with the present PI3 kinase inhibiting compounds are chemotherapeutic agents.
  • Anti-microtubule or anti-mitotic agents are phase specific agents active against the microtubules of tumor cells during M or the mitosis phase of the cell cycle.
  • anti-microtubule agents include, but are not limited to, diterpenoids and vinca alkaloids.
  • Diterpenoids which are derived from natural sources, are phase specific anti-cancer agents that operate at the G 2 /M phases of the cell cycle. It is believed that the diterpenoids stabilize the ⁇ -tubulin subunit of the microtubules, by binding with this protein. Disassembly of the protein appears then to be inhibited with mitosis being arrested and cell death following. Examples of diterpenoids include, but are not limited to, paclitaxel and its analog docetaxel.
  • Paclitaxel 5 ⁇ ,20-epoxy-1,2 ⁇ ,4,7 ⁇ ,10 ⁇ ,13 ⁇ -hexa-hydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)—N-benzoyl-3-phenylisoserine; is a natural diterpene product isolated from the Pacific yew tree Taxus brevifolia and is commercially available as an injectable solution TAXOL®. It is a member of the taxane family of terpenes. It was first isolated in 1971 by Wani et al. J. Am. Chem, Soc., 93:2325. 1971), who characterized its structure by chemical and X-ray crystallographic methods.
  • Paclitaxel has been approved for clinical use in the treatment of refractory ovarian cancer in the United States (Markman et al., Yale Journal of Biology and Medicine, 64:583, 1991; McGuire et al., Ann. Intern, Med., 111:273, 1989) and for the treatment of breast cancer (Holmes et al., J. Nat. Cancer Inst., 83:1797, 1991.) It is a potential candidate for treatment of neoplasms in the skin (Einzig et. al., Proc. Am. Soc. Clin. Oncol., 20:46) and head and neck carcinomas (Forastire et. al., Sem. Oncol., 20:56, 1990).
  • the compound also shows potential for the treatment of polycystic kidney disease (Woo et. al., Nature, 368:750. 1994), lung cancer and malaria.
  • Treatment of patients with paclitaxel results in bone marrow suppression (multiple cell lineages, Ignoff, R. J. et. al, Cancer Chemotherapy Pocket Guide, 1998) related to the duration of dosing above a threshold concentration (50 nM) (Kearns, C. M. et. al., Seminars in Oncology, 3(6) p. 16-23, 1995).
  • Docetaxel (2R,3S)—N-carboxy-3-phenylisoserine, N-tert-butyl ester, 13-ester with 5 ⁇ -20-epoxy-1,2 ⁇ ,4,7 ⁇ ,10 ⁇ ,13 ⁇ -hexahydroxytax-11-en-9-one 4-acetate 2-benzoate, trihydrate; is commercially available as an injectable solution as TAXOTERE®.
  • Docetaxel is indicated for the treatment of breast cancer.
  • Docetaxel is a semisynthetic derivative of paclitaxel q.v., prepared using a natural precursor, 10-deacetyl-baccatin III, extracted from the needle of the European Yew tree. The dose limiting toxicity of docetaxel is neutropenia.
  • Vinca alkaloids are phase specific anti-neoplastic agents derived from the periwinkle plant. Vinca alkaloids act at the M phase (mitosis) of the cell cycle by binding specifically to tubulin. Consequently, the bound tubulin molecule is unable to polymerize into microtubules. Mitosis is believed to be arrested in metaphase with cell death following. Examples of vinca alkaloids include, but are not limited to, vinblastine, vincristine, and vinorelbine.
  • Vinblastine vincaleukoblastine sulfate
  • VELBAN® an injectable solution.
  • Myelosuppression is the dose limiting side effect of vinblastine.
  • Vincristine vincaleukoblastine, 22-oxo-, sulfate
  • ONCOVIN® an injectable solution.
  • Vincristine is indicated for the treatment of acute leukemias and has also found use in treatment regimens for Hodgkin's and non-Hodgkin's malignant lymphomas.
  • Alopecia and neurologic effects are the most common side effect of vincristine and to a lesser extent myelosupression and gastrointestinal mucositis effects occur.
  • Vinorelbine 3′,4′-didehydro-4′-deoxy-C′-norvincaleukoblastine[R—(R*,R*)-2,3-dihydroxybutanedioate (1:2)(salt)], commercially available as an injectable solution of vinorelbine tartrate (NAVELBINE®), is a semisynthetic vinca alkaloid.
  • Vinorelbine is indicated as a single agent or in combination with other chemotherapeutic agents, such as cisplatin, in the treatment of various solid tumors, particularly non-small cell lung, advanced breast, and hormone refractory prostate cancers. Myelosuppression is the most common dose limiting side effect of vinorelbine.
  • Platinum coordination complexes are non-phase specific anti-cancer agents, which are interactive with DNA.
  • the platinum complexes enter tumor cells, undergo, aquation and form intra- and interstrand crosslinks with DNA causing adverse biological effects to the tumor.
  • Examples of platinum coordination complexes include, but are not limited to, cisplatin and carboplatin.
  • Cisplatin cis-diaminedichloroplatinum
  • PLATINOL® an injectable solution.
  • Cisplatin is primarily indicated in the treatment of metastatic testicular and ovarian cancer and advanced bladder cancer.
  • the primary dose limiting side effects of cisplatin are nephrotoxicity, which may be controlled by hydration and diuresis, and ototoxicity.
  • Carboplatin platinum, diamine[1,1-cyclobutane-dicarboxylate(2-)-O,O′], is commercially available as PARAPLATIN® as an injectable solution.
  • Carboplatin is primarily indicated in the first and second line treatment of advanced ovarian carcinoma. Bone marrow suppression is the dose limiting toxicity of carboplatin.
  • Alkylating agents are non-phase anti-cancer specific agents and strong electrophiles. Typically, alkylating agents form covalent linkages, by alkylation, to DNA through nucleophilic moieties of the DNA molecule such as phosphate, amino, sulfhydryl, hydroxyl, carboxyl, and imidazole groups. Such alkylation disrupts nucleic acid function leading to cell death.
  • alkylating agents include, but are not limited to, nitrogen mustards such as cyclophosphamide, melphalan, and chlorambucil; alkyl sulfonates such as busulfan; nitrosoureas such as carmustine; and triazenes such as dacarbazine.
  • Cyclophosphamide 2-[bis(2-chloroethyl)amino]tetrahydro-2H-1,3,2-oxazaphosphorine 2-oxide monohydrate, is commercially available as an injectable solution or tablets as CYTOXAN®. Cyclophosphamide is indicated as a single agent or in combination with other chemotherapeutic agents, in the treatment of malignant lymphomas, multiple myeloma, and leukemias. Alopecia, nausea, vomiting and leukopenia are the most common dose limiting side effects of cyclophosphamide.
  • Melphalan 4-[bis(2-chloroethyl)amino]-L-phenylalanine, is commercially available as an injectable solution or tablets as ALKERAN®. Melphalan is indicated for the palliative treatment of multiple myeloma and non-respectable epithelial carcinoma of the ovary. Bone marrow suppression is the most common dose limiting side effect of melphalan.
  • Chlorambucil 4-[bis(2-chloroethyl)amino]benzenebutanoic acid, is commercially available as LEUKERAN® tablets. Chlorambucil is indicated for the palliative treatment of chronic lymphatic leukemia, and malignant lymphomas such as lymphosarcoma, giant follicular lymphoma, and Hodgkin's disease. Bone marrow suppression is the most common dose limiting side effect of chlorambucil.
  • Busulfan 1,4-butanediol dimethanesulfonate, is commercially available as MYLERAN® TABLETS. Busulfan is indicated for the palliative treatment of chronic myelogenous leukemia. Bone marrow suppression is the most common dose limiting side effects of busulfan.
  • Carmustine 1,3-[bis(2-chloroethyl)-1-nitrosourea, is commercially available as single vials of lyophilized material as BiCNU®.
  • Carmustine is indicated for the palliative treatment as a single agent or in combination with other agents for brain tumors, multiple myeloma, Hodgkin's disease, and non-Hodgkin's lymphomas. Delayed myelosuppression is the most common dose limiting side effects of carmustine.
  • dacarbazine 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide, is commercially available as single vials of material as DTIC-Dome®.
  • dacarbazine is indicated for the treatment of metastatic malignant melanoma and in combination with other agents for the second line treatment of Hodgkin's Disease. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dacarbazine.
  • Antibiotic anti-neoplastics are non-phase specific agents, which bind or intercalate with DNA. Typically, such action results in stable DNA complexes or strand breakage, which disrupts ordinary function of the nucleic acids leading to cell death.
  • antibiotic anti-neoplastic agents include, but are not limited to, actinomycins such as dactinomycin, anthrocyclins such as daunorubicin and doxorubicin; and bleomycins.
  • Dactinomycin also know as Actinomycin D, is commercially available in injectable form as COSMEGEN®. Dactinomycin is indicated for the treatment of Wilm's tumor and rhabdomyosarcoma. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dactinomycin.
  • Daunorubicin (8S-cis-)-8-acetyl-10-[(3-amino-2,3,6-trideoxy- ⁇ -L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12 naphthacenedione hydrochloride, is commercially available as a liposomal injectable form as DAUNOXOME® or as an injectable as CERUBIDINE®. Daunorubicin is indicated for remission induction in the treatment of acute nonlymphocytic leukemia and advanced HIV associated Kaposi's sarcoma. Myelosuppression is the most common dose limiting side effect of daunorubicin.
  • Doxorubicin is primarily indicated for the treatment of acute lymphoblastic leukemia and acute myeloblastic leukemia, but is also a useful component in the treatment of some solid tumors and lymphomas. Myelosuppression is the most common dose limiting side effect of doxorubicin.
  • Bleomycin a mixture of cytotoxic glycopeptide antibiotics isolated from a strain of Streptomyces verticillus , is commercially available as BLENOXANE®. Bleomycin is indicated as a palliative treatment, as a single agent or in combination with other agents, of squamous cell carcinoma, lymphomas, and testicular carcinomas. Pulmonary and cutaneous toxicities are the most common dose limiting side effects of bleomycin.
  • Topoisomerase II inhibitors include, but are not limited to, epipodophyllotoxins.
  • Epipodophyllotoxins are phase specific anti-neoplastic agents derived from the mandrake plant. Epipodophyllotoxins typically affect cells in the S and G 2 phases of the cell cycle by forming a ternary complex with topoisomerase II and DNA causing DNA strand breaks. The strand breaks accumulate and cell death follows. Examples of epipodophyllotoxins include, but are not limited to, etoposide and teniposide.
  • Etoposide 4′-demethyl-epipodophyllotoxin 9[4,6-0-(R)-ethylidene-8-D-glucopyranoside] is commercially available as an injectable solution or capsules as VePESID® and is commonly known as VP-16.
  • Etoposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of testicular and non-small cell lung cancers. Myelosuppression is the most common side effect of etoposide. The incidence of leucopenia tends to be more severe than thrombocytopenia.
  • Teniposide 4′-demethyl-epipodophyllotoxin 9[4,6-0-(R)-thenylidene-8-D-glucopyranoside], is commercially available as an injectable solution as VUMON® and is commonly known as VM-26.
  • Teniposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia in children. Myelosuppression is the most common dose limiting side effect of teniposide.
  • Teniposide can induce both leucopenia and thrombocytopenia.
  • Antimetabolite neoplastic agents are phase specific anti-neoplastic agents that act at S phase (DNA synthesis) of the cell cycle by inhibiting DNA synthesis or by inhibiting purine or pyrimidine base synthesis and thereby limiting DNA synthesis. Consequently, S phase does not proceed and cell death follows.
  • Examples of antimetabolite anti-neoplastic agents include, but are not limited to, fluorouracil, methotrexate, cytarabine, mercaptopurine, thioguanine, and gemcitabine.
  • 5-fluorouracil 5-fluoro-2,4-(1H,3H) pyrimidinedione
  • fluorouracil is commercially available as fluorouracil.
  • Administration of 5-fluorouracil leads to inhibition of thymidylate synthesis and is also incorporated into both RNA and DNA. The result typically is cell death.
  • 5-fluorouracil is indicated as a single agent or in combination with other chemotherapy agents in the treatment of carcinomas of the breast, colon, rectum, stomach and pancreas. Myelosuppression and mucositis are dose limiting side effects of 5-fluorouracil.
  • Other fluoropyrimidine analogs include 5-fluoro deoxyuridine (floxuridine) and 5-fluorodeoxyuridine monophosphate.
  • Cytarabine 4-amino-1- ⁇ -D-arabinofuranosyl-2(1H)-pyrimidinone, is commercially available as CYTOSAR-U® and is commonly known as Ara-C. It is believed that cytarabine exhibits cell phase specificity at S-phase by inhibiting DNA chain elongation by terminal incorporation of cytarabine into the growing DNA chain. Cytarabine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Other cytidine analogs include 5-azacytidine and 2′,2′-difluorodeoxycytidine (gemcitabine). Cytarabine induces leucopenia, thrombocytopenia, and mucositis.
  • Mercaptopurine 1,7-dihydro-6H-purine-6-thione monohydrate, is commercially available as PURINETHOL®.
  • Mercaptopurine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism.
  • Mercaptopurine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Myelosuppression and gastrointestinal mucositis are expected side effects of mercaptopurine at high doses.
  • a useful mercaptopurine analog is azathioprine.
  • Thioguanine 2-amino-1,7-dihydro-6H-purine-6-thione, is commercially available as TABLOID®.
  • Thioguanine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism.
  • Thioguanine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia.
  • Myelosuppression including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of thioguanine administration. However, gastrointestinal side effects occur and can be dose limiting.
  • Other purine analogs include pentostatin, erythrohydroxynonyladenine, fludarabine phosphate, and cladribine.
  • Gemcitabine 2′-deoxy-2′,2′-difluorocytidine monohydrochloride ( ⁇ -isomer), is commercially available as GEMZAR®.
  • GEMZAR® 2′-deoxy-2′,2′-difluorocytidine monohydrochloride
  • Gemcitabine exhibits cell phase specificity at S-phase and by blocking progression of cells through the G1/S boundary.
  • Gemcitabine is indicated in combination with cisplatin in the treatment of locally advanced non-small cell lung cancer and alone in the treatment of locally advanced pancreatic cancer.
  • Myelosuppression including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of gemcitabine administration.
  • Methotrexate N-[4[[(2,4-diamino-6-pteridinyl)methyl]methylamino]benzoyl]-L-glutamic acid, is commercially available as methotrexate sodium. Methotrexate exhibits cell phase effects specifically at S-phase by inhibiting DNA synthesis, repair and/or replication through the inhibition of dyhydrofolic acid reductase which is required for synthesis of purine nucleotides and thymidylate.
  • Methotrexate is indicated as a single agent or in combination with other chemotherapy agents in the treatment of choriocarcinoma, meningeal leukemia, non-Hodgkin's lymphoma, and carcinomas of the breast, head, neck, ovary and bladder.
  • Myelosuppression (leucopenia, thrombocytopenia, and anemia) and mucositis are expected side effect of methotrexate administration.
  • Camptothecins including, camptothecin and camptothecin derivatives are available or under development as Topoisomerase I inhibitors. Camptothecins cytotoxic activity is believed to be related to its Topoisomerase I inhibitory activity. Examples of camptothecins include, but are not limited to irinotecan, topotecan, and the various optical forms of 7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20-camptothecin described below.
  • Irinotecan HCl (4S)-4,11-diethyl-4-hydroxy-9-[(4-piperidinopiperidino) carbonyloxy]-1H-pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione hydrochloride, is commercially available as the injectable solution CAMPTOSAR®.
  • Irinotecan is a derivative of camptothecin which binds, along with its active metabolite SN-38, to the topoisomerase I-DNA complex. It is believed that cytotoxicity occurs as a result of irreparable double strand breaks caused by interaction of the topoisomerase I:DNA:irintecan or SN-38 ternary complex with replication enzymes. Irinotecan is indicated for treatment of metastatic cancer of the colon or rectum. The dose limiting side effects of irinotecan HCl are myelosuppression, including neutropenia, and GI effects, including diarrhea.
  • Topotecan HCl (S)-10-[(dimethylamino)methyl]-4-ethyl-4,9-dihydroxy-1H-pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione monohydrochloride, is commercially available as the injectable solution HYCAMTIN®.
  • Topotecan is a derivative of camptothecin which binds to the topoisomerase I-DNA complex and prevents religation of singles strand breaks caused by Topoisomerase I in response to torsional strain of the DNA molecule.
  • Topotecan is indicated for second line treatment of metastatic carcinoma of the ovary and small cell lung cancer.
  • the dose limiting side effect of topotecan HCl is myelosuppression, primarily neutropenia.
  • camptothecin derivative of formula A following, currently under development, including the racemic mixture (R,S) form as well as the R and S enantiomers:
  • Hormones and hormonal analogues are useful compounds for treating cancers in which there is a relationship between the hormone(s) and growth and/or lack of growth of the cancer.
  • hormones and hormonal analogues useful in cancer treatment include, but are not limited to, adrenocorticosteroids such as prednisone and prednisolone which are useful in the treatment of malignant lymphoma and acute leukemia in children; aminoglutethimide and other aromatase inhibitors such as anastrozole, letrazole, vorazole, and exemestane useful in the treatment of adrenocortical carcinoma and hormone dependent breast carcinoma containing estrogen receptors; progestins such as megestrol acetate useful in the treatment of hormone dependent breast cancer and endometrial carcinoma; estrogens, androgens, and anti-androgens such as flutamide, nilutamide, bicalutamide, cyproterone acetate and 5 ⁇ -reductases
  • GnRH gonadotropin-releasing hormone
  • LH leutinizing hormone
  • FSH follicle stimulating hormone
  • Signal transduction pathway inhibitors are those inhibitors, which block or inhibit a chemical process which evokes an intracellular change. As used herein this change is cell proliferation or differentiation.
  • Signal transduction inhibitors useful in the present invention include inhibitors of receptor tyrosine kinases, non-receptor tyrosine kinases, SH2/SH3domain blockers, serine/threonine kinases, phosphotidyl inositol-3 kinases, myo-inositol signaling, and Ras oncogenes.
  • protein tyrosine kinases catalyse the phosphorylation of specific tyrosyl residues in various proteins involved in the regulation of cell growth.
  • protein tyrosine kinases can be broadly classified as receptor or non-receptor kinases.
  • Receptor tyrosine kinases are transmembrane proteins having an extracellular ligand binding domain, a transmembrane domain, and a tyrosine kinase domain. Receptor tyrosine kinases are involved in the regulation of cell growth and are generally termed growth factor receptors. Inappropriate or uncontrolled activation of many of these kinases, i.e. aberrant kinase growth factor receptor activity, for example by over-expression or mutation, has been shown to result in uncontrolled cell growth. Accordingly, the aberrant activity of such kinases has been linked to malignant tissue growth. Consequently, inhibitors of such kinases could provide cancer treatment methods.
  • Growth factor receptors include, for example, epidermal growth factor receptor (EGFr), platelet derived growth factor receptor (PDGFr), erbB2, erbB4, vascular endothelial growth factor receptor (VEGFr), tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains (TIE-2), insulin growth factor-I (IGFI) receptor, macrophage colony stimulating factor (cfms), BTK, ckit, cmet, fibroblast growth factor (FGF) receptors, Trk receptors (TrkA, TrkB, and TrkC), ephrin (eph) receptors, and the RET protooncogene.
  • EGFr epidermal growth factor receptor
  • PDGFr platelet derived growth factor receptor
  • erbB2 erbB4
  • VEGFr vascular endothelial growth factor receptor
  • TIE-2 vascular endothelial growth factor receptor
  • IGFI insulin growth factor
  • inhibitors of growth receptors include ligand antagonists, antibodies, tyrosine kinase inhibitors and anti-sense oligonucleotides.
  • Growth factor receptors and agents that inhibit growth factor receptor function are described, for instance, in Kath, John C., Exp. Opin. Ther. Patents (2000) 10(6):803-818; Shawver et al DDT Vol 2, No. 2 Feb. 1997; and Lofts, F. J. et al, “Growth factor receptors as targets”, New Molecular Targets for Cancer Chemotherapy, ed. Workman, Paul and Kerr, David, CRC press 1994, London.
  • Non-receptor tyrosine kinases which are not growth factor receptor kinases are termed non-receptor tyrosine kinases.
  • Non-receptor tyrosine kinases useful in the present invention include cSrc, Lck, Fyn, Yes, Jak, cAbl, FAK (Focal adhesion kinase), Brutons tyrosine kinase, and Bcr-Abl.
  • Such non-receptor kinases and agents which inhibit non-receptor tyrosine kinase function are described in Sinh, S, and Corey, S. J., (1999) Journal of Hematotherapy and Stem Cell Research 8 (5): 465-80; and Bolen, J. B., Brugge, J. S., (1997) Annual review of Immunology. 15: 371-404.
  • SH2/SH3 domain blockers are agents that disrupt SH2 or SH3 domain binding in a variety of enzymes or adaptor proteins including, PI3-K p85 subunit, Src family kinases, adaptor molecules (Shc, Crk, Nck, Grb2) and Ras-GAP.
  • SH2/SH3 domains as targets for anti-cancer drugs are discussed in Smithgall, T. E. (1995), Journal of Pharmacological and Toxicological Methods. 34(3) 125-32.
  • Inhibitors of Serine/Threonine Kinases including MAP kinase cascade blockers which include blockers of Raf kinases (rafk), Mitogen or Extracellular Regulated Kinase (MEKs), and Extracellular Regulated Kinases (ERKs); and Protein kinase C family member blockers including blockers of PKCs (alpha, beta, gamma, epsilon, mu, lambda, iota, zeta).
  • IkB kinase family IKKa, IKKb
  • PKB family kinases AKT kinase family members
  • TGF beta receptor kinases TGF beta receptor kinases.
  • Serine/Threonine kinases and inhibitors thereof are described in Yamamoto, T., Taya, S., Kaibuchi, K., (1999), Journal of Biochemistry. 126 (5) 799-803; Brodt, P, Samani, A., and Navab, R. (2000), Biochemical Pharmacology, 60. 1101-1107; Massague, J., Weis-Garcia, F. (1996) Cancer Surveys. 27:41-64; Philip, P. A., and Harris, A. L. (1995), Cancer Treatment and Research. 78: 3-27, Lackey, K. et al Bioorganic and Medicinal Chemistry Letters, (10), 2000, 223-226; U.S. Pat. No. 6,268,391; and Martinez-Iacaci, L., et al, Int. J. Cancer (2000), 88(1), 44-52.
  • Inhibitors of Phosphotidyl inositol-3 Kinase family members including blockers of PI3-kinase, ATM, DNA-PK, and Ku are also useful in the present invention.
  • Such kinases are discussed in Abraham, R. T. (1996), Current Opinion in Immunology. 8 (3) 412-8; Canman, C. E., Lim, D. S. (1998), Oncogene 17 (25) 3301-3308; Jackson, S. P. (1997), International Journal of Biochemistry and Cell Biology. 29 (7):935-8; and Zhong, H. et al, Cancer res, (2000) 60(6), 1541-1545.
  • Myo-inositol signaling inhibitors such as phospholipase C blockers and Myoinositol analogues.
  • signal inhibitors are described in Powis, G., and Kozikowski A., (1994) New Molecular Targets for Cancer Chemotherapy ed., Paul Workman and David Kerr, CRC press 1994, London.
  • Ras Oncogene Another group of signal transduction pathway inhibitors are inhibitors of Ras Oncogene.
  • Such inhibitors include inhibitors of farnesyltransferase, geranyl-geranyl transferase, and CAAX proteases as well as anti-sense oligonucleotides, ribozymes and immunotherapy.
  • Such inhibitors have been shown to block ras activation in cells containing wild type mutant ras, thereby acting as antiproliferation agents.
  • Ras oncogene inhibition is discussed in Scharovsky, O. G., Rozados, V. R., Gervasoni, S. I. Matar, P. (2000), Journal of Biomedical Science. 7(4) 292-8; Ashby, M. N. (1998), Current Opinion in Lipidology. 9 (2) 99-102; and BioChim. Biophys. Acta, (19899) 1423(3):19-30.
  • antibody antagonists to receptor kinase ligand binding may also serve as signal transduction inhibitors.
  • This group of signal transduction pathway inhibitors includes the use of humanized antibodies to the extracellular ligand binding domain of receptor tyrosine kinases.
  • Imclone C225 EGFR specific antibody see Green, M. C. et al, Monoclonal Antibody Therapy for Solid Tumors, Cancer Treat.
  • Herceptin® erbB2 antibody see Tyrosine Kinase Signalling in Breast cancer:erbB Family Receptor Tyrosine Kinases, Breast cancer Res., 2000, 2(3), 176-183
  • 2CB VEGFR2 specific antibody see Brekken, R. A. et al, Selective Inhibition of VEGFR2 Activity by a monoclonal Anti-VEGF antibody blocks tumor growth in mice, Cancer Res. (2000) 60, 5117-5124).
  • Non-receptor kinase angiogenesis inhibitors may also find use in the present invention.
  • Inhibitors of angiogenesis related VEGFR and TIE2 are discussed above in regard to signal transduction inhibitors (both receptors are receptor tyrosine kinases).
  • Angiogenesis in general is linked to erbB2/EGFR signaling since inhibitors of erbB2 and EGFR have been shown to inhibit angiogenesis, primarily VEGF expression.
  • the combination of an erbB2/EGFR inhibitor with an inhibitor of angiogenesis makes sense.
  • non-receptor tyrosine kinase inhibitors may be used in combination with the EGFR/erbB2 inhibitors of the present invention.
  • anti-VEGF antibodies which do not recognize VEGFR (the receptor tyrosine kinase), but bind to the ligand; small molecule inhibitors of integrin (alpha v beta 3 ) that will inhibit angiogenesis; endostatin and angiostatin (non-RTK) may also prove useful in combination with the disclosed erb family inhibitors.
  • VEGFR the receptor tyrosine kinase
  • small molecule inhibitors of integrin alpha v beta 3
  • endostatin and angiostatin non-RTK
  • Agents used in immunotherapeutic regimens may also be useful in combination with the compounds of formula (I).
  • immunologic strategies to generate an immune response against erbB2 or EGFR. These strategies are generally in the realm of tumor vaccinations.
  • the efficacy of immunologic approaches may be greatly enhanced through combined inhibition of erbB2/EGFR signaling pathways using a small molecule inhibitor. Discussion of the immunologic/tumor vaccine approach against erbB2/EGFR are found in Reilly R T et al. (2000), Cancer Res. 60: 3569-3576; and Chen Y, Hu D, Eling D J, Robbins J, and Kipps T J. (1998), Cancer Res. 58: 1965-1971.
  • Agents used in proapoptotic regimens may also be used in the combination of the present invention.
  • Members of the Bcl-2 family of proteins block apoptosis. Upregulation of bcl-2 has therefore been linked to chemoresistance.
  • EGF epidermal growth factor
  • Cell cycle signalling inhibitors inhibit molecules involved in the control of the cell cycle.
  • a family of protein kinases called cyclin dependent kinases (CDKs) and their interaction with a family of proteins termed cyclins controls progression through the eukaryotic cell cycle. The coordinate activation and inactivation of different cyclin/CDK complexes is necessary for normal progression through the cell cycle.
  • CDKs cyclin dependent kinases
  • Several inhibitors of cell cycle signalling are under development. For instance, examples of cyclin dependent kinases, including CDK2, CDK4, and CDK6 and inhibitors for the same are described in, for instance, Rosania et al, Exp. Opin. Ther. Patents (2000) 10(2):215-230.
  • the cancer treatment method of the claimed invention includes the co-administration a compound of formula I and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof and at least one anti-neoplastic agent, such as one selected from the group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, immunotherapeutic agents, proapoptotic agents, and cell cycle signaling inhibitors.
  • anti-neoplastic agent such as one selected from the group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyros
  • the pharmaceutically active compounds of the present invention are active as PI3 kinase inhibitors, particularly the compounds that modulate/inhibit PI3K ⁇ , either selectively or in conjunction with one or more of PI3K ⁇ , PI3K ⁇ , and/or PI3 ⁇ , they exhibit therapeutic utility in treating a disease state selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, cancer, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • a disease state selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, cancer, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • a disease state selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, cancer, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection or lung injuries
  • co-administering and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, cancer, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection and/or lung injuries.
  • PI3 kinases particularly PI3K ⁇ .
  • the exemplified compounds were tested and found active against PI3K ⁇ .
  • the IC 50 's ranged from about 1 nM to 10 ⁇ M. The majority of the compounds were under 500 nM; the most active compounds were under 10 nM.
  • Example 1 The compound of Example 1 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 5 nM against PI3K ⁇ .
  • Example 2 The compound of Example 2 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 100 nM against PI3K ⁇ .
  • Example 4 The compound of Example 4 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 50 nM against PI3K ⁇ .
  • Example 19 The compound of Example 19 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 8 nM against PI3K ⁇ .
  • Example 20 The compound of Example 20 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 16 nM against PI3K ⁇ .
  • Example 69 The compound of Example 69 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 13 nM against PI3K ⁇ .
  • Example 70 The compound of Example 70 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 200 nM against PI3K ⁇ .
  • SPA imaging beads are microspheres containing scintillant which emit light in the red region of the visible spectrum. As a result, these beads are ideally suited to use with a CCD imager such as the Viewlux.
  • the Leadseeker beads used in this system are polystyrene beads that have been coupled with polyethyleneimine. When added to the assay mixture, the beads absorb both the substrate (PIP2) and product (PIP3). Adsorbed P 33 -PIP3 will cause an increase in signal, measured as ADUs (analog to digital units).
  • This protocol details the use of the PEI-PS Leadseeker beads for assays using His-p110/p85 PI3K alpha.
  • Solid compounds are typically plated with 0.1 ⁇ l of 100% DMSO in all wells (except column 6 and 18) of a 384-well, flat bottom, low volume plate (Greiner 784075).
  • the compounds are serially diluted (3-fold in 100% DMSO) across the plate from column 1 to column 12 and column 13 to column 24 and leave column 6 and 18 containing only DMSO to yield 11 concentrations for each test compound.
  • the assay buffer contains MOPS (pH 6.5), CHAPS, and DTT.
  • PI3K alpha and PIP2 L-alpha-D-myo-Phosphatidylinositol 4,5-bisphosphate[PI(4,5)P2]3-O-phospho linked, D(+)-sn-1,2-di-O-octanoylglyceryl, CellSignals # 901) are mixed and incubated in the plate with compound for 30 min prior to starting the reaction with the addition of P 33 -ATP and MgCl 2 (reagents added using Zoom). Enzyme-free wells (column 18) are typically done to determine the low control.
  • PEI-PS Leadseeker beads in PBS/EDTA/CHAPS are added (by Multidrop) to quench the reaction, and the plates are allowed to incubate for at least one hour (typically overnight) before centrifugation.
  • the signal is determined using a Viewlux detector and is then imported into curve fitting software (Activity Base) for construction of concentration response curves.
  • the percent inhibition of activity is calculated relative to high controls (C1, 0.1 ⁇ l DMSO in column 6, rows A-P)) and low controls (C2, 5 ⁇ l of 40 uM PIP2 in buffer in column 18, rows A-P) using, 100*(1 ⁇ (U1 ⁇ C2)/(C1 ⁇ C2)).
  • the IC50 values are converted to pIC50 values, i.e., ⁇ log IC50 in Molar concentration.
  • BT474, HCC1954 and T-47D (human breast) were cultured in RPMI-1640 containing 10% fetal bovine serum at 37° C. in 5% CO 2 incubator.
  • Cells were split into T75 flask (Falcon #353136) two to three days prior to assay set up at density which yields approximately 70-80% confluence at time of harvest for assay.
  • Cells were harvested using 0.25% trypsin-EDTA (Sigma #4049). Cell counts were performed on cell suspension using Trypan Blue exclusion staining.
  • Cells were then plated in 384 well black flat bottom polystyrene (Greiner #781086) in 48 ⁇ l of culture media per well at 1,000 cells/well. All plates were placed at 5% CO 2 , 37° C.
  • test compounds were added the following day.
  • the test compounds were prepared in clear bottom polypropylene 384 well plates (Greiner #781280) with consecutive two fold dilutions. 4 ⁇ l of these dilutions were added to 105 ⁇ l culture media, after mixing the solution, 2 ⁇ l of these dilutions were added into each well of the cell plates. The final concentration of DMSO in all wells was 0.15%. Cells were incubated at 37° C., 5% CO 2 for 72 hours. Following 72 hours of incubation with compounds each plate was developed and read.
  • the compounds of the present invention can also be tested to determine their inhibitory activity at PI3K ⁇ , PI3 ⁇ , PI3K ⁇ and PI3K ⁇ according to the following references:
  • the pharmaceutically active compounds within the scope of this invention are useful as PI3 Kinase inhibitors in mammals, particularly humans, in need thereof.
  • the present invention therefore provides a method of treating diseases associated with PI3 kinase inhibition, particularly: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries and other conditions requiring PI3 kinase modulation/inhibition, which comprises administering an effective compound of Formula (I) or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof.
  • the compounds of Formula (I) also provide for a method of treating the above indicated disease states because of their ability to act as PI3 inhibitors.
  • the drug may be administered to a patient in need thereof by any conventional route of administration, including, but not limited to, intravenous, intramuscular, oral, subcutaneous, intradermal, and parenteral.
  • Solid or liquid pharmaceutical carriers are employed.
  • Solid carriers include, starch, lactose, calcium sulfate dihydrate, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid.
  • Liquid carriers include syrup, peanut oil, olive oil, saline, and water.
  • the carrier or diluent may include any prolonged release material, such as glyceryl monostearate or glyceryl distearate, alone or with a wax.
  • the amount of solid carrier varies widely but, preferably, will be from about 25 mg to about 1 g per dosage unit.
  • the preparation will be in the form of a syrup, elixir, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampoule, or an aqueous or nonaqueous liquid suspension.
  • the pharmaceutical preparations are made following conventional techniques of a pharmaceutical chemist involving mixing, granulating, and compressing, when necessary, for tablet forms, or mixing, filling and dissolving the ingredients, as appropriate, to give the desired oral or parenteral products.
  • Doses of the presently invented pharmaceutically active compounds in a pharmaceutical dosage unit as described above will be an efficacious, nontoxic quantity preferably selected from the range of 0.001-100 mg/kg of active compound, preferably 0.001-50 mg/kg.
  • the selected dose is administered preferably from 1-6 times daily, orally or parenterally.
  • Preferred forms of parenteral administration include topically, rectally, transdermally, by injection and continuously by infusion.
  • Oral dosage units for human administration preferably contain from 0.05 to 3500 mg of active compound. Oral administration, which uses lower dosages is preferred. Parenteral administration, at high dosages, however, also can be used when safe and convenient for the patient.
  • Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular PI3 kinase inhibitor in use, the strength of the preparation, the mode of administration, and the advancement of the disease condition. Additional factors depending on the particular patient being treated will result in a need to adjust dosages, including patient age, weight, diet, and time of administration.
  • the method of this invention of inducing PI3 kinase inhibitory activity in mammals, including humans, comprises administering to a subject in need of such activity an effective PI3 kinase modulating/inhibiting amount of a pharmaceutically active compound of the present invention.
  • the invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use as a PI3 kinase inhibitor.
  • the invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in therapy.
  • the invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in treating autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • the invention also provides for a pharmaceutical composition for use as a PI3 inhibitor which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • the invention also provides for a pharmaceutical composition for use in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries, which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • the pharmaceutically active compounds of the present invention can be co-administered with further active ingredients, including compounds known to have utility when used in combination with a PI3 kinase inhibitor.
  • Quinoxalines such as represented by compounds of Formula I can be prepared from, for example, bromoquinoxalinols (2) which have been prepared in the literature ( Journal of Medicinal Chemistry, 1981, 24(1), 93-101).
  • bromoquinoxalinols such as compound 2 may be converted to a bromochloroquinoxaline such as compound 3 by for example, treatment with phosphorous oxychloride at elevated temperatures (typically 120° C.).
  • the resulting chlorinated compound (3) may undergo a variety of coupling reactions as delineated by steps C, D or E.
  • the coupling step is for instance a nucleophilic displacement reaction such as for steps C or D
  • suitable nucleophiles such as amines, or alkoxides are commercially available or easily prepared by methods known to those skilled in the art.
  • such a displacement may be carried out at room temperature or further facilitated by heating to temperatures such as 70-100° C. either in neat reagent or in a suitable polar solvent such as N,N′-dimethylformamide.
  • the coupling step to prepare compounds of formula 4 may be a transition metal (such as palladium) catalyzed cross-coupling reaction of an aryl or heteroaryl stannane, boronate ester or boronic acid with compound 3, such as in step E.
  • a transition metal such as palladium
  • An exemplary coupling reaction such as a Suzuki cross-coupling depicted in step E can be achieved by treating compound 3 with an appropriate palladium catalyst (typically 1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1)), in the presence of inorganic base (such as potassium carbonate, sodium carbonate or sodium bicarbonate) and a suitable solvent (such as 1,4-dioxane or N,N′-dimethylformamide) at elevated temperatures (typically 100° C.).
  • an appropriate palladium catalyst typically 1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1)
  • inorganic base such as potassium carbonate, sodium carbonate or sodium bicarbonate
  • a suitable solvent such as 1,4-dioxane or N,N′-dimethylformamide
  • the resulting compounds of formula (4) may undergo another palladium catalyzed coupling reaction as described above with an aryl or heteroaryl boronate ester or boronic acid to furnish compounds of the present invention such as 6.
  • a palladium catalyst such as 1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1)
  • base such as potassium acetate
  • solvent such as dioxane
  • Such boronate esters can undergo typical Suzuki cross-coupling reactions (as described above) with appropriate aryl or heteroaryl halides to provide compounds of the present invention, such as compound 6.
  • Scheme 2 describes the removal of an amine protecting group when it is necessary to protect an amine before a coupling reaction (such as in steps C, D, or E in Scheme 1 above) can be carried out.
  • a Boc-protected amine such as compound 7 can be treated with trifluoroacetic acid in a suitable solvent (such as acetonitrile) at rt to furnish compounds of the present invention such as compound 8.
  • Example 1 The following compounds were or can be prepared following the procedures used to prepare Example 1:
  • Example 69 The following compounds were or can be prepared following the procedures used to prepare Example 69:
  • the reaction mixture was cooled, diluted with diethyl ether (30 mL), and filtered through a pad of Celite while rinsing with (2 ⁇ 30 mL) diethyl ether.
  • the organic layer was poured into a separatory funnel containing water (100 mL) and the layers were separated.
  • the aqueous layer was acidified with 6N aqueous HCl until the pH was approximately 7 and then further extracted with (3 ⁇ 200 mL) ethyl acetate.
  • the combined organic layers were dried over sodium sulfate with decolorizing activated carbon, filtered through a pad of Celite while rinsing with (2 ⁇ 100 mL) ethyl acetate, and concentrated in vacuo.
  • reaction mixture Upon cooling, the reaction mixture separated into two layers (aqueous and organic). The organic layer was partitioned between ethyl acetate (50 mL) and water (25 mL). The two aqueous layers were then combined and the pH was adjusted to ⁇ 7 with 2N aqueous HCl. A solid precipitated and was filtered away from the solution. The solid was dried in vacuo and then desiccated over P 2 O 5 to afford the title product (2.5 g, 64%). MS(ES)+ m/e 479 [M+H] + .
  • Example 184 The following compounds were or can be prepared following the procedures used to prepare Example 184 using the appropriate sulfonyl chloride, anhydride or acyl chloride:
  • a boronate ester such as N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide
  • the aniline in step a was or can be pretreated with 3 equivalents of sodium hydride in a solvent such as N,N-dimethylformamide prior to reaction with 7-bromo-2-chloroquinoxaline:
  • boronate or boronic acids can be prepared using this procedure by varying the choice of starting aryl or heteroaryl bromide.
  • alkyl-aminosulfonylpyridinyl bromides were or can be prepared using this procedure by varying the choice of starting pyridineamine and sulfonyl chloride.
  • alkyl, aryl, or heteroaryl-aminosulfonylpyridinyl bromides can be prepared using this procedure by varying the choice of sulfonyl chloride.
  • N-(5-bromo-3-pyridinyl)benzenesulfonamide 25 g, 80 mmol
  • 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi-1,3,2-dioxaborolane 24.33 g, 96 mmol
  • PdCl 2 dppf
  • CH 2 Cl 2 (2.61 g, 3.19 mmol)
  • potassium acetate 31.3 g, 319 mmol
  • aryl- or heteroaryl-aminosulfonylpyridinyl boronate esters can be prepared using this procedure by varying the choice of starting aryl- or heteroaryl-aminosulfonylpyridinyl bromides.
  • dimethylsulfamoyl chloride (0.310 mL, 2.89 mmol) was added by syringe to a solution of 3-amino-5-bromopyridine (500 mg, 2.89 mmol) and pyridine (0.467 mL, 5.78 mmol) in dichloromethane (10 mL) at room temperature.
  • the reaction was stirred for 4 hours and then added additional dimethylsulfamoyl chloride (0.310 mL, 2.89 mmol) to the reaction and stirred overnight (20 hours). The reaction was concentrated in vacuo.
  • sulfamides can be prepared using this procedure by varying the choice of starting pyridineamine bromides and sulfamoyl chlorides.
  • alkylated, acylated and sulfonylated pyrazoles were or can be prepared using this procedure by varying the choice of alkylbromide, acyl chloride or sulfonyl chloride.
  • aryl or heteroaryl substituted quinoxalines can be prepared using this procedure by varying the choice of aryl- or heteroaryl boronic acid or boronate ester.
  • the reaction mixture was filtered, washing with 100 mL ethyl acetate.
  • the filtrate was concentrated in vacuo and the brown residue dissolved in hot ethyl acetate ( ⁇ 20 mL).
  • the dark solution was filtered and the filtrate concentrated in vacuo.
  • the residue was partitioned between ethyl acetate (100 mL) and water (70 mL) and the organic phase separated, dried over magnesium sulfate, filtered and concentrated to ⁇ 10 mL, then treated with portions of hexanes ( ⁇ 2 volumes). A fine, dark solid precipitate formed which was removed by filtration, and the filtrate was evaporated to an olive residue.
  • An oral dosage form for administering the present invention is produced by filing a standard two piece hard gelatin capsule with the ingredients in the proportions shown in Table II, below.
  • An injectable form for administering the present invention is produced by stirring 1.5% by weight of compound of example 1 in 10% by volume propylene glycol in water.
  • sucrose, calcium sulfate dihydrate and an PI3K inhibitor as shown in Table III below are mixed and granulated in the proportions shown with a 10% gelatin solution.
  • the wet granules are screened, dried, mixed with the starch, talc and stearic acid, screened and compressed into a tablet.

Abstract

Invented is a method of inhibiting the activity/function of PI3 kinases using quinoxaline derivatives. Also invented is a method of treating one or more disease states selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries by the administration of quinoxaline derivatives.

Description

    FIELD OF THE INVENTION
  • This invention relates to the use of quinoxaline derivatives for the modulation, notably the inhibition of the activity or function of the phosphoinositide 3′ OH kinase family (hereinafter PI3 kinases), suitably, PI3Kα, PI3δ, PI3Kβ, and/or PI3Kγ. Suitably, the present invention relates to the use of quinoxalines in the treatment of one or more disease states selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • BACKGROUND OF THE INVENTION
  • Cellular membranes represent a large store of second messengers that can be enlisted in a variety of signal transduction pathways. In regards function and regulation of effector enzymes in phospholipids signaling pathways, these enzymes generate second messengers from the membrane phospholipid pools (class I PI3 kinases (e.g. PI3Kalpha)) are dual-specificity kinase enzymes, meaning they display both: lipid kinase (phosphorylation of phosphoinositides) as well as protein kinase activity, shown to be capable of phosphorylation of protein as substrate, including auto-phosphorylation as intramolecular regulatory mechanism. These enzymes of phospholipids signaling are activated in response to a variety of extra-cellular signals such as growth factors, mitogens, integrins (cell-cell interactions) hormones, cytokines, viruses and neurotransmitters such as described in Scheme A hereinafter and also by intracellular regulation by other signaling molecules (cross-talk, where the original signal can activate some parallel pathways that in a second step transmit signals to PI3Ks by intra-cellular signaling events), such as small GTPases, kinases or phosphatases for example. Intracellular regulation can also occur as a result of aberrant expression or lack of expression of cellular oncogenes or tumor suppressors. The inositol phospholipid (phosphoinositides) intracellular signaling pathways begin with activation of a signaling molecules (extra cellular ligands, stimuli, receptor dimerization, transactivation by heterologous receptor (e.g. receptor tyrosine kinase)) the recruitment and activation of PI3K including the involvement of G-protein linked transmembrane receptor integrated into the plasma membrane.
  • PI3K converts the membrane phospholipids PI(4,5)P2 into PI(3,4,5)P3 that functions as a second messenger. PI and PI(4)P are also substrates of PI3K and can be phosphorylated and converted into PI3P and PI(3,4)P2, respectively. In addition, these phosphoinositides can be converted into other phosphoinositides by 5′-specific and 3′-specific phophatases, thus PI3K enzymatic activity results either directly or indirectly in the generation of two 3′-phosphoinositide subtypes that function as 2nd messengers in intra-cellular signal transduction pathways (Trends Biochem. Sci. 22(7) p. 267-72 (1997) by Vanhaesebroeck et al.: Chem. Rev. 101(8) p. 2365-80 (2001) by Leslie et al (2001); Annu. Rev. Cell. Dev. Biol. 17p, 615-75 (2001) by Katso et al. and Cell. Mol. Life. Sci. 59(5) p. 761-79 (2002) by Toker et al.). Multiple PI3K isoforms categorized by their catalytic subunits, their regulation by corresponding regulatory subunits, expression patterns and signaling-specific functions (p110α, β, δ and γ) perform this enzymatic reaction (Exp. Cell. Res. 25 (1) p. 239-54 (1999) by Vanhaesebroeck and Katso et al., 2001, above).
  • The closely related isoforms p110α and β are ubiquitously expressed, while δ and γ are more specifically expressed in the haematopoietic cell system, smooth muscle cells, myocytes and endothelial cells (Trends Biochem. Sci. 22(7) p. 267-72 (1997) by Vanhaesebroeck et al.). Their expression might also be regulated in an inducible manner depending on the cellular, tissue type and stimuli as well as disease context. Inducibility of protein expression includes synthesis of protein as well as protein stabilization that is in part regulated by association with regulatory subunits.
  • To date, eight mammalian PI3Ks have been identified, divided into three main classes (I, II, and III) on the basis of sequence homology, structure, binding partners, mode of activation, and substrate preference. In vitro, class I PI3Ks can phosphorylate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI4P), and phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to produce phosphatidylinositol-3-phosphate (PI3P), phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2, and phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3, respectively. Class II PI3Ks phosphorylate PI and phosphatidylinositol-4-phosphate. Class III PI3Ks can only phosphorylate PI (Vanhaesebrokeck et al., 1997, above; Vanhaesebroeck et al., 1999, above and Leslie et al, 2001, above)
  • Figure US20100234386A1-20100916-C00001
  • As illustrated in Scheme A above, phosphoinositide 3-kinases (PI3Ks) phosphorylate the hydroxyl of the third carbon of the inositol ring. The phosphorylation of phosphoinositides that generate PtdIns to 3,4,5-trisphosphate (PtdIns(3,4,5)P3), PtdIns(3,4)P2 and PtdIns(3)P produce second messengers for a variety of signal transduction pathways, including those essential to cell proliferation, cell differentiation, cell growth, cell size, cell survival, apoptosis, adhesion, cell motility, cell migration, chemotaxis, invasion, cytoskeletal rearrangement, cell shape changes, vesicle trafficking and metabolic pathway (Katso et al., 2001, above and Mol. Med. Today 6(9) p. 347-57 (2000) by Stein). G-protein coupled receptors mediated phosphoinositide 3′OH-kinase activation via small GTPases such as Gβγ and Ras, and consequently PI3K signaling plays a central role in establishing and coordinating cell polarity and dynamic organization of the cytoskeleton—which together provides the driving force of cells to move.
  • Chemotaxis—the directed movement of cells toward a concentration gradient of chemical attractants, also called chemokines is involved in many important diseases such as inflammation/auto-immunity, neurodegeneration, antiogenesis, invasion/metastasis and wound healing (Immunol. Today 21(6) p. 260-4 (2000) by Wyman et al.; Science 287(5455) p. 1049-53 (2000) by Hirsch et al.; FASEB J. 15(11) p. 2019-21 (2001) by Hirsch et al. and Nat. Immunol. 2(2) p. 108-15 (2001) by Gerard et al.).
  • Recent advances using genetic approaches and pharmacological tools have provided insights into signalling and molecular pathways that mediate chemotaxis in response to chemoattractant activated G-protein coupled receptors PI3-Kinase, responsible for generating these phosphorylated signalling products, was originally identified as an activity associated with viral oncoproteins and growth factor receptor tyrosine kinases that phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at the 3′-hydroxyl of the inositol ring (Panayotou et al., Trends Cell Biol. 2 p. 358-60 (1992)). However, more recent biochemical studies revealed that, class I PI3 kinases (e.g. class IB isoform PI3Kγ) are dual-specific kinase enzymes, means they display both: lipid kinase (phosphorylation of phospho-inositides) as well as protein kinase activity, shown to be capable of phosphorylation of other protein as substrates, including auto-phosphorylation as intra-molecular regulatory mechanism.
  • PI3-kinase activation, is therefore believe to be involved in a range of cellular responses including cell growth, differentiation, and apoptosis (Parker et al., Current Biology, 5 p. 577-99 (1995); Yao et al., Science, 267 p. 2003-05 (1995)). PI3-kinase appears to be involved in a number of aspects of leukocyte activation. A p85-associated PI3-kinase activity has been shown to physically associate with the cytoplasmic domain of CD28, which is an important costimulatory molecule for the activation of T-cells in response to antigen (Pages et al., Nature, 369 p. 327-29 (1994); Rudd, Immunity 4 p. 527-34 (1996)). Activation of T cells through CD28 lowers the threshold for activation by antigen and increases the magnitude and duration of the proliferative response. These effects are linked to increases in the transcription of a number of genes including interleukin-2 (IL2), an important T cell growth factor (Fraser et al., Science 251 p. 313-16 (1991)). Mutation of CD28 such that it can longer interact with PI3-kinase leads to a failure to initiate IL2 production, suggesting a critical role for PI3-kinase in T cell activation. PI3Kγ has been identified as a mediator of G beta-gamma-dependent regulation of JNK activity, and G beta-gamma are subunits of heterotrimeric G proteins (Lopez-Ilasaca et al., J. Biol. Chem. 273(5) p. 2505-8 (1998)). Cellular processes in which PI3Ks play an essential role include suppression of apoptosis, reorganization of the actin skeleton, cardiac myocyte growth, glycogen synthase stimulation by insulin, TNFα-mediated neutrophil priming and superoxide generation, and leukocyte migration and adhesion to endothelial cells.
  • Recently, (Laffargue et al., Immunity 16(3) p. 441-51 (2002)) it has been described that PI3Kγ relays inflammatory signals through various G(i)-coupled receptors and its central to mast cell function, stimuli in context of leukocytes, immunology includes cytokines, chemokines, adenosines, antibodies, integrins, aggregation factors, growth factors, viruses or hormones for example (J. Cell. Sci. 114(Pt 16) p. 2903-10 (2001) by Lawlor et al.; Laffargue et al., 2002, above and Curr. Opinion Cell Biol. 14(2) p. 203-13 (2002) by Stephens et al.).
  • Specific inhibitors against individual members of a family of enzymes provide invaluable tools for deciphering functions of each enzyme. Two compounds, LY294002 and wortmannin (cf. hereinafter), have been widely used as PI3-kinase inhibitors. These compounds are non-specific PI3K inhibitors, as they do not distinguish among the four members of Class I PI3-kinases. For example, the IC50 values of wortmannin against each of the various Class I PI3-kinases are in the range of 1-10 nM. Similarly, the IC50 values for LY294002 against each of these PI3-kinases is about 15-20 μM (Fruman et al., Ann. Rev. Biochem., 67, p. 481-507 (1998)), also 5-10 microM on CK2 protein kinase and some inhibitory activity on phospholipases. Wortmannin is a fungal metabolite which irreversibly inhibits PI3K activity by binding covalently to the catalytic domain of this enzyme. Inhibition of PI3K activity by wortmannin eliminates subsequent cellular response to the extracellular factor. For example, neutrophils respond to the chemokine fMet-Leu-Phe (fMLP) by stimulating PI3K and synthesizing PtdIns (3, 4, 5)P3. This synthesis correlates with activation of the respirators burst involved in neutrophil destruction of invading microorganisms. Treatment of neutrophils with wortmannin prevents the fMLP-induced respiratory burst response (Thelen et al., Proc. Natl. Acad. Sci. USA, 91, p. 4960-64 (1994)). Indeed, these experiments with wortmannin, as well as other experimental evidence, shows that PI3K activity in cells of hematopoietic lineage, particularly neutrophils, monocytes, and other types of leukocytes, is involved in many of the non-memory immune response associated with acute and chronic inflammation.
  • Figure US20100234386A1-20100916-C00002
  • Based on studies using wortmannin, there is evidence that PI3-kinase function is also required for some aspects of leukocyte signaling through G-protein coupled receptors (Thelen et al., 1994, above). Moreover, it has been shown that wortmannin and LY294002 block neutrophil migration and superoxide release. Cyclooxygenase inhibiting benzofuran derivatives are disclosed by John M. Janusz et al., in J. Med. Chem. 1998; Vol. 41, No. 18.
  • It is now well understood that deregulation of onocogenes and tumour-suppressor genes contributes to the formation fo malignant tumours, for example by way of increase cell growth and proliferation or increased cell survival. It is also now known that signaling pathways mediated by the PI3K family have a central role in a number of cell processes including proliferation and survival, and deregulation of these pathways is a causative factor a wide spectrum of human cancers and other diseases (Katso et al., Annual Rev. Cell Dev. Biol., 2001, 17: 615-617 and Foster et al., J. Cell Science, 2003, 116: 3037-3040).
  • Class I PI3K is a heterodimer consisting of a p110 catalytic subunit and a regulatory subunit, and the family is further divided into class Ia and Class Ib enzymes on the basis of regulatory partners and mechanism of regulation. Class Ia enzymes consist of three distinct catalytic subunits (p110α, p110β, and p110δ) that dimerise with five distinct regulatory subunits (p85α, p55α, p50α, p85β, and p55γ), with all catalytic subunits being able to interact with all regulatory subunits to form a variety of heterodimers. Class Ia PI3K are generally activated in response to growth factor-stimulation of receptor tyrosine kinases, via interaction of the regulatory subunit SH2 domains with specific phospho-tyrosine residues of the activated receptor or adaptor proteins such as IRS-1. Small GTPases (ras as an example) are also involved in the activation of PI3K in conjunction with receptor tyrosine kinase activation. Both p110α and p110β are constitutively expressed in all cell types, whereas p110δ expression is more restricted to leukocyte populations and some epithelial cells. In contrast, the single Class Ib enzyme consists of a p110γ catalytic subunit that interacts with a p101 regulatory subunit. Furthermore, the Class Ib enzyme is activated in response to G-protein coupled receptor (GPCR) systems and its expression appears to be limited to leukocytes.
  • There is now considerable evidence indicating that Class Ia PI3K enzymes contribute to tumourigenesis in a wide variety of human cancers, either directly or indirectly (Vivanco and Sawyers, Nature Reviews Cancer, 2002, 2, 489-501). For example, the p110α subunit is amplified in some tumours such as those of the ovary (Shayesteh, et al., Nature Genetics, 1999, 21: 99-102) and cervix (Ma et al., Oncogene, 2000, 19: 2739-2744). More recently, activating mutations within p110α (PIK3CA gene) have been associated with various other tumors such as those of the colon and of the breast and lung (Samuels, et al., Science, 2004, 304, 554). Tumor-related mutations in p85α have also been identified in cancers such as those of the ovary and colon (Philp et al., Cancer Research, 2001, 61, 7426-7429). In addition to direct effects, it is believed that activation of Class Ia PI3K contributes to tumourigenic events that occur upstream in signaling pathways, for example by way of ligand-dependent or ligand-independent activation of receptor tyrosine kinases, GPCR systems or integrins (Vara et al., Cancer Treatment Reviews, 2004, 30, 193-204). Examples of such upstream signaling pathways include over-expression of the receptor tyrosine kinase Erb2 in a variety of tumors leading to activation of PI3K-mediated pathways (Harari et al., Oncogene, 2000, 19, 6102-6114) and over-expression of the oncogene Ras (Kauffmann-Zeh et al., Nature, 1997, 385, 544-548). In addition, Class Ia PI3Ks may contribute indirectly to tumourigenesis caused by various downstream signaling events. For example, loss of function of the PTEN tumor-suppressor phosphatase that catalyses conversion of PI(3,4,5)P3 back to PI(4,5)P2 is associated with a very broad range of tumors via deregulation of PI3K-mediated production of PI(3,4,5)P3 (Simpson and Parsons, Exp. Cell Res., 2001, 264, 29-41). Furthermore, augmentation of the effects of other PI3K-mediated signaling events is believed to contribute to a variety of cancers, for example by activation of AKT (Nicholson and Andeson, Cellular Signaling, 2002, 14, 381-395).
  • In addition to a role in mediating proliferative and survival signaling in tumor cells, there is also good evidence that class Ia PI3K enzymes also contributes to tumourigenesis via its function in tumor-associated stromal cells. For examples, PI3K signaling is known to play an important role in mediating angiogenic events in endothelial cells in response to pro-angiogenic factors such as VEGF (abid et al., Arterioscler, Thromb. Vasc. Biol., 2004, 24, 294-300). As Class I PI3K enzymes are also involved in motility and migration (Sawyer, Expert Opinion investing. Drugs, 2004, 13, 1-19), PI3K inhibitors are anticipated to provide therapeutic benefit via inhibition of tumor cell invasion and metastasis.
  • SUMMARY OF THE INVENTION
  • This invention relates to novel compounds of Formula (I):
  • Figure US20100234386A1-20100916-C00003
      • in which
      • R1 is an optionally substituted ring system selected from a group consisting of: formula (II), (III), (IV), (V), (VI), (VII) and (VIII):
  • Figure US20100234386A1-20100916-C00004
      • each R2, R3 and R4 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, alkylcarboxy, aminoalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, arylalkyl, substituted arylalkyl, arylcycloalkyl, substituted arylcycloalkyl, heteroarylalkyl, substituted heteroarylalkyl, cyano, hydroxyl, alkoxy, acyloxy, and aryloxy;
      • n is 0-2;
      • X is C or N; Y is C, O, N or S;
      • and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof;
      • provided that in each of formula (V) to (VIII) at least one Y is not carbon;
      • further provided that formula (VIII) is substituted with at least one oxo group;
      • further provided that when R1 is imidazolidinedione or 4-pyridinyl R2 is not substituted aryl, thienyl or substituted thienyl.
  • Suitably, the invention relates to a compound of formula (I) or a pharmaceutically acceptable salt thereof.
  • This invention also relates to a method of treating cancer, which comprises administering to a subject in need thereof an effective amount of a compound of Formula (I).
  • This invention also relates to a method of treating one or more disease states selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection and lung injuries, which comprises administering to a subject in need thereof an effective amount of a compound of Formula (I).
  • Included in the present invention are methods of co-administering the present PI3 kinase inhibiting compounds with further active ingredients.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention relates to novel compounds of Formula (I) as described above.
  • Suitably, this invention relates to novel compounds of Formula (I)(A):
  • Figure US20100234386A1-20100916-C00005
      • in which
      • R1 is an optionally substituted ring system selected from a group consisting of: formula (II), (III), (IV), (V), (VI), (VII) and (VIII):
  • Figure US20100234386A1-20100916-C00006
      • each R3 and R4 is independently selected from a group consisting of: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, alkylcarboxy, aminoalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, arylalkyl, substituted arylalkyl, arylcycloalkyl, substituted arylcycloalkyl, heteroarylalkyl, substituted heteroarylalkyl, cyano, hydroxyl, alkoxy, acyloxy, and aryloxy;
      • R2 is selected from a group consisting of: aryl, heteroaryl, substituted heteroaryl, substituted aryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, hydroxyl, alkoxy;
      • n is 0-2;
      • X is C or N; Y is C, O, N or S;
      • and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof;
      • provided that in each of formula (V) to (VIII) at least one Y is not carbon;
      • further provided that formula (VIII) is substituted with at least one oxo group;
      • further provided that R1 is not imidazolidinedione, and when R1 is 4-pyridinyl R2 is not aryl, substituted aryl, thienyl or substituted thienyl.
  • Suitably, this invention relates to novel compounds of Formula (I)(B):
  • Figure US20100234386A1-20100916-C00007
      • in which
      • R1 is an optionally substituted ring system selected from a group consisting of: formula (II), (III), (IV), (V), (VI), (VII) and (VIII):
  • Figure US20100234386A1-20100916-C00008
      • each R3 and R4 is independently selected from a group consisting of: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, alkylcarboxy, aminoalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, arylalkyl, substituted arylalkyl, arylcycloalkyl, substituted arylcycloalkyl, heteroarylalkyl, substituted heteroarylalkyl, cyano, hydroxyl, alkoxy, acyloxy, and aryloxy;
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, hydroxyl, alkyl, substituted alkyl;
      • n is 0-2;
      • X is C or N; Y is C, O, N or S;
      • and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof;
      • provided that in each of formula (V) to (VIII) at least one Y is not carbon;
      • further provided that formula (VIII) is substituted with at least one oxo group;
      • further provided that R1 is not imidazolidinedione, R2 is not thienyl or substituted thienyl.
  • Suitably, this invention relates to novel compounds of Formula (I)(C):
  • Figure US20100234386A1-20100916-C00009
      • in which
      • R1 is an optionally substituted ring system selected from a group consisting of: formula (II), (III), and (IV) as defined above;
      • R3 and R4 are hydrogens;
      • R2 is selected from a group consisting of: aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, hydroxyl, alkoxy;
      • n is 0-2;
      • X is C or N; Y is C, O, N or S;
      • and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof;
      • provided that R1 is not imidazolidinedione and when R1 is 4-pyridine R2 is not aryl, substituted aryl, thienyl or substituted thienyl.
  • Suitably, this invention relates to novel compounds of Formula (I)(D):
  • Figure US20100234386A1-20100916-C00010
      • in which
      • R1 is an optionally substituted ring system selected from a group consisting of: formula (II), (III), and (IV) as defined above;
      • R3 and R4 are hydrogens;
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, hydroxyl;
      • n is 0-2;
      • X is C or N; Y is C, O, N or S;
      • and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof;
      • provided that R1 is not imidazolidinedione and R2 is not thienyl or substituted thienyl.
  • Suitably, this invention relates to compounds of formula (I)(A), wherein R1 is an optionally substituted six-membered heteroaryl ring containing at least one nitrogen.
  • Suitably, this invention relates to novel compounds of Formula (I)(E):
  • Figure US20100234386A1-20100916-C00011
      • in which
      • R1 is an optionally substituted ring system selected from a group consisting of: formula (II), (III), and (IV) as defined above;
      • R4 is hydrogen;
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, arylamino, acylamino, heterocycloalkylamino, substituted amino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • n is 0;
      • X is C or N;
      • or a pharmaceutically acceptable salt thereof;
      • provided that R2 is not thienyl or substituted thienyl.
  • Suitably, this invention relates to novel compounds of Formula (I)(F):
  • Figure US20100234386A1-20100916-C00012
      • in which
      • R1 is an optionally substituted pyridinyl ring;
      • R4 is hydrogen;
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • n is 0;
      • or a pharmaceutically acceptable salt thereof;
      • provided that R2 is not thienyl or substituted thienyl.
  • Suitably, this invention relates to novel compounds of Formula (I)(G):
  • Figure US20100234386A1-20100916-C00013
      • in which
      • each R2, R3, R4 and R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, alkylcarboxy, aminoalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, arylalkyl, substituted arylalkyl, arylcycloalkyl, substituted arylcycloalkyl, heteroarylalkyl, substituted heteroarylalkyl, cyano, hydroxyl, alkoxy, acyloxy, and aryloxy;
      • or R5 is R6, wherein R6 is —SO2NR80 or —NSO2R80, in which R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH,
      • n is 0-2, m is 0-3;
      • or a pharmaceutically acceptable salt thereof;
      • provided that R2 is not thienyl or substituted thienyl.
  • Suitably, this invention relates to novel compounds of Formula (I)(H):
  • Figure US20100234386A1-20100916-C00014
      • in which
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • each R3 and R4 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl and alkoxy;
      • each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl and alkoxy; or R5 is R6, wherein R6 is —SO2NR80 or —NSO2R80, in which R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH;
      • n is 0-2, m is 0-2;
      • or a pharmaceutically acceptable salt thereof;
      • provided that R2 is not thienyl or substituted thienyl.
  • Suitably, this invention relates to novel compounds of Formula (I)(J):
  • Figure US20100234386A1-20100916-C00015
      • in which
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • each R3 and R4 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl and alkoxy;
      • each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl, alkoxy, nitro;
      • R6 is —SO2NR80 or —NSO2R80, in which R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH;
      • n is 0-2, m is 0-2;
      • or a pharmaceutically acceptable salt thereof.
  • Suitably, this invention relates to novel compounds of Formula (I)(K):
  • Figure US20100234386A1-20100916-C00016
      • in which
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • R4 is hydrogen;
      • each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, cyano, hydroxyl, alkoxy;
      • n is 0, m is 0-1;
      • R6 is —SO2NR80 or —NSO2R80, in which R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH, wherein n is 0-2;
      • or a pharmaceutically acceptable salt thereof.
  • Suitably, this invention relates to novel compounds of Formula (I)(L):
  • Figure US20100234386A1-20100916-C00017
      • in which
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, cyano, hydroxyl, alkoxy;
      • m is 0-1;
      • R6 is —SO2NR80 or —NSO2R80, wherein R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH;
      • or a pharmaceutically acceptable salt thereof.
  • Suitably, this invention relates to novel compounds of Formula (I)(M):
  • Figure US20100234386A1-20100916-C00018
      • in which
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, cyano, hydroxyl, alkoxy;
      • m is 0-1;
      • R6 is —NSO2R80, wherein R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH, wherein n is 0-2;
      • or a pharmaceutically acceptable salt thereof.
  • Suitably, this invention relates to novel compounds of Formula (I)(N):
  • Figure US20100234386A1-20100916-C00019
      • in which
      • R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
      • each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, cyano, hydroxyl, alkoxy;
      • m is 0-1;
      • R6 is —SO2NR80, wherein R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH, wherein n is 0-2;
      • or a pharmaceutically acceptable salt thereof.
  • Suitably, this invention relates to compounds of Formulas (I)M) and (I)(N), wherein
      • R2 is selected from the group consisting of: optionally substituted piperazine, optionally substituted pyrazole, substituted amino and optionally substituted piperidine;
      • R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl and substituted aryl.
  • Suitably, this invention relates to compounds of Formulas (I)M) and (I)(N), wherein
      • R2 is selected from the group consisting of: optionally substituted piperazine, optionally substituted pyrazole, substituted amino and optionally substituted piperidine;
      • R80 is selected from a group consisting of: aryl optionally substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH, wherein n is 0-2.
  • Suitably, this invention relates to the following compounds:
    • 5-[3-(4-pyridinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 2-amino-N,N-dimethyl-5-[3-(4-pyridinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-[3-(3-pyridinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-(3-phenyl-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 7-[6-(methyloxy)-3-pyridinyl]-2-(4-morpholinyl)quinoxaline;
    • 2-(4-morpholinyl)-7-[4-(4-pyridinyl)-6-quinolinyl]quinoxaline;
    • 2-(4-morpholinyl)-7-(1H-pyrrolo[2,3-b]pyridin-5-yl)quinoxaline;
    • 7-(1H-indazol-5-yl)-2-(4-morpholinyl)quinoxaline;
    • 2-(4-morpholinyl)-7-(4-pyridinyl)quinoxaline;
    • 2-(4-morpholinyl)-7-(3-pyridinyl)quinoxaline;
    • 7-[2-(methyloxy)-3-pyridinyl]-2-(4-morpholinyl)quinoxaline;
    • 7-(1H-pyrrolo[2,3-b]pyridin-5-yl)-2(1H)-quinoxalinone;
    • ethyl 1-[7-(1H-pyrrolo[2,3-b]pyridin-5-yl)-2-quinoxalinyl]-3-piperidinecarboxylate;
    • 2-(4-morpholinyl)-7-(1H-pyrazolo[3,4-b]pyridin-5-yl)quinoxaline;
    • 2-(4-pyridinyl)-7-(1H-pyrrolo[2,3-b]pyridin-5-yl)quinoxaline;
    • 2-amino-N,N-dimethyl-5-[3-(4-morpholinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 2-(4-morpholinyl)-7-[5-(4-morpholinylsulfonyl)-3-pyridinyl]quinoxaline;
    • 5-[3-(4-morpholinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 2-amino-N,N-dimethyl-5-(3-oxo-3,4-dihydro-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 2-amino-N,N-dimethyl-5-(3-{[2-(4-morpholinyl)ethyl]amino}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 2-amino-5-{3-[[2-(dimethylamino)ethyl](methyl)amino]-6-quinoxalinyl}N,N-dimethyl-3-pyridinesulfonamide;
    • 2-amino-N,N-dimethyl-5-(3-{[2-(methyloxy)ethyl]amino}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 2-amino-5-{7-[6-(methyloxy)-3-pyridinyl]-2-quinoxalinyl}-3-pyridinesulfonamide;
    • 2-amino-5-{3-[(2-hydroxyethyl)(methyl)amino]-6-quinoxalinyl}-N,N-dimethyl-3-pyridinesulfonamide;
    • 2-amino-5-[3-(ethylamino)-6-quinoxalinyl]-N,N-dimethyl-3-pyridinesulfonamide;
    • 2-amino-N,N-dimethyl-5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-(3-{[2-(2-pyridinyl)ethyl]amino}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 5-{3-[4-(methylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-[3-(1-piperidinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-[3-(4-hydroxy-1-piperidinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-[3-(2,6-dimethyl-4-morpholinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 1,1-dimethylethyl 4-{7-[5-(aminosulfonyl)-3-pyridinyl]-2-quinoxalinyl}-1-piperazinecarboxylate;
    • 5-{3-[(2,2-dimethylpropyl)amino]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 1,1-dimethylethyl {2-[{7-[5-(aminosulfonyl)-3-pyridinyl]-2-quinoxalinyl}(methyl)amino]ethyl}carbamate;
    • 5-[3-(4-acetyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-{3-[4-(2-hydroxyethyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-{3-[4-(2-furanylcarbonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-(3-{4-[2-(4-morpholinyl)ethyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 5-{3-[4-(2-methylpropanoyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-{3-[(1,1-dimethylethyl)amino]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-{3-[4-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • N-{2-chloro-5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[4-(methylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)methanesulfonamide;
    • N-{5-[3-(4-morpholinyl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide;
    • 2-methyl-N-(5-{3-[4-(methylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-(2,4-difluorophenyl)-5-[3-(4-morpholinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 3-{7-[5-(aminosulfonyl)-3-pyridinyl]-2-quinoxalinyl}-N-methylbenzamide;
    • 5-(3-{3-[(methylamino)sulfonyl]phenyl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 5-[3-(1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-[3-(1H-pyrazol-3-yl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • N-{2-chloro-5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(2,4-difluorophenyl)-5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinamine;
    • N-{2-methyl-5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(2,4-difluorophenyl)-5-(3-{1-[2-(dimethylamino)ethyl]-1H-pyrazol-4-yl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 2,4-difluoro-N-{5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(3-furanyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{2-chloro-5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}-2,4-difluorobenzenesulfonamide;
    • 2,4-difluoro-N-{2-methyl-5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-[5-(3-{1-[2-(dimethylamino)ethyl]-1H-pyrazol-4-yl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(1-ethyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[1-(2-hydroxyethyl)-1H-pyrazol-4-yl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-5-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1,3,5-trimethyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(3,5-dimethyl-4-isoxazolyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[1-(2-methylpropyl)-1H-pyrazol-4-yl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-[5-(3-{1-[2-(4-morpholinyl)ethyl]-1H-pyrazol-4-yl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-(5-{3-[1-(phenylsulfonyl)-1H-pyrazol-4-yl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-{5-[3-(1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • [4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1H-pyrazol-1-yl]acetic acid;
    • N-{5-[3-(1-methyl-1H-pyrazol-3-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N,N-dimethyl-2-[4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1H-pyrazol-1-yl]acetamide;
    • N-[5-(3-imidazo[1,2-a]pyridin-3-yl-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • 2-[4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1H-pyrazol-1-yl]acetamide;
    • N-methyl-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinecarboxamide;
    • N,N-dimethyl-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinecarboxamide;
    • N-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)benzamide;
    • 2-phenyl-N-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)acetamide;
    • N-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)benzenesulfonamide;
    • 5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinamine;
    • 2-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1-phenylmethanesulfonamide;
    • N-{2-chloro-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide;
    • N-{2-chloro-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2,4-difluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-2-propanesulfonamide;
    • 1-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1H-imidazole-4-sulfonamide;
    • 3-fluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • methyl 4-(methyloxy)-3-[({5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}amino)sulfonyl]benzoate;
    • 4-cyano-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}methanesulfonamide;
    • 1-ethyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1H-pyrazole-4-sulfonamide;
    • 1,3-dimethyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1H-pyrazole-4-sulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide;
    • 1-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1H-pyrazole-3-sulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1-propanesulfonamide;
    • 1-cyclohexyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}methanesulfonamide;
    • 4-fluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-3-(trifluoromethyl)benzenesulfonamide;
    • 2,2,2-trifluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}ethanesulfonamide;
    • 3,5-dimethyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-isoxazolesulfonamide;
    • 1,3,5-trimethyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1H-pyrazole-4-sulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}ethanesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1-butanesulfonamide;
    • 4-fluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-(methyloxy)-3-[({5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}amino)sulfonyl]benzoic acid;
    • 2-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1-propanesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-2-thiophenesulfonamide;
    • 2-(methyloxy)-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2-fluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 3,4-bis(methyloxy)-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2,5-dimethyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-(1-methylethyl)-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-propylbenzenesulfonamide;
    • 4-(methyloxy)-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2,5-bis(methyloxy)-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-3-(trifluoromethyl)benzenesulfonamide;
    • 1-cyclopentyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}methanesulfonamide;
    • 3-fluoro-4-(methyloxy)-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-fluoro-2-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2-fluoro-4-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-2-(trifluoromethyl)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(trifluoromethyl)benzenesulfonamide;
    • 2-chloro-4-fluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2,5-dichloro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2,3-dichloro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-3-thiophenesulfonamide;
    • 3-chloro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 3-(methyloxy)-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 5-chloro-1,3-dimethyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1H-pyrazole-4-sulfonamide;
    • 4-[(4-fluorophenyl)oxy]-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2-chloro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-5-(trifluoromethyl)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(4-pyridinyloxy)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(3-pyridinyloxy)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-[(phenylmethyl)oxy]benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(1,3-oxazol-5-yl)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(methylsulfonyl)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(phenyloxy)benzenesulfonamide;
    • 4′-chloro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-biphenylsulfonamide;
    • 4-{[(2-chloro-1,3-thiazol-5-yl)methyl]oxy}-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-{[2-(methyloxy)phenyl]oxy}-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(2-oxo-1-pyrrolidinyl)benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-(2-methyl-1,3-thiazol-4-yl)benzenesulfonamide;
    • N-{2-(ethyloxy)-5-[({5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}amino)sulfonyl]phenyl}-4-morpholinecarboxamide;
    • N-{2-(ethyloxy)-5-[({5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}amino)sulfonyl]phenyl}-1-pyrrolidinecarboxamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-2,3-dihydro-1,4-benzodioxin-6-sulfonamide;
    • N-{3-methyl-4-[({5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}amino)sulfonyl]phenyl}-4-morpholinecarboxamide;
    • 4-chloro-N-{4-(ethyloxy)-3-[({5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}amino)sulfonyl]phenyl}benzamide;
    • 2,6-difluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-2-butanesulfonamide;
    • 2-chloro-6-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 2-chloro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-chloro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-2,1,3-benzoxadiazole-4-sulfonamide;
    • N-{2-(methyloxy)-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-methyl-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-3,4-dihydro-2H-1,4-benzoxazine-7-sulfonamide;
    • 2-amino-N,N-dimethyl-5-[3-(4-pyridinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 3,3′-di-4-morpholinyl-6,6′-biquinoxaline;
    • N,N-dimethyl-N′-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}sulfamide;
    • N-{2-(methyloxy)-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide;
    • 2,4-difluoro-N-{2-(methyloxy)-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{2-(methyloxy)-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}methanesulfonamide;
    • 2,4-difluoro-N-{2-methyl-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{2-methyl-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide;
    • 1-ethyl-N-{2-(methyloxy)-5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-1H-pyrazole-4-sulfonamide;
    • N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-morpholinesulfonamide;
    • 1,1-dimethylethyl[2-(4-{7-[5-(aminosulfonyl)-3-pyridinyl]-2-quinoxalinyl}-1-piperazinyl)ethyl]carbamate;
    • 5-(3-{[2-(dimethylamino)ethyl]oxy}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 5-{3-[[3-(dimethylamino)propyl](methyl)amino]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-(3-{4-[3-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 5-{3-[4-(4-acetylphenyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-[3-(4-phenyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • 5-(3-{4-[4-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • 5-(3-{4-[2-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-(3-{4-[3-(4-morpholinyl)-4-nitrophenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-{3-[4-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-[3-(dimethylamino)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-{3-[methyl(phenyl)amino]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-[3-(phenyloxy)-6-quinoxalinyl]-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-(3-{4-[(1-methyl-1H-pyrazol-4-yl)methyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-{3-[4-(3-pyridinylmethyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • N-(2,4-difluorophenyl)-5-{3-[4-(4-pyridinylmethyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • N-{2-chloro-5-[3-(phenylamino)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(2-chloro-5-{3-[3-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-(2-chloro-5-{3-[3-(hydroxymethyl)-1-pyrrolidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-(2-chloro-5-{3-[4-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-[2-chloro-5-(3-{4-[(dimethylamino)methyl]-1-piperidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-(2-chloro-5-{3-[3-(dimethylamino)-1-pyrrolidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-(5-{3-[4-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-{2-chloro-5-[3-(4-oxo-1-piperidinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-[2-chloro-5-(3-{4-[[2-(dimethylamino)ethyl](methyl)amino]-1-piperidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{2-chloro-5-[3-(4-phenyl-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[4-(4-acetylphenyl)-1-piperazinyl]-6-quinoxalinyl}-2-chloro-3-pyridinyl)benzenesulfonamide;
    • N-[2-chloro-5-(3-{4-[4-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(4-acetyl-1-piperazinyl)-6-quinoxalinyl]-2-chloro-3-pyridinyl}benzenesulfonamide;
    • N-{2-chloro-5-[3-(3-oxo-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 1,1-dimethylethyl 4-(7-{6-chloro-5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinecarboxylate;
    • N-{2-chloro-5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-morpholinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(2-chloro-5-{3-[4-(methylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-[5-(3-{4-[2-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{3-[4-(methyloxy)phenyl]-1-pyrrolidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{4-[3-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{3-[3-(methyloxy)phenyl]-1-pyrrolidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(4-oxo-1-piperidinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-[5-(3-{4-[4-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(4-{[4-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-{[4-(methyloxy)phenyl]carbonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[4-(4-methyl-1-piperazinyl)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-(2-chloro-5-{3-[3-(hydroxymethyl)-1-pyrrolidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-(2-chloro-5-{3-[3-(hydroxymethyl)-1-pyrrolidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • (3Z)-N-(5-{3-[(1-methyl-1H-pyrazol-3-yl)amino]-6-quinoxalinyl}-3-pyridinyl)-1,3-pentadiene-2-sulfonamide;
    • N-(5-{3-[(1-methyl-1H-pyrazol-5-yl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-[5-(3-{[(1-methyl-1H-pyrazol-4-yl)methyl]amino}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-(5-{3-[4-(methylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-{5-[3-(4-{[2-(methylsulfonyl)ethyl]amino}-1-piperidinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 1,1-dimethylethyl 4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinecarboxylate;
    • N-{5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-[5-(3-{3-[3-(methyloxy)phenyl]-1-pyrrolidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{3-[3-(methyloxy)phenyl]-1-pyrrolidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{3-[4-(methyloxy)phenyl]-1-pyrrolidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{3-[4-(methyloxy)phenyl]-1-pyrrolidinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{4-[(2-methylpropyl)sulfonyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(2-furanyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(2-thienyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1-methyl-1H-imidazol-5-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(1,3-oxazol-2-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{2-chloro-5-[3-(4-{[4-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-{[4-(methylsulfonyl)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 4-{[4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinyl]sulfonyl}benzenesulfonamide;
    • N,N-dimethyl-4-{[4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinyl]sulfonyl}benzenesulfonamide;
    • N-[5-(3-{4-[(4-hydroxyphenyl)sulfonyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-(5-{3-[4-(4-morpholinylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-[5-(3-{4-[(4-acetylphenyl)sulfonyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{4-[(4-aminophenyl)sulfonyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-{4-[(4-{[(dimethylamino)carbonyl]amino}phenyl)sulfonyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • 4-{[4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinyl]sulfonyl}benzoic acid;
    • 3-[(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)amino]benzoic acid;
    • N-[5-(3-{[3-(methyloxy)phenyl]amino}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-[5-(3-phenyl-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(1,3-thiazol-5-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[1-(phenylmethyl)-1H-pyrazol-4-yl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-[5-(3-{4-[(1-methyl-1H-pyrazol-4-yl)sulfonyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-(5-{3-[4-(cyclohexylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N,N-dimethyl-4-{7-[5-({methylidene[(2Z)-1-methylidene-2,4-pentadien-1-yl]oxido-λ4-sulfanyl}amino)-3-pyridinyl]-2-quinoxalinyl}-1-piperazinesulfonamide;
    • (2E,4Z)-N-(5-{3-[4-(4-morpholinyl)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinyl)-2,4-hexadiene-3-sulfonamide;
    • (3Z)-N-[5-(3-{4-[[2-(dimethylamino)ethyl](methyl)amino]-1-piperidinyl}-6-quinoxalinyl)-3-pyridinyl]-1,3-pentadiene-2-sulfonamide;
    • N-(5-{3-[4-(cyclopropylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-{5-[3-(4-{[4-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide;
    • N-{5-[3-(4-{[4-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-2-oxo-1,2-dihydro-3-pyridinyl}benzenesulfonamide;
    • 3-(methyloxy)-5-[(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)amino]benzoic acid;
    • N-{5-[3-(4-{[3-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-{[4-(1H-tetrazol-5-yl)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • phenylmethyl 4-[(4-{7-[(1E,2E)-1-ethylidene-3-({[(2Z)-1-methylidene-2,4-pentadien-1-yl]thio}amino)-2-buten-1-yl]-2-quinoxalinyl}-1-piperazinyl)sulfonyl]-1-piperidinecarboxylate;
    • 1,1-dimethylethyl 4-[7-(5-{[methylidene(oxido)phenyl-□4-sulfanyl]amino}-3-pyridinyl)-2-quinoxalinyl]-3-oxo-1-piperazinecarboxylate;
    • N-{5-[3-(2-oxo-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-methyl-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinesulfonamide;
    • 1-{7-[5-({[(1E,3Z)-1-ethenyl-1,3-pentadien-1-yl]sulfonyl}amino)-3-pyridinyl]-2-quinoxalinyl}-4-piperidinesulfonamide;
    • 1-[7-(5-{[(2Z)-2-buten-1-yl(methylidene)oxido-λ4-sulfanyl]amino}-3-pyridinyl)-2-quinoxalinyl]-N,N-dimethyl-4-piperidinesulfonamide;
    • (2E,4Z)-N-(5-{3-[4-(methylsulfonyl)-2-oxo-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)-2,4,6-heptatriene-3-sulfonamide;
    • N-{5-[3-(4-{[4-(methyloxy)phenyl]sulfonyl}-2-oxo-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N,N′-(2,7-quinoxalinediyldi-5,3-pyridinediyl)dibenzenesulfonamide;
    • 7-(5-{[(2Z)-2-buten-1-yl(methylidene)-λ4-sulfanyl]amino}-3-pyridinyl)-N-phenyl-2-quinoxalinamine;
    • N-{5-[3-(4-{[5-{[(dimethylamino)carbonyl]amino}-2-(ethyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • 1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinecarboxamide;
    • N-(2-hydroxyethyl)-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinecarboxamide;
    • N-(2-hydroxyethyl)-1-{7-[5-(methylamino)-3-pyridinyl]-2-quinoxalinyl}-4-piperidinesulfonamide-1-propene (1:1);
    • N-{5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide;
    • 7-(5-{[cyclopropyl(methylidene)oxido-λ4-sulfanyl]amino}-6-methyl-3-pyridinyl)-2-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)quinoxaline;
    • N-{2-(methyloxy)-5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}methanesulfonamide;
    • N,N-dimethyl-N′-{5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}sulfamide;
    • N-[2-(methyloxy)ethyl]-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinecarboxamide;
    • N-[4-(aminosulfonyl)phenyl]-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinecarboxamide;
    • N-[2-(dimethylamino)ethyl]-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinecarboxamide;
    • N-{5-[3-(4-{[4-(methyloxy)phenyl]oxy}-1-piperidinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • methyl 2-(methyloxy)-4-[(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)amino]benzoate;
    • 1,1-dimethylethyl 4-{[1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinyl]carbonyl}-1-piperazinecarboxylate;
    • 2-amino-N,N-dimethyl-5-{3-[(phenylmethyl)oxy]-6-quinoxalinyl}-3-pyridinesulfonamide;
    • 5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinamine;
    • N-{5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinyl}acetamide;
    • 5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinecarbonitrile;
    • N-{5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinyl}methanesulfonamide;
    • N-{5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinyl}-N-(methylsulfonyl)methanesulfonamide;
    • 2-(4-methyl-1-piperazinyl)-7-[6-(4-morpholinyl)-3-pyridinyl]quinoxaline;
    • 2-(4-methyl-1-piperazinyl)-7-[6-(1-piperazinyl)-3-pyridinyl]quinoxaline;
    • N-{5-[3-(1,1-dioxido-4-thiomorpholinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-thiomorpholinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(4-pyridinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-{5-[3-(3-pyridinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[methyl(1-methyl-4-piperidinyl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-{5-[3-(4-piperidinylamino)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-[5-(3-{[(1-methyl-4-piperidinyl)methyl]amino}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(methyl{2-[methyl(methylsulfonyl)amino]ethyl}amino)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-[5-(3-{methyl[2-(methylamino)ethyl]amino}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(methyl{2-[(methylsulfonyl)amino]ethyl}amino)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[(2-aminoethyl)(methyl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-{5-[3-({2-[(methylsulfonyl)amino]ethyl}amino)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-[5-(3-{[1-(methylsulfonyl)-4-piperidinyl]amino}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide;
    • N-{5-[3-(4-pyridazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide;
    • N-(5-{3-[(1-methyl-4-piperidinyl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N,N-dimethyl-4-[(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)amino]-1-piperidinesulfonamide;
    • N-(5-{3-[(1-{[4-(methyloxy)phenyl]sulfonyl}-4-piperidinyl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide;
    • N-[3-(methyloxy)phenyl]-7-(3-pyridinyl)-2-quinoxalinamine;
    • N-[2-(methyloxy)-5-(3-{[3-(methyloxy)phenyl]amino}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide and
    • N-[2-chloro-5-(3-{[3-(methyloxy)phenyl]amino}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide.
  • This invention also relates to a method of treating cancer, which comprises co-administering to a subject in need thereof an effective amount of a compound of Formula (I), and/or a pharmaceutically acceptable salt thereof; and at least one anti-neoplastic agent such as one selected from the group consisting of: anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, immunotherapeutic agents, proapoptotic agents, and cell cycle signaling inhibitors.
  • This invention also relates to a method of treating cancer, which comprises co-administering to a subject in need thereof an effective amount of a compound of Formula (I), and/or a pharmaceutically acceptable salt thereof; and at least one signal transduction pathway inhibitor such as one selected from the group consisting of: receptor tyrosine kinase inhibitor, non-receptor tyrosine kinase inhibitor, SH2/SH3 domain blocker, serine/threonine kinase inhibitor, phosphotidyl inositol-3 kinase inhibitor, myo-inositol signaling inhibitor, and Ras oncogene inhibitor.
  • As used herein, the term “effective amount” means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician. Furthermore, the term “therapeutically effective amount” means any amount which, as compared to a corresponding subject who has not received such amount, results in improved treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder. The term also includes within its scope amounts effective to enhance normal physiological function.
  • Compounds of Formula (I) are included in the pharmaceutical compositions of the invention.
  • DEFINITIONS
  • By the term “substituted amino” as used herein, is meant —NR30R40 wherein each R30 and R40 is independently selected from a group including hydrogen, C1-6alkyl, acyl, C3-C7cycloalkyl, wherein at least one of R30 and R40 is not hydrogen.
  • By the term “acyl” as used herein, unless otherwise defined, is meant —C(O)(alkyl), —C(O)(cycloalkyl), —C(O)(aryl) or —C(O)(heteroaryl), wherein heteroaryl and aryl are optionally substituted.
  • By the term “aryl” as used herein, unless otherwise defined, is meant aromatic, hydrocarbon, ring system. The ring system may be monocyclic or fused polycyclic (e.g. bicyclic, tricyclic, etc.). In various embodiments, the monocyclic aryl ring is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that form the ring system. A C6 ring system, i.e. a phenyl ring is a suitable aryl group. In various embodiments, the polycyclic ring is a bicyclic aryl group, where suitable bicyclic aryl groups are C8-C12, or C9-C10. A naphthyl ring, which has 10 carbon atoms, is a suitable polycyclic aryl group.
  • By the term “heteroaryl” as used herein, unless otherwise defined, is meant an aromatic ring system containing carbon(s) and at least one heteroatom. Heteroaryl may be monocyclic or polycyclic. A monocyclic heteroaryl group may have 1 to 4 heteroatoms in the ring, while a polycyclic heteroaryl may contain 1 to 10 hetero atoms. A polycyclic heteroaryl ring may contain fused, spiro or bridged ring junctions, for example, bicyclic heteroaryl is a polycyclic heteroaryl. Bicyclic heteroaryl rings may contain from 8 to 12 member atoms. Monocyclic heteroaryl rings may contain from 5 to 8 member atoms (carbons and heteroatoms). Exemplary heteroaryl groups include but are not limited to: benzofuran, benzothiophene, furan, imidazole, indole, isothiazole, oxazole, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, quinoline, quinazoline, quinoxaline, thiazole, and thiophene.
  • By the term “monocyclic heteroaryl” as used herein, unless otherwise defined, is meant a monocyclic heteroaryl ring containing 1-5 carbon atoms and 1-4 hetero atoms.
  • By the term “alkylcarboxy” as used herein, unless otherwise defined, is meant —(CH2)nCOOR80, wherein R80 is hydrogen or C1-C6alkyl, n is 0-6.
  • By the term “alkoxy” as used herein is meant —O(alkyl) including —OCH3, —OCH2CH3 and —OC(CH3)3 where alkyl is as described herein.
  • By the term “alkylthio” as used herein is meant —S(alkyl) including —SCH3, —SCH2CH3 where alkyl is as described herein.
  • The term “cycloalkyl” as used herein unless otherwise defined, is meant a nonaromatic, unsaturated or saturated, cyclic or polycyclic C3-C12.
  • Examples of cycloalkyl and substituted cycloalkyl substituents as used herein include: cyclohexyl, aminocyclohexyl, cyclobutyl, aminocyclobutyl, 4-hydroxy-cyclohexyl, 2-ethylcyclohexyl, propyl4-methoxycyclohexyl, 4-methoxycyclohexyl, 4-carboxycyclohexyl, cyclopropyl, aminocyclopentyl, and cyclopentyl.
  • By the term “heterocycloalkyl” as used herein is meant a non-aromatic, unsaturated or saturated, monocyclic or polycyclic, heterocyclic ring containing at least one carbon and at least one heteroatom. Exemplary monocyclic heterocyclic rings include: piperidine, piperazine, pyrrolidine, and morpholine. Exemplary polycyclic heterocyclic rings include quinuclidine.
  • By the term “substituted” as used herein, unless otherwise defined, is meant that the subject chemical moiety has one to five substituents, suitably from one to three, selected from the group consisting of: hydrogen, halogen, C1-C6alkyl, amino, urea, trifluoromethyl, —(CH2)nCOOH, C3-C7cycloalkyl, substituted amino, aryl, heteroaryl, arylalkyl, arylcycloalkyl, heteroarylalkyl, heterocycloalkyl, cyano, hydroxyl, alkoxy, alkylthio, aryloxy, acyloxy, acyl, acylamino, aminoacyl, arylamino, nitro, oxo, —CO2R50, —SO2R70, —NR50SO2R70, NR50C(O)R75 and —CONR55R60, wherein R50 and R55 are each independently selected from: hydrogen, alkyl, and C3-C7cycloalkyl; R55 and R60 can optionally form a heterocycloalkyl ring; n is 0 to 6; R75 is selected from the group consisting of: C1-C6alkyl, C3-7cylcoalkyl, substituted C3-7cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, substituted amino, arylamino, C1-C6heterocycloalkyl, alkoxy, aryloxy and substituted C1-C6heterocycloalkyl; each R60 and R70 is independently selected from the group consisting of: C1-C6alkyl, C3-C7cycloalkyl, substituted C1-C6heterocycloalkyl, C1-C6heterocycloalkyl, halogen, amino, substituted amino, arylamino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, —(CH2)nCOOH, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from the group consisting of: C1-C6alkyl, C3-C7cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from the group consisting of: C1-C6alkyl, C3-C7cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH.
  • By the term “substituted”, when referred in the definition of R60, R70, R75, “arylamino”, and “aryloxy”, is meant that the subject chemical moiety has one to five substituents, suitably from one to three substituents selected from the group consisting of: hydrogen, C1-C6alkyl, halogen, trifluoromethyl, —(CH2)nCOOH, amino, substituted amino, cyano, hydroxyl, alkoxy, alkylthio, aryloxy, acyloxy, acyl, acylamino, and nitro, n is 0-6.
  • By the term “acyloxy” as used herein is meant —OC(O)alkyl where alkyl is as described herein. Examples of acyloxy substituents as used herein include: —OC(O)CH3, —OC(O)CH(CH3)2 and —OC(O)(CH2)3CH3.
  • By the term “acylamino” as used herein is meant —N(H)C(O)alkyl, —N(H)C(O)(cycloalkyl) where alkyl is as described herein. Examples of N-acylamino substituents as used herein include: —N(H)C(O)CH3, —N(H)C(O)CH(CH3)2 and —N(H)C(O)(CH2)3CH3.
  • By the term “aminoacyl” as used herein is meant —C(O)N(alkyl)n, —C(O)N(cycloalkyl)n where alkyl is as described herein, n is 1-2.
  • By the term “aryloxy” as used herein is meant —O(aryl), —O(substituted aryl), —O(heteroaryl) or —O(substituted heteroaryl).
  • By the term “arylamino” as used herein is meant —NR80(aryl), —NR80(substituted aryl), —NR80(heteroaryl) or —NR80(substituted heteroaryl), wherein R80 is H, C1-6alkyl or C3-C7cycloalkyl.
  • By the term “heteroatom” as used herein is meant oxygen, nitrogen or sulfur.
  • By the term “halogen” as used herein is meant a substituent selected from bromide, iodide, chloride and fluoride.
  • By the term “alkyl” and derivatives thereof and in all carbon chains as used herein, including alkyl chains defined by the term “—(CH2)n”, “—(CH2)m” and the like, is meant a linear or branched, saturated or unsaturated hydrocarbon chain, and unless otherwise defined, the carbon chain will contain from 1 to 12 carbon atoms.
  • By the term “substituted alkyl” as used herein is meant an alkyl group substituted with one to six substituents selected from the group consisting of: halogen, trifluoromethyl, alkylcarboxy, amino, substituted amino, cyano, hydroxyl, alkoxy, alkylthio, aryloxy, acyloxy, acyl, acylamino, carbamate, urea, sulfonamate, C3-7cycloheteroalkyl, C3-7cycloalkyl and nitro.
  • Examples of alkyl and substituted alkyl substituents as used herein include: —CH3, —CH2—CH3, —CH2—CH2—CH3, —CH(CH3)2, —CH2—CH2—C(CH3)3, —CH2—CF3, —C≡C—C(CH3)3, —C≡C—CH2—OH, cyclopropylmethyl, —CH2—C(CH3)2—CH2—NH2, —C≡C—C6H5, —C≡C—C(CH3)2—OH, —CH2—CH(OH)—CH(OH)—CH(OH)—CH(OH)—CH2—OH, piperidinylmethyl, methoxyphenylethyl, —C(CH3)3, —(CH2)3—CH3, —CH2—CH(CH3)2, —CH(CH3)—CH2—CH3, —CH═CH2, and —C≡C—CH3.
  • By the term “treating” and derivatives thereof as used herein, is meant prophylatic and therapeutic therapy.
  • By the term “co-administering” and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of cancer, including chemotherapy and radiation treatment. The term further active ingredient or ingredients, as used herein, includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment for cancer. Suitably, if the administration is not simultaneous, the compounds are administered in a close time proximity to each other. Furthermore, it does not matter if the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered orally.
  • The term “compound” as used herein includes all isomers of the compound. Examples of such isomers include: enantiomers, tautomers, rotamers.
  • In formula (II) to (VIII), when a “dot” bond is drawn between two atoms, it is meant that such bond can be either single or double bond. A ring system containing such bonds can be aromatic or non-aromatic.
  • Certain compounds described herein may contain one or more chiral atoms, or may otherwise be capable of existing as two enantiomers, or two or more diastereoisomers. Accordingly, the compounds of this invention include mixtures of enantiomers/diastereoisomers as well as purified enantiomers/diastereoisomers or enantiomerically/diastereoisomerically enriched mixtures. Also included within the scope of the invention are the individual isomers of the compounds represented by formula I or II above as well as any wholly or partially equilibrated mixtures thereof. The present invention also covers the individual isomers of the compounds represented by the formulas above as mixtures with isomers thereof in which one or more chiral centers are inverted. Further, an example of a possible tautomer is an oxo substituent in place of a hydroxy substituent. Also, as stated above, it is understood that all tautomers and mixtures of tautomers are included within the scope of the compounds of Formula I or II.
  • Compounds of Formula (I) are included in the pharmaceutical compositions of the invention. Where a —COOH or —OH group is present, pharmaceutically acceptable esters can be employed, for example methyl, ethyl, pivaloyloxymethyl, and the like for —COOH, and acetate maleate and the like for —OH, and those esters known in the art for modifying solubility or hydrolysis characteristics, for use as sustained release or prod rug formulations.
  • It has now been found that compounds of the present invention are inhibitors of the Phosphatoinositides 3-kinases (PI3Ks). When the phosphatoinositides 3-kinase (PI3K) enzyme is inhibited by a compound of the present invention, PI3K is unable to exert its enzymatic, biological and/or pharmacological effects. The compounds of the present invention are therefore useful in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • The compounds of Formula (I) are useful as medicaments in particular for the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries. According to one embodiment of the present invention, the compounds of Formula (I) are inhibitors of one or more phosphatoinositides 3-kinases (PI3Ks), suitably, Phosphatoinositides 3-kinase γ (PI3Kγ), Phosphatoinositides 3-kinase γ (PI3Kα), Phosphatoinositides 3-kinase γ (PI3Kβ), and/or Phosphatoinositides 3-kinase γ (PI3Kδ).
  • Compounds according to Formula (I) are suitable for the modulation, notably the inhibition of the activity of phosphatoinositides 3-kinases (PI3K), suitably phosphatoinositides 3-kinase (PI3Kα). Therefore the compounds of the present invention are also useful for the treatment of disorders which are mediated by PI3Ks. Said treatment involves the modulation—notably the inhibition or the down regulation—of the phosphatoinositides 3-kinases.
  • Suitably, the compounds of the present invention are used for the preparation of a medicament for the treatment of a disorder selected from multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosis, inflammatory bowel disease, lung inflammation, thrombosis or brain infection/inflammation, such as meningitis or encephalitis, Alzheimer's disease, Huntington's disease, CNS trauma, stroke or ischemic conditions, cardiovascular diseases such as athero-sclerosis, heart hypertrophy, cardiac myocyte dysfunction, elevated blood pressure or vasoconstriction.
  • Suitably, the compounds of Formula (I) are useful for the treatment of autoimmune diseases or inflammatory diseases such as multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosis, inflammatory bowel disease, lung inflammation, thrombosis or brain infection/inflammation such as meningitis or encephalitis.
  • Suitably, the compounds of Formula (I) are useful for the treatment of neurodegenerative diseases including multiple sclerosis, Alzheimer's disease, Huntington's disease, CNS trauma, stroke or ischemic conditions.
  • Suitably, the compounds of Formula (I) are useful for the treatment of cardiovascular diseases such as atherosclerosis, heart hypertrophy, cardiac myocyte dysfunction, elevated blood pressure or vasoconstriction.
  • Suitably, the compounds of Formula (I) are useful for the treatment of chronic obstructive pulmonary disease, anaphylactic shock fibrosis, psoriasis, allergic diseases, asthma, stroke, ischemic conditions, ischemia-reperfusion, platelets aggregation/activation, skeletal muscle atrophy/hypertrophy, leukocyte recruitment in cancer tissue, angiogenesis, invasion metastasis, in particular melanoma, Karposi's sarcoma, acute and chronic bacterial and viral infections, sepsis, transplantation rejection, graft rejection, glomerulo sclerosis, glomerulo nephritis, progressive renal fibrosis, endothelial and epithelial injuries in the lung, and lung airway inflammation.
  • Because the pharmaceutically active compounds of the present invention are active as PI3 kinase inhibitors, particularly the compounds that inhibit PI3Kα, either selectively or in conjunction with one or more of PI3δ, PI3Kβ, and/or PI3Kγ, they exhibit therapeutic utility in treating cancer.
  • Suitably, the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: brain (gliomas), glioblastomas, leukemias, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma, Rhabdomyosarcoma, ependymoma, medulloblastoma, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma, osteosarcoma, giant cell tumor of bone and thyroid.
  • Suitably, the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: Lymphoblastic T cell leukemia, Chronic myelogenous leukemia, Chronic lymphocytic leukemia, Hairy-cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, Chronic neutrophilic leukemia, Acute lymphoblastic T cell leukemia, Plasmacytoma, Immunoblastic large cell leukemia, Mantle cell leukemia, Multiple myeloma Megakaryoblastic leukemia, multiple myeloma, Acute megakaryocytic leukemia, promyelocytic leukemia and Erythroleukemia.
  • Suitably, the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: malignant lymphoma, hodgkins lymphoma, non-hodgkins lymphoma, lymphoblastic T cell lymphoma, Burkitt's lymphoma and follicular lymphoma.
  • Suitably, the invention relates to a method of treating cancer in a mammal, including a human, wherein the cancer is selected from: neuroblastoma, bladder cancer, urothelial cancer, lung cancer, vulval cancer, cervical cancer, endometrial cancer, renal cancer, mesothelioma, esophageal cancer, salivary gland cancer, hepatocellular cancer, gastric cancer, nasopharangeal cancer, buccal cancer, cancer of the mouth, GIST (gastrointestinal stromal tumor) and testicular cancer.
  • When a compound of Formula (I) is administered for the treatment of cancer, the term “co-administering” and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of cancer, including chemotherapy and radiation treatment. The term further active ingredient or ingredients, as used herein, includes any compound or therapeutic agent known to or that demonstrates advantageous properties when administered to a patient in need of treatment for cancer. Preferably, if the administration is not simultaneous, the compounds are administered in a close time proximity to each other. Furthermore, it does not matter if the compounds are administered in the same dosage form, e.g. one compound may be administered topically and another compound may be administered orally.
  • Typically, any anti-neoplastic agent that has activity versus a susceptible tumor being treated may be co-administered in the treatment of cancer in the present invention. Examples of such agents can be found in Cancer Principles and Practice f Oncology by V. T. Devita and S. Hellman (editors), 6th edition (Feb. 15, 2001), Lippincott Williams & Wilkins Publishers. A person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved. Typical anti-neoplastic agents useful in the present invention include, but are not limited to, anti-microtubule agents such as diterpenoids and vinca alkaloids; platinum coordination complexes; alkylating agents such as nitrogen mustards, oxazaphosphorines, alkylsulfonates, nitrosoureas, and triazenes; antibiotic agents such as anthracyclines, actinomycins and bleomycins; topoisomerase II inhibitors such as epipodophyllotoxins; antimetabolites such as purine and pyrimidine analogues and anti-folate compounds; topoisomerase I inhibitors such as camptothecins; hormones and hormonal analogues; signal transduction pathway inhibitors; non-receptor tyrosine kinase angiogenesis inhibitors; immunotherapeutic agents; proapoptotic agents; and cell cycle signaling inhibitors.
  • Examples of a further active ingredient or ingredients for use in combination or co-administered with the present PI3 kinase inhibiting compounds are chemotherapeutic agents.
  • Anti-microtubule or anti-mitotic agents are phase specific agents active against the microtubules of tumor cells during M or the mitosis phase of the cell cycle. Examples of anti-microtubule agents include, but are not limited to, diterpenoids and vinca alkaloids.
  • Diterpenoids, which are derived from natural sources, are phase specific anti-cancer agents that operate at the G2/M phases of the cell cycle. It is believed that the diterpenoids stabilize the β-tubulin subunit of the microtubules, by binding with this protein. Disassembly of the protein appears then to be inhibited with mitosis being arrested and cell death following. Examples of diterpenoids include, but are not limited to, paclitaxel and its analog docetaxel.
  • Paclitaxel, 5β,20-epoxy-1,2α,4,7β,10β,13α-hexa-hydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)—N-benzoyl-3-phenylisoserine; is a natural diterpene product isolated from the Pacific yew tree Taxus brevifolia and is commercially available as an injectable solution TAXOL®. It is a member of the taxane family of terpenes. It was first isolated in 1971 by Wani et al. J. Am. Chem, Soc., 93:2325. 1971), who characterized its structure by chemical and X-ray crystallographic methods. One mechanism for its activity relates to paclitaxel's capacity to bind tubulin, thereby inhibiting cancer cell growth. Schiff et al., Proc. Natl, Acad, Sci. USA, 77:1561-1565 (1980); Schiff et al., Nature, 277:665-667 (1979); Kumar, J. Biol, Chem, 256: 10435-10441 (1981). For a review of synthesis and anticancer activity of some paclitaxel derivatives see: D. G. I. Kingston et al., Studies in Organic Chemistry vol. 26, entitled “New trends in Natural Products Chemistry 1986”, Attaur-Rahman, P. W. Le Quesne, Eds. (Elsevier, Amsterdam, 1986) pp 219-235.
  • Paclitaxel has been approved for clinical use in the treatment of refractory ovarian cancer in the United States (Markman et al., Yale Journal of Biology and Medicine, 64:583, 1991; McGuire et al., Ann. Intern, Med., 111:273, 1989) and for the treatment of breast cancer (Holmes et al., J. Nat. Cancer Inst., 83:1797, 1991.) It is a potential candidate for treatment of neoplasms in the skin (Einzig et. al., Proc. Am. Soc. Clin. Oncol., 20:46) and head and neck carcinomas (Forastire et. al., Sem. Oncol., 20:56, 1990). The compound also shows potential for the treatment of polycystic kidney disease (Woo et. al., Nature, 368:750. 1994), lung cancer and malaria. Treatment of patients with paclitaxel results in bone marrow suppression (multiple cell lineages, Ignoff, R. J. et. al, Cancer Chemotherapy Pocket Guide, 1998) related to the duration of dosing above a threshold concentration (50 nM) (Kearns, C. M. et. al., Seminars in Oncology, 3(6) p. 16-23, 1995).
  • Docetaxel, (2R,3S)—N-carboxy-3-phenylisoserine, N-tert-butyl ester, 13-ester with 5β-20-epoxy-1,2α,4,7β,10β,13α-hexahydroxytax-11-en-9-one 4-acetate 2-benzoate, trihydrate; is commercially available as an injectable solution as TAXOTERE®. Docetaxel is indicated for the treatment of breast cancer. Docetaxel is a semisynthetic derivative of paclitaxel q.v., prepared using a natural precursor, 10-deacetyl-baccatin III, extracted from the needle of the European Yew tree. The dose limiting toxicity of docetaxel is neutropenia.
  • Vinca alkaloids are phase specific anti-neoplastic agents derived from the periwinkle plant. Vinca alkaloids act at the M phase (mitosis) of the cell cycle by binding specifically to tubulin. Consequently, the bound tubulin molecule is unable to polymerize into microtubules. Mitosis is believed to be arrested in metaphase with cell death following. Examples of vinca alkaloids include, but are not limited to, vinblastine, vincristine, and vinorelbine.
  • Vinblastine, vincaleukoblastine sulfate, is commercially available as VELBAN® as an injectable solution. Although, it has possible indication as a second line therapy of various solid tumors, it is primarily indicated in the treatment of testicular cancer and various lymphomas including Hodgkin's Disease; and lymphocytic and histiocytic lymphomas. Myelosuppression is the dose limiting side effect of vinblastine.
  • Vincristine, vincaleukoblastine, 22-oxo-, sulfate, is commercially available as ONCOVIN® as an injectable solution. Vincristine is indicated for the treatment of acute leukemias and has also found use in treatment regimens for Hodgkin's and non-Hodgkin's malignant lymphomas. Alopecia and neurologic effects are the most common side effect of vincristine and to a lesser extent myelosupression and gastrointestinal mucositis effects occur.
  • Vinorelbine, 3′,4′-didehydro-4′-deoxy-C′-norvincaleukoblastine[R—(R*,R*)-2,3-dihydroxybutanedioate (1:2)(salt)], commercially available as an injectable solution of vinorelbine tartrate (NAVELBINE®), is a semisynthetic vinca alkaloid. Vinorelbine is indicated as a single agent or in combination with other chemotherapeutic agents, such as cisplatin, in the treatment of various solid tumors, particularly non-small cell lung, advanced breast, and hormone refractory prostate cancers. Myelosuppression is the most common dose limiting side effect of vinorelbine.
  • Platinum coordination complexes are non-phase specific anti-cancer agents, which are interactive with DNA. The platinum complexes enter tumor cells, undergo, aquation and form intra- and interstrand crosslinks with DNA causing adverse biological effects to the tumor. Examples of platinum coordination complexes include, but are not limited to, cisplatin and carboplatin.
  • Cisplatin, cis-diaminedichloroplatinum, is commercially available as PLATINOL® as an injectable solution. Cisplatin is primarily indicated in the treatment of metastatic testicular and ovarian cancer and advanced bladder cancer. The primary dose limiting side effects of cisplatin are nephrotoxicity, which may be controlled by hydration and diuresis, and ototoxicity.
  • Carboplatin, platinum, diamine[1,1-cyclobutane-dicarboxylate(2-)-O,O′], is commercially available as PARAPLATIN® as an injectable solution. Carboplatin is primarily indicated in the first and second line treatment of advanced ovarian carcinoma. Bone marrow suppression is the dose limiting toxicity of carboplatin.
  • Alkylating agents are non-phase anti-cancer specific agents and strong electrophiles. Typically, alkylating agents form covalent linkages, by alkylation, to DNA through nucleophilic moieties of the DNA molecule such as phosphate, amino, sulfhydryl, hydroxyl, carboxyl, and imidazole groups. Such alkylation disrupts nucleic acid function leading to cell death. Examples of alkylating agents include, but are not limited to, nitrogen mustards such as cyclophosphamide, melphalan, and chlorambucil; alkyl sulfonates such as busulfan; nitrosoureas such as carmustine; and triazenes such as dacarbazine.
  • Cyclophosphamide, 2-[bis(2-chloroethyl)amino]tetrahydro-2H-1,3,2-oxazaphosphorine 2-oxide monohydrate, is commercially available as an injectable solution or tablets as CYTOXAN®. Cyclophosphamide is indicated as a single agent or in combination with other chemotherapeutic agents, in the treatment of malignant lymphomas, multiple myeloma, and leukemias. Alopecia, nausea, vomiting and leukopenia are the most common dose limiting side effects of cyclophosphamide.
  • Melphalan, 4-[bis(2-chloroethyl)amino]-L-phenylalanine, is commercially available as an injectable solution or tablets as ALKERAN®. Melphalan is indicated for the palliative treatment of multiple myeloma and non-respectable epithelial carcinoma of the ovary. Bone marrow suppression is the most common dose limiting side effect of melphalan.
  • Chlorambucil, 4-[bis(2-chloroethyl)amino]benzenebutanoic acid, is commercially available as LEUKERAN® tablets. Chlorambucil is indicated for the palliative treatment of chronic lymphatic leukemia, and malignant lymphomas such as lymphosarcoma, giant follicular lymphoma, and Hodgkin's disease. Bone marrow suppression is the most common dose limiting side effect of chlorambucil.
  • Busulfan, 1,4-butanediol dimethanesulfonate, is commercially available as MYLERAN® TABLETS. Busulfan is indicated for the palliative treatment of chronic myelogenous leukemia. Bone marrow suppression is the most common dose limiting side effects of busulfan.
  • Carmustine, 1,3-[bis(2-chloroethyl)-1-nitrosourea, is commercially available as single vials of lyophilized material as BiCNU®. Carmustine is indicated for the palliative treatment as a single agent or in combination with other agents for brain tumors, multiple myeloma, Hodgkin's disease, and non-Hodgkin's lymphomas. Delayed myelosuppression is the most common dose limiting side effects of carmustine.
  • Dacarbazine, 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide, is commercially available as single vials of material as DTIC-Dome®. Dacarbazine is indicated for the treatment of metastatic malignant melanoma and in combination with other agents for the second line treatment of Hodgkin's Disease. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dacarbazine.
  • Antibiotic anti-neoplastics are non-phase specific agents, which bind or intercalate with DNA. Typically, such action results in stable DNA complexes or strand breakage, which disrupts ordinary function of the nucleic acids leading to cell death. Examples of antibiotic anti-neoplastic agents include, but are not limited to, actinomycins such as dactinomycin, anthrocyclins such as daunorubicin and doxorubicin; and bleomycins.
  • Dactinomycin, also know as Actinomycin D, is commercially available in injectable form as COSMEGEN®. Dactinomycin is indicated for the treatment of Wilm's tumor and rhabdomyosarcoma. Nausea, vomiting, and anorexia are the most common dose limiting side effects of dactinomycin.
  • Daunorubicin, (8S-cis-)-8-acetyl-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12 naphthacenedione hydrochloride, is commercially available as a liposomal injectable form as DAUNOXOME® or as an injectable as CERUBIDINE®. Daunorubicin is indicated for remission induction in the treatment of acute nonlymphocytic leukemia and advanced HIV associated Kaposi's sarcoma. Myelosuppression is the most common dose limiting side effect of daunorubicin.
  • Doxorubicin, (8S,10S)-10-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-8-glycoloyl, 7,8,9,10-tetrahydro-6,8,11-tri hydroxy-1-methoxy-5,12 naphthacenedione hydrochloride, is commercially available as an injectable form as RUBEX® or ADRIAMYCIN RDF®. Doxorubicin is primarily indicated for the treatment of acute lymphoblastic leukemia and acute myeloblastic leukemia, but is also a useful component in the treatment of some solid tumors and lymphomas. Myelosuppression is the most common dose limiting side effect of doxorubicin.
  • Bleomycin, a mixture of cytotoxic glycopeptide antibiotics isolated from a strain of Streptomyces verticillus, is commercially available as BLENOXANE®. Bleomycin is indicated as a palliative treatment, as a single agent or in combination with other agents, of squamous cell carcinoma, lymphomas, and testicular carcinomas. Pulmonary and cutaneous toxicities are the most common dose limiting side effects of bleomycin.
  • Topoisomerase II inhibitors include, but are not limited to, epipodophyllotoxins.
  • Epipodophyllotoxins are phase specific anti-neoplastic agents derived from the mandrake plant. Epipodophyllotoxins typically affect cells in the S and G2 phases of the cell cycle by forming a ternary complex with topoisomerase II and DNA causing DNA strand breaks. The strand breaks accumulate and cell death follows. Examples of epipodophyllotoxins include, but are not limited to, etoposide and teniposide.
  • Etoposide, 4′-demethyl-epipodophyllotoxin 9[4,6-0-(R)-ethylidene-8-D-glucopyranoside], is commercially available as an injectable solution or capsules as VePESID® and is commonly known as VP-16. Etoposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of testicular and non-small cell lung cancers. Myelosuppression is the most common side effect of etoposide. The incidence of leucopenia tends to be more severe than thrombocytopenia.
  • Teniposide, 4′-demethyl-epipodophyllotoxin 9[4,6-0-(R)-thenylidene-8-D-glucopyranoside], is commercially available as an injectable solution as VUMON® and is commonly known as VM-26. Teniposide is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia in children. Myelosuppression is the most common dose limiting side effect of teniposide. Teniposide can induce both leucopenia and thrombocytopenia.
  • Antimetabolite neoplastic agents are phase specific anti-neoplastic agents that act at S phase (DNA synthesis) of the cell cycle by inhibiting DNA synthesis or by inhibiting purine or pyrimidine base synthesis and thereby limiting DNA synthesis. Consequently, S phase does not proceed and cell death follows. Examples of antimetabolite anti-neoplastic agents include, but are not limited to, fluorouracil, methotrexate, cytarabine, mercaptopurine, thioguanine, and gemcitabine.
  • 5-fluorouracil, 5-fluoro-2,4-(1H,3H) pyrimidinedione, is commercially available as fluorouracil. Administration of 5-fluorouracil leads to inhibition of thymidylate synthesis and is also incorporated into both RNA and DNA. The result typically is cell death. 5-fluorouracil is indicated as a single agent or in combination with other chemotherapy agents in the treatment of carcinomas of the breast, colon, rectum, stomach and pancreas. Myelosuppression and mucositis are dose limiting side effects of 5-fluorouracil. Other fluoropyrimidine analogs include 5-fluoro deoxyuridine (floxuridine) and 5-fluorodeoxyuridine monophosphate.
  • Cytarabine, 4-amino-1-β-D-arabinofuranosyl-2(1H)-pyrimidinone, is commercially available as CYTOSAR-U® and is commonly known as Ara-C. It is believed that cytarabine exhibits cell phase specificity at S-phase by inhibiting DNA chain elongation by terminal incorporation of cytarabine into the growing DNA chain. Cytarabine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Other cytidine analogs include 5-azacytidine and 2′,2′-difluorodeoxycytidine (gemcitabine). Cytarabine induces leucopenia, thrombocytopenia, and mucositis.
  • Mercaptopurine, 1,7-dihydro-6H-purine-6-thione monohydrate, is commercially available as PURINETHOL®. Mercaptopurine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism. Mercaptopurine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Myelosuppression and gastrointestinal mucositis are expected side effects of mercaptopurine at high doses. A useful mercaptopurine analog is azathioprine.
  • Thioguanine, 2-amino-1,7-dihydro-6H-purine-6-thione, is commercially available as TABLOID®. Thioguanine exhibits cell phase specificity at S-phase by inhibiting DNA synthesis by an as of yet unspecified mechanism. Thioguanine is indicated as a single agent or in combination with other chemotherapy agents in the treatment of acute leukemia. Myelosuppression, including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of thioguanine administration. However, gastrointestinal side effects occur and can be dose limiting. Other purine analogs include pentostatin, erythrohydroxynonyladenine, fludarabine phosphate, and cladribine.
  • Gemcitabine, 2′-deoxy-2′,2′-difluorocytidine monohydrochloride (β-isomer), is commercially available as GEMZAR®. Gemcitabine exhibits cell phase specificity at S-phase and by blocking progression of cells through the G1/S boundary. Gemcitabine is indicated in combination with cisplatin in the treatment of locally advanced non-small cell lung cancer and alone in the treatment of locally advanced pancreatic cancer. Myelosuppression, including leucopenia, thrombocytopenia, and anemia, is the most common dose limiting side effect of gemcitabine administration.
  • Methotrexate, N-[4[[(2,4-diamino-6-pteridinyl)methyl]methylamino]benzoyl]-L-glutamic acid, is commercially available as methotrexate sodium. Methotrexate exhibits cell phase effects specifically at S-phase by inhibiting DNA synthesis, repair and/or replication through the inhibition of dyhydrofolic acid reductase which is required for synthesis of purine nucleotides and thymidylate. Methotrexate is indicated as a single agent or in combination with other chemotherapy agents in the treatment of choriocarcinoma, meningeal leukemia, non-Hodgkin's lymphoma, and carcinomas of the breast, head, neck, ovary and bladder. Myelosuppression (leucopenia, thrombocytopenia, and anemia) and mucositis are expected side effect of methotrexate administration.
  • Camptothecins, including, camptothecin and camptothecin derivatives are available or under development as Topoisomerase I inhibitors. Camptothecins cytotoxic activity is believed to be related to its Topoisomerase I inhibitory activity. Examples of camptothecins include, but are not limited to irinotecan, topotecan, and the various optical forms of 7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20-camptothecin described below.
  • Irinotecan HCl, (4S)-4,11-diethyl-4-hydroxy-9-[(4-piperidinopiperidino) carbonyloxy]-1H-pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione hydrochloride, is commercially available as the injectable solution CAMPTOSAR®.
  • Irinotecan is a derivative of camptothecin which binds, along with its active metabolite SN-38, to the topoisomerase I-DNA complex. It is believed that cytotoxicity occurs as a result of irreparable double strand breaks caused by interaction of the topoisomerase I:DNA:irintecan or SN-38 ternary complex with replication enzymes. Irinotecan is indicated for treatment of metastatic cancer of the colon or rectum. The dose limiting side effects of irinotecan HCl are myelosuppression, including neutropenia, and GI effects, including diarrhea.
  • Topotecan HCl, (S)-10-[(dimethylamino)methyl]-4-ethyl-4,9-dihydroxy-1H-pyrano[3′,4′,6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione monohydrochloride, is commercially available as the injectable solution HYCAMTIN®. Topotecan is a derivative of camptothecin which binds to the topoisomerase I-DNA complex and prevents religation of singles strand breaks caused by Topoisomerase I in response to torsional strain of the DNA molecule. Topotecan is indicated for second line treatment of metastatic carcinoma of the ovary and small cell lung cancer. The dose limiting side effect of topotecan HCl is myelosuppression, primarily neutropenia.
  • Also of interest, is the camptothecin derivative of formula A following, currently under development, including the racemic mixture (R,S) form as well as the R and S enantiomers:
  • Figure US20100234386A1-20100916-C00020
  • known by the chemical name “7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20(R,S)-camptothecin (racemic mixture) or “7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20(R)-camptothecin (R enantiomer) or “7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20(S)-camptothecin (S enantiomer). Such compound as well as related compounds are described, including methods of making, in U.S. Pat. Nos. 6,063,923; 5,342,947; 5,559,235; 5,491,237 and pending U.S. patent application Ser. No. 08/977,217 filed Nov. 24, 1997.
  • Hormones and hormonal analogues are useful compounds for treating cancers in which there is a relationship between the hormone(s) and growth and/or lack of growth of the cancer. Examples of hormones and hormonal analogues useful in cancer treatment include, but are not limited to, adrenocorticosteroids such as prednisone and prednisolone which are useful in the treatment of malignant lymphoma and acute leukemia in children; aminoglutethimide and other aromatase inhibitors such as anastrozole, letrazole, vorazole, and exemestane useful in the treatment of adrenocortical carcinoma and hormone dependent breast carcinoma containing estrogen receptors; progestins such as megestrol acetate useful in the treatment of hormone dependent breast cancer and endometrial carcinoma; estrogens, androgens, and anti-androgens such as flutamide, nilutamide, bicalutamide, cyproterone acetate and 5α-reductases such as finasteride and dutasteride, useful in the treatment of prostatic carcinoma and benign prostatic hypertrophy; anti-estrogens such as tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene, as well as selective estrogen receptor modulators (SERMS) such those described in U.S. Pat. Nos. 5,681,835, 5,877,219, and 6,207,716, useful in the treatment of hormone dependent breast carcinoma and other susceptible cancers; and gonadotropin-releasing hormone (GnRH) and analogues thereof which stimulate the release of leutinizing hormone (LH) and/or follicle stimulating hormone (FSH) for the treatment prostatic carcinoma, for instance, LHRH agonists and antagonists such as goserelin acetate and luprolide.
  • Signal transduction pathway inhibitors are those inhibitors, which block or inhibit a chemical process which evokes an intracellular change. As used herein this change is cell proliferation or differentiation. Signal transduction inhibitors useful in the present invention include inhibitors of receptor tyrosine kinases, non-receptor tyrosine kinases, SH2/SH3domain blockers, serine/threonine kinases, phosphotidyl inositol-3 kinases, myo-inositol signaling, and Ras oncogenes.
  • Several protein tyrosine kinases catalyse the phosphorylation of specific tyrosyl residues in various proteins involved in the regulation of cell growth. Such protein tyrosine kinases can be broadly classified as receptor or non-receptor kinases.
  • Receptor tyrosine kinases are transmembrane proteins having an extracellular ligand binding domain, a transmembrane domain, and a tyrosine kinase domain. Receptor tyrosine kinases are involved in the regulation of cell growth and are generally termed growth factor receptors. Inappropriate or uncontrolled activation of many of these kinases, i.e. aberrant kinase growth factor receptor activity, for example by over-expression or mutation, has been shown to result in uncontrolled cell growth. Accordingly, the aberrant activity of such kinases has been linked to malignant tissue growth. Consequently, inhibitors of such kinases could provide cancer treatment methods. Growth factor receptors include, for example, epidermal growth factor receptor (EGFr), platelet derived growth factor receptor (PDGFr), erbB2, erbB4, vascular endothelial growth factor receptor (VEGFr), tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains (TIE-2), insulin growth factor-I (IGFI) receptor, macrophage colony stimulating factor (cfms), BTK, ckit, cmet, fibroblast growth factor (FGF) receptors, Trk receptors (TrkA, TrkB, and TrkC), ephrin (eph) receptors, and the RET protooncogene. Several inhibitors of growth receptors are under development and include ligand antagonists, antibodies, tyrosine kinase inhibitors and anti-sense oligonucleotides. Growth factor receptors and agents that inhibit growth factor receptor function are described, for instance, in Kath, John C., Exp. Opin. Ther. Patents (2000) 10(6):803-818; Shawver et al DDT Vol 2, No. 2 Feb. 1997; and Lofts, F. J. et al, “Growth factor receptors as targets”, New Molecular Targets for Cancer Chemotherapy, ed. Workman, Paul and Kerr, David, CRC press 1994, London.
  • Tyrosine kinases, which are not growth factor receptor kinases are termed non-receptor tyrosine kinases. Non-receptor tyrosine kinases useful in the present invention, which are targets or potential targets of anti-cancer drugs, include cSrc, Lck, Fyn, Yes, Jak, cAbl, FAK (Focal adhesion kinase), Brutons tyrosine kinase, and Bcr-Abl. Such non-receptor kinases and agents which inhibit non-receptor tyrosine kinase function are described in Sinh, S, and Corey, S. J., (1999) Journal of Hematotherapy and Stem Cell Research 8 (5): 465-80; and Bolen, J. B., Brugge, J. S., (1997) Annual review of Immunology. 15: 371-404.
  • SH2/SH3 domain blockers are agents that disrupt SH2 or SH3 domain binding in a variety of enzymes or adaptor proteins including, PI3-K p85 subunit, Src family kinases, adaptor molecules (Shc, Crk, Nck, Grb2) and Ras-GAP. SH2/SH3 domains as targets for anti-cancer drugs are discussed in Smithgall, T. E. (1995), Journal of Pharmacological and Toxicological Methods. 34(3) 125-32.
  • Inhibitors of Serine/Threonine Kinases including MAP kinase cascade blockers which include blockers of Raf kinases (rafk), Mitogen or Extracellular Regulated Kinase (MEKs), and Extracellular Regulated Kinases (ERKs); and Protein kinase C family member blockers including blockers of PKCs (alpha, beta, gamma, epsilon, mu, lambda, iota, zeta). IkB kinase family (IKKa, IKKb), PKB family kinases, AKT kinase family members, and TGF beta receptor kinases. Such Serine/Threonine kinases and inhibitors thereof are described in Yamamoto, T., Taya, S., Kaibuchi, K., (1999), Journal of Biochemistry. 126 (5) 799-803; Brodt, P, Samani, A., and Navab, R. (2000), Biochemical Pharmacology, 60. 1101-1107; Massague, J., Weis-Garcia, F. (1996) Cancer Surveys. 27:41-64; Philip, P. A., and Harris, A. L. (1995), Cancer Treatment and Research. 78: 3-27, Lackey, K. et al Bioorganic and Medicinal Chemistry Letters, (10), 2000, 223-226; U.S. Pat. No. 6,268,391; and Martinez-Iacaci, L., et al, Int. J. Cancer (2000), 88(1), 44-52.
  • Inhibitors of Phosphotidyl inositol-3 Kinase family members including blockers of PI3-kinase, ATM, DNA-PK, and Ku are also useful in the present invention. Such kinases are discussed in Abraham, R. T. (1996), Current Opinion in Immunology. 8 (3) 412-8; Canman, C. E., Lim, D. S. (1998), Oncogene 17 (25) 3301-3308; Jackson, S. P. (1997), International Journal of Biochemistry and Cell Biology. 29 (7):935-8; and Zhong, H. et al, Cancer res, (2000) 60(6), 1541-1545.
  • Also useful in the present invention are Myo-inositol signaling inhibitors such as phospholipase C blockers and Myoinositol analogues. Such signal inhibitors are described in Powis, G., and Kozikowski A., (1994) New Molecular Targets for Cancer Chemotherapy ed., Paul Workman and David Kerr, CRC press 1994, London.
  • Another group of signal transduction pathway inhibitors are inhibitors of Ras Oncogene. Such inhibitors include inhibitors of farnesyltransferase, geranyl-geranyl transferase, and CAAX proteases as well as anti-sense oligonucleotides, ribozymes and immunotherapy. Such inhibitors have been shown to block ras activation in cells containing wild type mutant ras, thereby acting as antiproliferation agents. Ras oncogene inhibition is discussed in Scharovsky, O. G., Rozados, V. R., Gervasoni, S. I. Matar, P. (2000), Journal of Biomedical Science. 7(4) 292-8; Ashby, M. N. (1998), Current Opinion in Lipidology. 9 (2) 99-102; and BioChim. Biophys. Acta, (19899) 1423(3):19-30.
  • As mentioned above, antibody antagonists to receptor kinase ligand binding may also serve as signal transduction inhibitors. This group of signal transduction pathway inhibitors includes the use of humanized antibodies to the extracellular ligand binding domain of receptor tyrosine kinases. For example Imclone C225 EGFR specific antibody (see Green, M. C. et al, Monoclonal Antibody Therapy for Solid Tumors, Cancer Treat. Rev., (2000), 26(4), 269-286); Herceptin® erbB2 antibody (see Tyrosine Kinase Signalling in Breast cancer:erbB Family Receptor Tyrosine Kinases, Breast cancer Res., 2000, 2(3), 176-183); and 2CB VEGFR2 specific antibody (see Brekken, R. A. et al, Selective Inhibition of VEGFR2 Activity by a monoclonal Anti-VEGF antibody blocks tumor growth in mice, Cancer Res. (2000) 60, 5117-5124).
  • Non-receptor kinase angiogenesis inhibitors may also find use in the present invention. Inhibitors of angiogenesis related VEGFR and TIE2 are discussed above in regard to signal transduction inhibitors (both receptors are receptor tyrosine kinases). Angiogenesis in general is linked to erbB2/EGFR signaling since inhibitors of erbB2 and EGFR have been shown to inhibit angiogenesis, primarily VEGF expression. Thus, the combination of an erbB2/EGFR inhibitor with an inhibitor of angiogenesis makes sense. Accordingly, non-receptor tyrosine kinase inhibitors may be used in combination with the EGFR/erbB2 inhibitors of the present invention. For example, anti-VEGF antibodies, which do not recognize VEGFR (the receptor tyrosine kinase), but bind to the ligand; small molecule inhibitors of integrin (alphav beta3) that will inhibit angiogenesis; endostatin and angiostatin (non-RTK) may also prove useful in combination with the disclosed erb family inhibitors. (See Bruns C J et al (2000), Cancer Res., 60: 2926-2935; Schreiber A B, Winkler M E, and Derynck R. (1986), Science, 232: 1250-1253; Yen L et al. (2000), Oncogene 19: 3460-3469).
  • Agents used in immunotherapeutic regimens may also be useful in combination with the compounds of formula (I). There are a number of immunologic strategies to generate an immune response against erbB2 or EGFR. These strategies are generally in the realm of tumor vaccinations. The efficacy of immunologic approaches may be greatly enhanced through combined inhibition of erbB2/EGFR signaling pathways using a small molecule inhibitor. Discussion of the immunologic/tumor vaccine approach against erbB2/EGFR are found in Reilly R T et al. (2000), Cancer Res. 60: 3569-3576; and Chen Y, Hu D, Eling D J, Robbins J, and Kipps T J. (1998), Cancer Res. 58: 1965-1971.
  • Agents used in proapoptotic regimens (e.g., bcl-2 antisense oligonucleotides) may also be used in the combination of the present invention. Members of the Bcl-2 family of proteins block apoptosis. Upregulation of bcl-2 has therefore been linked to chemoresistance. Studies have shown that the epidermal growth factor (EGF) stimulates anti-apoptotic members of the bcl-2 family (i.e., mcl-1). Therefore, strategies designed to downregulate the expression of bcl-2 in tumors have demonstrated clinical benefit and are now in Phase II/III trials, namely Genta's G3139 bcl-2 antisense oligonucleotide. Such proapoptotic strategies using the antisense oligonucleotide strategy for bcl-2 are discussed in Water J S et al. (2000), J. Clin. Oncol. 18: 1812-1823; and Kitada S et al. (1994), Antisense Res. Dev. 4: 71-79.
  • Cell cycle signalling inhibitors inhibit molecules involved in the control of the cell cycle. A family of protein kinases called cyclin dependent kinases (CDKs) and their interaction with a family of proteins termed cyclins controls progression through the eukaryotic cell cycle. The coordinate activation and inactivation of different cyclin/CDK complexes is necessary for normal progression through the cell cycle. Several inhibitors of cell cycle signalling are under development. For instance, examples of cyclin dependent kinases, including CDK2, CDK4, and CDK6 and inhibitors for the same are described in, for instance, Rosania et al, Exp. Opin. Ther. Patents (2000) 10(2):215-230.
  • In one embodiment, the cancer treatment method of the claimed invention includes the co-administration a compound of formula I and/or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof and at least one anti-neoplastic agent, such as one selected from the group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, immunotherapeutic agents, proapoptotic agents, and cell cycle signaling inhibitors.
  • Because the pharmaceutically active compounds of the present invention are active as PI3 kinase inhibitors, particularly the compounds that modulate/inhibit PI3Kα, either selectively or in conjunction with one or more of PI3Kγ, PI3Kβ, and/or PI3δ, they exhibit therapeutic utility in treating a disease state selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, cancer, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • When a compound of Formula (I) is administered for the treatment of a disease state selected from: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, cancer, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection or lung injuries, the term “co-administering” and derivatives thereof as used herein is meant either simultaneous administration or any manner of separate sequential administration of a PI3 kinase inhibiting compound, as described herein, and a further active ingredient or ingredients, known to be useful in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, cancer, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, sperm motility, transplantation rejection, graft rejection and/or lung injuries.
  • Biological Assays PI3K Alpha Leadseeker SPA Assay
  • Compounds of the present invention were tested according to the following assays and found as inhibitors of PI3 kinases, particularly PI3Kα. The exemplified compounds were tested and found active against PI3Kα. The IC50's ranged from about 1 nM to 10 μM. The majority of the compounds were under 500 nM; the most active compounds were under 10 nM.
  • The compound of Example 1 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 5 nM against PI3Kα.
  • The compound of Example 2 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 100 nM against PI3Kα.
  • The compound of Example 4 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 50 nM against PI3Kα.
  • The compound of Example 19 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 8 nM against PI3Kα.
  • The compound of Example 20 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 16 nM against PI3Kα.
  • The compound of Example 69 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 13 nM against PI3Kα.
  • The compound of Example 70 was tested generally according to the assays described herein and in at least one experimental run exhibited a IC50 value: equal to 200 nM against PI3Kα.
  • Assay Principle
  • SPA imaging beads are microspheres containing scintillant which emit light in the red region of the visible spectrum. As a result, these beads are ideally suited to use with a CCD imager such as the Viewlux. The Leadseeker beads used in this system are polystyrene beads that have been coupled with polyethyleneimine. When added to the assay mixture, the beads absorb both the substrate (PIP2) and product (PIP3). Adsorbed P33-PIP3 will cause an increase in signal, measured as ADUs (analog to digital units). This protocol details the use of the PEI-PS Leadseeker beads for assays using His-p110/p85 PI3K alpha.
  • Assay Protocol
  • Solid compounds are typically plated with 0.1 μl of 100% DMSO in all wells (except column 6 and 18) of a 384-well, flat bottom, low volume plate (Greiner 784075). The compounds are serially diluted (3-fold in 100% DMSO) across the plate from column 1 to column 12 and column 13 to column 24 and leave column 6 and 18 containing only DMSO to yield 11 concentrations for each test compound.
  • The assay buffer contains MOPS (pH 6.5), CHAPS, and DTT. PI3K alpha and PIP2 (L-alpha-D-myo-Phosphatidylinositol 4,5-bisphosphate[PI(4,5)P2]3-O-phospho linked, D(+)-sn-1,2-di-O-octanoylglyceryl, CellSignals # 901) are mixed and incubated in the plate with compound for 30 min prior to starting the reaction with the addition of P33-ATP and MgCl2 (reagents added using Zoom). Enzyme-free wells (column 18) are typically done to determine the low control. PEI-PS Leadseeker beads in PBS/EDTA/CHAPS are added (by Multidrop) to quench the reaction, and the plates are allowed to incubate for at least one hour (typically overnight) before centrifugation. The signal is determined using a Viewlux detector and is then imported into curve fitting software (Activity Base) for construction of concentration response curves. The percent inhibition of activity is calculated relative to high controls (C1, 0.1 μl DMSO in column 6, rows A-P)) and low controls (C2, 5 μl of 40 uM PIP2 in buffer in column 18, rows A-P) using, 100*(1−(U1−C2)/(C1−C2)). The concentration of test compound yielding 50% inhibition is determined using the equation, y=((Vmax*x)/(K+x))+Y2, where “K” was equal to the 1050. The IC50 values are converted to pIC50 values, i.e., −log IC50 in Molar concentration.
  • Cellular Assays:
  • Day 1
      • Plate cells before noon
        • 10K cells/well in clear flat-bottomed 96-well plates (f.v. 105 ul)
        • Last four wells in last column receive media only
        • Place in 37 degC incubator overnight
      • Compound plate
        • Prepare in polypropylene round-bottomed 96-well plates; 8 compounds per
        • plate, 11-pt titrations of each (3× serial dilution), DMSO in last column (0.15% f.c. on cells)
        • 15 ul in first well, 10 ul DMSO in the rest; take 5 ul from first well and mix in next, continue across plate (excluding last column); seal with foil lid and place at 4 degC
  • Day 2
      • Take out Lysis buffer inhibitors (4 degC/−20 degC) and compound plates (4 degC), thaw on bench top; make 1× Tris wash buffer (WB) to fill reservoir on plate washer and top off bench supply (use MiliQ), turn on centrifuge to allow it to cool
      • Block MSD plates
        • Make 20 ml 3% blocking solution/plate (600 mg blocker A in 20 ml WB), add 150 ul/well and incubate at RT for at least 1 hr
      • Add compound (while blocking)
        • Add 300 ul growth media (RPMI w/ Q, 10% FBS) per well (682×dil of compound) to each compound plate
        • Add 5 ul compound dilution into each well (f.v. 110 ul) on duplicate plates
        • Place in 37 degC incubator for 30 min
      • Make lysates
        • Prepare MSD Lysis buffer; for 10 ml add 200 ul protease inhibitor solution, and 100 ul each of Phosphatase inhibitors I & II (Keep on ice until ready for use)
        • Remove plates post-incubation, aspirate media with plate washer, wash 1× with cold PBS, and add 80 ul MSD Lysis buffer per well; incubate on shaker at 4 degC for ≧30 min
        • Spin cold at 2500 rpm for 10 min; leave plates in 4 degC centrifuge until ready for use
      • AKT duplex assay
        • Wash plates (4× with 200 ul/well WB in plate washer); tap plates on paper towel to blot
        • Add 60 ul of lysates/well, incubate on shaker at RT for 1 hr
        • During incubation prepare detection Ab (3 ml/plate; 2 ml WB and 1 ml blocking solution w/ Ab at 10 nM); repeat wash step as above
        • Add 25 ul of Ab/well, incubate on shaker at RT for 1 hr; repeat wash step as above
        • Add 150 ul/well 1× Read Buffer (dilute 4× stock in ddH2O, 20 ml/plate), read immediately
      • Analysis
        • Observe all the data points at each compound concentration.
        • The data point from highest inhibitor concentration must be equal or greater than 70% of DMSO control.
        • IC50 for duplicate runs must be within 2-fold of each other (not flagged in summary template).
        • Y min must be greater than zero; if both mins are red flagged (>35) then compound is listed as inactive (IC50=>highest dose). If only one min is red flagged, but still ≦50 then call IC50 as listed.
        • Any data points equal or greater than 30% off the curve will not be considered.
    Cell Growth/Death Assay:
  • BT474, HCC1954 and T-47D (human breast) were cultured in RPMI-1640 containing 10% fetal bovine serum at 37° C. in 5% CO2 incubator. Cells were split into T75 flask (Falcon #353136) two to three days prior to assay set up at density which yields approximately 70-80% confluence at time of harvest for assay. Cells were harvested using 0.25% trypsin-EDTA (Sigma #4049). Cell counts were performed on cell suspension using Trypan Blue exclusion staining. Cells were then plated in 384 well black flat bottom polystyrene (Greiner #781086) in 48 μl of culture media per well at 1,000 cells/well. All plates were placed at 5% CO2, 37° C. overnight and test compounds were added the following day. One plate was treated with CellTiter-Glo (Promega #G7573) for a day 0 (t=0) measurement and read as described below. The test compounds were prepared in clear bottom polypropylene 384 well plates (Greiner #781280) with consecutive two fold dilutions. 4 μl of these dilutions were added to 105 μl culture media, after mixing the solution, 2 μl of these dilutions were added into each well of the cell plates. The final concentration of DMSO in all wells was 0.15%. Cells were incubated at 37° C., 5% CO2 for 72 hours. Following 72 hours of incubation with compounds each plate was developed and read. CellTiter-Glo reagent was added to assay plates using a volume equivalent to the cell culture volume in the wells. Plates were shaken for approximately two minutes and incubated at room temperature for approximately 30 minutes and chemiluminescent signal was read on the Analyst GT (Molecular Devices) reader. Results were expressed as a percent of the t=0 and plotted against the compound concentration. Cell growth inhibition was determined for each compound by fitting the dose response with a 4 or 6 parameter curve fit using XLfit software and determining the concentration that inhibited 50% of the cell growth (gIC50) with the Y min as the t=0 and Y max as the DMSO control. Value from wells with no cells was subtracted from all samples for background correction.
  • Additional References:
  • The compounds of the present invention can also be tested to determine their inhibitory activity at PI3Kα, PI3δ, PI3Kβ and PI3Kγ according to the following references:
  • For all PI3K isoforms:
    • 1. Cloning, expression, purification, and characterization of the human Class la phosphoinositide 3-kinase isoforms: Meier, T. I.; Cook, J. A.; Thomas, J. E.; Radding, J. A.; Horn, C.; Lingaraj, T.; Smith, M. C. Protein Expr. Purif., 2004, 35(2), 218.
    • 2. Competitive fluorescence polarization assays for the detection of phosphoinositide kinase and phosphatase activity: Drees, B. E.; Weipert, A.; Hudson, H.; Ferguson, C. G.; Chakravarty, L.; Prestwich, G. D. Comb. Chem. High Throughput. Screen., 2003, 6(4), 321.
    For PI3Kγ: WO 2005/011686 A1
  • The pharmaceutically active compounds within the scope of this invention are useful as PI3 Kinase inhibitors in mammals, particularly humans, in need thereof.
  • The present invention therefore provides a method of treating diseases associated with PI3 kinase inhibition, particularly: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries and other conditions requiring PI3 kinase modulation/inhibition, which comprises administering an effective compound of Formula (I) or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof. The compounds of Formula (I) also provide for a method of treating the above indicated disease states because of their ability to act as PI3 inhibitors. The drug may be administered to a patient in need thereof by any conventional route of administration, including, but not limited to, intravenous, intramuscular, oral, subcutaneous, intradermal, and parenteral.
  • The pharmaceutically active compounds of the present invention are incorporated into convenient dosage forms such as capsules, tablets, or injectable preparations. Solid or liquid pharmaceutical carriers are employed. Solid carriers include, starch, lactose, calcium sulfate dihydrate, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, and stearic acid. Liquid carriers include syrup, peanut oil, olive oil, saline, and water. Similarly, the carrier or diluent may include any prolonged release material, such as glyceryl monostearate or glyceryl distearate, alone or with a wax. The amount of solid carrier varies widely but, preferably, will be from about 25 mg to about 1 g per dosage unit. When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampoule, or an aqueous or nonaqueous liquid suspension.
  • The pharmaceutical preparations are made following conventional techniques of a pharmaceutical chemist involving mixing, granulating, and compressing, when necessary, for tablet forms, or mixing, filling and dissolving the ingredients, as appropriate, to give the desired oral or parenteral products.
  • Doses of the presently invented pharmaceutically active compounds in a pharmaceutical dosage unit as described above will be an efficacious, nontoxic quantity preferably selected from the range of 0.001-100 mg/kg of active compound, preferably 0.001-50 mg/kg. When treating a human patient in need of a PI3K inhibitor, the selected dose is administered preferably from 1-6 times daily, orally or parenterally. Preferred forms of parenteral administration include topically, rectally, transdermally, by injection and continuously by infusion. Oral dosage units for human administration preferably contain from 0.05 to 3500 mg of active compound. Oral administration, which uses lower dosages is preferred. Parenteral administration, at high dosages, however, also can be used when safe and convenient for the patient.
  • Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular PI3 kinase inhibitor in use, the strength of the preparation, the mode of administration, and the advancement of the disease condition. Additional factors depending on the particular patient being treated will result in a need to adjust dosages, including patient age, weight, diet, and time of administration.
  • The method of this invention of inducing PI3 kinase inhibitory activity in mammals, including humans, comprises administering to a subject in need of such activity an effective PI3 kinase modulating/inhibiting amount of a pharmaceutically active compound of the present invention.
  • The invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use as a PI3 kinase inhibitor.
  • The invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in therapy.
  • The invention also provides for the use of a compound of Formula (I) in the manufacture of a medicament for use in treating autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries.
  • The invention also provides for a pharmaceutical composition for use as a PI3 inhibitor which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • The invention also provides for a pharmaceutical composition for use in the treatment of autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries, which comprises a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • In addition, the pharmaceutically active compounds of the present invention can be co-administered with further active ingredients, including compounds known to have utility when used in combination with a PI3 kinase inhibitor.
  • Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following examples are, therefore, to be construed as merely illustrative and not a limitation of the scope of the present invention in any way.
  • Experimental Details
  • The compounds of the following examples are readily made according to Schemes I-5 or by analogous methods.
  • Schemes:
  • Quinoxalines such as represented by compounds of Formula I can be prepared from, for example, bromoquinoxalinols (2) which have been prepared in the literature (Journal of Medicinal Chemistry, 1981, 24(1), 93-101). As outlined in Scheme 1, bromoquinoxalinols such as compound 2 may be converted to a bromochloroquinoxaline such as compound 3 by for example, treatment with phosphorous oxychloride at elevated temperatures (typically 120° C.). The resulting chlorinated compound (3) may undergo a variety of coupling reactions as delineated by steps C, D or E. When the coupling step is for instance a nucleophilic displacement reaction such as for steps C or D, suitable nucleophiles such as amines, or alkoxides are commercially available or easily prepared by methods known to those skilled in the art. In the instances where the coupling step is an amine or alkoxide displacement of the chloride in compound 3, such a displacement may be carried out at room temperature or further facilitated by heating to temperatures such as 70-100° C. either in neat reagent or in a suitable polar solvent such as N,N′-dimethylformamide. Alternatively, the coupling step to prepare compounds of formula 4 may be a transition metal (such as palladium) catalyzed cross-coupling reaction of an aryl or heteroaryl stannane, boronate ester or boronic acid with compound 3, such as in step E. An exemplary coupling reaction such as a Suzuki cross-coupling depicted in step E can be achieved by treating compound 3 with an appropriate palladium catalyst (typically 1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1)), in the presence of inorganic base (such as potassium carbonate, sodium carbonate or sodium bicarbonate) and a suitable solvent (such as 1,4-dioxane or N,N′-dimethylformamide) at elevated temperatures (typically 100° C.). The resulting compounds of formula (4) may undergo another palladium catalyzed coupling reaction as described above with an aryl or heteroaryl boronate ester or boronic acid to furnish compounds of the present invention such as 6. Likewise, in the instances when R2 in compound 4 is N or O, borylation can be achieved with a palladium catalyst (such as 1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1)) in the presence of base (such as potassium acetate) in solvent (such as dioxane) at elevated temperature (typically 100° C.) to provide boronate esters such as compound 5. Such boronate esters can undergo typical Suzuki cross-coupling reactions (as described above) with appropriate aryl or heteroaryl halides to provide compounds of the present invention, such as compound 6.
  • Figure US20100234386A1-20100916-C00021
  • Scheme 2 describes the removal of an amine protecting group when it is necessary to protect an amine before a coupling reaction (such as in steps C, D, or E in Scheme 1 above) can be carried out. For example, a Boc-protected amine such as compound 7 can be treated with trifluoroacetic acid in a suitable solvent (such as acetonitrile) at rt to furnish compounds of the present invention such as compound 8.
  • Figure US20100234386A1-20100916-C00022
  • Schemes 3, 4, 5 and 6 describe exemplary preparations of non-commercial intermediate amines, bromides or boronate esters used.
  • Figure US20100234386A1-20100916-C00023
  • Figure US20100234386A1-20100916-C00024
  • Figure US20100234386A1-20100916-C00025
  • Figure US20100234386A1-20100916-C00026
  • EXPERIMENTAL SECTION
  • Compounds of the present invention can be prepared according to Scheme 1, using different coupling groups in steps C, D, and E. Alternative coupling groups for step C, D, and E are all commercially available or described in preparations for Intermediates 1, 2, 3, 4, 5 and 6 below.
  • Exemplary preparations are described in Examples 1, 37 and 43. All claimed compounds can be prepared by the preparations described in this section.
  • Example 1 Preparation of 2-(4-morpholinyl)-7-(1H-pyrazolo[3,4-b]pyridin-5-yl)quinoxaline
  • Figure US20100234386A1-20100916-C00027
  • a) 7-bromo-2(1H)-quinoxalinone
  • Prepared according to the procedure described in Journal of Medicinal Chemistry, 1981, 24(1), 93-101.
  • b) 7-Bromo-2-chloroquinoxaline
  • A slurry of 7-bromo-2(1H)-quinoxalinone (22.2 mmol) in neat phosphorus oxychloride (50 ml) was heated at 120° C. for 20 hours. The reaction was cooled to ambient temperature then concentrated under reduced pressure to a purple residue. The residue was taken into ethyl acetate then slowly poured into ice-cold, saturated aqueous sodium bicarbonate solution (˜100 ml) and extracted with ethyl acetate. The extracts were washed with saturated aqueous sodium bicarbonate and brine then dried over anhydrous sodium sulfate and decolorizing charcoal. The slurry was filtered through Celite then concentrated under reduced pressure to give the title compound (3.0 g, 55%) as a white solid. MS(ES)+ m/e 242.9; 244.8 [M+]+.
  • c) 7-Bromo-2-(4-morpholinyl)quinoxaline
  • A solution of 7-bromo-2-chloroquinoxaline (6.16 mmol) in N,N-dimethylformamide (20 ml) was treated with an amine or alcohol such as neat morpholine (18.5 mmol) then heated at 80° C. for 1 hour. The reaction was cooled to ambient temperature then concentrated under reduced pressure to a yellow residue. The residue was taken into ethyl acetate and washed with portions of saturated aqueous sodium bicarbonate. The organic phase was dried over anhydrous sodium sulfate and decolorizing charcoal then filtered through Celite. The filtrate was concentrated under reduced pressure to give (1.43 g, 95%) as a yellow solid. MS(ES)+ m/e 293.7; 295.9 [M+]+.
  • d) 2-(4-Morpholinyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoxaline
  • A slurry of 7-bromo-2-(4-morpholinyl)quinoxaline (0.67 mmol), bis(pinacolato)diboron (0.87 mmol), potassium acetate (1.33 mmol) and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.03 mmol) in anhydrous 1,4-dioxane (10 ml) was heated at 110° C. for 18 hours. The reaction mixture was cooled to ambient temperature then filtered through a short pad of silica (˜15 g) topped with anhydrous sodium sulfate (˜5 g), rinsing with ethyl acetate. The filtrate was concentrated under reduced pressure to a brown residue then purified by column chromatography on silica (15% hexanes in ethyl acetate). The desired fractions were combined and concentrated to give the title compound (186 mg, 81%) as a yellow solid. MS(ES)+ m/e 342.0 [M+]+.
  • e) 2-(4-Morpholinyl)-7-(1H-pyrazolo[3,4-b]pyridin-5-yl)quinoxaline
  • A slurry of 2-(4-morpholinyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoxaline (0.56 mmol), a heteroaryl bromide such as 5-bromo-1H-pyrazolo[3,4-b]pyridine (0.47 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.05 mmol) and 2 M aqueous sodium carbonate (1.88 mmol) in 1,4-dioxane (5 ml) was heated at 110° C. for 18 hours. The reaction was cooled to ambient temperature then filtered through a short pad of silica (˜15 g) topped with anhydrous sodium sulfate (˜5 g), rinsing well with ethyl acetate. The filtrate was concentrated under reduced pressure to a brown residue then purified by column chromatography on silica (10% hexanes in ethyl acetate). The desired fractions were combined and concentrated to give the title compound (40 mg, 26%) as a light yellow solid. MS(ES)+ m/e 333.1 [M+H]+.
  • The following compounds were or can be prepared following the procedures used to prepare Example 1:
  • MS(ES)
    Example Structure [M + H]+
    2
    Figure US20100234386A1-20100916-C00028
    323
    3
    Figure US20100234386A1-20100916-C00029
    420
    4
    Figure US20100234386A1-20100916-C00030
    332
    5
    Figure US20100234386A1-20100916-C00031
    332
    6
    Figure US20100234386A1-20100916-C00032
    293
    7
    Figure US20100234386A1-20100916-C00033
    293
    8
    Figure US20100234386A1-20100916-C00034
    323
    9
    Figure US20100234386A1-20100916-C00035
    263
    10
    Figure US20100234386A1-20100916-C00036
    402
    11
    Figure US20100234386A1-20100916-C00037
    415
    12
    Figure US20100234386A1-20100916-C00038
    442
    13
    Figure US20100234386A1-20100916-C00039
    372
    14
    Figure US20100234386A1-20100916-C00040
    346
    15
    Figure US20100234386A1-20100916-C00041
    458
    16
    Figure US20100234386A1-20100916-C00042
    430
    17
    Figure US20100234386A1-20100916-C00043
    403
    18
    Figure US20100234386A1-20100916-C00044
    403
    19
    Figure US20100234386A1-20100916-C00045
    373
    20
    Figure US20100234386A1-20100916-C00046
    427
    21
    Figure US20100234386A1-20100916-C00047
    407
    22
    Figure US20100234386A1-20100916-C00048
    448
    23
    Figure US20100234386A1-20100916-C00049
    369
    24
    Figure US20100234386A1-20100916-C00050
    386
    25
    Figure US20100234386A1-20100916-C00051
    399
    26
    Figure US20100234386A1-20100916-C00052
    471
    27
    Figure US20100234386A1-20100916-C00053
    372
    28
    Figure US20100234386A1-20100916-C00054
    459
    29
    Figure US20100234386A1-20100916-C00055
    413
    30
    Figure US20100234386A1-20100916-C00056
    415
    31
    Figure US20100234386A1-20100916-C00057
    465
    32
    Figure US20100234386A1-20100916-C00058
    484
    33
    Figure US20100234386A1-20100916-C00059
    441
    34
    Figure US20100234386A1-20100916-C00060
    358
    35
    Figure US20100234386A1-20100916-C00061
    525
    36
    Figure US20100234386A1-20100916-C00062
    495
    37
    Figure US20100234386A1-20100916-C00063
    463
    38
    Figure US20100234386A1-20100916-C00064
    412
    39
    Figure US20100234386A1-20100916-C00065
    539
    40
    Figure US20100234386A1-20100916-C00066
    484
    41
    Figure US20100234386A1-20100916-C00067
    531
    42
    Figure US20100234386A1-20100916-C00068
    511
    43
    Figure US20100234386A1-20100916-C00069
    497
    44
    Figure US20100234386A1-20100916-C00070
    495
    45
    Figure US20100234386A1-20100916-C00071
    461
    46
    Figure US20100234386A1-20100916-C00072
    497
    47
    Figure US20100234386A1-20100916-C00073
    320
    48
    Figure US20100234386A1-20100916-C00074
    475
    49
    Figure US20100234386A1-20100916-C00075
    503
    50
    Figure US20100234386A1-20100916-C00076
    517
    51
    Figure US20100234386A1-20100916-C00077
    429
    52
    Figure US20100234386A1-20100916-C00078
    496
    53
    Figure US20100234386A1-20100916-C00079
    464
    54
    Figure US20100234386A1-20100916-C00080
    489
    55
    Figure US20100234386A1-20100916-C00081
    461
    56
    Figure US20100234386A1-20100916-C00082
    489
    57
    Figure US20100234386A1-20100916-C00083
    527
    58
    Figure US20100234386A1-20100916-C00084
    449
    59
    Figure US20100234386A1-20100916-C00085
    513
    60
    Figure US20100234386A1-20100916-C00086
    435
    61
    Figure US20100234386A1-20100916-C00087
    499
    62
    Figure US20100234386A1-20100916-C00088
    539
    63
    Figure US20100234386A1-20100916-C00089
    475
    64
    Figure US20100234386A1-20100916-C00090
    568
    65
    Figure US20100234386A1-20100916-C00091
    631
    66
    Figure US20100234386A1-20100916-C00092
    391
    67
    Figure US20100234386A1-20100916-C00093
    390
    68
    Figure US20100234386A1-20100916-C00094
    331
  • Example 69 Preparation of 2-amino-N,N-dimethyl-5-[3-(4-pyridinyl)-6-quinoxalinyl]-3-pyridinesulfonamide
  • Figure US20100234386A1-20100916-C00095
  • a) 7-bromo-2-(4-pyridinyl)quinoxaline
  • A mixture of 7-bromo-2-chloroquinoxaline (2.05 mmol), pyridine-4-boronic acid (2.05 mmol), [1,1′-bis(diphenylphosphino)-ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.1025 mmol), 2M aqueous potassium carbonate (5 mL) and anhydrous 1,4-dioxane (15 mL) was heated at 100° C. for 16.5 h in a sealed pressure vessel. After cooling to room temperature, the organic layer was separated and purified directly on silica gel, eluting with 50-100% ethyl acetate in hexanes to provide the title compound as a yellow solid (382 mg, 65% yield). MS(ES)+ m/e 285.9; 287.8 [M+]+.
  • b) 2-amino-N,N-dimethyl-5-[3-(4-pyridinyl)-6-quinoxalinyl]-3-pyridinesulfonamide
  • A mixture of 7-bromo-2-(4-pyridinyl)quinoxaline (0.245 mmol), 2-amino-N,N-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinesulfonamide (0.245 mmol), [1,1′-bis(diphenylphosphino)-ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.0196 mmol), 2M aqueous potassium carbonate (2 mL) and anhydrous 1,4-dioxane (6 mL) was heated at 100° C. for 4 h in a sealed pressure vessel. After cooling to room temperature, the organic layer was separated and purified directly on silica gel, eluting with 0-10% methanol in ethyl acetate followed by a second purification by HPLC (eluting with acetonitrile: 0.1% TFA in H2O) to afford the title compound as a bright yellow solid (47 mg, 47% yield). MS(ES)+ m/e 407.2 [M+H]+.
  • The following compounds were or can be prepared following the procedures used to prepare Example 69:
  • MS(ES)
    Compound Structure [M + H]+
    70
    Figure US20100234386A1-20100916-C00096
    364
    71
    Figure US20100234386A1-20100916-C00097
    364
    72
    Figure US20100234386A1-20100916-C00098
    363
    73
    Figure US20100234386A1-20100916-C00099
    324
    74
    Figure US20100234386A1-20100916-C00100
    408
    75
    Figure US20100234386A1-20100916-C00101
    420
    76
    Figure US20100234386A1-20100916-C00102
    456
    77
    Figure US20100234386A1-20100916-C00103
    440
    78
    Figure US20100234386A1-20100916-C00104
    440
    79
    Figure US20100234386A1-20100916-C00105
    441
  • Example 80 Preparation of 5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinesulfonamide
  • Figure US20100234386A1-20100916-C00106
  • A solution of 1,1-dimethylethyl 4-{7-[5-(aminosulfonyl)-3-pyridinyl]-2-quinoxalinyl}-1-piperazinecarboxylate (0.21 mmol) (prepared according to Scheme 1) in acetonitrile (4 mL) was treated with concentrated trifluoroacetic acid (4 mL) for 2 hours. The reaction mixture was then concentrate and neutralized with saturated sodium bicarbonate (20 mL) and extracted with ethyl acetate (3×20 mL). The combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated to yield the title product. MS(ES)+ m/e 371.0 [M+H]+.
  • *Similar compounds were or can be prepared following the procedures used to prepare Example 80, with or without N,N′-dimethylformamide as solvent.
  • Example 81 Preparation of N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00107
  • a) 7-bromo-2-(1-methyl-1H-pyrazol-4-yl)quinoxaline
  • A slurry of 7-bromo-2-chloroquinoxaline (10.0 mmol), 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (10.5 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.3 mmol) in 2M aqueous potassium carbonate (15 mL) and 1,4-dioxane (40 mL) was heated at 100° C. for 4 h. The reaction mixture was cooled, poured into water (100 mL), and extracted with (3×100 mL) ethyl acetate. The combined organic layers were filtered through a pad of Celite while rinsing with water and ethyl acetate. The filtrate was separated and the organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo. Purification of the residue by silica gel chromatography (40-70% ethyl acetate/hexanes) provided the title compound as a yellow solid (1.73 g, 57%). MS(ES)+ m/e 289, 291 [M+H]+.
  • b) N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • A mixture of 7-bromo-2-(1-methyl-1H-pyrazol-4-yl)quinoxaline (5.98 mmol), N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (6.78 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.18 mmol) in 2M aqueous sodium carbonate (15 mL) and 1,4-dioxane (40 mL) was heated at 100° C. for 22 h. Additional N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.83 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.09 mmol), and 2M aqueous potassium carbonate (3 mL) were added and the reaction mixture was heated at 100° C. for 22 h for complete consumption of starting material. The reaction mixture was cooled, diluted with diethyl ether (30 mL), and filtered through a pad of Celite while rinsing with (2×30 mL) diethyl ether. The organic layer was poured into a separatory funnel containing water (100 mL) and the layers were separated. The aqueous layer was acidified with 6N aqueous HCl until the pH was approximately 7 and then further extracted with (3×200 mL) ethyl acetate. The combined organic layers were dried over sodium sulfate with decolorizing activated carbon, filtered through a pad of Celite while rinsing with (2×100 mL) ethyl acetate, and concentrated in vacuo. The filtrate was separated and the organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo. Recrystallization of the residue from hot ethyl acetate afforded the title product as an ivory solid (804 mg, 30%). Additional product was obtained from the concentrated mother liquors after purification by silica gel chromatography (70-100% ethyl acetate/hexanes) followed by precipitation from cold ethyl acetate (534 mg, 20%). MS(ES)+ m/e 443 [M+H]+.
  • * Related analogs such as the following were or can be prepared following the general procedures in Example 81 by varying the choice of boronate ester and heteroaryl halide coupling partners. Some analogs could be isolated by direct purification of the organic layer by alternative purification methods such as reverse phase Gilson HPLC, silica gel chromatography, recrystallization from ethanol, or trituration from other solvents.
  • MS(ES)
    Example Structure [M + H]+
    82
    Figure US20100234386A1-20100916-C00108
    353
    83
    Figure US20100234386A1-20100916-C00109
    353
    84
    Figure US20100234386A1-20100916-C00110
    536
    85
    Figure US20100234386A1-20100916-C00111
    429
    86
    Figure US20100234386A1-20100916-C00112
    500
    87
    Figure US20100234386A1-20100916-C00113
    457
    88
    Figure US20100234386A1-20100916-C00114
    473
    89
    Figure US20100234386A1-20100916-C00115
    443
    90
    Figure US20100234386A1-20100916-C00116
    471
    91
    Figure US20100234386A1-20100916-C00117
    458
    92
    Figure US20100234386A1-20100916-C00118
    485
    93
    Figure US20100234386A1-20100916-C00119
    542
    94
    Figure US20100234386A1-20100916-C00120
    569
    95
    Figure US20100234386A1-20100916-C00121
    429
    96
    Figure US20100234386A1-20100916-C00122
    487
    97
    Figure US20100234386A1-20100916-C00123
    443
    98
    Figure US20100234386A1-20100916-C00124
    514
    99
    Figure US20100234386A1-20100916-C00125
    479
    100
    Figure US20100234386A1-20100916-C00126
    486
    101
    Figure US20100234386A1-20100916-C00127
    303
    102
    Figure US20100234386A1-20100916-C00128
    457
    103
    Figure US20100234386A1-20100916-C00129
    457
    104
    Figure US20100234386A1-20100916-C00130
    442
    105
    Figure US20100234386A1-20100916-C00131
    478
    106
    Figure US20100234386A1-20100916-C00132
    409
    107
    Figure US20100234386A1-20100916-C00133
    447
    108
    Figure US20100234386A1-20100916-C00134
    461
    109
    Figure US20100234386A1-20100916-C00135
    531
    110
    Figure US20100234386A1-20100916-C00136
    517
    111
    Figure US20100234386A1-20100916-C00137
    473
    112
    Figure US20100234386A1-20100916-C00138
    514
    113
    Figure US20100234386A1-20100916-C00139
    437
    114
    Figure US20100234386A1-20100916-C00140
    509
    115
    Figure US20100234386A1-20100916-C00141
    411
    116
    Figure US20100234386A1-20100916-C00142
    493
    117
    Figure US20100234386A1-20100916-C00143
    421
    118
    Figure US20100234386A1-20100916-C00144
    491
  • Example 119 Preparation of 2,4-difluoro-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00145
  • A mixture of 2-(1-methyl-1H-pyrazol-4-yl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoxaline (9.22 mmol), N-(5-bromo-3-pyridinyl)-2,4-difluorobenzenesulfonamide (8.13 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.404 mmol) in 2M aqueous sodium carbonate (40 mL) and 1,4-dioxane (40 mL) was heated at 100° C. for 1 h. Upon cooling, the reaction mixture separated into two layers (aqueous and organic). The organic layer was partitioned between ethyl acetate (50 mL) and water (25 mL). The two aqueous layers were then combined and the pH was adjusted to ˜7 with 2N aqueous HCl. A solid precipitated and was filtered away from the solution. The solid was dried in vacuo and then desiccated over P2O5 to afford the title product (2.5 g, 64%). MS(ES)+ m/e 479 [M+H]+.
  • Example 120 Preparation of 4-cyano-N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00146
  • To a solution of 5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinamine (52 g, 0.172 mmol) in pyridine (1.7 mL) was added 4-cyanobenzenesulfonyl chloride (56 mg, 0.278 mmol). The reaction mixture was stirred at room temperature overnight. Monitoring by LCMS still showed 30% of starting material. An additional portion of 4-cyanobenzenesulfonyl chloride (17 mg, 0.084 mmol) was added to the reaction mixture and after stirring for a further 30 minutes, all starting material was consumed. Cold water was poured into the reaction resulting in precipitate formation. This solid was collected by filtration, washed with water and dried under vacuum to give the title compound (54 mg, 67%) as a brown colored solid. MS(ES)+ m/e 468 [M+H]+.
  • The following compounds were or can be prepared following the general procedures used to prepare the compound of Example 120 above:
  • MS(ES)
    Compound Structure [M + H]+
    121
    Figure US20100234386A1-20100916-C00147
    381
    122
    Figure US20100234386A1-20100916-C00148
    461
    123
    Figure US20100234386A1-20100916-C00149
    461
    124
    Figure US20100234386A1-20100916-C00150
    407
    125
    Figure US20100234386A1-20100916-C00151
    447
    126
    Figure US20100234386A1-20100916-C00152
    409
    127
    Figure US20100234386A1-20100916-C00153
    463
    128
    Figure US20100234386A1-20100916-C00154
    529
    129
    Figure US20100234386A1-20100916-C00155
    449
    130
    Figure US20100234386A1-20100916-C00156
    462
    131
    Figure US20100234386A1-20100916-C00157
    475
    132
    Figure US20100234386A1-20100916-C00158
    395
    133
    Figure US20100234386A1-20100916-C00159
    423
    134
    Figure US20100234386A1-20100916-C00160
    461
    135
    Figure US20100234386A1-20100916-C00161
    423
    136
    Figure US20100234386A1-20100916-C00162
    449
    137
    Figure US20100234386A1-20100916-C00163
    473
    138
    Figure US20100234386A1-20100916-C00164
    461
    139
    Figure US20100234386A1-20100916-C00165
    457
    140
    Figure US20100234386A1-20100916-C00166
    503
    141
    Figure US20100234386A1-20100916-C00167
    471
    142
    Figure US20100234386A1-20100916-C00168
    485
    143
    Figure US20100234386A1-20100916-C00169
    485
    144
    Figure US20100234386A1-20100916-C00170
    472
    145
    Figure US20100234386A1-20100916-C00171
    503
    146
    Figure US20100234386A1-20100916-C00172
    511
    147
    Figure US20100234386A1-20100916-C00173
    449
    148
    Figure US20100234386A1-20100916-C00174
    491
    149
    Figure US20100234386A1-20100916-C00175
    475
    150
    Figure US20100234386A1-20100916-C00176
    475
    151
    Figure US20100234386A1-20100916-C00177
    511
    152
    Figure US20100234386A1-20100916-C00178
    511
    153
    Figure US20100234386A1-20100916-C00179
    496
    154
    Figure US20100234386A1-20100916-C00180
    512
    155
    Figure US20100234386A1-20100916-C00181
    512
    156
    Figure US20100234386A1-20100916-C00182
    449
    157
    Figure US20100234386A1-20100916-C00183
    478
    158
    Figure US20100234386A1-20100916-C00184
    473
    159
    Figure US20100234386A1-20100916-C00185
    496
    160
    Figure US20100234386A1-20100916-C00186
    553
    161
    Figure US20100234386A1-20100916-C00187
    546
    162
    Figure US20100234386A1-20100916-C00188
    536
    163
    Figure US20100234386A1-20100916-C00189
    536
    164
    Figure US20100234386A1-20100916-C00190
    550
    165
    Figure US20100234386A1-20100916-C00191
    510
    166
    Figure US20100234386A1-20100916-C00192
    521
    167
    Figure US20100234386A1-20100916-C00193
    535
    168
    Figure US20100234386A1-20100916-C00194
    554
    169
    Figure US20100234386A1-20100916-C00195
    591
    170
    Figure US20100234386A1-20100916-C00196
    565
    171
    Figure US20100234386A1-20100916-C00197
    526
    172
    Figure US20100234386A1-20100916-C00198
    540
    173
    Figure US20100234386A1-20100916-C00199
    615
    174
    Figure US20100234386A1-20100916-C00200
    599
    175
    Figure US20100234386A1-20100916-C00201
    501
    176
    Figure US20100234386A1-20100916-C00202
    585
    177
    Figure US20100234386A1-20100916-C00203
    641
    178
    Figure US20100234386A1-20100916-C00204
    479
    179
    Figure US20100234386A1-20100916-C00205
    423
    180
    Figure US20100234386A1-20100916-C00206
    492
    181
    Figure US20100234386A1-20100916-C00207
    478
    182
    Figure US20100234386A1-20100916-C00208
    478
    183
    Figure US20100234386A1-20100916-C00209
    485
  • Example 184 Preparation of N-{5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinyl}acetamide
  • Figure US20100234386A1-20100916-C00210
  • A solution of 5-[3-(4-methyl-1-piperazinyl)-6-quinoxalinyl]-2-pyridinamine (0.46 mmol) in pyridine (3 ml) was treated with a sulfonyl chloride, acyl chloride or anhydride such as acetic anhydride (0.56 mmol) and heated at 50° C. for 18 hour. The reaction mixture was treated with another portion of acetic anhydride (0.10 mmol) and stirred for another 2 days. The reaction mixture was diluted with water and saturated sodium bicarbonate (aq) and extracted with ethyl acetate. The ethyl acetate layer was dried over Na2SO4 filtered and concentrated under reduced pressure. The residue was taken into hot ethyl acetate and diluted with hexanes and cool to 0° C. The reaction mixture was filtered and washed with hexanes to give the title compound (98 mg, 58%) MS(ES)+ m/e 321 [M+H]+.
  • The following compounds were or can be prepared following the procedures used to prepare Example 184 using the appropriate sulfonyl chloride, anhydride or acyl chloride:
  • Example Structure MS(ES) [M + H]+
    185
    Figure US20100234386A1-20100916-C00211
    363
    186
    Figure US20100234386A1-20100916-C00212
    461
    187
    Figure US20100234386A1-20100916-C00213
    399
    188
    Figure US20100234386A1-20100916-C00214
    477
  • Example 189 Preparation of N,N-dimethyl-N′-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}sulfamide
  • Figure US20100234386A1-20100916-C00215
  • In an oven dried high pressure vessel under a nitrogen atmosphere, 7-bromo-2-(1-methyl-1H-pyrazol-4-yl)quinoxaline (150 mg, 0.519 mmol), bis(pinacolato)diboron (158 mg, 0.623 mmol), potassium acetate (153 mg, 1.556 mmol), and 1,1′-bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex (18.98 mg, 0.026 mmol) in anhydrous 1,4-dioxane (2 mL) was stirred at 100° C. in an oil bath for 1 hr. The reaction mixture was cooled to room temperature. N′-(5-bromo-3-pyridinyl)-N,N-dimethylsulfamide (145 mg, 0.519 mmol) followed by sodium bicarbonate (131 mg, 1.556 mmol) in water (0.67 mL) were added to the reaction mixture and the vessel was sealed again. The reaction was stirred at 100° C. for 16.75 hours then cooled to room temperature. The reaction was filtered through Celite and the pad was washed with ethyl acetate. The bi-phasic mixture was separated in a separatory funnel. The organic layer was washed with brine (20 mL), dried over magnesium sulfate, and concentrated in vacuo to give a brown solid. Trituration of the brown solid in dichloromethane (3 drops) and ether (8 mL) provided the title compound (120 mg, 57%) as a light brown solid. MS(ES)+ m/e 410.2 [M+H]+.
  • Example 190 Preparation of N-{5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinyl}-4-morpholinesulfonamide
  • Figure US20100234386A1-20100916-C00216
  • In an oven-dried flask under nitrogen, a solution of 5-[3-(1-methyl-1H-pyrazol-4-yl)-6-quinoxalinyl]-3-pyridinamine (99 mg, 0.327 mmol) in pyridine (3 mL) at room temperature was treated with morpholine-4-sulfonyl chloride (96 mg, 0.491 mmol) by syringe. The reaction was stirred at room temperature for 16.5 hours. The reaction was very sluggish so the reaction was placed in an oil bath at 50° C. and stirred at that temperature for 23 hours. The reaction was progressing to the desired product as determined by LCMS but was not yet complete. The reaction mixture was stirred for an additional 4 days at 50° C. The reaction did not progress to completion. The reaction was cooled to room temperature and concentrated in vacuo. The residue was taken up into 200 mL ethyl acetate and 50 mL water. The organic layer was washed with saturated aqueous sodium bicarbonate solution (100 mL) followed by brine (100 mL), dried over magnesium sulfate and concentrated in vacuo. Purification by silica gel chromatography eluting with 0-10% methanol in dichloromethane provided the desired product as a residue which was not pure. Addition of dichloromethane/ether resulted in precipitate formation. The precipitate was collected by filtration. Recrystallization of the precipitate from ethanol provided the title compound (26 mg, 18%) as a rust-coloured solid. MS(ES)+ m/e 452.0 [M+H]+.
  • Related sulfamide analogs can be prepared in a similar manner using the appropriate sulfamoyl chloride.
  • Example 191 Preparation of 2-phenyl-N-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)acetamide
  • Figure US20100234386A1-20100916-C00217
  • a) N-(7-bromo-2-quinoxalinyl)-2-phenylacetamide
  • A slurry of 7-bromo-2-chloroquinoxaline (0.493 mmol), 2-phenylacetamide (0.518 mmol), cesium carbonate (0.739 mmol), (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (XantPhos, 0.029 mmol), and palladium(II)acetate (0.018 mmol) in 1,4-dioxane (3 mL) was heated at 100° C. for 18 h. The reaction mixture was cooled, poured into water (50 mL) and brine (20 mL), and extracted with ethyl acetate (3×50 mL). The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Purification of the residue by silica gel chromatography (10-30% ethyl acetate/hexanes) provided the title compound as a yellow solid (90 mg, 51%). MS(ES)+ m/e 342, 344 [M+H]+.
  • b) 2-phenyl-N-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)acetamide
  • A mixture of N-(7-bromo-2-quinoxalinyl)-2-phenylacetamide (0.254 mmol), N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.508 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex (1:1) (0.007 mmol) in 2M aqueous sodium carbonate (0.5 mL) and 1,4-dioxane (2 mL) was heated at 100° C. for 5 h. The reaction mixture was cooled, poured into water (60 mL) and brine (15 mL), and extracted with ethyl acetate (50 mL). The aqueous layer was acidified with 1N aqueous HCl until the pH was approximately 6-7 and then further extracted with (3×50 mL) ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and concentrated in vacuo. Purification of the residue by silica gel chromatography eluting with 50-70% ethyl acetate/hexanes followed by reverse phase HPLC (30-75% acetonitrile/water with 0.1% TFA) afforded the title product as a tan solid (42 mg, 33%). MS(ES)+ m/e 496 [M+H]+.
  • The following compounds were or can be prepared in a similar manner to the compound of Example 191 using the appropriate amide or sulfonamide:
  • Example Structure MS(ES) [M + H]+
    192
    Figure US20100234386A1-20100916-C00218
    482
    193
    Figure US20100234386A1-20100916-C00219
    518
  • Example 194 Preparation of 1,1-dimethylethyl[2-(4-{7-[5-(aminosulfonyl)-3-pyridinyl]-2-quinoxalinyl}-1-piperazinyl)ethyl]carbamate
  • Figure US20100234386A1-20100916-C00220
  • a) 1,1-dimethylethyl{2-[4-(7-bromo-2-quinoxalinyl)-1-piperazinyl]ethyl}carbamate
  • A solution of 7-bromo-2-chloroquinoxaline (1.20 mmol) in N,N-dimethylformamide (5 ml) was treated with an amine (or an alcohol) such as 1,1-dimethylethyl[2-(1-piperazinyl)ethyl]carbamate (3.60 mmol) then heated at 80° C. for 1 hour. The reaction was cooled to ambient temperature then poured into water (25 ml). Product precipitated out of solution, which was filtered and dried. Alternatively, after the reaction is cooled to ambient temperature and poured into water (25 ml), it was extracted into ethyl acetate (3×25 ml). The extracts were washed with brine then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give the title compound (520 mg, 80%) as a yellow solid. MS(ES)+ m/e 297.2 [M+]+.
  • b) 1,1-dimethylethyl[2-(4-{7-[5-(aminosulfonyl)-3-pyridinyl]-2-quinoxalinyl}-1-piperazinyl)ethyl]carbamate
  • A slurry of 1,1-dimethylethyl {2-[4-(7-bromo-2-quinoxalinyl)-1-piperazinyl]ethyl}carbamate (0.96 mmol), bis(pinacolato)diboron (1.06 mmol), potassium acetate (3.84 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.07 mmol) in 1,4-dioxane (5 ml) was heated at 100° C. After the reaction stirred for 1 hour, 5-bromo-3-pyridinesulfonamide (0.96 mmol) and 2M potassium carbonate (aq) (4 ml) was added and the reaction mixture stirred for 18 hours. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (10% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (20 mg, 7%) as a light yellow solid. MS(ES)+ m/e 514.2 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 195 using the appropriate amine (or alcohol):
  • Example Structure MS(ES) [M + H]+
    196
    Figure US20100234386A1-20100916-C00221
    374
    197
    Figure US20100234386A1-20100916-C00222
    402
    198
    Figure US20100234386A1-20100916-C00223
    477
    199
    Figure US20100234386A1-20100916-C00224
    489
    200
    Figure US20100234386A1-20100916-C00225
    447
    201
    Figure US20100234386A1-20100916-C00226
    462
    202
    Figure US20100234386A1-20100916-C00227
    477
    203
    Figure US20100234386A1-20100916-C00228
    436
  • Example 204 Preparation of N-(2,4-difluorophenyl)-5-{3-[4-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinesulfonamide
  • Figure US20100234386A1-20100916-C00229
  • a) 1-(7-bromo-2-quinoxalinyl)-N,N-dimethyl-4-piperidinamine
  • A solution of 7-bromo-2-chloroquinoxaline (1.20 mmol) in N,N-dimethylformamide (5 ml) was treated with an amine (or an alcohol) such as 1,1-dimethylethyl[2-(1-piperazinyl)ethyl]carbamate (3.60 mmol) then heated at 80° C. for 1 hour. The reaction was cooled to ambient temperature then poured into water (25 ml). Product precipitated out of solution, which was filtered and dried. Alternatively, after the reaction is cooled to ambient temperature and poured into water (25 ml), it was extracted into ethyl acetate (3×25 ml). The extracts were washed with brine then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give the title compound (400 mg, 99%) as a yellow solid. MS(ES)+ m/e 336.2 [M+]+.
  • b) N-(2,4-difluorophenyl)-5-{3-[4-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinesulfonamide
  • A slurry of 1-(7-bromo-2-quinoxalinyl)-N,N-dimethyl-4-piperidinamine (1.2 mmol), bis(pinacolato)diboron (1.30 mmol), potassium acetate (4.80 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.09 mmol) in 1,4-dioxane (5 ml) was heated at 100° C. After the reaction stirred for 2.5 hours, 5-bromo-3-pyridinesulfonamide (0.96 mmol) and 2M solution potassium carbonate (5 ml) was added and continued to stir for 18 hours. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (5%, 5% ammonium hydroxide/methanol:ethyl acetate). The desired fractions were combined and concentrated to give the title compound (20 mg, 3%) as a tan solid. MS(ES)+ m/e 525.2 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 204 using the appropriate amine or phenol. In some cases, pretreatment of the amine with sodium hydride (3 equivalents) was required:
  • Example Structure MS(ES) [M + H]+
    205
    Figure US20100234386A1-20100916-C00230
    689
    206
    Figure US20100234386A1-20100916-C00231
    525.2
    207
    Figure US20100234386A1-20100916-C00232
    442
    208
    Figure US20100234386A1-20100916-C00233
    504
    209
    Figure US20100234386A1-20100916-C00234
    491
    210
    Figure US20100234386A1-20100916-C00235
    577
    211
    Figure US20100234386A1-20100916-C00236
    574
    212
    Figure US20100234386A1-20100916-C00237
    574
  • Example 213 Preparation of N-(2-chloro-5-{3-[3-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide
  • Figure US20100234386A1-20100916-C00238
  • a) 1-(7-bromo-2-quinoxalinyl)-N,N-dimethyl-3-piperidinamine
  • A solution of 7-bromo-2-chloroquinoxaline (1.20 mmol) in N,N-dimethylformamide (5 ml) was treated with an amine (or an alcohol) such as N,N-dimethyl-3-piperidinamine dihydrochloride (3.60 mmol) and triethylamine (7.20 mmol) then heated at 100° C. for 1 hour. The reaction was cooled to ambient temperature then poured into water (25 ml). Product precipitated out of solution, which was filtered and dried. Alternatively, after the reaction is cooled to ambient temperature and poured into water (25 ml), it was extracted into ethyl acetate (3×25 ml). The extracts were washed with brine then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give the title compound (400 mg, 99%) as an orange solid. MS(ES)+ m/e 336.2 [M+]+.
  • b) Preparation of N-(2-chloro-5-{3-[3-(dimethylamino)-1-piperidinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide
  • A slurry of 1-(7-bromo-2-quinoxalinyl)-N,N-dimethyl-3-piperidinamine (1.2 mmol), bis(pinacolato)diboron (1.30 mmol), potassium acetate (4.80 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.09 mmol) in 1,4-dioxane (5 ml) was heated at 100° C. After the reaction stirred for 2.5 hours, N-(5-bromo-2-chloro-3-pyridinyl)benzenesulfonamide (1.20 mmol) and 2M solution potassium carbonate (5 ml) was added and continued to stir for 18 hours. The reaction was cooled to ambient temperature, concentrated, redissolved in methanol and purified on reverse phase HPLC (0.1% trifluoracetic acid/water in acetonitrile). The desired fractions were combined, neutralized with saturated sodium bicarbonate, extracted with ethyl acetate (3×20 ml). Combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated to give the title compound (52 mg, 10%) as a yellow solid. MS(ES)+ m/e 524.2 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 213 using the appropriate amine:
  • Example Structure MS(ES) [M + H]+
    214
    Figure US20100234386A1-20100916-C00239
    488
    215
    Figure US20100234386A1-20100916-C00240
    496
    216
    Figure US20100234386A1-20100916-C00241
    524
    217
    Figure US20100234386A1-20100916-C00242
    538
    218
    Figure US20100234386A1-20100916-C00243
    510
    219
    Figure US20100234386A1-20100916-C00244
    489
    220
    Figure US20100234386A1-20100916-C00245
    494
    221
    Figure US20100234386A1-20100916-C00246
    581
    222
    Figure US20100234386A1-20100916-C00247
    558
    223
    Figure US20100234386A1-20100916-C00248
    600
    224
    Figure US20100234386A1-20100916-C00249
    589
    225
    Figure US20100234386A1-20100916-C00250
    424
    226
    Figure US20100234386A1-20100916-C00251
    495
    227
    Figure US20100234386A1-20100916-C00252
    582
    228
    Figure US20100234386A1-20100916-C00253
    651
  • Example 229 Preparation of N-{2-chloro-5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00254
  • To a solution of 1,1-dimethylethyl 4-(7-{6-chloro-5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinecarboxylate (0.83 mmol) in acetonitrile (6 ml) was added concentrated trifluoroacetic acid (3 ml). The reaction stirred at ambient temperature for 3 hours and was then concentrated to an orange oil. The residue was neutralized with saturated sodium bicarbonate solution upon which a precipitate was formed. The product was filtered and dried to give the title compound (260 mg, 65%) as an off-white solid. MS(ES)+ m/e 481.2 [M+H]+.
  • Example 230 Preparation of N-(2-chloro-5-{3-[4-(methylsulfonyl)-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide
  • Figure US20100234386A1-20100916-C00255
  • To a solution of N-{2-chloro-5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide (0.23 mmol), triethylamine (0.92 mmol), in dichloromethane (5 ml) was added methanesulfonyl chloride (0.25 mmol), which stirred at 50° C. for 18 hours. The reaction was cooled to ambient temperature, concentrated, redissolved in methanol and purified on reverse phase HPLC (0.1% ammonium hydroxide/water in acetonitrile). The desired fractions were combined and concentrated to give the title compound (7.8 mg, 2%) as a white solid. MS(ES)+ m/e 560.2 [M+H]+.
  • Example 231 Preparation of N-[5-(3-{4-[2-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide
  • Figure US20100234386A1-20100916-C00256
  • a) 7-bromo-2-{4-[2-(methyloxy)phenyl]-1-piperazinyl}quinoxaline
  • A solution of 7-bromo-2-chloroquinoxaline (1.20 mmol) in N,N-dimethylformamide (15 ml) was treated with an amine (or an alcohol) such as 1-[2-(methyloxy)phenyl]piperazine (3.60 mmol) and then heated at 100° C. for 1 hour. The reaction was cooled to ambient temperature then poured into water (25 ml) and extracted into ethyl acetate (3×25 ml). The extracts were washed with brine then dried over anhydrous sodium sulfate, filtered, concentrated and the residue crystallized with ethyl acetate:hexanes to give the title compound (331 mg, 70%) as yellow crystals. MS(ES)+ m/e 398.2 [M+]+.
  • b) N-[5-(3-{4-[2-(methyloxy)phenyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide
  • A slurry of a boronate ester such as N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.55 mmol), 7-bromo-2-{4-[2-(methyloxy)phenyl]-1-piperazinyl}quinoxaline (0.37 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.03 mmol) in 1,4-dioxane (4 ml) and 2M potassium carbonate (aq) (2 ml) was stirred at 100° C. for 18 hours. The reaction was cooled to ambient temperature, the organic layer separated and purified directly on silica by column chromatography (80% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (99 mg, 48%) as a yellow solid. MS(ES)+ m/e 553.4 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 231 using the appropriate amine:
  • Example Structure MS(ES) [M + H]+
    232
    Figure US20100234386A1-20100916-C00257
    448
    233
    Figure US20100234386A1-20100916-C00258
    538
    234
    Figure US20100234386A1-20100916-C00259
    553
    235
    Figure US20100234386A1-20100916-C00260
    538
    236
    Figure US20100234386A1-20100916-C00261
    460
    237
    Figure US20100234386A1-20100916-C00262
    553
    238
    Figure US20100234386A1-20100916-C00263
    617
    239
    Figure US20100234386A1-20100916-C00264
    581
    240
    Figure US20100234386A1-20100916-C00265
    544
    241
    Figure US20100234386A1-20100916-C00266
    496
    242
    Figure US20100234386A1-20100916-C00267
    525
    243
    Figure US20100234386A1-20100916-C00268
    567
    244
    Figure US20100234386A1-20100916-C00269
    547
    245
    Figure US20100234386A1-20100916-C00270
    538
    246
    Figure US20100234386A1-20100916-C00271
    538
    247
    Figure US20100234386A1-20100916-C00272
    591
    248
    Figure US20100234386A1-20100916-C00273
    531
    249
    Figure US20100234386A1-20100916-C00274
    546
    250
    Figure US20100234386A1-20100916-C00275
    665
    251
    Figure US20100234386A1-20100916-C00276
    694
    252
    Figure US20100234386A1-20100916-C00277
    603
    253
    Figure US20100234386A1-20100916-C00278
    596
    254
    Figure US20100234386A1-20100916-C00279
    629
    255
    Figure US20100234386A1-20100916-C00280
    602
    256
    Figure US20100234386A1-20100916-C00281
    672
    257
    Figure US20100234386A1-20100916-C00282
    630
    258
    Figure US20100234386A1-20100916-C00283
    581
    259
    Figure US20100234386A1-20100916-C00284
    647
    260
    Figure US20100234386A1-20100916-C00285
    616
    261
    Figure US20100234386A1-20100916-C00286
    654
    262
    Figure US20100234386A1-20100916-C00287
    616
    263
    Figure US20100234386A1-20100916-C00288
    728
    264
    Figure US20100234386A1-20100916-C00289
    717
    265
    Figure US20100234386A1-20100916-C00290
    547
    266
    Figure US20100234386A1-20100916-C00291
    644
    267
    Figure US20100234386A1-20100916-C00292
    560
    268
    Figure US20100234386A1-20100916-C00293
    584
    269
    Figure US20100234386A1-20100916-C00294
    658
  • Example 270 Preparation of N-(5-{3-[(1-methyl-1H-pyrazol-3-yl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide
  • Figure US20100234386A1-20100916-C00295
  • a) 7-bromo-N-(1-methyl-1H-pyrazol-3-yl)-2-quinoxalinamine
  • A slurry of 7-bromo-2-chloroquinoxaline (1.20 mmol), 1-methyl-1H-pyrazol-3-amine (2.50 mmol), potassium t-butoxide (2.50 mmol) in 1,4-dioxane (5 ml) was stirred at 100° C. for 30 minutes in the Smith Synthesizer microwave reactor. The reaction was poured into water (25 ml) upon which a precipitate formed, which was filtered and dried to afford the title compound (250 mg, 67%) as a yellow solid. MS(ES)+ m/e 303.9 [M+H]+.
  • b) N-(5-{3-[(1-methyl-1H-pyrazol-3-yl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide
  • A slurry of 7-bromo-N-(1-methyl-1H-pyrazol-3-yl)-2-quinoxalinamine (0.37 mmol), N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.55 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.03 mmol) in 1,4-dioxane (4 ml) and 2M solution potassium carbonate (2 ml) was stirred at 100° C. for 2 hours. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (10% methanol/ethyl acetate). The desired fractions were combined and concentrated to give the title compound (81 mg, 32%) as a pale green solid. MS(ES)+ m/e 458.1 [M+H]+.
  • The following compound was prepared following the procedures in Example 270 using the appropriate amine:
  • Example Structure MS(ES) [M + H]+
    271
    Figure US20100234386A1-20100916-C00296
    458
  • Example 272 Preparation of N-{5-[3-(4-{[2-(methylsulfonyl)ethyl]amino}-1-piperidinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00297
  • a) 1-(7-bromo-2-quinoxalinyl)-N-[2-(methylsulfonyl)ethyl]-4-piperidinamine
  • A slurry of 1-(7-bromo-2-quinoxalinyl)-4-piperidinone (0.98), 2-(methylsulfonyl)ethanamine (2.90 mmol), sodium triacetoxyborohydride (2.90 mmol), triethylamine (1.90 mmol) stirred in a solution of dichloromethane (4 ml) and acetic acid (1 ml) for 18 hours at ambient temperature. The reaction was concentrated and then triturated with ethyl acetate:hexanes (1:1) which was filtered and dried to give the title compound (210 mg, 52%) as a white solid. MS(ES)+ m/e 415.1 [M+H]+.
  • b) N-(5-{3-[(1-methyl-1H-pyrazol-3-yl)amino]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide
  • A slurry of a 1-(7-bromo-2-quinoxalinyl)-N-[2-(methylsulfonyl)ethyl]-4-piperidinamine (0.48 mmol), N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.53 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.03 mmol) in 1,4-dioxane (4 ml) and 2M solution potassium carbonate (2 ml) was stirred at 100° C. for 3 hours. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (10% methanol/ethyl acetate). The desired fractions were combined and concentrated to give the title compound (15 mg, 6%) as a tan solid. MS(ES)+ m/e 567.4 [M+H]+.
  • Example 273 Preparation of N-{5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00298
  • To a solution of 1,1-dimethylethyl 4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinecarboxylate (1.80 mmol) in acetonitrile (4 ml) was added concentrated trifluoroacetic acid (4 ml). The reaction stirred at ambient temperature for 18 hours and was then concentrated to an orange oil. The residue was neutralized with 10% sodium carbonate solution and purified on silica by column chromatography (15% methanol/ethyl acetate). The desired fractions were combined and concentrated to give the title compound (500 mg, 61%) as a tan solid. MS(ES)+ m/e 447.2 [M+H]+.
  • Example 274 Preparation of N-[5-(3-{4-[(2-methylpropyl)sulfonyl]-1-piperazinyl}-6-quinoxalinyl)-3-pyridinyl]benzenesulfonamide
  • Figure US20100234386A1-20100916-C00299
  • To a solution of N-{5-[3-(1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide (0.20 mmol) and triethylamine (0.20 mmol) in dichloromethane (2 ml) was added a sulfonyl chloride such as 2-methyl-1-propanesulfonyl chloride (0.22 mmol). The reaction stirred for 18 hours at ambient temperature and purified on silica by column chromatography (80% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (22 mg, 20%) as an off-white solid. MS(ES)+ m/e 567.3 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 274 using the appropriate sulfonyl chloride:
  • Example Structure MS(ES) [M + H]+
    275
    Figure US20100234386A1-20100916-C00300
    664
    276
    Figure US20100234386A1-20100916-C00301
    593
    277
    Figure US20100234386A1-20100916-C00302
    554
    278
    Figure US20100234386A1-20100916-C00303
    551
  • Example 279 Preparation of 3-[(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)amino]benzoic acid
  • Figure US20100234386A1-20100916-C00304
  • a) 3-[(7-bromo-2-quinoxalinyl)amino]-5-(methyloxy)benzoic acid
  • A slurry of 7-bromo-2-chloroquinoxaline (1.20 mmol) and an aniline such as 3-aminobenzoic acid (3.70 mmol) in a polar solvent such as dimethylsulfoxide (5 ml) was stirred for 2 hours at 120° C. The reaction was poured into ice-water upon which a precipitate formed. The precipitate was filtered and dried to afford the title compound (400 mg, 94%) as a yellow solid. MS(ES)+ m/e 345.8 [M+H]+.
  • b) 3-[(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)amino]benzoic acid
  • A slurry of 3-[(7-bromo-2-quinoxalinyl)amino]-5-(methyloxy)benzoic acid (0.73 mmol), N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.80 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.06 mmol) in 1,4-dioxane (4 ml) and 2M solution potassium carbonate (2 ml) was stirred at 100° C. for 18 hours. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (100% ethyl acetate). The desired fractions were combined and concentrated to give the title compound (60 mg, 16%) as a yellow solid. MS(ES)+ m/e 497.8 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 279 using the appropriate aniline. Alternatively, in some instances, the aniline in step a was or can be pretreated with 3 equivalents of sodium hydride in a solvent such as N,N-dimethylformamide prior to reaction with 7-bromo-2-chloroquinoxaline:
  • Example Structure MS(ES) [M + H]+
    280
    Figure US20100234386A1-20100916-C00305
    483
    281
    Figure US20100234386A1-20100916-C00306
    527
    282
    Figure US20100234386A1-20100916-C00307
    542
    283
    Figure US20100234386A1-20100916-C00308
    329
    284
    Figure US20100234386A1-20100916-C00309
    514
    285
    Figure US20100234386A1-20100916-C00310
    519
  • Example 286 Preparation of N-{5-[3-(2-furanyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00311
  • A slurry of 7-bromo-2-chloroquinoxaline (0.82 mmol), a boronic acid such as 2-furan boronic acid (0.82 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.06 mmol), in 1,4-dioxane (4 ml) and 2M solution potassium carbonate (2 ml) was stirred at 100° C. for 3 hour. Then N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.90 mmol) was added and the reaction mixture stirred at 100° C. for 18 hours. The reaction was cooled to ambient temperature, the organic layer separated and purified directly on silica by column chromatography (50% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (50 mg, 14%) as a tan solid. MS(ES)+ m/e 429.0 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 286 using the appropriate boronic acid, boronate ester or stannane reagent:
  • Example Structure MS(ES) [M + H]+
    287
    Figure US20100234386A1-20100916-C00312
    443
    288
    Figure US20100234386A1-20100916-C00313
    443
    289
    Figure US20100234386A1-20100916-C00314
    430
    290
    Figure US20100234386A1-20100916-C00315
    439
    291
    Figure US20100234386A1-20100916-C00316
    446
    292
    Figure US20100234386A1-20100916-C00317
    519
  • Example 293 Preparation of 1,1-dimethylethyl 3-oxo-4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinecarboxylate
  • Figure US20100234386A1-20100916-C00318
  • a) 1,1-dimethylethyl 4-(7-bromo-2-quinoxalinyl)-3-oxo-1-piperazinecarboxylate
  • A slurry of 7-bromo-2-chloroquinoxaline (6.20 mmol), 1,1-dimethylethyl 3-oxo-1-piperazinecarboxylate (7.4 mmol), (0.06 mmol), Xantphos (0.28 mmol), cesium carbonate (9.20 mmol) in 1,4-dioxane (30 ml) was stirred at 100° C. for 18 hour. The reaction was cooled to ambient temperature, filtered through a pad of celite and purified directly on silica by column chromatography (50% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (1.3 g, 50%) as a yellow solid. MS(ES)+ m/e 409.2 [M+H]+.
  • b) 1,1-dimethylethyl 3-oxo-4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinecarboxylate
  • A slurry of 1,1-dimethylethyl 4-(7-bromo-2-quinoxalinyl)-3-oxo-1-piperazinecarboxylate (1.30 mmol), N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (1.35 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.10 mmol), in 1,4-dioxane (6 ml) and saturated sodium bicarbonate solution (2 ml) was stirred at 100° C. for 1 hour. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (80% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (150 mg, 22%) as a tan solid. MS(ES)+ m/e 561.1 [M+H]+.
  • Example 294 Preparation of N-{5-[3-(2-oxo-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}benzenesulfonamide
  • Figure US20100234386A1-20100916-C00319
  • To a solution of 1,1-dimethylethyl 3-oxo-4-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-1-piperazinecarboxylate (0.21 mmol) in acetonitrile (4 ml) was added concentrated trifluoroacetic acid (4 ml). The reaction stirred at ambient temperature for 1 hour and was then concentrated to an orange oil. The residue was neutralized with saturated sodium bicarbonate solution upon which a precipitate formed. The precipitate was dissolved in ethyl acetate and crashed out of solution with hexanes, which was filtered and dried to afford the title compound (66 mg, 67%) as an off-white solid. MS(ES)+ m/e 461.2 [M+H]+.
  • Example 295 Preparation of N-(5-{3-[4-(methylsulfonyl)-2-oxo-1-piperazinyl]-6-quinoxalinyl}-3-pyridinyl)benzenesulfonamide
  • Figure US20100234386A1-20100916-C00320
  • a) 1-(7-bromo-2-quinoxalinyl)-2-piperazinone
  • To a solution of 1,1-dimethylethyl 4-(7-bromo-2-quinoxalinyl)-3-oxo-1-piperazinecarboxylate (1.45 mmol) in acetonitrile (10 ml) was added concentrated trifluoroacetic acid (10 ml). The reaction stirred at ambient temperature for 1 hour and was then concentrated to an orange oil. The residue was neutralized with saturated sodium bicarbonate solution and extracted into ethyl acetate (3×10 ml). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and concentrated. The product was then purified on silica by column chromatography (20% methanol/ethyl acetate). The desired fractions were combined and concentrated to give the title compound (450 mg, 60%) as a white solid. MS(ES)+ m/e 309.1 [M+H]+.
  • b) 1-(7-bromo-2-quinoxalinyl)-4-(methylsulfonyl)-2-piperazinone
  • To a solution of 1-(7-bromo-2-quinoxalinyl)-2-piperazinone (0.48 mmol) and triethylamine (1.45 mmol), in dichloromethane (5 ml) was added a sulfonyl chloride such as methylsulfonyl chloride (1.45 mmol). The reaction stirred for 3 hours at ambient temperature and then poured into water (10 ml) and extracted with ethyl acetate (3×20 ml). The combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated to give the title compound (200 mg, 96%) as a white solid. MS(ES)+ m/e 384.9 [M+H]+.
  • The following compound was prepared following the procedures in Example 295 using the appropriate sulfonyl chloride:
  • Example Structure MS(ES) [M + H]+
    296
    Figure US20100234386A1-20100916-C00321
    631
  • Example 297 Preparation of N-{5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide
  • Figure US20100234386A1-20100916-C00322
  • a) 7-bromo-2-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)quinoxaline
  • To a solution of 7-bromo-2-(1-piperazinyl)quinoxaline (3.41 mmol) in pyridine (20 ml) was added 2-(methyloxy)benzenesulfonyl chloride (10.23 mmol). The reaction stirred for 18 hours at 50° C. The reaction was cooled to ambient temperature and a yellow precipitate was filtered and triturated with methanol to afford the title compound (1.16 g, 73% yield) as a pale yellow solid. MS(ES)+ m/e 463.0 [M+H]+.
  • b) N-{5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide
  • A slurry of 7-bromo-2-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)quinoxaline (0.96 mmol), bis(pinacolato)diboron (0.54 mmol), potassium acetate (1.16 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex (1:1) (0.05 mmol) in 1,4-dioxane (4 ml) was heated at 100° C. After the reaction stirred for 1 hour, a bromide such as N-(5-bromo-3-pyridinyl)cyclopropanesulfonamide (0.54 mmol) and 2M solution potassium carbonate (4 ml) was added and continued to stir for 1 hour. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (80% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (44 mg, 14% yield) as a pale yellow solid. MS(ES)+ m/e 581.3 [M+H]+.
  • Example 298 Preparation of N-{2-(methyloxy)-5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide
  • Figure US20100234386A1-20100916-C00323
  • a) 7-bromo-2-(1-piperazinyl)quinoxaline
  • A solution of 7-bromo-2-chloroquinoxaline (20.5 mmol) and piperazine (61.6 mmol) in N,N-dimethylformamide (100 ml) was stirred at 100° C. for 18 hours. The reaction was poured into ice-water (200 ml) and extracted with ethyl acetate (3×100 ml). The combined organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The product was triturated, filtered, and dried to afford the title compound (3.5 g, 58%) as a yellow solid. MS(ES)+ m/e 292.9 [M+H]+.
  • b) 7-bromo-2-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)quinoxaline
  • To a solution of 7-bromo-2-(1-piperazinyl)quinoxaline (3.41 mmol) in pyridine (20 ml) was added 2-(methyloxy)benzenesulfonyl chloride (10.23 mmol). The reaction mixture was stirred for 18 hours at 50° C. As the reaction cooled to ambient temperature, a yellow precipitate formed which was filtered and the solid triturated with methanol. The precipitate was collected to afford the title compound (1.16 g, 73%) as a pale yellow solid. MS(ES)+ m/e 463.0 [M+H]+.
  • c) N-{2-(methyloxy)-5-[3-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)-6-quinoxalinyl]-3-pyridinyl}cyclopropanesulfonamide
  • A slurry of 7-bromo-2-(4-{[2-(methyloxy)phenyl]sulfonyl}-1-piperazinyl)quinoxaline (0.54 mmol), bis(pinacolato)diboron (0.81 mmol), potassium acetate (2.15 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.05 mmol) in 1,4-dioxane (4 ml) was heated at 100° C. After the reaction stirred for 1 hour, N-[5-bromo-2-(methyloxy)-3-pyridinyl]cyclopropanesulfonamide (0.81 mmol) and 2M solution potassium carbonate (2 ml) was added and continued to stir for 1 hour. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (30-100% ethyl acetate/hexanes). The desired fractions were combined and concentrated to give the title compound (125 mg, 38% yield) as a pale tan solid. MS(ES)+ m/e 611.2 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 298 using the appropriate heteroaryl bromide coupling partner in step c:
  • Example Structure MS(ES) [M + H]+
    299
    Figure US20100234386A1-20100916-C00324
    585
    300
    Figure US20100234386A1-20100916-C00325
    584
  • Example 301 Preparation of N,N-dimethyl-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinesulfonamide
  • Figure US20100234386A1-20100916-C00326
  • a) Phenylmethyl 4-[(dimethylamino)sulfonyl]-1-piperidinecarboxylate
  • A suspension of an amine such as dimethylamine (4.72 mmol) and sodium hydride (4.72 mmol) in N,N-dimethylformamide (10 ml) was stirred for five minutes at room temperature. Then phenylmethyl 4-(chlorosulfonyl)-1-piperidinecarboxylate (1.60 mmol) was added to the reaction mixture and stirred at 100° C. for 3 hours. The reaction mixture was poured into water (25 ml) and extracted with ethyl acetate (3×25 ml). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and concentrated to give the title compound (410 mg, 80% yield) as an off-white solid. MS(ES)+ m/e 327.1 [M+H]+.
  • b) N,N-dimethyl-4-piperidinesulfonamide
  • A solution of phenylmethyl 4-[(dimethylamino)sulfonyl]-1-piperidinecarboxylate (1.19 mmol) and 10% wt palladium/carbon (0.09 mmol) in methanol (10 ml) was vacuum pumped and back-filled with nitrogen three times. The nitrogen atmosphere was then replaced with hydrogen via a balloon and the reaction stirred for 1 hour at ambient temperature. The reaction was then filtered through a pad of celite and concentrated to give the title compound (200 mg, 87% yield), which was used directly in the next reaction without further purification. 1H NMR (400 MHz, DMSO-d6) δ ppm 3.33 (bs, 1H) 3.30-3.22 (m, 1H) 2.96 (d, J=12.13, 2H) 2.84 (s, 6H) 2.46 (td, J=2.53, 12.38, 2H) 1.80 (d, J=12.13, 2H) 1.46 (qt, J=4.17, 12.34, 2H)
  • c) 1-(7-bromo-2-quinoxalinyl)-N,N-dimethyl-4-piperidinesulfonamide
  • A suspension of N,N-dimethyl-4-piperidinesulfonamide (1.03 mmol) and sodium hydride (1.03 mmol) in N,N-dimethylformamide (5 ml) stirred for five minutes at room temperature. Then 7-bromo-4-chloroquinoxaline (0.86 mmol) was added to the reaction mixture and stirred at 100° C. for 3 hours. The reaction was poured into water (30 ml) and extracted with ethyl acetate (3×25 ml). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, concentrated, and purified on silica by column chromatography to give the title compound (170 mg, 50% yield) as yellow solid. MS(ES)+ m/e 399.0 [M+H]+.
  • d) N,N-dimethyl-1-(7-{5-[(phenylsulfonyl)amino]-3-pyridinyl}-2-quinoxalinyl)-4-piperidinesulfonamide
  • A slurry of 1-(7-bromo-2-quinoxalinyl)-N,N-dimethyl-4-piperidinesulfonamide (0.43 mmol), N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide (0.47 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.03 mmol) in 1,4-dioxane (4 ml) and 2M solution potassium carbonate (2 ml) was stirred at 100° C. for 18 hours. The reaction was cooled to ambient temperature, separated the organic layer and purified directly on silica by column chromatography (5% methanol/ethyl acetate). The desired fractions were combined and concentrated to give the title compound (102 mg, 43% yield) as a yellow solid. MS(ES)+ m/e 539.2 [M+H]+.
  • The following compounds were or can be prepared following the procedures in Example 301 using the appropriate amine:
  • Example Structure MS(ES) [M + H]+
    302
    Figure US20100234386A1-20100916-C00327
    539.2
    303
    Figure US20100234386A1-20100916-C00328
    525.4
    304
    Figure US20100234386A1-20100916-C00329
    569.3
  • Intermediates Intermediate 1 Preparation of 5-bromo-1H-pyrazolo[3,4-b]pyridine
  • Figure US20100234386A1-20100916-C00330
  • a) 5-bromo-2-fluoro-3-pyridinecarbaldehyde
  • Following the procedure described in WO2006015124 and trituration of the crude product in hexanes instead of crystallization from cyclohexane afforded the title compound as an off-white solid (68%). MS(ES)+ m/e 203.8, 205.7 [M+H]+.
  • b) 5-bromo-3-(4,4,5,5-tetramethyl-1,3-dioxolan-2-yl)-2(1H)-pyridinone hydrazone
  • Following the procedure described in WO2006015124 without the addition of hydrogen chloride provided the title compound as a yellow solid. MS(ES)+ m/e 317.9 [M+H]+. This crude material was used directly in the next step.
  • c) 5-bromo-1H-pyrazolo[3,4-b]pyridine
  • Following the procedure described in WO2006015124 provided the title compound as a yellow solid (94%, 2 steps). MS(ES)+ m/e 197.7, 199.7 [M+H]+.
  • Intermediate 2 Preparation of 2-amino-5-bromo-N,N-dimethyl-3-pyridinesulfonamide
  • Figure US20100234386A1-20100916-C00331
  • a) 2-amino-5-bromo-3-pyridinesulfonyl chloride
  • To a cooled (0° C.) solution of chlorosulfonic acid (58 mL) under vigorous stirring was added 5-bromo-2-pyridinamine (86.7 mmol) portionwise. The reaction mixture was then heated at reflux for 3 hrs. Upon cooling to room temperature, the reaction mixture was poured over ice (˜100 g) with vigorous stirring. The resulting yellow precipitate was collected by suction filtration, washing with cold water and petroleum ether to provide the title compound as an orange-yellow solid (18.1 g, 77% yield). MS(ES)+ m/e 272.8 [M+H]+.
  • * Other sulfonyl chlorides can be prepared using this procedure by varying the choice of substituted aryl or heteroaryl.
  • b) 2-amino-5-bromo-N,N-dimethyl-3-pyridinesulfonamide
  • To a cold (0 □C) suspension of 2-amino-5-bromo-3-pyridinesulfonyl chloride (92.1 mmol) in dry 1,4-dioxane (92 mL) was added pyridine (101.3 mmol) followed by a 2M solution of dimethylamine in THF (101.3 mmol). The reaction was allowed to warm to rt for 2 h, heated to 50 □C for 1 h, then cooled to rt. After standing for 2 h, the precipitate was collected by filtration and rinsed with a minimal amount of cold water. Drying the precipitate to constant weight under high vacuum provided 14.1 g (55%) of the title compound as a white solid. MS(ES)+ m/e 279.8, 282.0 [M+H]+.
  • *Other sulfonamides were or can be prepared using this procedure by varying the choice of starting sulfonyl chloride and amine.
  • Intermediate 3 Preparation of 2-amino-N,N-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinesulfonamide
  • Figure US20100234386A1-20100916-C00332
  • To a solution of 2-amino-5-bromo-N,N-dimethyl-3-pyridinesulfonamide (7.14 mmol) in 1,4-dioxane (35 mL) was added 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi-1,3,2-dioxaborolane (7.86 mmol), potassium acetate (28.56 mmol) and [1,1′-bis(diphenylphosphino)-ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.571 mmol). The reaction mixture was stirred at 100° C. for 18 h. The reaction was concentrated in vacuo, re-dissolved in ethyl acetate (50 mL) and purified on silica using 60% ethyl acetate/hexanes to yield the title compound as a tan solid (86%). 1H NMR (400 MHz, DMSO-d6) δ ppm 8.41 (d, 1H, J=1.52), 7.92 (d, 1H, J=1.77), 2.68 (s, 6H), 1.28 (s, 12H).
  • * Other boronate or boronic acids can be prepared using this procedure by varying the choice of starting aryl or heteroaryl bromide.
  • Intermediate 4 Preparation of N-(5-bromo-2-chloro-3-pyridinyl)benzenesulfonamide
  • Figure US20100234386A1-20100916-C00333
  • To a stirred solution of a pyridineamine such as 3-amino-5-bromo-2-chloropyridine (24 mmol) in dichloromethane (50 mL) was added pyridine (37 mmol) followed by benzenesulfonyl chloride (35 mmol) dropwise over 5 minutes. The reaction mixture was stirred at RT for 18 h and evaporated to dryness in vacuo. The residue was purified by flash chromatography on silica gel (15% hexanes in CH2Cl2 then 0 to 5% EtOAc in 15% hexanes in CH2Cl2). During evaporation of the solvents the product crashed out. The resultant slurry was diluted with hexanes, filtered and dried under vacuum to give the title compound (2.89 g, 34%) as a white solid. MS (ES) m/e 346.7 (M+H)+.
  • * Other pyridinesulfonamides were or can be prepared using this procedure by varying the choice of starting pyridineamine and sulfonylchloride.
  • Intermediate 5 Preparation of N-[5-bromo-2-(methyloxy)-3-pyridinyl]-1-ethyl-1H-pyrazole-4-sulfonamide
  • Figure US20100234386A1-20100916-C00334
  • In an oven dried round bottom flask under a nitrogen atmosphere, a solution of 5-bromo-2-(methyloxy)-3-pyridinamine (268 mg, 1.320 mmol) in anhydrous pyridine (4 mL) was treated with 1-ethyl-1H-pyrazole-4-sulfonyl chloride (308 mg, 1.584 mmol) and the resultant reaction mixture stirred at room temperature for 90 min. The reaction mixture was concentrated in vacuo, diluted with ethyl acetate (100 mL) and water (30 mL), neutralized with saturated ammonium chloride (aq) and the product extracted into the organic layer. The aqueous layer was back-extracted with 40 mL ethyl acetate. The organic layers were combined, washed with brine (50 mL), dried over magnesium sulfate and concentrated in vacuo to give a yellow-brown solid. Purification by silica gel chromatography (0-50% ethyl acetate in hexanes) provided the title compound (368 mg, 77%) as a beige solid. MS(ES)+ m/e 361.0, 363.0 [M+H]+.
  • * Related aryl-aminosulfonylpyridinyl bromides were or can be prepared using this procedure by varying the choice of starting pyridineamine and sulfonyl chloride.
  • Intermediate 6 Preparation of N-[5-bromo-2-(methyloxy)-3-pyridinyl]cyclopropanesulfonamide
  • Figure US20100234386A1-20100916-C00335
  • A solution of 5-bromo-2-(methyloxy)-3-pyridinamine (1.65 g, 8.13 mmol) in anhydrous pyridine (20 ml) was treated with neat cyclopropanesulfonyl chloride (1.371 g, 9.75 mmol) then stirred at room temperature for 20 h. The resulting slurry was concentrated under reduced pressure to a residue that was purified by column chromatography on silica, eluting with 30% hexanes in dichloromethane. The combined desired fractions were concentrated under reduced pressure to give the title compound (1.61 g, 60%) as an off white solid. MS(ES)+ m/e 306.9, 309.0 [M+H]+.
  • * Related alkyl-aminosulfonylpyridinyl bromides were or can be prepared using this procedure by varying the choice of starting pyridineamine and sulfonyl chloride.
  • Intermediate 7 Preparation of N-(5-bromo-2-methyl-3-pyridinyl)cyclopropanesulfonamide a) 5-bromo-2-methyl-3-nitropyridine
  • Figure US20100234386A1-20100916-C00336
  • Sodium hydride (1.31 g, 54.8 mmol, 2.19 g of 60% in mineral oil) was suspended in dry THF (70 mL) and to this suspension was added 5-bromo-2-chloro-3-nitropyridine as a solid. An ambient water bath was placed under the reaction and a solution of diethyl malonate in dry THF (15 mL) was added carefully via addition funnel. Observed a vigorous evolution of gas. After 2 hours additional sodium hydride (0.202 g, 8.42 mmol, 0.337 g of 60% in mineral oil) was added and the reaction was stirred for 1.5 hours. The reaction was concentrated in vacuo, diluted with 6N HCl (100 ml), and refluxed overnight. The reaction was concentrated in vacuo and diluted with saturated sodium carbonate to pH 9. The basic aqueous mixture was diluted with dichloromethane and filtered through filter paper to remove an insoluble green solid. The filtrate was transferred to a separatory funnel and the layers were separated. The dichloromethane was washed with saturated sodium chloride (aq), dried over sodium sulfate, filtered and concentrated to give the title compound (5.79 g, 63.3%) as an orange oil. MS(ES)+ m/e 217 [M+H].
  • b) 5-bromo-2-methyl-3-pyridinamine
  • Figure US20100234386A1-20100916-C00337
  • A mixture of 5-bromo-2-methyl-3-nitropyridine (5.68 g, 26.2 mmol) and tin(II)chloride dihydrate in ethyl acetate (200 mL) was refluxed for 2 hours and concentrated in vacuo. The residue was diluted with 6N NaOH (200 mL), water (100 mL), and dichloromethane (300 mL) and stirred at room temperature. The mixture was filtered through filter paper to remove small amounts of undissolved solid and the biphasic mixture was transferred to a separatory funnel. The layers were separated and the organic layer was washed with saturated NaCl, dried over Na2SO4, filtered and concentrated to give a gummy orange solid. The solid was triturated with warm hexanes, filtered, and dried in a Buchner funnel to give the title compound (3.03 g, 62%) as a tan solid. MS(ES)+ m/e 375 [2M+H].
  • c) N-(5-bromo-2-methyl-3-pyridinyl)cyclopropanesulfonamide
  • Figure US20100234386A1-20100916-C00338
  • In an oven dried round bottom flask under nitrogen, a solution of 5-bromo-2-methyl-3-pyridinamine (150 mg, 0.802 mmol) in anhydrous pyridine (4 mL) was treated with cyclopropanesulfonyl chloride (0.098 mL, 0.962 mmol) and the resultant reaction mixture stirred at room temperature for 18.75 hours. The reaction mixture was concentrated in vacuo, diluted with ethyl acetate (100 mL) and water (30 mL), neutralized with saturated ammonium chloride (aq) and the product extracted into the organic layer. The aqueous layer was back-extracted with ethyl acetate (40 mL) and the combined organic layers washed with brine (50 mL), dried over magnesium sulfate, filtered and concentrated in vacuo to give a yellow-brown solid. Purification by silica gel chromatography (0-50% ethyl acetate in hexanes) provided the title compound (218 mg, 93%) as an off-white solid. MS(ES)+ m/e 290.9, 292.8 [M+H]+.
  • * Related alkyl, aryl, or heteroaryl-aminosulfonylpyridinyl bromides can be prepared using this procedure by varying the choice of sulfonyl chloride.
  • Intermediate 8 Preparation of N-(5-bromo-3-pyridinyl)cyclopropanesulfonamide
  • Figure US20100234386A1-20100916-C00339
  • In a 20 ml vial was combined 5-bromo-3-pyridinamine (7.5 g, 43.3 mmol) and cyclopropanesulfonyl chloride (9.14 g, 65.0 mmol), dioxane (6 mL) and pyridine (3 mL) to give a brown suspension. The reaction mixture was sealed and stirred at 50° C. for 24 h. LCMS showed product and 5% starting material. The reaction mixture was diluted with dichloromethane and washed with saturated sodium bicarbonate (aq). The organic layer was concentrated in vacuo and the residue was precipitated with water. Filtration and washing of the solid with water followed by hexanes provided the desired product as a brown solid (9.6 g, 80% yield). ESMS m/e: 276.8, 278.8 [M]+.
  • * Related alkyl-aminosulfonylpyridinyl bromides were or can be prepared using this procedure by varying the choice of sulfonyl chloride.
  • Intermediate 9 Preparation of N-(5-bromo-3-pyridinyl)benzenesulfonamide
  • Figure US20100234386A1-20100916-C00340
  • In a 500 mL round-bottomed flask was combined 5-bromo-3-pyridinamine (30 g, 173 mmol), triethylamine (53.2 mL, 381 mmol) and dichloromethane (150 mL). The reaction mixture was cooled to 0° C. and benzenesulfonyl chloride (48.9 mL, 381 mmol) was added slowly to give a brown solution. The reaction mixture was stirred for 1 h at room temperature, giving 77% bis-sulfonylated product, MW=454.8 and 17% desired mono-sulfonylated product, MW=312.9. The reaction mixture was concentrated in vacuo, the residue titrated with methanol and the solid filtered to yield a white solid.
  • This solid was suspended in a 1:1 methanol:6N sodium hydroxide (aq) solution and allowed to stir for 3 h at RT. LCMS showed 84% desired mono-sulfonylated product. The reaction mixture was concentrated in vacuo and neutralized with 6N HCl (aq). The precipitate that formed was filtered and dried to an off-white solid. The solid was titrated with MeOH, filtered, and dried to give clean desired product as an off-white solid (99% yield). ESMS m/e 315.0 [M+H]+.
      • Related aryl- or heteroaryl-aminosulfonylpyridinyl bromides can be prepared using this procedure by varying the choice of sulfonyl chloride.
    Intermediate 10 Preparation of N-(5-bromo-3-pyridinyl)-2,4-difluorobenzenesulfonamide
  • Figure US20100234386A1-20100916-C00341
  • A solution of 5-bromo-3-pyridinamine (104 mmol) in dichloromethane (55 mL) was added dropwise over ˜60 min to a stirred solution of triethylamine (230 mmol) and 2,4-difluorobenzenesulfonyl chloride (235 mmol) in dichloromethane (300 mL). After 1.5 h, additional 2,4-difluorobenzenesulfonyl chloride (53.4 mmol) was added, and after 2 days, more 2,4-difluorobenzenesulfonyl chloride (47.0 mmol) and triethylamine (108 mmol) were added. After 1 h, the resulting mixture of mono- and bis-sulfonylation products was concentrated in vacuo and the residue was suspended in methanol (500 mL) and then filtered to provide N-(5-bromo-3-pyridinyl)-N-[(2,4-difluorophenyl)sulfonyl]-2,4-difluorobenzenesulfonamide as a white solid (54.4 mmol, 52%).
  • A solution of the bis-sulfonylated intermediate (54.4 mmol) in 1,4-dioxane (300 mL) was heated to 80° C. A solution of potassium hydroxide (322 mmol) in water (133 mL) was added and the resultant reaction mixture was heated at reflux for 0.5 h. The dioxane was removed in vacuo and the resulting off-white suspension was acidified with concentrated HCl, causing the solids to dissolve and then a new off-white solid to emerge. The suspension was stirred for 30 min and then filtered, rinsing with water. The solid was dried in vacuo and then desiccated over P2O5 to afford the title product as an off-white solid (quantitative yield). ESMS m/e 347, 349 [M+H]+.
  • Intermediate 11 Preparation of N-[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-pyridinyl]benzenesulfonamide
  • Figure US20100234386A1-20100916-C00342
  • N-(5-bromo-3-pyridinyl)benzenesulfonamide (25 g, 80 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi-1,3,2-dioxaborolane (24.33 g, 96 mmol), PdCl2(dppf).CH2Cl2 (2.61 g, 3.19 mmol), and potassium acetate (31.3 g, 319 mmol) were added to a 500 mL round bottom flask equipped with an oven-dried stir bar and a reflux condensor under a nitrogen atmosphere. 1,4-Dioxane (400 ml) was added and the reaction mixture stirred at 100° C. for 18 h. LCMS showed complete conversion to desired product (89% boronic acid by LCMS, M+H=278.9). The reaction mixture was cooled to room temperature and then concentrated in vacuo to a black residue. The residue was suspended in water (250 mL) and extracted with ethyl acetate (4×150 mL). The combined black organic layers were dried over sodium sulfate and decolorizing carbon, filtered through a pad of celite and concentrated to yield an orange solid. The solid was titrated with dichloromethane, collected by suction filtration and dried in vacuo to yield a white solid (61% yield). ESMS m/e: 278.9 (boronic acid) [M+H]+.
  • * Related aryl- or heteroaryl-aminosulfonylpyridinyl boronate esters can be prepared using this procedure by varying the choice of starting aryl- or heteroaryl-aminosulfonylpyridinyl bromides.
  • Intermediate 12 Preparation of N′-(5-bromo-3-pyridinyl)-N,N-dimethylsulfamide
  • Figure US20100234386A1-20100916-C00343
  • In an oven-dried flask under nitrogen, dimethylsulfamoyl chloride (0.310 mL, 2.89 mmol) was added by syringe to a solution of 3-amino-5-bromopyridine (500 mg, 2.89 mmol) and pyridine (0.467 mL, 5.78 mmol) in dichloromethane (10 mL) at room temperature. The reaction was stirred for 4 hours and then added additional dimethylsulfamoyl chloride (0.310 mL, 2.89 mmol) to the reaction and stirred overnight (20 hours). The reaction was concentrated in vacuo. The residue was taken up into 200 mL ethyl acetate and washed with saturated aqueous sodium bicarbonate solution (100 mL) followed by brine (100 mL). The organic layer was dried over magnesium sulfate and concentrated in vacuo to give the title compound (839 mg, 93%) as a brown solid. MS(ES)+ m/e 279.9, 282.0 [M+H]+.
  • * Related sulfamides can be prepared using this procedure by varying the choice of starting pyridineamine bromides and sulfamoyl chlorides.
  • Intermediate 13 Preparation of 7-bromo-2-(1H-pyrazol-4-yl)quinoxaline
  • Figure US20100234386A1-20100916-C00344
  • To a 100 mL high pressure vessel was added 1,1-dimethylethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole-1-carboxylate (1.208 g, 4.11 mmol), 7-bromo-2-chloroquinoxaline (1 g, 4.11 mmol), PdCl2(dppf).CH2Cl2 (0.168 g, 0.205 mmol), 1,4-dioxane (20.53 ml) and 2M aqueous potassium carbonate (10.27 ml, 20.53 mmol). The vessel was sealed and the reaction mixture heated at 100° C. overnight (21.5 hrs). LCMS showed 60% desired product (M+H=276.9) with no Boc group. The organic layer was separated and purified directly on a silica gel column, eluting with 50% ethyl acetate to 100% ethyl acetate in hexanes. The desired fractions were concentrated in vacuo to give a tan solid which was triturated with ethyl acetate, the insolubles collected by suction filtration and dried in vacuo to provide the title compound as a tan powder (508 mg, 45%). ESMS m/e 276.9 [M+H]+.
  • Intermediate 14 Preparation of 2-[4-(7-bromo-2-quinoxalinyl)-1H-pyrazol-1-yl]-N,N-dimethylethanamine
  • Figure US20100234386A1-20100916-C00345
  • To a solution of 7-bromo-2-(1H-pyrazol-4-yl)quinoxaline (0.225 g, 0.808 mmol) in dry N,N-dimethylformamide (5 mL) under a nitrogen atmosphere was added 60 wt % sodium hydride (92 mg, 2.27 mmol) portionwise. After 5 minutes of stirring with purging, 2-dimethylaminoethylbromide (0.37 g, 0.908 mmol) was added and the reaction mixture stirred at rt for 30 min, concentrated in vacuo and taken into dichloromethane. The organic solution was washed with water (2×), dried (Na2SO4), filtered and concentrated in vacuo. The residue was purified by silica gel chromatography, eluting with 0-5% methanol in ethyl acetate to furnish the title compound (0.183 g, 66% yield). ESMS m/e: 345.9; 347.8 [M]+.
  • * Related alkylated, acylated and sulfonylated pyrazoles were or can be prepared using this procedure by varying the choice of alkylbromide, acyl chloride or sulfonyl chloride.
  • Intermediate 15 Preparation of 7-bromo-2-(1-methyl-1H-pyrazol-4-yl)quinoxaline
  • Figure US20100234386A1-20100916-C00346
  • A slurry of 7-bromo-2-chloroquinoxaline (10.0 mmol), 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (10.5 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)dichloromethane complex (1:1) (0.3 mmol) in 2M aqueous potassium carbonate (15 mL) and 1,4-dioxane (40 mL) was heated at 100° C. for 4 h. The reaction mixture was cooled, poured into water (100 mL), and extracted with (3×100 mL) ethyl acetate. The combined organic layers were filtered through a pad of Celite while rinsing with water and ethyl acetate. The filtrate was separated and the organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo. Purification of the residue by silica gel chromatography (40-70% ethyl acetate/hexanes) provided the title compound as a yellow solid (1.73 g, 57%). MS(ES)+ m/e 289, 291 [M+H]+.
  • * Related aryl or heteroaryl substituted quinoxalines can be prepared using this procedure by varying the choice of aryl- or heteroaryl boronic acid or boronate ester.
  • Intermediate 16 Preparation of 2-(1-methyl-1H-pyrazol-4-yl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoxaline
  • Figure US20100234386A1-20100916-C00347
  • In a 100 mL roundbottom flask, a mixture of 7-bromo-2-(1-methyl-1H-pyrazol-4-yl)quinoxaline (10.03 mmol), bis(pinacolato)diboron (12.21 mmol), potassium acetate (32.6 mmol), and [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex (1:1) (0.465 mmol) in dioxane (68 mL) was stirred at 100° C. for 18 h.
  • The reaction mixture was filtered, washing with 100 mL ethyl acetate. The filtrate was concentrated in vacuo and the brown residue dissolved in hot ethyl acetate (˜20 mL). The dark solution was filtered and the filtrate concentrated in vacuo. The residue was partitioned between ethyl acetate (100 mL) and water (70 mL) and the organic phase separated, dried over magnesium sulfate, filtered and concentrated to ˜10 mL, then treated with portions of hexanes (˜2 volumes). A fine, dark solid precipitate formed which was removed by filtration, and the filtrate was evaporated to an olive residue. The residue was triturated with 3:1 hexanes/ethyl acetate (40 mL) and the resulting light olive green solid collected and dried in vacuo to provide the title compound (2.2 g, 59%). MS(ES)+ m/e 337.2, 339.2 [M+H]+.
  • Intermediate 17 Preparation of N,N-dimethyl-4-piperidinesulfonamide
  • Figure US20100234386A1-20100916-C00348
  • a) phenylmethyl 4-[(dimethylamino)sulfonyl]-1-piperidinecarboxylate
  • A suspension of an amine such as dimethylamine (4.72 mmol) and sodium hydride (4.72 mmol) in N,N-dimethylformamide (10 ml) was stirred for five minutes at room temperature. Then phenylmethyl 4-(chlorosulfonyl)-1-piperidinecarboxylate (1.60 mmol) was added to the reaction mixture and stirred at 100° C. for 3 hours. The reaction mixture was poured into water (25 ml) and extracted with ethyl acetate (3×25 ml). The combined organic layers were washed with brine, dried over sodium sulfate, filtered, and concentrated to give the title compound (410 mg, 80% yield) as an off-white solid. MS(ES)+ m/e 327.1 [M+H]+.
  • b) N,N-dimethyl-4-piperidinesulfonamide
  • A solution of phenylmethyl 4-[(dimethylamino)sulfonyl]-1-piperidinecarboxylate (1.19 mmol) and 10% wt palladium/carbon (0.09 mmol) in methanol (10 ml) was vacuum pumped and back-filled with nitrogen three times. The nitrogen atmosphere was then replaced with hydrogen via a balloon and the reaction stirred for 1 hour at ambient temperature. The reaction was then filtered through a pad of celite and concentrated to give the title compound (200 mg, 87% yield), which was used directly in the next reaction without further purification. 1H NMR (400 MHz, DMSO-d6) δ ppm 3.33 (bs, 1H) 3.30-3.22 (m, 1H) 2.96 (d, J=12.13, 2H) 2.84 (s, 6H) 2.46 (td, J=2.53, 12.38, 2H) 1.80 (d, J=12.13, 2H) 1.46 (qt, J=4.17, 12.34, 2H)
  • * Related piperidinylsulfonamides can be prepared using this procedure by varying the choice of amine.
  • Other Intermediates can be Prepared Following the General Scheme Below:
  • Figure US20100234386A1-20100916-C00349
  • Exemplary Capsule Composition
  • An oral dosage form for administering the present invention is produced by filing a standard two piece hard gelatin capsule with the ingredients in the proportions shown in Table II, below.
  • TABLE II
    INGREDIENTS AMOUNTS
    Compound of example 1 25 mg
    Lactose 55 mg
    Talc 16 mg
    Magnesium Stearate  4 mg
  • Exemplary Injectable Parenteral Composition
  • An injectable form for administering the present invention is produced by stirring 1.5% by weight of compound of example 1 in 10% by volume propylene glycol in water.
  • Exemplary Tablet Composition
  • The sucrose, calcium sulfate dihydrate and an PI3K inhibitor as shown in Table III below, are mixed and granulated in the proportions shown with a 10% gelatin solution. The wet granules are screened, dried, mixed with the starch, talc and stearic acid, screened and compressed into a tablet.
  • TABLE III
    INGREDIENTS AMOUNTS
    Compound of example 1 20 mg
    calcium sulfate dehydrate 30 mg
    Sucrose 4 mg
    Starch 2 mg
    Talc 1 mg
    stearic acid 0.5 mg
  • While the preferred embodiments of the invention are illustrated by the above, it is to be understood that the invention is not limited to the precise instructions herein disclosed and that the right to all modifications coming within the scope of the following claims is reserved.

Claims (21)

1. A compound of Formula (I):
Figure US20100234386A1-20100916-C00350
in which
R1 is an optionally substituted ring system selected from a group consisting of: formula (II), (III), (IV), (V), (VI), (VII) and (VIII):
Figure US20100234386A1-20100916-C00351
each R2, R3 and R4 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, alkylcarboxy, aminoalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, arylalkyl, substituted arylalkyl, arylcycloalkyl, substituted arylcycloalkyl, heteroarylalkyl, substituted heteroarylalkyl, cyano, hydroxyl, alkoxy, acyloxy, and aryloxy;
n is 0-2;
X is C or N; Y is C, O, N, or S;
and/or a pharmaceutically acceptable salt thereof;
provided that in each of formula (V) to (VIII) at least one Y is not carbon;
further provided that formula (VIII) is substituted with at least one oxo group;
further provided that R1 is not imidazolidinedione, and when R1 is 4-pyridinyl R2 is not substituted aryl, thienyl or substituted thienyl.
2. A compound according to claim 1, wherein R1 is selected from a group consisting of: formula (II), (III) and (IV); or a pharmaceutically acceptable salt thereof.
3. A compound according to claim 1, wherein R1 is an optionally substituted six-membered heteroaryl ring containing at least one nitrogen.
4. A compound according to claim 1, wherein R1 is selected from a group consisting of: formula (V) and (VI), wherein Y is C or N; or a pharmaceutically acceptable salt thereof.
5. A compound according to claim 1, wherein R1 is selected from a group consisting of: formula (VII) and (VIII); or a pharmaceutically acceptable salt thereof.
6. A compound according to claim 1, wherein R1 is an optionally substituted pyridinyl ring.
7. A compound according to claim 1, wherein R3 and R4 are hydrogens, and R2 is selected from a group consisting of: aryl, heteroaryl, substituted aryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, hydroxyl, alkoxy, C1-6alkyl and substituted C1-6alkyl; or a pharmaceutically acceptable salt thereof; provided that R2 is not thienyl or substituted thienyl.
8. A compound of Formula (I)(G):
Figure US20100234386A1-20100916-C00352
in which
each R2, R3, R4 and R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, alkylcarboxy, aminoalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, arylalkyl, substituted arylalkyl, arylcycloalkyl, substituted arylcycloalkyl, heteroarylalkyl, substituted heteroarylalkyl, cyano, hydroxyl, alkoxy, acyloxy, and aryloxy;
or R5 is R6, wherein R6 is —SO2NR80 or —NSO2R80, in which R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH;
n is 0-2, m is 0-2;
or a pharmaceutically acceptable salt thereof;
provided that R2 is not thienyl or substituted thienyl.
9. A compound of Formula (I)(H) according to claim 8:
Figure US20100234386A1-20100916-C00353
in which R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl; each R3 and R4 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl and alkoxy;
each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl, alkoxy, nitro; or R5 is R6, wherein R6 is —SO2NR80 or —NSO2R80, in which R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH;
n is 0-2, m is 0-2;
or a pharmaceutically acceptable salt thereof;
provided that R2 is not thienyl or substituted thienyl.
10. A compound of Formula (I)(J) according to claim 8:
Figure US20100234386A1-20100916-C00354
in which
R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino, alkoxy, C1-6alkyl and substituted C1-6alkyl;
each R3 and R4 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl and alkoxy;
each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, C3-7cycloalkyl, substituted C3-7cycloalkyl, C3-7heterocycloalkyl, substituted C3-7heterocycloalkyl, cyano, hydroxyl, alkoxy, nitro;
R6 is —SO2NR80 or —NSO2R80, in which R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH;
n is 0-2, m is 0-2;
or a pharmaceutically acceptable salt thereof.
11. A compound of Formula (I)(M) according to claim 8:
Figure US20100234386A1-20100916-C00355
in which
R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino alkoxy, C1-6alkyl and substituted C1-6alkyl;
each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, cyano, hydroxyl, alkoxy;
m is 0-1;
R6 is —NSO2R80, wherein R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH, n is 0-2.
12. A compound of Formula (I)(N) according to claim 8:
Figure US20100234386A1-20100916-C00356
in which
R2 is selected from a group consisting of: heteroaryl, substituted heteroaryl, heterocycloalkyl, substituted heterocycloalkyl, amino, substituted amino, arylamino, acylamino, heterocycloalkylamino alkoxy, C1-6alkyl and substituted C1-6alkyl;
each R5 is independently selected from: hydrogen, halogen, acyl, amino, substituted amino, C1-6alkyl, substituted C1-6alkyl, cyano, hydroxyl, alkoxy;
m is 0-1;
R6 is —SO2NR80, wherein R80 is selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, C1-C6heterocycloalkyl, substituted C1-C6alkyl, substituted C1-C6cycloalkyl, substituted C1-C6heterocycloalkyl, aryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, substituted amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo or —(CH2)nCOOH, or heteroaryl optionally fused with a five-membered ring or substituted with one to five groups selected from a group consisting of: C1-C6alkyl, C1-C6cycloalkyl, halogen, amino, trifluoromethyl, cyano, hydroxyl, alkoxy, oxo, or —(CH2)nCOOH, n is 0-2.
13. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.
14. A method of inhibiting one or more phosphatoinositides 3-kinases (PI3Ks) in a human; comprising administering to the mammal a therapeutically effective amount of a compound of Formula (I) or a pharmaceutically acceptable thereof as defined in claim 1.
15. A method of treating one or more disease states selected from a group consisting of: autoimmune disorders, inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, allergy, asthma, pancreatitis, multiorgan failure, kidney diseases, platelet aggregation, cancer, sperm motility, transplantation rejection, graft rejection and lung injuries, in a human, which method comprises administering to a human in need thereof, a therapeutically effective amount of a compound according to claim 1.
16. A method of treating cancer comprises co-administration a compound according to claim 1; or a pharmaceutically acceptable salt, hydrate, solvate or pro-drug thereof; and at least one anti-neoplastic agent, such as one selected from a group consisting of anti-microtubule agents, platinum coordination complexes, alkylating agents, antibiotic agents, topoisomerase II inhibitors, antimetabolites, topoisomerase I inhibitors, hormones and hormonal analogues, signal transduction pathway inhibitors, non-receptor tyrosine kinase angiogenesis inhibitors, immunotherapeutic agents, proapoptotic agents, and cell cycle signaling inhibitors.
17. A method of claim 10 wherein the disease is cancer.
18. A method of claim 16 wherein the cancer is selected from a group consisting of: brain (gliomas), glioblastomas, leukemias, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma, Rhabdomyosarcoma, ependymoma, medulloblastoma, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma, osteosarcoma, giant cell tumor of bone and thyroid,
19. A method of claim 16 wherein the disease is selected from a group consisting of: ovarian cancer, pancreatic cancer, breast cancer, prostate cancer and leukemia.
20. A method of claim 9, wherein said PI3 kinase is a PI3α.
21. A method of claim 9 wherein the compound according to claim 1, or a pharmaceutically acceptable salt, is administered in a pharmaceutical composition.
US12/599,544 2007-05-10 2008-05-08 Quinoxaline derivatives as pi3 kinase inhibitors Abandoned US20100234386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/599,544 US20100234386A1 (en) 2007-05-10 2008-05-08 Quinoxaline derivatives as pi3 kinase inhibitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US91712007P 2007-05-10 2007-05-10
PCT/US2008/063010 WO2008141065A1 (en) 2007-05-10 2008-05-08 Quinoxaline derivatives as p13 kinase inhibitors
US12/599,544 US20100234386A1 (en) 2007-05-10 2008-05-08 Quinoxaline derivatives as pi3 kinase inhibitors

Publications (1)

Publication Number Publication Date
US20100234386A1 true US20100234386A1 (en) 2010-09-16

Family

ID=40002590

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/117,127 Expired - Fee Related US7592342B2 (en) 2007-05-10 2008-05-08 Quinoxaline derivatives as PI3 kinase inhibitors
US12/599,544 Abandoned US20100234386A1 (en) 2007-05-10 2008-05-08 Quinoxaline derivatives as pi3 kinase inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/117,127 Expired - Fee Related US7592342B2 (en) 2007-05-10 2008-05-08 Quinoxaline derivatives as PI3 kinase inhibitors

Country Status (8)

Country Link
US (2) US7592342B2 (en)
EP (1) EP2150255A4 (en)
JP (1) JP2010526823A (en)
AR (1) AR066513A1 (en)
CL (1) CL2008001356A1 (en)
PE (1) PE20090288A1 (en)
TW (1) TW200902008A (en)
WO (1) WO2008141065A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180214445A1 (en) * 2015-07-30 2018-08-02 Bristol-Myers Squibb Company Aryl substituted bicyclic heteroaryl compounds

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20090717A1 (en) * 2007-05-18 2009-07-18 Smithkline Beecham Corp QUINOLINE DERIVATIVES AS PI3 KINASE INHIBITORS
EP2173354A4 (en) * 2007-08-09 2011-10-05 Glaxosmithkline Llc Quinoxaline derivatives as pi3 kinase inhibitors
WO2009055418A1 (en) * 2007-10-22 2009-04-30 Smithkline Beecham Corporation Pyridosulfonamide derivatives as pi3 kinase inhibitors
WO2009085230A1 (en) 2007-12-19 2009-07-09 Amgen Inc. Inhibitors of pi3 kinase
UA103319C2 (en) * 2008-05-06 2013-10-10 Глаксосмитклайн Ллк Thiazole- and oxazole-benzene sulfonamide compounds
WO2009155121A2 (en) 2008-05-30 2009-12-23 Amgen Inc. Inhibitors of pi3 kinase
WO2010052448A2 (en) * 2008-11-05 2010-05-14 Ucb Pharma S.A. Fused pyrazine derivatives as kinase inhibitors
JP5702293B2 (en) 2008-11-10 2015-04-15 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
FR2939134A1 (en) * 2008-12-01 2010-06-04 Sanofi Aventis 6-CYCLOAMINO-3- (1H-PYRROLO-2,3-B-PYRIDIN-4-YL) IMIDAZO-1,2-B1-PYRIDAZINE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
LT3354650T (en) 2008-12-19 2022-06-27 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
UA105911C2 (en) 2009-01-12 2014-07-10 Пфайзер Лімітед Sulfonamide derivatives
KR20110114664A (en) 2009-01-16 2011-10-19 메사추세츠 인스티튜트 오브 테크놀로지 Diagnosis and treatment of autism spectrum disorders
CA2752150A1 (en) * 2009-02-11 2010-08-19 Reaction Biology Corp. Selective kinase inhibitors
US8273769B2 (en) 2009-02-12 2012-09-25 Merck Serono Sa Phenoxy acetic acid derivatives
EP2406234A1 (en) * 2009-03-12 2012-01-18 GlaxoSmithKline LLC Thiazole sulfonamide and oxazole sulfonamide kinase inhibitors
MX2011009796A (en) * 2009-03-20 2011-12-14 Amgen Inc Inhibitors of pi3 kinase.
EP2241557A1 (en) 2009-04-02 2010-10-20 Æterna Zentaris GmbH Chinoxalin derivatives and use thereof for treating malignant and benign tumour illnesses
SG175925A1 (en) 2009-05-15 2011-12-29 Novartis Ag Aryl pyridine as aldosterone synthase inhibitors
GB0908905D0 (en) * 2009-05-26 2009-07-01 Sentinel Oncology Ltd Pharmaceutical compounds
CA2772790C (en) 2009-09-04 2017-06-27 Benjamin Bader Substituted aminoquinoxalines as tyrosine threonine kinase inhibitors
WO2011049625A1 (en) 2009-10-20 2011-04-28 Mansour Samadpour Method for aflatoxin screening of products
SG10201500895XA (en) 2009-11-05 2015-04-29 Rhizen Pharmaceuticals Sa Chromen-4-one Derivatives As Kinase Modulators
GB201007286D0 (en) 2010-04-30 2010-06-16 Astex Therapeutics Ltd New compounds
EP2569287B1 (en) 2010-05-12 2014-07-09 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase
EP2569286B1 (en) 2010-05-12 2014-08-20 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase
MX2012013082A (en) 2010-05-12 2013-05-09 Vertex Pharma 2 -aminopyridine derivatives useful as inhibitors of atr kinase.
RU2012153675A (en) 2010-05-12 2014-06-20 Вертекс Фармасьютикалз Инкорпорейтед COMPOUNDS USED AS ATR KINASE INHIBITORS
WO2011143399A1 (en) 2010-05-12 2011-11-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US8962631B2 (en) 2010-05-12 2015-02-24 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
CA2803802A1 (en) 2010-06-23 2011-12-29 Vertex Pharmaceuticals Incorporated Pyrrolo- pyrazine derivatives useful as inhibitors of atr kinase
US9145407B2 (en) 2010-07-09 2015-09-29 Pfizer Limited Sulfonamide compounds
GB201020179D0 (en) 2010-11-29 2011-01-12 Astex Therapeutics Ltd New compounds
WO2012088266A2 (en) 2010-12-22 2012-06-28 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of fgfr3
MX2013011450A (en) 2011-04-05 2014-02-03 Vertex Pharma Aminopyrazine compounds useful as inhibitors of tra kinase.
LT2705029T (en) 2011-05-04 2019-02-11 Rhizen Pharmaceuticals S.A. Novel compounds as modulators of protein kinases
EP2723745A1 (en) 2011-06-22 2014-04-30 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase
EP2723746A1 (en) 2011-06-22 2014-04-30 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase
JP2014522818A (en) 2011-06-22 2014-09-08 バーテックス ファーマシューティカルズ インコーポレイテッド Compounds useful as ATR kinase inhibitors
SG10201606774UA (en) 2011-09-30 2016-10-28 Vertex Pharma Processes for making compounds useful as inhibitors of atr kinase
US8853217B2 (en) 2011-09-30 2014-10-07 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
SG11201401095YA (en) 2011-09-30 2014-04-28 Vertex Pharma Treating pancreatic cancer and non-small cell lung cancer with atr inhibitors
EP2751088B1 (en) 2011-09-30 2016-04-13 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
WO2013049722A1 (en) 2011-09-30 2013-04-04 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
GB201118654D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118652D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118675D0 (en) 2011-10-28 2011-12-14 Astex Therapeutics Ltd New compounds
GB201118656D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
WO2013071085A1 (en) 2011-11-09 2013-05-16 Vertex Pharmaceuticals Incorporated Pyrazine compounds useful as inhibitors of atr kinase
EP2776421A1 (en) 2011-11-09 2014-09-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US8846918B2 (en) 2011-11-09 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
EP2776422A1 (en) 2011-11-09 2014-09-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US8841450B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
RU2502513C2 (en) * 2012-01-11 2013-12-27 Государственное бюджетное учреждение здравоохранения Свердловской области "Свердловский областной клинический психоневрологический госпиталь для ветеранов войн" (ГБУЗ СО "СОКП Госпиталь для ветеранов войн") Method of treating patients with multiple organ pathology using ozone therapy
CN104284896B (en) 2012-03-14 2016-06-01 拜耳知识产权有限责任公司 The Imidazopyridazine replaced
SI2833973T1 (en) 2012-04-05 2018-04-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase and combination therapies thereof
SG10201704095UA (en) 2012-04-24 2017-06-29 Vertex Pharma Dna-pk inhibitors
GB201209613D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201209609D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
NZ730134A (en) 2012-06-13 2018-07-27 Incyte Holdings Corp Substituted tricyclic compounds as fgfr inhibitors
PL3260455T3 (en) 2012-07-04 2019-12-31 Rhizen Pharmaceuticals S.A. Selective pi3k delta inhibitors
WO2014026125A1 (en) 2012-08-10 2014-02-13 Incyte Corporation Pyrazine derivatives as fgfr inhibitors
EP2904406B1 (en) 2012-10-04 2018-03-21 Vertex Pharmaceuticals Incorporated Method for measuring atr inhibition mediated increases in dna damage
US8912198B2 (en) 2012-10-16 2014-12-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
CN107501275B (en) 2012-12-07 2019-11-22 沃泰克斯药物股份有限公司 It can be used as the compound of ATR kinase inhibitor
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
TR201901886T4 (en) 2013-03-12 2019-03-21 Vertex Pharma DNA-PK inhibitors.
WO2014143240A1 (en) 2013-03-15 2014-09-18 Vertex Pharmaceuticals Incorporated Fused pyrazolopyrimidine derivatives useful as inhibitors of atr kinase
CN109912594A (en) 2013-04-19 2019-06-21 因赛特控股公司 Bicyclic heterocycle as FGFR inhibitor
GB201307577D0 (en) 2013-04-26 2013-06-12 Astex Therapeutics Ltd New compounds
KR20160019492A (en) 2013-06-11 2016-02-19 바이엘 파마 악티엔게젤샤프트 Prodrug derivatives of substituted triazolopyridines
PL3057953T3 (en) 2013-10-17 2019-01-31 Vertex Pharmaceuticals Incorporated Co-crystals of (s)-n-methyl-8-(1-((2'-methyl-[4,5'-bipyrimidin]-6-yl)amino)propan-2-yl)quinoline-4-carboxamide and deuterated derivatives thereof as dna-pk inhibitors
WO2015059088A1 (en) 2013-10-23 2015-04-30 Bayer Cropscience Ag Substituted quinoxaline derivatives as pest control agent
EP3077397B1 (en) 2013-12-06 2019-09-18 Vertex Pharmaceuticals Inc. 2-amino-6-fluoro-n-[5-fluoro-pyridin-3-yl]pyrazolo[1,5-a]pyrimidin-3-carboxamide compound useful as atr kinase inhibitor, its preparation, different solid forms and radiolabelled derivatives thereof
RU2715236C2 (en) 2014-03-26 2020-02-26 Астекс Терапьютикс Лтд Combinations
JO3512B1 (en) 2014-03-26 2020-07-05 Astex Therapeutics Ltd Quinoxaline derivatives useful as fgfr kinase modulators
BR112016022062B1 (en) 2014-03-26 2023-04-11 Astex Therapeutics Limited COMBINATION, PHARMACEUTICAL COMPOSITION, USE OF A COMBINATION OR A PHARMACEUTICAL COMPOSITION, AND, PHARMACEUTICAL PRODUCT
RU2719583C2 (en) 2014-06-05 2020-04-21 Вертекс Фармасьютикалз Инкорпорейтед Radiolabelled 2-amino-6-fluoro-n-[5-fluoro-pyridin-3-yl]-pyrazolo [1, 5-a] pyrimidine-3-carboxamide derivatives used as atr kinase inhibitor, preparations based thereon compounds and various solid forms thereof
NZ727399A (en) 2014-06-17 2022-07-29 Vertex Pharma Method for treating cancer using a combination of chk1 and atr inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
JOP20200201A1 (en) 2015-02-10 2017-06-16 Astex Therapeutics Ltd Pharmaceutical compositions comprising n-(3,5-dimethoxyphenyl)-n'-(1-methylethyl)-n-[3-(1-methyl-1h-pyrazol-4-yl)quinoxalin-6-yl]ethane-1,2-diamine
MA41551A (en) 2015-02-20 2017-12-26 Incyte Corp BICYCLIC HETEROCYCLES USED AS FGFR4 INHIBITORS
TWI712601B (en) 2015-02-20 2020-12-11 美商英塞特公司 Bicyclic heterocycles as fgfr inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
DK3353164T3 (en) 2015-09-23 2022-01-24 Janssen Pharmaceutica Nv BI-HETEROARYL SUBSTITUTED 1,4-BENZODIAZEPINES AND USES FOR CANCER TREATMENT
RU2747645C2 (en) 2015-09-23 2021-05-11 Янссен Фармацевтика Нв New compounds
CA3000684A1 (en) 2015-09-30 2017-04-06 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of dna damaging agents and atr inhibitors
WO2017091681A1 (en) 2015-11-24 2017-06-01 Aclaris Therapeutics, Inc. Selective kinase inhibitors
US10730868B2 (en) * 2016-07-14 2020-08-04 Bristol-Myers Squibb Company Bicyclic heteroaryl substituted compounds
EP3484874B1 (en) * 2016-07-14 2020-04-29 Bristol-Myers Squibb Company Monocyclic heteroaryl substituted compounds
TW201815418A (en) 2016-09-27 2018-05-01 Vertex Pharma Method for treating cancer using a combination of DNA-damaging agents and DNA-PK inhibitors
CN110072860B (en) * 2016-12-20 2022-09-02 百时美施贵宝公司 Compounds useful as immunomodulators
WO2018121550A1 (en) 2016-12-26 2018-07-05 中国医学科学院药物研究所 Quinazoline compound and preparation method, application, and pharmaceutical compostion thereof
AR111960A1 (en) 2017-05-26 2019-09-04 Incyte Corp CRYSTALLINE FORMS OF A FGFR INHIBITOR AND PROCESSES FOR ITS PREPARATION
MA52494A (en) 2018-05-04 2021-03-10 Incyte Corp SOLID FORMS OF FGFR INHIBITOR AND THEIR PREPARATION PROCEDURES
CR20200591A (en) 2018-05-04 2021-03-31 Incyte Corp Salts of an fgfr inhibitor
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
WO2021007269A1 (en) 2019-07-09 2021-01-14 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
BR112022007163A2 (en) 2019-10-14 2022-08-23 Incyte Corp BICYCLIC HETEROCYCLES AS FGFR INHIBITORS
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US20230023066A1 (en) * 2019-10-25 2023-01-26 Merck Sharp & Dohme Corp. N-(heteroaryl) quinazolin-2-amine derivatives as lrrk2 inhibitors, pharmaceutical compositions, and uses thereof
WO2021113479A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Tricyclic heterocycles as fgfr inhibitors
CA3162010A1 (en) 2019-12-04 2021-06-10 Incyte Corporation Derivatives of an fgfr inhibitor
TW202313611A (en) 2021-06-09 2023-04-01 美商英塞特公司 Tricyclic heterocycles as fgfr inhibitors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480883A (en) * 1991-05-10 1996-01-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US20050222155A1 (en) * 2002-04-08 2005-10-06 Bilodeau Mark T Inhibitors of akt activity

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563917A (en) * 1966-01-24 1971-02-16 Research Corp Quinoxaline polymers
US3475374A (en) * 1968-02-06 1969-10-28 Research Corp Quinoxaline polymer compositions
US3637692A (en) * 1969-10-02 1972-01-25 Billy M Culbertson Substituted quinoxalines
US3630994A (en) * 1969-12-29 1971-12-28 Ashland Oil Inc Polyimides prepared from substituted quinoxalines
SU540461A1 (en) * 1975-07-11 1977-10-05 Ордена Ленина Институт Элементоорганических Соединений Ан Ссср Bis-(aminophenylquinoxalines)as monomers for preparing polymers-poly-imidophenylquinoxalines and method of obtaining same
DD138015A3 (en) * 1976-02-27 1979-10-10 Wasilij W Korschak PROCESS FOR THE PREPARATION OF BIS (AMINOPHENYLCHINOXALINES)
DE3509618A1 (en) 1985-03-16 1986-09-18 Bayer Ag, 5090 Leverkusen SS LACTAM ANTIBIOTICS, METHOD FOR THE PRODUCTION AND THEIR USE AS A MEDICINAL PRODUCT
DE3524054A1 (en) * 1985-07-05 1987-01-08 Bayer Ag TETRA- (HYDROXYARYL) -BIS-CHINOXALINE, THEIR PRODUCTION AND THEIR USE AS BRANCHING AGENTS FOR THERMOPLASTIC POLYCARBONATES
US5409930A (en) * 1991-05-10 1995-04-25 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
JP3039750B2 (en) * 1993-04-27 2000-05-08 キヤノン株式会社 Quinoxaline compound, liquid crystal composition containing the same, liquid crystal element having the same, display device and display method using the same
AU3192195A (en) 1994-08-10 1996-03-07 Takeda Chemical Industries Ltd. Thiazolidinedione derivatives, their production and use
US5925656A (en) 1995-04-10 1999-07-20 Dr. Reddy's Research Foundation Compounds having antidiabetic, hypolipidemic, antihypertensive properties, process for their preparation and pharmaceutical compositions containing them
ATE231136T1 (en) 1996-04-09 2003-02-15 Reddys Lab Ltd Dr THIAZOLIDINEDIONE DERIVATIVES HAVING ANTIDIABETIC, HYPOLIPIDEMIC AND ANTIHYPERTENSIVE PROPERTIES, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
SK158199A3 (en) 1997-05-28 2000-06-12 Rhone Poulenc Rorer Pharma QUINOLINE AND QUINOXALINE COMPOUNDS WHICH INHIBIT PLATELET-DERIVED GROWTH FACTOR AND/OR p56lck TYROSINE KINASES
JPH11130756A (en) 1997-09-01 1999-05-18 Kyorin Pharmaceut Co Ltd 7-arylquinoxalinecarboxylic acid derivative and its addition salt and their production
AU4005299A (en) 1998-05-19 1999-12-06 Regents Of The University Of California, The Thiazolidine and oxazolidine derivatives for the treatment of acute myocardial infarction and inhibition of cardiomyocyte apoptosis
US6452014B1 (en) 2000-12-22 2002-09-17 Geron Corporation Telomerase inhibitors and methods of their use
PL373912A1 (en) 2001-03-07 2005-09-19 Incyte San Diego, Inc. Heterocyclic derivatives for the treatment of cancer and other proliferative diseases
EP1377976A2 (en) 2001-03-28 2004-01-07 Bayer Chemicals AG Optical data carrier that contains a merocyanine dye as the light-absorbing compound in the information layer
DE10129375B4 (en) 2001-06-20 2005-10-06 Mtu Friedrichshafen Gmbh Injector with piezo actuator
DE10130205A1 (en) 2001-06-22 2003-01-02 Bosch Gmbh Robert Fuel injector
US20050019825A9 (en) 2002-03-15 2005-01-27 Qing Dong Common ligand mimics: pseudothiohydantoins
US7348348B2 (en) 2002-04-30 2008-03-25 Merck & Co. Inc. Aryl-link-aryl substituted thiazolidine-dione and oxazolidine-dione as sodium channel blockers
AU2003255529B2 (en) 2002-07-10 2008-11-20 Laboratoires Serono Sa Use of compounds for increasing spermatozoa motility
CN1681811B (en) 2002-07-10 2010-05-26 默克雪兰诺有限公司 Azolidinone-vinyl fused-benzene derivatives
US20040092561A1 (en) 2002-11-07 2004-05-13 Thomas Ruckle Azolidinone-vinyl fused -benzene derivatives
AU2003291024A1 (en) 2002-11-13 2004-06-03 Rigel Pharmaceuticals, Inc. Rhodanine derivatives and pharmaceutical compositions containing them
HUP0203985A3 (en) 2002-11-18 2005-04-28 Gene Res Lab Inc New York N Use of a pharmaceutical composition for alleviating side effect
WO2005007123A2 (en) 2003-07-18 2005-01-27 Pintex Pharmaceuticals, Inc. Pin1-modulating compounds and methods of use thereof
WO2005009979A1 (en) * 2003-07-28 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative and luminescent element comprising the same
WO2005011686A1 (en) 2003-07-28 2005-02-10 Applied Research Systems Ars Holding N.V. 2-imino-4-(thio) oxo-5-poly cyclovinylazolines for use as p13 kinase ihibitors
US20050042213A1 (en) 2003-08-14 2005-02-24 Insight Biopharmaceuticals Ltd. Methods and pharmaceutical compositions for modulating heparanase activation and uses thereof
US7501416B2 (en) 2004-02-06 2009-03-10 Bristol-Myers Squibb Company Quinoxaline compounds and methods of using them
AU2005219791B2 (en) * 2004-03-05 2011-06-09 Msd K.K. Diaryl-substituted five-membered heterocycle derivative
AU2005259511A1 (en) 2004-07-01 2006-01-12 F. Hoffmann-La Roche Ag Quinoline thiazolinones with CDK1 antiproliferative activity
EP1807418A2 (en) * 2004-10-22 2007-07-18 Amgen, Inc Substituted nitrogen-containing heterocycles as vanilloid receptor ligands and their uses as medicament
GB0501999D0 (en) 2005-02-01 2005-03-09 Sentinel Oncology Ltd Pharmaceutical compounds
CA2624354A1 (en) 2005-09-30 2007-04-12 Janssen Pharmaceutica N.V. Heterocyclic amide derivatives as rxr agonists for the treatment of dyslipidemia, hypercholesterolemia and diabetes
US20080299113A1 (en) * 2005-12-19 2008-12-04 Arnold Lee D Combined treatment with and composition of 6,6-bicyclic ring substituted heterobicyclic protein kinase inhibitor and anti-cancer agents
KR20090007347A (en) * 2006-03-22 2009-01-16 버텍스 파마슈티칼스 인코포레이티드 C-met protein kinase inhibitors for the treatment of proliferative disorders
WO2008018881A1 (en) * 2006-08-10 2008-02-14 Osi Pharmaceuticals, Inc. 6,6-bicyclic ring substituted sulfur containing heterobicyclic protein kinase inhibitors
EP1916240A1 (en) * 2006-10-25 2008-04-30 Syngeta Participations AG Pyridazine derivatives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480883A (en) * 1991-05-10 1996-01-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US6180632B1 (en) * 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US20050222155A1 (en) * 2002-04-08 2005-10-06 Bilodeau Mark T Inhibitors of akt activity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180214445A1 (en) * 2015-07-30 2018-08-02 Bristol-Myers Squibb Company Aryl substituted bicyclic heteroaryl compounds
US10517870B2 (en) * 2015-07-30 2019-12-31 Bristol-Myers Squibb Company Aryl substituted bicycle heteroaryl compounds

Also Published As

Publication number Publication date
JP2010526823A (en) 2010-08-05
US20080293706A1 (en) 2008-11-27
EP2150255A1 (en) 2010-02-10
CL2008001356A1 (en) 2008-11-14
TW200902008A (en) 2009-01-16
AR066513A1 (en) 2009-08-26
EP2150255A4 (en) 2011-10-05
PE20090288A1 (en) 2009-04-03
WO2008141065A1 (en) 2008-11-20
US7592342B2 (en) 2009-09-22

Similar Documents

Publication Publication Date Title
US7592342B2 (en) Quinoxaline derivatives as PI3 kinase inhibitors
US8785433B2 (en) Quinoline derivatives as PI3 kinase inhibitors
US20090018131A1 (en) Quinazoline derivatives as p13 kinase inhibitors
US20100179143A1 (en) Naphthyridine, derivatives as p13 kinase inhibitors
US20100311736A1 (en) Pyridosulfonamide derivatives as p13 kinase inhibitors
US20100204222A1 (en) Pyridopyrimidine derivatives as p13 kinase inhibitors
US20090215818A1 (en) Thiozolidinedione derivatives as pi3 kinase inhibitors
EP2173354A1 (en) Quinoxaline derivatives as pi3 kinase inhibitors
US20090306074A1 (en) Thiazolidinedione derivatives as p13 kinase inhibitors
US20080255115A1 (en) Thiazolidinedione derivatives as pi3 kinase inhibitors

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMITHKLINE BEECHAM CORPORATION, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAUDHARI, AMITA;DHANAK, DASHYANT;DONATELLI, CARLA ANN;AND OTHERS;SIGNING DATES FROM 20080523 TO 20080610;REEL/FRAME:021341/0287

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION