US20130081508A1 - Bicycle control cable - Google Patents

Bicycle control cable Download PDF

Info

Publication number
US20130081508A1
US20130081508A1 US13/248,153 US201113248153A US2013081508A1 US 20130081508 A1 US20130081508 A1 US 20130081508A1 US 201113248153 A US201113248153 A US 201113248153A US 2013081508 A1 US2013081508 A1 US 2013081508A1
Authority
US
United States
Prior art keywords
control cable
bicycle control
central wire
cable according
radial protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/248,153
Other languages
English (en)
Inventor
Atsuhiro Nishimura
Kenji Ose
Takamoto ASAKAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimano Inc
Original Assignee
Shimano Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to SHIMANO INC. reassignment SHIMANO INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASAKAWA, TAKAMOTO, NISHIMURA, ATSUHIRO, OSE, KENJI
Priority to US13/248,153 priority Critical patent/US20130081508A1/en
Application filed by Shimano Inc filed Critical Shimano Inc
Priority to US13/474,025 priority patent/US9829035B2/en
Priority to TW101118403A priority patent/TWI486280B/zh
Priority to CN2012101977626A priority patent/CN103029792A/zh
Priority to CN201710009814.5A priority patent/CN106882316A/zh
Priority to TW101126679A priority patent/TWI510402B/zh
Priority to EP12182558.2A priority patent/EP2574801B1/fr
Priority to EP14163053.3A priority patent/EP2759723B1/fr
Priority to EP12186198.3A priority patent/EP2574802B1/fr
Priority to CN201210366644.3A priority patent/CN103032444B/zh
Publication of US20130081508A1 publication Critical patent/US20130081508A1/en
Priority to US14/720,116 priority patent/US10605299B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • B62L3/02Brake-actuating mechanisms; Arrangements thereof for control by a hand lever
    • B62L3/026Brake-actuating mechanisms; Arrangements thereof for control by a hand lever actuation by a turning handle or handlebar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/10Means for transmitting linear movement in a flexible sheathing, e.g. "Bowden-mechanisms"
    • F16C1/20Construction of flexible members moved to and fro in the sheathing
    • F16C1/205Details of the outer surface of the flexible member, e.g. coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/04Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting mechanically
    • B60T11/046Using cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62LBRAKES SPECIALLY ADAPTED FOR CYCLES
    • B62L3/00Brake-actuating mechanisms; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/02Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/02Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers
    • B62M25/04Actuators for gearing speed-change mechanisms specially adapted for cycles with mechanical transmitting systems, e.g. cables, levers hand actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/10Means for transmitting linear movement in a flexible sheathing, e.g. "Bowden-mechanisms"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/10Means for transmitting linear movement in a flexible sheathing, e.g. "Bowden-mechanisms"
    • F16C1/20Construction of flexible members moved to and fro in the sheathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/24Lubrication; Lubricating equipment
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2002Wires or filaments characterised by their cross-sectional shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2036Strands characterised by the use of different wires or filaments
    • D07B2201/2037Strands characterised by the use of different wires or filaments regarding the dimension of the wires or filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/005Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/28Bicycle propulsion, e.g. crankshaft and its support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20396Hand operated
    • Y10T74/20402Flexible transmitter [e.g., Bowden cable]
    • Y10T74/20456Specific cable or sheath structure

Definitions

  • This invention generally relates to a bicycle control cable. More specifically, the present invention relates to an inner wire of a bicycle control cable such as a Bowden cable.
  • Bicycles often have components that are manually operated by a bicycle control cable (e.g., a brake cable and a gear shift cable).
  • the bicycle control cable interconnects a “manually operated part” of bicycle to a “cable operated part” of bicycle.
  • “manually operated parts” include brake levers and gear shifters.
  • Examples of “cable operated parts” include brake devices and the gear changing devices.
  • conventional bicycle control cables have, for example, a tubular outer case and an inner wire that can be inserted into and passed through the outer case. This type of bicycle control cable is often called a Bowden type of bicycle control cable.
  • the outer case of a typical Bowden cable has a synthetic resin liner against which the outside surface of the inner wire slides, a flat steel wire wound helically onto the outside circumference of the liner, and a synthetic resin jacket that covers the outside circumference of the flat steel wire.
  • the inner wire of a typical Bowden cable is made of intertwined steel wire. The inner wire protrudes beyond both ends of the outer case and each end of the inner wire is connected to either a manually operated part or a cable-operated part.
  • one or each end of the inner wire has an anchor part for attachment to a brake lever, a gear shifter, etc.
  • the anchor part is often fixed to the tip end of the inner wire by crimping or other suitable fastening method.
  • the outer diameter of the inner wire needs to be sufficiently small relative to an internal diameter of the outer case for the inner wire to slide within the outer case.
  • a lubricant is sometimes provided between the inner wire and the outer case.
  • this lubricant becomes contaminated over time, and thus, regular maintenance is required for smooth operation of the bicycle control cable.
  • One aspect presented in the present disclosure is to provide a bicycle control cable that has an improved sliding efficiency of an inner wire.
  • a bicycle control cable comprising a central wire and a radial protrusion.
  • the central wire includes at least one metallic strand defining a radially outermost surface of the central wire.
  • the radial protrusion extends along the radially outer most surface in a direction intersecting with a center longitudinal axis of the central wire.
  • the radial protrusion reduces a sliding resistance of the central wire.
  • the central wire and the radial protrusion are configured and arranged to slidably move in an axial direction with respect to the center longitudinal axis of the central wire within an outer case to operate a bicycle component.
  • FIG. 1 is a diagrammatic side elevational view of a bicycle equipped with several bicycle control cables in accordance with illustrative embodiments
  • FIG. 2 is a side elevational view of one of the bicycle control cables illustrated in FIG. 1 in accordance with a first embodiment
  • FIG. 3 is an enlarged perspective view of a portion of the bicycle control cable illustrated in FIG. 2 with portions removed for purposes of illustration;
  • FIG. 4 is an enlarged side elevational view of a portion of the inner wire of the bicycle control cable illustrated in FIGS. 2 and 3 ;
  • FIG. 5 is a transverse cross sectional view of the bicycle control cable illustrated in FIGS. 2 to 4 as seen along section line 5 - 5 of FIG. 3 ;
  • FIG. 6 is a side elevational view of a bicycle control cable illustrated in accordance with a second embodiment
  • FIG. 7 is an enlarged perspective view of a portion of the bicycle control cable illustrated in FIG. 6 with portions removed for purposes of illustration;
  • FIG. 8 is an enlarged side elevational view of a portion of the inner wire of the bicycle control cable illustrated in FIGS. 6 and 7 ;
  • FIG. 9 is a transverse cross sectional view of the bicycle control cable illustrated in FIGS. 6 to 8 as seen along section line 9 - 9 of FIG. 7 ;
  • FIG. 10 is a transverse cross sectional view of a bicycle control cable in accordance with a third embodiment
  • FIG. 11 is a transverse cross sectional view of a bicycle control cable in accordance with a fourth embodiment
  • FIG. 12 is a transverse cross sectional view of a bicycle control cable in accordance with a fifth embodiment.
  • FIG. 13 is a transverse cross sectional view of a bicycle control cable in accordance with a sixth embodiment.
  • a bicycle 10 is illustrated that is equipped with several bicycle control cables 12 , 14 , 16 and 18 in accordance with illustrative embodiments as explained below.
  • the bicycle control cable 12 is operatively connected between a front brake lever and a front brake caliper.
  • the bicycle control cable 14 is operatively connected between a rear brake lever and a rear brake caliper.
  • the bicycle control cable 16 is operatively connected between a front shifter and a front derailleur.
  • the bicycle control cable 18 is operatively connected between a rear shifter and a rear derailleur.
  • the bicycle control cables 12 , 14 , 16 and 18 are mounted to the bicycle 10 via a plurality of cable guides or stops 20 .
  • the bicycle control cable 12 basically, includes a central wire 22 and a radial protrusion 24 .
  • the radial protrusion 24 and the central wire 22 are attached to each other by thermal melting. In this way, the radial protrusion 24 does not move relative to the central wire 22 .
  • the central wire 22 and the radial protrusion 24 form an inner wire.
  • an outer case 26 is provided over a majority of the central wire 22 and the radial protrusion 24 .
  • the inner wire i.e., the central wire 22 and the radial protrusion 24
  • the central wire 22 and the radial protrusion 24 are configured and arranged to slidably move together in an axial direction with respect to a center longitudinal axis A of the central wire 22 within the outer case 26 to operate a bicycle component (e.g., the front derailleur in FIG. 1 ).
  • the ends of the inner wire i.e., the central wire 22 and the radial protrusion 24
  • protrude beyond both ends of the outer case 26 One end of the central wire 22 is connected to the brake lever (i.e., a manually operated part), while the other end of the central wire 22 is connected to the brake caliper (i.e., a cable-operated part).
  • the outer case 26 can be any type of outer case that can be used to slidably support the inner wire (i.e., the central wire 22 and the radial protrusion 24 ).
  • the outer case 26 preferably includes a synthetic resin liner, a flat steel wire wound helically onto an outside circumference of the synthetic resin liner, and a synthetic resin jacket that covers an outside circumference of the flat steel wire.
  • the synthetic resin liner, the flat steel wire and the synthetic resin jacket are illustrated as a solid synthetic resin tube in FIG. 5 .
  • the outer case 26 can be a continuous tube that surrounds one portion of an axial length of the central wire 22 and the radial protrusion 24 .
  • the central wire 22 includes a center metallic strand 30 , a plurality of middle metallic strands 32 and a plurality of outer metallic strands 34 .
  • the metallic strands 30 , 32 and 34 are helically wound to form a wire with a circular cross section.
  • the central wire 22 has an outermost diameter of about 1.1 millimeters.
  • the central wire 22 can be a single metallic strand.
  • the outer metallic strands 34 define a radially outermost surface 22 a of the central wire 22 .
  • the central wire 22 is made of helically wound steel wire strands.
  • the radial protrusion 24 extends along the radially outermost surface 22 a in a direction intersecting with a center longitudinal axis A of the central wire 22 .
  • the radial protrusion 24 spaces the radially outermost surface 22 a of the central wire 22 from an innermost surface of the outer case 26 . In this way, the radial protrusion 24 reduces a sliding resistance of the central wire 22 within the outer case 26 .
  • the radial protrusion 24 includes at least one resin string that is spirally wound around the radially outermost surface 22 a of the central wire 22 .
  • the string forming the radial protrusion 24 has a circular cross section with a diameter of about 80 micrometers as compared to the diameter of the central wire 22 which is about 1.1 millimeters.
  • the radial protrusion 24 (the at least one resin string) has a diameter that is smaller than the diameters of each of the metallic strands 30 , 32 and 34 of the central wire 22 .
  • the radial protrusion 24 is illustrated as a single resin string, the radial protrusion 24 can have other configurations.
  • the radial protrusion 24 can be made of a plurality of helically wound resin strings.
  • the radial protrusion 24 (the at least one resin string) has a pitch P 1 that is less than or equal to 1 millimeter.
  • the pitch P 1 of the radial protrusion 24 (the at least one resin string) is less than or equal to 500 micrometers, and more preferably about 150 micrometers as illustrated.
  • the radial protrusion 24 is made of a material that has a lower coefficient of friction than the material of the central wire 22 to reduce sliding resistance of the central wire 22 within the outer case 26 .
  • the radial protrusion 24 (the at least one resin string) is preferably made of either a fluorocarbon polymer or an olefin polymer.
  • the radial protrusion 24 (the at least one resin string) is preferably made of polyethylene terephthalate (PET).
  • the radial protrusion 24 is made of a fluorocarbon polymer
  • the fluorocarbon polymer is preferably selected from a group consisting of perfluoroalkoxy (PFA), fluoroethylene-propylene (FEP) and polytetrafluoroethylene (PTFE).
  • PFA perfluoroalkoxy
  • FEP fluoroethylene-propylene
  • PTFE polytetrafluoroethylene
  • the radial protrusion 24 is made of an olefin polymer, then the olefin polymeris preferably selected from a group consisting of polyethylene (PE) and polyacetal (POM).
  • the bicycle control cables 14 , 16 and 18 are identical as the bicycle control cable 12 , as discussed, except for the length of the cables, the diameters of the inner wire and the outer case and the number of pieces of the outer case.
  • the bicycle control cables 14 , 16 and 18 are adapted to the cabling path on the bicycle 10 and the manually operated part and the cable-operated part that are connected to the ends of the inner wire (the central wire and the radial protrusion).
  • the bicycle control cables 14 , 16 and 18 will not be discussed or illustrated in detail herein.
  • one end or each end of the inner wire (the central wire and the radial protrusion) of the bicycle control cables 12 , 14 , 16 and 18 can be provided with an anchor part or nipple 40 such as shown in FIG. 2 .
  • the anchor part 40 can be fixed to the tip end of the inner wire (i.e. the central wire and the radial protrusion) by crimping or other suitable fastening method.
  • one end or each end of the outer case of the bicycle control cables 12 , 14 , 16 and 18 can be provided with a cap 42 for engaging one of the stops 20 or for engaging the bicycle component being attached thereto.
  • the bicycle control cable 112 basically, includes a central wire 122 and a radial protrusion 124 .
  • the radial protrusion 124 and the central wire 122 are attached to each other by thermal melting. In this way, the radial protrusion 124 does not move relative to the central wire 122 .
  • the central wire 122 and the radial protrusion 124 form an inner wire.
  • An outer case 126 is provided over a majority of the central wire 122 and the radial protrusion 124 .
  • the bicycle control cables 12 and 112 are identical except that the radial protrusions 24 and 124 are different and one of the outer metallic strands of the central wire 122 has been eliminated in the bicycle control cable 112 .
  • the description of the outer case 126 which is identical to the outer case 26 , has been omitted for the sake of brevity.
  • the inner wire i.e., the central wire 122 and the radial protrusion 124
  • the ends of the inner wire i.e., the central wire 122 and the radial protrusion 124
  • One end of the central wire 122 is connected to a manually operated part, while the other end of the central wire 122 is connected to a cable-operated part.
  • the central wire 122 includes a center metallic strand 130 , a plurality of middle metallic strands 132 and a plurality of outer metallic strands 134 .
  • the metallic strands 130 , 132 and 134 are helically wound to form a wire with a circular cross section.
  • the central wire 122 has an outermost diameter of about 1.1 millimeters.
  • the central wire 122 can be a single metallic strand.
  • the outer metallic strands 134 define a radially outermost surface 122 a of the central wire 122 .
  • the central wire 122 of the second embodiment is made of helically wound steel wire strands.
  • the radial protrusion 124 includes at least one resin string that is spirally wound around the radially outermost surface 122 a of the central wire 122 .
  • the string forming the radial protrusion 124 has a circular cross section with a diameter of about 500 micrometers, before the radial protrusion 124 is spirally wound around the radially outermost surface 122 a of the central wire 122 , as compared to the outermost diameter of the central wire 122 which is about 1.1 millimeters.
  • the radial protrusion 124 (the at least one resin string) has a diameter that is larger than the diameters of each of the metallic strands 130 , 132 and 134 of the central wire 122 . While preferably all of the metallic strands 130 , 132 and 134 are about the same size, the metallic strands 130 , 132 and 134 can have different sizes. For example, some of the metallic strands 130 , 132 and 134 are equal to or smaller than the diameter of the radial protrusion 124 (the at least one resin string) and the one or more of the metallic strands 130 and 132 is larger than the diameter of the radial protrusion 124 (the at least one resin string).
  • the radial protrusion 124 is illustrated as a single resin string, the radial protrusion 124 can have other configurations, for example, the radial protrusion 124 can be made of a plurality of helically wound resin strings.
  • the radial protrusion 124 is a stretched resin string manufactured through a stretching process so that wear-proof property of the radial protrusion 124 is more improved.
  • the radial protrusion 124 is made of a material that has a lower coefficient of friction than the material of the central wire 122 to reduce sliding resistance of the central wire 122 within the outer case 126 .
  • the radial protrusion 124 (the at least one resin string) is made of either a fluorocarbon polymer or an olefin polymer.
  • the radial protrusion 124 (the at least one resin string) is made of polyethylene terephthalate (PET).
  • the radial protrusion 124 is made of a fluorocarbon polymer
  • the fluorocarbon polymer is preferably selected from a group consisting of perfluoroalkoxy (PFA), fluoroethylene-propylene (FEP) and polytetrafluoroethylene (PTFE).
  • PFA perfluoroalkoxy
  • FEP fluoroethylene-propylene
  • PTFE polytetrafluoroethylene
  • the radial protrusion 124 is made of an olefin polymer
  • the olefin polymer is preferably selected from a group consisting of polyethylene (PE) and polyacetal (POM).
  • the bicycle control cable 212 basically, includes a central wire 222 and a radial protrusion 224 .
  • the central wire 222 and the radial protrusion 224 form an inner wire.
  • the central wire 222 includes a center metallic strand 230 , a plurality of middle metallic strands 232 and a plurality of outer metallic strands 234 .
  • An outer case 226 is provided over a majority of the central wire 222 and the radial protrusion 224 .
  • the bicycle control cables 12 and 212 are identical except that the radial protrusions 24 and 224 are different. In view of the similarity between the first and third embodiments, the descriptions of the central wire 222 and the outer case 226 , which are identical to the central wire 22 and the outer case 26 have been omitted for the sake of brevity.
  • the radial protrusion 224 includes at least one resin string that is spirally wound around the central wire 222 .
  • the radial protrusion 224 is spirally wound around the central wire 222 in the same manner as shown in FIGS. 3 and 4 of the first embodiment.
  • the description of the spirally winding of the radial protrusion 24 applies to the spirally winding of the radial protrusion 224 .
  • the radial protrusion 224 has an outer shell 224 a and an inner core 224 b.
  • the inner core 224 b is formed by at least one metallic wire. While the inner core 224 b is illustrated as a single metallic wire, the inner core 224 b can have other configurations.
  • the inner core 224 b can be made of a plurality of helically wound metallic wires.
  • the inner core 224 b e.g., the metallic wire
  • the string forming the radial protrusion 224 has a circular cross section with a diameter of about 80 micrometers.
  • the solid lubricant of the outer shell 224 a is preferably made of either a fluorocarbon polymer or an olefin polymer.
  • the outer shell 224 a is preferably made of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the fluorocarbon polymer is preferably selected from a group consisting of perfluoroalkoxy (PFA), fluoroethylene-propylene (FEP) and polytetrafluoroethylene (PTFE).
  • PFA perfluoroalkoxy
  • FEP fluoroethylene-propylene
  • PTFE polytetrafluoroethylene
  • the olefin polymer is preferably selected from a group consisting of polyethylene (PE) and polyacetal (POM).
  • the bicycle control cable 312 basically, includes a central wire 322 and a radial protrusion 324 .
  • the central wire 322 and the radial protrusion 324 form an inner wire.
  • the central wire 322 includes a center metallic strand 330 , a plurality of middle metallic strands 332 and a plurality of outer metallic strands 334 .
  • An outer case 326 is provided over a majority of the central wire 322 and the radial protrusion 324 .
  • the bicycle control cables 112 and 312 are identical except that the radial protrusions 124 and 324 are different.
  • the descriptions of the central wire 322 and the outer case 326 which are identical to the central wire 122 and the outer case 126 have been omitted for the sake of brevity.
  • the radial protrusion 324 includes at least one resin string that is spirally wound around the central wire 322 .
  • the radial protrusion 324 is spirally wound around the central wire 322 in the same manner as shown in FIGS. 7 and 8 of the second embodiment.
  • the description of the spirally winding of the radial protrusion 124 applies to the spirally winding of the radial protrusion 324 .
  • the radial protrusion 324 has an outer shell 324 a and an inner core 324 b.
  • the inner core 324 b is formed by at least one metallic wire. While the inner core 324 b is illustrated as a single metallic wire, the inner core 324 b can have other configurations.
  • the inner core 324 b can be made of a plurality of helically wound metallic wires.
  • the inner core 324 b e.g., the metallic wire
  • the string forming the radial protrusion 324 has a circular cross section with a diameter of about 500 micrometers before the radial protrusion 324 is spirally wound around the radially outermost surface 322 a of the central wire 322 .
  • the solid lubricant of the outer shell 324 a is preferably made of either a fluorocarbon polymer or an olefin polymer.
  • the outer shell 324 a is preferably made of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the fluorocarbon polymer is preferably selected from a group consisting of perfluoroalkoxy (PFA), fluoroethylene-propylene (FEP) and polytetrafluoroethylene (PTFE).
  • PFA perfluoroalkoxy
  • FEP fluoroethylene-propylene
  • PTFE polytetrafluoroethylene
  • the olefin polymer is preferably selected from a group consisting of polyethylene (PE) and polyacetal (POM).
  • the bicycle control cable 412 basically, includes a central wire 422 and a radial protrusion 424 .
  • the central wire 422 and the radial protrusion 424 form an inner wire.
  • the central wire 422 includes a center metallic strand 430 , a plurality of middle metallic strands 432 and a plurality of outer metallic strands 434 .
  • An outer case 426 is provided over a majority of the central wire 422 and the radial protrusion 424 .
  • the bicycle control cable 412 is identical to the bicycle control cable 12 , as described above, except that a coating of grease G is applied over the central wire 422 and the radial protrusion 424 so that the grease G is provided in the pitches of the radial protrusion 424 . Since the radial protrusion 424 includes at least one string that is spirally wound around the central wire 422 , the radially outermost surface of the central wire 422 is exposed in areas between corresponding circumferential points of the radial protrusion 424 at each pitch of the radial protrusion 424 .
  • the grease G interpenetrates between the outer metallic strands 434 of the central wire 422 , preferably up to between the middle metallic strands 432 and the center metallic strand 430 , through the exposed portion of the radially outermost surface of the central wire 422 so that friction resistance between the metallic strands of the central wire 422 can be reduced during operation of the bicycle control cable 412 .
  • the exposed portion of the radially outermost surface of the central wire 422 between the windings of the radial protrusion 424 is filled by the grease G so that sliding resistance between the outer case 426 and the central wire 422 with the radial protrusion 424 can be reduced during operation of the bicycle control cable 412 . Since the bicycle control cables 12 and 412 are identical, except for the coating of grease G, the descriptions of the central wire 422 , the radial protrusion 424 and the outer case 426 have been omitted for the sake of brevity.
  • the bicycle control cable 512 basically, includes a central wire 522 and a radial protrusion 524 .
  • the central wire 522 and the radial protrusion 524 form an inner wire.
  • the central wire 522 includes a center metallic strand 530 , a plurality of middle metallic strands 532 and a plurality of outer metallic strands 534 .
  • An outer case 526 is provided over a majority of the central wire 522 and the radial protrusion 524 .
  • the bicycle control cable 512 is identical to the bicycle control cable 112 , as described above, except that a coating of grease G is applied over the central wire 522 and the radial protrusion 524 . Since the radial protrusion 524 includes at least one string that is spirally wound around the central wire 522 , the radially outermost surface of the central wire 522 is exposed in areas between corresponding circumferential points of the radial protrusion 524 at each pitch of the radial protrusion 524 .
  • the grease G interpenetrates between the outer metallic strands 534 of the central wire 522 , preferably up to between the middle metallic strands 532 and the center metallic strand 530 , through the exposed portion of the radially outermost surface of the central wire 522 so that friction resistance between the metallic strands of the central wire 522 can be reduced during operation of the bicycle control cable 512 .
  • the exposed portion of the radially outermost surface of the central wire 522 between the windings of the radial protrusion 524 is filled by the grease G so that sliding resistance between the outer case 526 and the central wire 522 with the radial protrusion 524 can be reduced during operation of the bicycle control cable 512 . Since the bicycle control cables 112 and 512 are identical, except for the coating of grease G, the descriptions of the central wire 522 , the radial protrusion 524 and the outer case 526 have been omitted for the sake of brevity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Flexible Shafts (AREA)
US13/248,153 2011-09-29 2011-09-29 Bicycle control cable Abandoned US20130081508A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US13/248,153 US20130081508A1 (en) 2011-09-29 2011-09-29 Bicycle control cable
US13/474,025 US9829035B2 (en) 2011-09-29 2012-05-17 Bicycle control cable
TW101118403A TWI486280B (zh) 2011-09-29 2012-05-23 自行車控制纜線
CN2012101977626A CN103029792A (zh) 2011-09-29 2012-06-15 自行车控制拉索
CN201710009814.5A CN106882316A (zh) 2011-09-29 2012-06-15 自行车控制拉索
TW101126679A TWI510402B (zh) 2011-09-29 2012-07-24 自行車控制纜線
EP12182558.2A EP2574801B1 (fr) 2011-09-29 2012-08-31 Câble de commande de bicyclette
EP14163053.3A EP2759723B1 (fr) 2011-09-29 2012-09-27 Câble de commande de bicyclette
EP12186198.3A EP2574802B1 (fr) 2011-09-29 2012-09-27 Câble de commande de bicyclette
CN201210366644.3A CN103032444B (zh) 2011-09-29 2012-09-28 自行车控制拉索
US14/720,116 US10605299B2 (en) 2011-09-29 2015-05-22 Bicycle control cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/248,153 US20130081508A1 (en) 2011-09-29 2011-09-29 Bicycle control cable

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/474,025 Continuation-In-Part US9829035B2 (en) 2011-09-29 2012-05-17 Bicycle control cable
US14/720,116 Division US10605299B2 (en) 2011-09-29 2015-05-22 Bicycle control cable

Publications (1)

Publication Number Publication Date
US20130081508A1 true US20130081508A1 (en) 2013-04-04

Family

ID=46785288

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/248,153 Abandoned US20130081508A1 (en) 2011-09-29 2011-09-29 Bicycle control cable
US14/720,116 Active US10605299B2 (en) 2011-09-29 2015-05-22 Bicycle control cable

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/720,116 Active US10605299B2 (en) 2011-09-29 2015-05-22 Bicycle control cable

Country Status (4)

Country Link
US (2) US20130081508A1 (fr)
EP (1) EP2574801B1 (fr)
CN (2) CN103029792A (fr)
TW (1) TWI486280B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289031B2 (en) 2013-01-11 2016-03-22 Shimano Inc. Lacing cord and shoes using the same
DE102017005821A1 (de) 2016-07-08 2018-01-25 Shimano Inc. Fahrradkabel, Fahrradinnendraht, Fahrradinnendrahtherstellapparat und Verfahren zum Herstellen eines Fahrradinnendrahts
CN112178038A (zh) * 2019-07-03 2021-01-05 温芫鋐 车用内线结构及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700037789A1 (it) * 2017-04-06 2018-10-06 Ultraflex Spa Sonda passacavi o per elementi flessibili simili
TWI635516B (zh) * 2017-04-13 2018-09-11 溫芫鋐 自行車導線及其系統
CN108730317A (zh) * 2017-04-17 2018-11-02 温芫鋐 自行车导线及其系统
JP6653289B2 (ja) * 2017-04-28 2020-02-26 株式会社ハイレックスコーポレーション コントロールケーブル
TWI629204B (zh) * 2017-08-25 2018-07-11 利達工業有限公司 自行車內線結構
CN107588086B (zh) * 2017-10-20 2019-07-02 江阴市蒋氏汽摩部件有限公司 一种便于锁紧的刹车线
CN109058278A (zh) * 2018-09-26 2018-12-21 安徽博耐克摩擦材料有限公司 一种汽车刹车线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1245753A (fr) * 1959-10-02 1960-11-10 Autocoussin Dura Câble de commande à distance
US3176538A (en) * 1960-05-02 1965-04-06 John B Hurlow Push-pull type remote control cable
US3726078A (en) * 1970-09-05 1973-04-10 Kobe Steel Ltd Steel cord and article including the same
US4099425A (en) * 1976-06-01 1978-07-11 Samuel Moore And Company Method of making push-pull cable conduit and product
US4112708A (en) * 1976-06-21 1978-09-12 Nippon Cable Systems Inc. Flexible drive cable
US4299884A (en) * 1979-01-10 1981-11-10 L. Payen & Cie Type of wrapped textile thread and process for its production which involves thermofusion to secure wrapping to core
US4427033A (en) * 1980-12-22 1984-01-24 International Standard Electric Corporation Bending strain relief with adjustable stiffness
US5636551A (en) * 1992-05-04 1997-06-10 W. L. Gore & Associates, Inc. Method of making a mechanical cable

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1900512A (en) 1929-03-14 1933-03-07 Edward J Madden Brake cable tube
DE651266C (de) * 1936-07-03 1937-10-12 Bedri Hussein Gostkowski Bowdenzug
DE710205C (de) 1938-09-30 1941-09-06 Felten & Guilleaume Carlswerk Schlauchartige Huelle, insbesondere fuer Zug- und Druckuebertragungsmittel
US2334280A (en) 1941-05-17 1943-11-16 Remington Rand Inc Bowden wire casing
DE1213677B (de) * 1959-09-18 1966-03-31 Kuester & Co Gmbh In einer schlauch- oder rohrfoermigen Huelle laengsverschiebbar gelagertes Zug- und Druckkraftuebertragungskabel
US3135131A (en) * 1960-04-11 1964-06-02 Marmac Products Inc Push-pull cable construction
US3302479A (en) 1963-09-11 1967-02-07 Teleflex Inc Low load flexible conduit
GB1582647A (en) * 1977-07-07 1981-01-14 Bekaert Sa Nv Metal cord
JPS54183542U (fr) 1978-06-15 1979-12-26
JPS58193116U (ja) * 1982-06-17 1983-12-22 中央発條株式会社 プツシユプルケ−ブルのインナケ−ブル
JPH081323Y2 (ja) 1988-12-29 1996-01-17 興国鋼線索株式会社 ギャードケーブル
US5245887A (en) 1989-08-30 1993-09-21 Nippon Cable System Inc. Control cable
US5288270A (en) * 1989-12-06 1994-02-22 Taisei Kohzai Kabushiki Kaisha Flexible shaft having element wire groups and lubricant therebetween
WO1993012349A1 (fr) 1991-12-13 1993-06-24 W.L. Gore & Associates, Inc. Systeme de cable a commande mecanique ameliore
DE69715335T2 (de) * 1996-10-03 2003-07-31 Nippon Cable System Inc., Takarazuka Innenkabel für einen Bowdenzug
JPH10159832A (ja) 1996-10-03 1998-06-16 Nippon Cable Syst Inc プッシュプルコントロールケーブルのためのインナーケーブル
EP0864688A1 (fr) 1997-03-13 1998-09-16 N.V. Bekaert S.A. Câble de commande avec un revêtement polymère
JPH11247078A (ja) 1998-02-26 1999-09-14 Tokiwa Chemical Kogyo Kk 自動車用操作ワイヤー及びその製造方法
JP4347441B2 (ja) 1998-10-23 2009-10-21 株式会社ハイレックスコーポレーション コントロールケーブルの内索
JP4621322B2 (ja) 1999-11-15 2011-01-26 株式会社ハイレックスコーポレーション インナーケーブルおよびそれを用いたコントロールケーブル
EP1314813A1 (fr) * 2001-11-23 2003-05-28 N.V. Bekaert S.A. Câble et lève-vitre utilisant un tel câble
CN2661563Y (zh) * 2003-11-05 2004-12-08 安徽工业大学 高稳定性线控车闸
KR20070044400A (ko) 2004-05-26 2007-04-27 가부시키가이샤 하이렉스 코포레이션 방음 유치 케이블
JP2006300232A (ja) 2005-04-21 2006-11-02 Shimano Inc キャップ部材及びそれを用いた自転車用ケーブルシステム
US7162858B2 (en) 2005-05-20 2007-01-16 Teleflex Incorporated Push-pull cable and method of manufacturing thereof
JP2006342917A (ja) 2005-06-09 2006-12-21 Hi-Lex Corporation 軽荷重用のインナーケーブルおよびそれを用いた軽荷重用のコントロールケーブル
CN1818363A (zh) * 2006-02-15 2006-08-16 韩群山 摩托车油门的控制装置及其智能控制方法
US20090260474A1 (en) * 2006-05-29 2009-10-22 Hi-Lex Corporation Control cable and remote control device using the same
JP5091438B2 (ja) * 2006-07-26 2012-12-05 株式会社ハイレックスコーポレーション インナーケーブルおよびそれを用いたプッシュプルコントロールケーブル
KR100907285B1 (ko) 2007-10-11 2009-07-13 김영중 컨트롤 케이블 및 그 제조 방법
US20100116084A1 (en) 2008-11-10 2010-05-13 Cable Manufacturing & Assembly, Inc. Liner and cable construction
US9869340B2 (en) * 2009-09-01 2018-01-16 Sram, Llc Control cable actuation device
DE102010006945B4 (de) * 2010-02-04 2014-02-20 Küster Holding GmbH Mechanisch flexibler Betätigungszug

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1245753A (fr) * 1959-10-02 1960-11-10 Autocoussin Dura Câble de commande à distance
US3176538A (en) * 1960-05-02 1965-04-06 John B Hurlow Push-pull type remote control cable
US3726078A (en) * 1970-09-05 1973-04-10 Kobe Steel Ltd Steel cord and article including the same
US4099425A (en) * 1976-06-01 1978-07-11 Samuel Moore And Company Method of making push-pull cable conduit and product
US4112708A (en) * 1976-06-21 1978-09-12 Nippon Cable Systems Inc. Flexible drive cable
US4299884A (en) * 1979-01-10 1981-11-10 L. Payen & Cie Type of wrapped textile thread and process for its production which involves thermofusion to secure wrapping to core
US4427033A (en) * 1980-12-22 1984-01-24 International Standard Electric Corporation Bending strain relief with adjustable stiffness
US5636551A (en) * 1992-05-04 1997-06-10 W. L. Gore & Associates, Inc. Method of making a mechanical cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Translation of FR 1,245,753, obtained 5/30/2014. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289031B2 (en) 2013-01-11 2016-03-22 Shimano Inc. Lacing cord and shoes using the same
DE102017005821A1 (de) 2016-07-08 2018-01-25 Shimano Inc. Fahrradkabel, Fahrradinnendraht, Fahrradinnendrahtherstellapparat und Verfahren zum Herstellen eines Fahrradinnendrahts
CN112178038A (zh) * 2019-07-03 2021-01-05 温芫鋐 车用内线结构及其制造方法

Also Published As

Publication number Publication date
EP2574801A3 (fr) 2013-09-04
EP2574801B1 (fr) 2015-04-01
US10605299B2 (en) 2020-03-31
EP2574801A2 (fr) 2013-04-03
TW201313539A (zh) 2013-04-01
US20150267738A1 (en) 2015-09-24
CN106882316A (zh) 2017-06-23
TWI486280B (zh) 2015-06-01
CN103029792A (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
US10605299B2 (en) Bicycle control cable
US9829035B2 (en) Bicycle control cable
US6520214B1 (en) Flexible tube for endoscope
JP5091438B2 (ja) インナーケーブルおよびそれを用いたプッシュプルコントロールケーブル
TWI532928B (zh) 滑動纜線及控制纜線
US10088080B2 (en) Collapse resistant hose and the manufacture of the same
US20140109716A1 (en) Bicycle control cable
JP2008223832A (ja) 二重構造ケーブル
US10823277B2 (en) Sliding component and bicycle component
CN104006063B (zh) 车辆用导线
JP2002039152A (ja) 樹脂線入りのアウターケーシング、インナーケーブルおよびそれらを組み合わせたコントロールケーブル
JP6629548B2 (ja) コントロールケーブル
JP4805346B2 (ja) プッシュプルケーブルおよびこれを製造する方法
US20140305254A1 (en) Vehicle control system
JP4621322B2 (ja) インナーケーブルおよびそれを用いたコントロールケーブル
CN112208689A (zh) 车辆用导管
CN207005066U (zh) 重卡软轴
JP5576236B2 (ja) 繊維インナーケーブル
JP7483780B2 (ja) 動力伝達機構及び動力伝達用ワイヤロープ
JPH03281238A (ja) 複層チューブおよびその用途
KR101576226B1 (ko) 푸쉬-풀 케이블의 라이너 및 이를 포함하는 푸쉬-풀 케이블
US20160363161A1 (en) Vehicle control system
JP2019211053A (ja) 操作用ワイヤ
JP2000139277A (ja) 中通し竿

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIMANO INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NISHIMURA, ATSUHIRO;OSE, KENJI;ASAKAWA, TAKAMOTO;REEL/FRAME:026988/0148

Effective date: 20110927

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION