US20050165590A1 - System and method for virtual laser marking - Google Patents

System and method for virtual laser marking Download PDF

Info

Publication number
US20050165590A1
US20050165590A1 US11/040,603 US4060305A US2005165590A1 US 20050165590 A1 US20050165590 A1 US 20050165590A1 US 4060305 A US4060305 A US 4060305A US 2005165590 A1 US2005165590 A1 US 2005165590A1
Authority
US
United States
Prior art keywords
virtual
pattern
marking
limited rotation
marked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/040,603
Other languages
English (en)
Inventor
Yuhong Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novanta Inc
Original Assignee
GSI Lumonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GSI Lumonics Inc filed Critical GSI Lumonics Inc
Priority to US11/040,603 priority Critical patent/US20050165590A1/en
Assigned to GSI LUMONICS CORPORATION reassignment GSI LUMONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, YUHONG
Publication of US20050165590A1 publication Critical patent/US20050165590A1/en
Assigned to GSI GROUP CORPORATION reassignment GSI GROUP CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMBRIDGE TECHNOLOGY, INC.
Assigned to NOVANTA CORPORATION reassignment NOVANTA CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CAMBRIDGE TECHNOLOGY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention generally relates to limited rotation motor systems, and relates in particular to systems for designing limited rotation motor systems.
  • Limited rotation motors generally include stepper motors and constant velocity motors. Certain stepper motors are well suited for applications requiring high speed and high duty cycle sawtooth scanning at large scan angles.
  • U.S. Pat. No. 6,275,319 discloses an optical scanning device for raster scanning applications.
  • Constant velocity motors generally provide a higher torque constant and typically include a rotor and drive circuitry for causing the rotor to rotate about a central axis, as well as a position transducer, e.g., a tachometer or a position sensor, and a feedback circuit coupled to the transducer that permits the rotor to be driven by the drive circuitry responsive to an input signal and a feedback signal.
  • a position transducer e.g., a tachometer or a position sensor
  • a feedback circuit coupled to the transducer that permits the rotor to be driven by the drive circuitry responsive to an input signal and a feedback signal.
  • U.S. Pat. No. 5,424,632 discloses a conventional two-pole limited rotation motor.
  • a requirement of a desired limited rotation motor for certain applications is a system that is capable of changing the angular position of a load such as a mirror from angle A to angle B, with angles A and B both within the range of angular motion of the scanner, and both defined arbitrarily precisely, in an arbitrarily short time while maintaining a desired linearity of velocity within an arbitrarily small error.
  • Both the minimum time of response of this system and the minimum velocity error are dominated by the effective bandwidth of the system.
  • the effective bandwidth of the system is governed by many factors, including the open loop gain of the system.
  • a limited rotation torque motor may be modeled or represented by a double-integrator model plus several flexible modes and low frequency non-linear effects.
  • a typical closed-loop servo system for a galvanometer includes integral actions for low frequency uncertainties and a notch filter for high frequency resonant modes. System operation is chosen at the mid-frequency range where the system is well modeled by the rigid body.
  • For a double integrator rigid body model there is a direct relationship between the open-loop gain and the cross-over frequency on the frequency response plot.
  • an automatic tuning system for a servowriter head positioning system is disclosed in Autotuning of a servowriter head positioning system with minimum positioning error , Y. H. Huang, S. Weerasooriya and T. S. Low, J. Applied Physics, v.79 pp. 5674-5676 (1996).
  • FIG. 1 shows a marking system 10 that employs two limited rotation motors 12 , 14 that are coupled to mirrors 13 and 15 respectively for guiding a laser beam 16 that is produced by a laser source 18 through an imaging lens 20 toward an imaging surface 22 .
  • the control of the x scan direction motor 12 and the y scan direction motor 14 , as well as the turning on and off of the laser source 18 is provided by a controller 22 .
  • the controller 24 receives input commands 26 regarding a mark that is to be made on the imaging surface.
  • the controller 24 then directs the x scanner 14 and the y-scanner 12 to move accordingly, and to turn on and off the laser source (e.g., to switch between a low and high or above a marking threshold value) responsive to the input command and responsive to the movement of the imaging surface at the target plane.
  • the system may also include position detectors within each motor 12 and 14 that each provide position detection signals back to the controller 24 .
  • Such limited rotation motors may be used, for example, in a variety of laser scanning applications, such as high speed surface metrology.
  • Further laser processing applications include laser welding (for example high speed spot welding), surface treatment, cutting, drilling, marking, trimming, laser repair, rapid prototyping, forming microstructures, or forming dense arrays of nanostructures on various materials.
  • the processing speeds of such systems are typically limited by one of more of mirror speed, X-Y stage speed, material interaction and material thermal time constants, the layout of target material and regions to be processed, and software performance.
  • mirror speed X-Y stage speed
  • material interaction and material thermal time constants the layout of target material and regions to be processed
  • software performance the layout of target material and regions to be processed
  • any significant improvement in scanning system open loop gain may translate into immediate throughput improvements.
  • the open-loop gain is determined by the torque constant of the motor, the inertia of the mirror and rotor structure, and the gain characteristics of the power amplifier. Change in the design of the system, such as changes of head from one size to another size, may cause significant changes in total inertia, and consequently the open-loop gain. Such systems, however, typically must be designed and constructed in order to fully evaluate their performance.
  • the invention provides a virtual marking system for simulating the performance of a limited rotation motor system in accordance with an embodiment.
  • the virtual marking system includes a command generation unit, a limited rotation motor system unit, and an optical-mechanical modeling unit.
  • the command generation unit is for receiving data representative of a pattern to be marked and for providing a set of commands for marking the pattern to be marked.
  • the limited rotation motor system unit is for receiving the set of commands for marking the pattern to be marked and for providing optical element response signals that are representative of virtual positions of an optical element.
  • the optical-mechanical modeling unit is for receiving the optical element response signals and for providing a virtual image of the pattern to be marked.
  • FIG. 1 shows an illustrative diagrammatic view a scanning or marking system of the prior art
  • FIG. 2 shows an illustrative diagrammatic view of a virtual laser marking system in accordance with an embodiment of the invention
  • FIG. 3A shows an illustrative diagrammatic view of a pattern to be marked
  • FIG. 3B shows a real time current that may be employed to mark the pattern shown in FIG. 3A ;
  • FIG. 4 shows an illustrative graphical representation of the angular position and time of a desired mark to be made
  • FIG. 5 shows an illustrative graphical representation of the angular position and time of a desired mark to be made as well as an actual mark being made
  • FIG. 6 shows an illustrative diagrammatic view of a command and position control sequence for a marking operation
  • FIGS. 7A-7C show illustrative diagrammatic views of X position, Y position, Laser-On and Laser-Off timing charts for a desired marking pattern and for a virtual marking pattern in accordance with an embodiment of the invention
  • FIG. 8 shows an illustrative diagrammatic representation of a mathematical model for a limited rotation motor system in accordance with an embodiment of the invention.
  • FIG. 9 shows an illustrative diagrammatic representation of an optical-mechanical modeling system in accordance with an embodiment of the invention.
  • the invention provides that input commands are provided to a virtual limited rotation motor controller, and the virtual limited rotation motor controller provides output commands to a virtual motor, output shaft and mirror system.
  • a position detection system records the position detection signals at the times that a laser would have been on, and thereby determines a virtual laser marking image.
  • FIG. 2 shows a functional block diagram of a system in accordance with an embodiment of the invention.
  • the system 30 includes a command generation and laser control unit 32 that provides pattern generation and laser control to translate a given multi-dimensional image into time sequences of mirror position commands together with laser control commands.
  • the command generation and laser control unit 32 generates a command history and the laser control signal as shown at 33 .
  • the images of the marking are obtained by combining the laser control signal, beam trajectory, the laser type and the material to be marked.
  • the system 30 also includes a closed loop actuator system 34 that simulates the dynamic response of the beam-deflecting surfaces actuated by the motors, as well as optical-mechanical models or components 36 are employed to translate the mirror angle into beam trajectories on the target surface.
  • the laser marking system receives customer adjustable scanning parameters via a parameter input unit 38 and a pattern to be marked via a pattern input 40 .
  • the closed-loop actuator system 34 provides the motor current, power, and angular position trajectory as shown at 42 .
  • the optical-mechanical components provide laser beam trajectories on mirrors, lenses and the target as shown at 43 .
  • the system 30 may also include a laser system 44 , and the system provides images of the marked patterns as shown at 48 .
  • FIG. 3A shows, for example, an illustrative diagrammatic view of a pattern to be marked 52
  • FIG. 3B shows a real time current 54 that may be employed to mark the pattern shown in FIG. 3A .
  • FIG. 4 shows angular position versus time for a move period 60 to make a mark, followed by a wait period 62 .
  • the independent laser control signal is derived as a timed data sequence representing the one and off status of the laser at any given time during the marking process.
  • the motor system model simulates the time responses of the X and Y motor systems subject to the input command generated above.
  • the primary output of the motor system model is the angular displacement of the X and Y mirrors represented by an array of angular position data together with the corresponding time values. Additional output from the motor system includes real time motor current and power dissipation of the motor system.
  • FIG. 5 shows the desired angular position 64 responsive to the marking command shown in FIG. 4 , as well as the actual angular position 66 .
  • the optical path of the laser beam may be as shown in FIG. 1 including a laser beam of a given diameter, optical lenses having defined characteristics, and relative positions among the mirrors, laser, lens, and target surface.
  • the light intensity distributions on the mirror, lens and the target surface are also known.
  • the laser beam is modeled by a Gaussian intensity pattern and is propagated along the path of the beam.
  • the laser light intensity profile trajectories on the mirror, lens and target surface may be constructed mathematically.
  • the marked image is then obtained by shape and/or material property changes on the target surface as the result of the interaction between the surface material and laser intensity changes during the marking process.
  • the customer adjustable scanning parameters may include mark speed (MS), which is the speed of the reference beam during marking, mark delay (MD), which is the wait period at the end of each marking, jump speed (JS), which is the speed of the reference beam during jump, jump delay (JD), which is the wait period at then end of each jump, laser-on delay (L-ON), which is the time difference between the beginning of reference marking and turning the laser beam on, and laser-off delay (L-OFF), which is the time difference between the end of reference marking and turning the laser beam off.
  • the specified pattern to be marked is first converted into a sequence of a laser beam positions.
  • the desired laser beam position is translated into angular positions of the X and Y axis mirror using the user specified marking parameters, including marking speed, mark delay, jump speed and jump delay.
  • the desired mirror angular position commands are represented by an array of position values together with the corresponding time values.
  • FIG. 6 shows an illustrative view of a mark of a triangle 68 being made on a marking surface in which the laser starts at the origin, then marks along the x axis only (2), then back along the x axis and up the y axis (3), and then returns to the origin (4).
  • a pattern to be marked may be defined as the desired trajectory of the mirror positions with its corresponding mark and jump control.
  • pattern data shown in Table 1 below represent a jump to the origin of the field followed by the marking of the triangle 68 as shown in FIG. 6 .
  • TABLE 1 X position Y position Control 0 0 Jump 2 0 Mark 1 2 Mark 0 0 Mark
  • the command generation and laser control unit 32 converts the pattern into the position commands to the scan head using the user defined scanning parameters, i.e., MS, MD, JS, JD, Laser-On and Laser-Off. These commands are represented by a time-stamped sequence of reference mirror positions of both the X and Y axis.
  • a marking job comprises a series of mark and jump commands.
  • T the duration of the operation
  • FIGS. 7A-7C show the commands used to form the mark shown in FIG. 6 .
  • FIG. 7A shows the command 70 along the x-axis over the marking time period
  • FIG. 7B shows the command 72 along the y-axis over the marking time period
  • FIG. 7C shows the command 74 the Laser-On and Laser-Off command along the marking time period.
  • the positions of the X and Y mirrors are generated using the closed-loop system model of the motor system.
  • the closed-loop system model of the motor system There are different ways of representing the system model for the purpose of simulating the time response of the optical scanners. These include a set of differential/difference equations, transfer functions, state space matrices, frequency response data, and graphical system models such as the model discussed below.
  • the laser command sequence along the x axis initially jumps to zero (as shown at 72 ) and then waits for a jump delay 74 .
  • the system requests a marking as shown at 76 ) in the x direction at the mark speed.
  • a mark delay 78 occurs, followed by marking 80 in the reverse direction along the x axis.
  • Another mark delay 82 occurs, followed by continue marking 84 in the x direction at the marking speed.
  • the laser command sequence along the y axis initially jumps to zero (as shown at 92 ) and then waits for a jump delay 94 as shown in FIG. 7B .
  • the system requests a marking as shown at 96 ) in the y direction for at the mark speed.
  • a mark delay 98 occurs, followed by marking 100 in the reverse direction along they axis.
  • Another mark delay 102 occurs, followed by continue marking 104 in they direction at the marking speed.
  • the Laser-On signal will also be followed by a short delay as shown at 112 in FIG. 7C
  • the Laser-Off signal will be followed by a short delay as shown at 114 in FIG. 7C .
  • FIG. 7A also shows simulated time responses of a particular limited rotation motor system responsive to the x axis and y axis commands shown at 70 and 90 .
  • the simulated time response for the x axis is shown at 120 and the simulated time response for they axis is shown at 122 .
  • the mathematical model of the closed-loop motor system 34 may either be derived from physical laws or be identified from real system measurements, or may be formed as a combination of both. The purpose is to simulate the dynamic response of the motor system when commanded with the command signals generated by the command generation and laser control system 32 .
  • FIG. 8 shows an illustrative view of a mathematical model 120 of the limited rotation motor system in accordance with an embodiment.
  • the model 120 includes a representation of a controller 122 and a representation of the motor 124 .
  • the controller 122 includes a proportional unit 126 , an integral unit 128 , and a derivative unit 130 .
  • the controller 122 receives an input command signal as well as a feedback signal.
  • the motor 124 receives the output of the controller and provides mirror positions.
  • a position transducer is employed in the motor 124 to provide position feedback to the input of the controller 122 as shown.
  • the optical-mechanical components 36 convert a given mirror position into the position of the laser beam on the marking surface. This is done by modeling the laser beam from the laser source as a set of parallel lines in the space. The mirrors are then modeled as the planes in the space. First, the beam landing on the focusing lens is calculated as lines reflected by two planes defined by the x and y mirror positions. Next, beam position and shape on the marking surface is calculated using the optical equations that govern the lens used. For example, for standard lenses, the in and out beam follows the cosine rule, and the F-theta lenses, the out beam angle is proportional to the angle of the in beam. Laser control is used in determining whether or not a beam spot should be formed on the marking surface.
  • t ⁇ 1 1 1 1 x 1 x 2 x 3 x 4 y 1 y 2 y 3 y 4 z 1 z 2 z 3 z 4 ⁇ ⁇ 1 1 1 0 x 1 x 2 x 3 x 5 - x 4 y 1 y 2 y 3 y 5 - y 4 z 1 z 2 z 3 z 4 ⁇ ⁇ 1 1 1 0
  • the reflecting line L 2 is defined by the coordinates of B and A′ as shown at 142 in FIG. 9 . Similar operations are performed, and the beam L 3 shown at 144 may be calculated by points C and B′, as shown in FIG. 9 .
  • the trajectory of the laser spot on the marking surface is then used to form the image of markings. This is done by linear superposition of beam spots of all the beams landed on a given area of the marking surface during the entire process of marking. Mathematically, this is done by a multidimensional convolution.
  • the above virtual marking systems may be employed in limited rotation motors in order to evaluate ongoing performance of the limited rotation motor systems when used, for example, in specific applications such as laser marking.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Electric Motors In General (AREA)
  • Laser Beam Processing (AREA)
  • Feedback Control In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
US11/040,603 2004-01-23 2005-01-21 System and method for virtual laser marking Abandoned US20050165590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/040,603 US20050165590A1 (en) 2004-01-23 2005-01-21 System and method for virtual laser marking

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US53884204P 2004-01-23 2004-01-23
US57525504P 2004-05-28 2004-05-28
US61396204P 2004-09-28 2004-09-28
US11/040,603 US20050165590A1 (en) 2004-01-23 2005-01-21 System and method for virtual laser marking

Publications (1)

Publication Number Publication Date
US20050165590A1 true US20050165590A1 (en) 2005-07-28

Family

ID=34831198

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/040,332 Expired - Fee Related US7170251B2 (en) 2004-01-23 2005-01-21 System and method for diagnosing a controller in a limited rotation motor system
US11/040,372 Abandoned US20050177330A1 (en) 2004-01-23 2005-01-21 System and method for optimizing character marking performance
US11/040,603 Abandoned US20050165590A1 (en) 2004-01-23 2005-01-21 System and method for virtual laser marking
US11/040,230 Expired - Fee Related US7190144B2 (en) 2004-01-23 2005-01-21 System and method for adjusting a PID controller in a limited rotation motor system
US11/565,012 Expired - Fee Related US7291999B2 (en) 2004-01-23 2006-11-30 System and method for diagnosing a controller in a limited rotation motor system
US11/566,829 Abandoned US20070121485A1 (en) 2004-01-23 2006-12-05 System and method for adjusting a pid controller in a limited rotation motor system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/040,332 Expired - Fee Related US7170251B2 (en) 2004-01-23 2005-01-21 System and method for diagnosing a controller in a limited rotation motor system
US11/040,372 Abandoned US20050177330A1 (en) 2004-01-23 2005-01-21 System and method for optimizing character marking performance

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/040,230 Expired - Fee Related US7190144B2 (en) 2004-01-23 2005-01-21 System and method for adjusting a PID controller in a limited rotation motor system
US11/565,012 Expired - Fee Related US7291999B2 (en) 2004-01-23 2006-11-30 System and method for diagnosing a controller in a limited rotation motor system
US11/566,829 Abandoned US20070121485A1 (en) 2004-01-23 2006-12-05 System and method for adjusting a pid controller in a limited rotation motor system

Country Status (7)

Country Link
US (6) US7170251B2 (de)
EP (3) EP1706775B1 (de)
JP (1) JP2007519122A (de)
KR (1) KR20060131849A (de)
AT (1) ATE415643T1 (de)
DE (1) DE602005011248D1 (de)
WO (4) WO2005073819A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120000891A1 (en) * 2010-06-30 2012-01-05 Kabushiki Kaisha Yaskawa Denki Robot system

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873237B1 (ko) * 2000-09-21 2008-12-10 지에스아이 루모닉스 코포레이션 디지털 제어 서보 시스템
GB0313887D0 (en) * 2003-06-16 2003-07-23 Gsi Lumonics Ltd Monitoring and controlling of laser operation
US7170251B2 (en) * 2004-01-23 2007-01-30 Gsi Group Corporation System and method for diagnosing a controller in a limited rotation motor system
DE102005004862A1 (de) * 2005-02-02 2006-08-10 Siemens Ag Verfahren zur Überwachung der Temperatur zumindest eines Lagers einer elektrischen Maschine, eine hiermit korrespondierende Überwachungseinrichtung sowie elektrische Maschine mit einer derartigen Überwachungseinrichtung
DE102005047217A1 (de) * 2005-10-01 2007-04-05 Carl Zeiss Jena Gmbh Verfahren zur Steuerung eines optischen Scanners und Steuereinrichtung für einen optischen Scanner
US7659683B2 (en) * 2007-01-30 2010-02-09 Rockwell Automation Technologies, Inc. Resonant frequency identification
US8295983B2 (en) * 2008-11-10 2012-10-23 Silent Printer Holdings, Llc Apparatus and method for characterization and control of usage disturbances in a usage environment of printers and other dynamic systems
HU0800688D0 (en) * 2008-11-17 2009-01-28 Femtonics Kft Multiple free line-scan mode of scanning
US20110022542A1 (en) * 2009-07-21 2011-01-27 Lutnick Howard W Method and related apparatus for exchanging fractional interests in a collection of assets
US8214063B2 (en) * 2009-09-29 2012-07-03 Kollmorgen Corporation Auto-tune of a control system based on frequency response
DE102009045822A1 (de) * 2009-10-20 2011-04-28 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit kalibrierter Motormomentkonstante
US20120056572A1 (en) * 2010-03-08 2012-03-08 Animatics Corporation Apparatus and methods for synchronized distributed controllers
ES2380480B8 (es) * 2010-04-21 2013-11-14 Macsa Id, S.A. Dispositivo y procedimiento para marcar mediante laser un objeto en movimiento.
JP5393598B2 (ja) * 2010-06-03 2014-01-22 キヤノン株式会社 ガルバノ装置及びレーザ加工装置
US8538597B2 (en) * 2010-07-27 2013-09-17 General Electric Company System and method for regulating temperature in a hot water heater
WO2012108246A1 (ja) * 2011-02-10 2012-08-16 株式会社マキタ モータに関連する状態量を推定する装置および電動工具
US20120274646A1 (en) * 2011-04-29 2012-11-01 Randy Johnson Laser particle projection system
ES2444504T3 (es) 2011-09-05 2014-02-25 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Dispositivo láser con una unidad láser, y un recipiente de fluido para medios de refrigeración de dicha unidad láser
ES2530069T3 (es) * 2011-09-05 2015-02-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres y un dispositivo de desviación de combinación
DK2565673T3 (da) 2011-09-05 2014-01-06 Alltec Angewandte Laserlicht Technologie Gmbh Indretning og fremgangsmåde til markering af et objekt ved hjælp af en laserstråle
ES2530070T3 (es) * 2011-09-05 2015-02-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres y conjuntos ajustables individualmente de medios de desviación
ES2452529T3 (es) 2011-09-05 2014-04-01 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Dispositivo láser y procedimiento para marcar un objeto
ES2544034T3 (es) 2011-09-05 2015-08-27 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con al menos un láser de gas y un termodisipador
EP2564972B1 (de) * 2011-09-05 2015-08-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Markierungsvorrichtung mith mehreren Lasern, Deflektionmitteln und Telescopikmitteln für jeden Laserstrahl
ES2544269T3 (es) * 2011-09-05 2015-08-28 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con una pluralidad de láseres de gas con tubos de resonancia y medios de deflexión ajustables individualmente
GB2494416A (en) * 2011-09-07 2013-03-13 Rolls Royce Plc Asset Condition Monitoring Using Internal Signals Of The Controller
CN102520713B (zh) * 2011-12-09 2013-07-03 中国科学院长春光学精密机械与物理研究所 一种步进电机控制及驱动电路的闭环测试装置
CN102621890A (zh) * 2012-03-30 2012-08-01 中国科学院光电技术研究所 一种运动载体光电跟踪稳定平台的控制方法
US9494333B2 (en) 2013-11-08 2016-11-15 Emerson Electric Co. Driving controls and diagnostic methods for communicating motors
US9372219B2 (en) 2014-01-31 2016-06-21 Emerson Electric Co. Bad ground and reverse polarity detection for HVAC controls
US9698683B2 (en) * 2014-07-11 2017-07-04 Infineon Technologies Austria Ag Method and apparatus for controller optimization of a switching voltage regulator
CN104215371B (zh) * 2014-08-27 2017-02-15 湖北开特汽车电子电器系统股份有限公司 一种汽车空调步进电机力矩输出特性的测量系统
CN104460655B (zh) * 2014-11-07 2017-07-28 南京英纳瑞电气有限公司 发电机励磁控制系统的频响检测和参数优化分析方法及系统
JP6466165B2 (ja) * 2014-12-19 2019-02-06 株式会社鷺宮製作所 Pid制御装置、および、pid制御方法、ならびに、pid制御装置を備えた試験装置
US10913071B2 (en) 2016-03-09 2021-02-09 Pearson Incorporated Scalper apparatus and processing system
US10322487B1 (en) 2016-07-15 2019-06-18 Pearson Incorporated Roller mill grinding apparatus with regenerative capability
CN106514002B (zh) * 2016-08-31 2018-06-19 广州创乐激光设备有限公司 一种应用于打标物边界的3d激光打标方法
US20180187608A1 (en) * 2017-01-04 2018-07-05 General Electric Company Method for loop gain sizing of gas turbines
US10704427B2 (en) 2017-01-04 2020-07-07 General Electric Company Method to diagnose power plant degradation using efficiency models
TWI626590B (zh) * 2017-01-16 2018-06-11 建準電機工業股份有限公司 馬達控制器內儲程式之識別方法及具有內儲程式之馬達控制器的電路板
CN106909073B (zh) * 2017-05-03 2019-09-13 北京合康新能变频技术有限公司 一种数字调节器的参数调整方法
US10807098B1 (en) 2017-07-26 2020-10-20 Pearson Incorporated Systems and methods for step grinding
US11165372B2 (en) 2017-09-13 2021-11-02 Rockwell Automation Technologies, Inc. Method and apparatus to characterize loads in a linear synchronous motor system
US10310473B1 (en) 2017-11-30 2019-06-04 Mitsubishi Electric Corporation Systems and methods for path command generation
DE102018109055A1 (de) * 2018-04-17 2019-10-17 Carl Zeiss Microscopy Gmbh Geregelte Steuerung eines Scanners mit Frequenzraumanalyse einer Regelabweichung
US11325133B1 (en) 2018-07-26 2022-05-10 Pearson Incorporated Systems and methods for monitoring the roll diameter and shock loads in a milling apparatus
US10751722B1 (en) 2018-10-24 2020-08-25 Pearson Incorporated System for processing cannabis crop materials
DE102018221272B4 (de) * 2018-12-07 2020-07-30 Lenze Automation Gmbh Verfahren zum Bestimmen von Eigenschaften eines elektrischen Antriebssystems und ein elektrisches Antriebssystem
US10785906B2 (en) 2019-02-19 2020-09-29 Pearson Incorporated Plant processing system
CN109849102B (zh) * 2019-03-12 2020-12-18 深圳市强华科技发展有限公司 一种pcb数控钻孔控制系统及其控制方法
US10757860B1 (en) 2019-10-31 2020-09-01 Hemp Processing Solutions, LLC Stripper apparatus crop harvesting system
CN114787734A (zh) * 2019-11-12 2022-07-22 阿韦瓦软件有限责任公司 操作异常反馈环系统和方法
US10933424B1 (en) 2019-12-11 2021-03-02 Pearson Incorporated Grinding roll improvements
CN112986605B (zh) * 2021-02-22 2022-12-16 宏晶微电子科技股份有限公司 一种电机测速方法及装置
DE102022108043A1 (de) 2022-04-04 2023-10-05 Precitec Gmbh & Co. Kg Verfahren zum Bestimmen einer Totzeit für eine Laserparameter-Änderung und Verfahren zum Synchronisieren einer Scansteuerung und einer Bearbeitungslasersteuerung

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151567A (en) * 1976-06-03 1979-04-24 Siemens Aktiengesellschaft Circuit arrangement for offsetting the data heads of a data cylinder memory by a determinate amount from the mid-position of the data cylinder
US4532402A (en) * 1983-09-02 1985-07-30 Xrl, Inc. Method and apparatus for positioning a focused beam on an integrated circuit
US4646280A (en) * 1984-02-20 1987-02-24 Sony Corporation Optical disk record player with fast access time
US4845698A (en) * 1985-06-05 1989-07-04 Deutsche Thomson-Brandt Gmbh Method of skipping tracks while searching for a track and circuitry for carrying out the method
US4965513A (en) * 1986-09-30 1990-10-23 Martin Marietta Energy Systems, Inc. Motor current signature analysis method for diagnosing motor operated devices
US5157597A (en) * 1988-12-23 1992-10-20 Fanuc Ltd. Method of detecting oscillation of a servo system and automatically adjusting speed loop gain thereof
US5167002A (en) * 1991-08-14 1992-11-24 Fridhandler Robert M Electric motor driver control
US5185676A (en) * 1989-09-27 1993-02-09 Canon Kabushiki Kaisha Beam scanning apparatus and apparatus for writing image information
US5187364A (en) * 1989-03-22 1993-02-16 National Research Council Of Canada/Conseil National De Recherches Du Canada Scanning device with waveform generator optimizer
US5225770A (en) * 1991-02-25 1993-07-06 General Scanning, Inc. Moving magnet galvanometers having a varied density winding distribution coil for a desired performance characteristic
US5233512A (en) * 1990-06-21 1993-08-03 General Electric Company Method and apparatus for actuator fault detection
US5285378A (en) * 1991-03-29 1994-02-08 Mitsubishi Denki K.K. Apparatus for and method of automatically tuning and setting control parameters for a numerical control unit
US5331264A (en) * 1993-04-15 1994-07-19 Fanuc Robotics North America, Inc. Method and device for generating an input command for a motion control system
US5406496A (en) * 1992-07-20 1995-04-11 Recon/Optical, Inc. Adaptive digital controller with automatic plant tuning
US5534071A (en) * 1992-03-13 1996-07-09 American Research Corporation Integrated laser ablation deposition system
US5589870A (en) * 1994-10-31 1996-12-31 Xerox Corporation Spot profile control using fractional interlace factors in a polygon ROS
US5610487A (en) * 1994-05-19 1997-03-11 Maxtor Corporation Servo system with once per revolution rejection
US5656908A (en) * 1995-05-30 1997-08-12 Allen-Bradley Company, Inc. Negative coefficient filter for use with AC motors
US5869945A (en) * 1996-02-06 1999-02-09 Raytheon Ti Systems, Inc. Infrared scanner
US5886422A (en) * 1997-07-30 1999-03-23 Spartec International Corporation Universal electric power controller
US5912541A (en) * 1994-11-30 1999-06-15 Bigler; Robert A. Integrated DC servo motor and controller
US6107600A (en) * 1998-02-27 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
US6198176B1 (en) * 1999-02-16 2001-03-06 Statordyne Llc UPS/CPS system
US6211639B1 (en) * 1997-08-08 2001-04-03 Robert Bosch Gmbh Drive system using a servomotor with a memory
US6211640B1 (en) * 1999-03-23 2001-04-03 Matsushita Electric Industrial Co., Ltd. Motor drive control system
US6256121B1 (en) * 1999-10-08 2001-07-03 Nanovia, Lp Apparatus for ablating high-density array of vias or indentation in surface of object
US6442444B2 (en) * 1996-10-22 2002-08-27 Fanuc Ltd. Method and device for managing equipment connected to controller of production machine
US6449564B1 (en) * 1998-11-23 2002-09-10 General Electric Company Apparatus and method for monitoring shaft cracking or incipient pinion slip in a geared system
US6463352B1 (en) * 1999-01-21 2002-10-08 Amada Cutting Technologies, Inc. System for management of cutting machines
US20030163296A1 (en) * 2002-02-28 2003-08-28 Zetacon Corporation Predictive control system and method
US6690534B2 (en) * 2000-06-14 2004-02-10 Seagate Technology Llc Method and apparatus for handling multiple resonance frequencies in disc drives using active damping
US6697685B1 (en) * 1999-11-06 2004-02-24 David J. Caldwell Flexible closed-loop controller
US6721445B1 (en) * 2000-01-31 2004-04-13 Miriad Technologies Method for detecting anomalies in a signal
US20040135534A1 (en) * 2003-01-14 2004-07-15 Cullen Christopher P. Electric motor controller
US6774601B2 (en) * 2001-06-11 2004-08-10 Predictive Systems Engineering, Ltd. System and method for predicting mechanical failures in machinery driven by an induction motor
US6782296B2 (en) * 2000-02-09 2004-08-24 Randolf Hoche Method and apparatus for positioning a movable element using a galvanometer actuator and pre-filtering
US6822415B1 (en) * 2000-04-20 2004-11-23 Kabushiki Kaish Yaskawa Denki Motor controller
US6826519B1 (en) * 1999-11-11 2004-11-30 Fujitsu Limited Optical path simulation CAD system and method
US6850812B2 (en) * 2001-03-29 2005-02-01 Lasx Industries, Inc. Controller for a laser using predictive models of materials processing
US6853951B2 (en) * 2001-12-07 2005-02-08 Battelle Memorial Institute Methods and systems for analyzing the degradation and failure of mechanical systems
US6876167B1 (en) * 2003-01-24 2005-04-05 Trw Automotive U.S. Llc Method and apparatus for determining the rotational rate of a rotating device
US6885972B2 (en) * 2001-08-31 2005-04-26 Kabushiki Kaisha Toshiba Method for predicting life span of rotary machine used in manufacturing apparatus and life predicting system
US20050174124A1 (en) * 2004-01-23 2005-08-11 Yuhong Huang System and method for diagnosing a controller in a limited rotation motor system
US7039557B2 (en) * 2001-09-07 2006-05-02 Daimlerchrysler Ag Device and method for the early recognition and prediction of unit damage
US7183738B2 (en) * 2003-12-25 2007-02-27 Mitsubishi Denki Kabushiki Kaisha Motor control device

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US275041A (en) * 1883-04-03 Apparatus for boiling acids and chemicals
US3932794A (en) * 1973-06-12 1976-01-13 Funken Co., Ltd. Revolution speed controller using both analog and digital control
US3999043A (en) 1975-06-02 1976-12-21 Servo Corporation Of America Pulse width detection circuit for electro-optical label reading system
US4282468A (en) * 1979-04-16 1981-08-04 Hyper-Loop, Inc. High speed position feedback and comparator system
US4398241A (en) * 1980-08-07 1983-08-09 The Singer Company Digital control circuit for an analog servo
US4514671A (en) * 1982-04-02 1985-04-30 Ampex Corporation Head scanning servo system in a recording and/or reproducing apparatus
US4536806A (en) 1982-04-02 1985-08-20 Ampex Corporation Microprocessor controlled multiple servo system for a recording and/or reproducing apparatus
US4536906A (en) 1982-06-08 1985-08-27 Thomas Jourdan Plc Mattress with apertured insert
JPS59177186A (ja) 1983-03-26 1984-10-06 株式会社 サタケ 色彩選別機の自動制御装置
US4631605A (en) 1984-09-20 1986-12-23 Ampex Corporation Multiple speed scanner servo system for protecting the heads and tape of helical recorders
DE3503983A1 (de) 1985-02-06 1986-08-07 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen Fokus-regelung fuer ein geraet fuer plattenfoermige, rotierende informationstraeger
US4630187A (en) * 1985-09-09 1986-12-16 Sperry Corporation Power converter with duty ratio quantization
US4670653A (en) 1985-10-10 1987-06-02 Rockwell International Corporation Infrared detector and imaging system
JPS62210503A (ja) 1986-03-11 1987-09-16 Yamatake Honeywell Co Ltd プロセス制御の不安定化判別およびチユ−ニング方式
US4870631A (en) 1986-05-30 1989-09-26 Finial Technology, Inc. Optical turntable system with reflected spot position detection
US4972344A (en) 1986-05-30 1990-11-20 Finial Technology, Inc. Dual beam optical turntable
FR2600789B1 (fr) * 1986-06-26 1988-11-25 Shell Int Research Procede pour realiser le reglage d'accord d'un regulateur
DE3736790A1 (de) * 1987-10-30 1989-05-11 Broadcast Television Syst Verfahren zur automatischen korrektur von bildstandsfehlern bei der filmabtastung
US4961117A (en) 1987-11-13 1990-10-02 New Dest Corporation Document scanner
JP2942804B2 (ja) * 1988-03-03 1999-08-30 株式会社ニコン レーザ加工装置及びレーザ加工装置のレーザビーム制御方法
US4941082A (en) * 1988-04-25 1990-07-10 Electro Scientific Industries, Inc. Light beam positioning system
US4908493A (en) * 1988-05-31 1990-03-13 Midwest Research Institute Method and apparatus for optimizing the efficiency and quality of laser material processing
JPH01308185A (ja) * 1988-06-02 1989-12-12 Fanuc Ltd モータ制御装置
US4864295A (en) 1988-06-30 1989-09-05 Cambridge Technology, Inc. Capacitance sensing system using multiple capacitances to sense rotary motion
US4956831A (en) * 1988-09-14 1990-09-11 Miniscribe Corporation Low acoustic noise head actuator
US4978909A (en) 1988-11-14 1990-12-18 Martin Marietta Energy Systems, Inc. Demodulation circuit for AC motor current spectral analysis
US4893068A (en) * 1988-11-15 1990-01-09 Hughes Aircraft Company Digital servo employing switch mode lead/lag integrator
US4930027A (en) * 1988-11-23 1990-05-29 Ampex Corporation Method and apparatus for tape speed override operation when recovering helical audio
JP2882586B2 (ja) * 1989-01-13 1999-04-12 株式会社東芝 適応制御装置
US5245528A (en) 1989-03-20 1993-09-14 Hitachi, Ltd. Process control apparatus and method for adjustment of operating parameters of controller of the process control apparatus
US5122720A (en) * 1989-12-01 1992-06-16 Martinsound Technologies, Inc. Automated fader system
US5075875A (en) 1990-04-20 1991-12-24 Acuprint, Inc. Printer control system
US5119213A (en) * 1990-07-27 1992-06-02 Xerox Corporation Scanner document absence code system
DE4023998A1 (de) * 1990-07-28 1992-01-30 Alfill Getraenketechnik Verfahren und vorrichtung zum abfuellen einer fluessigkeit in portionsbehaelter
JP3164580B2 (ja) 1990-09-27 2001-05-08 豊田工機株式会社 ディジタルサーボ制御装置
PL169904B1 (pl) 1991-01-17 1996-09-30 United Distillers Plc Sposób i urzadzenie do znakowania poruszajacych sie wyrobów PL PL PL
US5280377A (en) 1991-06-28 1994-01-18 Eastman Kodak Company Beam scanning galvanometer with spring supported mirror
US5257041A (en) 1991-06-28 1993-10-26 Eastman Kodak Company Method and circuit for driving an electromechanical device rapidly with great precision
JPH0536851A (ja) * 1991-07-31 1993-02-12 Nec Yamaguchi Ltd レーザマーカ装置
US6453923B2 (en) * 1991-09-24 2002-09-24 Patent Category Corp. Collapsible structures
US5229574A (en) * 1991-10-15 1993-07-20 Videojet Systems International, Inc. Print quality laser marker apparatus
DE4221619C2 (de) 1992-07-01 1997-01-09 Hell Ag Linotype Vorrichtung zur Drehzahlstabilisierung
US5275041A (en) 1992-09-11 1994-01-04 Halliburton Company Equilibrium fracture test and analysis
US5223778A (en) * 1992-09-16 1993-06-29 Allen-Bradley Company, Inc. Automatic tuning apparatus for PID controllers
US5568377A (en) 1992-10-29 1996-10-22 Johnson Service Company Fast automatic tuning of a feedback controller
US5537109A (en) 1993-05-28 1996-07-16 General Scanning, Inc. Capacitive transducing with feedback
US5452285A (en) 1993-09-30 1995-09-19 Polaroid Corporation Uniformly distributed servo data for optical information storage medium
US5424526A (en) 1993-12-17 1995-06-13 Storage Technology Corporation High data density label and system using same
JP3486876B2 (ja) * 1994-01-28 2004-01-13 ソニー株式会社 手書き入力装置および方法
US5453618A (en) 1994-01-31 1995-09-26 Litton Systems, Inc. Miniature infrared line-scanning imager
US5629870A (en) 1994-05-31 1997-05-13 Siemens Energy & Automation, Inc. Method and apparatus for predicting electric induction machine failure during operation
US5523701A (en) 1994-06-21 1996-06-04 Martin Marietta Energy Systems, Inc. Method and apparatus for monitoring machine performance
US5585976A (en) 1994-06-22 1996-12-17 Seagate Technology, Inc. Digital sector servo incorporating repeatable run out tracking
US5604516A (en) 1994-06-30 1997-02-18 Symbol Technologies, Inc. Graphical user interface control for providing both automatic and manual data input
US5576632A (en) 1994-06-30 1996-11-19 Siemens Corporate Research, Inc. Neural network auto-associator and method for induction motor monitoring
US5646765A (en) 1994-10-05 1997-07-08 Synrad, Inc. Laser scanner
US5541486A (en) 1994-10-21 1996-07-30 Elsag International N.V. Automatic tuning of a position control circuit for a servo device
JPH08190600A (ja) 1995-01-11 1996-07-23 Olympus Optical Co Ltd 情報再生システム
US5699494A (en) 1995-02-24 1997-12-16 Lexmark International, Inc. Remote replication of printer operator panel
WO1996028837A1 (en) 1995-03-10 1996-09-19 Molecular Imaging Corporation Hybrid control system for scanning probe microscopes
US5600121A (en) 1995-03-20 1997-02-04 Symbol Technologies, Inc. Optical reader with independent triggering and graphical user interface
US5726905A (en) 1995-09-27 1998-03-10 General Electric Company Adaptive, on line, statistical method and apparatus for motor bearing fault detection by passive motor current monitoring
JP3078484B2 (ja) 1995-10-03 2000-08-21 オリンパス光学工業株式会社 コード読取装置
US5726883A (en) 1995-10-10 1998-03-10 Xerox Corporation Method of customizing control interfaces for devices on a network
US5932119A (en) 1996-01-05 1999-08-03 Lazare Kaplan International, Inc. Laser marking system
ES2140223T3 (es) 1996-02-09 2000-02-16 Siemens Ag Procedimiento para la generacion de parametros de regulacion a partir de una señal de respuesta de un tramo de regulacion por medio de un ordenador.
GB2310504A (en) 1996-02-23 1997-08-27 Spectrum Tech Ltd Laser marking apparatus and methods
US5742503A (en) 1996-03-25 1998-04-21 National Science Council Use of saturation relay feedback in PID controller tuning
JPH09269804A (ja) 1996-03-29 1997-10-14 Aisin Seiki Co Ltd 自動制御系の安定制御装置
US5742522A (en) 1996-04-01 1998-04-21 General Electric Company Adaptive, on line, statistical method and apparatus for detection of broken bars in motors by passive motor current monitoring and digital torque estimation
KR100194377B1 (ko) * 1996-04-08 1999-06-15 윤종용 유전 이론을 이용한 피드 제어기의 이득 결정 장치및방법
US6243350B1 (en) * 1996-05-01 2001-06-05 Terastor Corporation Optical storage systems with flying optical heads for near-field recording and reading
EP0816860B1 (de) 1996-06-28 2003-01-29 Siemens Corporate Research, Inc. Fehlererfassung während des Betriebes von elektrischer Gerätschaft
DE19638879A1 (de) 1996-09-23 1998-03-26 Thomson Brandt Gmbh Verfahren zum Verarbeiten der Ausgangssignale eines optoelektronischen Abtasters in einem Wiedergabe- oder Aufzeichnungsgerät und entsprechendes Gerät
ID19364A (id) 1996-09-25 1998-07-02 Thomson Brandt Gmbh Mereproduksi atau alat perekaman untuk mereproduksi, atau perekam, suatu medium perekam optikal
US5808725A (en) 1996-09-27 1998-09-15 Eastman Kodak Company Illumination control system for a film scanner
US6041287A (en) 1996-11-07 2000-03-21 Reliance Electric Industrial Company System architecture for on-line machine diagnostics
US5917428A (en) 1996-11-07 1999-06-29 Reliance Electric Industrial Company Integrated motor and diagnostic apparatus and method of operating same
US6072653A (en) 1997-10-01 2000-06-06 Seagate Technology, Inc. Methods and apparatus for calibration of a rotating scanner to a track recorded on a tape
US6081751A (en) 1997-12-19 2000-06-27 National Instruments Corporation System and method for closed loop autotuning of PID controllers
US6199018B1 (en) 1998-03-04 2001-03-06 Emerson Electric Co. Distributed diagnostic system
US6453722B1 (en) 1998-06-11 2002-09-24 Seagate Technology Llc Integrated test system for a disc drive pivot bearing and actuator
JP3519278B2 (ja) * 1998-07-08 2004-04-12 三菱電機株式会社 レーザ加工方法、レーザ加工装置およびその方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
US6326758B1 (en) * 1999-12-15 2001-12-04 Reliance Electric Technologies, Llc Integrated diagnostics and control systems
US6317637B1 (en) 1998-10-22 2001-11-13 National Instruments Corporation System and method for maintaining output continuity of PID controllers in response to changes in controller parameters
US6071653A (en) * 1998-11-04 2000-06-06 United Microelectronics Corp. Method for fabricating a photomask
US6054828A (en) 1998-12-16 2000-04-25 Stmicroelectronics, N.V. Circuitry and methods for adjusting and switching the gain of a digital-to-analog converter in a disk drive
US6445962B1 (en) 1999-03-15 2002-09-03 Fisher Rosemount Systems, Inc. Auto-tuning in a distributed process control environment
US6304359B1 (en) 1999-07-20 2001-10-16 Lasesys Corporation High scan efficiency galvanometric laser scanning device
JP2003506799A (ja) * 1999-08-09 2003-02-18 クロス マッチ テクノロジーズ, インコーポレイテッド Guiと指紋スキャナとの間のインターフェースのための方法、システム、およびコンピュータプログラム製品
US6198246B1 (en) 1999-08-19 2001-03-06 Siemens Energy & Automation, Inc. Method and apparatus for tuning control system parameters
US6643080B1 (en) 1999-08-25 2003-11-04 Seagate Technology Llc Resonance identification by commanding a spindle speed change
US6510353B1 (en) * 1999-11-04 2003-01-21 Fisher-Rosemount Systems, Inc. Determining tuning parameters for a process controller from a robustness map
US6350239B1 (en) * 1999-12-28 2002-02-26 Ge Medical Systems Global Technology Company, Llc Method and apparatus for distributed software architecture for medical diagnostic systems
US6424873B1 (en) 1999-12-30 2002-07-23 Honeywell Inc. Systems and methods for limiting integral calculation components in PID controllers
US6577907B1 (en) * 2000-04-24 2003-06-10 International Business Machines Corporation Fully modular multifunction device
US6622099B2 (en) 2000-08-14 2003-09-16 Kollmorgen Corporation Frequency domain auto-tune for an internal motor controller
KR100873237B1 (ko) * 2000-09-21 2008-12-10 지에스아이 루모닉스 코포레이션 디지털 제어 서보 시스템
US6496782B1 (en) * 2000-10-30 2002-12-17 General Electric Company Electric machine monitoring method and system
US6727725B2 (en) * 2001-05-01 2004-04-27 Square D Company Motor bearing damage detection via wavelet analysis of the starting current transient
DE60203458T3 (de) * 2001-09-27 2010-02-18 Reliance Electric Technologies, LLC, Mayfield Heights Integrierte Steuerung und Diagnose für ein motorbetriebenes System unter Verwendung von Schwingungs-, Druck-, Temperatur-, Geschwindigkeits-, und/oder Stromanalyse
US6668202B2 (en) * 2001-11-21 2003-12-23 Sumitomo Heavy Industries, Ltd. Position control system and velocity control system for stage driving mechanism
EP1321114B1 (de) * 2001-11-21 2018-03-07 Zimmer GmbH Schultergelenkprothese
US6980938B2 (en) * 2002-01-10 2005-12-27 Cutler Technology Corporation Method for removal of PID dynamics from MPC models
US6895352B2 (en) * 2002-03-12 2005-05-17 Itt Manufacturing Enterprises, Inc. Simultaneous rapid open and closed loop bode plot measurement using a binary pseudo-random sequence
US6812668B2 (en) * 2002-03-25 2004-11-02 Brother Kogyo Kabushiki Kaisha Apparatus, method and program for controlling an electric motor
US7067763B2 (en) * 2002-05-17 2006-06-27 Gsi Group Corporation High speed, laser-based marking method and system for producing machine readable marks on workpieces and semiconductor devices with reduced subsurface damage produced thereby
JP4265206B2 (ja) * 2002-11-27 2009-05-20 株式会社 東北テクノアーチ 非接触導電率測定システム
KR100507835B1 (ko) * 2003-02-03 2005-08-17 한국과학기술원 Pid 제어기의 최적 게인 선정방법
TW200534068A (en) * 2004-04-07 2005-10-16 Macronix Int Co Ltd Close loop control system and method thereof

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151567A (en) * 1976-06-03 1979-04-24 Siemens Aktiengesellschaft Circuit arrangement for offsetting the data heads of a data cylinder memory by a determinate amount from the mid-position of the data cylinder
US4532402A (en) * 1983-09-02 1985-07-30 Xrl, Inc. Method and apparatus for positioning a focused beam on an integrated circuit
US4646280A (en) * 1984-02-20 1987-02-24 Sony Corporation Optical disk record player with fast access time
US4845698A (en) * 1985-06-05 1989-07-04 Deutsche Thomson-Brandt Gmbh Method of skipping tracks while searching for a track and circuitry for carrying out the method
US4965513A (en) * 1986-09-30 1990-10-23 Martin Marietta Energy Systems, Inc. Motor current signature analysis method for diagnosing motor operated devices
US5157597A (en) * 1988-12-23 1992-10-20 Fanuc Ltd. Method of detecting oscillation of a servo system and automatically adjusting speed loop gain thereof
US5187364A (en) * 1989-03-22 1993-02-16 National Research Council Of Canada/Conseil National De Recherches Du Canada Scanning device with waveform generator optimizer
US5185676A (en) * 1989-09-27 1993-02-09 Canon Kabushiki Kaisha Beam scanning apparatus and apparatus for writing image information
US5233512A (en) * 1990-06-21 1993-08-03 General Electric Company Method and apparatus for actuator fault detection
US5225770A (en) * 1991-02-25 1993-07-06 General Scanning, Inc. Moving magnet galvanometers having a varied density winding distribution coil for a desired performance characteristic
US5285378A (en) * 1991-03-29 1994-02-08 Mitsubishi Denki K.K. Apparatus for and method of automatically tuning and setting control parameters for a numerical control unit
US5167002A (en) * 1991-08-14 1992-11-24 Fridhandler Robert M Electric motor driver control
US5534071A (en) * 1992-03-13 1996-07-09 American Research Corporation Integrated laser ablation deposition system
US5406496A (en) * 1992-07-20 1995-04-11 Recon/Optical, Inc. Adaptive digital controller with automatic plant tuning
US5331264A (en) * 1993-04-15 1994-07-19 Fanuc Robotics North America, Inc. Method and device for generating an input command for a motion control system
US5610487A (en) * 1994-05-19 1997-03-11 Maxtor Corporation Servo system with once per revolution rejection
US5589870A (en) * 1994-10-31 1996-12-31 Xerox Corporation Spot profile control using fractional interlace factors in a polygon ROS
US5912541A (en) * 1994-11-30 1999-06-15 Bigler; Robert A. Integrated DC servo motor and controller
US5912541C1 (en) * 1994-11-30 2002-06-11 Animatics Corp Integrated servo motor and controller
US5656908A (en) * 1995-05-30 1997-08-12 Allen-Bradley Company, Inc. Negative coefficient filter for use with AC motors
US5869945A (en) * 1996-02-06 1999-02-09 Raytheon Ti Systems, Inc. Infrared scanner
US6442444B2 (en) * 1996-10-22 2002-08-27 Fanuc Ltd. Method and device for managing equipment connected to controller of production machine
US5886422A (en) * 1997-07-30 1999-03-23 Spartec International Corporation Universal electric power controller
US6211639B1 (en) * 1997-08-08 2001-04-03 Robert Bosch Gmbh Drive system using a servomotor with a memory
US6107600A (en) * 1998-02-27 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
US6449564B1 (en) * 1998-11-23 2002-09-10 General Electric Company Apparatus and method for monitoring shaft cracking or incipient pinion slip in a geared system
US6463352B1 (en) * 1999-01-21 2002-10-08 Amada Cutting Technologies, Inc. System for management of cutting machines
US6198176B1 (en) * 1999-02-16 2001-03-06 Statordyne Llc UPS/CPS system
US6211640B1 (en) * 1999-03-23 2001-04-03 Matsushita Electric Industrial Co., Ltd. Motor drive control system
US6256121B1 (en) * 1999-10-08 2001-07-03 Nanovia, Lp Apparatus for ablating high-density array of vias or indentation in surface of object
US6697685B1 (en) * 1999-11-06 2004-02-24 David J. Caldwell Flexible closed-loop controller
US6826519B1 (en) * 1999-11-11 2004-11-30 Fujitsu Limited Optical path simulation CAD system and method
US6721445B1 (en) * 2000-01-31 2004-04-13 Miriad Technologies Method for detecting anomalies in a signal
US6782296B2 (en) * 2000-02-09 2004-08-24 Randolf Hoche Method and apparatus for positioning a movable element using a galvanometer actuator and pre-filtering
US6822415B1 (en) * 2000-04-20 2004-11-23 Kabushiki Kaish Yaskawa Denki Motor controller
US6690534B2 (en) * 2000-06-14 2004-02-10 Seagate Technology Llc Method and apparatus for handling multiple resonance frequencies in disc drives using active damping
US6850812B2 (en) * 2001-03-29 2005-02-01 Lasx Industries, Inc. Controller for a laser using predictive models of materials processing
US6774601B2 (en) * 2001-06-11 2004-08-10 Predictive Systems Engineering, Ltd. System and method for predicting mechanical failures in machinery driven by an induction motor
US6885972B2 (en) * 2001-08-31 2005-04-26 Kabushiki Kaisha Toshiba Method for predicting life span of rotary machine used in manufacturing apparatus and life predicting system
US7039557B2 (en) * 2001-09-07 2006-05-02 Daimlerchrysler Ag Device and method for the early recognition and prediction of unit damage
US6853951B2 (en) * 2001-12-07 2005-02-08 Battelle Memorial Institute Methods and systems for analyzing the degradation and failure of mechanical systems
US20030163296A1 (en) * 2002-02-28 2003-08-28 Zetacon Corporation Predictive control system and method
US20040135534A1 (en) * 2003-01-14 2004-07-15 Cullen Christopher P. Electric motor controller
US6876167B1 (en) * 2003-01-24 2005-04-05 Trw Automotive U.S. Llc Method and apparatus for determining the rotational rate of a rotating device
US7183738B2 (en) * 2003-12-25 2007-02-27 Mitsubishi Denki Kabushiki Kaisha Motor control device
US20050174124A1 (en) * 2004-01-23 2005-08-11 Yuhong Huang System and method for diagnosing a controller in a limited rotation motor system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120000891A1 (en) * 2010-06-30 2012-01-05 Kabushiki Kaisha Yaskawa Denki Robot system

Also Published As

Publication number Publication date
EP1706776A1 (de) 2006-10-04
US20070089500A1 (en) 2007-04-26
US7170251B2 (en) 2007-01-30
US20070121485A1 (en) 2007-05-31
EP1706775B1 (de) 2008-11-26
KR20060131849A (ko) 2006-12-20
WO2005072264A2 (en) 2005-08-11
US7190144B2 (en) 2007-03-13
WO2005073819A1 (en) 2005-08-11
ATE415643T1 (de) 2008-12-15
US20050162174A1 (en) 2005-07-28
US7291999B2 (en) 2007-11-06
WO2005073782A1 (en) 2005-08-11
EP1706801A1 (de) 2006-10-04
EP1706775A1 (de) 2006-10-04
US20050177330A1 (en) 2005-08-11
WO2005073783A1 (en) 2005-08-11
US20050174124A1 (en) 2005-08-11
JP2007519122A (ja) 2007-07-12
DE602005011248D1 (de) 2009-01-08
WO2005072264A3 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US20050165590A1 (en) System and method for virtual laser marking
CN101396767B (zh) 激光加工设备、加工数据产生方法
US7402774B2 (en) Flexible scan field
US4950862A (en) Laser machining apparatus using focusing lens-array
CN104105994B (zh) 用于激光束扫描的声光偏转器的配置
CN107150168B (zh) 激光处理设备和经由激光工具操作而处理工件的方法
CN105301768B (zh) 振镜式激光扫描系统
JP2000238137A (ja) 光造形装置及び光造形方法
US20210299658A1 (en) Device and method for direct printing of microfluidic chip based on large-format array femtosecond laser
JP2003136270A (ja) レーザ加工装置
JP3365388B2 (ja) レーザ加工光学装置
CN111604589B (zh) 激光加工装置
JPH0693402B2 (ja) レ−ザ・トリミング方法及び同トリミング装置
JPH052146A (ja) ビームポジシヨナ
KR20020025180A (ko) 미리 정해진 희망 경로를 입자 비임 또는 파동 비임으로 표시하는 방법 및 그 방법의 이용방법
JP3494960B2 (ja) スキャン式レーザ加工装置および加工シミュレーション可能なレーザ加工方法
CN1910498A (zh) 用于虚拟激光标记的系统和方法
GB2068597A (en) Laser spatial stabilization transmission system
DE102020211914A1 (de) Steuerung, steuersystem und programm
JP2008132514A (ja) レーザ加工方法及びその方法を用いて製造されるマイクロセル
JP2002035975A (ja) レーザドリル方法及び装置
CN117300396B (zh) 激光打孔控制方法、装置、激光设备及存储介质
JP2004038106A (ja) レーザビーム走査装置
DE112022000485T5 (de) Einlernpunkt-Erzeugungsvorrichtung, die Einlernpunkte auf Grundlage einer Ausgabe eines Sensors erzeugt, und Einlernpunkt-Erzeugungsverfahren
JPS61193890A (ja) レ−ザ−マ−カ−

Legal Events

Date Code Title Description
AS Assignment

Owner name: GSI LUMONICS CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUANG, YUHONG;REEL/FRAME:016412/0605

Effective date: 20050325

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GSI GROUP CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAMBRIDGE TECHNOLOGY, INC.;REEL/FRAME:037513/0367

Effective date: 20151231

AS Assignment

Owner name: NOVANTA CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:CAMBRIDGE TECHNOLOGY, INC.;REEL/FRAME:043919/0001

Effective date: 20151231