US20040224917A1 - Compositions and methods for combination antiviral therapy - Google Patents

Compositions and methods for combination antiviral therapy Download PDF

Info

Publication number
US20040224917A1
US20040224917A1 US10/757,141 US75714104A US2004224917A1 US 20040224917 A1 US20040224917 A1 US 20040224917A1 US 75714104 A US75714104 A US 75714104A US 2004224917 A1 US2004224917 A1 US 2004224917A1
Authority
US
United States
Prior art keywords
emtricitabine
tenofovir disoproxil
physiologically functional
disoproxil fumarate
functional derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/757,141
Other languages
English (en)
Inventor
Terrance Dahl
Mark Menning
Reza Oliyai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32776014&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040224917(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Priority to US10/757,141 priority Critical patent/US20040224917A1/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAHL, TERRENCE C., MENNING, MARK M., OLIYAI, REZA
Publication of US20040224917A1 publication Critical patent/US20040224917A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2009Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the invention relates generally to combinations of compounds with antiviral activity and more specifically with anti-HIV properties. In particular, it relates to chemically stable combinations of structurally diverse anti-viral agents.
  • HIV-1 Human immunodeficiency virus type 1
  • RT reverse transcriptase
  • Prt protease
  • Int integrase
  • drugs targeting reverse transcriptase and protease are in wide use and have shown effectiveness, particularly when employed in combination, toxicity and development of resistant strains have limited their usefulness (Palella, et al N. Engl. J. Med . (1998) 338:853-860; Richman, D. D. Nature (2001) 410:995-1001).
  • HIV-1 protease Prt
  • the HIV Prt cleaves the viral Gag and Gag-Pol polyproteins to produce viral structural proteins (p17, p24, p7 and p6) and the three viral enzymes.
  • Combination therapy with RT inhibitors has proven to be highly effective in suppressing viral replication to unquantifiable levels for a sustained period of time. Also, combination therapy with RT and Prt inhibitors (PI) have shown synergistic effects in suppressing HIV replication.
  • AZT zidovudineTM, 3′-azido, 3′-deoxythymidine
  • AZT demonstrates synergistic antiviral activity in vitro in combination with agents that act at HIV-1 replicative steps other than reverse transcription, including recombinant soluble CD4 castanospermine and recombinant interferon- ⁇ .
  • agents that act at HIV-1 replicative steps other than reverse transcription including recombinant soluble CD4 castanospermine and recombinant interferon- ⁇ .
  • combinations of compounds can give rise to increased cytotoxicity.
  • AZT and recombinant interferon- ⁇ have an increased cytotoxic effect on normal human bone marrow progenitor cells.
  • the present invention provides combinations of antiviral compounds, in particular compositions and methods for inhibition of HIV.
  • the invention includes a composition including tenofovir disoproxil fumarate and emtricitabine which has anti-HIV activity.
  • the composition of tenofovir DF and emtricitabine is both chemically stable and either synergistic and/or reduces the side effects of one or both of tenofovir DF and emtricitabine. Increased patient compliance is likely in view of the lower pill burden and simplified dosing schedule.
  • the present invention relates to therapeutic combinations of [2-(6-amino-purin-9-yl)-1-methyl-ethoxymethyl]-phosphonic acid diisopropoxycarbonyloxymethyl ester fumarate (tenofovir disoproxil fumarate, tenofovir DF, TDF, Viread®) and (2R, 5S, cis)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one (emtricitabine, EmtrivaTM, ( ⁇ )-cis FTC) and their use in the treatment of HIV infections including infections with HIV mutants bearing resistance to nucleoside and/or non-nucleoside inhibitors.
  • the present invention is also concerned with pharmaceutical compositions and formulations of said combinations of tenofovir disoproxil fumarate and emtricitabine.
  • Another aspect of the invention is a pharmaceutical formulation comprising a physiologically functional derivative of tenofovir disoproxil fumarate or a physiologically functional derivative of emtricitabine.
  • Therapeutic combinations and pharmaceutical compositions and formulations of the invention include the combination of PMEA or PMPA (tenofovir) compounds with emtricitabine or (2R, 5S, cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one (3TC, lamivudine, EpivirTM), and their use in the treatment of HIV infections.
  • PMEA or PMPA tenofovir
  • One aspect of the invention is a method for the treatment or prevention of the symptoms or effects of an HIV infection in an infected animal which comprises administering to, i.e. treating, said animal with a therapeutically effective amount of a combination comprising [2-(6-amino-purin-9-yl)-1-methyl-ethoxymethyl]-phosphonic acid diisopropoxycarbonyloxymethyl ester fumarate (tenofovir DF, TDF) or a physiologically functional derivative thereof, and (2R, 5S, cis)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one (emtricitabine) or a physiologically functional derivative thereof.
  • Another aspect of the invention is a unit dosage form of a therapeutic combination comprising tenofovir disoproxil fumarate and emtricitabine, or physiological functional derivatives thereof.
  • the unit dosage form may be formulated for administration by oral or other routes and is unexpectedly chemically stable in view of the properties of the structurally diverse components.
  • Another aspect of the invention is directed to chemically stable combination antiviral compositions comprising tenofovir disoproxil fumarate and emtricitabine.
  • the chemically stable combinations of tenofovir disoproxil fumarate and emtricitabine further comprise a third antiviral agent.
  • the unique chemical stability of tenofovir disoproxil fumarate and emtricitabine is taken advantage of in order to enable the combination with the third antiviral agent.
  • Particularly useful third agents include, by way of example and not limitation, those of Table A.
  • the third component is an agent approved for antiviral use in humans, more preferably, it is an NNRTI or a protease inhibitor (PI), more preferably yet, it is an NNRTI.
  • the invention is directed to a combination of the chemically stable mixture of tenofovir disoproxil fumarate and emtricitabine together with efavirenz.
  • Another aspect of the invention is a patient pack comprising at least one, typically two, and optionally, three active ingredients and other antiviral agents selected from tenofovir disoproxil fumarate and emtricitabine, and an information insert containing directions on the use of tenofovir disoproxil fumarate and emtricitabine together in combination.
  • Another aspect of the invention is a process for preparing the combinations hereinbefore described, which comprises bringing into association tenofovir DF and emtricitabine of the combination in a medicament to provide an antiviral effect.
  • a combination of the present invention in the manufacture of a medicament for the treatment of any of the aforementioned viral infections or conditions.
  • chemical stability means that the two primary antiviral agents in combination are substantially stable to chemical degradation. Preferably, they are sufficiently stable in physical combination to permit commercially useful shelf life of the combination product.
  • “chemically stable” means that a first component of the mixture does not act to degrade a second component when the two are brought into physical combination to form a pharmaceutical dosage form. More typically, “chemically stable” means that the acidity of a first component does not catalyzes or otherwise accelerate the acid decomposition of a second component.
  • “chemically stable” means that tenofovir disoproxil fumarate is not substantially degraded by the acidity of emtricitabine.
  • “Substantially” in this context means at least about less than 10%, preferably less than 1%, more preferably less than 0.1%, more preferably yet, less than 0.01% acid degradation of tenofovir disoproxil fumarate over a 24-hour period when the products are in a pharmaceutical dosage form.
  • synergy and “synergistic” mean that the effect achieved with the compounds used together is greater than the sum of the effects that results from using the compounds separately, i.e. greater than what would be predicted based on the two active ingredients administered separately.
  • a synergistic effect may be attained when the compounds are: (1) co-formulated and administered or delivered simultaneously in a combined formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen.
  • a synergistic effect may be attained when the compounds are administered or delivered sequentially, e.g. in separate tablets, pills or capsules, or by different injections in separate syringes.
  • an effective dosage of each active ingredient is administered sequentially, i.e. serially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together.
  • a synergistic antiviral effect denotes an antiviral effect which is greater than the predicted purely additive effects of the individual compounds of the combination.
  • physiologically functional derivative means a pharmaceutically active compound with equivalent or near equivalent physiological functionality to tenofovir DF or emtricitabine when administered in combination with another pharmaceutically active compound in a combination of the invention.
  • physiologically functional derivative includes any: physiologically acceptable salt, ether, ester, prodrug, solvate, stereoisomer including enantiomer, diastereomer or stereoisomerically enriched or racemic mixture, and any other compound which upon administration to the recipient, is capable of providing (directly or indirectly) such a compound or an antivirally active metabolite or residue thereof.
  • Bioavailability is the degree to which the pharmaceutically active agent becomes available to the target tissue after the agent's introduction into the body. Enhancement of the bioavailability of a pharmaceutically active agent can provide a more efficient and effective treatment for patients because, for a given dose, more of the pharmaceutically active agent will be available at the targeted tissue sites.
  • the compounds of the combinations of the invention may be referred to as “active ingredients” or “pharmaceutically active agents.”
  • prodrug refers to any compound that when administered to a biological system generates the drug substance, i.e. active ingredient, as a result of spontaneous chemical reaction(s), enzyme catalyzed chemical reaction(s), and/or metabolic chemical reaction(s).
  • Prodrug moiety means a labile functional group which separates from the active inhibitory compound during metabolism, systemically, inside a cell, by hydrolysis, enzymatic cleavage, or by some other process (Bundgaard, Hans, “Design and Application of Prodrugs” in Textbook of Drug Design and Development (1991), P. Krogsgaard-Larsen and H. Bundgaard, Eds. Harwood Academic Publishers, pp. 113-191). Prodrug moieties can serve to enhance solubility, absorption and lipophilicity to optimize drug delivery, bioavailability and efficacy. A “prodrug” is thus a covalently modified analog of a therapeutically-active compound.
  • Alkyl means a saturated or unsaturated, branched, straight-chain, branched, or cyclic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene, or alkyne.
  • Typical alkyl groups consist of 1-18 saturated and/or unsaturated carbons, such as normal, secondary, tertiary or cyclic carbon atoms.
  • Examples include, but are not limited to: methyl, Me (—CH 3 ), ethyl, Et (—CH 2 CH 3 ), acetylenic (—C ⁇ CH), ethylene, vinyl (—CH ⁇ CH 2 ), 1-propyl, n-Pr, n-propyl (—CH 2 CH 2 CH 3 ), 2-propyl, i-Pr, i-propyl (—CH(CH 3 ) 2 ), allyl (—CH 2 CH ⁇ CH 2 ), propargyl (—CH 2 C ⁇ CH), cyclopropyl (—C 3 H 5 ), 1-butyl, n-Bu, n-butyl (—CH 2 CH 2 CH 2 CH 3 ), 2-methyl-1-propyl, i-Bu, i-butyl (—CH 2 CH(CH 3 ) 2 ), 2-butyl, s-Bu, s-butyl (—CH(CH 3 )CH 2 CH 3 ), 2-methyl-2-propyl, t-Bu
  • Aryl means a monovalent aromatic hydrocarbon radical of 6-20 carbon atoms derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
  • Typical aryl groups include, but are not limited to, radicals derived from benzene, substituted benzene, naphthalene, anthracene, biphenyl, and the like.
  • Arylalkyl refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl radical.
  • Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like.
  • the arylalkyl group 6 to 20 carbon atoms e.g., the alkyl moiety, including alkanyl, alkenyl or alkynyl groups, of the arylalkyl group is 1 to 6 carbon atoms and the aryl moiety is 5 to 14 carbon atoms.
  • Substituted alkyl mean alkyl, aryl, and arylalkyl respectively, in which one or more hydrogen atoms are each independently replaced with a substituent.
  • Typical substituents include, but are not limited to, —X, —R, —O ⁇ , —OR, —SR, —S ⁇ , —NR 2 , —NR 3 , ⁇ NR, —CX 3 , —CN, —OCN, —SCN, —N ⁇ C ⁇ O, —NCS, —NO, —NO 2 , ⁇ N 2 , —N 3 , NC( ⁇ O)R, —C( ⁇ O)R, —C( ⁇ O)NRR —S( ⁇ O) 2 O ⁇ , —S( ⁇ O) 2 OH, —S( ⁇ O) 2 R, —OS( ⁇ O) 2 OR, —S( ⁇ O) 2 NR, —S( ⁇ O)R, —OP( ⁇ O)O 2 RR, —P( ⁇ O)O 2 RR —P( ⁇ O)(O ⁇ ) 2 , —P( ⁇ O)(OH) 2
  • Heteroaryl and “Heterocycle” refer to a ring system in which one or more ring atoms is a heteroatom, e.g. nitrogen, oxygen, and sulfur. Heterocycles are described in: Katritzky, Alan R., Rees, C. W., and Scriven, E. Comprehensive Heterocyclic Chemistry (1996) Pergamon Press; Paquette, Leo A Principles of Modern Heterocyclic Chemistry W. A. Benjamin, New York, (1968), particularly Chapters 1, 3, 4, 6, 7, and 9; “The Chemistry of Heterocyclic Compounds, A series of Monographs” (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28.
  • heterocycles include but are not limited to substituents, i.e. radicals, derived from pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-quinolyl, 3-quinolyl, 4-quinolyl, 2-imidazole, 4-imidazole, 3-pyrazole, 4-pyrazole, pyridazine, pyrimidine, pyrazine, purine, cinnoline, pthalazine, quinazoline, quinoxaline, 3-(1,2,4-N)-triazolyl, 5-(1,2,4-N)-triazolyl, 5-tetrazolyl, 4-(1-0,3-N)-oxazole, 5-(1-O, 3-N)-oxazole, 4-(1-S, 3-N)-thiazole, 5-(1-S, 3-N)-thiazole, 2-(
  • d and 1 or (+) and ( ⁇ ) are employed to designate the sign of rotation of plane-polarized light by the compound, with ( ⁇ ) or 1 meaning that the compound is levorotatory.
  • a compound prefixed with (+) or d is dextrorotatory.
  • these compounds, called stereoisomers are identical except that they are mirror images of one another.
  • a specific stereoisomer is also referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
  • a 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate.
  • racemic mixture and “racemate” refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
  • Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
  • Enantiomers refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.
  • the present invention provides novel combinations of two or more active ingredients being employed together.
  • a synergistic antiviral effect is achieved.
  • a chemically stable combination is obtained.
  • the combinations include at least one active ingredient selected from (1) tenofovir disoproxil fumarate and physiologically functional derivatives, and at least one active ingredient selected from (2) emtricitabine and physiologically functional derivatives.
  • the term “synergistic antiviral effect” is used herein to denote an antiviral effect which is greater than the predicted purely additive effects of the individual components (a) and (b) of the combination.
  • Tenofovir disoproxil fumarate also known as Viread®, Tenofovir DF, Tenofovir disoproxil, TDF, Bis-POC-PMPA (U.S. Pat. Nos. 5,935,946, 5,922,695, 5,977,089, 6,043,230, 6,069,249) is a prodrug of tenofovir, and has the structure:
  • Tenofovir disoproxil include: [2-(6-amino-purin-9-yl)-1-methyl-ethoxymethyl]-phosphonic acid diisopropoxycarbonyloxymethyl ester; 9-[(R)-2-[[bis[[(isopropoxycarbonyl)oxy]methoxy]phosphinyl]methoxy]propyl]adenine; and 2,4,6,8-tetraoxa-5-phosphanonanedioic acid, 5-[[(1R)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl]-, bis(1-methylethyl)ester, 5-oxide.
  • the CAS Registry numbers include: 201341-05-1; 202138-50-9; 206184-49-8. It should be noted that the ethoxymethyl unit of tenofovir has a chiral center.
  • the R (rectus, right handed configuration) enantiomer is shown. However, the invention also includes the S isomer.
  • the invention includes all enantiomers, diastereomers, racemates, and enriched stereoisomer mixtures of tenofovir (PMPA) and physiologically functional derivatives thereof.
  • PMPA or tenofovir (U.S. Pat. Nos. 4,808,716, 5,733,788, 6,057,305) has the structure:
  • the chemical names of PMPA, tenofovir include: (R)-9-(2-phosphonylmethoxypropyl)adenine; and phosphonic acid, [[(1R)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl].
  • the CAS Registry number is 147127-20-6.
  • Tenofovir disoproxil fumarate is a nucleotide reverse transcriptase inhibitor approved in the United States in 2001 for the treatment of HIV-1 infection in combination with other antiretroviral agents.
  • Tenofovir disoproxil fumarate or Viread® is the fumarate salt of tenofovir disoproxil.
  • Viread® may be named as: 9-[(R)-2-[[bis[[(isopropoxycarbonyl)oxy]methoxy]phosphinyl]methoxy]propyl]adenine fumarate (1:1); or 2,4,6,8-tetraoxa-5-phosphanonanedioic acid, 5-[[(1R)-2-(6-amino-9H-purin-9-yl)-1-methylethoxy]methyl]-, bis(1-methylethyl)ester, 5-oxide, (2E)-2-butenedioate (1:1).
  • the CAS Registry number is 202138-50-9.
  • Physiologically functional derivatives of tenofovir disoproxil fumarate include PMEA (adefovir, 9-((R)-2-(phosphonomethoxy)ethyl)adenine) and PMPA compounds.
  • PMEA adefovir, 9-((R)-2-(phosphonomethoxy)ethyl)adenine
  • PMPA compounds Exemplary combinations include a PMEA or PMPA compound in combination with emtricitabine or 3TC.
  • PMEA and PMPA compounds have the structures:
  • PMEA R 3 is H
  • PMPA R 3 is C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, or CH 2 OR 8 where R 8 is C 1 -C 6 alkyl, C 1 -C 6 hydroxyalkyl or C 1 -C 6 haloalkyl.
  • R 6 and R 7 are independently H or C 1 -C 6 alkyl.
  • R 4 and R 5 are independently H, NH 2 , NHR or NR 2 where R is C 1 -C 6 alkyl.
  • R 1 and R 2 are independently H, C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl, C 6 -C 20 substituted aryl, C 6 -C 20 arylalkyl, C 6 -C 20 substituted arylalkyl, acyloxymethyl esters —CH 2 OC( ⁇ O)R 9 (e.g. POM) or acyloxymethyl carbonates —CH 2 OC( ⁇ O)OR 9 (e.g. POC) where R 9 is C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl or C 6 -C 20 substituted aryl.
  • R 1 and R 2 may be pivaloyloxymethoxy, POM, —CH 2 OC( ⁇ O)C(CH 3 ) 3 ; —CH 2 OC( ⁇ O)OC(CH 3 ) 3 ; or POC, —CH 2 OC( ⁇ O)OCH(CH 3 ) 2 .
  • tenofovir has the structure where R 3 is CH 3 , and R 1 , R 2 , R 4 , R 5 , R 6 and R 7 are H.
  • Dialkyl phosphonates may be prepared according to the methods of: Quast et al (1974) Synthesis 490; Stowell et al (1990) Tetrahedron Lett. 3261; U.S. Pat. No. 5,663,159.
  • the PMPA compound may be enantiomerically-enriched or purified (single stereoisomer) where the carbon atom bearing R 3 may be the R or S enantiomer.
  • the PMPA compound may be a racemate, i.e. a mixture of R and S stereoisomers.
  • Adefovir (9-(2-phosphonomethoxyethyl)adenine where R 1 —R 7 ⁇ H) is an exemplary PMEA compound (U.S. Pat. Nos. 4,808,716, 4,724,233).
  • Adefovir dipivoxil also known as bis-POM PMEA, (R 3 —R 7 ⁇ H, R 1 and R 2 ⁇ —CH 2 OC( ⁇ O)C(CH 3 ) 3 , pivoxil, POM, pivaloyloxymethoxy), is effective against HIV and Hepatitis B infections (U.S. Pat. Nos. 5,663,159, 6,451,340).
  • Adefovir dipivoxil has demonstrated minor to moderate synergistic inhibition of HIV replication in combination with other compounds with anti-HIV activity including PMPA, d4T, ddC, nelfinavir, ritonavir, and saquinavir (Mulato et al (1997) Antiviral Research 36:91-97).
  • the invention includes all enantiomers, diastereomers, racemates, and enriched stereoisomer mixtures of PMEA and PMPA, and physiologically functional derivatives thereof.
  • Emtricitabine ( ⁇ )-cis-FTC, EmtrivaTM), a single enantiomer of FTC, is a potent nucleoside reverse transcriptase inhibitor approved for the treatment of HIV (U.S. Pat. Nos. 5,047,407, 5,179,104, 5,204,466, 5,210,085, 5,486,520, 5,538,975, 5,587,480, 5618820, 5,763,606, 5,814,639, 5,914,331, 6,114,343, 6180639, 6215004; WO 02/070518).
  • the single enantiomer emtricitabine has the structure:
  • the chemical names for emtricitabine include: ( ⁇ )-cis-FTC; ⁇ -L-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane; (2R,5S)-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine; and 4-amino-5-fluoro-1-(2-hydroxymethyl-[1,3]-(2R,5S)-oxathiolan-5-yl)-1H-pyrimidin-2-one.
  • the CAS Registry numbers include: 143491-57-0; 143491-54-7.
  • FTC contains two chiral centers, at the 2 and 5 positions of the oxathiolane ring, and therefore can exist in the form of two pairs of optical isomers (i.e. enantiomers) and mixtures thereof including racemic mixtures.
  • FTC may be either a cis or a trans isomer or mixtures thereof.
  • Mixtures of cis and trans isomers are diastereomers with different physical properties.
  • Each cis and trans isomer can exist as one of two enantiomers or mixtures thereof including racemic mixtures.
  • the invention includes all enantiomers, diastereomers, racemates, and enriched stereoisomer mixtures of emtricitabine and physiologically functional derivatives thereof.
  • the invention includes physiological functional derivatives such as the 1:1 racemic mixture of the enantiomers (2R, 5S, cis)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one (emtricitabine) and its mirror image (2S, 5R, cis)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one, or mixtures of the two enantiomers in any relative amount.
  • the invention also includes mixtures of cis and trans forms of FTC.
  • Physiologically functional derivatives of emtricitabine include 1,3 oxathiolane nucleosides having the structure:
  • B is a nucleobase including any nitrogen-containing heterocyclic moiety capable of forming Watson-Crick hydrogen bonds in pairing with a complementary nucleobase or nucleobase analog, e.g. a purine, a 7-deazapurine, or a pyrimidine.
  • a complementary nucleobase or nucleobase analog e.g. a purine, a 7-deazapurine, or a pyrimidine.
  • B include the naturally occurring nucleobases: adenine, guanine, cytosine, uracil, thymine, and minor constituents and analogs of the naturally occurring nucleobases, e.g.
  • Nucleobases B may be attached in the configurations of naturally-occurring nucleic acids to the 1,3 oxathiolane moiety through a covalent bond between the N-9 of purines, e.g. adenin-9-yl and guanin-9-yl, or N-1 of pyrimidines, e.g. thymin-1-yl and cytosin-1-yl (Blackburn, G. and Gait, M. Eds. “DNA and RNA structure” in Nucleic Acids in Chemistry and Biology, 2nd Edition, (1996) Oxford University Press, pp. 15-81).
  • purines e.g. adenin-9-yl and guanin-9-yl
  • N-1 of pyrimidines e.g. thymin-1-yl and cytosin-1-yl
  • R is H, C 1 -C 18 alkyl, C 1 -C 18 substituted alkyl, C 2 -C 18 alkenyl, C 2 -C 18 substituted alkenyl, C 2 -C 18 alkynyl, C 2 -C 18 substituted alkynyl, C 6 -C 20 aryl, C 6 -C 20 substituted aryl, C 2 -C 20 heterocycle, C 2 -C 20 substituted heterocycle, phosphonate, phosphophosphonate, diphosphophosphonate, phosphate, diphosphate, triphosphate, polyethyleneoxy, or a prodrug moiety.
  • Physiologically functional derivatives of emtricitabine also include 3TC (lamivudine, Epivir®), a reverse transcriptase inhibitor approved in the United States for the treatment of HIV-1 infection in combination with AZT as Combivir® (GlaxoSmithKline).
  • 3TC lamivudine, Epivir®
  • AZT AZT
  • Combivir® GaxoSmithKline
  • Lamivudine U.S. Pat. Nos. 5,587,480, 5,696,254, 5,618,820, 5,756,706, 5,744,596, 568,164, 5,466,806, 5,151,426) has the structure:
  • 3TC may be a physiologically functional derivative of emtricitabine in combination with tenofovir DF or a physiologically functional derivative of tenofovir DF.
  • tenofovir DF and emtricitabine may exist in keto or enol tautomeric forms and the use of any tautomeric form thereof is within the scope of this invention.
  • Tenofovir DF and emtricitabine will normally be utilized in the combinations of the invention substantially free of the corresponding enantiomer, that is to say no more than about 5% w/w of the corresponding enantiomer will be present.
  • the invention includes all prodrugs of tenofovir and emtricitabine.
  • An exemplary prodrug of tenofovir is tenofovir disoproxil fumarate (TDF, Viread®).
  • TDF tenofovir disoproxil fumarate
  • a large number of structurally-diverse prodrugs have been described for phosphonic acids (Freeman and Ross in Progress in Medicinal Chemistry 34: 112-147 (1997).
  • a commonly used prodrug class is the acyloxyalkyl ester, which was first used as a prodrug strategy for carboxylic acids and then applied to phosphates and phosphonates by Farquhar et al (1983) J. Pharm. Sci. 72: 324; also U.S. Pat. Nos.
  • acyloxyalkyl ester was used to deliver phosphonic acids across cell membranes and to enhance oral bioavailability.
  • a close variant of the acyloxyalkyl ester strategy, the alkoxycarbonyloxyalkyl ester, may also enhance oral bioavailability as a prodrug moiety in the compounds of the combinations of the invention.
  • Aryl esters of phosphorus groups, especially phenyl esters, are reported to enhance oral bioavailability (DeLambert et al (1994) J. Med. Chem. 37: 498).
  • Phenyl esters containing a carboxylic ester ortho to the phosphate have also been described (Khamnei and Torrence, (1996) J. Med. Chem. 39:4109-4115). Benzyl esters are reported to generate the parent phosphonic acid. In some cases, substituents at the ortho- or para-position may accelerate the hydrolysis. Benzyl analogs with an acylated phenol or an alkylated phenol may generate the phenolic compound through the action of enzymes, e.g. esterases, oxidases, etc., which in turn undergoes cleavage at the benzylic C—O bond to generate the phosphoric acid and the quinone methide intermediate.
  • enzymes e.g. esterases, oxidases, etc.
  • prodrugs examples include Mitchell et al (1992) J. Chem. Soc. Perkin Trans. I 2345; Brook et al WO 91/19721. Still other benzylic prodrugs have been described containing a carboxylic ester-containing group attached to the benzylic methylene (Glazier et al WO 91/19721). Thio-containing prodrugs are reported to be useful for the intracellular delivery of phosphonate drugs. These proesters contain an ethylthio group in which the thiol group is either esterified with an acyl group or combined with another thiol group to form a disulfide.
  • Prodrug esters in accordance with the invention are independently selected from the following groups: (1) mono-, di-, and tri-phosphate esters of tenofovir or emtricitabine or any other compound which upon administration to a human subject is capable of providing (directly or indirectly) said mono-, di, or triphosphate ester; (2) carboxylic acid esters (3) sulphonate esters, such as alkyl- or aralkylsulphonyl (for example, methanesulphonyl); (4) amino acid esters (for example, alanine, L-valyl or L-isoleucyl); (5) phosphonate; and (6) phosphonamidate esters.
  • Ester groups (1)-(6) may be substituted with; straight or branched chain C 1 -C 18 alkyl (for example, methyl, n-propyl, t-butyl, or n-butyl); C 3 -C 12 cycloalkyl; alkoxyalkyl (for example, methoxymethyl); arylalkyl (for example, benzyl); aryloxyalkyl (for example, phenoxymethyl); C 5 -C 20 aryl (for example, phenyl optionally substituted by, for example, halogen, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, or amino; acyloxymethyl esters —CH 2 OC( ⁇ O)R 9 (e.g.
  • ester groups may be: —CH 2 OC( ⁇ O)C(CH 3 ) 3 , —CH 2 OC( ⁇ O)OC(CH 3 ) 3 or —CH 2 OC( ⁇ O)OCH(CH 3 ) 2 .
  • An exemplary aryl moiety present in such esters comprises a phenyl or substituted phenyl group.
  • Many phosphate prodrug moieties are described in U.S. Pat. No. 6,312,662; Jones et al (1995) Antiviral Research 27:1-17; Kucera et al (1990) AIDS Res. Hum. Retro Viruses 6:491-501; Piantadosi et al (1991) J. Med. Chem. 34:1408-14; Hosteller et al (1992) Antimicrob. Agents Chemother. 36:2025-29; Hostetler et al (1990) J. Biol. Chem. 265:611127; and Siddiqui et al (1999) J. Med. Chem. 42:4122-28.
  • prodrugs refer to a compound that is metabolized in the host, for example hydrolyzed or oxidized, by either enzymatic action or by general acid or base solvolysis, to form an active ingredient.
  • Typical examples of prodrugs of the active ingredients of the combinations of the invention have biologically labile protecting groups on a functional moiety of the active compound.
  • Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, esterified, deesterified, alkylated, dealkylated, acylated, deacylated, phosphorylated, dephosphorylated, or other functional group change or conversion involving forming or breaking chemical bonds on the prodrug.
  • the chemical stability of the active ingredients in a pharmaceutical formulation is of concern to minimize the generation of impurities and ensure adequate shelf-life.
  • the active ingredients, tenofovir disoproxil fumarate and emtricitabine, in the pharmaceutical formulations of the invention have relatively low pKa values, indicative of the potential to cause acidic hydrolysis of the active ingredients.
  • Emtricitabine, with a pKa of 2.65 (EmtrivaTM Product Insert, Gilead Sciences, Inc. 2003, available at gilead.com) is subject to hydrolytic deamination of the 5-fluoro cytosine nucleobase to form the 5-fluoro uridine nucleobase.
  • Tenofovir disoproxil fumarate with a pKa of 3.75 (Yuan L. et al “Degradation Kinetics of Oxycarbonyloxymethyl Prodrugs of Phosphonates in Solution”, Pharmaceutical Research (2001) Vol. 18, No. 2, 234-237), is subject also to hydrolytic deamination of the exocyclic amine of the adenine nucleobase, and to hydrolysis of one or both of the POC ester groups (U.S. Pat. No. 5,922,695). It is desirable to formulate a therapeutic combination of tenofovir disoproxil fumarate and emtricitabine, and the physiological functional derivatives thereof, with a minimum of impurities and adequate stability.
  • the combinations of the present invention provide combination pharmaceutical dosage forms which are chemically stable to acid degradation of: (1) a first component (such as tenofovir disoproxil fumarate, and physiological functional derivatives; (2) a second component (such as emtricitabine, and physiological functional derivatives; and (3) optionally a third component having antiviral activity.
  • the third component includes anti-HIV agents and include: protease inhibitors (PI), nucleoside reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI), and integrase inhibitors.
  • Exemplary third active ingredients to be administered in combination with first and second components are shown in Table A. First and second components are as defined in the above section entitled: ACTIVE INGREDIENTS OF THE COMBINATIONS.
  • any reference to any of the compounds in the compositions of the invention also includes any physiologically acceptable salt thereof.
  • physiologically acceptable salts of tenofovir DF, emtricitabine and their physiologically functional derivatives include salts derived from an appropriate base, such as an alkali metal (for example, sodium), an alkaline earth (for example, magnesium), ammonium and NX 4 + (wherein X is C 1 -C 4 alkyl), or an organic acid such as fumaric acid, acetic acid, succinic acid.
  • Physiologically acceptable salts of an hydrogen atom or an amino group include salts of organic carboxylic acids such as acetic, benzoic, lactic, fumaric, tartaric, maleic, malonic, malic, isethionic, lactobionic and succinic acids; organic sulfonic acids, such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids; and inorganic acids, such as hydrochloric, sulfuric, phosphoric and sulfamic acids.
  • organic carboxylic acids such as acetic, benzoic, lactic, fumaric, tartaric, maleic, malonic, malic, isethionic, lactobionic and succinic acids
  • organic sulfonic acids such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids
  • Physiologically acceptable salts of a compound of an hydroxy group include the anion of said compound in combination with a suitable cation such as Na + and NX 4 + (wherein X is independently selected from H or a C 1 -C 4 alkyl group).
  • salts of active ingredients of the combinations of the invention will be physiologically acceptable, i.e. they will be salts derived from a physiologically acceptable acid or base.
  • salts of acids or bases which are not physiologically acceptable may also find use, for example, in the preparation or purification of a physiologically acceptable compound. All salts, whether or not derived from a physiologically acceptable acid or base, are within the scope of the present invention.
  • a two-part or three-part combination may be administered simultaneously or sequentially.
  • the combination may be administered in one, two, or three administrations.
  • two-part or three-part combinations are administered in a single pharmaceutical dosage form. More preferably, a two-part combination is administered as a single oral dosage form and a three-part combination is administered as two identical oral dosage forms. Examples include a single tablet of tenofovir disoproxil fumarate and emtricitabine, or two tablets of tenofovir disoproxil fumarate, emtricitabine, and efavirenz.
  • the compounds of the combination may be administered: (1) simultaneously by combination of the compounds in a co-formulation or (2) by alternation, i.e. delivering the compounds serially, sequentially, in parallel or simultaneously in separate pharmaceutical formulations.
  • alternation therapy the delay in administering the second, and optionally a third active ingredient, should not be such as to lose the benefit of a synergistic therapeutic effect of the combination of the active ingredients.
  • the combination should be administered to achieve peak plasma concentrations of each of the active ingredients.
  • a one pill once-per-day regimen by administration of a combination co-formulation may be feasible for some HIV-positive patients.
  • Effective peak plasma concentrations of the active ingredients of the combination will be in the range of approximately 0.001 to 100 ⁇ M. Optimal peak plasma concentrations may be achieved by a formulation and dosing regimen prescribed for a particular patient. It will also be understood that tenofovir DF and emtricitabine, or the physiologically functional derivatives of either thereof, whether presented simultaneously or sequentially, may be administered individually, in multiples, or in any combination thereof. In general, during alternation therapy (2), an effective dosage of each compound is administered serially, where in co-formulation therapy (1), effective dosages of two or more compounds are administered together.
  • the individual components of the combination are administered separately they are generally each presented as a pharmaceutical formulation.
  • the references hereinafter to formulations refer unless otherwise stated to formulations containing either the combination or a component compound thereof. It will be understood that the administration of the combination of the invention by means of a single patient pack, or patient packs of each formulation, within a package insert diverting the patient to the correct use of the invention is a desirable additional feature of this invention.
  • the invention also includes a double pack comprising in association for separate administration, formulations of tenofovir disoproxil fumarate and emtricitabine, or a physiologically functional derivative of either or both thereof.
  • the combination therapies of the invention include: (1) a combination of tenofovir DF and emtricitabine or (2) a combination containing a physiologically functional derivative of either or both thereof.
  • the combination may be formulated in a unit dosage formulation comprising a fixed amount of each active pharmaceutical ingredient for a periodic, e.g. daily, dose or subdose of the active ingredients.
  • compositions according to the present invention comprise a combination according to the invention together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents.
  • Pharmaceutical formulations containing the active ingredient may be in any form suitable for the intended method of administration. When used for oral use for example, tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs may be prepared ( Remington's Pharmaceutical Sciences (Mack Publishing Co., Easton, Pa.).
  • compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including antioxidants, sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation.
  • Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable.
  • excipients may be, for example, inert diluents, such as calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium, povidone, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as cellulose, microcrystalline cellulose, starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.
  • inert diluents such as calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium
  • Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example pregelatinized starch, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, such as peanut oil, liquid paraffin or olive oil.
  • an inert solid diluent for example pregelatinized starch, calcium phosphate or kaolin
  • an oil medium such as peanut oil, liquid paraffin or olive oil.
  • Aqueous suspensions of the invention contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients include a suspending agent, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate).
  • a suspending agent
  • the aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose, sucralose or saccharin.
  • preservatives such as ethyl or n-propyl p-hydroxybenzoate
  • coloring agents such as a coloring agent
  • flavoring agents such as sucrose, sucralose or saccharin.
  • sweetening agents such as sucrose, sucralose or saccharin.
  • Oil suspensions may be formulated by suspending the active ingredient in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
  • the oral suspensions may contain a thickening agent, such as beeswax, hard paraffin or cetyl alcohol.
  • Sweetening agents, such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation.
  • These compositions may be preserved by the addition of an antioxidant such as ascorbic acid, BHT, etc.
  • Dispersible powders and granules of the invention suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives.
  • a dispersing or wetting agent and suspending agents are exemplified by those disclosed above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
  • the pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions or liposome formulations.
  • the oily phase may be a vegetable oil, such as olive oil or arachis oil, a mineral oil, such as liquid paraffin, or a mixture of these.
  • Suitable emulsifying agents include naturally-occurring gums, such as gum acacia and gum tragacanth, naturally occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooleate, and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooleate.
  • the emulsion may also contain sweetening and flavoring agents.
  • Syrups and elixirs may be formulated with sweetening agents, such as glycerol, sorbitol or sucrose.
  • Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.
  • the pharmaceutical compositions of the invention may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension.
  • a sterile injectable preparation such as a sterile injectable aqueous or oleaginous suspension.
  • This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butane-diol or prepared as a lyophilized powder.
  • a non-toxic parenterally acceptable diluent or solvent such as a solution in 1,3-butane-diol or prepared as a lyophilized powder.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile fixed oils may conventionally be employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid may likewise be used in the preparation of injectables.
  • compositions of the invention may be injected parenterally, for example, intravenously, intraperitoneally, intrathecally, intraventricularly, intrastemally, intracranially, intramuscularly or subcutaneously, or they may be administered by infusion techniques. They are best used in the form of a sterile aqueous solution which may contain other substances, for example, enough salts or glucose to make the solution isotonic with blood.
  • aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary.
  • suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.
  • compositions of the invention may also be administered intranasally or by inhalation and are conveniently delivered in the form of a dry powder inhaler or an aerosol spray presentation from a pressurized container or a nebuliser with the use of a suitable propellant, e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane (HFC 134a), carbon dioxide or other suitable gas.
  • a suitable propellant e.g. dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, a hydrofluoroalkane such as 1,1,1,2-tetrafluoroethane (HFC 134a), carbon dioxide or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • the pressurized container or nebuliser may contain a solution or suspension of the composition, e.g. using a mixture of ethanol and the propellant as the solvent, which may additional contain a lubricant, e.g. sorbitan trioleate.
  • Capsules and cartridges (made, for example, from gelatin) for use in an inhaler or insufflator may be formulated to contain a powder mix of a compound of the formula (I) and a suitable powder base such as lactose or starch. Aerosol or dry powder formulations are preferably arranged so that each metered dose or “puff” contains from 20 ⁇ g to 20 mg of a composition for delivery to the patient.
  • the overall daily dose with an aerosol will be in the range of from 20 ⁇ g to 20 mg which may be administered in a single dose or, more usually, in divided doses throughout the day.
  • a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weight:weight).
  • the pharmaceutical composition can be prepared to provide easily measurable amounts for administration.
  • an aqueous solution intended for intravenous infusion may contain from about 3 to 500 ⁇ g of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
  • formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
  • the active ingredient may also be administered as a bolus, electuary or paste.
  • the combinations of the invention may conveniently be presented as a pharmaceutical formulation in a unitary dosage form.
  • a convenient unitary dosage formulation contains the active ingredients in any amount from 1 mg to 1 g each, for example but not limited to, 10 mg to 300 mg.
  • the synergistic effects of tenofovir DF in combination with emtricitabine may be realized over a wide ratio, for example 1:50 to 50:1 (tenofovir DF:emtricitabine). In one embodiment, the ratio may range from about 1:10 to 10:1. In another embodiment, the weight/weight ratio of tenofovir to emtricitabine in a co-formulated combination dosage form, such as a pill, tablet, caplet or capsule will be about 1, i.e.
  • tenofovir DF an approximately equal amount of tenofovir DF and emtricitabine.
  • 300 mg tenofovir DF and 200 mg emtricitabine can be co-formulated in a ratio of 1.5:1 (tenofovir DF: emtricitabine).
  • each compound will be employed in the combination in an amount at which it exhibits antiviral activity when used alone.
  • Exemplary Formulations A, B, C, D, E, and F have ratios of 12:1 to 1:1 (tenofovir DF: emtricitabine).
  • Exemplary Formulations A, B, C, D, E, and F use amounts of tenofovir DF and emtricitabine ranging from 25 mg to 300 mg. Other ratios and amounts of the compounds of said combinations are contemplated within the scope of the invention.
  • a unitary dosage form may further comprise tenofovir DF and emtricitabine, or physiologically functional derivatives of either thereof, and a pharmaceutically acceptable carrier.
  • the amount of active ingredients in the combinations of the invention required for use in treatment will vary according to a variety of factors, including the nature of the condition being treated and the age and condition of the patient, and will ultimately be at the discretion of the attending physician or health care practitioner.
  • the factors to be considered include the route of administration and nature of the formulation, the animal's body weight, age and general condition and the nature and severity of the disease to be treated.
  • doses ranging from 25 mg to 200 mg twice-a-day for two weeks. At each dose regimen greater or equal to 200 mg, a 98-percent (1.75 log 10) or greater viral suppression was observed.
  • Viread® tenofovir DF
  • EmtrivaTM emtricitabine
  • any two of the active ingredients in a unitary dosage form for simultaneous or sequential administration with a third active ingredient.
  • the three-part combination may be administered simultaneously or sequentially. When administered sequentially, the combination may be administered in two or three administrations.
  • Third active ingredients have anti-HIV activity and include protease inhibitors (PI), nucleoside reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI), and integrase inhibitors.
  • PI protease inhibitors
  • NRTI nucleoside reverse transcriptase inhibitors
  • NRTI non-nucleoside reverse transcriptase inhibitors
  • integrase inhibitors Exemplary third active ingredients to be administered in combination with tenofovir DF, emtricitabine, and their physiological functional derivatives, are shown in Table A.
  • Another aspect of the present invention is a three-part combination comprising tenofovir DF, FTC, and 9-[(R)-2-[[(S)-[[(S)-1-(isopropoxycarbonyl)ethyl]amino]phenoxyphosphinyl]methoxy]propyl]adenine, also designated herein as GS-7340, which has the structure:
  • GS-7340 is a prodrug of tenofovir and the subject of commonly owned, pending application, U.S. Ser. No. 09/909,560, filed Jul. 20, 2001 and Becker et al WO 02/08241.
  • a ternary unitary dosage may contain 1 mg to 1000 mg of tenofovir disoproxil fumarate, 1 mg to 1000 mg of emtricitabine, and 1 mg to 1000 mg of the third active ingredient.
  • a unitary dosage form may further comprise tenofovir DF, emtricitabine, the third active ingredient, or physiologically functional derivatives of the three active ingredients thereof, and a pharmaceutically acceptable carrier.
  • Combinations of the present invention enable patients greater freedom from multiple dosage medication regimens and ease the needed diligence required in remembering and complying with complex daily dosing times and schedules.
  • the desired daily regimen may be presented in a single dose or as two or more sub-doses per day.
  • the combination of co-formulated tenofovir DF and emtricitabine may be administered as a single pill, once per day.
  • a further aspect of the invention is a patient pack comprising at least one active ingredient: tenofovir disoproxil fumarate, emtricitabine, or a physiologically functional derivative of either of the combination and an information package or product insert containing directions on the use of the combination of the invention.
  • Segregation of active ingredients in pharmaceutical powders and granulations is a widely recognized problem that can result in inconsistent dispersions of the active ingredients in final dosage forms.
  • Some of the main factors contributing to segregation are particle size, shape and density. Segregation is particularly troublesome when attempting to formulate a single homogenous tablet containing multiple active ingredients having different densities and different particle sizes.
  • Glidants are substances that have traditionally been used to improve the flow characteristics of granulations and powders by reducing interparticulate friction. See Lieberman, Lachman , & Schwartz, Pharmaceutical Dosage Forms: Tablets, Volume 1, p. 177-178 (1989), incorporated herein by reference.
  • Glidants are typically added to pharmaceutical compositions immediately prior to tablet compression to facilitate the flow of granular material into the die cavities of tablet presses.
  • Glidants include: colloidal silicon dioxide, asbestos free talc, sodium aluminosilicate, calcium silicate, powdered cellulose, microcrystalline cellulose, corn starch, sodium benzoate, calcium carbonate, magnesium carbonate, metallic stearates, calcium stearate, magnesium stearate, zinc stearate, stearowet C, starch, starch 1500, magnesium lauryl sulfate, and magnesium oxide.
  • Exemplary Tablet Formulation A has colloidal silicon dioxide (Examples).
  • Glidants can be used to increase and aid blend composition homogeneity in formulations of anti-HIV drugs (U.S. Pat. No. 6,113,920).
  • the novel compositions of the present invention may contain glidants to effect and maintain homogeneity of active ingredients during handling prior to tablet compression.
  • the present invention provides pharmaceutical formulations combining the active ingredients tenofovir DF and emtricitabine, or physiologically functional derivatives thereof, in a sufficiently homogenized form, and a method for using this pharmaceutical formulation.
  • An object of the present invention is to utilize glidants to reduce the segregation of active ingredients in pharmaceutical compositions during pre-compression material handling.
  • Another object of the present invention is to provide a pharmaceutical formulation combining the active ingredients tenofovir DF and emtricitabine, or physiologically functional derivatives thereof, with a pharmaceutically acceptable glidant, resulting in a mixture characterized by a pharmaceutically acceptable measure of homogeneity.
  • Formulations include those suitable for oral, rectal, nasal, topical (including transdermal, buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. Such methods represent a further feature of the present invention and include the step of bringing into association the active ingredients with the carrier, which constitutes one or more accessory ingredients, and maintaining chemical stability.
  • the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
  • Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, caplets, cachets or tablets each containing a predetermined amount of the active ingredients; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
  • the active ingredient may also be presented as a bolus, electuary or paste.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as a powder or granules, optionally mixed with a binder (e.g. povidone, gelatin, hydroxypropyl methylcellulose), lubricant, inert diluent, preservative, disintegrant (e.g. sodium starch glycollate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose) surface-active or dispersing agent.
  • Molded tablets may be made by molding a mixture of the powdered compound moistened with an inert liquid diluent in a suitable machine.
  • the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredients therein using, for example, cellulose ether derivatives (e.g., hydroxypropyl methylcellulose) or methacrylate derivatives in varying proportions to provide the desired release profile. Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
  • cellulose ether derivatives e.g., hydroxypropyl methylcellulose
  • methacrylate derivatives in varying proportions to provide the desired release profile.
  • Tablets may optionally be provided with an enteric coating, to provide release in parts of the gut other than the stomach.
  • Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredients in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • Formulations for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylates.
  • Topical administration may also be by means of a transdermal iontophoretic device.
  • Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
  • Formulations suitable for penile administration for prophylactic or therapeutic use may be presented in condoms, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
  • compositions suitable for rectal administration wherein the carrier is a solid are most preferably presented as unit dose suppositories.
  • Suitable carriers include cocoa butter and other materials commonly used in the art.
  • the suppositories may be conveniently formed by admixture of the active combination with the softened or melted carrier(s) followed by chilling and shaping in moulds.
  • Formulations suitable for parenteral administration include aqueous and nonaqueous isotonic sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents; and liposomes or other microparticulate systems which are designed to target the compound to blood components or one or more organs.
  • the formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use.
  • sterile liquid carrier for example water for injection
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
  • Exemplary unit dosage formulations are those containing a daily dose or daily subdose of the active ingredients, as hereinbefore recited, or an appropriate fraction thereof. It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example, those suitable for oral administration may include such further agents as sweeteners, thickeners and flavoring agents.
  • the compounds of the combination of the present invention may be obtained in a conventional manner, known to those skilled in the art.
  • Tenofovir disoproxil fumarate can be prepared, for example, as described in U.S. Pat. No. 5,977,089. Methods for the preparation of FTC are described in WO 92/14743, incorporated herein by reference.
  • compositions of the present invention are administered to a human or other mammal in a safe and effective amount as described herein. These safe and effective amounts will vary according to the type and size of mammal being treated and the desired results of the treatment. Any of the various methods known by persons skilled in the art for packaging tablets, caplets, or other solid dosage forms suitable for oral administration, that will not degrade the components of the present invention, are suitable for use in packaging. The combinations may be packaged in glass and plastic bottles. Tablets, caplets, or other solid dosage forms suitable for oral administration may be packaged and contained in various packaging materials optionally including a dessicant, e.g. silica gel. Packaging may be in the form of unit dose blister packaging.
  • a package may contain one blister tray of tenofovir DF and another blister tray of emtricitabine pills, tablets, caplets, or capsule.
  • a patient would take one dose, e.g. a pill, from one tray and one from the other.
  • the package may contain a blister tray of the co-formulated combination of tenofovir DF and emtricitabine in a single pill, tablet, caplet or capsule.
  • the combinations of the invention include physiological functional derivatives of tenofovir DF and FTC.
  • the packaging material may also have labeling and information related to the pharmaceutical composition printed thereon.
  • an article of manufacture may contain a brochure, report, notice, pamphlet, or leaflet containing product information. This form of pharmaceutical information is referred to in the pharmaceutical industry as a “package insert.”
  • a package insert may be attached to or included with a pharmaceutical article of manufacture.
  • the package insert and any article of manufacture labeling provides information relating to the pharmaceutical composition.
  • the information and labeling provides various forms of information utilized by health-care professionals and patients, describing the composition, its dosage and various other parameters required by regulatory agencies such as the United States Food and Drug Agency.
  • the combinations of the inventions may be tested for in vitro activity against HIV and sensitivity, and for cytotoxicity in laboratory adapted cell lines, e.g. MT2 and in peripheral blood mononuclear cells (PBMC) according to standard assays developed for testing anti-HIV compounds, such as WO 02/068058 and U.S. Pat. No. 6,475,491.
  • Combination assays may be performed at varying concentrations of the compounds of the combinations to determine EC 50 by serial dilutions.
  • compositions A, B, C, D, E, and F are prepared by wet granulation of the ingredients with an aqueous solution, addition of extragranular components and then followed by addition of magnesium stearate and compression.
  • Formulation A mg/tablet Tenofovir Disoproxil Fumarate 300 emtricitabine 200 Microcrystalline Cellulose 200 Lactose Monohydrate 175 Croscarmellose Sodium 60 Pregelatinized Starch 50 Colloidal silicon dioxide 5 Magnesium Stearate 10 total: 1000
  • Formulation B mg/tablet Tenofovir Disoproxil fumarate 300 emtricitabine 100 Microcrystalline Cellulose 200 Lactose Monohydrate 180 Sodium Starch Glycollate 60 Pregelatinized Starch 50 Magnesium Stearate 10 total: 900
  • Formulation C mg/tablet Tenofovir Disoproxil fumarate 200 emtricitabine 200 Microcrystalline Cellulose 200 Lactose Monohydrate 180 Sodium Starch Glycollate 60 Pregelatinized Starch 50 Magnesium Stearate 10 total: 900
  • Formulation D mg/tablet Tenofovir Disoproxil fumarate 300 emtricitabine 25 Microcrystalline Cellulose 200 Lactose Monohydrate 180 Sodium Starch Glycollate 60 Pregelatinized Starch 50 Magnesium Stearate 10 total: 825
  • Formulation E mg/tablet Tenofovir Disoproxil fumarate 200 emtricitabine 25 Microcrystalline Cellulose 200 Lactose Monohydrate 180 Sodium Starch Glycollate 60 Pregelatinized Starch 50 Magnesium Stearate 10 total: 725
  • Formulation F mg/tablet Tenofovir Disoproxil fumarate 100 emtricitabine 100 Microcrystalline Cellulose 200 Lactose Monohydrate 180 Sodium Starch Glycollate 60 Pregelatinized Starch 50 Magnesium Stearate 10 total: 700
  • This formulation is prepared by wet granulation of the ingredients with an aqueous solution, followed by the addition of magnesium stearate and compression.
  • Drug release takes place over a period of about 6-8 hours and is complete after 12 hours.
  • a capsule formulation is prepared by admixing the ingredients and filling into a two-part hard gelatin or hydroxypropyl methylcellulose capsule.
  • mg/capsule Active Ingredient 500 Microcrystalline Cellulose 143 Sodium Starch Glycollate 25 Magnesium Stearate 2 total: 670
  • the following controlled release capsule formulation is prepared by extruding ingredients a, b, and c using an extruder, followed by spheronization of the extrudate and drying. The dried pellets are then coated with release-controlling membrane (d) and filled into a two-piece, hard gelatin or hydroxypropyl methylcellulose capsule.
  • mg/capsule (a) Active Ingredient 500 (b) Microcrystalline Cellulose 125 (c) Lactose B.P. 125 (d) Ethyl Cellulose 13 total: 763
  • active ingredients are admixed with the ingredients and filling them as dry powder. Purified water is added and mixed well before use. Active Ingredient 500 mg Confectioner's Sugar 2000 mg Simethicone 300 mg Methylparaben 30 mg Propylparaben 10 mg Flavor, Peach 500 mg Purified Water q.s. to 5.00 ml
  • Witepsol H15 is melted in a steam-jacketed pan at 45° C. maximum.
  • the active ingredients are sifted through a 200 micron sieve and added to the molten base with mixing, using a Silverson fitted with a cutting head, until a smooth dispersion is achieved. Maintaining the mixture at 45° C., the remaining Witepsol H15 is added to the suspension and stirred to ensure a homogenous mix.
  • the entire suspension is passed through a 250 micron stainless steel screen and, with continuous stirring, is allowed to cool to 40° C. At a temperature of 38° C. to 40° C., 2.02 g of the mixture is filled into suitable, 2 ml plastic molds. The suppositories are allowed to cool to room temperature.
  • TDF tenofovir disoproxil fumarate
  • Equipment included a high shear mixer equipped with a pressure tank and spray nozzle tip to add the granulating water, a fluid-bed dryer, a mill, a tumble blender, a rotary tablet press, and a tablet deduster.
  • the dried, milled powder was blended with the extragranular microcrystalline cellulose and croscarmellose sodium and then blended with magnesium stearate. Powder samples were removed after mixing with the magnesium stearate. The blend samples were evaluated for, bulk density, mesh analysis and compressibility. The powder blend mixed with the magnesium stearate was compressed into tablets on a press setup.
  • TDF/emtricitabine tablet formulation The following Table 1 lists the quantitative composition of the TDF/emtricitabine tablet formulation.
  • Magnesium Stearate NF/EP 1.0 10.0 0.12 Purified Water, USP/EP b b b Totals 100.0 1000.0 12.00
  • Moisture content was measured by loss on drying using a heat lamp/balance system.
  • the powder blend was sampled with a sampling thief fitted with chambers to determine powder blend uniformity. Duplicate samples were removed from each of several locations in the blender. Blend uniformity analysis was performed on one sample from each location.
  • Particle size analysis of the final powder blend was determined by sifting a multi-gram sample through a screen using a sonic sifter. The quantity of final powder blend retained on each sieve and the fines collector was determined by calculating the difference in weight between the sieves and fines collector before and after the test. The geometric mean diameter particle size was calculated by logarithmic weighting of the sieved distribution.
  • Tablets were characterized for friability using a friabilator, a hardness tester, a thickness micrometer equipped with a printer, and a weighing balance.
  • Compression characteristics were determined using a rotary tablet press equipped with a flat-faced, beveled edged punch to a target weight of 400 mg.
  • the powder blends were compressed using target upper punch pressures ranging from approximately 100 to 250 MPa.
  • the apparent normalized ejection force was determined and normalized for tablet thickness and diameter.
  • Tablet hardness was determined using a hardness tester. Tablet thickness was determined using a micrometer, and tablet weights were determined using a top loading balance.
  • each wet granulation was deagglomerated with a mill fitted with a screen and an impeller. The milled wet granules were charged into a fluid-bed dryer immediately following wet milling.
  • Milled wet granules were dried using an inlet air setpoint temperature of about 70° C. and airflow of approximately 100 cfm.
  • the target LOD was about 1.0% with a range of not more than (NMT) 1.5%.
  • the total fluid-bed drying time ranged from 53 to 75 minutes.
  • Final LOD ranged from 0.4% to 0.7% for all of the batches dried.
  • the final exhaust temperatures for all the batches ranged from 47° C. to 50° C.
  • the final powder blend moisture level ranged from 0.8% to 1.1% LOD.
  • Table 2 Three 300 gm formulations (Table 2) were granulated in a granulator equipped with a 1-L bowl. The quantities of intragranular components were based on a 300 g total batch size. The formulations in lots 1 and 2 differed in the amount of microcrystalline cellulose 30% vs. 20% w/w, respectively. Lots 2 and 3 were identical except for the type of binder. Lot 2 contained 5% w/w of pregelatinized starch and lot 3 contained 5% w/w povidone as binder.
  • the final blend batch size was adjusted to 100 g.
  • a portion, 81 g of the resulting blend from Lot 1 was blended with 15 g microcrystalline cellulose, 3 g croscarmellose sodium and 1 g magnesium stearate.
  • 86 g of the resulting granulation from Lot 2 and Lot 3 were each blended with 10 g microcrystalline cellulose, 3 g croscarmellose sodium and 1 g magnesium stearate.
  • Impurities related to tenofovir disoproxil fumarate and emtricitabine were characterized and measured in the bulk API (active pharmaceutical ingredient) before formulation in the three lots of Table 2, and again after formulation in the resulting tablets.
  • the impurities include by-products from hydrolysis of the exocyclic amino groups of tenofovir disoproxil fumarate and emtricitabine, and the hydrolysis of the disoproxil (POC) esters of tenofovir disoproxil fumarate. In each lot, the sum total of impurities related to tenofovir disoproxil fumarate and emtricitabine was less than 1% after formulation and tablet manufacture.
  • a pharmaceutical composition comprising an effective amount of a compound of the formula:
  • R 1 and R are independently selected from H, C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl, C 6 -C 20 substituted aryl, C 6 -C 20 arylalkyl, C 6 -C 20 substituted arylalkyl, acyloxymethyl esters —CH 2 OC( ⁇ O)R 9 and acyloxymethyl carbonates —CH 2 OC( ⁇ O)OR 9 where R 9 is C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl and C 6 -C 20 substituted aryl;
  • R 3 is selected from H, C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, or CH 2 OR 8 where R 8 is C 1 -C 6 alkyl, C 1 -C 6 hydroxyalkyl and C 1 -C 6 haloalkyl;
  • R 4 and R 5 are independently selected from H, NH 2 , NHR and NR 2 where R is C 1 -C 6 alkyl;
  • R 6 and R 7 are independently selected from H and C 1 -C 6 alkyl; or a physiologically functional derivative thereof;
  • B is selected from adenine, guanine, cytosine, uracil, thymine, 7-deazaadenine, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deaza-8-azaadenine, inosine, nebularine, nitropyrrole, nitroindole, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, pseudouridine, 5-fluorocytosine, 5-chlorocytosine, 5-bromocytosine, 5-iodocytosine, pseudocytosine, pseudoisocytosine, 5-propynylcytosine, isocytosine, isoguanine, 7-deazaguanine, 2-thiopyrimidine, 6-thioguanine, 4-thiothymine, 4-thiouracil, O 6 -methylguanine, N 6 -methyla
  • R is selected from H, C 1 -C 18 alkyl, C 1 -C 18 substituted alkyl, C 2 -C 18 alkenyl, C 2 -C 18 substituted alkenyl, C 2 -C 18 alkynyl, C 2 -C 18 substituted alkynyl, C 6 -C 20 aryl, C 6 -C 20 substituted aryl, C 2 -C 20 heterocycle, C 2 -C 20 substituted heterocycle, phosphonate, phosphophosphonate, diphosphophosphonate, phosphate, diphosphate, triphosphate, polyethyleneoxy or a physiologically functional derivative thereof; and
  • a pharmaceutically acceptable carrier [0179] a pharmaceutically acceptable carrier.
  • R 1 and R 2 are independently selected from H, C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl, C 6 -C 20 substituted aryl, C 6 -C 20 arylalkyl, C 6 -C 20 substituted arylalkyl, acyloxymethyl esters —CH 2 OC( ⁇ O)R 9 and acyloxymethyl carbonates —CH 2 OC( ⁇ O)OR 9 where R 9 is C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl and C 6 -C 20 substituted aryl; and R 3 R 4 , R 5 , R 6 and R 7 are independently H or C 1 -C 6 alkyl.
  • C3. A composition of embodiment A1 wherein, in formula 2, B is cytosine or a 5-halocytosine.
  • R 1 and R 2 are independently selected from H, C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl, C 6 -C 20 substituted aryl, C 6 -C 20 arylalkyl, C 6 -C 20 substituted arylalkyl, acyloxymethyl esters —CH 2 OC( ⁇ O)R 9 and acyloxymethyl carbonates —CH 2 OC( ⁇ O)OR 9 where R 9 is C 1 -C 6 alkyl, C 1 -C 6 substituted alkyl, C 6 -C 20 aryl and C 6 -C 20 substituted aryl; and R 3 , R 4 , R 5 , R 6 and R 7 are independently H or C 1 -C 6 alkyl; and, in formula 2, B is cytosine or a 5-halocytosine.
  • R 1 and R 2 are independently selected from H, acyloxymethyl esters —CH 2 OC( ⁇ O)R 9 and acyloxymethyl carbonates —CH 2 OC( ⁇ O)OR 9 where R 9 is C 1 -C 6 alkyl; and R 3 , R 4 , R 5 , R 6 and R 7 are independently H or C 1 -C 6 alkyl; and, in formula 2, B is cytosine or a 5-halocytosine and R is H.
  • F6 A composition of embodiment E5 wherein, in formula 1, R 1 and R 2 are independently selected from H and —CH 2 OC( ⁇ O)OCH(CH 3 ) 2 ; R 3 is —CH 3 ; and R 4 , R 5 , R 6 and R 7 are H; and, in formula 2, B is 5-fluorocytosine and R is H.
  • a pharmaceutical composition comprising a pharmaceutically effective amount of [2-(6-amino-purin-9-yl)-1-methyl-ethoxymethyl]-phosphonic acid diisopropoxycarbonyloxymethyl ester fumarate (tenofovir disoproxil fumarate) or a physiologically functional derivative thereof and a pharmaceutically effective amount of (2R, 5S-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one (emtricitabine) or a physiologically functional derivative thereof; and a pharmaceutically acceptable carrier.
  • a pharmaceutical formulation of embodiment A1 to G7 further comprising a third active ingredient selected from the group consisting of a protease inhibitor, a nucleoside or nucleotide reverse transcriptase inhibitor, a non-nucleoside reverse transcriptase inhibitor, and an integrase inhibitor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • AIDS & HIV (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Plural Heterocyclic Compounds (AREA)
US10/757,141 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy Abandoned US20040224917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/757,141 US20040224917A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US44030803P 2003-01-14 2003-01-14
US44024603P 2003-01-14 2003-01-14
US10/757,141 US20040224917A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy

Publications (1)

Publication Number Publication Date
US20040224917A1 true US20040224917A1 (en) 2004-11-11

Family

ID=32776014

Family Applications (11)

Application Number Title Priority Date Filing Date
US10/757,122 Abandoned US20040224916A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy
US10/757,141 Abandoned US20040224917A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy
US10/540,782 Abandoned US20060234982A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy
US10/540,794 Abandoned US20060246130A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy
US12/195,161 Expired - Lifetime US8592397B2 (en) 2003-01-14 2008-08-20 Compositions and methods for combination antiviral therapy
US12/204,174 Expired - Lifetime US8716264B2 (en) 2003-01-14 2008-09-04 Compositions and methods for combination antiviral therapy
US14/227,653 Abandoned US20140213556A1 (en) 2003-01-14 2014-03-27 Compositions and methods for combination antiviral therapy
US14/523,783 Expired - Lifetime US9744181B2 (en) 2003-01-14 2014-10-24 Compositions and methods for combination antiviral therapy
US14/523,758 Expired - Lifetime US9457036B2 (en) 2003-01-14 2014-10-24 Compositions and methods for combination antiviral therapy
US15/586,500 Abandoned US20170232019A1 (en) 2003-01-14 2017-05-04 Compositions and Methods for Combination Antiviral Therapy
US15/622,484 Abandoned US20170273994A1 (en) 2003-01-14 2017-06-14 Compositions and Methods for Combination Antiviral Therapy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/757,122 Abandoned US20040224916A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy

Family Applications After (9)

Application Number Title Priority Date Filing Date
US10/540,782 Abandoned US20060234982A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy
US10/540,794 Abandoned US20060246130A1 (en) 2003-01-14 2004-01-13 Compositions and methods for combination antiviral therapy
US12/195,161 Expired - Lifetime US8592397B2 (en) 2003-01-14 2008-08-20 Compositions and methods for combination antiviral therapy
US12/204,174 Expired - Lifetime US8716264B2 (en) 2003-01-14 2008-09-04 Compositions and methods for combination antiviral therapy
US14/227,653 Abandoned US20140213556A1 (en) 2003-01-14 2014-03-27 Compositions and methods for combination antiviral therapy
US14/523,783 Expired - Lifetime US9744181B2 (en) 2003-01-14 2014-10-24 Compositions and methods for combination antiviral therapy
US14/523,758 Expired - Lifetime US9457036B2 (en) 2003-01-14 2014-10-24 Compositions and methods for combination antiviral therapy
US15/586,500 Abandoned US20170232019A1 (en) 2003-01-14 2017-05-04 Compositions and Methods for Combination Antiviral Therapy
US15/622,484 Abandoned US20170273994A1 (en) 2003-01-14 2017-06-14 Compositions and Methods for Combination Antiviral Therapy

Country Status (26)

Country Link
US (11) US20040224916A1 (ja)
EP (4) EP3025718A1 (ja)
JP (8) JP4996241B2 (ja)
KR (3) KR100860136B1 (ja)
CN (2) CN102670629B (ja)
AP (1) AP2089A (ja)
AT (1) ATE398455T1 (ja)
AU (3) AU2004206821C1 (ja)
BR (1) BRPI0406760A (ja)
CA (2) CA2512319A1 (ja)
CY (1) CY1108355T1 (ja)
DE (1) DE602004014470D1 (ja)
DK (1) DK1583542T3 (ja)
EA (2) EA015145B1 (ja)
ES (1) ES2308136T3 (ja)
HK (1) HK1079122A1 (ja)
HR (2) HRP20050619A2 (ja)
IL (1) IL169243A (ja)
IS (1) IS7977A (ja)
MX (1) MXPA05007016A (ja)
NO (3) NO337917B1 (ja)
NZ (1) NZ540728A (ja)
PL (2) PL408254A1 (ja)
PT (1) PT1583542E (ja)
SI (1) SI1583542T1 (ja)
WO (2) WO2004064846A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003516A1 (en) * 2005-04-08 2007-01-04 Almond Merrick R Compounds, compositions and methods for the treatment of poxvirus infections
US20070003608A1 (en) * 2005-04-08 2007-01-04 Almond Merrick R Compounds, compositions and methods for the treatment of viral infections and other medical disorders
US20070077295A1 (en) * 2005-06-13 2007-04-05 Gilead Sciences, Inc. Method and composition for pharmaceutical product
WO2008100848A2 (en) * 2007-02-12 2008-08-21 Board Of Regents, The University Of Texas System Novel agent for in vivo pet imaging of tumor proliferation
US20080317852A1 (en) * 2005-12-14 2008-12-25 Amar Lulla Pharmaceutical Combination
US20090036408A1 (en) * 2003-01-14 2009-02-05 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US20090247749A1 (en) * 2008-03-31 2009-10-01 Apotex Pharmachem Inc. Salt form and cocrystals of adefovir dipivoxil and processes for preparation thereof
US20100065444A1 (en) * 2007-01-20 2010-03-18 Stefan Henke Pack containing soft capsules
WO2010075549A2 (en) 2008-12-23 2010-07-01 Pharmasset, Inc. Nucleoside phosphoramidates
WO2010075554A1 (en) 2008-12-23 2010-07-01 Pharmasset, Inc. Synthesis of purine nucleosides
WO2010075517A2 (en) 2008-12-23 2010-07-01 Pharmasset, Inc. Nucleoside analogs
WO2010135569A1 (en) 2009-05-20 2010-11-25 Pharmasset, Inc. N- [ (2 ' r) -2 ' -deoxy-2 ' -fluoro-2 ' -methyl-p-phenyl-5 ' -uridylyl] -l-alanine 1-methylethyl ester and process for its production
WO2011123645A2 (en) 2010-03-31 2011-10-06 Pharmasset, Inc. Nucleoside phosphoramidates
WO2011123672A1 (en) 2010-03-31 2011-10-06 Pharmasset, Inc. Purine nucleoside phosphoramidate
WO2011156594A2 (en) 2010-06-09 2011-12-15 Vaccine Technologies, Incorporated Therapeutic immunization in hiv infected subjects receiving stable antiretroviral treatment
US8173621B2 (en) 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
WO2012075140A1 (en) 2010-11-30 2012-06-07 Pharmasset, Inc. Compounds
WO2013082476A1 (en) 2011-11-30 2013-06-06 Emory University Antiviral jak inhibitors useful in treating or preventing retroviral and other viral infections
US8563530B2 (en) 2010-03-31 2013-10-22 Gilead Pharmassel LLC Purine nucleoside phosphoramidate
US8598185B2 (en) 2005-06-13 2013-12-03 Bristol-Myers Squibb & Gilead Sciences, Inc. Unitary pharmaceutical dosage form
US8614200B2 (en) 2009-07-21 2013-12-24 Chimerix, Inc. Compounds, compositions and methods for treating ocular conditions
US8993542B2 (en) 2008-01-25 2015-03-31 Chimerix Inc. Methods of treating viral infections
US9006218B2 (en) 2010-02-12 2015-04-14 Chimerix Inc. Nucleoside phosphonate salts
US20150272972A1 (en) * 2006-02-03 2015-10-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Inhibition of hiv infection through chemoprophyalxis
US9278135B2 (en) 2010-04-26 2016-03-08 Chimerix Inc. Methods of treating retroviral infections and related dosage regimes

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2588465C (en) 2004-12-03 2013-10-01 Merck & Co., Inc. Pharmaceutical composition containing an anti-nucleating agent
US8297028B2 (en) 2006-06-14 2012-10-30 The Invention Science Fund I, Llc Individualized pharmaceutical selection and packaging
US8000981B2 (en) 2005-11-30 2011-08-16 The Invention Science Fund I, Llc Methods and systems related to receiving nutraceutical associated information
US7927787B2 (en) 2006-06-28 2011-04-19 The Invention Science Fund I, Llc Methods and systems for analysis of nutraceutical associated components
US8340944B2 (en) 2005-11-30 2012-12-25 The Invention Science Fund I, Llc Computational and/or control systems and methods related to nutraceutical agent selection and dosing
US20080103746A1 (en) 2005-11-30 2008-05-01 Searete Llc, A Limited Liability Corporation Systems and methods for pathogen detection and response
US7974856B2 (en) 2005-11-30 2011-07-05 The Invention Science Fund I, Llc Computational systems and methods related to nutraceuticals
US7827042B2 (en) 2005-11-30 2010-11-02 The Invention Science Fund I, Inc Methods and systems related to transmission of nutraceutical associated information
US10296720B2 (en) 2005-11-30 2019-05-21 Gearbox Llc Computational systems and methods related to nutraceuticals
AU2007275860C1 (en) 2006-07-07 2014-06-12 Gilead Sciences, Inc. Modulators of pharmacokinetic properties of therapeutics
WO2008096369A2 (en) * 2007-02-05 2008-08-14 Matrix Laboratories Limited Pharmaceutical formulation for use in hiv therapy
LT2487166T (lt) 2007-02-23 2016-11-10 Gilead Sciences, Inc. Terapinių agentų farmakokinetinių savybių moduliatoriai
CN101820863A (zh) * 2007-10-10 2010-09-01 马林克罗特贝克公司 直接可压制的高功能性颗粒状微晶纤维素基赋形剂、其制备方法和用途
US20100055180A1 (en) * 2007-10-10 2010-03-04 Mallinckrodt Baker, Inc. Directly Compressible Granular Microcrystalline Cellulose Based Excipient, Manufacturing Process and Use Thereof
US8609609B2 (en) 2008-01-18 2013-12-17 North Carolina State University Peptides and methods of use as therapeutics and screening agents
MX2010011963A (es) 2008-05-02 2010-12-06 Gilead Sciences Inc Uso de particulas trasportadoras solidas para mejorar la capacidad de procesamiento de un agente farmaceutico.
NZ594214A (en) 2009-02-06 2013-05-31 Gilead Sciences Inc Tablets comprising cobicistat, elvitegravir, emtricitabine and tenofovir disoproxil fumarate for combination therapy
MX356891B (es) 2010-01-27 2018-06-19 Viiv Healthcare Co Combinaciones de compuestos que comprenden inhibidores de la integrasa de vih y otros agentes terapéuticos.
EP2389929A1 (en) * 2010-05-30 2011-11-30 Abdi Ibrahim Ilac Sanayi ve Ticaret Anonim Sirketi Pharmaceutical formulations of tenofovir
JP2013535475A (ja) * 2010-08-01 2013-09-12 江蘇正大天晴薬業股▲ふん▼有限公司 フマル酸テノホビルジソプロキシルの結晶
UA114075C2 (xx) * 2010-11-19 2017-04-25 БАГАТОШАРОВА ТАБЛЕТКА, ЩО МІСТИТЬ РИЛПІВІРИН HCl, ЕМТРИЦИТАБІН І ТЕНОФОВІРУ ДИЗОПРОКСИЛФУМАРАТ
WO2012154698A2 (en) * 2011-05-06 2012-11-15 Mckenna Charles E Method to improve antiviral activity of nucleotide analogue drugs
DK2794624T3 (da) 2011-12-22 2019-07-22 Geron Corp Guanin-analoger som telomerase-substrater og påvirkere af telomer-længde
WO2013115916A1 (en) * 2012-02-03 2013-08-08 Gilead Sciences, Inc. Combination therapy comprising gs-7340 and cobicistat for use in the treatment of viral infections
EA026138B1 (ru) 2012-02-03 2017-03-31 Джилид Сайэнс, Инк. Комбинированная терапия, включающая тенофовир алафенамида гемифумарат и кобицистат, для применения для лечения вирусных инфекций
CN107312039B (zh) 2012-08-30 2019-06-25 江苏豪森药业集团有限公司 一种替诺福韦前药的制备方法
KR102186030B1 (ko) * 2012-10-29 2020-12-03 시플라 리미티드 항 바이러스성 포스포네이트 유사체 및 이의 제조를 위한 방법
CN111303152B (zh) 2012-12-21 2023-04-11 吉利德科学公司 多环-氨基甲酰基吡啶酮化合物及其药物用途
CN103127028A (zh) * 2013-03-14 2013-06-05 南京恒道医药科技有限公司 一种含有富马酸替诺福韦二吡呋酯的胶囊剂
DK3019503T3 (da) 2013-07-12 2017-11-20 Gilead Sciences Inc Polycykliske-carbamoylpyridon-forbindelser og anvendelse deraf til behandling af hiv-infektioner
NO2865735T3 (ja) 2013-07-12 2018-07-21
CA2918707A1 (en) * 2013-08-29 2015-03-05 Teva Pharmaceuticals Industries Ltd. Unit dosage form comprising emtricitabine, tenofovir, darunavir and ritonavir and a monolithic tablet comprising darunavir and ritonavir
CZ2013985A3 (cs) * 2013-12-09 2015-06-17 Zentiva, K.S. Stabilní farmaceutická kompozice obsahující tenofovir disoproxil fumarát
TWI660965B (zh) 2014-01-15 2019-06-01 美商基利科學股份有限公司 泰諾福韋之固體形式
WO2015155673A1 (en) 2014-04-08 2015-10-15 Teva Pharmaceutical Industries Ltd Unit dosage form comprising emtricitabine, tenofovir, darunavir and ritonavir
NO2717902T3 (ja) 2014-06-20 2018-06-23
TWI744723B (zh) 2014-06-20 2021-11-01 美商基利科學股份有限公司 多環型胺甲醯基吡啶酮化合物之合成
TW201613936A (en) 2014-06-20 2016-04-16 Gilead Sciences Inc Crystalline forms of(2R,5S,13aR)-8-hydroxy-7,9-dioxo-n-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide
CN105399771B (zh) * 2014-07-21 2020-11-24 江苏豪森药业集团有限公司 替诺福韦前药晶型及其制备方法和用途
TWI695003B (zh) 2014-12-23 2020-06-01 美商基利科學股份有限公司 多環胺甲醯基吡啶酮化合物及其醫藥用途
BR112017013858A2 (pt) 2014-12-26 2018-02-27 Univ Emory n4-hidroxicitidina e derivados e usos antivirais relacionados aos mesmos
CN107223052A (zh) * 2015-03-27 2017-09-29 豪夫迈·罗氏有限公司 包含sembragiline的药物制剂
EP3466490B1 (en) 2015-04-02 2020-10-21 Gilead Sciences, Inc. Polycyclic-carbamoylpyridone compounds and their pharmaceutical use
AU2016287500B2 (en) * 2015-06-30 2019-05-02 Gilead Sciences, Inc. Pharmaceutical formulations comprising tenofovir and emtricitabine
TWI620754B (zh) * 2015-08-26 2018-04-11 Method for preparing amino phosphate derivative and preparation method thereof
EP3346995B1 (en) * 2015-11-09 2019-08-28 Gilead Sciences, Inc. Therapeutic compositions for treatment of human immunodeficiency virus
WO2017106069A1 (en) 2015-12-15 2017-06-22 Merck Sharp & Dohme Corp. Antiviral oxime phosphoramide compounds
WO2017197046A1 (en) 2016-05-10 2017-11-16 C4 Therapeutics, Inc. C3-carbon linked glutarimide degronimers for target protein degradation
CN109562113A (zh) 2016-05-10 2019-04-02 C4医药公司 用于靶蛋白降解的螺环降解决定子体
EP3454856A4 (en) 2016-05-10 2019-12-25 C4 Therapeutics, Inc. HETEROCYCLIC DEGRONIMERS FOR TARGET PROTEIN REDUCTION
WO2018039157A1 (en) * 2016-08-25 2018-03-01 Merck Sharp & Dohme Corp. Antiviral prodrugs of tenofovir
WO2018080903A1 (en) 2016-10-26 2018-05-03 Merck Sharp & Dohme Corp. Antiviral aryl-amide phosphodiamide compounds
TR201617448A2 (tr) * 2016-11-29 2018-06-21 Arven Ilac Sanayi Ve Ticaret Anonim Sirketi Tenofovi̇r ve emtri̇si̇tabi̇n i̇çeren kati oral farmasöti̇k bi̇leşi̇mler
KR20190100249A (ko) 2016-12-22 2019-08-28 머크 샤프 앤드 돔 코포레이션 항바이러스 벤질-아민 포스포디아미드 화합물
CN106749254B (zh) * 2017-01-10 2018-05-25 青岛科技大学 一种6-氨基嘌呤乙基萘乙酸酯类化合物及其作为植物生长调节剂的用途
WO2018153977A1 (en) * 2017-02-24 2018-08-30 Hexal Ag Stable composition of tenofovir alafenamide
GB201705087D0 (en) * 2017-03-30 2017-05-17 Univ Liverpool Method for producing a liquid composition
EP3612226A1 (en) * 2017-04-18 2020-02-26 Cipla Limited Combination therapy for use in treating retroviral infections
RU2662160C9 (ru) 2017-07-03 2018-10-22 Александрович Иващенко Андрей Комбинированный лекарственный препарат для терапии вирусных инфекций
KR102077060B1 (ko) * 2017-07-14 2020-02-13 주식회사 종근당 테노포비어 디소프록실 아스파르트산 염을 포함하는 약제학적 조성물
RU2666727C1 (ru) * 2017-07-18 2018-09-12 Андрей Александрович Иващенко Ингибитор вируса гепатита В (ВГВ)
TR201713954A2 (tr) 2017-09-20 2019-04-22 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi Tenofovir, emtrisitabin ve efavirenzin farmasötik kombinasyonlari
MX2020005392A (es) 2017-12-07 2020-12-07 Univ Emory N4-hidroxicitidina y derivados y usos antivirales relacionados con los mismos.
US11826375B2 (en) 2018-07-19 2023-11-28 Merck Sharp & Dohme Llc Phosphinic amide prodrugs of tenofovir
RU2726210C2 (ru) * 2018-12-27 2020-07-09 Общество С Ограниченной Ответственностью "Пролонгированные Лекарства" Комбинация противовирусных средств, набор и способ лечения на ее основе
CN110261631A (zh) * 2019-07-26 2019-09-20 重庆德方信息技术有限公司 用于健康检测装置的滴液机构
CN110251476B (zh) * 2019-08-01 2022-08-09 海思科制药(眉山)有限公司 一种恩曲他滨替诺福韦药物组合物
WO2022089600A1 (zh) * 2020-10-30 2022-05-05 杭州拉林智能科技有限公司 黄酮苷-有机胺类抗微生物剂复盐化合物及其制备方法和应用

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US568164A (en) 1896-09-22 Motor attachment for bicycles
CH389608A (de) 1960-01-19 1965-03-31 Sandoz Ag Verfahren zur Herstellung von neuen Äthern
US3524846A (en) * 1967-06-02 1970-08-18 Syntex Corp Process for the didealkylation of phosphonate esters
US3622677A (en) 1969-07-07 1971-11-23 Staley Mfg Co A E Compressed tablets containing compacted starch as binder-disintegrant ingredient
CH531000A (de) * 1970-03-11 1972-11-30 Sandoz Ag Verfahren zur Herstellung neuer Benzocycloheptathiophene
US3994974A (en) * 1972-02-05 1976-11-30 Yamanouchi Pharmaceutical Co., Ltd. α-Aminomethylbenzyl alcohol derivatives
US4003878A (en) * 1972-12-07 1977-01-18 Avtex Fibers Inc. Method of preparing an alkali-metal salt of an alkoxysulfonated benzoic acid glycol ester
GB1523865A (en) 1974-09-02 1978-09-06 Wellcome Found Purine compunds and salts thereof
DE2645710C2 (de) * 1976-10-09 1985-06-27 Merck Patent Gmbh, 6100 Darmstadt Phenoxy-amino-propanole, Verfahren zu ihrer Herstellung und pharmazeutische Zubereitung
US4384005A (en) 1980-09-26 1983-05-17 General Foods Corporation Non-friable, readily-soluble, compressed tablets and process for preparing same
GB2111043B (en) 1980-12-12 1985-02-06 Ciba Geigy Ag Novel cephalosporin esters
US4355032B2 (en) * 1981-05-21 1990-10-30 9-(1,3-dihydroxy-2-propoxymethyl)guanine as antiviral agent
JPS5879983A (ja) * 1981-11-06 1983-05-13 Kanebo Ltd 新規なベンズイミダゾ−ル誘導体、その製造法およびその医薬組成物
US4816570A (en) 1982-11-30 1989-03-28 The Board Of Regents Of The University Of Texas System Biologically reversible phosphate and phosphonate protective groups
US4476248A (en) * 1983-02-28 1984-10-09 The Upjohn Company Crystallization of ibuprofen
EP0141927B1 (en) * 1983-08-18 1991-10-30 Beecham Group Plc Antiviral guanine derivatives
US5155268A (en) * 1984-05-04 1992-10-13 The Upjohn Company Antiarrhythmic N-aminoalkylene alkyl and aryl sulfonamides
DE3582399D1 (de) 1984-09-20 1991-05-08 Beecham Group Plc Purin-derivate und ihre pharmazeutische verwendung.
CS263952B1 (en) 1985-04-25 1989-05-12 Holy Antonin Remedy with antiviral effect
CS263951B1 (en) 1985-04-25 1989-05-12 Antonin Holy 9-(phosponylmethoxyalkyl)adenines and method of their preparation
GB8607684D0 (en) * 1986-03-27 1986-04-30 Ici America Inc Thiazepine compounds
US4968788A (en) 1986-04-04 1990-11-06 Board Of Regents, The University Of Texas System Biologically reversible phosphate and phosphonate protective gruops
CS264222B1 (en) * 1986-07-18 1989-06-13 Holy Antonin N-phosphonylmethoxyalkylderivatives of bases of pytimidine and purine and method of use them
AU613592B2 (en) 1986-11-18 1991-08-08 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Antiviral phosophonomethoxy-alkyene purine and pyrimide derivatives
WO1988005438A1 (en) 1987-01-20 1988-07-28 Sri International Antiviral agents
GB8719367D0 (en) * 1987-08-15 1987-09-23 Wellcome Found Therapeutic compounds
ZA885709B (en) 1987-08-19 1989-04-26 Fujisawa Pharmaceutical Co Novel crystalline 7-(2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido)-3-vinyl-3-cephem-4-carboxylic acid(syn isomer)
US5684164A (en) 1988-04-11 1997-11-04 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US5047407A (en) 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
US5466806A (en) 1989-02-08 1995-11-14 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US5453503A (en) 1988-10-11 1995-09-26 Eli Lilly And Company Azetidinone intermediates to carbacephalosporins and process
CA2001715C (en) 1988-11-14 1999-12-28 Muzammil M. Mansuri Carbocyclic nucleosides and nucleotides
UA45942A (uk) * 1989-02-08 2002-05-15 Біокем Фарма, Інк. 1,3-оксатіолан, його похідні, спосіб (варіанти) його одержання та фармацевтична композиція
US6642245B1 (en) 1990-02-01 2003-11-04 Emory University Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
US5204466A (en) 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
US6069252A (en) 1990-02-01 2000-05-30 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nucleoside enantiomers
US6703396B1 (en) 1990-02-01 2004-03-09 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nuclesoside enantiomers
GB9009861D0 (en) 1990-05-02 1990-06-27 Glaxo Group Ltd Chemical compounds
WO1991019721A1 (en) 1990-06-13 1991-12-26 Arnold Glazier Phosphorous produgs
US5177064A (en) * 1990-07-13 1993-01-05 University Of Florida Targeted drug delivery via phosphonate derivatives
CA2087446A1 (en) 1990-07-19 1992-01-20 Michael R. Harnden Antiviral phosphono-alken derivatives of purines
ATE194142T1 (de) * 1990-08-10 2000-07-15 Acad Of Science Czech Republic Verfahren zur herstellung von nukleotiden
DE69129650T2 (de) 1990-09-14 1999-03-25 Acad Of Science Czech Republic Wirkstoffvorläufer von Phosphonaten
CA2054126A1 (en) 1990-10-26 1992-04-27 Michiyuki Sendai Cephem compounds, their production and use
US5587480A (en) * 1990-11-13 1996-12-24 Biochem Pharma, Inc. Substituted 1,3-oxathiolanes and substituted 1,3-dithiolanes with antiviral properties
US5208221A (en) * 1990-11-29 1993-05-04 Bristol-Myers Squibb Company Antiviral (phosphonomethoxy) methoxy purine/pyrimidine derivatives
GB9026164D0 (en) 1990-12-01 1991-01-16 Beecham Group Plc Pharmaceuticals
US5179104A (en) * 1990-12-05 1993-01-12 University Of Georgia Research Foundation, Inc. Process for the preparation of enantiomerically pure β-D-(-)-dioxolane-nucleosides
US5672697A (en) 1991-02-08 1997-09-30 Gilead Sciences, Inc. Nucleoside 5'-methylene phosphonates
NZ250842A (en) 1991-02-22 1996-03-26 Univ Emory Resolution of a racemic mixture of nucleoside enantiomers such as 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane (ftc)
US6812233B1 (en) 1991-03-06 2004-11-02 Emory University Therapeutic nucleosides
DE69206876T3 (de) * 1991-05-16 2004-08-12 Glaxo Group Ltd., Greenford Nukleosidanalogen enthaltende Antiviren-Zubereitungen
GB9110874D0 (en) 1991-05-20 1991-07-10 Iaf Biochem Int Medicaments
ZA923640B (en) * 1991-05-21 1993-02-24 Iaf Biochem Int Processes for the diastereoselective synthesis of nucleosides
GB9111902D0 (en) 1991-06-03 1991-07-24 Glaxo Group Ltd Chemical compounds
GB9116601D0 (en) 1991-08-01 1991-09-18 Iaf Biochem Int 1,3-oxathiolane nucleoside analogues
US6177435B1 (en) * 1992-05-13 2001-01-23 Glaxo Wellcome Inc. Therapeutic combinations
US5480875A (en) 1992-06-23 1996-01-02 Yamanouchi Pharmaceutical Co., Ltd. Crystal of monohydrate of heterocyclic bis(phosphonic acid) derivative
US5532225A (en) 1992-07-31 1996-07-02 Sri International Acyclic purine phosphonate nucleotide analogs as antiviral agents, and related synthetic methods
US5432172A (en) 1992-08-03 1995-07-11 The Research Foundation Of State University Of New York Biological applications of alkaloids derived from the tunicate Eudistoma sp.
US6057305A (en) 1992-08-05 2000-05-02 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Antiretroviral enantiomeric nucleotide analogs
US5519021A (en) 1992-08-07 1996-05-21 Merck & Co., Inc. Benzoxazinones as inhibitors of HIV reverse transcriptase
NZ248852A (en) 1992-10-28 1997-06-24 Squibb & Sons Inc Alpha-phosphono and phosphinosulphonates and medicaments thereof
WO1994018215A1 (en) * 1993-02-03 1994-08-18 Gensia, Inc. Adenosine kinase inhibitors comprising lyxofuranosyl derivatives
US5514798A (en) * 1993-06-02 1996-05-07 Gilead Sciences, Inc. Method and cyclic carbonates for nucleotide analogues
GB9311709D0 (en) * 1993-06-07 1993-07-21 Iaf Biochem Int Stereoselective synthesis of nucleoside analogues using bicycle intermediate
ATE199906T1 (de) 1993-06-29 2001-04-15 Mitsubishi Chem Corp Phosphonat-nukleotid ester-derivate
AU690587B2 (en) 1993-09-17 1998-04-30 Gilead Sciences, Inc. Method for dosing therapeutic compounds
DE69435319D1 (de) 1993-09-17 2010-12-16 Gilead Sciences Inc Nukleotidanaloge
US5798340A (en) * 1993-09-17 1998-08-25 Gilead Sciences, Inc. Nucleotide analogs
WO1995032957A1 (en) 1994-05-27 1995-12-07 Astra Aktiebolag Novel ethoxycarbonyloxymethyl derivatives of substituted benzimidazoles
US5514557A (en) 1994-06-06 1996-05-07 Genetic Testing Institute Inc. Method and kit for detecting antibodies specific for HLA and/or platelet glycoproteins
PE32296A1 (es) 1994-07-28 1996-08-07 Hoffmann La Roche Ester de l-monovalina derivado de 2-(2-amino-1,6-dihidro-6-oxo-purin-9-il) metoxi-1,3-propandiol y sus sales farmaceuticamente aceptables
US5512596A (en) * 1994-09-02 1996-04-30 Gilead Sciences, Inc. Aromatic compounds
US5486806A (en) * 1994-11-09 1996-01-23 Firari; Harold A. Anti-hijacking and theft prevention device for motor vehicles
US5684018A (en) 1994-12-13 1997-11-04 Merck & Co., Inc. Acyloxyisopropyl carbamates as prodrugs for amine drugs
MY115461A (en) 1995-03-30 2003-06-30 Wellcome Found Synergistic combinations of zidovudine, 1592u89 and 3tc
KR100571215B1 (ko) 1995-06-07 2006-10-24 트라이머리스 인코퍼레이티드 복합적인치료요법을이용한hiv와다른바이러스감염의치료
US5618964A (en) * 1995-06-07 1997-04-08 Bristol-Myers Squibb Company Prodrug esters of phosphonosulfonate squalene synthetase inhibitors and method
US5733788A (en) * 1996-07-26 1998-03-31 Gilead Sciences, Inc. PMPA preparation
CA2261619C (en) 1996-07-26 2006-05-23 Gilead Sciences, Inc. Nucleotide analogs
US5922695A (en) * 1996-07-26 1999-07-13 Gilead Sciences, Inc. Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavarilability
AU4428397A (en) * 1996-09-20 1998-04-14 Warner-Lambert Company Oral compositions containing a zinc compound
US6113920A (en) 1996-10-31 2000-09-05 Glaxo Wellcome Inc. Pharmaceutical compositions
GB9622681D0 (en) 1996-10-31 1997-01-08 Glaxo Group Ltd Pharmaceutical compositions
US5965729A (en) 1997-02-05 1999-10-12 Merck & Co., Inc. Process for the crystallization of a reverse transcriptase inhibitor using an anti-solvent
US6143877A (en) 1997-04-30 2000-11-07 Epoch Pharmaceuticals, Inc. Oligonucleotides including pyrazolo[3,4-D]pyrimidine bases, bound in double stranded nucleic acids
US5935946A (en) * 1997-07-25 1999-08-10 Gilead Sciences, Inc. Nucleotide analog composition and synthesis method
ZA986614B (en) 1997-07-25 1999-01-27 Gilead Sciences Nucleotide analog composition
EP1256584B1 (en) * 1997-07-25 2004-09-29 Gilead Sciences, Inc. Process for preparing Adefovir Dipivoxil
US6270957B1 (en) * 1997-08-26 2001-08-07 Wisconsin Alumni Research Foundation Non-Imuunosuppressive cyclosporins and their use in the prevention and treatment of HIV infection
CO4970782A1 (es) 1997-11-13 2000-11-07 Merck & Co Inc Terapia combinada para el tratamiento del sida
US6087383A (en) * 1998-01-20 2000-07-11 Bristol-Myers Squibb Company Bisulfate salt of HIV protease inhibitor
US6312662B1 (en) 1998-03-06 2001-11-06 Metabasis Therapeutics, Inc. Prodrugs phosphorus-containing compounds
US6127121A (en) 1998-04-03 2000-10-03 Epoch Pharmaceuticals, Inc. Oligonucleotides containing pyrazolo[3,4-D]pyrimidines for hybridization and mismatch discrimination
UA72207C2 (uk) * 1998-04-07 2005-02-15 Брістол- Майєрс Сквібб Фарма Компані Фармацевтична композиція ефавіренцу з добавкою дезінтегруючих агентів у вигляді швидкорозчинних капсул або таблеток та спосіб її виготовлення
US20020072493A1 (en) * 1998-05-19 2002-06-13 Yeda Research And Development Co. Ltd. Activated T cells, nervous system-specific antigens and their uses
EP1332757B1 (en) 1998-05-27 2012-06-13 Merck Sharp & Dohme Corp. Efavirenz compressed tablet formulation
US20010014352A1 (en) * 1998-05-27 2001-08-16 Udit Batra Compressed tablet formulation
CO5070643A1 (es) 1998-05-27 2001-08-28 Merck & Co Inc Formulacion en tabletas comprimidas
US6194391B1 (en) 1998-06-24 2001-02-27 Emory University 3′-azido-2′,3′-dideoxyuridine administration to treat HIV and related test protocol
RU2244712C2 (ru) * 1998-08-12 2005-01-20 Гайлид Сайенсиз, Инк. Способ получения 1,3-оксатиоланового нуклеозида, способ получения производного 1,3-оксатиоланил-5-она
GB9820420D0 (en) 1998-09-18 1998-11-11 Glaxo Group Ltd Antiviral combinations
CN1173705C (zh) * 1998-11-02 2004-11-03 三角药物公司 β-2-羟甲基-5-(5-氟胞嘧啶-1-基)-1,3-噁噻戊环在制药中的应用及含有该化合物的药物组合物
GB9909154D0 (en) 1999-04-22 1999-06-16 Nippon Glaxo Limited Pharmaceutical formulation
US6660845B1 (en) 1999-11-23 2003-12-09 Epoch Biosciences, Inc. Non-aggregating, non-quenching oligomers comprising nucleotide analogues; methods of synthesis and use thereof
AU2001240578A1 (en) 2000-02-02 2001-08-14 Axxima Pharmaceuticals Ag Pharmaceutically active aromatic guanylhydrazones
EP1642582A1 (en) * 2000-02-29 2006-04-05 Bristol-Myers Squibb Company Low dose entecavir formulation and use
NZ536942A (en) 2000-07-21 2006-03-31 Gilead Sciences Inc Prodrugs of phosphonate nucleotide analogues and methods for selecting and making same
EP1363704A2 (en) 2000-12-15 2003-11-26 Triangle Pharmaceuticals Inc. Dapd combination therapy with inosine monophosphate dehydrogenase inhibitor
AU2002242096A1 (en) 2001-02-06 2002-08-19 The University Of Georgia Research Foundation, Inc. Novel compounds and methods for inhibiting/treating hiv infections and aids related symptoms
CN1503796B (zh) 2001-03-01 2012-07-04 三角药品公司 顺-ftc的多晶型物及其它晶型
MY169670A (en) 2003-09-03 2019-05-08 Tibotec Pharm Ltd Combinations of a pyrimidine containing nnrti with rt inhibitors
EP1448170A4 (en) 2001-11-27 2010-05-12 Bristol Myers Squibb Co EFAVIRENZ STAMP PREPARATIONS HAVING UNIQUE BIOPHARMACEUTICAL CHARACTERISTICS
ES2400138T3 (es) 2002-01-16 2013-04-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Comprimido farmacéutico de dos capas que comprende telmisartán y un diurético
AU2003210659A1 (en) * 2002-01-24 2003-09-02 Sangstat Medical Corporation Combination therapy for treatment of hiv infection
EA008775B1 (ru) 2002-04-26 2007-08-31 Джилид Сайэнс, Инк. Ингибиторы протеазы вич для лечения инфекции вич и фармацевтическая композиция
EP1569659A4 (en) 2002-12-09 2009-03-25 Univ Georgia Res Found DIOXOLAN THYMIN AND COMBINATIONS AGAINST 3TC / AZT RESISTANT HIV STRAINS
CA2509023C (en) * 2002-12-26 2011-05-24 Pozen Inc. Multilayer dosage forms containing nsaids and triptans
SI1583542T1 (sl) 2003-01-14 2008-12-31 Gilead Sciences Inc Sestavki in postopki za kombinacijsko antivirusnoterapijo
KR101125268B1 (ko) * 2003-06-06 2012-04-23 에띠팜 구강 분산성 다중층 정제
CA2598607A1 (en) 2005-01-18 2006-07-27 Adra N. Chaker Methods and compositions for cell-cycle regulation
TWI471145B (zh) * 2005-06-13 2015-02-01 Bristol Myers Squibb & Gilead Sciences Llc 單一式藥學劑量型
TWI375560B (en) 2005-06-13 2012-11-01 Gilead Sciences Inc Composition comprising dry granulated emtricitabine and tenofovir df and method for making the same
US8232278B2 (en) 2005-06-24 2012-07-31 Gilead Sciences, Inc. Pyrido(3,2-D)pyrimidines and pharmaceutical compositions useful for treating hepatitis C
CA2616189C (en) * 2005-07-22 2019-03-26 Progenics Pharmaceuticals, Inc. Methods for reducing viral load in hiv-1-infected patients
US7448494B2 (en) * 2005-08-10 2008-11-11 Certain Teed Corporation Loose fill insulation packaged with additive
ATE474560T1 (de) 2005-12-14 2010-08-15 Cipla Ltd Pharmazeutische kombination aus nucleotid und nucleosid-reverse-transkriptase-hemmern (wie tenofovir und lamivudin) in verschiedenen teilen der dosiereinheit
GB0525898D0 (en) 2005-12-20 2006-02-01 Pharmo Bioscience As Screening compounds for activity in modulating chloride ion transport
JP2010515771A (ja) 2007-01-16 2010-05-13 プロテオロジクス リミテッド トポイソメラーゼインヒビターの治療効果を増強する方法
AU2009279604A1 (en) 2008-08-06 2010-02-11 Bionevia Pharmaceuticals, Inc. Flupirtine hydrochloride maleic acid cocrystal
WO2012003413A1 (en) 2010-06-30 2012-01-05 The Broad Institute, Inc. Novel solid forms of tacedinaline
UA114075C2 (xx) 2010-11-19 2017-04-25 БАГАТОШАРОВА ТАБЛЕТКА, ЩО МІСТИТЬ РИЛПІВІРИН HCl, ЕМТРИЦИТАБІН І ТЕНОФОВІРУ ДИЗОПРОКСИЛФУМАРАТ

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716264B2 (en) 2003-01-14 2014-05-06 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US8592397B2 (en) 2003-01-14 2013-11-26 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US9457036B2 (en) 2003-01-14 2016-10-04 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US20090036408A1 (en) * 2003-01-14 2009-02-05 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US9744181B2 (en) 2003-01-14 2017-08-29 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
US20070003516A1 (en) * 2005-04-08 2007-01-04 Almond Merrick R Compounds, compositions and methods for the treatment of poxvirus infections
US8642577B2 (en) 2005-04-08 2014-02-04 Chimerix, Inc. Compounds, compositions and methods for the treatment of poxvirus infections
US20070003608A1 (en) * 2005-04-08 2007-01-04 Almond Merrick R Compounds, compositions and methods for the treatment of viral infections and other medical disorders
US8598185B2 (en) 2005-06-13 2013-12-03 Bristol-Myers Squibb & Gilead Sciences, Inc. Unitary pharmaceutical dosage form
US8871271B2 (en) 2005-06-13 2014-10-28 Gilead Sciences, Inc. Method and composition for pharmaceutical product
US9545414B2 (en) 2005-06-13 2017-01-17 Bristol-Myers Squibb & Gilead Sciences, Llc Unitary pharmaceutical dosage form
US20070077295A1 (en) * 2005-06-13 2007-04-05 Gilead Sciences, Inc. Method and composition for pharmaceutical product
US9018192B2 (en) 2005-06-13 2015-04-28 Bristol-Myers Squibb & Gilead Sciences, Inc. Unitary pharmaceutical dosage form
US20080317852A1 (en) * 2005-12-14 2008-12-25 Amar Lulla Pharmaceutical Combination
US10335423B2 (en) 2006-02-03 2019-07-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inhibition of HIV infection through chemoprophylaxis
US9937191B2 (en) 2006-02-03 2018-04-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inhibition of HIV infection through chemoprophylaxis
US9579333B2 (en) * 2006-02-03 2017-02-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inhibition of HIV infection through chemoprophyalxis
US20150272972A1 (en) * 2006-02-03 2015-10-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Inhibition of hiv infection through chemoprophyalxis
US20100065444A1 (en) * 2007-01-20 2010-03-18 Stefan Henke Pack containing soft capsules
WO2008100848A3 (en) * 2007-02-12 2010-03-25 Board Of Regents, The University Of Texas System Novel agent for in vivo pet imaging of tumor proliferation
WO2008100848A2 (en) * 2007-02-12 2008-08-21 Board Of Regents, The University Of Texas System Novel agent for in vivo pet imaging of tumor proliferation
US8993542B2 (en) 2008-01-25 2015-03-31 Chimerix Inc. Methods of treating viral infections
US20090247749A1 (en) * 2008-03-31 2009-10-01 Apotex Pharmachem Inc. Salt form and cocrystals of adefovir dipivoxil and processes for preparation thereof
US7935817B2 (en) * 2008-03-31 2011-05-03 Apotex Pharmachem Inc. Salt form and cocrystals of adefovir dipivoxil and processes for preparation thereof
US8173621B2 (en) 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
US8759510B2 (en) 2008-06-11 2014-06-24 Gilead Pharmasset Llc Nucleoside cyclicphosphates
WO2010075549A2 (en) 2008-12-23 2010-07-01 Pharmasset, Inc. Nucleoside phosphoramidates
EP2671888A1 (en) 2008-12-23 2013-12-11 Gilead Pharmasset LLC 3',5'-cyclic nucleoside phosphate analogues
US9045520B2 (en) 2008-12-23 2015-06-02 Gilead Pharmasset Llc Synthesis of purine nucleosides
US8551973B2 (en) 2008-12-23 2013-10-08 Gilead Pharmasset Llc Nucleoside analogs
US8716263B2 (en) 2008-12-23 2014-05-06 Gilead Pharmasset Llc Synthesis of purine nucleosides
EP3222628A1 (en) 2008-12-23 2017-09-27 Gilead Pharmasset LLC Nucleoside phosphoramidates
US8716262B2 (en) 2008-12-23 2014-05-06 Gilead Pharmasset Llc Nucleoside phosphoramidates
WO2010075517A2 (en) 2008-12-23 2010-07-01 Pharmasset, Inc. Nucleoside analogs
WO2010075554A1 (en) 2008-12-23 2010-07-01 Pharmasset, Inc. Synthesis of purine nucleosides
US8957045B2 (en) 2008-12-23 2015-02-17 Gilead Pharmasset Llc Nucleoside phosphoramidates
EP2913337A1 (en) 2009-05-20 2015-09-02 Gilead Pharmasset LLC N-[(2'r)-2'-deoxy-2'-fluoro-2'-methyl-p-phenyl-5'-uridylyl]-l-alanine 1-methylethyl ester and process for its production
EP2610264A2 (en) 2009-05-20 2013-07-03 Gilead Pharmasset LLC N-[(2'r)-2'-deoxy-2'-fluoro-2'-methyl-p-phenyl-5'-uridylyl]-l-alanine 1-methylethyl ester and process for its production
WO2010135569A1 (en) 2009-05-20 2010-11-25 Pharmasset, Inc. N- [ (2 ' r) -2 ' -deoxy-2 ' -fluoro-2 ' -methyl-p-phenyl-5 ' -uridylyl] -l-alanine 1-methylethyl ester and process for its production
EP3321275A1 (en) 2009-05-20 2018-05-16 Gilead Pharmasset LLC Crystalline form of sofosbuvir
EP2910562A1 (en) 2009-05-20 2015-08-26 Gilead Pharmasset LLC N-[(2'r)-2'-deoxy-2 '-fluoro-2'-methyl-p-phenyl-5 '-uridylyl]-l-alanine 1-methylethyl ester in crystalline form
US8614200B2 (en) 2009-07-21 2013-12-24 Chimerix, Inc. Compounds, compositions and methods for treating ocular conditions
US9006218B2 (en) 2010-02-12 2015-04-14 Chimerix Inc. Nucleoside phosphonate salts
US9765100B2 (en) 2010-02-12 2017-09-19 Chimerix, Inc. Nucleoside phosphonate salts
WO2011123672A1 (en) 2010-03-31 2011-10-06 Pharmasset, Inc. Purine nucleoside phosphoramidate
WO2011123645A2 (en) 2010-03-31 2011-10-06 Pharmasset, Inc. Nucleoside phosphoramidates
EP2752422A1 (en) 2010-03-31 2014-07-09 Gilead Pharmasset LLC Stereoselective synthesis of phosphorus containing actives
EP2609923A2 (en) 2010-03-31 2013-07-03 Gilead Pharmasset LLC Nucleoside Phosphoramidates
EP3290428A1 (en) 2010-03-31 2018-03-07 Gilead Pharmasset LLC Tablet comprising crystalline (s)-isopropyl 2-(((s)-(((2r,3r,4r,5r)-5-(2,4-dioxo-3,4-dihydropyrimidin-1 (2h)-yl)-4-fluoro-3-hydroxy-4-methyltetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)amino)propanoate
US8859756B2 (en) 2010-03-31 2014-10-14 Gilead Pharmasset Llc Stereoselective synthesis of phosphorus containing actives
US8563530B2 (en) 2010-03-31 2013-10-22 Gilead Pharmassel LLC Purine nucleoside phosphoramidate
WO2011123668A2 (en) 2010-03-31 2011-10-06 Pharmasset, Inc. Stereoselective synthesis of phosphorus containing actives
US9694024B2 (en) 2010-04-26 2017-07-04 Chimerix, Inc. Methods of treating retroviral infections and related dosage regimes
US9956239B2 (en) 2010-04-26 2018-05-01 Chimerix, Inc. Methods of treating retroviral infections and related dosage regimes
US9278135B2 (en) 2010-04-26 2016-03-08 Chimerix Inc. Methods of treating retroviral infections and related dosage regimes
WO2011156594A2 (en) 2010-06-09 2011-12-15 Vaccine Technologies, Incorporated Therapeutic immunization in hiv infected subjects receiving stable antiretroviral treatment
WO2012075140A1 (en) 2010-11-30 2012-06-07 Pharmasset, Inc. Compounds
US9394331B2 (en) 2010-11-30 2016-07-19 Gilead Pharmasset Llc 2′-spiro-nucleosides and derivatives thereof useful for treating hepatitis C virus and dengue virus infections
EP3042910A2 (en) 2010-11-30 2016-07-13 Gilead Pharmasset LLC 2'-spiro-nucleosides for use in the therapy of hepatitis c
US8841275B2 (en) 2010-11-30 2014-09-23 Gilead Pharmasset Llc 2′-spiro-nucleosides and derivatives thereof useful for treating hepatitis C virus and dengue virus infections
WO2013082476A1 (en) 2011-11-30 2013-06-06 Emory University Antiviral jak inhibitors useful in treating or preventing retroviral and other viral infections
EP3750544A2 (en) 2011-11-30 2020-12-16 Emory University Jak inhibitors for use in the prevention or treatment of viral infection

Also Published As

Publication number Publication date
NZ540728A (en) 2008-08-29
EP1583542A1 (en) 2005-10-12
EP1923063A3 (en) 2009-04-08
JP2019052174A (ja) 2019-04-04
EP3025718A1 (en) 2016-06-01
PL408254A1 (pl) 2014-07-21
JP2006516570A (ja) 2006-07-06
AU2004206821A1 (en) 2004-08-05
IS7977A (is) 2005-08-12
BRPI0406760A (pt) 2005-12-20
US20090036408A1 (en) 2009-02-05
CY1108355T1 (el) 2014-02-12
US9457036B2 (en) 2016-10-04
CA2512319A1 (en) 2004-08-05
JP2010120957A (ja) 2010-06-03
WO2004064846A1 (en) 2004-08-05
WO2004064845A8 (en) 2004-09-23
US20170232019A1 (en) 2017-08-17
SI1583542T1 (sl) 2008-12-31
US20150111856A1 (en) 2015-04-23
US20140213556A1 (en) 2014-07-31
WO2004064845A1 (en) 2004-08-05
US20150111855A1 (en) 2015-04-23
KR20080032014A (ko) 2008-04-11
CA2512475A1 (en) 2004-08-05
EP1583542B9 (en) 2008-10-22
AP2089A (en) 2010-01-11
HRP20140379A2 (hr) 2014-07-18
AU2009200414A1 (en) 2009-02-26
AU2004206827A1 (en) 2004-08-05
US8716264B2 (en) 2014-05-06
IL169243A (en) 2008-12-29
NO20150656A1 (no) 2005-10-13
US20040224916A1 (en) 2004-11-11
CN102670629A (zh) 2012-09-19
US20170273994A1 (en) 2017-09-28
US8592397B2 (en) 2013-11-26
ES2308136T3 (es) 2008-12-01
US20090143314A1 (en) 2009-06-04
CN102670629B (zh) 2016-02-24
EA200501134A1 (ru) 2005-12-29
JP2014037430A (ja) 2014-02-27
CN105596356A (zh) 2016-05-25
DE602004014470D1 (de) 2008-07-31
DK1583542T3 (da) 2008-09-22
NO20053817L (no) 2005-10-13
JP2017057232A (ja) 2017-03-23
HK1079122A1 (en) 2006-03-31
AU2009200414B2 (en) 2011-12-08
KR100860136B1 (ko) 2008-09-25
KR20090053867A (ko) 2009-05-27
EA201100293A1 (ru) 2011-08-30
EP1923063A2 (en) 2008-05-21
US20060234982A1 (en) 2006-10-19
JP2021004264A (ja) 2021-01-14
EA015145B1 (ru) 2011-06-30
AU2004206821C1 (en) 2009-10-01
EP1585527A1 (en) 2005-10-19
PT1583542E (pt) 2008-09-17
HRP20050619A2 (en) 2005-10-31
JP2015098488A (ja) 2015-05-28
JP4996241B2 (ja) 2012-08-08
CA2512475C (en) 2009-06-02
PL378368A1 (pl) 2006-04-03
JP2006515624A (ja) 2006-06-01
NO340951B1 (no) 2017-07-24
NO20053817D0 (no) 2005-08-12
NO20171193A1 (no) 2005-10-13
EP1583542B1 (en) 2008-06-18
KR20050092755A (ko) 2005-09-22
US9744181B2 (en) 2017-08-29
AU2004206821B2 (en) 2009-02-26
ATE398455T1 (de) 2008-07-15
AP2005003348A0 (en) 2005-06-30
NO337917B1 (no) 2016-07-11
MXPA05007016A (es) 2005-09-12
US20060246130A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US9744181B2 (en) Compositions and methods for combination antiviral therapy
AU2011253996B2 (en) Compositions and methods for combination antiviral therapy
DAHL et al. Patent 2512475 Summary
AU2014216017A1 (en) Compositions and methods for combination antiviral therapy

Legal Events

Date Code Title Description
AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAHL, TERRENCE C.;MENNING, MARK M.;OLIYAI, REZA;REEL/FRAME:014636/0215;SIGNING DATES FROM 20040426 TO 20040429

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION