US20110105961A1 - Methods, compositions and apparatuses for facilitating regeneration - Google Patents

Methods, compositions and apparatuses for facilitating regeneration Download PDF

Info

Publication number
US20110105961A1
US20110105961A1 US12/994,421 US99442109A US2011105961A1 US 20110105961 A1 US20110105961 A1 US 20110105961A1 US 99442109 A US99442109 A US 99442109A US 2011105961 A1 US2011105961 A1 US 2011105961A1
Authority
US
United States
Prior art keywords
cells
functional
functionality
cell
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/994,421
Other languages
English (en)
Inventor
Lewis S. Gruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siwa Corp
Original Assignee
Siwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siwa Corp filed Critical Siwa Corp
Priority to US12/994,421 priority Critical patent/US20110105961A1/en
Assigned to SIWA CORPORATION reassignment SIWA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRUBER, LEWIS
Publication of US20110105961A1 publication Critical patent/US20110105961A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6817Toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6843Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/0047Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates in general to methods, compositions and apparatus for promoting tissue and organ regeneration, and in particular to preventing cells from inhibiting regenerative processes to obtain the recognized benefits in health and function associated with the results of regeneration.
  • Tissue and organ regeneration research has focused on the need to stimulate regeneration by activating stem cells by soluble factors or treat partially- or non-functional cells to improve their function, e.g. by breaking damage-related crosslinks. Such research has overlooked the need to remove inhibitory effects.
  • the present invention provides apparatus, compositions and methods for removing cells that interfere with regenerative processes by blocking locations in a tissue where progeny of stem cells can improve function.
  • the present invention also reduces the proportion of partially- and non-functional cells without regard to location in a tissue.
  • Functionality according to the present invention is defined as the state of operation of a cell of the same type in a selected healthy individual.
  • the apparatuses, compositions and methods according to the present invention promote regenerative processes by differentially killing cells based inversely on the degree of functionality of the cells (i.e., the less functionality the more likely to be killed), and then applying that technique.
  • This cell killing technique preferentially preserves proliferating cells.
  • any of lipofuscin, glycation end-products or cell stiffness can be selected as a proliferation-preserving marker of partial- or non-functionality.
  • Cell killing technologies directed against such markers can include, respectively, lasers/intense light, antibodies, and ultrasound.
  • Cells can be killed according to the present invention by physical, electromagnetic, chemical or biological techniques, for example. Physical techniques include without limitation ultrasound and other oscillatory methods for disrupting cell membranes or structures leading to cell death.
  • Electromagnetic techniques include without limitation and as targeted by sensitizers (such as absorbent nanoparticles, for example) EMF (see, e.g., Litovitz, U.S. Pat. No. 7,367,988 for EMF methods), high intensity light, radio waves microwaves, lasers, magnetism and ionizing radiation.
  • Chemical techniques include without limitation toxic nanoparticles, chemical toxins and structure removal compounds such as ⁇ -aminopropionitrile.
  • Biological techniques include without limitation antibodies against partially-functional or non-functional cells and variations and modifications thereof, such as toxin conjugates and natural killer cells modified to express target-specific antibodies. Techniques can be combined as determined to be effective (e.g. see McHale et al., U.S. Pat. No. 6,821,274 for sensitization to ultrasound by EMF treatment). Apparatuses, methods and compositions according to the present invention can be used sequentially or simultaneously in combination as monitoring determines to be effective for promoting regeneration.
  • the apparatuses, compositions and methods selectively kill partially and/or non-functional cells versus functional cells of the same cell type to the extent that, upon removal of the killed cells by disintegration or scavenging, functional cells replace them.
  • the cell killing apparatus, compositions and methods according to the present invention must preferentially preserve proliferating, functional cells and must be of a degree that avoids excessive inflammatory responses.
  • Evaluation of improvement or maintenance of a desired result can be used to direct the frequency of reapplication of the apparatus, compositions and methods according to the present invention.
  • the application and reapplication can be determined with the goal of gradual improvement to avoid overwhelming natural mechanisms, such as removal of cells/debris by scavenging cells.
  • the FIGURE illustrates apparatus according to the present invention.
  • Proliferating cells include both cells that are dividing and cells, such as stem cells, that divide normally when stimulated to do so.
  • stem cells participate in mundane tissue replacement, injury can also be an occasion for release of a factor or factors to stimulate stem cell proliferation and differentiation.
  • Stem cells give rise to cells which heal the injury, for example, healing a cut in an epithelium.
  • stem cell division and differentiation would be abnormal, even tumorigenic, in the presence of a normal complement of cells. Accordingly, there are mechanisms to prevent excessive proliferation. For example, the presence of a cell at a location in an epithelium prevents replacement at that position.
  • An example of this sort of phenomenon is contact inhibition where cells cease proliferating when they come in contact with other cells.
  • the phenomenon can be generalized to a rule that, to facilitate stem cell proliferation and differentiation for regeneration of cells at a location, there can not be a cell or structure at the location in the tissue.
  • the human body includes cells for tearing down a structure, such as osteoclasts in bone, as well as cells for building up a structure, such as osteoblasts in bone. It is the balance between the activities of the two types of cells that determines the extent of the resulting structure. To the extent that any intrinsic mechanisms do not remove cells/structure for periodic renewal, the present invention provides for removal to promote regeneration.
  • the cell at the location that inhibits stem cell action can be fully functional, partially functional, or non-functional.
  • Dead cells can be removed by scavenging macrophages, thus allowing for replacement, but a malfunctioning cell may remain despite deleterious effects on the subject (i.e., the organism of which they are a part).
  • a partially or non-functional cell i.e. a malfunctioning cell, can not be apoptotic, and, thus, can not stimulate clearance by macrophages on its own.
  • Such malfunctioning cells are killed according to the present invention for removal by the body's natural processes.
  • Therapeutic killing of cells in cancer therapy is targeted against proliferating cells, the exact opposite of the present invention.
  • action against cancer is provided by stimulating proliferation of stem cells so that error-correcting mechanisms that function during cell division can correct mutations that otherwise might accumulate in a non-dividing cell.
  • partially or non-functional cells according to the present invention can fail to be fully functional due to damage, such as free radical damage, or cross-linkage as a result of reaction with sugars, i.e. glycation.
  • Damage such as free radical damage, or cross-linkage as a result of reaction with sugars, i.e. glycation.
  • Cells that are partially or non-functional due to a genetic makeup that is shared by stem cells of a subject can be replaced by exogenous stem cells having a fully functional genetic makeup.
  • Non-cellular material such as scar tissue, can block such regeneration. This can explain failures in regeneration and in stem cell transplantation.
  • non-cellular blocking structures can be removed according to the present invention.
  • regenerative cells such as stem cells
  • transplantation With removal of blocking cellular and/or non-cellular materials, appropriate regenerative cells, such as stem cells, are retained or supplemented by transplantation in order to permit regeneration.
  • “Fully functional” is defined as the degree of a specified function for a particular cell type exhibited by an available progeny of a stem cell in a subject with or without stem cell transplantation, whichever is greater.
  • Effector 10 is a device for killing cells. Effector 10 can be, without limitation, ultrasound equipment or a device for antibody administration, such as a drip apparatus.
  • Control 20 is a device for regulating the operation of effector 10 according to preset parameters and/or as modified to ensure safety or effectiveness. Without limitation, control 20 can be a control panel of effector 10 .
  • Monitor 30 provides information regarding the degree of inflammatory response and/or other important factors in the condition of the subject to which effector 10 is applied. Information from monitor 30 can be used to adjust control 20 and thereby to adjust or change the operation of effector 10 . Monitor 30 can be, without limitation, a thermometer connected to control 20 .
  • a technique according to the present invention is selected to preferentially kill partially functional or nonfunctional cells or to remove non-cellular compositions, as opposed to indiscriminate killing, which has as great an effect on functional cells.
  • a technique may be selected according to the present invention by exposing functional and partially functional and/or non-functional cells to the technique and choosing concentrations, intensities and characteristics such as wavelength, frequency, wave shape, continuity and treatment duration.
  • concentrations, intensities and characteristics such as wavelength, frequency, wave shape, continuity and treatment duration.
  • the technique to be applied to a particular subject can be chosen on the basis of identifying an acceptable selectivity for partially functional and/or non-functional cells versus functional cells.
  • selection methods and criteria are readily available to those skilled in the art. Such selection methods are routinely applied by those of skill in the relevant arts to select laser treatment levels for removing blemishes, treating cancers by radiation therapy, selecting monoclonal antibodies, selecting toxins to be used therapeutically, and selecting ultrasound properties for therapy, for example. According to the present invention, selected techniques discriminate functional versus non-functional and/or partially functional cells of the same cell type as the functional cells.
  • Techniques that act upon differences between functional and partially or non-functional cells can be based upon cellular properties associated with dysfunction, such as cross-linking, membrane stiffness and brown coloration associated with lipofuscin in aged or senescent cells as opposed to nascent, dividing or functional cells.
  • Techniques such as ultrasound, targeted to harmonic frequencies of cross-linked cell membranes or components, can be used according to the present invention.
  • techniques such as lasers or intense light of a wavelength preferentially absorbed by partially functional or non-functional cells can be used according to the present invention.
  • Techniques according to the present invention can be used to localize therapy where needed. Localization can be accomplished by, without limitation, computer assisted tomography, magnetic resonance imaging, and positron emission tomography. Most preferably, techniques according to the present invention can be applied to the whole organism without the need for localization.
  • the techniques can be applied periodically, particularly at a low intensity or concentration, to maintain or increase a positive balance between functional versus partially or non-functional cells. Gradual versus precipitate cell killing can aid in avoiding toxic effects from high levels of cellular breakdown products and/or deleterious effects of an inflammatory response.
  • non-therapeutic, non-human and industrial applications be included within the scope of the present invention.
  • Cosmetic applications, diagnostic applications and veterinary applications are also contemplated.
  • Repeatedly practicing the method according to the present invention at a low level can be coupled with monitoring to determine the degree of improvement as a diagnostic measure of the component of a condition due to damaged cells versus genetic factors.
  • destruction of blocking cells can permit the resulting dead cells and debris to be washed away. In this way, productivity of cell and tissue cultures can be increased by increasing the relative proportion of productive cells versus non-productive cells.
  • glycation end-products crosslinks created by sugars bonded to proteins, are selected as indicia of an accumulation of cellular damage correlated with partial- or non-functionality.
  • Antibodies against such glycation end-products can be raised according to methods well known to those skilled in the art (e.g. Abed et al., U.S. Pat. No. 6,380,165; Bucala, U.S. Pat. No. 5,702,704) and humanized monoclonal antibodies retaining constant regions which permit destruction of targeted cells by the immune system can be produced for injection, also according to well known methods (e.g. Basi et al., U.S. Pat. No. 7,256,273).
  • Antibodies can be screened for effectiveness according to the present invention by labeling them and applying them separately to untreated cells versus cells incubated with a sugar such as ribose used to induce formation of glycation end-products. Binding of the antibodies to a higher degree to the cells previously incubated with sugar as opposed to the cells not treated with sugar indicates preferential effect against the selected target.
  • a sugar such as ribose used to induce formation of glycation end-products.
  • Antibodies produced as described above can be administered to a subject intravenously with monitoring to determine that inflammatory responses such as fever or swelling do not exceed limits well known to be safe. This process can be repeated at intervals to maintain a level of regeneration. The process can be focused to remove partially- and/or non-functional cells a particular location (e.g. where stem cell transplantation is targeted).
  • Evaluation of improvement or maintenance of a desired result can be used to direct the frequency of reapplication of the antibodies according to the present invention.
  • the application and reapplication can be determined with the goal of gradual improvement to avoid overwhelming natural mechanisms, such as removal of cells/debris by scavenging cells.
  • glycation end-products are selected as indicia of an accumulation of cellular damage correlated with partial- or non-functionality. This crosslinking manifests itself in a stiffening of the cells. Those in the art understand stiffness to distinguish types of proliferating versus non-proliferating cells (e.g. Kas et al., U.S. Pat. No. 6,067,859).
  • Ultrasound apparatus can be used according to practices well known to those skilled in the art to destroy cells by vibrational techniques (e.g. Chapelon et al., U.S. Pat. No. 5,601,526).
  • Ultrasound parameters e.g. frequency, power, and pulsation
  • Vibrational versus thermal destruction by ultrasound is preferred according to the present invention. Parameters selected for preferential destruction of sugar-treated cells as opposed to the cells not previously treated with sugar indicates preferential effect against the selected target.
  • Ultrasound as described above can be applied to a subject with monitoring to determine that inflammatory responses such as fever or swelling do not exceed limits well known to be safe. This process can be repeated at intervals to maintain a level of regeneration. The process can be focused to remove partially- and/or non-functional cells a particular location (e.g. where stem cell transplantation is targeted).
  • Evaluation of improvement or maintenance of a desired result can be used to direct the frequency of reapplication of ultrasound according to the present invention.
  • the application and reapplication can be determined with the goal of gradual improvement to avoid overwhelming natural mechanisms, such as removal of cells/debris by scavenging cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
US12/994,421 2008-05-23 2009-05-22 Methods, compositions and apparatuses for facilitating regeneration Abandoned US20110105961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/994,421 US20110105961A1 (en) 2008-05-23 2009-05-22 Methods, compositions and apparatuses for facilitating regeneration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5584608P 2008-05-23 2008-05-23
US12/994,421 US20110105961A1 (en) 2008-05-23 2009-05-22 Methods, compositions and apparatuses for facilitating regeneration
PCT/US2009/044951 WO2009143411A2 (en) 2008-05-23 2009-05-22 Methods, compositions and apparatus for facilitating regeneration

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/044951 A-371-Of-International WO2009143411A2 (en) 2008-05-23 2009-05-22 Methods, compositions and apparatus for facilitating regeneration

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/332,976 Continuation US9161810B2 (en) 2008-05-23 2011-12-21 Methods, compositions and apparatuses for facilitating regeneration
US14/932,200 Continuation US20180111982A2 (en) 2008-05-23 2015-11-04 Methods, compositions and apparatuses for facilitating regeneration

Publications (1)

Publication Number Publication Date
US20110105961A1 true US20110105961A1 (en) 2011-05-05

Family

ID=41340916

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/994,421 Abandoned US20110105961A1 (en) 2008-05-23 2009-05-22 Methods, compositions and apparatuses for facilitating regeneration
US13/332,976 Active 2031-08-17 US9161810B2 (en) 2008-05-23 2011-12-21 Methods, compositions and apparatuses for facilitating regeneration
US14/932,200 Abandoned US20180111982A2 (en) 2008-05-23 2015-11-04 Methods, compositions and apparatuses for facilitating regeneration
US15/720,912 Active US11261241B2 (en) 2008-05-23 2017-09-29 Methods, compositions and apparatuses for facilitating regeneration

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/332,976 Active 2031-08-17 US9161810B2 (en) 2008-05-23 2011-12-21 Methods, compositions and apparatuses for facilitating regeneration
US14/932,200 Abandoned US20180111982A2 (en) 2008-05-23 2015-11-04 Methods, compositions and apparatuses for facilitating regeneration
US15/720,912 Active US11261241B2 (en) 2008-05-23 2017-09-29 Methods, compositions and apparatuses for facilitating regeneration

Country Status (19)

Country Link
US (4) US20110105961A1 (es)
EP (3) EP2294178B1 (es)
JP (6) JP2011521009A (es)
KR (4) KR20110000585A (es)
CN (2) CN102037119B (es)
AU (1) AU2009248945B2 (es)
BR (1) BRPI0913047A2 (es)
CA (1) CA2724886C (es)
DK (1) DK2789684T3 (es)
ES (2) ES2499395T3 (es)
HK (2) HK1150628A1 (es)
HU (1) HUE031902T2 (es)
IL (3) IL209513A (es)
MX (2) MX342994B (es)
PL (1) PL2789684T3 (es)
PT (1) PT2789684T (es)
RU (2) RU2553225C2 (es)
WO (1) WO2009143411A2 (es)
ZA (1) ZA201008209B (es)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721571B2 (en) 2010-11-22 2014-05-13 Siwa Corporation Selective removal of cells having accumulated agents
US9161810B2 (en) 2008-05-23 2015-10-20 Siwa Corporation Methods, compositions and apparatuses for facilitating regeneration
US9649376B2 (en) 2010-09-27 2017-05-16 Siwa Corporation Selective removal of age-modified cells for treatment of atherosclerosis
US9993535B2 (en) 2014-12-18 2018-06-12 Siwa Corporation Method and composition for treating sarcopenia
US10358502B2 (en) 2014-12-18 2019-07-23 Siwa Corporation Product and method for treating sarcopenia
US10584180B2 (en) 2014-09-19 2020-03-10 Siwa Corporation Anti-AGE antibodies for treating inflammation and auto-immune disorders
US10858449B1 (en) 2017-01-06 2020-12-08 Siwa Corporation Methods and compositions for treating osteoarthritis
US10919957B2 (en) 2017-04-13 2021-02-16 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
US10925937B1 (en) 2017-01-06 2021-02-23 Siwa Corporation Vaccines for use in treating juvenile disorders associated with inflammation
US10961321B1 (en) 2017-01-06 2021-03-30 Siwa Corporation Methods and compositions for treating pain associated with inflammation
US10995151B1 (en) 2017-01-06 2021-05-04 Siwa Corporation Methods and compositions for treating disease-related cachexia
US11213585B2 (en) 2016-06-23 2022-01-04 Siwa Corporation Vaccines for use in treating various diseases and disorders
US11518801B1 (en) 2017-12-22 2022-12-06 Siwa Corporation Methods and compositions for treating diabetes and diabetic complications
US11833202B2 (en) 2016-02-19 2023-12-05 Siwa Corporation Method and composition for treating cancer, killing metastatic cancer cells and preventing cancer metastasis using antibody to advanced glycation end products (AGE)
US11958900B2 (en) 2016-04-15 2024-04-16 Siwa Corporation Anti-age antibodies for treating neurodegenerative disorders
US12134660B2 (en) 2020-01-31 2024-11-05 Siwa Corporation Anti-age antibodies for treating inflammation and auto-immune disorders

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140189897A1 (en) 2011-06-21 2014-07-03 Mayo Foundation For Medical Education And Research Transgenic animals capable of being induced to delete senescent cells
CN104125836A (zh) 2011-12-13 2014-10-29 巴克老龄化研究所 改善医疗治疗的方法
US20150064137A1 (en) 2012-04-17 2015-03-05 Kythera Biopharmaceuticals, Inc. Use of engineered viruses to specifically kill senescent cells
US9901081B2 (en) 2012-08-23 2018-02-27 Buck Institute For Research On Aging Transgenic mouse for determining the role of senescent cells in cancer
US9901080B2 (en) 2012-08-23 2018-02-27 Buck Institute For Research On Aging Transgenic mouse having a transgene that converts a prodrug into a cytotoxic compound in senescent cells
WO2014089124A1 (en) 2012-12-03 2014-06-12 Cenexys, Inc. Immunogenic compositions for inducing an immune response for elimination of senescent cells
BR112015024605A2 (pt) 2013-03-24 2017-07-18 Oisin Biotechnologies sistemas e métodos para a produção visada de proteína terapêutica dentro de célula alvo
US20170216286A1 (en) 2014-01-28 2017-08-03 Mayo Foundation For Medical Education And Research Killing senescent cells and treating senescence-associated conditions using a src inhibitor and a flavonoid
US10328058B2 (en) 2014-01-28 2019-06-25 Mayo Foundation For Medical Education And Research Treating atherosclerosis by removing senescent foam cell macrophages from atherosclerotic plaques
WO2015116740A1 (en) 2014-01-28 2015-08-06 Buck Institute For Research On Aging Methods and compositions for killing senescent cells and for treating senescence-associated diseases and disorders
US10889634B2 (en) 2015-10-13 2021-01-12 Siwa Corporation Anti-age antibodies and methods of use thereof
BR112018007422A2 (pt) 2015-10-13 2018-10-30 Siwa Corp anticorpos anti-age e métodos de uso dos mesmos
CA3047140A1 (en) 2017-01-09 2018-07-12 Oisin Biotechnologies Constructs for expression of therapeutic proteins in target cells
KR20240006702A (ko) 2017-05-04 2024-01-15 시와 코퍼레이션 진단용 최종 당화 산물 항체
CN112312918A (zh) 2018-04-18 2021-02-02 奥依信生物技术公司 促融合脂质纳米粒和制备其的方法以及其用于靶细胞特异性产生治疗蛋白和治疗与靶细胞有关的疾病、病况或障碍的用途
WO2020023532A1 (en) 2018-07-23 2020-01-30 Siwa Corporation Methods and compositions for treating chronic effects of radiation and chemical exposure
WO2020041625A1 (en) 2018-08-23 2020-02-27 Siwa Corporation Anti carboxymethyl lysine antibodies and ultrasound for removing age-modified cells
KR20210101481A (ko) * 2020-02-10 2021-08-19 한국과학기술연구원 초음파 출력부를 포함하는 노화세포 제거 장치
AU2021264007A1 (en) 2020-05-01 2022-12-08 Siwa Corporation Methods of treating infections
WO2022093195A1 (en) 2020-10-27 2022-05-05 Siwa Corporation Methods and compositions for treating osteoarthritis using anti-age antibodies or age antigens
WO2022125776A2 (en) 2020-12-09 2022-06-16 Siwa Corporation Methods and compositions for treating kidney diseases
KR102650316B1 (ko) * 2021-06-18 2024-03-25 재단법인대구경북과학기술원 초음파 자극이 가능한 자성 패치 및 그 제작 방법
WO2023023654A1 (en) 2021-08-20 2023-02-23 Siwa Corporation Methods and compositions for treating fibrotic diseases
WO2024102157A1 (en) 2022-11-09 2024-05-16 Siwa Corporation Methods and compositions for treating diabetes and diabetic complications

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217344A (en) * 1976-06-23 1980-08-12 L'oreal Compositions containing aqueous dispersions of lipid spheres
US4900747A (en) * 1984-03-19 1990-02-13 The Rockefeller University Method and agents for removing advanced glycosylation endproducts
US4911928A (en) * 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US4917951A (en) * 1987-07-28 1990-04-17 Micro-Pak, Inc. Lipid vesicles formed of surfactants and steroids
US5494791A (en) * 1992-06-26 1996-02-27 Exocell, Inc. Monoclonal antibodies against glycated low density lipoprotein
US5518720A (en) * 1992-12-30 1996-05-21 Exocell, Inc. Treatment of complications of diabetes with substances reactive with the fructosyl-lysine structure in glycated albumin
US5601526A (en) * 1991-12-20 1997-02-11 Technomed Medical Systems Ultrasound therapy apparatus delivering ultrasound waves having thermal and cavitation effects
US5620479A (en) * 1992-11-13 1997-04-15 The Regents Of The University Of California Method and apparatus for thermal therapy of tumors
US5702704A (en) * 1991-12-20 1997-12-30 The Rockefeller University Antibodies to in vivo advanced glycosylation endproducts
US5766590A (en) * 1994-12-30 1998-06-16 Alteon Inc. Therapeutic methods and pharmaceutical compositions
US5817771A (en) * 1993-04-28 1998-10-06 Worcester Foundation For Experimental Biology Cell-targeted lytic pore-forming agents
US5984882A (en) * 1996-08-19 1999-11-16 Angiosonics Inc. Methods for prevention and treatment of cancer and other proliferative diseases with ultrasonic energy
US6067859A (en) * 1999-03-04 2000-05-30 The Board Of Regents, The University Of Texas System Optical stretcher
US6176842B1 (en) * 1995-03-08 2001-01-23 Ekos Corporation Ultrasound assembly for use with light activated drugs
US6245318B1 (en) * 1997-05-27 2001-06-12 Mallinckrodt Inc. Selectively binding ultrasound contrast agents
US6309355B1 (en) * 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US6380165B1 (en) * 1997-09-19 2002-04-30 The Picower Institute For Medical Research Immunological advanced glycation endproduct crosslink
US6387373B1 (en) * 1993-01-15 2002-05-14 Novavax, Inc. Vaccines containing paucilsmellar lipid vesicles as immunological adjuvants
US20020193784A1 (en) * 2001-03-07 2002-12-19 Mchale Anthony Patrick Ultrasound therapy for selective cell ablation
US20030170173A1 (en) * 2000-05-23 2003-09-11 Jo Klaveness Contrast agents
US20030229283A1 (en) * 2000-11-17 2003-12-11 Craig Roger Kingdon Ultrasound therapy
US6670136B2 (en) * 1998-10-06 2003-12-30 The Trustees Of Columbia University In The City Of New York Extracellular novel RAGE binding protein (EN-RAGE) and uses thereof
US6676963B1 (en) * 2000-10-27 2004-01-13 Barnes-Jewish Hospital Ligand-targeted emulsions carrying bioactive agents
US20040039416A1 (en) * 2000-08-25 2004-02-26 Gunnar Myhr Apparatus for selective sell and virus destruction within a living organism
US20040141922A1 (en) * 1996-10-28 2004-07-22 Nycomed Imaging As Diagnostic/therapeutic agents
US20040208826A1 (en) * 1990-04-02 2004-10-21 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US6818215B2 (en) * 1991-12-16 2004-11-16 James R. Smith Antibodies to senescent cell-derived inhibiters of DNA synthesis
US20050084538A1 (en) * 2003-08-27 2005-04-21 The Regents Of The University Of California, A California Corporation Ultrasonic concentration of drug delivery capsules
US20050283098A1 (en) * 1998-02-06 2005-12-22 Conston Stanley R Method for ultrasound triggered drug delivery using hollow microbubbles with controlled fragility
US20060078501A1 (en) * 2004-01-20 2006-04-13 Goertz David E High frequency ultrasound imaging using contrast agents
US7033574B1 (en) * 1990-04-02 2006-04-25 Bracco International B.V. Stable microbubbles suspensions injectable into living organisms
US20060188883A1 (en) * 2003-03-08 2006-08-24 Murray Graeme I Markers for colorectal cancer
US7101838B2 (en) * 1997-08-05 2006-09-05 The Trustees Of Columbia University In The City Of New York Method to prevent accelerated atherosclerosis using (sRAGE) soluble receptor for advanced glycation endproducts
US20070059247A1 (en) * 2005-08-30 2007-03-15 Lindner Jonathan R Deposit contrast agents and related methods thereof
US20070065415A1 (en) * 2005-09-16 2007-03-22 Kleinsek Donald A Compositions and methods for the augmentation and repair of defects in tissue
US20070083120A1 (en) * 2005-09-22 2007-04-12 Cain Charles A Pulsed cavitational ultrasound therapy
US20070129633A1 (en) * 2005-11-23 2007-06-07 Warren Lee Ablation array having independently activated ablation elements
US20070128117A1 (en) * 2003-02-04 2007-06-07 Bracco International B.V. Ultrasound contrast agents and process for the preparation thereof
US7256273B2 (en) * 2002-03-12 2007-08-14 Elan Pharma International Limited Humanized antibodies that recognize beta amyloid peptide
US20080051680A1 (en) * 2004-10-11 2008-02-28 Peter Luebcke Apparatus for Treatment of Dermatological Conditions
US20080063603A1 (en) * 1990-04-02 2008-03-13 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US7367988B1 (en) * 2000-02-02 2008-05-06 The Catholic University Of America Use of electromagnetic fields in cancer and other therapies
US20080139942A1 (en) * 2005-03-03 2008-06-12 Emmanuel Gaud Medical Imaging System Based on a Targeted Contrast Agent
US20080160506A1 (en) * 2000-10-09 2008-07-03 Yung-Hsiang Liu Immunological analytical method and device for the determination of advanced glycosylation end products (AGEs)
US20090306552A1 (en) * 2008-06-04 2009-12-10 Japan Health Sciences Foundation Ultrasonic medical apparatus
US20100028359A1 (en) * 2008-05-09 2010-02-04 Abbott Gmbh & Co. Kg Antibodies to receptor of advanced glycation end products (rage) and uses thereof
US7751057B2 (en) * 2008-01-18 2010-07-06 The Board Of Trustees Of The University Of Illinois Magnetomotive optical coherence tomography
US20100226932A1 (en) * 2006-02-22 2010-09-09 Novavax, Inc. Adjuvant and Vaccine Compositions
US20120130287A1 (en) * 2010-11-22 2012-05-24 Lewis Gruber Selective removal of cells having accumulated agents
US20120183534A1 (en) * 2008-05-23 2012-07-19 Lewis Gruber Methods, compositions and apparatuses for facilitating regeneration
US8343420B2 (en) * 2009-09-17 2013-01-01 Sanuwave, Inc. Methods and devices for cleaning and sterilization with shock waves
US20130243785A1 (en) * 2010-09-27 2013-09-19 Lewis Gruber Selective removal of age-modified cells for treatment of atherosclerosis

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811075A (en) 1984-03-19 1998-09-22 The Rockefeller University Method and agents for removing advanced glycosylation endproducts
AU600306B2 (en) * 1986-09-12 1990-08-09 Rockefeller University, The Methods and agents for removing advanced glycosylation endproducts
US4965288A (en) * 1988-02-25 1990-10-23 Merrell Dow Pharmaceuticals Inc. Inhibitors of lysyl oxidase
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
JPH09511492A (ja) 1994-02-03 1997-11-18 ザ ピコワー インスティテュート フォア メディカル リサーチ アミロイドーシスの前進性グリコシル化終末産物仲介モジュレーション用組成物及び方法
US6410598B1 (en) 1994-02-03 2002-06-25 Michael P. Vitek Compositions and methods for advanced glycosylation endproduct-mediated modulation of amyloidosis
JP2002514888A (ja) * 1994-12-30 2002-05-21 アルテオン インコーポレイテッド 生物試料における進行性グリコシル化終末産物に特異的なモノクローナル抗体
WO1997007803A1 (en) 1995-08-25 1997-03-06 Case Western Reserve University Process for detecting pentosidine and for assessing the biological age of a biological sample
JP3579549B2 (ja) 1995-10-24 2004-10-20 株式会社トクヤマ 糖尿病または糖尿病合併症用マーカーとしての使用
US6090382A (en) 1996-02-09 2000-07-18 Basf Aktiengesellschaft Human antibodies that bind human TNFα
US5664570A (en) 1996-02-20 1997-09-09 Svc Apparatus for applying high-intensity ultrasonic waves to a target volume within a human or animal body
US5908925A (en) * 1996-06-27 1999-06-01 Exocell, Inc. Genetically engineered immunoglobulins with specificity for glycated albumin
US7258857B2 (en) 1996-11-22 2007-08-21 The Trustees Of Columbia University In The City Of New York Rage-related methods for treating inflammation
BR9811865A (pt) * 1997-08-08 2000-08-15 Univ Washington Isolamento de um novo gene de fator de senescência, p23
JP4016304B2 (ja) 1998-02-26 2007-12-05 日本油脂株式会社 モノクローナル抗体、ハイブリッド細胞、およびモノクローナル抗体の製造方法
JP2002517224A (ja) * 1998-06-09 2002-06-18 アルテオン インコーポレーテッド 生体サンプル内におけるグアニジノ基由来進行グリコシル化最終生成物に特異的なモノクローナル抗体
US6753150B2 (en) 1998-10-05 2004-06-22 The Trustees Of Columbia University In The City Of New York Method for determining whether a compound is capable of inhibiting the interaction of a peptide with rage
JP2002538170A (ja) 1999-03-02 2002-11-12 セントコール, インコーポレイテッド 喘息の治療における抗−TNFα抗体
WO2001000245A2 (en) 1999-06-25 2001-01-04 Genentech, Inc. HUMANIZED ANTI-ErbB2 ANTIBODIES AND TREATMENT WITH ANTI-ErbB2 ANTIBODIES
WO2001012598A2 (en) * 1999-08-13 2001-02-22 The Trustees Of Columbia University In The City Of New York METHODS OF INHIBITING BINDING OF β-SHEET FIBRIL TO RAGE AND CONSEQUENCES THEREOF
EP1219639A4 (en) 1999-09-08 2009-03-25 Toray Industries CIPO - Patent
US7347855B2 (en) 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
BR0116707A (pt) 2001-01-03 2005-08-16 Ultrashape Inc Contorno de corpo ultra-sÈnico não-evasivo
DE60202008T2 (de) * 2001-03-22 2005-12-01 Roche Diagnostics Gmbh Verfahren zum Auffinden von Reagenzien und Festphasenkomponenten in spezifischen Bindungsassays, frei von fortgeschrittenen Glykosylierungsendprodukten
WO2003008446A1 (fr) 2001-07-19 2003-01-30 Mitsubishi Pharma Corporation Polypeptides se rapportant au transfert de signaux de recepteur de produits terminaux a glycation avancee
JP4012722B2 (ja) 2001-11-22 2007-11-21 株式会社トランスジェニック カルボキシメチル化ペプチドに対する抗体
CA2492964C (en) 2002-07-24 2012-07-17 Qlt Inc. Pyrazolylbenzothiazole derivatives and their use as therapeutic agents
CN1774445A (zh) 2002-08-16 2006-05-17 惠氏公司 用于治疗rage相关病症的组合物和方法
WO2004076677A2 (en) 2003-02-26 2004-09-10 Institute For Research In Biomedicine Monoclonal antibody production by ebv transformation of b cells
JP2007500521A (ja) * 2003-07-31 2007-01-18 ウッドウェルディング・アクチェンゲゼルシャフト 傷口面に組織再生を促進する方法と装置
EP1753861A4 (en) * 2004-02-17 2010-03-10 Dynamis Therapeutics Inc FRUCTOSAMINE-3-KINASE AND THE FORMATION OF COLLAGEN AND ELASTIN
WO2006012415A2 (en) 2004-07-20 2006-02-02 Critical Therapeutics, Inc. Rage protein derivatives
NZ552128A (en) 2004-08-03 2009-09-25 Transtech Pharma Inc Rage fusion proteins without Fc hinge region and methods of use
GT200600031A (es) 2005-01-28 2006-08-29 Formulacion anticuerpo anti a beta
JP2006249015A (ja) * 2005-03-11 2006-09-21 Mochida Pharmaceut Co Ltd 細胞老化抑制剤
CN101120019A (zh) 2005-04-05 2008-02-06 株式会社Jms 对3,4-DGE来源的AGEs特异性反应的抗体
US20070225242A1 (en) * 2005-06-21 2007-09-27 The Board Of Trustees Of The Leland Stanford Junior University Method and composition for treating and preventing tumor metastasis in vivo
US20070078290A1 (en) * 2005-09-30 2007-04-05 Esenaliev Rinat O Ultrasound-based treatment methods for therapeutic treatment of skin and subcutaneous tissues
JP4779115B2 (ja) 2005-12-16 2011-09-28 国立大学法人東北大学 早期肺癌の術後予後検査方法
JP2009528359A (ja) 2006-02-28 2009-08-06 エラン ファーマシューティカルズ,インコーポレイテッド ナタリズマブを用いて炎症性疾患および自己免疫性疾患を治療する方法
TW201531484A (zh) 2007-05-21 2015-08-16 Alder Biopharmaceuticals Inc 抗TNF-α之抗體及其用途
US20100249038A1 (en) 2007-06-12 2010-09-30 Board Of Regents, University Of Texas System Antagonists of the receptor for advanced glycation end-products (rage)
ES2564634T3 (es) 2007-06-14 2016-03-28 Galactica Pharmaceuticals, Inc. Proteínas de fusión de RAGE
JP2007277263A (ja) 2007-07-13 2007-10-25 Transgenic Inc カルボキシメチル化タンパク質に対する抗体
US20120156134A1 (en) * 2007-12-20 2012-06-21 Shayne Squires Compositions and methods for detecting or eliminating senescent cells to diagnose or treat disease
DE102008009461A1 (de) 2008-02-15 2009-08-20 Beiersdorf Ag Verfahren zur Reduzierung der Zeichen der Hautalterung
WO2010005531A2 (en) 2008-06-30 2010-01-14 The Johns Hopkins University Methods for the detection of advanced glycation endproducts and markers for disease
US9155805B2 (en) 2009-02-20 2015-10-13 Perseus Proteomics Inc. Monoclonal antibody, and use thereof
US20110070227A1 (en) 2009-09-18 2011-03-24 Anna-Marie Novotney-Barry Treatment of Autoimmune and Inflammatory Diseases
US20130058921A1 (en) 2009-10-30 2013-03-07 Frits VAN RHEE Use of autologous effector cells and antibodies for treatment of multiple myeloma
WO2011101039A1 (en) 2010-02-22 2011-08-25 Universite Pierre Et Marie Curie (Paris 6) Apparatus for the treatment of brain affections and method implementing thereof
KR101351181B1 (ko) 2010-05-11 2014-01-14 가천대학교 산학협력단 단핵식세포계 세포 내에서 age-알부민의 합성 저해 또는 분비 저해에 의한 세포사 유도 저해 방법
WO2012135616A1 (en) 2011-03-31 2012-10-04 Siwa Corporation Vaccination against advanced glycation end-products
UA112434C2 (uk) 2011-05-27 2016-09-12 Ґлаксо Ґруп Лімітед Антигензв'язувальний білок, який специфічно зв'язується з всма
WO2013009784A2 (en) 2011-07-10 2013-01-17 Guided Therapy Systems, Llc Systems and method for accelerating healing of implanted material and/or native tissue
US8954155B2 (en) 2011-09-19 2015-02-10 Biotalk Technologies Inc Apparatus and method for rejuvenating skin
WO2013041707A1 (en) 2011-09-23 2013-03-28 Julius-Maximilians-Universität Würzburg Peptide or arrangement of peptides forming a staphylococcus aureus epitope binding site
US20140322216A1 (en) 2011-11-08 2014-10-30 The Trustees Of The University Of Pennsylvania Glypican-3-specific antibody and uses thereof
KR101939401B1 (ko) 2011-11-10 2019-01-16 가천대학교 산학협력단 단핵식세포계 세포의 age-알부민 합성 또는 분비 저해제를 유효성분으로 포함하는 허혈성 심장질환 예방 또는 치료용 조성물
WO2013123152A2 (en) 2012-02-17 2013-08-22 Seattle Genetics, Inc. ANTIBODIES TO INTEGRIN αVβ6 AND USE OF SAME TO TREAT CANCER
TWI557112B (zh) 2012-03-05 2016-11-11 百靈佳殷格翰國際股份有限公司 β-分泌酶抑制劑
US20130288980A1 (en) 2012-04-02 2013-10-31 Buck Institute For Research On Aging Targeting senescent and cancer cells for selective killing by interference with foxo4
US10379026B2 (en) 2012-08-29 2019-08-13 Inguran, Llc Cell processing using magnetic particles
KR101520336B1 (ko) 2012-11-30 2015-05-14 전남대학교산학협력단 패혈증 비브리오균의 편모 구성성분인 플라젤린과 병원체의 항원 단백을 융합시킨 재조합 단백을 포함하는 노화 예방, 개선 또는 치료용 조성물
EP2742935A1 (en) 2012-12-14 2014-06-18 Tissue Med Biosciences Forschungs- und Entwicklungsgesellschaft mbH SERF2 for the treatment of atrophy and for increasing cell growth
WO2014136114A1 (en) 2013-03-06 2014-09-12 Protalix Ltd. TNF alpha INHIBITOR POLYPEPTIDES, POLYNUCLEOTIDES ENCODING SAME, CELLS EXPRESSING SAME AND METHODS OF PRODUCING SAME
US20140257262A1 (en) 2013-03-11 2014-09-11 Alexandre Carpentier Interstitial ultrasonic disposable applicator and method for tissue thermal conformal volume ablation and monitoring the same
EP3666795A1 (en) 2013-03-12 2020-06-17 Molecular Templates, Inc. Cytotoxic proteins comprising cell-targeting binding regions and shiga toxin a subunit regions for selective killing of specific cell types
CN107106700B (zh) 2013-12-16 2020-10-30 基因泰克公司 肽模拟化合物及其抗体-药物缀合物
EP3087101B1 (en) 2013-12-20 2024-06-05 Novartis AG Regulatable chimeric antigen receptor
EP3094350B1 (en) 2014-01-15 2020-03-04 The U.S.A. as represented by the Secretary, Department of Health and Human Services Cartilage targeting agents and their use
US10099027B2 (en) 2014-01-24 2018-10-16 Cole Research & Design Oral suction device
US20170216286A1 (en) 2014-01-28 2017-08-03 Mayo Foundation For Medical Education And Research Killing senescent cells and treating senescence-associated conditions using a src inhibitor and a flavonoid
WO2015116740A1 (en) 2014-01-28 2015-08-06 Buck Institute For Research On Aging Methods and compositions for killing senescent cells and for treating senescence-associated diseases and disorders
DE102014107077B3 (de) 2014-05-20 2015-08-13 Ecs Engineered Control Systems Ag Schaltvorrichtung
US10238742B2 (en) 2014-06-25 2019-03-26 Yale University Cell penetrating nucleolytic antibody based cancer therapy
CA2961603C (en) 2014-09-19 2021-07-13 Siwa Corporation Anti-age antibodies for treating inflammation and auto-immune disorders
US20170240632A1 (en) 2014-10-16 2017-08-24 The Broad Institute Inc. Compositions and methods for identifying and treating cachexia or pre-cachexia
US9993535B2 (en) 2014-12-18 2018-06-12 Siwa Corporation Method and composition for treating sarcopenia
US10358502B2 (en) 2014-12-18 2019-07-23 Siwa Corporation Product and method for treating sarcopenia
US10889634B2 (en) 2015-10-13 2021-01-12 Siwa Corporation Anti-age antibodies and methods of use thereof
BR112018007422A2 (pt) 2015-10-13 2018-10-30 Siwa Corp anticorpos anti-age e métodos de uso dos mesmos
KR102503910B1 (ko) 2015-11-09 2023-02-27 삼성전자주식회사 기립 보조 방법 및 장치
EP3337829B1 (en) 2016-02-19 2020-01-08 Siwa Corporation Method and composition for treating cancer, killing metastatic cancer cells and preventing cancer metastasis using antibody to advanced glycation end products (age)
US10981021B2 (en) 2016-03-11 2021-04-20 Carthera Method for transiently disrupting a region of the blood-brain barrier of a human
KR20180133452A (ko) 2016-04-15 2018-12-14 시와 코퍼레이션 신경퇴행성 질환을 치료하기 위한 항-노화 항체
EP3475306A1 (en) 2016-06-23 2019-05-01 Siwa Corporation Vaccines for use in treating various diseases and disorders
US10995151B1 (en) 2017-01-06 2021-05-04 Siwa Corporation Methods and compositions for treating disease-related cachexia
US10858449B1 (en) * 2017-01-06 2020-12-08 Siwa Corporation Methods and compositions for treating osteoarthritis
US10961321B1 (en) 2017-01-06 2021-03-30 Siwa Corporation Methods and compositions for treating pain associated with inflammation
US10925937B1 (en) 2017-01-06 2021-02-23 Siwa Corporation Vaccines for use in treating juvenile disorders associated with inflammation
EP3609923A1 (en) 2017-04-13 2020-02-19 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
KR20240006702A (ko) 2017-05-04 2024-01-15 시와 코퍼레이션 진단용 최종 당화 산물 항체
WO2020023532A1 (en) 2018-07-23 2020-01-30 Siwa Corporation Methods and compositions for treating chronic effects of radiation and chemical exposure
CA3108885A1 (en) 2018-08-14 2020-02-20 Imel Biotherapeutics, Inc. Methods and compositions for treating mitochondrial disease or disorders and heteroplasmy
WO2020041625A1 (en) 2018-08-23 2020-02-27 Siwa Corporation Anti carboxymethyl lysine antibodies and ultrasound for removing age-modified cells
AU2021264007A1 (en) 2020-05-01 2022-12-08 Siwa Corporation Methods of treating infections
WO2021247397A2 (en) 2020-06-04 2021-12-09 Siwa Corporation Methods and compositions for enhancing the immune system

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217344A (en) * 1976-06-23 1980-08-12 L'oreal Compositions containing aqueous dispersions of lipid spheres
US4900747A (en) * 1984-03-19 1990-02-13 The Rockefeller University Method and agents for removing advanced glycosylation endproducts
US4911928A (en) * 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US4917951A (en) * 1987-07-28 1990-04-17 Micro-Pak, Inc. Lipid vesicles formed of surfactants and steroids
US20040208826A1 (en) * 1990-04-02 2004-10-21 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US20080063603A1 (en) * 1990-04-02 2008-03-13 Bracco International B.V. Ultrasound contrast agents and methods of making and using them
US7033574B1 (en) * 1990-04-02 2006-04-25 Bracco International B.V. Stable microbubbles suspensions injectable into living organisms
US6818215B2 (en) * 1991-12-16 2004-11-16 James R. Smith Antibodies to senescent cell-derived inhibiters of DNA synthesis
US5702704A (en) * 1991-12-20 1997-12-30 The Rockefeller University Antibodies to in vivo advanced glycosylation endproducts
US5601526A (en) * 1991-12-20 1997-02-11 Technomed Medical Systems Ultrasound therapy apparatus delivering ultrasound waves having thermal and cavitation effects
US5494791A (en) * 1992-06-26 1996-02-27 Exocell, Inc. Monoclonal antibodies against glycated low density lipoprotein
US5620479A (en) * 1992-11-13 1997-04-15 The Regents Of The University Of California Method and apparatus for thermal therapy of tumors
US5518720A (en) * 1992-12-30 1996-05-21 Exocell, Inc. Treatment of complications of diabetes with substances reactive with the fructosyl-lysine structure in glycated albumin
US6387373B1 (en) * 1993-01-15 2002-05-14 Novavax, Inc. Vaccines containing paucilsmellar lipid vesicles as immunological adjuvants
US5817771A (en) * 1993-04-28 1998-10-06 Worcester Foundation For Experimental Biology Cell-targeted lytic pore-forming agents
US5766590A (en) * 1994-12-30 1998-06-16 Alteon Inc. Therapeutic methods and pharmaceutical compositions
US20040229830A1 (en) * 1995-03-05 2004-11-18 Katsuro Tachibana Delivery of therapeutic compositions using ultrasound
US6176842B1 (en) * 1995-03-08 2001-01-23 Ekos Corporation Ultrasound assembly for use with light activated drugs
US5984882A (en) * 1996-08-19 1999-11-16 Angiosonics Inc. Methods for prevention and treatment of cancer and other proliferative diseases with ultrasonic energy
US20040141922A1 (en) * 1996-10-28 2004-07-22 Nycomed Imaging As Diagnostic/therapeutic agents
US6245318B1 (en) * 1997-05-27 2001-06-12 Mallinckrodt Inc. Selectively binding ultrasound contrast agents
US7101838B2 (en) * 1997-08-05 2006-09-05 The Trustees Of Columbia University In The City Of New York Method to prevent accelerated atherosclerosis using (sRAGE) soluble receptor for advanced glycation endproducts
US6380165B1 (en) * 1997-09-19 2002-04-30 The Picower Institute For Medical Research Immunological advanced glycation endproduct crosslink
US20050283098A1 (en) * 1998-02-06 2005-12-22 Conston Stanley R Method for ultrasound triggered drug delivery using hollow microbubbles with controlled fragility
US6670136B2 (en) * 1998-10-06 2003-12-30 The Trustees Of Columbia University In The City Of New York Extracellular novel RAGE binding protein (EN-RAGE) and uses thereof
US6309355B1 (en) * 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US6067859A (en) * 1999-03-04 2000-05-30 The Board Of Regents, The University Of Texas System Optical stretcher
US7367988B1 (en) * 2000-02-02 2008-05-06 The Catholic University Of America Use of electromagnetic fields in cancer and other therapies
US20030170173A1 (en) * 2000-05-23 2003-09-11 Jo Klaveness Contrast agents
US20040039416A1 (en) * 2000-08-25 2004-02-26 Gunnar Myhr Apparatus for selective sell and virus destruction within a living organism
US20080160506A1 (en) * 2000-10-09 2008-07-03 Yung-Hsiang Liu Immunological analytical method and device for the determination of advanced glycosylation end products (AGEs)
US6676963B1 (en) * 2000-10-27 2004-01-13 Barnes-Jewish Hospital Ligand-targeted emulsions carrying bioactive agents
US20030229283A1 (en) * 2000-11-17 2003-12-11 Craig Roger Kingdon Ultrasound therapy
US6821274B2 (en) * 2001-03-07 2004-11-23 Gendel Ltd. Ultrasound therapy for selective cell ablation
US20020193784A1 (en) * 2001-03-07 2002-12-19 Mchale Anthony Patrick Ultrasound therapy for selective cell ablation
US7256273B2 (en) * 2002-03-12 2007-08-14 Elan Pharma International Limited Humanized antibodies that recognize beta amyloid peptide
US20070128117A1 (en) * 2003-02-04 2007-06-07 Bracco International B.V. Ultrasound contrast agents and process for the preparation thereof
US20060188883A1 (en) * 2003-03-08 2006-08-24 Murray Graeme I Markers for colorectal cancer
US20050084538A1 (en) * 2003-08-27 2005-04-21 The Regents Of The University Of California, A California Corporation Ultrasonic concentration of drug delivery capsules
US7358226B2 (en) * 2003-08-27 2008-04-15 The Regents Of The University Of California Ultrasonic concentration of drug delivery capsules
US20060078501A1 (en) * 2004-01-20 2006-04-13 Goertz David E High frequency ultrasound imaging using contrast agents
US20080051680A1 (en) * 2004-10-11 2008-02-28 Peter Luebcke Apparatus for Treatment of Dermatological Conditions
US20080139942A1 (en) * 2005-03-03 2008-06-12 Emmanuel Gaud Medical Imaging System Based on a Targeted Contrast Agent
US20070059247A1 (en) * 2005-08-30 2007-03-15 Lindner Jonathan R Deposit contrast agents and related methods thereof
US20070065415A1 (en) * 2005-09-16 2007-03-22 Kleinsek Donald A Compositions and methods for the augmentation and repair of defects in tissue
US20070083120A1 (en) * 2005-09-22 2007-04-12 Cain Charles A Pulsed cavitational ultrasound therapy
US20090076390A1 (en) * 2005-11-23 2009-03-19 Warren Lee Integrated ultrasound imaging and ablation probe
US20070129633A1 (en) * 2005-11-23 2007-06-07 Warren Lee Ablation array having independently activated ablation elements
US20100226932A1 (en) * 2006-02-22 2010-09-09 Novavax, Inc. Adjuvant and Vaccine Compositions
US7751057B2 (en) * 2008-01-18 2010-07-06 The Board Of Trustees Of The University Of Illinois Magnetomotive optical coherence tomography
US20100028359A1 (en) * 2008-05-09 2010-02-04 Abbott Gmbh & Co. Kg Antibodies to receptor of advanced glycation end products (rage) and uses thereof
US20120183534A1 (en) * 2008-05-23 2012-07-19 Lewis Gruber Methods, compositions and apparatuses for facilitating regeneration
US20090306552A1 (en) * 2008-06-04 2009-12-10 Japan Health Sciences Foundation Ultrasonic medical apparatus
US8343420B2 (en) * 2009-09-17 2013-01-01 Sanuwave, Inc. Methods and devices for cleaning and sterilization with shock waves
US20130243785A1 (en) * 2010-09-27 2013-09-19 Lewis Gruber Selective removal of age-modified cells for treatment of atherosclerosis
US20120130287A1 (en) * 2010-11-22 2012-05-24 Lewis Gruber Selective removal of cells having accumulated agents
US8721571B2 (en) * 2010-11-22 2014-05-13 Siwa Corporation Selective removal of cells having accumulated agents

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALSUntangled No. 23: The Rife Machine and retroviruses, Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014; 15: 157-159 *
Campisi et al., Cellular senescence: when bad things happen to good cells, Nature Reviews: Molecular Cell Biology, Vol. 8, p. 729-749, September 2008 *
Lv, et al., Low-intensity Ultrasound Combined with 5-aminolevulinic Acid Administration in the Treatment of Human Tongue Squamous Carcinoma, Cell Physiol. Biochem. 2012; 30:321-333 *
Peppa et al., Glucose, Advanced Glycation End Products, and Diabetes Complications: What Is New and What Works, Clinical Diabetes October 2003 vol. 21 no. 4 186-187 *
Roylance, "MECHANICAL PROPERTIES OF MATERIALS" (2008), available at http://web.mit.edu/course/3/3.225/book.pdf *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9161810B2 (en) 2008-05-23 2015-10-20 Siwa Corporation Methods, compositions and apparatuses for facilitating regeneration
US11261241B2 (en) 2008-05-23 2022-03-01 Siwa Corporation Methods, compositions and apparatuses for facilitating regeneration
US9649376B2 (en) 2010-09-27 2017-05-16 Siwa Corporation Selective removal of age-modified cells for treatment of atherosclerosis
US10226531B2 (en) 2010-09-27 2019-03-12 Siwa Corporation Selective removal of age-modified cells for treatment of atherosclerosis
US8721571B2 (en) 2010-11-22 2014-05-13 Siwa Corporation Selective removal of cells having accumulated agents
US9320919B2 (en) 2010-11-22 2016-04-26 Siwa Corporation Selective removal of cells having accumulated agents
US20160101299A1 (en) * 2010-11-22 2016-04-14 Siwa Corporation Selective removal of cells having accumulated agents
US10960234B2 (en) * 2010-11-22 2021-03-30 Siwa Corporation Selective removal of cells having accumulated agents
US10584180B2 (en) 2014-09-19 2020-03-10 Siwa Corporation Anti-AGE antibodies for treating inflammation and auto-immune disorders
US9993535B2 (en) 2014-12-18 2018-06-12 Siwa Corporation Method and composition for treating sarcopenia
US10358502B2 (en) 2014-12-18 2019-07-23 Siwa Corporation Product and method for treating sarcopenia
US11872269B2 (en) 2014-12-18 2024-01-16 Siwa Corporation Method and composition for treating sarcopenia
US11873345B2 (en) 2014-12-18 2024-01-16 Siwa Corporation Product and method for treating sarcopenia
US11833202B2 (en) 2016-02-19 2023-12-05 Siwa Corporation Method and composition for treating cancer, killing metastatic cancer cells and preventing cancer metastasis using antibody to advanced glycation end products (AGE)
US11958900B2 (en) 2016-04-15 2024-04-16 Siwa Corporation Anti-age antibodies for treating neurodegenerative disorders
US11213585B2 (en) 2016-06-23 2022-01-04 Siwa Corporation Vaccines for use in treating various diseases and disorders
US10961321B1 (en) 2017-01-06 2021-03-30 Siwa Corporation Methods and compositions for treating pain associated with inflammation
US10995151B1 (en) 2017-01-06 2021-05-04 Siwa Corporation Methods and compositions for treating disease-related cachexia
US10925937B1 (en) 2017-01-06 2021-02-23 Siwa Corporation Vaccines for use in treating juvenile disorders associated with inflammation
US10858449B1 (en) 2017-01-06 2020-12-08 Siwa Corporation Methods and compositions for treating osteoarthritis
US11542324B2 (en) 2017-04-13 2023-01-03 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
US10919957B2 (en) 2017-04-13 2021-02-16 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
US11518801B1 (en) 2017-12-22 2022-12-06 Siwa Corporation Methods and compositions for treating diabetes and diabetic complications
US12134660B2 (en) 2020-01-31 2024-11-05 Siwa Corporation Anti-age antibodies for treating inflammation and auto-immune disorders

Also Published As

Publication number Publication date
MX2010012473A (es) 2011-02-23
EP3170888A1 (en) 2017-05-24
HK1200485A1 (en) 2015-08-07
KR20120127543A (ko) 2012-11-21
JP6637465B2 (ja) 2020-01-29
US20120183534A1 (en) 2012-07-19
MX342994B (es) 2016-10-21
IL248652A0 (en) 2016-12-29
IL209513A0 (en) 2011-01-31
AU2009248945A1 (en) 2009-11-26
KR20110000585A (ko) 2011-01-03
US20180111982A2 (en) 2018-04-26
RU2553225C2 (ru) 2015-06-10
WO2009143411A2 (en) 2009-11-26
US11261241B2 (en) 2022-03-01
KR20130132658A (ko) 2013-12-04
RU2015114990A (ru) 2015-11-27
JP2015131846A (ja) 2015-07-23
JP2016152815A (ja) 2016-08-25
RU2640249C2 (ru) 2017-12-27
HUE031902T2 (en) 2017-08-28
HK1150628A1 (en) 2012-01-06
ES2616728T3 (es) 2017-06-14
US20180044411A1 (en) 2018-02-15
ES2499395T3 (es) 2014-09-29
WO2009143411A3 (en) 2010-01-14
PT2789684T (pt) 2017-02-14
PL2789684T3 (pl) 2017-06-30
CN104987416A (zh) 2015-10-21
JP2022089873A (ja) 2022-06-16
JP2020050666A (ja) 2020-04-02
EP2789684A1 (en) 2014-10-15
JP6359051B2 (ja) 2018-07-18
JP2011521009A (ja) 2011-07-21
CN102037119A (zh) 2011-04-27
KR20150041158A (ko) 2015-04-15
BRPI0913047A2 (pt) 2013-03-05
ZA201008209B (en) 2012-04-25
IL209513A (en) 2015-08-31
US20160152697A1 (en) 2016-06-02
KR101592156B1 (ko) 2016-02-04
KR101537460B1 (ko) 2015-07-16
EP2294178A4 (en) 2011-12-07
JP2017125073A (ja) 2017-07-20
EP2294178A2 (en) 2011-03-16
CA2724886C (en) 2017-11-14
AU2009248945B2 (en) 2014-02-13
CN102037119B (zh) 2015-06-24
EP2789684B1 (en) 2016-12-21
IL240242A0 (en) 2015-09-24
US9161810B2 (en) 2015-10-20
DK2789684T3 (en) 2017-02-20
RU2010152693A (ru) 2012-06-27
CA2724886A1 (en) 2009-11-26
EP2294178B1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US11261241B2 (en) Methods, compositions and apparatuses for facilitating regeneration
AU2014202548A1 (en) Methods, compositions and apparatuses for facilitating regeneration
Mainster et al. Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins
Tsujita et al. Bovine ocular squamous cell carcinoma
US6839589B2 (en) Method and apparatus for treatment of living matter using pulsed radio frequency electromagnetic radiation
Sinis et al. Application of 2 different hemostatic procedures during microsurgical median nerve reconstruction in the rat does not hinder axonal regeneration
Pakhomov Surgical treatment of post-traumatic defects of the soft tissues of the head with necrosis of the calvarial bones.
da Silvaa et al. Artigo submetido à Revista Toxicon
McKanna et al. Reaction of microglia and astrocytes in the rat brain cortex to free-electron laser irradiation

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIWA CORPORATION, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRUBER, LEWIS;REEL/FRAME:026025/0313

Effective date: 20110110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION