US20030181625A1 - Sprayable coating compostion - Google Patents

Sprayable coating compostion Download PDF

Info

Publication number
US20030181625A1
US20030181625A1 US10/296,651 US29665103A US2003181625A1 US 20030181625 A1 US20030181625 A1 US 20030181625A1 US 29665103 A US29665103 A US 29665103A US 2003181625 A1 US2003181625 A1 US 2003181625A1
Authority
US
United States
Prior art keywords
coating composition
metal
compound
composition according
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/296,651
Other languages
English (en)
Inventor
Huig Klinkenberg
Jan Van Beelen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel NV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Assigned to AKZO NOBEL N.V. reassignment AKZO NOBEL N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLINKENBERG, HUIG, VAN BEELEN, JAN CORNELIUS
Publication of US20030181625A1 publication Critical patent/US20030181625A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/222Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4676Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31605Next to free metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a sprayable coating composition, its use as a clear coat, its use as a clear coat in a multi-layer lacquer coating, and its use in the refinish industry and in finishing large transportation vehicles.
  • Coatings used for painting motor vehicles and repairing the original paint are required to have good physical properties such as hardness, mechanical strength, and resistance to water, acids, and solvents.
  • the coatings are also required to have good appearance properties, which means that films must be smooth and have a high gloss and a high distinctness of image. It is also desirable that all properties are retained under prolonged outdoor weathering.
  • U.S. Pat. No. 4,788,083 discloses a sprayable coating composition comprising a hydroxyl compound, an isocyanate, a metal catalyst selected from tin and bismuth, and a molar excess of a complexing agent such as a mercapto compound.
  • a complexing agent such as a mercapto compound.
  • tin and bismuth catalysts are known metal catalysts for the hydroxyl isocyanate reaction, it has been found that these metal catalysts do not catalyse the thiol isocyanate reaction.
  • the mercapto compound in U.S. Pat. No. 4,788,083 is used to complex and thus deactivate the metal catalyst.
  • the activation of the metal catalyst is effectuated by heat or the addition of a tertiary amine activator. So, the reaction of hydroxyl isocyanate only starts when the metal catalyst is activated.
  • the present invention relates to a sprayable coating composition
  • a sprayable coating composition comprising
  • a catalyst comprising at least one organic metal compound where the metal is a metal of Groups 3 to 13 of the Periodic Table.
  • sprayable coating composition can be provided where the thiol isocyanate reaction can be catalysed in the presence of an organic metal compound, the metal being a metal of Groups 3 to 13 of the Periodic Table, both at room temperature and at higher temperatures such as 60° C. At all temperatures, an excellent pot life—drying balance is shown.
  • An additional advantage is the fact that there is no necessity to add a tertiary amine activator to the coating composition. This addition would have a negative effect on the pot life of the coating composition.
  • the sprayable coating composition of the present invention provides excellent properties such as were mentioned above to be necessary for its use in the refinish industry and in finishing large transportation vehicles.
  • U.S. Pat. No. 5,849,864 discloses a sprayable coating composition comprising a polymercapto resin, a polyisocyanate, and a tin catalyst complex.
  • the tin catalyst is complexed with sulphonic acid. Upon exposure to an amine, the catalyst complex becomes activated. It has been found that tin catalyst complexes do not catalyse the thiol isocyanate reaction. Furthermore, as mentioned above, it is a disadvantage to use amine in coating compositions.
  • WO 98/15585 discloses a sprayable coating composition
  • a sprayable coating composition comprising a hydroxyl compound, an isocyanate, and a catalyst which is the reaction product of a titanium, zirconium, hafnium or aluminium ortho ester, a beta-diketone or beta-ketoester, and a complexing agent such as a mercapto compound.
  • the catalyst as such can be used in the range of 0.005 to 0.5 per cent by weight with respect to the weight of the reaction mixture.
  • a mercapto compound is present in the coating composition, this is in such small quantities that WO 98/15585 does not disclose the coating composition of the present invention.
  • JP-A-04-063823 discloses an architectural sealant comprising a compound having two or more thiol groups per molecule, a polyisocyanate compound, and a metallic soap. It is not disclosed or suggested how to prepare a sprayable coating composition thereof, nor is its use in a clear coat with the above-mentioned properties described.
  • U.S. Pat. No. 5,064,871 discloses a composition comprising an isocyanate reactive compound, a polyisocyanate, and a catalyst comprising a bismuth and a zirconium carboxylate.
  • polymercaptan as an isocyanate reactive compound is mentioned in the description, only polyol resins are exemplified.
  • the composition is used in particular as an adhesive. It is not disclosed or suggested how to prepare a sprayable coating composition thereof, nor is its use in a clear coat with the above-mentioned properties described.
  • U.S. Pat. No. 4,312,971 discloses a composition comprising an organic compound comprising at least two active hydrogen atoms, a polyisocyanate, and a catalyst comprising an organo zirconium and an organo mercury compound.
  • aliphatic thiols as an organic compound comprising at least two active hydrogen atoms is mentioned in the description, only polyol resins are exemplified.
  • the composition is used in particular as non-cellular polyurethanes, and cellular rigid and flexible polyurethane foams. It is not disclosed or suggested how to prepare a sprayable coating composition thereof, nor is its use in a clear coat with the above-mentioned properties described.
  • JP-A-10182786 discloses a sealant comprising a polymer having two or more thiol groups per molecule, a polyisocyanate compound, and an organic metal.
  • organic mercury compounds and organic lead compounds can be used, only organic tin compounds are exemplified. As already mentioned before, tin does not catalyse the reaction of thiol and isocyanate.
  • JP-A-10182876 it is not disclosed or suggested how to prepare a sprayable coating composition thereof, nor is its use in a clear coat with the above-mentioned properties described.
  • the catalyst comprises at least one organic metal compound where the metal is a metal of Groups 3 to 13 of the Periodic Table.
  • the metal is a transition metal. More preferably, the metal is a metal of Group 4 of the Periodic Table.
  • the organic metal compounds comprise metal salts and/or complexes of organic compounds.
  • the organic compounds are groups having 2 to 40 carbon atoms, optionally comprising atoms such as O, N, and S.
  • the metal salts comprise anions selected from the groups of carboxylates. Examples thereof include propionate, butyrate, pentanoate, 2-ethyl hexanoate, naphthenate, oxalate, malonate, succinate, glutamate, and adipate.
  • the metal complexes comprise ligands selected from the group of beta-diketones, alkyl acetoacetates, alcoholates, and combinations thereof.
  • the organic metal compound is a metal complex.
  • metals include aluminium, titanium, zirconium, and hafnium.
  • metal complexes include aluminium complexed with 2,4-pentanedione (K-KAT® XC5218 ex King Industries), aluminium triacetyl acetonate, zirconium tetraacetyl acetonate, zirconium tetrabutoxide (Tyzor® NBZ ex Dupont), titanium tetrabutoxide (Tyzor® TBT ex Dupont), zirconium complexed with 6-methyl-2,4-heptadione, K-KAT® XC6212 ex King Industries, aluminium triisopropoxide, and titanium diisopropoxide bis-2,4(pentadionate) (Tyzor® AA ex DuPont). These catalysts may be used in an amount of 0.01 to 10 wt. % on solid curable material, preferably 0.1 to 5 wt. %
  • Examples of the isocyanate reactive compound comprising at least one thiol group include a thiol-functional compound comprising at least two thiol-functional groups and a compound comprising at least one thiol-functional group and one hydroxyl-functional group. Also mixtures of these compounds may be used in the compositions of the present invention.
  • Suitable thiol group-containing compounds are generally prepared by reacting hydroxyl group-containing compounds with thiol group-containing acids, such as 3-mercapto propionic acid, 2-mercapto propionic acid, thio-salicylic acid, mercapto succinic acid, mercapto acetic acid, or cysteine.
  • thiol group-containing acids such as 3-mercapto propionic acid, 2-mercapto propionic acid, thio-salicylic acid, mercapto succinic acid, mercapto acetic acid, or cysteine.
  • Suitable hydroxyl group-containing compounds are diols, triols, and tetraols, such as 1,4-butane diol, 1,6-hexane diol, 2,2-dimethyl-1,3-propane diol, 2-ethyl-2-propyl-1,3-propane diol, 1,2-, 1,3-, and 1,4-cyclohexane diols, and the corresponding cyclohexane dimethanol, 1,1,1-trimethylol propane, 1,2,3-trimethylol propane, and pentaerythritol.
  • diols such as 1,4-butane diol, 1,6-hexane diol, 2,2-dimethyl-1,3-propane diol, 2-ethyl-2-propyl-1,3-propane diol, 1,2-, 1,3-, and 1,4-cyclohexane diols, and the corresponding cyclohexane
  • Examples of compounds prepared according to such a method include pentaerythritol tetrakis (3-mercapto propionate), pentaerythritol tetrakis (2-mercapto acetate), trimethylol propane tris (3-mercapto propionate), trimethylol propane tris (2-mercapto propionate), and trimethylol propane tris (2-mercapto acetate). Good results have been obtained with trimethylol propane tris (3-mercapto propionate) and pentaerythritol tetrakis (3-mercapto propionate).
  • a further example of a compound prepared according to such a method consists of a hyperbranched polyol core based on a starter polyol, e.g., trimethylol propane, and dimethylol propionic acid. This polyol is subsequently esterified with 3-mercapto propionic acid and isononanoic acid.
  • the compound comprising at least one thiol-functional group and one hydroxyl-functional group may for example have a structure according to the following formula: T[(C 3 H 6 O) n CH 2 CHOHCH 2 SH] 3 , with T being a triol such as trimethylol propane or glycerol.
  • T is commercially available from Henkel under the trademark Henkel Capcure® 3/800.
  • the isocyanate reactive compound comprising at least one thiol group is a resin having as a backbone a polyester resin, polyurethane resin, polyacrylate resin, and polyether resin. These isocyanate reactive compounds may then also comprise hydroxyl groups.
  • the isocyanate reactive compound comprising at least one thiol group may be a polyester prepared from (a) at least one polycarboxylic acid or reactive derivatives thereof, (b) at least one polyol, and (c) at least one thiol-functional carboxylic acid.
  • the polyesters preferably possess a branched structure. Branched polyesters are conventionally obtained through condensation of polycarboxylic acids or reactive derivatives thereof, such as the corresponding anhydrides or lower alkyl esters, with polyalcohols, when at least one of the reactants has a functionality of at least 3.
  • polycarboxylic acids or reactive derivatives thereof are tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, methyl hexahydrophthalic acid, methyl hexahydrophthalic anhydride, dimethylcyclohexane dicarboxylate, 1,4-cyclohexane dicarboxylic acid, 1,3-cyclohexane dicarboxylic acid, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, 5-tert.
  • suitable polyols include trimethylol propane, trimethylol ethane, glycerol, 1,2,6-hexanetriol, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2-methylpropane-1,3-diol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propane diol, cyclohexane-1,4-dimethylol, the monoester of neopentyl glycol and hydroxypivalic acid, hydrogenated Bisphenol A, 1,5-pentane diol, 3-methyl-pentane diol, 1,6-hexane diol, 2,2,4-trimethyl pentane-1,3-diol, dimethylol propionic acid, pentaerythritol, di-trimethylol propane, dipentaerythritol, and mixtures thereof.
  • thiol-functional organic acids examples include 3-mercaptopropionic acid, 2-mercaptopropionic acid, thio-salicylic acid, mercaptosuccinic acid, mercaptoacetic acid, cysteine, and mixtures thereof.
  • monocarboxylic acids and monoalcohols may be used in the preparation of the polyesters.
  • C 4 -C 18 monocarboxylic acids and C 6 -C 18 monoalcohols are used.
  • the C 4 -C 18 monocarboxylic acids include pivalic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, 2-ethylhexanoic acid, isononanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, hydroxystearic acid, benzoic acid, 4-tert.
  • butyl benzoic acid examples include cyclohexanol, 2-ethylhexanol, stearyl alcohol, and 4-tert. butyl cyclohexanol.
  • an aqueous thiol-functional polyurethane dispersion which is obtainable by first preparing an isocyanate-functional polyurethane from diols, diisocyanates, and building blocks containing groups which facilitate the stabilisation of the resin in an aqueous dispersion, followed by reaction of the isocyanate-functional polyurethane with a polyfunctional thiol in a base-catalysed addition reaction, followed by dispersion in water.
  • the isocyanate reactive compound comprising at least one thiol group may be a thiol-functional polyacrylate.
  • a polyacrylate is derived from hydroxy-functional acrylic monomers, such as hydroxy ethyl (meth)acrylate, hydroxy propyl (meth)acrylate, hydroxy butyl (meth)acrylate, other acrylic monomers such as (meth)acrylic acid, methyl (meth)acrylate, butyl (meth)acrylate, optionally in combination with a vinyl derivative such as styrene, and the like, or mixtures thereof, wherein the terms (meth)acrylate and (meth)acrylic acid refer to both methacrylate and acrylate, as well as methacrylic acid and acrylic acid, respectively.
  • the thiol group is introduced by the reaction product of dimethyl-m-isopropenyl benzyl isocyanate and mercapto ethanol.
  • glycidyl methacrylate is introduced into the polymer to prepare an epoxy-functional polyacrylate.
  • the epoxy groups are then reacted with suitable thiol-functional organic acids such as mentioned above.
  • the polyacrylate is prepared by conventional methods, for instance, by the slow addition of appropriate monomers to a solution of an appropriate polymerisation initiator, such as an azo or peroxy initiator.
  • thiol-functional diluents such as ethane dithiol or bis-beta-mercapto-ethyl sulphide.
  • the isocyanate reactive compound comprising at least one thiol group is derived from a polyester compound.
  • examples thereof include the above-mentioned reaction product of hydroxyl group-containing compounds with thiol group-containing acids and the above-mentioned polyester prepared from (a) at least one polycarboxylic acid or reactive derivatives thereof, (b) at least one polyol, and (c) at least one thiol-functional carboxylic acid.
  • the most preferred thiol-functional compound is pentaerythritol tetrakis (3-mercapto propionate).
  • the organic polyisocyanate includes polyfunctional, preferably free polyisocyanates, with an average NCO functionality of 2.5 to 5, and may be (cyclo)aliphatic, araliphatic or aromatic in nature.
  • the polyisocyanate may include biuret, urethane, uretdione, and isocyanurate derivatives.
  • organic polyisocyanates examples include 1,6-diisocyanatohexane, isophorone diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, diphenyl methane-diisocyanate, 4,4′-bis(isocyanato-cyclohexyl) methane, 1,4-diisocyanatobutane, 1,5-diisocyanato-2,2-dimethyl pentane, 2,2,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 4,4-diisocyanato-cyclohexane, 2,4-hexahydrotoluene diisocyanate, 2,6-hexahydrotoluene diisocyanate, norbornane diisocyanate, 1,3-xylylene diisocyanate, 1,4-xyl
  • isocyanate curing agents are triisocyanates and adducts.
  • examples thereof are 1,8-diisocyanato4-(isocyanatomethyl) octane, the adduct of 3 moles of toluene diisocyanate to 1 mole of trimethylol propane, the isocyanurate trimer of 1,6-diisocyanatohexane, the isocyanurate trimer of isophorone diisocyanate, the uretdione dimer of 1,6-diisocyanatohexane, the biuret trimer of 1,6-diisocyanatohexane, the adduct of 3 moles of m- ⁇ , ⁇ - ⁇ ′, ⁇ ′-tetramethyl xylene diisocyanate to 1 mole of trimethylol propane, and mixtures thereof.
  • Preferred are cyclic trimers (
  • a water borne coating composition according to the present invention may also comprise an organic hydrophilic polyisocyanate compound substituted with non-ionic groups, such as C 1 -C 4 alkoxy polyalkylene oxide groups.
  • non-ionic groups such as C 1 -C 4 alkoxy polyalkylene oxide groups.
  • 30 wt. % of non-ionic groups will be present on the total solid polyisocyanate compound, more preferably 20 wt. %, most preferably 15 wt. %.
  • Preferred are the isocyanurates of 1,6-hexane diisocyanate and isophorone diisocyanate substituted with methoxy polyethylene glycol.
  • a hydroxyl-functional compound comprising at least two hydroxyl-functional groups may be present in the curable material.
  • the hydroxyl-functional compound comprising at least two hydroxyl-functional groups may be selected from polyester polyols, polyether polyols, polyacrylate polyols, polyurethane polyols, cellulose acetobutyrate, hydroxyl-functional epoxy resins, alkyds, and dendrimeric polyols such as described in WO 93/17060.
  • hydroxyl-functional oligomers and monomers, such as castor oil and trimethylol propane may be included.
  • a preferred polyol is an acrylate polyol. More preferred is an acrylate polyol available from Akzo Nobel Resins having the trade name Setalux® 1157.
  • the polyisocyanate and the compound comprising isocyanate reactive groups should be mixed such that the ratio of isocyanate groups to isocyanate reactive groups is in the range of 0.5-3:1, preferably 0.75-2.5:1, and more preferably 1-2:1. It is preferred that at least 10% of the isocyanate reactive groups are thiol groups, more preferred at least 25%, most preferred at least 50%.
  • catalysts for the cross-linking of isocyanate groups with hydroxyl groups may be present.
  • examples thereof include Sn-based catalysts, such as dibutyl tin dilaurate and dibutyl tin diacetate.
  • the polyisocyanate may be mixed with the isocyanate reactive compound by any suitable technique. However, simply stirring usually is sufficient. Sometimes it may be useful to dilute the polyisocyanate somewhat with an organic solvent like ethyl acetate or 1-methoxy-2-propyl acetate to reduce its viscosity.
  • a ketone based chelating agent may be added to the coating composition.
  • these chelating agent include beta-dicarbonyls, alpha-hydroxyl ketones, fused aromatic beta-hydroxy ketones, dialkyl malonates, aceto acetic esters, alkyl lactates, and alkyl pyruvates.
  • beta-dicarbonyls such as acetyl acetone are used.
  • the ketone based chelating agent may be used in an amount up to 10 wt. % on solids, preferably up to 5 wt. %.
  • the composition according to the present invention may be a water borne composition, a solvent borne composition or a solvent-free composition. Since the composition may be composed of liquid oligomers, it is especially suitable for use as a high solids composition or a solvent-free composition.
  • the coating composition of the present invention may be an aqueous powder coating dispersion wherein the isocyanate reactive compound comprising at least one thiol group has a Tg above 20° C.
  • the coating composition may as well be used in powder coating compositions and hot melt coatings compositions.
  • the theoretical volatile organic content (VOC) in the composition is less than about 450 g/l, more preferably less than about 350 g/l, most preferably less than about 250 g/l.
  • the coating compositions may further comprise other ingredients, additives or auxiliaries, such as pigments, dyes, emulsifiers (surfactants), pigment dispersion aids, levelling agents, anti-cratering agents, antifoaming agents, wetting agents, antisagging agents, heat stabilisers, UV absorbers, antioxidants, and fillers.
  • additives or auxiliaries such as pigments, dyes, emulsifiers (surfactants), pigment dispersion aids, levelling agents, anti-cratering agents, antifoaming agents, wetting agents, antisagging agents, heat stabilisers, UV absorbers, antioxidants, and fillers.
  • the coating composition of the present invention may be applied to any substrate.
  • the substrate may be, for example, metal, plastic, wood, glass, ceramic, or some other coating layer.
  • the other coating layer may be comprised of the coating composition of the current invention or it may be a different coating composition.
  • the coating compositions of the current invention show particular utility as clear coats, base coats, pigmented top coats, primers, and fillers.
  • the coating composition according to the present invention may be used as clear coat or as primer.
  • the coating compositions can be applied by conventional means such as by spray gun, brush, or roller, spraying being preferred. Curing temperatures preferably are between 0 and 100° C. and more preferably between 20 and 60° C.
  • the compositions are particularly suitable in the preparation of coated metal substrates, such as in the refinish industry, in particular the body shop, to repair automobiles and transportation vehicles, and in finishing large transportation vehicles such as trains, trucks, buses, and aeroplanes.
  • composition of the present invention is also suitable for application by an external mixing apparatus, one where a liquid composition comprising at least one isocyanate-functional compound and at least one isocyanate reactive compound is sprayed via a spray nozzle, with a small amount of catalyst.
  • an external mixing apparatus one where a liquid composition comprising at least one isocyanate-functional compound and at least one isocyanate reactive compound is sprayed via a spray nozzle, with a small amount of catalyst.
  • an apparatus is described, for example, in WO 98/41316. Due to the very effective use of the catalysts, the compositions according to the present invention have very short curing times, which makes this method specifically suitable for these compositions.
  • the base coat may be a conventional base coat known in the coating art.
  • solvent borne base coats e.g., Autobase® ex Akzo Nobel Coatings BV, based on cellulose acetobutyrate, acrylic resins, and melamine resins
  • water borne base coats e.g., Autowave® ex Akzo Nobel Coatings BV, based on an acrylic resin dispersion and polyester resin.
  • the base coat may comprise pigments (colour pigments, metallics and/or pearls), wax, solvents, flow additives, neutralising agent, and defoamers.
  • high solids base coats can be used. These are, for instance, based on polyols, imines, and isocyanates.
  • the clear coat composition is applied to the surface of a base coat and then cured. An intermediate curing step for the base coat may be introduced.
  • a coating is cured when the mark from firm pushing with the thumb does not leave any imprint.
  • the gelling time was determined visually and is the time after which the composition is no longer influenced by gravity.
  • a formulation was prepared comprising the following compounds: Penta(SH) 4 50 ToIonate ® HDT LV 90 Byk 306(10 wt.% in butyl acetate) 7,0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
US10/296,651 2000-05-26 2001-05-23 Sprayable coating compostion Abandoned US20030181625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00201850 2000-05-26
EP002018505 2000-05-26

Publications (1)

Publication Number Publication Date
US20030181625A1 true US20030181625A1 (en) 2003-09-25

Family

ID=8171548

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/296,651 Abandoned US20030181625A1 (en) 2000-05-26 2001-05-23 Sprayable coating compostion
US09/865,025 Expired - Lifetime US6579913B2 (en) 2000-05-26 2001-05-24 Photoactivatable coating composition comprising a photolatent base
US10/423,542 Expired - Lifetime US6867244B2 (en) 2000-05-26 2003-04-25 Photoactivatable coating composition

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/865,025 Expired - Lifetime US6579913B2 (en) 2000-05-26 2001-05-24 Photoactivatable coating composition comprising a photolatent base
US10/423,542 Expired - Lifetime US6867244B2 (en) 2000-05-26 2003-04-25 Photoactivatable coating composition

Country Status (12)

Country Link
US (3) US20030181625A1 (pt)
EP (2) EP1285012B1 (pt)
JP (2) JP4906221B2 (pt)
KR (2) KR100728462B1 (pt)
CN (2) CN1187388C (pt)
AU (4) AU2001260325B2 (pt)
BR (2) BR0111020B1 (pt)
DE (1) DE60125929T2 (pt)
ES (1) ES2277924T3 (pt)
RU (2) RU2265035C2 (pt)
WO (2) WO2001092362A1 (pt)
ZA (2) ZA200209576B (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190466A1 (en) * 2006-02-21 2011-08-04 Hidetoshi Hayashi Polymerizable composition for polythiourethane optical material
US9482787B2 (en) 2011-06-23 2016-11-01 Mitsui Chemicals, Inc. Polymerizable composition
US10507478B2 (en) 2016-03-30 2019-12-17 The Patent Well LLC Clear sprayable sealant for aircraft parts and assemblies

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938769B1 (ko) 2001-10-17 2010-01-27 시바 홀딩 인크 광활성화 가능한 질소 염기
US7018346B2 (en) 2001-12-18 2006-03-28 Scimed Life Systems, Inc. Guide wire with adjustable flexibility
RU2005106876A (ru) * 2002-08-13 2005-08-10 Акцо Нобель Коатингс Интернэшнл Б.В. (Nl) Многослойная система покрытия, включающая тиол- функциональные соединения
WO2004031256A1 (en) 2002-10-01 2004-04-15 Akzo Nobel Coatings International B.V. Coating composition comprising a compound comprising a spiro-ortho silicate group
KR101059703B1 (ko) * 2002-10-28 2011-08-29 시바 홀딩 인크 광개시제의 저장 안정성 증진방법
DE602004001336T2 (de) * 2003-02-06 2007-02-01 Akzo Nobel Coatings International B.V. Spritzpistole und verfahren zum aufbringen einer durchaktinische strahlung härtbaren beschichtung
US20050149176A1 (en) * 2003-12-29 2005-07-07 Scimed Life Systems, Inc. Selectively light curable support members for medical devices
US8003748B2 (en) * 2004-02-17 2011-08-23 Chevron Phillips Chemical Company, Lp Polythiourethane compositions and processes for making and using same
US20050238815A1 (en) * 2004-04-27 2005-10-27 Dvorchak Michael J UV curable coating composition
EP1765951A1 (en) * 2004-06-18 2007-03-28 Akzo Nobel Coatings International BV Multilayer coating system
WO2006008251A2 (en) * 2004-07-21 2006-01-26 Ciba Specialty Chemicals Holding Inc. Process for the photoactivation and use of a catalyst by an inverted two-stage procedure
UA87704C2 (uk) * 2004-09-17 2009-08-10 Акцо Нобель Коатінгс Інтернешнл Б.В. Композиція покриття на основі отвердження тіол-nco та її застосування
US7828790B2 (en) 2004-12-03 2010-11-09 Boston Scientific Scimed, Inc. Selectively flexible catheter and method of use
EP1824609A1 (en) * 2004-12-15 2007-08-29 Akzo Nobel Coatings International BV Process for repair of coated substrates
BRPI0519334B1 (pt) 2004-12-15 2017-02-14 Akzo Nobel Coatings Int Bv composição de revestimento à base de água, uso da composição de revestimento, e kit de partes para preparação de uma composição de revestiemnto à base de água
CN101331165B (zh) * 2005-12-15 2011-11-16 阿克佐诺贝尔国际涂料股份有限公司 多层涂覆体系
AU2006325338B2 (en) 2005-12-15 2012-02-09 Akzo Nobel Coatings International B.V. Multilayer coating system
RU2440377C2 (ru) * 2006-06-22 2012-01-20 Циба Холдинг Инк. Отверждаемая актиничным излучением композиция для нанесения покрытия
US20100236707A1 (en) * 2006-07-17 2010-09-23 Katia Studer Method of bonding
FR2904321B1 (fr) * 2006-07-25 2008-09-05 Rhodia Recherches Et Technologies Sas Composition polymerisable et/ou reticulable sous irradiation par voie cationique et/ou radicalaire
CN101522745B (zh) * 2006-09-29 2013-06-19 西巴控股有限公司 以封闭异氰酸酯为基础的体系的光潜碱
ATE457324T1 (de) * 2006-11-20 2010-02-15 Akzo Nobel Coatings Int Bv Beschichtungszusammensetzung
CN101541846B (zh) * 2006-11-20 2012-08-08 阿克佐诺贝尔国际涂料股份有限公司 涂料组合物
DE102006058527A1 (de) * 2006-12-12 2008-06-19 Bayer Materialscience Ag Klebstoffe
MX2009010309A (es) 2007-04-03 2009-10-16 Basf Se Bases nitrogenadas fotoactivables.
US8541059B2 (en) * 2007-09-10 2013-09-24 Prc-Desoto International, Inc. Polyurethane coatings with improved interlayer adhesion
WO2009050115A1 (en) * 2007-10-17 2009-04-23 Basf Se Photolatent catalysts based on organometallic compounds
EP2238178B1 (en) * 2008-01-28 2014-09-10 Basf Se Photolatent amidine bases for redox curing of radically curable formulations
US9102785B2 (en) * 2008-04-11 2015-08-11 Ppg Industries Ohio, Inc. Curable compositions based on polyuretidiones, polythiols and photoactivable bases and generation of isocyanates from uretidiones
AU2009306509B2 (en) * 2008-10-22 2014-12-04 Akzo Nobel Coatings International B.V. Coating composition comprising a polyisocyanate and a polyol
CA2644766C (en) * 2008-11-21 2016-01-12 Honda Motor Co., Ltd. Photoactivatable paint curing device and method
EP2192447A1 (en) 2008-11-27 2010-06-02 Akzo Nobel Coatings International B.V. Method of applying a pattern to a substrate
JP2010185070A (ja) * 2008-12-05 2010-08-26 Toray Fine Chemicals Co Ltd 硬化型組成物
EP2387735B1 (en) * 2009-01-16 2019-03-13 FujiFilm Electronic Materials USA, Inc. Nonpolymeric binders for semiconductor substrate coatings
RU2011143809A (ru) 2009-03-31 2013-05-10 Акцо Нобель Коатингс Интернэшнл Б.В. Радиационное отверждение покрытий
US8062706B2 (en) * 2009-03-31 2011-11-22 Ppg Industries Ohio, Inc. Recovery of monobutyltin trichloride
CA2672413C (en) 2009-06-30 2012-11-20 Honda Motor Co., Ltd. Uv photoactivatable curable paint formulations and cured coatings thereof
EP2477739B1 (en) * 2009-09-15 2019-04-10 Basf Se Photo-latent titanium catalysts
EP2514778B1 (en) 2009-09-28 2013-10-16 Coatings Foreign IP Co. LLC Liquid two-component coating compositions
EP2585497B1 (en) * 2010-06-22 2023-08-09 Coloplast A/S Hydrophilic gels from polyurethane-based photoinitiators
EP2399946A1 (de) * 2010-06-24 2011-12-28 Bayer MaterialScience AG Beschichtete Teile und deren Verwendung
AU2011310714A1 (en) * 2010-09-30 2013-03-28 Akzo Nobel Coatings International B.V. Kit of parts for curable coating composition
JP4902813B1 (ja) * 2010-12-24 2012-03-21 昭和電工株式会社 高分子量化された脂肪族ポリエステルの製造方法
US9458351B2 (en) 2011-05-03 2016-10-04 Axalta Coating Systems Ip Co., Llc Two-component coating compositions
EP2705066B1 (en) 2011-05-03 2019-10-16 Coatings Foreign IP Co. LLC Catalyst compound for two-component coating compositions
ES2613642T3 (es) * 2011-12-26 2017-05-25 Dow Global Technologies Llc Espumas de polímero rígidas no basadas en isocianato por adición de carbono-Michael, y procedimientos de espumación
EP2822983B1 (en) 2012-03-07 2018-11-21 Akzo Nobel Coatings International B.V. Non-aqueous liquid coating composition
DE102012205951B4 (de) * 2012-04-12 2016-09-01 Chemetall Gmbh Dichtmassen-System, ungehärtete Grundmasse und Mischung, Härter, Verfahren zum Beschichten eines Substrates und Verwendung eines Dichtmassen-Systems
CA2894802C (en) * 2012-12-11 2020-12-22 Akzo Nobel Coatings International B.V. Thiol-functional compound
JP6291578B2 (ja) * 2013-12-03 2018-03-14 ローム アンド ハース カンパニーRohm And Haas Company 水性ポリウレタン分散液
EP3212727A1 (de) * 2014-10-29 2017-09-06 tesa SE Klebemassen mit aktivierbaren gettermaterialien
CN107809996A (zh) 2015-04-29 2018-03-16 Bsn医疗有限公司 一氧化氮产生的多步骤方法
BR112017023170B1 (pt) 2015-04-29 2022-08-16 Bsn Medical Gmbh Dispositivo de banho medicinal e seu uso
TWI572662B (zh) * 2015-12-30 2017-03-01 奇美實業股份有限公司 熱可塑性樹脂組成物及其所形成的成型品
CN106947057B (zh) * 2016-01-07 2019-08-27 北京英力科技发展有限公司 一种光固化组合物及其用作清漆和色漆的用途
JP7106515B2 (ja) * 2016-03-15 2022-07-26 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム チオウレタンポリマー、その合成方法及び付加製造技術における使用
ES2857604T3 (es) * 2016-03-15 2021-09-29 Univ Texas Polímeros de tiouretano, procedimiento de síntesis de los mismos y utilización en tecnologías de fabricación aditiva
US20180037691A1 (en) * 2016-08-03 2018-02-08 Ppg Industries Ohio, Inc. Curable compositions and methods of catalyzing chemical reactions
EP3363840A1 (en) 2017-02-17 2018-08-22 Henkel AG & Co. KGaA Two-component polyurethane composition comprising a latent catalyst
MX2019013297A (es) * 2017-05-08 2020-07-27 Ppg Ind Ohio Inc Composiciones curables que forman películas que presentan un menor tiempo de curado con vida útil estable.
US11427718B2 (en) * 2017-10-27 2022-08-30 Board Of Regents, The University Of Texas System Vat resin with additives for thiourethane polymer stereolithography printing
CN108084386B (zh) * 2017-12-21 2020-08-28 万华化学集团股份有限公司 一种光学材料用聚硫氨酯树脂及其制造方法
CN113684469B (zh) * 2021-08-06 2023-08-22 宁波摩华科技有限公司 一种用于电子器件的有机防护镀层及其制备方法
KR20240053641A (ko) * 2021-10-15 2024-04-24 미쓰이 가가쿠 가부시키가이샤 광경화성 조성물, 경화물, 적층체, 경화물의 제조 방법, 및 렌즈의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231597A (en) * 1957-07-03 1966-01-25 Aerojet General Co Polyurethane preparation
US5126425A (en) * 1987-04-01 1992-06-30 Mitsui Toatsu Chemicals, Inc. Low-hygroscopic sulfur-containing urethane resin, coating material and adhesive
US6054521A (en) * 1996-12-09 2000-04-25 Cordant Technologies Inc. Erosion resistant-low signature liner for solid propellant rocket motors

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2830953A1 (de) 1978-07-14 1980-01-24 Bayer Ag Ammoniumsalze von alpha -ketocarbonsaeuren
US4312971A (en) * 1980-12-06 1982-01-26 Basf Wyandotte Corporation Zirconium and mercury compounds as co-catalysts for the preparation of noncellular polyurethanes
IE56220B1 (en) * 1984-12-21 1991-05-22 Loctite Ireland Ltd Conformal coating systems
GB2176197B (en) * 1985-05-31 1989-10-25 Ashland Oil Inc Vapour permeation curable coatings comprising polymercapto compounds and polyisocyanate curing agents
US5225021A (en) * 1986-02-07 1993-07-06 Futuretech Ag Process and apparatus for the continuous production of fibre-reinforced plastic hollow sections
US5650261A (en) * 1989-10-27 1997-07-22 Rohm And Haas Company Positive acting photoresist comprising a photoacid, a photobase and a film forming acid-hardening resin system
GB9006557D0 (en) 1990-03-23 1990-05-23 Ici Plc Polymers
DE4017940A1 (de) * 1990-06-05 1991-12-12 Univ Schiller Jena Verfahren zur herstellung von (alpha), (omega)-difunktionellen praepolymeren mit zwei thiolendgruppen
DE69128274T2 (de) 1990-11-05 1998-04-23 Tokyo Ohka Kogyo Co Ltd Photopolymerisierbare Zusammensetzungen
EP0555749B1 (en) * 1992-02-14 1999-05-19 Shipley Company Inc. Radiation sensitive compositions and processes
SE9200564L (sv) 1992-02-26 1993-03-15 Perstorp Ab Dendritisk makromolekyl av polyestertyp, foerfarande foer framstaellning daerav samt anvaendning daerav
MY132867A (en) 1995-11-24 2007-10-31 Ciba Specialty Chemicals Holding Inc Acid-stable borates for photopolymerization
US5861235A (en) * 1996-06-26 1999-01-19 Dow Corning Asia, Ltd. Ultraviolet-curable composition and method for patterning the cured product therefrom
US5846897A (en) 1997-03-19 1998-12-08 King Industries, Inc. Zirconium urethane catalysts
TW436491B (en) * 1997-08-22 2001-05-28 Ciba Sc Holding Ag Compositions for use in base-catalysed reactions, a process for curing said compostions and a process for photochemically generating bases in base catalysed polymeriaztion reactions
EP0898202B1 (en) * 1997-08-22 2000-07-19 Ciba SC Holding AG Photogeneration of amines from alpha-aminoacetophenones
FR2773162B1 (fr) * 1997-12-29 2000-02-11 Essilor Int Composition photopolymerisable a base de monomeres polyiso (thio)cyanates et de monomeres a proton labile, comprenant un agent photoamorceur et un agent d'activation de la photopolymerisation et artciles d'optique obtenus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231597A (en) * 1957-07-03 1966-01-25 Aerojet General Co Polyurethane preparation
US5126425A (en) * 1987-04-01 1992-06-30 Mitsui Toatsu Chemicals, Inc. Low-hygroscopic sulfur-containing urethane resin, coating material and adhesive
US6054521A (en) * 1996-12-09 2000-04-25 Cordant Technologies Inc. Erosion resistant-low signature liner for solid propellant rocket motors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190466A1 (en) * 2006-02-21 2011-08-04 Hidetoshi Hayashi Polymerizable composition for polythiourethane optical material
US9290656B2 (en) * 2006-02-21 2016-03-22 Mitsui Chemicals, Inc. Polymerizable composition for polythiourethane optical material
US9482787B2 (en) 2011-06-23 2016-11-01 Mitsui Chemicals, Inc. Polymerizable composition
US10507478B2 (en) 2016-03-30 2019-12-17 The Patent Well LLC Clear sprayable sealant for aircraft parts and assemblies

Also Published As

Publication number Publication date
BR0111027A (pt) 2003-06-17
EP1285012B1 (en) 2007-01-10
CN1430634A (zh) 2003-07-16
WO2001092362A1 (en) 2001-12-06
CN1187388C (zh) 2005-02-02
KR100728462B1 (ko) 2007-06-13
EP1285013A1 (en) 2003-02-26
RU2260611C2 (ru) 2005-09-20
KR20030007676A (ko) 2003-01-23
AU6032501A (en) 2001-12-11
AU2001260325B2 (en) 2005-03-10
US6867244B2 (en) 2005-03-15
US20030212164A1 (en) 2003-11-13
JP4906221B2 (ja) 2012-03-28
EP1285012A1 (en) 2003-02-26
RU2265035C2 (ru) 2005-11-27
WO2001092363A1 (en) 2001-12-06
DE60125929D1 (de) 2007-02-22
US6579913B2 (en) 2003-06-17
JP2004508427A (ja) 2004-03-18
ZA200209576B (en) 2003-10-10
US20020032248A1 (en) 2002-03-14
DE60125929T2 (de) 2007-11-08
CN1432031A (zh) 2003-07-23
JP2003535197A (ja) 2003-11-25
BR0111020A (pt) 2003-06-17
KR20030001477A (ko) 2003-01-06
AU6747901A (en) 2001-12-11
AU2001267479B2 (en) 2005-04-28
BR0111020B1 (pt) 2011-02-22
ES2277924T3 (es) 2007-08-01
ZA200209571B (en) 2003-09-30

Similar Documents

Publication Publication Date Title
AU2001267479B2 (en) Sprayable coating composition
AU2001267479A1 (en) Sprayable coating composition
RU2425066C2 (ru) Многослойная покрывная система
RU2410398C2 (ru) Покрывная композиция, содержащая полиизоцианат и полиол
AU2001260325A1 (en) Photoactivatable coating composition
US20080194720A1 (en) Coating Composition Based on Thiol-Nco Curing
US20070202341A1 (en) Multilayer Coating System
AU2001240666B2 (en) Compositions comprising an isocyanate-functional compound, and isocyanate-reactive compound, and a co-catalyst
US20120070571A1 (en) Paint comprising a liquid phase and an active powder phase
EP2705067B1 (en) Two-component coating compositions
US5478790A (en) Blocked tin catalyst system for use with mercapto resin/acrylic resin blends
EP2084198B1 (en) Coating composition
WO2009024556A1 (en) Use of apolar-modified polyisocyanates
EP2621982B1 (en) Two-component coating compositions
EP3498747A1 (en) Non-aqueous crosslinkable composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: AKZO NOBEL N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLINKENBERG, HUIG;VAN BEELEN, JAN CORNELIUS;REEL/FRAME:014167/0899

Effective date: 20030422

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION