US20100275616A1 - Cryogenic refrigerator and control method therefor - Google Patents

Cryogenic refrigerator and control method therefor Download PDF

Info

Publication number
US20100275616A1
US20100275616A1 US12/743,545 US74354508A US2010275616A1 US 20100275616 A1 US20100275616 A1 US 20100275616A1 US 74354508 A US74354508 A US 74354508A US 2010275616 A1 US2010275616 A1 US 2010275616A1
Authority
US
United States
Prior art keywords
pressure
cryogenic
temperature
low
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/743,545
Other languages
English (en)
Inventor
Nobuyoshi Saji
Toshio Takahashi
Seiichiro Yoshinaga
Hirohisa Wakisaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Assigned to IHI CORPORATION reassignment IHI CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAJI, NOBUYOSHI, TAKAHASHI, TOSHIO, WAKISAKA, HIROHISA, YOSHINAGA, SEIICHIRO
Publication of US20100275616A1 publication Critical patent/US20100275616A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1401Ericsson or Ericcson cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator

Definitions

  • the present invention relates to a cryogenic refrigerator having a cooling capacity of cooling a cooled object up to cryogenic temperatures and a control method therefor.
  • a cryogenic refrigerator for example, a Brayton cycle refrigerator or an Ericsson cycle refrigerator
  • HTS high temperature superconducting
  • HTS high temperature superconducting
  • a superconducting transmission cable for example, a superconducting transformer, a superconducting motor, a superconducting coil for storing superconducting power, a large accelerator, a nuclear fusion test facility, MHD power generation, a superconducting coil, or the like.
  • the lowest temperature is 65K, 40K, 30K, 20K, or the like, though it depends on the type and application of a superconducting wire.
  • cooling output is 1 to 10 kW or so at each temperature, and helium (the boiling point is approx. 4K), neon (the boiling point is approx. 27K), or a mixture gas of helium and neon is used as a refrigerant gas.
  • the cascade-turbo helium refrigerating liquefier in Patent Document 1 includes a neon refrigeration cycle, which has a turbo type compressor 51 , heat exchangers 52 a to 52 e , and a turbo type expander 53 , and a helium refrigeration cycle, which has a turbo type compressor 54 , heat exchangers 55 a to 55 c , an expansion turbine 56 , and a Joule-Thomson valve 57 . It is characterized that the neon refrigeration cycle previously cools helium.
  • the refrigerator disclosed in Patent Document 2 is intended to prevent a cooling medium from being solidified, to extend the maintenance period, to enable a large output, and to eliminate vibration.
  • the refrigerator 61 includes a centrifugal compressor 62 and a turbine 63 with a one-stage wing 64 of the compressor 62 and converts a gas 65 , which is compressed by the compressor 62 and introduced to the turbine 63 , to, for example, a gas mixture of helium and argon or of helium and nitrogen or the like.
  • Non-patent Document 1 discloses a cryogenic refrigerator for cooling liquid nitrogen (the boiling point is approx. 77K) up to 65K in order to cool a high temperature superconducting cable as shown in FIG. 3 .
  • the cryogenic refrigerator using the expensive working gases is required to minimize a gas charging weight and to stabilize the internal pressure from the start of the refrigerator to the steady operation.
  • a low-pressure low-temperature portion of the running cryogenic refrigerator is cooled from, for example, a room temperature (for example, 300 K) to a cryogenic temperature (for example, 60 K) along with a decrease in temperature of the inside of the refrigerator, the gas volume of the low-pressure low-temperature portion is reduced to one fifth (1 ⁇ 5). Therefore, in order to maintain a predetermined pressure (for example, one half (1 ⁇ 2) of the pressure on start-up), the low-pressure low-temperature portion is required to be supplied with a working gas so that the working gas is five halves (5/2) of the working gas on start-up.
  • the pressure rises after the stop of the operation and therefore it is necessary to discharge the working gas to the outside or to bleed the working gas to a pressure vessel, which is provided separately.
  • discharging the working gas to the outside causes a great loss of the expensive working gas
  • bleeding the working gas to the pressure vessel causes excess pressure resistance of the pressure vessel.
  • the present invention has been devised in order to solve the above problems. Specifically, it is an object of the present invention to provide a cryogenic refrigerator and a control method therefor, the cryogenic refrigerator having a cooling capacity of cooling a cooled object up to a predetermined cryogenic temperature, capable of maintaining the pressure in a high-pressure portion at a substantially constant level from a room temperature in a stopped state to a cryogenic temperature in an operating state without using a pressure vessel whose pressure resistance exceeds a predetermined pressure (for example, 1 MPa) and without discharging or supplying a working gas, and capable of preventing a reverse rotation of a compressor even in the case of an emergency stop.
  • a predetermined pressure for example, 1 MPa
  • a cryogenic refrigerator which generates a cryogenic temperature by compressing a working gas in a closed loop and expanding the compressed working gas
  • the cryogenic refrigerator comprising: a bypass line which allows a high-pressure portion and a low-pressure portion in the closed loop to communicate with each other; a gas storage tank which is located midway in the bypass line and has pressure regulation valves on the high-pressure side and the low-pressure side, respectively; and a pressure control unit which controls the pressure regulation valves, wherein the pressure control unit controls the pressure regulation valves so that the pressure in the gas storage tank is equal to the pressure in the closed loop at room temperature and in a stopped state and controls the pressure regulation valves so that the pressure in the high-pressure portion is equal to a predetermined pressure in an operating state in which the cryogenic temperature is generated.
  • the capacity of the gas storage tank is set so as to enable the pressure in the gas storage tank to be maintained at a predetermined reference pressure or lower at room temperature and in the stopped state and so as to enable the pressure in the high-pressure portion to be maintained at a predetermined operating pressure in the operating state in which the cryogenic temperature is generated.
  • the pressure control unit maintains the pressure regulation valves to be fully opened in the stopped state of the cryogenic refrigerator and opens the pressure regulation valve connected to the high-pressure side in the case where the pressure in the high-pressure portion exceeds a predetermined maximum pressure and opens the pressure regulation valve connected to the low-pressure side in the case where the pressure in the high-pressure portion is equal to or lower than a predetermined minimum pressure.
  • the cryogenic refrigerator further comprises: a room-temperature compressor which is installed in a room temperature portion in the closed loop to compress the working gas from a predetermined low pressure to a predetermined high-pressure; a first intermediate heat exchanger which is located between a cryogenic temperature portion in the closed loop and the room temperature portion to perform a heat exchange between the working gases; and an expander which is installed on the cryogenic temperature portion side from the first intermediate heat exchanger to isentropically expand the working gas.
  • the room-temperature compressor includes a plurality of turbo compressors which compress the working gas in multiple stages from the predetermined low pressure to the high pressure;
  • the expander includes a plurality of expansion turbines which expand the working gas in multiple stages from the high pressure to the low pressure; and a plurality of intermediate heat exchangers which perform a heat exchange between working gases are disposed in the middle of the plurality of expansion turbines.
  • a control method for a cryogenic refrigerator which generates a cryogenic temperature by compressing a working gas in a closed loop and expanding the compressed working gas
  • the control method comprising: providing the cryogenic refrigerator with a bypass line which allows a high-pressure portion and a low-pressure portion in the closed loop to communicate with each other and a gas storage tank which is located midway in the bypass line and has pressure regulation valves on the high-pressure side and the low-pressure side, respectively; and controlling the pressure regulation valves so that the pressure in the gas storage tank is equal to the pressure in the closed loop at room temperature and in a stopped state and controlling the pressure regulation valves so that the pressure in the high-pressure portion is equal to a predetermined pressure in an operating state in which a cryogenic temperature is generated.
  • the capacity of the gas storage tank is set so as to enable the pressure in the gas storage tank to be maintained at a predetermined reference pressure or lower at room temperature in the stopped state and so as to enable the pressure in the high-pressure portion to be maintained at a predetermined operating pressure in the operating state in which the cryogenic temperature is generated.
  • the cryogenic refrigerator comprises a bypass line which allows a high-pressure portion and a low-pressure portion in the closed loop, which constitutes the cryogenic refrigerator, to communicate with each other and a gas storage tank which is located midway in the bypass line and has pressure regulation valves on the high-pressure side and the low-pressure side, respectively, and therefore it is possible to set the pressure of the entire system, which includes the closed loop, the bypass line, and the gas storage tank, to a predetermined reference pressure or lower by controlling the pressure regulation valves (for example, maintaining the pressure regulation valves to be fully opened in the stopped state) so that the pressure in the gas storage tank is equal to the pressure in the closed loop at room temperature and in a stopped state.
  • the pressure regulation valves for example, maintaining the pressure regulation valves to be fully opened in the stopped state
  • this enables the pressures on the inlet side and outlet side of the compressor to be equalized in the stopped state of the refrigerator, and therefore it is possible to prevent a reverse rotation of the compressor caused by a pressure difference between the inlet side and the outlet side of the compressor after the stop.
  • the low-pressure low-temperature portion of the cryogenic refrigerator in the operating state requires, for example, five halves of the working gas on start-up due to a decrease in temperature and in pressure
  • the capacity of the gas storage tank is set so that the pressure in the gas storage tank is able to be maintained at a predetermined reference pressure or lower level at room temperature in the stopped state and so that the pressure in the high-pressure portion is able to be maintained at a predetermined operating pressure level in the operating state in which the cryogenic temperature is generated, thereby enabling the cryogenic refrigerator to have a cooling capacity of cooling an cooled object up to a predetermined cryogenic temperature and to maintain the pressure in the high-pressure portion at a substantially constant level from the room temperature in the stopped state to the cryogenic temperature in the operating state without using a pressure vessel whose pressure resistance exceeds a predetermined pressure (for example, 1 MPa) and without discharging or supplying the working gas.
  • a predetermined pressure for example, 1 MPa
  • FIG. 1 is a schematic diagram of an apparatus in Patent Document 1.
  • FIG. 2 is a block diagram of a refrigerator in Patent Document 2.
  • FIG. 3 is a schematic diagram of an apparatus in Non-patent Document 1.
  • FIG. 4 is a diagram illustrating a first embodiment of a cryogenic refrigerator according to the present invention.
  • FIG. 5 is a diagram illustrating a second embodiment of the cryogenic refrigerator according to the present invention.
  • FIG. 4 there is shown a diagram illustrating a first embodiment of a cryogenic refrigerator according to the present invention.
  • the cryogenic refrigerator 10 is a cryogenic refrigerator which generates a cryogenic temperature by compressing a working gas in a closed loop 11 and expanding the compressed working gas.
  • the expansion by an expansion turbine is preferably an isentropic expansion.
  • the cryogenic refrigerator 10 has the closed loop 11 in which a working gas circulates, and the closed loop 11 is provided with a cryogenic heat exchanger 12 , a room-temperature compressor 14 , a first intermediate heat exchanger 16 , and an expander 18 .
  • the working gas used to circulate in the closed loop 11 is helium (the boiling point is approx. 4K), neon (the boiling point is approx. 27K), or a mixture gas of helium and neon.
  • the cryogenic heat exchanger 12 is installed in a cryogenic temperature portion of the closed loop 11 and indirectly cools down a cooled object with the working gas.
  • the cooled object is high temperature superconducting (HTS) equipment (for example, a superconducting transmission cable, a superconducting transformer, a superconducting motor, a superconducting coil for storing superconducting power, a large accelerator, a nuclear fusion test facility, MHD power generation, a superconducting coil, or the like), and the outlet temperature of the cryogenic heat exchanger 12 in the cryogenic temperature portion is, for example, 65K.
  • HTS high temperature superconducting
  • the room-temperature compressor 14 is, for example, a turbo compressor, which is installed in a room temperature portion (for example, in a room at a temperature around 300 K) of the closed loop 11 to compress the working gas from a predetermined low pressure to a predetermined high pressure.
  • a predetermined low pressure is, for example, 0.5 to 0.6 MPa
  • the predetermined high pressure is, for example, 1.0 to 1.2 MPa
  • the compression ratio of the compressor is around 2.
  • a water-cooled gas cooler 15 is installed on the downstream side (high-pressure side) of the room-temperature compressor 14 to cool the working gas, which has increased in temperature as a result of the compression, preferably up to around 300 K by using cooling water supplied from an external cooling water circulation unit 9 .
  • the first intermediate heat exchanger 16 is located between the cryogenic temperature portion and the room temperature portion to perform a heat exchange between the working gas in the high-pressure side and the working gas in the low pressure side.
  • the heat exchange cools the working gas on the high-pressure side preferably up to 65 to 70 K.
  • the expander 18 is, for example, an expansion turbine and is installed on the cryogenic temperature portion side from the first intermediate heat exchanger 16 to isentropically expand the working gas, which has been cooled by the first intermediate heat exchanger 16 .
  • the expansion by the expansion turbine causes the working gas to generate a predetermined cryogenic temperature (for example, 56 K).
  • the expansion turbine is coaxial with the turbo compressor, and preferably the same electric motor drives the expansion turbine and the turbo compressor.
  • the working gas at the cryogenic temperature is supplied to the cryogenic heat exchanger 12 to cool the cooled object indirectly with the working gas, and cools the working gas on the high-pressure side indirectly in the first intermediate heat exchanger 16 . Subsequently, the working gas is supplied to the room-temperature compressor 14 and is compressed again.
  • the foregoing structure allows the cooled object up to the predetermined cryogenic temperature by compressing the working gas in the closed loop 11 and expanding the compressed working gas using the expander 18 to generate a cryogenic temperature.
  • the cryogenic refrigerator 10 further includes a bypass line 22 , a gas storage tank 24 , and a pressure control unit 26 .
  • the bypass line 22 allows a high-pressure portion and a low-pressure portion of the closed loop 11 to communicate with each other directly.
  • the above high-pressure portion is on the downstream side from the compressor 14 in this example, and more specifically, has the volume of the high-pressure side of the gas cooler 15 and the first intermediate heat exchanger 16 , and a connecting pipe located from the outlet of the compressor 14 to the inlet of the expander 18 .
  • the above low-pressure portion is on the upstream side from the room-temperature compressor 14 in this example, and more specifically, has the volume of the low-pressure side of the cryogenic heat exchanger 12 and the first intermediate heat exchanger 16 , and a connecting pipe from the outlet of the expander 18 to the inlet of the room-temperature compressor 14 .
  • the gas storage tank 24 is located midway in the bypass line 22 , having pressure regulation valves 23 a and 23 b on the high-pressure side and the low-pressure side, respectively.
  • the capacity of the gas storage tank is set so that the pressure in the gas storage tank 24 is able to be maintained at a predetermined reference pressure (for example, 1 MPa) or lower level at room temperature in a stopped state and so that the pressure in the high-pressure portion is able to be maintained at a predetermined operating pressure level (for example, 1.0 to 1.2 MPa) in an operating state in which a cryogenic temperature is generated.
  • a predetermined reference pressure for example, 1 MPa
  • a predetermined operating pressure level for example, 1.0 to 1.2 MPa
  • the capacity of the gas storage tank 24 requires a volume of the gas storage tank, which satisfies the condition that a difference between the total mass of a gas exclusive of the gas storage tank 24 in the closed loop 11 calculated from the temperature and pressure in the operating state and the mass of a gas loaded at the pressure (for example, 1 MPa) in the high-pressure portion (on the downstream side from the gas cooler 15 in FIG.
  • the temperature of the gas storage tank is always constant.
  • the pressure in the gas storage tank is maximum when it is equal to the pressure on the high-pressure side in the operating state and is minimum when it is equal to the pressure on the low-pressure side in the operating state.
  • the mass of the gas which the gas storage tank is able to absorb is obtained from the pressure difference at the constant temperature and the volume.
  • the capacity of the gas storage tank 24 is preferably set so as to be 3 or more times, preferably 4 or 5 times, the volume of the low-temperature low-pressure portion at cryogenic temperature and low pressure.
  • a pressure sensor 25 is installed in the high-pressure portion in the closed loop 11 , and detected pressure data is input to the pressure control unit 26 .
  • the pressure control unit 26 controls the pressure regulation valves 23 a and 23 b so that the pressure in the gas storage tank 24 is equal to the pressure in the closed loop 11 at room temperature and in a stopped state on the basis of the detected pressure data and controls the pressure regulation valves 23 a and 23 b so that the pressure in the gas storage tank 24 is between the pressures in the high-pressure portion and in the low-pressure portion and close to the pressure in the low-pressure portion (a pressure slightly higher than the pressure in the low-pressure portion) in the operating state in which the cryogenic temperature is generated.
  • the pressure control unit 26 performs the following controls by using the cryogenic refrigerator 10 having the above configuration:
  • the pressure regulation valves 23 a and 23 b are maintained to be fully opened in the stopped state of the cryogenic refrigerator 10 . This operation enables the pressure on the inlet side of the compressor 14 to be equalized with the pressure on the outlet side of the compressor 14 in the stopped state of the refrigerator, and therefore it is possible to prevent a reverse rotation of the compressor caused by pressure after the stop of the refrigerator.
  • the pressure regulation valves 23 a and 23 b are fully closed before the start-up of the cryogenic refrigerator 10 . This operation enables the gas storage tank 24 to be isolated from pressure fluctuations on the high-pressure side and on the low-pressure side caused immediately after the start-up, by which the cryogenic refrigerator 10 is able to be started only in the closed loop 11 .
  • the pressure regulation valve 23 a on the high-pressure side is opened if the pressure in the high-pressure portion exceeds a predetermined maximum pressure (for example, 1.1 MPa). This operation prevents the pressure in the high-pressure portion from exceeding the predetermined maximum pressure and enables excess working gas to be collected into the gas storage tank 24 .
  • the pressure regulation valve 23 b on the low-pressure side is opened if the pressure in the high-pressure portion is equal to or lower than a predetermined minimum pressure (for example, 0.9 MPa). This operation enables the low-pressure portion in the closed loop 11 to be supplied with working gas from the gas storage tank 24 , thereby inhibiting the pressure in the high-pressure portion from decreasing.
  • the same controls are performed to stop the cryogenic refrigerator 10 from the steady operation which generates the cryogenic temperature. More specifically, the pressure on the high-pressure side rises up along with an increase in the temperature and pressure of the low-temperature low-pressure portion at cryogenic temperature and low pressure in the operating state, and therefore it is possible to collect excess working gas into the gas storage tank 24 by the above operation (C).
  • the operation (A) for maintaining the pressure regulation valves 23 a and 23 b to be fully opened enables the pressure on the inlet side of the compressor 14 to be equalized with the pressure on the outlet side of the compressor 14 in the stopped state of the refrigerator, and therefore it is possible to prevent a reverse rotation of the compressor caused by a pressure difference between the inlet side and outlet side of the compressor 14 after the stop of the refrigerator.
  • the cryogenic refrigerator 10 includes the gas storage tank 24 , which is located midway in the bypass line 22 allowing the high-pressure portion and the low-pressure portion in the closed loop 11 to communicate with each other, and which has the pressure regulation valves 23 a and 23 b on the high-pressure side and the low-pressure side, respectively.
  • the pressure in the entire system which includes the closed loop 11 , the bypass line 22 , and the gas storage tank 24 , to a predetermined reference pressure (for example, 1 MPa) or lower by controlling the pressure regulation valves so that the pressure in the gas storage tank 24 is equal to the pressure in the closed loop 11 at room temperature and in the stopped state (for example, by maintaining the pressure regulation valves 23 a and 23 b to be fully opened in the stopped state).
  • a predetermined reference pressure for example, 1 MPa
  • this enables the pressure on the inlet side of the compressor 14 to be equalized with the pressure on the outlet side of the compressor 14 in the stopped state of the refrigerator, and therefore it is possible to prevent a reverse rotation of the compressor caused by pressure after the stop of the refrigerator.
  • the pressure regulation valves 23 a and 23 b are controlled so that the pressure in the gas storage tank 24 is between the pressures in the high-pressure portion and in the low-pressure portion and close to the pressure in the low-pressure portion in the operating state in which the cryogenic temperature is generated, and therefore it is possible to supply the corresponding working gas from the gas storage tank even if the pressure of the working gas in the closed loop drops along with a decrease in the temperature of the low-temperature portion in the refrigerator after the start of the operation.
  • the capacity of the gas storage tank 24 is set so as to be 3 or more times the volume V of the low-temperature low-pressure portion at cryogenic temperature and low pressure in the operating state, it is necessary to supply the low-temperature low-pressure portion with working gas so that the gas volume of the portion is five halves (2.5) of the gas volume on start-up in order to maintain the pressure (for example, one half of the pressure on start-up) in the low-temperature low-pressure portion due to a decrease in temperature (for example, 300 K to 60 K) and a decrease in pressure (for example, to one half).
  • the capacity of the gas storage tank 24 is set so that the pressure in the gas storage tank 24 is able to be maintained at the predetermined reference pressure (for example, 1 MPa) or lower level at room temperature in the stopped state and so that the pressure in the high-pressure portion is able to be maintained at the predetermined operating pressure level in an operating state in which the cryogenic temperature is generated, thereby enabling the cryogenic refrigerator to have a cooling capacity of cooling the cooled object up to the predetermined cryogenic temperature and to maintain the pressure in the high-pressure portion at a substantially constant level from the room temperature in the stopped state to the cryogenic temperature in the operating state without using a gas storage tank whose pressure resistance exceeds the predetermined pressure (for example, 1 MPa) and without discharging or supplying the working gas.
  • the predetermined reference pressure for example, 1 MPa
  • FIG. 5 there is shown a diagram illustrating a second embodiment of the cryogenic refrigerator according to the present invention.
  • the outlet temperature of the cryogenic temperature portion is 65 K and the cooling capacity thereof is 3 kW in this example, where P, T and G in this figure represent the pressure (bar), the temperature (K), and the mass flow rate (g/s), respectively.
  • the room-temperature compressor 14 includes a first stage compressor 14 A, which compresses a working gas from a predetermined low pressure (5.57 bar) to a first intermediate pressure (8.03 bar) between the low pressure and the high pressure, and a second stage compressor 14 B, which compresses the working gas from the first intermediate pressure to a high pressure (11.0 bar).
  • Water-cooled gas coolers 15 are installed on the downstream side (the high-pressure side) of the first stage compressor 14 A and the second stage compressor 14 B, respectively.
  • the expander 18 includes a first expander 18 A, which expands the working gas from the high pressure (11.0 bar) to a second intermediate pressure (10.29 bar) between the low pressure and the high pressure, and a second expander 18 B, which expands the working gas from the second intermediate pressure to the low pressure (5.57 bar).
  • a second intermediate heat exchanger 17 which exchanges heat between the low-pressure working gas and the high-pressure working gas, between the first expander 18 A and the second expander 18 B.
  • the first stage compressor 14 A and the second stage compressor 14 B are turbo compressors, and the first expander 18 A and the second expander 18 B are expansion turbines.
  • the first stage compressor 14 A is coaxial with the second expander 18 B, and the second stage compressor 14 B is coaxial with the first expander 18 A.
  • the same electric motor drives the turbo compressors and the expansion turbines.
  • this configuration enables the generation of a cryogenic temperature of 56 K by compressing the working gas in the closed loop 11 and expanding the compressed working gas by using the first expander 18 A and the second expander 18 B, thereby enabling an absorption of 3 kW heat from the cooled object.
  • a room temperature portion is provided with the gas storage tank 24 and is connected via a pipe (the bypass line 22 ) having the pressure regulation valves 23 a and 23 b on the high-pressure side (the outlet side of the compressor) and the low-pressure side (the return side) of the refrigerator, respectively.
  • both of the reference pressures in the control of the pressure regulation valves 23 a and 23 b are high-pressure side pressures
  • the pressure regulation valve 23 a with the pipe connected to the high-pressure side is “opened” when the pressure exceeds a specified pressure
  • the pressure regulation valve 23 b with the pipe connected to the return side is “opened” when the high-pressure side pressure drops to a lower value than the specified pressure to increase the pressure in the system.
  • the volume of the gas storage tank 24 is set to a value as small as possible within a scope that the pressure is maintained at a slightly higher level than the return-side pressure in the operating state and the pressure does not exceed a design pressure even at room temperature in the system in the stopped state.
  • the expansion turbines (the first expander 18 A and the second expander 18 B) are adapted to be coaxial with the turbo compressors (the first stage compressor 14 A and the second stage compressor 14 B) and the same electric motor drives the expansion turbines and the turbo compressors, thereby enabling the collection of the power of the expansion turbines so as to reduce the electric motor power and enabling the rotational speed of the expansion turbines to be limited to that of the electric motor so as to essentially prevent the overspeed of the expansion turbines. Therefore, there is no need to use bypass valves for the expansion turbines or throttle valves in the inlet and the compressors are able to operate at a rated speed from the start-up.
  • both of the pressure regulation valves 23 a and 23 b are opened in the stopped state of the refrigerator to equalize the pressures on the inlet side and outlet side of the compressor, thereby preventing the reverse rotation of the compressors (the first stage compressor 14 A and the second stage compressor 14 B) caused by a pressure difference between the inlet side and the outlet side of the compressors after the stop of the refrigerator.
  • the room-temperature compressor 14 increases the pressure of the working gas
  • the gas cooler 15 decreases the increased temperature of the gas up to close to a room temperature
  • the working gas passes through the first intermediate heat exchanger 16 and the expander 18 , thereby decreasing the temperature and decreasing the pressure.
  • a return gas which has removed heat from the cooled object which is a refrigeration load, increases in temperature up to close to a room temperature while cooling the working gas on the high-pressure side in the first intermediate heat exchanger 16 and then returns to the room-temperature compressor 14 .
  • a pressure ratio between the high-pressure side and the low-pressure side is around 2.
  • the gas storage tank 24 is connected via the pipe (the bypass line 22 ) having the pressure regulation valves 23 a and 23 b on the high-pressure side of the refrigerator (the outlet side from the compressor) and the return side of the refrigerator (the inlet side from the compressor), respectively.
  • both of the reference pressures in the control of the pressure regulation valves 23 a and 23 b are high-pressure side pressures
  • the pressure regulation valve 23 a with the pipe connected to the high-pressure side is “opened” when the pressure exceeds a specified pressure
  • the pressure regulation valve 23 b with the pipe connected to the return side is “opened” when the high-pressure side pressure drops to a lower value than the specified pressure to increase the pressure in the system. Due to the functions of the two pressure regulation valves 23 a and 23 b , the pressure on the high-pressure side is maintained at a constant level in the operating state, on start-up, and in the stopped state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)
US12/743,545 2007-11-19 2008-11-05 Cryogenic refrigerator and control method therefor Abandoned US20100275616A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007298812A JP2009121786A (ja) 2007-11-19 2007-11-19 極低温冷凍装置とその制御方法
JP2007-298812 2007-11-19
PCT/JP2008/070108 WO2009066565A1 (ja) 2007-11-19 2008-11-05 極低温冷凍装置とその制御方法

Publications (1)

Publication Number Publication Date
US20100275616A1 true US20100275616A1 (en) 2010-11-04

Family

ID=40667390

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/743,545 Abandoned US20100275616A1 (en) 2007-11-19 2008-11-05 Cryogenic refrigerator and control method therefor

Country Status (6)

Country Link
US (1) US20100275616A1 (de)
EP (1) EP2211124A4 (de)
JP (1) JP2009121786A (de)
KR (1) KR101161339B1 (de)
CN (1) CN101861500B (de)
WO (1) WO2009066565A1 (de)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110241448A1 (en) * 2010-03-05 2011-10-06 Kay Thomas P High Efficiency Magnetohydrodynamic Power Generation Using Ultra-High Magnetic Fields And Novel Cooling
US20140238074A1 (en) * 2011-09-23 2014-08-28 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Refrigeration Method and Installation
US20150192333A1 (en) * 2015-03-30 2015-07-09 William A. Kelley Energy Recycling Heat Pump
EP3040647A1 (de) * 2014-12-30 2016-07-06 HTS-powercables.nl B.V. Vorrichtung zur Kühlung eines Hochtemperatursupraleiters
US20160273809A1 (en) * 2013-11-18 2016-09-22 Oerlikon Leybold Vacuum Gmbh Cold header for cryogenic refrigerating machine
US9546647B2 (en) 2011-07-06 2017-01-17 Sumitomo (Shi) Cryogenics Of America Inc. Gas balanced brayton cycle cold water vapor cryopump
KR101735623B1 (ko) 2013-05-31 2017-05-15 마에카와 매뉴팩쳐링 캄파니 리미티드 브레이턴 사이클 냉동기
WO2018125511A3 (en) * 2016-12-28 2018-09-20 X Development Llc Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10288357B2 (en) 2012-09-27 2019-05-14 Malta Inc. Hybrid pumped thermal systems
US10415857B2 (en) 2015-05-01 2019-09-17 Mayekawa Mfg. Co., Ltd. Refrigerator and operation method for refrigerator
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
WO2021023457A1 (fr) * 2019-08-05 2021-02-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de refroidissement et/ou de liquéfaction
WO2021023428A1 (fr) * 2019-08-05 2021-02-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé, dispositif et installation de réfrigération et/ou de liquéfaction
WO2021023458A1 (fr) * 2019-08-05 2021-02-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procede de refroidissement et/ou de liquefaction
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US11137181B2 (en) 2015-06-03 2021-10-05 Sumitomo (Shi) Cryogenic Of America, Inc. Gas balanced engine with buffer
CN113963886A (zh) * 2021-10-15 2022-01-21 氢合科技(广州)有限公司 一种超导磁体冷却系统及调控方法
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11384962B2 (en) 2016-06-13 2022-07-12 Geoff ROWE System, method and apparatus for the regeneration of nitrogen energy within a closed loop cryogenic system
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11982228B2 (en) 2020-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958025A1 (fr) * 2010-03-23 2011-09-30 Air Liquide Procede et installation de refrigeration en charge pulsee
JP5639818B2 (ja) * 2010-08-24 2014-12-10 大陽日酸株式会社 冷凍液化機及び冷凍液化機の運転方法
KR101342455B1 (ko) * 2010-10-08 2013-12-17 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 고속 냉각 극저온 냉동기
GB2496573B (en) * 2011-09-27 2016-08-31 Oxford Instr Nanotechnology Tools Ltd Apparatus and method for controlling a cryogenic cooling system
JP5943865B2 (ja) * 2013-03-12 2016-07-05 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、及び圧縮機ユニット
JP2015187525A (ja) * 2014-03-27 2015-10-29 大陽日酸株式会社 ブレイトンサイクル冷凍機、及びターボ圧縮機の発熱部の冷却方法
EP3339605A1 (de) * 2016-12-23 2018-06-27 Linde Aktiengesellschaft Verfahren zum verdichten gasmischung umfassend neon
JP6727723B2 (ja) * 2017-01-16 2020-07-22 住友重機械工業株式会社 極低温冷凍機および極低温冷凍機の制御装置
FR3072160B1 (fr) * 2017-10-09 2019-10-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de refrigeration
GB2571569A (en) * 2018-03-02 2019-09-04 Linde Ag Cooling system
JP2020007986A (ja) * 2018-07-10 2020-01-16 住友重機械工業株式会社 クライオポンプシステム
GB2575980A (en) * 2018-07-30 2020-02-05 Linde Ag High temperature superconductor refrigeration system
FR3101404B1 (fr) * 2019-10-01 2021-10-08 Air Liquide Dispositif de motorisation, véhicule volant et procédé de refroidissement d’un moteur
FR3119669B1 (fr) * 2021-02-10 2023-03-24 Air Liquide Dispositif et procédé de liquéfaction d’un fluide tel que l’hydrogène et/ou de l’hélium
FR3119667B1 (fr) * 2021-02-10 2023-03-24 Air Liquide Dispositif et procédé de liquéfaction d’un fluide tel que l’hydrogène et/ou de l’hélium
KR20240004291A (ko) * 2021-04-30 2024-01-11 스미도모쥬기가이고교 가부시키가이샤 극저온냉동기 및 극저온냉동기의 운전방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511058A (en) * 1966-05-27 1970-05-12 Linde Ag Liquefaction of natural gas for peak demands using split-stream refrigeration
US3992167A (en) * 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
US5181383A (en) * 1990-06-28 1993-01-26 Research Development Corporation Of Japan Refrigerator
US6209338B1 (en) * 1998-07-15 2001-04-03 William Bradford Thatcher, Jr. Systems and methods for controlling refrigerant charge

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL128879C (de) * 1965-07-16 1900-01-01
JPS59122868A (ja) 1982-12-27 1984-07-16 高エネルギ−物理学研究所長 ネオンガスを利用したカスケ−ドタ−ボヘリウム冷凍液化装置
JPS63210573A (ja) * 1987-02-25 1988-09-01 ダイキン工業株式会社 ヘリウム冷凍機
JPH07117310B2 (ja) * 1987-11-06 1995-12-18 日本原子力研究所 極低温冷凍装置
JPH0579717A (ja) * 1991-09-19 1993-03-30 Hitachi Ltd ヘリウム冷凍機
JP2953849B2 (ja) * 1992-01-30 1999-09-27 アイシン精機株式会社 冷媒回路の圧力調整装置
US5271231A (en) * 1992-08-10 1993-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for gas liquefaction with plural work expansion of feed as refrigerant and air separation cycle embodying the same
JP3465117B2 (ja) * 1994-03-30 2003-11-10 日本酸素株式会社 ヘリウム冷凍液化機及びその運転方法
JP2725631B2 (ja) * 1995-05-23 1998-03-11 ダイキン工業株式会社 極低温冷凍機の均圧制御方法及び均圧制御装置
JPH0989399A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd ヘリウム冷凍装置
JP3928230B2 (ja) * 1997-12-01 2007-06-13 石川島播磨重工業株式会社 冷凍機用の回転機械
JP3789634B2 (ja) * 1998-03-11 2006-06-28 三洋電機株式会社 極低温冷凍装置
US6640557B1 (en) * 2002-10-23 2003-11-04 Praxair Technology, Inc. Multilevel refrigeration for high temperature superconductivity
JP2005195258A (ja) * 2004-01-07 2005-07-21 Shin Meiwa Ind Co Ltd 冷凍システム及び真空成膜装置
JP2008138910A (ja) * 2006-11-30 2008-06-19 Taiyo Nippon Sanso Corp ヘリウム液化機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511058A (en) * 1966-05-27 1970-05-12 Linde Ag Liquefaction of natural gas for peak demands using split-stream refrigeration
US3992167A (en) * 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
US5181383A (en) * 1990-06-28 1993-01-26 Research Development Corporation Of Japan Refrigerator
US6209338B1 (en) * 1998-07-15 2001-04-03 William Bradford Thatcher, Jr. Systems and methods for controlling refrigerant charge

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761336B2 (en) * 2010-03-04 2023-09-19 Malta Inc. Adiabatic salt energy storage
US20230399948A1 (en) * 2010-03-04 2023-12-14 Malta Inc. Adiabatic salt energy storage
US10907513B2 (en) 2010-03-04 2021-02-02 Malta Inc. Adiabatic salt energy storage
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US8786140B2 (en) * 2010-03-05 2014-07-22 Thomas P. Kay High efficiency magnetohydrodynamic power generation using ultra-high magnetic fields and novel cooling
US20110241448A1 (en) * 2010-03-05 2011-10-06 Kay Thomas P High Efficiency Magnetohydrodynamic Power Generation Using Ultra-High Magnetic Fields And Novel Cooling
US9546647B2 (en) 2011-07-06 2017-01-17 Sumitomo (Shi) Cryogenics Of America Inc. Gas balanced brayton cycle cold water vapor cryopump
US10060653B2 (en) * 2011-09-23 2018-08-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Refrigeration method and installation
US20140238074A1 (en) * 2011-09-23 2014-08-28 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Refrigeration Method and Installation
US10677498B2 (en) 2012-07-26 2020-06-09 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton cycle engine with high displacement rate and low vibration
US10458721B2 (en) 2012-09-27 2019-10-29 Malta Inc. Pumped thermal storage cycles with recuperation
US10428693B2 (en) 2012-09-27 2019-10-01 Malta Inc. Pumped thermal systems with dedicated compressor/turbine pairs
US10458283B2 (en) 2012-09-27 2019-10-29 Malta Inc. Varying compression ratios in energy storage and retrieval systems
US11156385B2 (en) 2012-09-27 2021-10-26 Malta Inc. Pumped thermal storage cycles with working fluid management
US10443452B2 (en) 2012-09-27 2019-10-15 Malta Inc. Methods of hot and cold side charging in thermal energy storage systems
US10428694B2 (en) 2012-09-27 2019-10-01 Malta Inc. Pumped thermal and energy storage system units with pumped thermal system and energy storage system subunits
US11754319B2 (en) 2012-09-27 2023-09-12 Malta Inc. Pumped thermal storage cycles with turbomachine speed control
US10422250B2 (en) 2012-09-27 2019-09-24 Malta Inc. Pumped thermal systems with variable stator pressure ratio control
US10288357B2 (en) 2012-09-27 2019-05-14 Malta Inc. Hybrid pumped thermal systems
KR101735623B1 (ko) 2013-05-31 2017-05-15 마에카와 매뉴팩쳐링 캄파니 리미티드 브레이턴 사이클 냉동기
US9863669B2 (en) 2013-05-31 2018-01-09 Mayekawa Mfg. Co., Ltd. Brayton cycle type refrigerating apparatus
US20160273809A1 (en) * 2013-11-18 2016-09-22 Oerlikon Leybold Vacuum Gmbh Cold header for cryogenic refrigerating machine
EP3040647A1 (de) * 2014-12-30 2016-07-06 HTS-powercables.nl B.V. Vorrichtung zur Kühlung eines Hochtemperatursupraleiters
WO2016107717A1 (en) * 2014-12-30 2016-07-07 Hts-Powercables.Nl B.V. Device for cooling a high temperature superconductor
US20150192333A1 (en) * 2015-03-30 2015-07-09 William A. Kelley Energy Recycling Heat Pump
US10753655B2 (en) * 2015-03-30 2020-08-25 William A Kelley Energy recycling heat pump
US10415857B2 (en) 2015-05-01 2019-09-17 Mayekawa Mfg. Co., Ltd. Refrigerator and operation method for refrigerator
US11137181B2 (en) 2015-06-03 2021-10-05 Sumitomo (Shi) Cryogenic Of America, Inc. Gas balanced engine with buffer
US11384962B2 (en) 2016-06-13 2022-07-12 Geoff ROWE System, method and apparatus for the regeneration of nitrogen energy within a closed loop cryogenic system
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US11591956B2 (en) 2016-12-28 2023-02-28 Malta Inc. Baffled thermoclines in thermodynamic generation cycle systems
US11454168B2 (en) 2016-12-28 2022-09-27 Malta Inc. Pump control of closed cycle power generation system
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US11512613B2 (en) 2016-12-28 2022-11-29 Malta Inc. Storage of excess heat in cold side of heat engine
US10907510B2 (en) 2016-12-28 2021-02-02 Malta Inc. Storage of excess heat in cold side of heat engine
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US12012902B2 (en) 2016-12-28 2024-06-18 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11927130B2 (en) 2016-12-28 2024-03-12 Malta Inc. Pump control of closed cycle power generation system
WO2018125511A3 (en) * 2016-12-28 2018-09-20 X Development Llc Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11371442B2 (en) 2016-12-28 2022-06-28 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10920674B2 (en) 2016-12-28 2021-02-16 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10920667B2 (en) 2016-12-28 2021-02-16 Malta Inc. Pump control of closed cycle power generation system
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US11578622B2 (en) 2016-12-29 2023-02-14 Malta Inc. Use of external air for closed cycle inventory control
US10907548B2 (en) 2016-12-29 2021-02-02 Malta Inc. Use of external air for closed cycle inventory control
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US11352951B2 (en) 2016-12-30 2022-06-07 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US11655759B2 (en) 2016-12-31 2023-05-23 Malta, Inc. Modular thermal storage
US10830134B2 (en) 2016-12-31 2020-11-10 Malta Inc. Modular thermal storage
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
WO2021023457A1 (fr) * 2019-08-05 2021-02-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de refroidissement et/ou de liquéfaction
FR3099816A1 (fr) * 2019-08-05 2021-02-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé, dispositif et installation de réfrigération et/ou de liquéfaction
WO2021023428A1 (fr) * 2019-08-05 2021-02-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé, dispositif et installation de réfrigération et/ou de liquéfaction
WO2021023458A1 (fr) * 2019-08-05 2021-02-11 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procede de refroidissement et/ou de liquefaction
FR3099817A1 (fr) * 2019-08-05 2021-02-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de refroidissement et/ou de liquéfaction.
CN114270109A (zh) * 2019-08-05 2022-04-01 乔治洛德方法研究和开发液化空气有限公司 冷却和/或液化系统及方法
FR3099818A1 (fr) * 2019-08-05 2021-02-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de réfrigération et installation et procédé de refroidissement et/ou de liquéfaction
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11578650B2 (en) 2020-08-12 2023-02-14 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11840932B1 (en) 2020-08-12 2023-12-12 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11846197B2 (en) 2020-08-12 2023-12-19 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11885244B2 (en) 2020-08-12 2024-01-30 Malta Inc. Pumped heat energy storage system with electric heating integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11982228B2 (en) 2020-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
CN113963886A (zh) * 2021-10-15 2022-01-21 氢合科技(广州)有限公司 一种超导磁体冷却系统及调控方法

Also Published As

Publication number Publication date
EP2211124A4 (de) 2015-07-22
CN101861500B (zh) 2012-07-18
EP2211124A1 (de) 2010-07-28
WO2009066565A1 (ja) 2009-05-28
KR20100087135A (ko) 2010-08-03
KR101161339B1 (ko) 2012-06-29
JP2009121786A (ja) 2009-06-04
CN101861500A (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
US20100275616A1 (en) Cryogenic refrigerator and control method therefor
JP5356983B2 (ja) 極低温冷凍装置及びその運転方法
US9863669B2 (en) Brayton cycle type refrigerating apparatus
US11852043B2 (en) Pumped heat electric storage system with recirculation
JP5705375B2 (ja) 高温超電導機器の冷却装置及びその運転方法
US20220275999A1 (en) Refrigeration and/or liquefaction method, device and system
JPS59122868A (ja) ネオンガスを利用したカスケ−ドタ−ボヘリウム冷凍液化装置
Hirai et al. Development of a Neon Cryogenic turbo‐expander with Magnetic Bearings
CN114739032A (zh) 一种超流氦制冷机
CN115096013A (zh) 一种实现氦低温制冷机快速降温的装置及方法
JP2019095079A (ja) 高温超電導電力機器用冷却システム及びその運転方法
JP2945806B2 (ja) 液化冷凍装置に設けられる冷凍負荷の予冷装置
JP2021533321A (ja) 高温超電導体冷蔵システム
US20230296294A1 (en) Simplified cryogenic refrigeration system
CN114923295B (zh) 一种两级串联中间换热的透平膨胀机变工况调节方法
Sam et al. A review on design, operation and applications of cold-compressors in large-scale helium liquefier/refrigerator systems
US20230417465A1 (en) Refrigerator and operation method during precooling of refrigerator
US20230279786A1 (en) Pumped heat energy storage system with modular turbomachinery
JPH06101918A (ja) 極低温冷凍機
KR20230137193A (ko) 다중 줄톰슨팽창사이클을 이용한 수소액화플랜트용 고효율 극저온냉동기
JPH06241594A (ja) 超臨界ヘリウム冷却システム
CN117232212A (zh) 一种氮氧一体式液化装置及其液化方法
JP2022091505A (ja) 極低温流体循環式冷却システムの運転方法及び極低温流体循環式冷却システム
JP2023003938A (ja) 冷凍機、および、冷凍機の運転方法
JPH11325630A (ja) ヘリウム液化冷凍装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: IHI CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAJI, NOBUYOSHI;TAKAHASHI, TOSHIO;YOSHINAGA, SEIICHIRO;AND OTHERS;REEL/FRAME:024405/0018

Effective date: 20100318

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION