KR20100087135A - 극저온 냉동 장치와 그 제어 방법 - Google Patents

극저온 냉동 장치와 그 제어 방법 Download PDF

Info

Publication number
KR20100087135A
KR20100087135A KR1020107009342A KR20107009342A KR20100087135A KR 20100087135 A KR20100087135 A KR 20100087135A KR 1020107009342 A KR1020107009342 A KR 1020107009342A KR 20107009342 A KR20107009342 A KR 20107009342A KR 20100087135 A KR20100087135 A KR 20100087135A
Authority
KR
South Korea
Prior art keywords
pressure
cryogenic
high pressure
storage tank
gas storage
Prior art date
Application number
KR1020107009342A
Other languages
English (en)
Other versions
KR101161339B1 (ko
Inventor
노부요시 사지
토시오 타카하시
세이치로 요시나가
히로히사 와키사카
Original Assignee
가부시키가이샤 아이에이치아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아이에이치아이 filed Critical 가부시키가이샤 아이에이치아이
Publication of KR20100087135A publication Critical patent/KR20100087135A/ko
Application granted granted Critical
Publication of KR101161339B1 publication Critical patent/KR101161339B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1401Ericsson or Ericcson cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

폐루프(closed loop)(11)로 작동 가스를 압축해 팽창시켜 극저온을 발생시키는 극저온 냉동 장치(10). 고압부와 저압부를 연통시키는 바이패스 라인(22)과, 바이패스 라인의 중간에 위치하고 고압 측과 저압 측에 각각 압력 조정 밸브(23a, 23b)를 가지는 가스 저장 탱크(24)와, 각 압력 조정 밸브를 제어하는 압력 제어 장치(26)를 구비한다. 압력 제어 장치(26)는 가스 저장 탱크(24)의 압력이, 상온이고 정지 시에 폐루프와 동일해지고, 운전 시에 고압부와 저압부의 중간의 저압부에 가까운 압력이 되도록 각 압력 조정 밸브(23a, 23b)를 제어한다.

Description

극저온 냉동 장치와 그 제어 방법{CRYOGENIC REFRIGERATOR AND CONTROL METHOD THEREFOR}
본 발명은 피냉각체를 극저온까지 냉각할 수 있는 냉각 능력을 가지는 극저온 냉동 장치와 그 제어 방법에 관한 것이다.
고온 초전도(HTS) 기기(예를 들어, 초전도 송전 케이블, 초전도 트랜스, 초전도 모터, 초전도 전력 저장용 초전도 코일, 대형 가속기, 핵융합 시험 설비, MHD 발전, 초전도 코일 등)를 냉각하기 위하여, 극저온 냉동 장치(예를 들어, 브레이튼(Brayton) 사이클 냉동기나 에릭슨(Ericsson) 사이클 냉동기)가 이용된다.
예를 들어, 고온 초전도 기기 냉각용의 경우, 초전도 선재(線材)의 종류와 용도에 따라 다르지만, 최저 온도 범위는 65K, 40K, 30K, 20K 등이다. 또한, 냉동 출력은 각 온도에서 1 ~ 10kW 정도, 냉매 가스는 헬륨(비점 약 4K), 네온(비점 약 27K), 또는 헬륨·네온의 혼합 가스 등이 이용된다.
이와 같은 극저온 냉동 장치는 예를 들어, 특허 문헌 1, 2 및 비특허 문헌 1에 개시된다.
특허 문헌 1의 캐스케이드 터보(cascade-turbo) 헬륨 냉동 액화 장치는 도 1에 나타내는 바와 같이, 터보식 압축기(51), 열 교환기(52a ~ 52e), 터보식 팽창기(53)를 구비한 네온 냉동 사이클과, 터보식 압축기(54), 열 교환기(55a ~ 55c), 팽창 터빈(56), 줄-톰슨(Joule-Thomson) 밸브(57)를 구비한 헬륨 냉동 사이클로 이루어지고, 네온 냉동 사이클로 헬륨을 예랭(豫冷)하게 관련 구성한 것을 특징으로 하는 것이다.
특허 문헌 2의 냉동기는, 냉각 매체의 고화(固化)를 방지하고, 유지 및 보수의 주기를 길게 하며, 큰 출력을 낼 수 있고, 진동도 생기지 않게 하는 것을 목적으로 하여, 도 2에 나타내는 바와 같이, 원심식 컴프레서(62)와 터빈(63)을 구비하고, 컴프레서(62)의 날개(64)를 1단으로 한 냉동기(61)로서, 컴프레서(62)로 압축되어 터빈(63)으로 도입되는 가스를 예를 들어, 헬륨과 아르곤, 헬륨과 질소 등을 혼합한 가스로 하는 것이다.
비특허 문헌 1은, 도 3에 나타내는 바와 같이, 고온 초전도 케이블을 냉각하기 위하여 액체 질소(비점 약 77K)를 65K까지 냉각하는 극저온 냉동 장치를 개시하고 있다.
상술한 극저온 냉동 장치에서 사용하는 작동 가스(헬륨, 네온 등)는 액화 온도가 매우 낮기 때문에, 팽창기 내부에서의 액화를 피하는 데 있어 우수하지만, 매우 고가인 문제점이 있다.
이와 같은 고가의 작동 가스를 사용하는 극저온 냉동 장치에서는 가스의 충전량을 최소로 하고, 또한 냉동기의 기동에서 정상 운전에 도달한 때까지 내부의 압력을 일정하게 유지하는 것이 필요하다.
그러나, 운전 중의 극저온 냉동 장치의 저압 저온 부분은, 냉동기 내부의 온도가 저하됨에 따라, 예를 들어 상온(常溫)(예를 들어, 300K)에서 극저온(예를 들어, 60K)까지 냉각되면 그 부분의 가스 용적은 1/5이 되므로, 소정의 압력(예를 들어, 기동 시의 1/2)을 유지하려면 그 부분에서 5/2배가 되도록 작동 가스를 보충할 필요가 있다.
또한 반대로, 운전 정지 후에는 압력이 높아지므로 작동 가스를 외부로 방출하거나, 별도로 마련한 압력 용기로 배출시킬 필요가 있다. 이 경우, 외부로 방출하면 고가인 작동 가스의 손실이 크고, 압력 용기로 배출시키면 압력 용기의 내압 강도가 과다해진다.
또한, 압력 용기를 이용하지 않고 냉동기 전체를 그대로 정지시키는 경우에는, 냉동기 전체의 내압 강도를 늘려 두지 않으면 안 된다. 또한 이 경우, 기동 시에 압축기에 과다한 부하가 걸리는 문제점이 있다.
또한, 냉동기를 긴급 정지 등으로 갑자기 정지시키면, 고압 측의 작동 가스가 압축기를 통과하여 역류하고, 압축기가 역회전하여, 구동 시스템 등에 악영향을 미치는 일이 있다.
특허 문헌 1: 일본 특허 공개 소59-122868호 특허 문헌 2: 일본 특허 공개 평11-159898호
비특허 문헌 1: N. Saji, et. al, "DESIGN OF OIL-FREE SIMPLE TURBO TYPE 65K/6KW HELIUM AND NEON MIXTURE GAS REFRIGERATOR FOR HIGH TEMPERATURE SUPERCONDUCTING POWER CABLE COOLING", CP613, Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference, Vol. 47, 2002
본 발명은 상술한 문제점을 해결하기 위하여 창안된 것이다. 즉, 본 발명은, 피냉각체를 소정의 극저온까지 냉각할 수 있는 냉각 능력을 가지며, 내압 강도가 소정의 압력(예를 들어, 1MPa)을 초과하는 압력 용기를 이용하지 않고, 또한 작동 가스의 방출·보충을 하지 않고, 정지 중의 상온에서 작동 중의 극저온까지, 고압 부분의 압력을 거의 일정하게 유지할 수 있고, 또한 긴급 정지시켜도 압축기의 역회전을 방지할 수 있는 극저온 냉동 장치와 그 제어 방법을 제공하는 것이다.
본 발명에 따르면, 폐루프(closed loop)로 작동 가스를 압축하고, 압축한 작동 가스를 팽창시킴으로써 극저온을 발생시키는 극저온 냉동 장치로서, 상기 폐루프의 고압부와 저압부를 연통시키는 바이패스 라인과, 상기 바이패스 라인의 중간에 위치하고, 고압 측과 저압 측에 각각 압력 조정 밸브를 가지는 가스 저장 탱크와, 상기 각 압력 조정 밸브를 제어하는 압력 제어 장치를 구비하고, 상기 압력 제어 장치는, 상온이고 정지 시에 가스 저장 탱크의 압력이 폐루프의 압력과 동일해지도록 상기 각 압력 조정 밸브를 제어하고, 극저온을 발생시키는 운전 시에 고압부의 압력이 소정의 압력이 되도록 상기 각 압력 조정 밸브를 제어하는 것을 특징으로 하는 극저온 냉동 장치가 제공된다.
본 발명의 바람직한 실시 형태에 따르면, 상기 가스 저장 탱크의 용량은, 정지 시에 상온이 되었을 때 상기 가스 저장 탱크 내부의 압력을 소정의 기준 압력 이하로 유지할 수 있고, 또한 극저온을 발생시키는 운전 시에 상기 고압부의 압력을 소정의 운전 압력으로 유지할 수 있도록 설정되어 있다.
상기 압력 제어 장치는, 극저온 냉동 장치의 정지 시에 상기 각 압력 조정 밸브를 전체 개방으로 유지하고, 기동 중에는 상기 고압부가 소정의 최대 압력을 초과하는 경우에 고압 측에 접속되어 있는 압력 조정 밸브를 개방하고, 상기 고압부가 소정의 최저 압력 이하인 경우에 저압 측에 접속되어 있는 압력 조정 밸브를 개방하는 것이 바람직하다.
또한, 본 발명의 바람직한 실시 형태에 따르면, 상기 폐루프의 상온부에 마련되고 작동 가스를 소정의 저압에서 고압까지 압축하는 상온 압축기와, 상기 극저온부와 상온부의 중간에 위치하고 작동 가스끼리 열 교환하는 제1 중간 열 교환기와, 상기 제1 중간 열 교환기보다 극저온부 측에 마련되고 작동 가스를 등엔트로피 팽창(isentropic expansion)시키는 팽창기를 구비한다.
또한, 상기 상온 압축기는, 상기 소정의 저압에서 상기 고압까지 다단(多段)으로 압축하는 복수의 터보 압축기로 이루어지고, 상기 팽창기는, 상기 고압에서 상기 저압까지 다단으로 팽창시키는 복수의 팽창 터빈으로 이루어지고, 상기 복수의 팽창 터빈의 중간에, 작동 가스끼리 열 교환하는 복수의 중간 열 교환기를 구비하는 것이 바람직하다.
또한, 본 발명에 따르면, 폐루프로 작동 가스를 압축하고, 압축한 작동 가스를 팽창시킴으로써 극저온을 발생시키는 극저온 냉동 장치의 제어 방법으로서, 상기 극저온 냉동 장치에, 상기 폐루프의 고압부와 저압부를 연통시키는 바이패스 라인과, 상기 바이패스 라인의 중간에 위치하고 고압 측과 저압 측에 각각 압력 조정 밸브를 가지는 가스 저장 탱크를 마련하고, 상온이고 정지 시에 가스 저장 탱크의 압력이 폐루프의 압력과 동일해지도록 상기 각 압력 조정 밸브를 제어하고, 극저온을 발생시키는 운전 시에 고압부의 압력이 소정의 압력이 되도록 상기 각 압력 조정 밸브를 제어하는 것을 특징으로 하는 극저온 냉동 장치의 제어 방법이 제공된다.
또한, 본 발명의 바람직한 실시 형태에 따르면, 상기 가스 저장 탱크의 용량을, 정지 시에 상온이 되었을 때 상기 가스 저장 탱크 내부의 압력을 소정의 기준 압력 이하로 유지할 수 있고, 또한 극저온을 발생시키는 운전 시에 상기 고압부의 압력을 소정의 운전 압력으로 유지할 수 있도록 설정한다.
상기 본 발명의 장치 및 방법에 따르면, 극저온 냉동 장치를 구성하는 폐루프의 고압부와 저압부를 연통시키는 바이패스 라인과, 상기 바이패스 라인의 중간에 위치하고 고압 측과 저압 측에 각각 압력 조정 밸브를 가지는 가스 저장 탱크를 구비하므로, 가스 저장 탱크의 압력이 상온이고 정지 시에 폐루프와 동일해지도록 각 압력 조정 밸브를 제어함으로써(예를 들어, 정지 시에 각 압력 조정 밸브를 전체 개방으로 유지한다), 폐루프, 바이패스 라인 및 가스 저장 탱크로 이루어지는 전체 시스템을 소정의 기준 압력 이하로 설정할 수 있다.
또한, 이에 의해, 냉동기의 정지 시에 압축기의 입구 측과 출구 측의 압력을 균압화할 수 있으므로, 정지 후에 압축기의 입구 측과 출구 측의 압력차에 기인하는 압축기의 역회전을 방지할 수 있다.
또한, 극저온을 발생시키는 운전 시에 고압부의 압력이 소정의 압력이 되도록 상기 각 압력 조정 밸브를 제어함으로써, 운전 중인 극저온 냉동 장치의 저압 저온 부분이, 온도 저하와 압력 저하에 의해 기동 시의 예를 들어 5/2배의 작동 가스가 필요해져도, 그만큼의 작동 가스를 가스 저장 탱크로부터 보충할 수 있다.
따라서, 가스 저장 탱크의 용량을, 정지 시에 상온이 되었을 때 가스 저장 탱크 내부의 압력을 소정의 기준 압력 이하로 유지할 수 있고, 또한 극저온을 발생시키는 운전 시에 상기 고압부의 압력을 소정의 운전 압력으로 유지할 수 있도록 설정함으로써, 피냉각체를 소정의 극저온까지 냉각할 수 있는 냉각 능력을 가지고, 내압 강도가 소정의 압력(예를 들어, 1MPa)을 초과하는 압력 용기를 이용하지 않으며, 또한 작동 가스의 방출·보충을 하지 않고, 정지 중의 상온으로부터 작동 중의 극저온까지, 고압 부분의 압력을 거의 일정하게 유지할 수 있다.
도 1은 특허 문헌 1의 장치의 모식도이다.
도 2는 특허 문헌 2의 냉동기의 구성도이다.
도 3은 비특허 문헌 1의 장치의 모식도이다.
도 4는 본 발명에 따른 극저온 냉동 장치의 제1 실시 형태를 나타내는 도면이다.
도 5는 본 발명에 따른 극저온 냉동 장치의 제2 실시 형태를 나타내는 도면이다.
이하, 본 발명의 바람직한 실시 형태를 도면을 참조하면서 설명한다. 한편, 각 도면에서 공통되는 부분에는 동일한 부호를 부여하여 중복된 설명은 생략한다.
도 4는, 본 발명에 따른 극저온 냉동 장치의 제1 실시 형태를 나타내는 도면이다.
본 발명의 극저온 냉동 장치(10)는, 폐루프(11)로 작동 가스를 압축하고, 압축한 작동 가스를 팽창시킴으로써 극저온을 발생시키는 극저온 냉동 장치이다. 팽창 터빈에 의한 팽창은 등엔트로피 팽창인 것이 바람직하다.
이 도면에서 본 발명의 극저온 냉동 장치(10)는 작동 가스가 순환하는 폐루프(11)를 구비하고, 폐루프(11)에 극저온 열 교환기(12), 상온 압축기(14), 제1 중간 열 교환기(16) 및 팽창기(18)가 마련된다. 폐루프(11)를 순환하는 작동 가스는 헬륨(비점 약 4K), 네온(비점 약 27K), 또는 헬륨·네온의 혼합 가스를 이용한다.
극저온 열 교환기(12)는, 폐루프(11)의 극저온부에 마련되고, 피냉각체를 작동 가스로 간접 냉각한다. 피냉각체는 고온 초전도(HTS) 기기(예를 들어, 초전도 송전 케이블, 초전도 트랜스, 초전도 모터, 초전도 전력 저장용 초전도 코일, 대형 가속기, 핵융합 시험 설비, MHD 발전, 초전도 코일 등)이고, 극저온부의 극저온 열 교환기(12)의 출구 온도는 예를 들어 65K이다.
상온 압축기(14)는, 예를 들어 터보 압축기이고, 폐루프(11)의 상온부(예를 들어, 300K 전후의 실내)에 마련되며, 작동 가스를 소정의 저압에서 고압까지 압축한다. 소정의 저압은 예를 들어 O.5 ~ 0.6MPa이고, 소정의 고압은 예를 들어 1.O ~ 1.2MPa, 압축기의 압축비는 2 전후인 것이 바람직하다.
상온 압축기(14)의 하류 측(고압 측)에는 수냉(水冷)의 가스 냉각기(15)가 마련되어, 외부의 냉각수 순환 장치(9)로부터 공급되는 냉각수에 의해, 압축에 의해 온도 상승한 작동 가스를 바람직하게 300K 전후까지 냉각하게 되어 있다.
제1 중간 열 교환기(16)는, 극저온부와 상온부의 중간에 위치하고, 고압 측과 저압 측의 작동 가스끼리 열 교환한다. 이 열 교환에 의해 고압 측 작동 가스를 바람직하게 65 ~ 70K까지 냉각한다.
팽창기(18)는, 예를 들어 팽창 터빈이며, 제1 중간 열 교환기(16)보다 극저온부 측에 마련되고, 제1 중간 열 교환기(16)에서 냉각된 작동 가스를 등엔트로피 팽창시킨다. 이 팽창 터빈에 의한 팽창에 의해 작동 가스는 소정의 극저온(예를 들어 56K)을 발생시킨다. 팽창 터빈은 터보 압축기와 동축이며, 동일한 전동기로 구동되는 것이 바람직하다.
이 극저온의 작동 가스는 극저온 열 교환기(12)에 공급되어 피냉각체를 작동 가스로 간접 냉각하고, 제1 중간 열 교환기(16)에서 고압 측의 작동 가스를 간접 냉각하고, 이어서 상온 압축기(14)에 공급되어 다시 압축된다.
상술한 구성에 의해, 폐루프(11)로 작동 가스를 압축하고, 압축된 작동 가스를 팽창기(18)에 의해 팽창시켜 극저온을 발생시켜서, 피냉각체를 소정의 극저온까지 냉각할 수 있다.
도 4에 있어서, 본 발명의 극저온 냉동 장치(10)는, 또한 바이패스 라인(22), 가스 저장 탱크(24), 및 압력 제어 장치(26)를 구비한다.
바이패스 라인(22)은, 폐루프(11)의 고압부와 저압부를 직접 연통시킨다. 상기 고압부는 이 예에서는 압축기(14)의 하류 측이며, 보다 구체적으로는 압축기(14)의 출구로부터 팽창기(18)의 입구까지의 가스 냉각기(15)·제1 중간 열 교환기(16)의 고압 측, 및 접속 배관의 용적이다. 상기 저압부는 이 예에서는 상온 압축기(14)의 상류 측이며, 보다 구체적으로는 극저온 열 교환기(12)·제1 중간 열 교환기(16)의 저압 측, 및 팽창기(18)의 출구로부터 상온 압축기(14)까지의 접속 배관의 용적이다.
가스 저장 탱크(24)는, 바이패스 라인(22)의 중간에 위치하고, 고압 측과 저압 측에 각각 압력 조정 밸브(23a, 23b)를 가진다.
가스 저장 탱크(24)의 용량은, 정지 시에 상온이 되었을 때 가스 저장 탱크(24) 내부의 압력을 소정의 기준 압력(예를 들어, 1MPa) 이하로 유지할 수 있고, 또한 극저온을 발생시키는 운전 시에 고압부의 압력을 소정의 운전 압력(예를 들어, 1.O ~ 1.2MPa)으로 유지할 수 있게 설정된다.
가스 저장 탱크(24)의 용량은, 운전 시의 온도와 압력으로부터 산출되는 폐루프(11) 내의 가스 저장 탱크(24)를 제외한 가스의 전체 질량과, 정지 시에 상온에서의 가스 저장 탱크(24)를 제외한 폐루프(11)의 용적에 운전 시의 고압부(도 4에서 가스 냉각기(15)의 하류 측)의 압력(예를 들어, 1MPa)으로 충전된 가스의 질량과의 차이가, 가스 저장 탱크(24) 내부를 운전 시의 고압부의 압력으로 채웠을 경우의 가스의 질량과 운전 시의 저압부(도 4에서 상온 압축기(14)의 상류 측)의 압력으로 채웠을 경우의 가스의 질량과의 차이와 동일해지는 가스 저장 탱크의 용적이 필요해진다. 한편, 가스 저장 탱크의 온도는 항상 일정하다. 가스 저장 탱크의 압력은 운전 시의 고압 측의 압력이 될 때 최대이고, 저압부의 압력이 될 때 최소이다. 이 온도가 일정할 때의 압력차와 용적에 의해 가스 저장 탱크가 흡수할 수 있는 가스의 질량이 구해진다. 따라서, 가스 저장 탱크(24)의 용량은 극저온이면서 저압이 되는 저온 저압 부분 용적의 3배 이상, 바람직하게는 4 ~ 5배로 설정하는 것이 좋다.
또한, 폐루프(11)의 고압부에 압력 검출기(25)가 마련되고, 검출된 압력 데이터는 압력 제어 장치(26)에 입력된다.
압력 제어 장치(26)는, 검출된 압력 데이터에 근거하여, 상온이고 정지 시에 가스 저장 탱크(24)의 압력이 폐루프(11)와 동일해지도록 압력 조정 밸브(23a, 23b)를 제어하고, 극저온을 발생시키는 운전 시에 고압부와 저압부의 중간 압력이고 또한 저압부에 가까운 압력(저압부보다 약간 높은 압력)이 되도록 각 압력 조정 밸브(23a, 23b)를 제어한다.
상술한 구성의 극저온 냉동 장치(10)를 이용하는 본 발명의 극저온 냉동 장치의 제어 방법에서는 압력 제어 장치(26)에 의해 이하의 제어를 행한다.
(A) 극저온 냉동 장치(10)의 정지 시에 각 압력 조정 밸브(23a, 23b)를 전체 개방으로 유지한다. 이 조작에 의해, 냉동기의 정지 시에 압축기(14)의 입구 측과 출구 측의 압력을 균압화할 수 있으므로, 정지 후의 압축기의 압력에 의한 역회전을 방지할 수 있다.
(B) 극저온 냉동 장치(10)의 기동 전에 각 압력 조정 밸브(23a, 23b)를 전체 폐쇄한다. 이 조작에 의해, 기동 직후의 고압 측 및 저압 측의 압력 변동으로부터 가스 저장 탱크(24)를 분리하고, 폐루프(11)만으로 기동할 수 있다.
(C) 극저온 냉동 장치(10)의 기동 중에, 고압부가 소정의 최대 압력(예를 들어, 1.1MPa)을 초과할 경우에 고압 측의 압력 조정 밸브(23a)를 개방한다. 이 조작에 의해, 고압부가 소정의 최대 압력을 초과하는 것을 방지하고, 여분의 작동 가스를 가스 저장 탱크(24)로 회수할 수 있다.
(D) 극저온 냉동 장치(10)의 기동 중에, 고압부가 소정의 최저 압력(예를 들어, 0.9MPa) 이하인 경우에 저압 측의 압력 조정 밸브(23b)를 개방한다. 이 조작에 의해, 폐루프(11)의 저압부에 가스 저장 탱크(24)로부터 작동 가스를 보급하여, 고압부의 압력 저하를 억제할 수 있다.
(B) 내지 (D)의 조작에 의해, 극저온 냉동 장치(10)의 기동을 완료하고, 극저온을 발생시키는 정상 운전을 할 수 있다.
또한, 극저온을 발생시키는 정상 운전으로부터 정지시키는 경우의 제어도 상기와 마찬가지이다. 즉, 운전 시에 극저온이면서 저압이 되는 저온 저압 부분의 온도 및 압력이 상승함에 따라 저압 측의 압력이 상승하므로, 상술한 (C)의 조작에 의해 여분의 작동 가스를 가스 저장 탱크(24)로 회수할 수 있다.
또한, 극저온 냉동 장치(10)의 정지 시에 각 압력 조정 밸브(23a, 23b)를 전체 개방으로 유지하는 (A)의 조작에 의해 냉동기의 정지 시에 압축기(14)의 입구 측과 출구 측의 압력을 균압화할 수 있으므로, 정지 후에 압축기(14)의 입구 측과 출구 측의 압력차에 기인하는 압축기의 역회전을 방지할 수 있다.
상술한 본 발명의 장치 및 방법에 따르면, 극저온 냉동 장치(10)를 구성하는 폐루프(11)의 고압부와 저압부를 연통시키는 바이패스 라인(22)의 중간에 위치하고 고압 측과 저압 측에 각각 압력 조정 밸브(23a, 23b)를 가지는 가스 저장 탱크(24)를 구비하므로, 가스 저장 탱크(24)의 압력이 상온이면서 정지 시에 폐루프(11)와 동일해지도록 각 압력 조정 밸브를 제어함으로써(예를 들어, 정지 시에 각 압력 조정 밸브(23a, 23b)를 전체 개방으로 유지한다), 폐루프(11), 바이패스 라인(22) 및 가스 저장 탱크(24)로 이루어지는 전체 시스템을 소정의 기준 압력(예를 들어, 1MPa) 이하로 설정할 수 있다.
또한, 이에 의해, 냉동기의 정지 시에 압축기(14)의 입구 측과 출구 측의 압력을 균압화할 수 있으므로, 정지 후의 압축기의 압력에 의한 역회전을 방지할 수 있다.
또한, 극저온을 발생시키는 운전 시에 가스 저장 탱크(24)의 압력이 고압부와 저압부의 중간 압력이면서 저압부에 가까운 압력이 되도록 각 압력 조정 밸브(23a, 23b)를 제어함으로써, 운전 개시 후 냉동기 내부의 저온부의 온도가 내려감에 따라 폐루프 내의 작동 가스의 압력이 저하되어도, 그만큼의 작동 가스를 가스 저장 탱크로부터 보충할 수 있다.
예를 들어, 가스 저장 탱크(24)의 용량을, 운전 시에 극저온이면서 저압이 되는 저온 저압 부분의 용적 V의 3배 이상으로 설정할 경우, 저온 저압 부분은 온도의 저하(예를 들어, 300K에서 60K로)와 압력의 저하(예를 들어, 1/2로)에 의해, 저온 저압 부분의 압력(예를 들어, 기동 시의 1/2)을 유지하려면 그 부분에서 기동 시의 5/2(2.5)배가 되도록 작동 가스를 보충할 필요가 있다.
따라서, 가스 저장 탱크(24)로부터 부족분인 1.5V를 저온 저압 부분에 공급해도, 가스 저장 탱크(24)의 압력을 정지 시의 1/2 이상으로 유지할 수 있다.
즉, 가스 저장 탱크(24)의 용량을, 정지 시에 상온이 되었을 때 가스 저장 탱크(24) 내부의 압력을 소정의 기준 압력(예를 들어, 1MPa) 이하로 유지할 수 있고, 또한 극저온을 발생시키는 운전 시에 고압부의 압력을 소정의 운전 압력으로 유지할 수 있도록 설정함으로써, 피냉각체를 소정의 극저온까지 냉각할 수 있는 냉각 능력을 가지고, 내압 강도가 소정의 압력(예를 들어, 1MPa)을 초과하는 가스 저장 탱크를 이용하지 않으며, 또한 작동 가스의 방출·보충을 하지 않고, 정지 중의 상온으로부터 작동 중의 극저온까지, 고압 부분의 압력을 거의 일정하게 유지할 수 있다.
실시예
도 5는, 본 발명에 따른 극저온 냉동 장치의 제2 실시 형태를 나타내는 도면이다. 이 예는, 극저온부의 출구 온도가 65K, 냉각 능력이 3kW인 실시예이며, 도면 중의 P, T, H, G는 각각 압력(bar), 온도(K), 질량 유량(g/s)을 나타낸다.
이 예에 있어서, 상온 압축기(14)는, 소정의 저압(5.57bar)으로부터 저압과 고압 사이의 제1 중간 압력(8.03bar)까지 압축하는 제1단 압축기(14A)와, 제1 중간 압력으로부터 고압(11.Obar)까지 압축하는 제2단 압축기(14B)로 이루어진다. 제1단 압축기(14A)와 제2단 압축기(14B)의 하류 측(고압 측)에는 각각 수냉의 가스 냉각기(15)가 마련된다.
또한, 팽창기(18)는, 고압(11.Obar)으로부터 저압과 고압 사이의 제2 중간 압력(10.29bar)까지 팽창시키는 제1 팽창기(18A)와, 제2 중간 압력으로부터 저압(5.57bar)까지 팽창시키는 제2 팽창기(18B)로 이루어진다.
또한, 제1 팽창기(18A)와 제2 팽창기(18B)의 중간에, 저압과 고압의 작동 가스끼리 열 교환하는 제2 중간 열 교환기(17)를 구비한다.
제1단 압축기(14A)와 제2단 압축기(14B)는 각각 터보 압축기이고, 제1 팽창기(18A)와 제2 팽창기(18B)는 각각 팽창 터빈이며, 제1단 압축기(14A)와 제2 팽창기(18B), 제2단 압축기(14B)와 제1 팽창기(18A)는 각각 동축이고, 각각 동일한 전동기로 구동되는 것이 바람직하다.
그 밖의 구성은 도 4와 동일하다.
이 구성에 의해, 폐루프(11)로 작동 가스를 압축하고, 압축된 작동 가스를 제1 팽창기(18A) 및 제2 팽창기(18B)에 의해 팽창시켜 56K의 극저온을 발생시켜, 피냉각체로부터 3kW의 열량을 흡열할 수 있음이 확인된다.
상술한 바와 같이, 본 발명에서는, 상온부에 가스 저장 탱크(24)를 마련하여 냉동기의 고압 측(압축기 출구 측)과 저압 측(회귀 측)에 각각 압력 조정 밸브(23a, 23b)를 구비한 배관(바이패스 라인(22))으로 접속한다.
압력 조정 밸브(23a, 23b)의 제어에 있어서의 참조 압력은 모두 고압 측 압력이며, 배관이 고압 측에 접속되는 압력 조정 밸브(23a)는 규정압을 초과했을 때 밸브를 ‘개방’으로 하고, 회귀 측에 접속되는 압력 조정 밸브(23b)는 고압 측이 규정압보다 저하되었을 때 ‘개방’으로 하여 시스템 내부의 압력을 상승시킨다.
또한, 가스 저장 탱크(24)의 용적은 운전 시에 회귀 측 압력보다 약간 높은 압력을 유지하고, 정지 시에 시스템 내부가 상온이 되어도 설계 압력을 초과하지 않는 범위에서 가능한 한 작은 용적으로 설정되어 있다.
또한, 팽창 터빈(제1 팽창기(18A)와 제2 팽창기(18B))을 터보 압축기(제1단 압축기(14A)와 제2단 압축기(14B))와 동축으로 구성하고, 동일한 전동기로 구동함으로써, 팽창 터빈의 동력을 회수하고 전동기 동력을 삭감할 수 있음과 함께, 팽창 터빈을 전동기의 회전 속도로 제한하고, 그 오버 스피드를 본질적으로 방지할 수 있으므로, 팽창 터빈의 바이패스 밸브나 입구의 쓰로틀 밸브가 불필요하며, 압축기는 기동 시부터 정격 회전수의 운전을 할 수 있다.
또한, 냉동기의 정지 시에 압력 조정 밸브(23a, 23b)의 양쪽을 모두 개방으로 하여 압축기 입구 측과 출구 측의 압력을 균압화함으로써, 정지 후에 압축기(제1단 압축기(14A)와 제2단 압축기(14B))의 입구 측과 출구 측의 압력차에 기인하는 압축기의 역회전을 방지할 수 있다.
상술한 구성에 의하여, 작동 가스는 상온 압축기(14)로 승압되며, 상승한 가스의 온도를 가스 냉각기(15)로 상온 부근까지 낮추고, 제1 중간 열 교환기(16), 팽창기(18)를 통과시켜 온도를 저하시키고 압력도 낮춘다. 냉동 부하인 피냉각체로부터 열을 빼앗은 리턴 가스는 제1 중간 열 교환기(16)로 고압 측의 작동 가스를 냉각하면서 상온 부근까지 온도가 상승되어 상온 압축기(14)로 돌아간다. 고압 측과 저압 측의 압력 비는 대략 2이다. 가스 저장 탱크(24)는 냉동기 고압 측(압축기 출구 측)과 회귀 측(압축기 입구 측)에 각각 압력 조정 밸브(23a, 23b)를 구비한 배관(바이패스 라인(22))으로 접속한다.
압력 조정 밸브(23a, 23b)의 제어에 있어서의 참조 압력은 모두 고압 측 압력이며, 배관이 고압 측에 접속되는 압력 조정 밸브(23a)는 규정압을 초과했을 때 밸브를 ‘개방’으로 하고, 회귀 측에 접속되는 압력 조정 밸브(23b)는 고압 측이 규정압보다 저하되었을 때 ‘개방’으로 되어 시스템 내부의 압력을 상승시킨다. 이 2개의 압력 조정 밸브(23a, 23b)의 기능으로 고압 측의 압력은 운전, 기동 및 정지 시에 일정하게 유지된다.
한편, 본 발명은 상술한 실시 형태로 한정되지 않으며, 본 발명의 요지를 일탈하지 않는 범위에서 다양하게 변경할 수가 있음은 물론이다.

Claims (7)

  1. 폐루프(closed loop)로 작동 가스를 압축하고, 압축한 작동 가스를 팽창시킴으로써 극저온을 발생시키는 극저온 냉동 장치로서,
    상기 폐루프의 고압부와 저압부를 연통시키는 바이패스 라인,
    상기 바이패스 라인의 중간에 위치하고, 고압 측과 저압 측에 각각 압력 조정 밸브를 가지는 가스 저장 탱크, 및
    상기 각 압력 조정 밸브를 제어하는 압력 제어 장치를 구비하고,
    상기 압력 제어 장치는, 상온이고 정지 시에 가스 저장 탱크의 압력이 폐루프의 압력과 동일해지도록 상기 각 압력 조정 밸브를 제어하고, 극저온을 발생시키는 운전 시에 고압부의 압력이 소정의 압력이 되도록 상기 각 압력 조정 밸브를 제어하는 것을 특징으로 하는 극저온 냉동 장치.
  2. 제1항에 있어서,
    상기 가스 저장 탱크의 용량은, 정지 시에 상온이 되었을 때 상기 가스 저장 탱크 내부의 압력을 소정의 기준 압력 이하로 유지할 수 있고, 극저온을 발생시키는 운전 시에 상기 고압부의 압력을 소정의 운전 압력으로 유지할 수 있도록 설정되어 있는 것을 특징으로 하는 극저온 냉동 장치.
  3. 제1항에 있어서,
    상기 압력 제어 장치는,
    극저온 냉동 장치의 정지 시에 상기 각 압력 조정 밸브를 전체 개방으로 유지하고,
    기동 중에 상기 고압부가 소정의 최대 압력을 초과하는 경우에 고압 측에 접속되어 있는 압력 조정 밸브를 개방하고, 상기 고압부가 소정의 최저 압력 이하인 경우에 저압 측에 접속되어 있는 압력 조정 밸브를 개방하는 것을 특징으로 하는 극저온 냉동 장치.
  4. 제1항에 있어서,
    상기 폐루프의 상온부에 마련되고 작동 가스를 소정의 저압에서 고압까지 압축하는 상온 압축기,
    상기 극저온부와 상온부의 중간에 위치하고 작동 가스끼리 열 교환하는 제1 중간 열 교환기, 및
    상기 제1 중간 열 교환기보다 극저온부 측에 마련되고 작동 가스를 등엔트로피 팽창(isentropic expansion)시키는 팽창기를 구비하는 것을 특징으로 하는 극저온 냉동 장치.
  5. 제4항에 있어서,
    상기 상온 압축기는, 상기 소정의 저압에서 상기 고압까지 다단(多段)으로 압축하는 복수의 터보 압축기로 이루어지고,
    상기 팽창기는, 상기 고압에서 상기 저압까지 다단으로 팽창시키는 복수의 팽창 터빈으로 이루어지고,
    상기 복수의 팽창 터빈의 중간에, 작동 가스끼리 열 교환하는 복수의 중간 열 교환기를 구비하는 것을 특징으로 하는 극저온 냉동 장치.
  6. 폐루프로 작동 가스를 압축하고, 압축한 작동 가스를 팽창시킴으로써 극저온을 발생시키는 극저온 냉동 장치의 제어 방법으로서,
    상기 극저온 냉동 장치에, 상기 폐루프의 고압부와 저압부를 연통시키는 바이패스 라인과, 상기 바이패스 라인의 중간에 위치하고 고압 측과 저압 측에 각각 압력 조정 밸브를 가지는 가스 저장 탱크를 마련하고,
    상온이고 정지 시에 가스 저장 탱크의 압력이 폐루프의 압력과 동일해지도록 상기 각 압력 조정 밸브를 제어하고, 극저온을 발생시키는 운전 시에 고압부의 압력이 소정의 압력이 되도록 상기 각 압력 조정 밸브를 제어하는 것을 특징으로 하는 극저온 냉동 장치의 제어 방법.
  7. 제6항에 있어서,
    상기 가스 저장 탱크의 용량을, 정지 시 상온이 되었을 때 상기 가스 저장 탱크 내부의 압력을 소정의 기준 압력 이하로 유지할 수 있고, 극저온을 발생시키는 운전 시에 상기 고압부의 압력을 소정의 운전 압력으로 유지할 수 있도록 설정하는 것을 특징으로 하는 극저온 냉동 장치의 제어 방법.
KR1020107009342A 2007-11-19 2008-11-05 극저온 냉동 장치와 그 제어 방법 KR101161339B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2007-298812 2007-11-19
JP2007298812A JP2009121786A (ja) 2007-11-19 2007-11-19 極低温冷凍装置とその制御方法
PCT/JP2008/070108 WO2009066565A1 (ja) 2007-11-19 2008-11-05 極低温冷凍装置とその制御方法

Publications (2)

Publication Number Publication Date
KR20100087135A true KR20100087135A (ko) 2010-08-03
KR101161339B1 KR101161339B1 (ko) 2012-06-29

Family

ID=40667390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107009342A KR101161339B1 (ko) 2007-11-19 2008-11-05 극저온 냉동 장치와 그 제어 방법

Country Status (6)

Country Link
US (1) US20100275616A1 (ko)
EP (1) EP2211124A4 (ko)
JP (1) JP2009121786A (ko)
KR (1) KR101161339B1 (ko)
CN (1) CN101861500B (ko)
WO (1) WO2009066565A1 (ko)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US8786140B2 (en) * 2010-03-05 2014-07-22 Thomas P. Kay High efficiency magnetohydrodynamic power generation using ultra-high magnetic fields and novel cooling
FR2958025A1 (fr) * 2010-03-23 2011-09-30 Air Liquide Procede et installation de refrigeration en charge pulsee
JP5639818B2 (ja) * 2010-08-24 2014-12-10 大陽日酸株式会社 冷凍液化機及び冷凍液化機の運転方法
US8448461B2 (en) * 2010-10-08 2013-05-28 Sumitomo (Shi) Cryogenics Of America Inc. Fast cool down cryogenic refrigerator
US9546647B2 (en) 2011-07-06 2017-01-17 Sumitomo (Shi) Cryogenics Of America Inc. Gas balanced brayton cycle cold water vapor cryopump
FR2980564A1 (fr) * 2011-09-23 2013-03-29 Air Liquide Procede et installation de refrigeration
GB2496573B (en) * 2011-09-27 2016-08-31 Oxford Instr Nanotechnology Tools Ltd Apparatus and method for controlling a cryogenic cooling system
DE112012006734T5 (de) 2012-07-26 2015-04-23 Sumitomo (Shi) Cryogenics Of America, Inc. Brayton-Kreismotor
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
JP5943865B2 (ja) * 2013-03-12 2016-07-05 住友重機械工業株式会社 クライオポンプシステム、クライオポンプシステムの運転方法、及び圧縮機ユニット
US9863669B2 (en) 2013-05-31 2018-01-09 Mayekawa Mfg. Co., Ltd. Brayton cycle type refrigerating apparatus
DE202013010352U1 (de) * 2013-11-18 2015-02-19 Oerlikon Leybold Vacuum Gmbh Kaltkopf für Tieftemperatur-Kältemaschine
JP2015187525A (ja) * 2014-03-27 2015-10-29 大陽日酸株式会社 ブレイトンサイクル冷凍機、及びターボ圧縮機の発熱部の冷却方法
EP3040647A1 (en) * 2014-12-30 2016-07-06 HTS-powercables.nl B.V. Device for cooling a high temperature superconductor
US10753655B2 (en) * 2015-03-30 2020-08-25 William A Kelley Energy recycling heat pump
KR102016827B1 (ko) 2015-05-01 2019-08-30 가부시끼가이샤 마에가와 세이사꾸쇼 냉동기 및 냉동기의 운전 방법
CN107850351B (zh) 2015-06-03 2020-08-07 住友(Shi)美国低温研究有限公司 具有缓冲器的气体平衡发动机
CA3193233A1 (en) 2016-06-13 2017-12-13 Geoff Rowe System, method and apparatus for the regeneration of nitrogen energy within a closed loop cryogenic system
EP3339605A1 (en) * 2016-12-23 2018-06-27 Linde Aktiengesellschaft Method for compressing a gas mixture comprising neon
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10458284B2 (en) * 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
JP6727723B2 (ja) * 2017-01-16 2020-07-22 住友重機械工業株式会社 極低温冷凍機および極低温冷凍機の制御装置
FR3072160B1 (fr) * 2017-10-09 2019-10-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif et procede de refrigeration
WO2019139632A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources
GB2571569A (en) * 2018-03-02 2019-09-04 Linde Ag Cooling system
JP2020007986A (ja) * 2018-07-10 2020-01-16 住友重機械工業株式会社 クライオポンプシステム
GB2575980A (en) * 2018-07-30 2020-02-05 Linde Ag High temperature superconductor refrigeration system
FR3099818B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Dispositif de réfrigération et installation et procédé de refroidissement et/ou de liquéfaction
FR3099816B1 (fr) * 2019-08-05 2022-10-21 Air Liquide Procédé, dispositif et installation de réfrigération et/ou de liquéfaction
FR3099817B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Procédé et installation de refroidissement et/ou de liquéfaction.
FR3101404B1 (fr) * 2019-10-01 2021-10-08 Air Liquide Dispositif de motorisation, véhicule volant et procédé de refroidissement d’un moteur
CA3158586A1 (en) 2019-11-16 2021-05-20 Benjamin R. Bollinger Pumped heat electric storage system
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
WO2022036098A1 (en) 2020-08-12 2022-02-17 Malta Inc. Pumped heat energy storage system with steam cycle
FR3119667B1 (fr) * 2021-02-10 2023-03-24 Air Liquide Dispositif et procédé de liquéfaction d’un fluide tel que l’hydrogène et/ou de l’hélium
FR3119669B1 (fr) * 2021-02-10 2023-03-24 Air Liquide Dispositif et procédé de liquéfaction d’un fluide tel que l’hydrogène et/ou de l’hélium
EP4332460A1 (en) * 2021-04-30 2024-03-06 Sumitomo Heavy Industries, LTD. Cryogenic refrigerator and operating method for cryogenic refrigerator
CN113963886A (zh) * 2021-10-15 2022-01-21 氢合科技(广州)有限公司 一种超导磁体冷却系统及调控方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL128879C (ko) * 1965-07-16 1900-01-01
DE1501730A1 (de) * 1966-05-27 1969-10-30 Linde Ag Verfahren und Vorrichtung zum Verfluessigen von Erdgas
US3992167A (en) * 1975-04-02 1976-11-16 Union Carbide Corporation Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant
JPS59122868A (ja) 1982-12-27 1984-07-16 高エネルギ−物理学研究所長 ネオンガスを利用したカスケ−ドタ−ボヘリウム冷凍液化装置
JPS63210573A (ja) * 1987-02-25 1988-09-01 ダイキン工業株式会社 ヘリウム冷凍機
JPH07117310B2 (ja) * 1987-11-06 1995-12-18 日本原子力研究所 極低温冷凍装置
JPH0781754B2 (ja) * 1990-06-28 1995-09-06 新技術事業団 冷凍機
JPH0579717A (ja) * 1991-09-19 1993-03-30 Hitachi Ltd ヘリウム冷凍機
JP2953849B2 (ja) * 1992-01-30 1999-09-27 アイシン精機株式会社 冷媒回路の圧力調整装置
US5271231A (en) * 1992-08-10 1993-12-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for gas liquefaction with plural work expansion of feed as refrigerant and air separation cycle embodying the same
JP3465117B2 (ja) * 1994-03-30 2003-11-10 日本酸素株式会社 ヘリウム冷凍液化機及びその運転方法
JP2725631B2 (ja) * 1995-05-23 1998-03-11 ダイキン工業株式会社 極低温冷凍機の均圧制御方法及び均圧制御装置
JPH0989399A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd ヘリウム冷凍装置
JP3928230B2 (ja) * 1997-12-01 2007-06-13 石川島播磨重工業株式会社 冷凍機用の回転機械
JP3789634B2 (ja) * 1998-03-11 2006-06-28 三洋電機株式会社 極低温冷凍装置
US6209338B1 (en) * 1998-07-15 2001-04-03 William Bradford Thatcher, Jr. Systems and methods for controlling refrigerant charge
US6640557B1 (en) * 2002-10-23 2003-11-04 Praxair Technology, Inc. Multilevel refrigeration for high temperature superconductivity
JP2005195258A (ja) * 2004-01-07 2005-07-21 Shin Meiwa Ind Co Ltd 冷凍システム及び真空成膜装置
JP2008138910A (ja) * 2006-11-30 2008-06-19 Taiyo Nippon Sanso Corp ヘリウム液化機

Also Published As

Publication number Publication date
CN101861500B (zh) 2012-07-18
EP2211124A4 (en) 2015-07-22
WO2009066565A1 (ja) 2009-05-28
JP2009121786A (ja) 2009-06-04
KR101161339B1 (ko) 2012-06-29
EP2211124A1 (en) 2010-07-28
US20100275616A1 (en) 2010-11-04
CN101861500A (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
KR101161339B1 (ko) 극저온 냉동 장치와 그 제어 방법
JP5356983B2 (ja) 極低温冷凍装置及びその運転方法
US20230073676A1 (en) Pumped heat electric storage system with dual-clutch powertrain system
JP5579259B2 (ja) 冷却システム及び冷却方法
US11852043B2 (en) Pumped heat electric storage system with recirculation
JP5705375B2 (ja) 高温超電導機器の冷却装置及びその運転方法
KR20070011074A (ko) 작동유체의 유량조절수단을 이용하여 부하 변동 조절이가능한 천연가스 액화장치
US20220275999A1 (en) Refrigeration and/or liquefaction method, device and system
Hirai et al. Development of a Neon Cryogenic turbo‐expander with Magnetic Bearings
JP2018066511A (ja) ターボ冷凍機
JP2016169880A (ja) 超電導ケーブル冷却装置、及び超電導ケーブルの冷却方法
JP2019095079A (ja) 高温超電導電力機器用冷却システム及びその運転方法
JPH10238889A (ja) He液化冷凍機
JP2945806B2 (ja) 液化冷凍装置に設けられる冷凍負荷の予冷装置
JP2005003314A (ja) 超電導電磁石冷却装置
JP2021533321A (ja) 高温超電導体冷蔵システム
US20230296294A1 (en) Simplified cryogenic refrigeration system
US20230417465A1 (en) Refrigerator and operation method during precooling of refrigerator
US20230279786A1 (en) Pumped heat energy storage system with modular turbomachinery
CN110136884B (zh) 一种用来冷却高温超导部件的装置
JP2022091505A (ja) 極低温流体循環式冷却システムの運転方法及び極低温流体循環式冷却システム
JPH06101918A (ja) 極低温冷凍機
CN118582859A (zh) 一种冷却或/和液化流体系统及其暖机方法
JP2023003938A (ja) 冷凍機、および、冷凍機の運転方法
JPH11325630A (ja) ヘリウム液化冷凍装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180529

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 8