US20020098333A1 - Piezoceramic device - Google Patents
Piezoceramic device Download PDFInfo
- Publication number
- US20020098333A1 US20020098333A1 US09/736,266 US73626600A US2002098333A1 US 20020098333 A1 US20020098333 A1 US 20020098333A1 US 73626600 A US73626600 A US 73626600A US 2002098333 A1 US2002098333 A1 US 2002098333A1
- Authority
- US
- United States
- Prior art keywords
- ceramic
- cations
- positions
- partial pressure
- perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010949 copper Substances 0.000 claims abstract description 43
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052802 copper Inorganic materials 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000000919 ceramic Substances 0.000 claims description 113
- 150000001768 cations Chemical class 0.000 claims description 46
- 238000005245 sintering Methods 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 239000011888 foil Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 11
- MYLBTCQBKAKUTJ-UHFFFAOYSA-N 7-methyl-6,8-bis(methylsulfanyl)pyrrolo[1,2-a]pyrazine Chemical compound C1=CN=CC2=C(SC)C(C)=C(SC)N21 MYLBTCQBKAKUTJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 238000006467 substitution reaction Methods 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 150000002910 rare earth metals Chemical class 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052706 scandium Inorganic materials 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 4
- 150000002602 lanthanoids Chemical class 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 229920003009 polyurethane dispersion Polymers 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 claims 3
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 claims 3
- 239000011261 inert gas Substances 0.000 claims 2
- 229910020289 Pb(ZrxTi1-x)O3 Inorganic materials 0.000 claims 1
- 229910020273 Pb(ZrxTi1−x)O3 Inorganic materials 0.000 claims 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 7
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 15
- 238000009833 condensation Methods 0.000 description 14
- 230000005494 condensation Effects 0.000 description 14
- 230000008901 benefit Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 239000005751 Copper oxide Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005247 gettering Methods 0.000 description 3
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 3
- 230000005501 phase interface Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 239000002003 electrode paste Substances 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 241001676573 Minium Species 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 229910020294 Pb(Zr,Ti)O3 Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- XMFOQHDPRMAJNU-UHFFFAOYSA-N lead(II,IV) oxide Inorganic materials O1[Pb]O[Pb]11O[Pb]O1 XMFOQHDPRMAJNU-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/05—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
- H10N30/053—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
- C04B35/493—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/021—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8548—Lead-based oxides
- H10N30/8554—Lead-zirconium titanate [PZT] based
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/871—Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/877—Conductive materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6584—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6588—Water vapor containing atmospheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/721—Carbon content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/768—Perovskite structure ABO3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/346—Titania or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/348—Zirconia, hafnia, zirconates or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/43—Electric condenser making
- Y10T29/435—Solid dielectric type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49005—Acoustic transducer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/125—Deflectable by temperature change [e.g., thermostat element]
- Y10T428/12507—More than two components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24926—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/252—Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the present invention relates to a piezoceramic device and a method for manufacturing it wherein the device includes a stack of at least two ceramic layers and an electrode layer arranged between the two ceramic layers.
- Such devices may comprise a plurality of layers and uses. For example, they may be used in: actuators for effecting a low-inertia mechanical vibration of comparably high force via application of a select control voltage; bending elements to effect a high mechanical vibration of less force via application of select control voltage; or production of high electrical voltages. Piezoceramic devices may serve to detect mechanical acoustic vibrations and/or serve in their production via implementation in relevant devicse.
- the electrodes may comprise Ag/Pd in the molar ratio 70/30. At up to several hundred electrode layers, the piezoceramic devices are burdened with substantial costs.
- the precious metal electrodes permit the elimination of thermal dispergers and binders as well as other organic additives used in the process of ceramic foil production.
- organic components of screen printing-metal paste of the multilayer stacks are eliminated via air depolymerisation and oxydation such that a later sinter condensation at approximately 1100° C. to 1150° C. is made possible without damaging effects. Such effects may for example be effected by residual carbon which negatively influences the characteristics of the ceramics due to reduction reactions.
- La 2 O 3 or Nd 2 O 3 doped Pb(Zr,Ti)O 3 ceramics are documentated in the literature, including by G. H. Haertling in the American Ceramic Society Bulletin (43(12), 113-118 (1964) and Journal of the American Ceramic Society 54, 1-11 (1971) as well as in Piezoelectric Ceramics , Academic Press, London and New York (1971) of B. jaffe, W. R. Cook and H. Jaffe. Additional discussion may be found in Y. Xu in Ferroelectric Materials and their Applications , Elsevier Science Publishers, Amsterdam (1991).
- La 2 O 3 in particular Nd 2 O 3 —additives induce the production of cation vacancies in the Pb positions of the crystal structure and at the same time increase the tendency to act as donors, particularly at insufficient oxygen partial pressure, which can lead to a depression of the insulating resistance and a rise in the dielectrcial losses, i.e. the sensitivity of the ceramic towards reduction is increased.
- the additives stabilize the tetragonal phase and the kinetics of the orientation of the domains in the field direction at the polarity, i.e. the electromechanical behavior of the “soft piezoceramic” is influenced positively by such additives.
- All of these ceramics are based on Perovskite mixed crystal phases which, in combination with Ag/Pd internal electrodes, produce a relatively positive behavior for the purpose of a piezostack when the debindering (the removal of the binder or binders) and the sinter condensation is performed.
- Piezoelectrical ceramic masses of the general composition (Pb 1 ⁇ x ⁇ y Sr x Na ⁇ M y ) a [(Nb b Y c Cr d Co e Sb ⁇ ) f Ti g Zr 1 ⁇ f ⁇ g ]O 3 are set out in U.S. Pat. No.
- the publication DE 9700463 discloses the production of green foils for piezoceramic multilayer devices.
- the green foils are based on a piezoceramic powder of the type PZT, to which a stochiometric surplus of a heterovalent rare earth metal (up to a content from 1 to 5 molar-%) and a stochiometric surplus of an additional 1-5 molar-% lead oxyde is added.
- Ag + -ions from the area of Ag/Pd internal electrodes diffuse into the ceramic layers of the multilayer devices such that the heterovalent doping produced cation vacancies are occupied and accordingly result in a filled up Perovskite structure.
- This structure may be: Pb 0,99 Ag 0,01 La 0,01 [Zr 0,30 Ti 0,36 (Ni 1 ⁇ 3 Nb 2 ⁇ 3 ) 0,34 ]O 3 or Pb 0,96 Ag 0,02 Nd 0,02 (Zr 0,54 , Ti 0,46 )O 3 .
- a piezoceramic is produced with a comparatively high Curie temperature for applications of up to 150° C.
- solidity between the Ag/Pd internal electrode (70/30) and the ceramic, as well as growth during the sintering, are positively influenced by building silver into the ceramic.
- U.S. Pat. No. 5,233,260 discusses piezoactuators which are not produced in the tradiational monolithic manner. Rather, the ceramic layers are separately sintered and only then stacked and agglutinated. This production method is costly. Furthermore, these piezoactuators have the disadvantage that the glue used has a negative effect the electrical characteristics.
- DE 19749858 C1 sets out the production of COG with internal electrodes formed of a ceramic mass with the general composition (Ba II 1 ⁇ y Pb y ) 6 ⁇ x Nd 8+2x/3 Ti 18 O 54 +z m-% TiO 2 +pm-% Glas at lower PbO content(0.6 ⁇ x ⁇ 2.1; 0 ⁇ y ⁇ 0.6, 0 ⁇ z ⁇ 5.5 and 3 ⁇ p ⁇ 10).
- a sufficient elimination of the organic components by feeding steam into the nitrogen flux with ⁇ 10 ⁇ 2 Pa oxygen partial pressure at temperatures up to 680° C. and the sinter condensation at 1000° C. is reached by apt glass frit addititives.
- An advantage of the present invention provides an alternative to the expensive Ag/Pd internal electrodes used in the related art. It is a further advantage to provide a substitution which does not oxidize and remains relatively stable during production. It is still a further advantage to provide a method which can be implemented to enable mass production at reasonable engineering effort and expense and with maximally replicable component characteristics.
- the present invention encompasses all piezoceramic devices available in a monolithic multilayer formation, and in particular Perovskit ceramic. Modifications by mixed crystal formation via building in cations on the-A positions and/or substitution of the B-cations with suitable replacement cations or combinations thereof can be effected. Ceramic foil production techniques may be employed along with sintering techniques in the formation of the present invention. For example, screen printing can be used for making the copper or copper mixted internal electrodes.
- Such piezoceramic multilayer devices can be realized for example as actuators by an apt process guide, by which the debindering of the green foil stacks is carried out by steam thereby avoiding the oxidation of the copper containing internal electrodes.
- the following sinter condensation to a monolithic multilayer device can be carried out in an advantageous ways at about 1000° C., i.e. below the melting temperture of the copper.
- a further advantage of the present invention may be found in that for a PZT ceramic mass, copper-containing internal electrodes are applied in place of the normally used Ag/Pd internal electrodes (70/30) on the basis of the multilayer foil technique, whereby the practically complete debindering can be successfully done before effecting the sinter condensation, and under inert conditions, in such a way that a lot of steam is supplied to the inert atmosphere during the debindering thereby permitting only a set oxygen partial pressure, and hence leaving the copper containing internal electrodes relatively intact. Accordingly, by the present method, piezoactuators are created which have the same if not superior quality to those currently available. Likewise, the presence of the copper electrodes do not have any deliterious effects on the piezoactuators.
- a preferred step in the present method includes a step wherein cations are built in on A-positions of the ceramic and at which cations on B-positions are replaced by apt other cations or combinations of cations.
- bivalent metal cations M II may be built on A-positions of the ceramic. These can be selected for example from a group of elements, which contain barium, strontium, calcium, copper and bismuth. Bivalent metal cations M II from a group of elements including scandium, yttrium, lantanum or from group of lanthanides can be considered for the A-positions of the ceramic.
- monovalent cations can be built in on the A-positions of the ceramic, which are selected advantegously and from a group of elements which contains silver, copper, sodium and potassium.
- monovalent cations M II and monovalent cations can be built in on A-positions.
- a preferred embodiment includes the partial substitution of the quadrivalent cations Zr and Ti on the B-positions of the ferroelectrical Perovskite ceramic.
- Still a further advantage includes the composition of the ceramic with the general formula
- the invention includes the realization that the by donors, e.g. a rare earth metal doped piezo ceramic on the basis of PZT, because of the formation of cation vacancies on the A-positions of the Perovskit structure, e.g. according to the composition Pb II 0,97 Nd III 0,02 V′′Pb,0,01( Zr 0,54 Ti 0,46) O 3 (V′′ meaning an empty space), develops a certain affinity to absorb copper from the internal electrodes without destroying them by elimination of equivalent PbO-shares, whereby the latter combination acts as a sinter aid and up to some percentage of PbO is separately added to the ceramic anyway.
- donors e.g. a rare earth metal doped piezo ceramic on the basis of PZT
- V′′ meaning an empty space
- the sinter condensation is supported by the known mobility of the copper ions and leads, by the copper migration, to a solid adhesion between the electrode layer and ceramic such that delaminations can be effectively avoided.
- FIG. 1 depicts temperature control during debindering and sintering
- FIGS. 2 a and 2 b depict a partial cross section of a multilayer stack with alternating sequence of PZT ceramic foils and Cu-internal electrodes;
- FIGS. 3 a and 3 b depict a measuring curve of copper content of piezoceramic layer and a section view of the piezoceramic layer;
- FIG. 4 depicts a diagram of an excursion curve for a polarized PZT-piezoactuator with Cu-internal electrodes
- FIG. 5 depicts a calculation of thermodynamic data as curves for different H 2 /H 2 O concentrations.
- a piezoceramic Perovskite-mixed crystal phase is built according to the following steps: TiO 2 , ZrO 2 (each may be from a mixed precipitation produced precursor (Zr, Ti)O 2 ) and PbCo 3 (e.g. Pb 3 O 4 and dopants like La 2 O 3 or from another oxyde of the rare earth metals) and if necessary an additive of CuO based raw material mixture is set in its composition on the morphotropic phase interface with a PbO-surplus of maximally 5% to support the sinter condensation; for even distribution, the component undergoes a grinding step in diluted suspension and is calcinated after the filtering; and drying occurs at 900 to 950° C.
- the finely ground powder is suspended in a diluted slip with approx. 70 m-% solid substance content by use of a disperger, thus corresponding to approximately 24 vol.-%.
- the optimal dispersing dispergator portion is separately determined in a series of tests, which can be recognized by obtaining a certain viscosity minium.
- approximately 6 m-% of a commercial binder is added to the dispersed suspended solids, which is thermohydrolytically degradable. Accordingly, a diluted polyurethane dispersion has been shown to have advantage effects. It is mixed in a disperse mill and accordingly provided for the process of “foil-pulling” (in particular for the production of a spraying granular apt slip).
- Compact green discoids produced from the granular) or small square multilayer printed boards (“MLP” produced by stacking and laminating 40 to 50 ⁇ m thick green foils without print and with Cu-electrode paste) can be debindered up to a residue carbon content of 300 ppm in a H 2 O-steam containg inert atmosphere at a defined oxygen partial pressure, which fulfills the condition of the coexistency of PbO and in particular Bi 2 O 3 -containing piezoceramic and copper.
- MLP small square multilayer printed boards
- the hydrolytical separation of the binder takes place primarily at a low temperature of 200 ⁇ 50° C. and at a steam partial pressure larger than 200 mbar.
- the oxygen partial pressure is set to a value which is well-tolerated by the copper containing electrodes. This is done by gettering the oxygen from the flow of gas at surfaces of Cu or by adding H 2 .
- the flow of gas avoids damage to the ceramic.
- the electrode layers support the debindering, because preferred paths for a binder transportation is created by them, there is still a considerable debindering time necessary, particularly for the actuators with 160 electrodes (measurements 9,8*9,8* 12,7 mm 3 ).
- the invention enables herewith the production of actuators with more than 100 internal electrodes, which has the advantage of a highly obtainable actuator-excursion.
- Examples for a debindering control are found in table 1 by indicating the residue carbon content of the obtained devices.
- the dew point for steam of both debindering programs lies at 75° C., the partial pressure of the steam corresponds to 405 mbar.
- FIG. 1 shows the temperature control during the debindering and sintering.
- the steam partial pressure supplied with the nitrogen flux corresponding to a dew point of 75° C. is indicated as well.
- the sinter condensation is effected at 1000° C. without creating a reductive degradation of the ceramic.
- the dielectrical and especially the piezoelectrical characteristics of the obtained samples with the measurements of approximately 10.10 mm 2 and 0,7 (in particular 2 mm consistency) are measured after contacting by sputtering of Au-electrodes and compared with the air-debindered (sintered at 1130° C.) samples of the same geometry.
- Table 4 depicts effective piezoelectrical coupling factors of the MLP samples from table 3 for two fundamental vibrations, determined from the measurement of each 3 MLP samples, sintered under the indicated conditions (a), (b), (c) and (d) in table 2, Planar vibration Consistency mode of vibration MLP f S/kHz f p/KHz k eff f S/kHz f p/KHz k eff (a) 158 ⁇ 1 191 ⁇ 2 0.56 ⁇ 0.01 3292 ⁇ 15 3848 ⁇ 79 0.52 ⁇ 0.03 (b) 166 ⁇ 2 198 ⁇ 4 0.54 ⁇ 0.01 2900 ⁇ 78 3197 ⁇ 25 0.42 ⁇ 0.05 (c) 163 ⁇ 1 189 ⁇ 5 0.51 ⁇ 0.04 2830 ⁇ 111 3100 ⁇ 108 0.40 ⁇ 0.02 (d) 154 ⁇ 2 186 ⁇ 2 0.56 ⁇ 0.03 2668 ⁇ 36 3048 ⁇ 47 0.48 ⁇ 0.03
- Electromechanical coupling factors which are in the area of the air-sintered samples are accrued from the produced samples sintered commonly under these conditions with copper.
- the results of an excursion measurement on ceramic samples MLP are listed in table 5.
- the excursion ⁇ h was determined parallely to the polarized direction 3, in which the measuring voltage was set.
- the excursion measurement was carried out by inductive path measuring by setting up an electrical field E with a field strength of 2000 V/mm. Prior to this measurement, the samples were impinged by a field strength of 2000 V/mm in the polarized direction to rule out after-polarity effects and increased hysteresis because of the bedding after the polarity.
- d 33 is a geometrically independent value for the piezoelectrical large signal characteristics of the examined ceramic.
- Table 5 sets out an excursion measurement of square ceramic samples ML: (edge length 1, consistency h) with the composition according table 2 by setting a voltage of 2kV/mm. Electrical measurement voltage U, excursion ⁇ h, and the piezoelectrical constant d 33 are indicated.
- a Cu-screen print paste which has a metal content as high as possible of approx. 75 m-% and is processed with a special high-polymer and is thereby a very viscous binder (which produces at already ⁇ 2 m-%, related to the solid susbstance content, a viscosity as thixotrope as possible, preferably >2000 mPa*s).
- multilayer samples “VS” with up to 20 internal electrodes are produced for sampling purposes.
- piezostacks with 100 to 300 Cu-internal electrodes are built up in a second step and are debindered and sintered under the above mentioned conditions of a defined oxygen partial pressure in the presence of steam.
- the piezoceramic green foils are produced in a consistency, which produces, by considering the linear shrinkage during the sintering of typically 15%, a piezoceramic consistency from 20 to 200 ⁇ mm.
- the Cu-electrodes have a layer consistency from 1 to 3 ⁇ m after the sintering.
- FIG. 2 a and 2 b depict a schematic cross section of a multilayer stack with an alternating sequence of PZT ceramic foils and Cu-internal electrodes in 500 times (FIG. 2 a ) and in 1000 times (FIG. 2 b ) enlargement.
- the green foils produced according to the method of the consistency from 40 to 50 ⁇ m are further processed according to the multilayer ceramic condensators method.
- the printing of the square cut PZT ceramic foils is done mechanically by screen printing technique (400 mesh) with the piezo actuators common electrode design by usage of a commercial Cu-electrode paste.
- the stacking is done such that on every two non-printed foils a printed one follows. 100 piezo actuators in a green condition are received from the block, after laminating, and pressing or sawing.
- the debindering is carried out according to the FIG. 1 shown temperature time diagram in nitrogen stream by adding steam and hydrogen so that there is a target value from 5*10 ⁇ 2 to 2*10 ⁇ 1 Pa for the O 2 partial pressure produced in the area of 500° C. Essentially, lower oxygen partial pressures occur locally during the debindering.
- the ceramic is not subject to the reductive degradation in the temperature area of the debindering, because the equilibrated oxygen partial pressure is lowered as well, conditioned thermodynamically, and the reduction processes are kinetically sufficiently obstructed.
- the green parts of the multilayer piezo actuators still show a residue content of carbon of 300 ppm after the debindering and are afterwards ready to be sintered in the same set atmosphere without causing a reductive degradation which lead to cracking, delamination and eventually to drifting of the internal electrodes because of the production of a low melting Cu/Pb-alloy.
- [0063] is used for setting a certain oxygen partial pressure.
- K D p ⁇ ( O 2 ) 1 2 ⁇ p ⁇ ( H 2 ) p ⁇ ( H 2 ⁇ O )
- thermodynamic data a certain oxygen partial pressure is thereby determined at a given temperature for a defined partial pressure ratio of steam and hydrogen.
- the calculation of the thermodynamic data produces the data depicted in FIG. 5, namely the curves for different H 2 /H 2 O ratios of concentration.
- the gas composition is selected in such a way, that the requested oxygen partial pressure is produced at sinter temperature T Sinter .
- T Sinter sinter temperature
- This condition is for example depicted in FIG. 5.
- the p(O 2 ) runs parallel to the other curves with decreasing temperature.
- the p(O 2 ) value is low for T ⁇ T Sinter , which is still tolerable if needed.
- the gas control curve Cu1 according to table 7 corresponds to this process.
- the equilibrium of Pb/PbO falls short starting at approx. 900° C., conditioned by the narrow thermodynamic window through which metallic lead is produced if there is sufficient kinetic activity.
- FIG. 5 shows the calculated course of the partial pressure for the different ratios of concentration of the gases.
- the sinter profile is as follows: the holding time at maximal temperature lies between 2 and 12 hours.
- the heating up ramp and the cooling down ramp are effected at 5 K/min; and the actuators are slowly heated up at 1 K/min.
- the in steps adjusted set-up of the oxygen partial pressure (FIG. 5) runs in conformity with the temperature curve, which is obtained by an alteration of the forming gas flow meter. Thereby, the steam partial pressure (100 g/h) is constant.
- the obtained ceramic is tightly sintered to >96% and shows mostly homogenous low porosity.
- the sinter grains grow according to the piezoelectrical characteristics with an advantageous medium grain size of 0.8-5 ⁇ m. Intact and crack-free actuators are obtained.
- the sequence of the internal electrodes and PZT ceramic layers is shown in a section in FIGS. 2 a and 2 b .
- the piezo actuators are ground and polished for the finishing and contacted in the area of the exiting internal electrodes according to applications common to Cu-paste and burned-in at 935° C. according to a preset temperature time curve.
- the piezo actuators respond to the electrical measuring after the application of wires by known Bond technology.
- FIG. 4 The diagram of a vibration curve for a polarized PZT-piezoactuator with 160 Cu-internal electrodes is depicted in FIG. 4. A density of 0,123% is produced by a voltage setting of 140,6 Volt at a consistency of 70 ⁇ m of the PZT ceramic layers. The piezoelectrical coefficient in direction to the applied field d 33 is 614,6 10 ⁇ 12 m/V.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Electrodes Of Semiconductors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Laminated Bodies (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/406,587 US7855488B2 (en) | 1999-12-16 | 2006-04-19 | Piezoceramic device |
| US12/785,081 US8209828B2 (en) | 1999-12-16 | 2010-05-21 | Method for making a piezoceramic device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19960849 | 1999-12-16 | ||
| DE19960849. | 1999-12-16 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/406,587 Continuation US7855488B2 (en) | 1999-12-16 | 2006-04-19 | Piezoceramic device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020098333A1 true US20020098333A1 (en) | 2002-07-25 |
Family
ID=7932991
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/736,266 Abandoned US20020098333A1 (en) | 1999-12-16 | 2000-12-15 | Piezoceramic device |
| US11/406,587 Expired - Fee Related US7855488B2 (en) | 1999-12-16 | 2006-04-19 | Piezoceramic device |
| US12/785,081 Expired - Fee Related US8209828B2 (en) | 1999-12-16 | 2010-05-21 | Method for making a piezoceramic device |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/406,587 Expired - Fee Related US7855488B2 (en) | 1999-12-16 | 2006-04-19 | Piezoceramic device |
| US12/785,081 Expired - Fee Related US8209828B2 (en) | 1999-12-16 | 2010-05-21 | Method for making a piezoceramic device |
Country Status (9)
| Country | Link |
|---|---|
| US (3) | US20020098333A1 (enExample) |
| EP (2) | EP2278634A3 (enExample) |
| JP (2) | JP4744052B2 (enExample) |
| CN (1) | CN1246914C (enExample) |
| AT (1) | ATE481743T1 (enExample) |
| AU (1) | AU2830701A (enExample) |
| BR (1) | BR0016390A (enExample) |
| DE (3) | DE10062672B9 (enExample) |
| WO (1) | WO2001045138A2 (enExample) |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030188820A1 (en) * | 2002-04-05 | 2003-10-09 | Eturo Yasuda | Method for producing stacked ceramic body |
| US20040050477A1 (en) * | 2000-12-28 | 2004-03-18 | Denso Corporation | Laminate-type dielectric device,a production method and an electrode paste material |
| US20040129919A1 (en) * | 2002-07-25 | 2004-07-08 | Katsuhiro Horikawa | Manufacturing method for monolithic piezoelectric part, and monolithic piezoelectric part |
| US6936301B2 (en) * | 2002-05-06 | 2005-08-30 | North Carolina State University | Methods of controlling oxygen partial pressure during annealing of a perovskite dielectric layer |
| EP1580820A1 (en) * | 2004-03-26 | 2005-09-28 | TDK Corporation | Method of manufacturing multilayer ceramic device |
| US20060119228A1 (en) * | 2002-10-25 | 2006-06-08 | Heinz Florian | Piezoelectric component |
| US7063813B1 (en) | 2001-12-14 | 2006-06-20 | Denso Corporation | Stacked ceramic body and production method thereof |
| US20060145571A1 (en) * | 2002-09-27 | 2006-07-06 | Alexander Glazunov | Piezoelectric transformer provided with internal copper electrodes |
| US20060234020A1 (en) * | 2002-02-13 | 2006-10-19 | Peter Sedlmaier | Ceramic multilayer component, method for the production thereof and retaining device |
| US20060251911A1 (en) * | 1999-12-16 | 2006-11-09 | Epcos Ag | Piezoceramic device |
| US20060279178A1 (en) * | 2003-05-13 | 2006-12-14 | Xiaobing Ren | Piezoelectric material, manufacturing method thereof, and non-linear piezoelectric element |
| US20070080317A1 (en) * | 2005-10-04 | 2007-04-12 | Tdk Corporation | Piezoelectric ceramic composition and laminated piezoelectric element |
| US20070206341A1 (en) * | 2003-09-30 | 2007-09-06 | Epcos Ag | Ceramic Multi-Layer Component And Method For The Production Thereof |
| US20070216264A1 (en) * | 2006-03-20 | 2007-09-20 | Tdk Corporation | Multilayer piezoelectric element |
| US20070267948A1 (en) * | 2003-09-30 | 2007-11-22 | Adalbert Feltz | Piezoelectric Ceramic Material Multi-Layered Component and Method for the Production of a Ceramic Material |
| US20080057798A1 (en) * | 2004-04-26 | 2008-03-06 | Heinz Florian | Electrical Functional Unit and Method for its Production |
| US20080074004A1 (en) * | 2005-06-03 | 2008-03-27 | Murata Manufacturing Co., Ltd. | Piezoelectric device |
| US20080231147A1 (en) * | 2005-12-08 | 2008-09-25 | Murata Manufacturing Co., Ltd. | Laminated piezoelectric element and process for producing the same |
| US20080245991A1 (en) * | 2005-12-22 | 2008-10-09 | Francois Bamiere | Nickel-Molybdenum-Doped Lead Zirconate Titanate, Method for the Production of a Piezoceramic Component Using Said Lead Zirconate Titanate, and Use of the Piezoceramic Component |
| US20090236945A1 (en) * | 2006-12-06 | 2009-09-24 | Murata Manufacturing Co., Ltd. | Monolithic piezoelectric element and method for manufacturing the same |
| US20090243441A1 (en) * | 2005-01-26 | 2009-10-01 | Epcos Ag | Piezoelectric Component |
| US20180033950A1 (en) * | 2015-02-16 | 2018-02-01 | Mitsubishi Materials Corporation | Piezoelectric ptzt film, and process for producing liquid composition for forming said piezoelectric film |
| US20210305484A1 (en) * | 2020-03-27 | 2021-09-30 | Tdk Corporation | Piezoelectric element, piezoelectric actuator, and piezoelectric transformer |
Families Citing this family (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE20022469U1 (de) * | 2000-07-11 | 2002-01-31 | Robert Bosch Gmbh, 70469 Stuttgart | Gesinterter, elektrisch leitfähiger Werkstoff |
| JP2002261345A (ja) * | 2000-12-28 | 2002-09-13 | Denso Corp | 積層一体焼成型の電気機械変換素子 |
| DE10227509A1 (de) * | 2002-04-22 | 2003-11-06 | Elliptec Resonant Actuator Ag | Piezomotor |
| DE10141820A1 (de) * | 2001-08-27 | 2003-03-20 | Elliptec Resonant Actuator Ag | Piezomotor mit Kupferelektroden |
| DE10146704A1 (de) * | 2001-09-21 | 2003-04-10 | Elliptec Resonant Actuator Ag | Piezomotoren mit Piezoelementen, hergestellt nach dem Keramikkondensatorverfahren |
| JP4590868B2 (ja) * | 2003-02-12 | 2010-12-01 | 株式会社デンソー | 積層型圧電体素子及びその製造方法 |
| DE10326040A1 (de) | 2003-06-10 | 2004-12-30 | Robert Bosch Gmbh | Verfahren zur Herstellung von keramischen Grünfolien für keramische Bauteile |
| US7713896B2 (en) | 2004-04-14 | 2010-05-11 | Robert Bosch Gmbh | Method for producing ceramic green compacts for ceramic components |
| JP2006196717A (ja) * | 2005-01-14 | 2006-07-27 | Nec Tokin Corp | 積層型圧電セラミックス素子およびその製造方法 |
| JP3923064B2 (ja) * | 2005-03-25 | 2007-05-30 | Tdk株式会社 | 積層型圧電素子及びその製造方法 |
| JP2007230839A (ja) * | 2006-03-02 | 2007-09-13 | Tdk Corp | 圧電磁器組成物、積層型圧電素子及びその製造方法 |
| JP4711083B2 (ja) * | 2006-12-27 | 2011-06-29 | Tdk株式会社 | 積層型圧電素子 |
| DE102007029601A1 (de) * | 2007-06-27 | 2009-01-02 | Siemens Ag | Bleizirkonattitanat mit Eisen-Niob-Wolfram-Dotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils unter Verwendung des Bleizirkonattitanats und Verwendung des piezokeramischen Bauteils |
| DE102007029600A1 (de) * | 2007-06-27 | 2009-01-02 | Siemens Ag | Bleizirkonattitanat mit Scandium-Wolfram-Dotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils unter Verwendung des Bleizirkonattitanats und Verwendung des piezokeramischen Bauteils |
| DE102007029613A1 (de) * | 2007-06-27 | 2009-01-02 | Siemens Ag | Bleizirkonattitanat mit Nickel-Wolfram-Dotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils unter Verwendung des Bleizirkonattitanats und Verwendung des piezokeramischen Bauteils |
| DE102007037554A1 (de) | 2007-08-09 | 2009-02-12 | Robert Bosch Gmbh | Piezoelektrischer Aktor |
| DE102009047512A1 (de) | 2009-04-09 | 2010-10-14 | Robert Bosch Gmbh | Aktormodul und Brennstoffeinspritzventil |
| DE102009002304A1 (de) | 2009-04-09 | 2010-10-14 | Robert Bosch Gmbh | Piezoelektrischer Aktor und Verfahren zur Herstellung eines piezoelektrischen Aktors |
| DE102010062112A1 (de) | 2010-04-16 | 2011-10-20 | Robert Bosch Gmbh | Verfahren zum Heißpolarisieren eines piezokeramischen Bauelements |
| DE102010027845A1 (de) | 2010-04-16 | 2011-10-20 | Robert Bosch Gmbh | Piezoelektrischer Aktor |
| DE102010030206A1 (de) | 2010-06-17 | 2011-12-22 | Robert Bosch Gmbh | Messverfahren für einen thermischen Prozess |
| DE102011003078A1 (de) | 2011-01-25 | 2012-07-26 | Robert Bosch Gmbh | Sinterhilfsmittel zum Aufnehmen von Bauteilen und Verfahren zum Sintern von Bauteilen |
| DE102011003079B4 (de) | 2011-01-25 | 2021-01-07 | Robert Bosch Gmbh | Verfahren zum Sintern von Bauteilen |
| DE102011077263A1 (de) | 2011-06-09 | 2012-12-13 | Robert Bosch Gmbh | Piezoelektrischer Aktor und Verfahren zur Herstellung eines piezoelektrischen Aktors |
| DE102011112008B4 (de) * | 2011-08-30 | 2018-01-11 | Epcos Ag | Piezoelektrisches Bauelement und Verfahren zur Herstellung eines piezoelektrischen Bauelements |
| DE102011117709A1 (de) | 2011-11-04 | 2013-05-08 | Epcos Ag | Keramikmaterial, Verfahren zur Herstellung desselben und elektrokeramisches Bauelement umfassend das Keramikmaterial |
| US9293256B2 (en) | 2012-04-10 | 2016-03-22 | Epcos Ag | Ceramic material and capacitor comprising the ceramic material |
| DE102012104033B9 (de) | 2012-05-08 | 2025-02-06 | Tdk Electronics Ag | Keramischer Vielschichtkondensator |
| US9511393B2 (en) * | 2012-08-17 | 2016-12-06 | The Boeing Company | Flexible ultrasound inspection system |
| US20140339458A1 (en) * | 2013-05-14 | 2014-11-20 | Tdk Corporation | Piezoelectric ceramic and piezoelectric device containing the same |
| US9324931B2 (en) | 2013-05-14 | 2016-04-26 | Tdk Corporation | Piezoelectric device |
| DE102018125341A1 (de) * | 2018-10-12 | 2020-04-16 | Tdk Electronics Ag | Piezoelektrisches Vielschichtbauelement und Verfahren zur Herstellung eines piezoelektrischen Vielschichtbauelements |
| CN111302798B (zh) * | 2020-02-25 | 2022-02-22 | 西安工业大学 | 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法 |
| DE102020116805A1 (de) * | 2020-06-25 | 2021-12-30 | Heraeus Deutschland GmbH & Co. KG | Sinterverfahren für elektrische Durchführungen |
| CN112864305A (zh) * | 2020-12-24 | 2021-05-28 | 广东奥迪威传感科技股份有限公司 | 一种压电执行器 |
| CN116615399B (zh) * | 2021-01-28 | 2025-03-21 | 基美电子公司 | 介电陶瓷组合物和使用该介电陶瓷组合物的陶瓷电容器 |
| CN118063212B (zh) * | 2024-01-26 | 2024-11-08 | 湖南省美程陶瓷科技有限公司 | 一种锆钛酸铅压电陶瓷材料及其制备方法 |
| US20250295035A1 (en) * | 2024-03-13 | 2025-09-18 | Joseph V. Mantese | Piezoelectric structure |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5112433A (en) * | 1988-12-09 | 1992-05-12 | Battelle Memorial Institute | Process for producing sub-micron ceramic powders of perovskite compounds with controlled stoichiometry and particle size |
| US6080328A (en) * | 1998-04-13 | 2000-06-27 | Murata Manufacturing | Piezoelectric ceramic and method for producing piezoelectric ceramic element |
| US6236146B1 (en) * | 1996-11-12 | 2001-05-22 | Siemens Aktiengesellschaft | Piezoelectric actuator with a new type of contacting and a method for the production thereof |
| US6255037B1 (en) * | 1996-04-26 | 2001-07-03 | Murata Manufacturing Co., Ltd. | Method for producing monolithic electronic parts |
| US6320738B1 (en) * | 1999-10-28 | 2001-11-20 | Murata Manufacturing Co., Ltd. | Monolithic ceramic electronic component and method for making the same |
Family Cites Families (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4189760A (en) * | 1973-05-13 | 1980-02-19 | Erie Technological Products, Inc. | Monolithic capacitor with non-noble metal electrodes and method of making the same |
| US3809973A (en) * | 1973-07-06 | 1974-05-07 | Sprague Electric Co | Multilayer ceramic capacitor and method of terminating |
| US4063341A (en) * | 1975-07-09 | 1977-12-20 | E. I. Du Pont De Nemours And Company | Process for making multilayer capacitors |
| JPS5946112B2 (ja) | 1975-12-29 | 1984-11-10 | 三菱油化株式会社 | アツデンザイリヨウ |
| US4078284A (en) * | 1977-04-04 | 1978-03-14 | Zenith Radio Corporation | Piezoelectric substrate fabrication process |
| JPS6047753B2 (ja) | 1978-06-01 | 1985-10-23 | 日本特殊陶業株式会社 | 圧電性高分子複合材料 |
| JPS5817143B2 (ja) * | 1979-02-22 | 1983-04-05 | 鳴海製陶株式会社 | セラミツクテ−プの製造方法 |
| US4347167A (en) * | 1980-10-01 | 1982-08-31 | University Of Illinois Foundation | Fine-grain semiconducting ceramic compositions |
| JPS6287456A (ja) * | 1985-10-11 | 1987-04-21 | 日本碍子株式会社 | 誘電体磁器用セラミツク組成物 |
| US4988909A (en) * | 1989-01-20 | 1991-01-29 | Mitsui Toatsu Chemicals, Inc. | Piezoelectric element with giant electrostrictive effect and ceramic composition for preparing same |
| JPH0666219B2 (ja) * | 1989-02-22 | 1994-08-24 | 株式会社村田製作所 | 積層セラミックスコンデンサ |
| JP2615977B2 (ja) * | 1989-02-23 | 1997-06-04 | 松下電器産業株式会社 | 誘電体磁器組成物およびこれを用いた積層セラミックコンデンサとその製造方法 |
| US5014158A (en) * | 1989-04-11 | 1991-05-07 | Matsushita Electric Industrial Co., Ltd. | Laminated ceramic capacitor |
| US5163209A (en) * | 1989-04-26 | 1992-11-17 | Hitachi, Ltd. | Method of manufacturing a stack-type piezoelectric element |
| JPH02303078A (ja) * | 1989-05-17 | 1990-12-17 | Murata Mfg Co Ltd | 圧電性磁器組成物 |
| JP2881424B2 (ja) | 1989-07-25 | 1999-04-12 | 京セラ株式会社 | 圧電磁器 |
| JP2536671B2 (ja) * | 1990-07-09 | 1996-09-18 | 株式会社村田製作所 | 圧電性磁器の製造方法 |
| US5210455A (en) * | 1990-07-26 | 1993-05-11 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion |
| JPH04171990A (ja) * | 1990-11-06 | 1992-06-19 | Toto Ltd | 圧電セラミック焼結体 |
| JPH04324687A (ja) * | 1991-04-24 | 1992-11-13 | Onoda Cement Co Ltd | 卑金属電極材料 |
| JPH05190376A (ja) * | 1991-07-19 | 1993-07-30 | Toshiba Corp | セラミックコンデンサ |
| US5335139A (en) * | 1992-07-13 | 1994-08-02 | Tdk Corporation | Multilayer ceramic chip capacitor |
| US5390949A (en) * | 1993-03-08 | 1995-02-21 | The University Of Toledo | Active suspension systems and components using piezoelectric sensing and actuation devices |
| JP3151644B2 (ja) * | 1993-03-08 | 2001-04-03 | 日本碍子株式会社 | 圧電/電歪膜型素子 |
| US5340510A (en) * | 1993-04-05 | 1994-08-23 | Materials Systems Incorporated | Method for making piezoelectric ceramic/polymer composite transducers |
| US5433917A (en) * | 1993-09-16 | 1995-07-18 | The Penn State Research Foundation | PZT ceramic compositions having reduced sintering temperatures and process for producing same |
| DE4332831C1 (de) * | 1993-09-27 | 1994-10-06 | Fraunhofer Ges Forschung | Formkörper auf der Basis von PZT (Pb(Zr,Ti)O¶3¶, Bleizirkonat-Bleititanat), Verfahren und Zwischenprodukt zu deren Herstellung |
| JPH07277822A (ja) | 1994-04-11 | 1995-10-24 | Matsushita Electric Ind Co Ltd | 圧電素子材料及びその製造方法 |
| JPH0826824A (ja) * | 1994-07-08 | 1996-01-30 | Matsushita Electric Ind Co Ltd | 圧電磁器組成物およびその製造方法 |
| JPH08167536A (ja) * | 1994-12-14 | 1996-06-25 | Tdk Corp | 銅内部電極積層セラミックコンデンサの製造方法 |
| US5648012A (en) | 1994-12-22 | 1997-07-15 | Kyocera Corporation | Piezoelectric ceramic composition |
| JP3266483B2 (ja) * | 1995-11-30 | 2002-03-18 | 京セラ株式会社 | 圧電磁器組成物 |
| JP2570644B2 (ja) * | 1994-12-26 | 1997-01-08 | 日本電気株式会社 | 圧電セラミックス |
| JPH08301654A (ja) * | 1995-05-10 | 1996-11-19 | Matsushita Electric Ind Co Ltd | 圧電磁器組成物及びその製造方法 |
| DE19615694C1 (de) * | 1996-04-19 | 1997-07-03 | Siemens Ag | Monolithischer Vielschicht-Piezoaktor und Verfahren zur Herstellung |
| DE19615695C1 (de) * | 1996-04-19 | 1997-07-03 | Siemens Ag | Verfahren zur Herstellung eines Piezoaktors monolithischer Vielschichtbauweise |
| JPH1017364A (ja) * | 1996-06-28 | 1998-01-20 | Kyocera Corp | 圧電磁器組成物 |
| DE19700463A1 (de) | 1997-01-09 | 1998-07-16 | Robel Georg Gmbh & Co | Schienenverfahrbarer Wagen zum Abziehen langverschweißter Schienen von Transportwagen |
| JPH1149572A (ja) * | 1997-08-01 | 1999-02-23 | Honda Motor Co Ltd | セラミックス複合粒子及びその製造方法 |
| JP3831537B2 (ja) | 1997-10-27 | 2006-10-11 | Tdk株式会社 | 電子デバイスおよびその製造方法 |
| DE19749858C1 (de) * | 1997-11-11 | 1999-04-22 | Siemens Matsushita Components | Reduktionsstabile Keramikmassen, Verfahren zur Herstellung und Verwendung |
| JP3538700B2 (ja) | 1998-02-23 | 2004-06-14 | 株式会社村田製作所 | 抵抗材料、これを用いた抵抗ペーストおよび抵抗体、ならびにセラミック多層基板 |
| JP3955389B2 (ja) | 1998-05-12 | 2007-08-08 | 松下電器産業株式会社 | コンデンサ内蔵基板およびその製造方法 |
| US6266230B1 (en) | 1998-06-29 | 2001-07-24 | Matsushita Electric Industrial Co., Ltd. | Multilayer ceramic capacitor |
| DE19841487C2 (de) * | 1998-09-10 | 2002-03-14 | Epcos Ag | Reduktionsstabile Keramikmasse und ihre Verwendung |
| US6182340B1 (en) * | 1998-10-23 | 2001-02-06 | Face International Corp. | Method of manufacturing a co-fired flextensional piezoelectric transformer |
| DE19860001C2 (de) | 1998-12-23 | 2001-10-04 | Epcos Ag | Piezoelektrisches Bauelement, Verfahren zu dessen Herstellung und Verwendung eines derartigen Bauelements |
| JP3596743B2 (ja) * | 1999-08-19 | 2004-12-02 | 株式会社村田製作所 | 積層セラミック電子部品の製造方法及び積層セラミック電子部品 |
| DE19946834A1 (de) * | 1999-09-30 | 2001-05-03 | Bosch Gmbh Robert | Piezoaktor und ein Verfahren zu dessen Herstellung |
| US6692598B1 (en) * | 1999-10-18 | 2004-02-17 | Murata Manufacturing Co. Ltd | Method of producing ceramic green sheet and method of manufacturing multilayer ceramic electronic part |
| DE10062672B9 (de) * | 1999-12-16 | 2012-07-12 | Epcos Ag | Piezoelektrisches Bauelement |
| DE10035172B4 (de) | 2000-07-19 | 2004-09-16 | Epcos Ag | Keramikmasse und Kondensator mit der Keramikmasse |
| DE10201641A1 (de) * | 2002-01-17 | 2003-08-07 | Epcos Ag | Piezoelektrisches Bauelement und Verfahren zu dessen Herstellung |
| DE10249900A1 (de) * | 2002-10-25 | 2004-05-06 | Epcos Ag | Piezoelektrisches Bauelement |
| US7272876B2 (en) * | 2002-11-05 | 2007-09-25 | Nippon Soken, Inc. | Method for fabricating laminate-type dielectric element |
| DE10307825A1 (de) * | 2003-02-24 | 2004-09-09 | Epcos Ag | Elektrisches Vielschichtbauelement und Schichtstapel |
| US7713896B2 (en) * | 2004-04-14 | 2010-05-11 | Robert Bosch Gmbh | Method for producing ceramic green compacts for ceramic components |
| ATE441215T1 (de) * | 2005-07-26 | 2009-09-15 | Siemens Ag | Monolithischer piezoaktor mit drehung der polarisationsrichtung im übergangsbereich sowie verwendung des piezoaktors |
| DE102005061529B4 (de) * | 2005-12-22 | 2008-04-17 | Siemens Ag | Bleizirkonattitanat mit Nickel-Molybdän-Dotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils unter Verwendung des Bleizirkonattitanats und Verwendung des piezokeramischen Bauteils |
| DE102005061528B8 (de) * | 2005-12-22 | 2010-06-10 | Siemens Ag | Piezokeramisches Bauteil mit Bleizirkonattitanat mit Eisen-Wolfram-Dotierung, Verfahren zum Herstellen des piezokeramischen Bauteils und seine Verwendung |
-
2000
- 2000-12-15 DE DE10062672A patent/DE10062672B9/de not_active Expired - Lifetime
- 2000-12-15 DE DE50015994T patent/DE50015994D1/de not_active Expired - Lifetime
- 2000-12-15 DE DE20023051U patent/DE20023051U1/de not_active Expired - Lifetime
- 2000-12-15 AU AU28307/01A patent/AU2830701A/en not_active Abandoned
- 2000-12-15 JP JP2001545341A patent/JP4744052B2/ja not_active Expired - Lifetime
- 2000-12-15 WO PCT/DE2000/004484 patent/WO2001045138A2/de not_active Ceased
- 2000-12-15 CN CN00817221.8A patent/CN1246914C/zh not_active Expired - Lifetime
- 2000-12-15 EP EP10176030A patent/EP2278634A3/de not_active Withdrawn
- 2000-12-15 AT AT00993455T patent/ATE481743T1/de active
- 2000-12-15 US US09/736,266 patent/US20020098333A1/en not_active Abandoned
- 2000-12-15 BR BR0016390-2A patent/BR0016390A/pt not_active Application Discontinuation
- 2000-12-15 EP EP00993455A patent/EP1240675B1/de not_active Expired - Lifetime
-
2006
- 2006-04-19 US US11/406,587 patent/US7855488B2/en not_active Expired - Fee Related
-
2007
- 2007-02-09 JP JP2007030992A patent/JP4248581B2/ja not_active Expired - Lifetime
-
2010
- 2010-05-21 US US12/785,081 patent/US8209828B2/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5112433A (en) * | 1988-12-09 | 1992-05-12 | Battelle Memorial Institute | Process for producing sub-micron ceramic powders of perovskite compounds with controlled stoichiometry and particle size |
| US6255037B1 (en) * | 1996-04-26 | 2001-07-03 | Murata Manufacturing Co., Ltd. | Method for producing monolithic electronic parts |
| US6236146B1 (en) * | 1996-11-12 | 2001-05-22 | Siemens Aktiengesellschaft | Piezoelectric actuator with a new type of contacting and a method for the production thereof |
| US6080328A (en) * | 1998-04-13 | 2000-06-27 | Murata Manufacturing | Piezoelectric ceramic and method for producing piezoelectric ceramic element |
| US6320738B1 (en) * | 1999-10-28 | 2001-11-20 | Murata Manufacturing Co., Ltd. | Monolithic ceramic electronic component and method for making the same |
Cited By (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8209828B2 (en) * | 1999-12-16 | 2012-07-03 | Epcos Ag | Method for making a piezoceramic device |
| US7855488B2 (en) * | 1999-12-16 | 2010-12-21 | Epcos Ag | Piezoceramic device |
| US20100294419A1 (en) * | 1999-12-16 | 2010-11-25 | Epcos Ag | Method for Making a Piezoceramic Device |
| US20060251911A1 (en) * | 1999-12-16 | 2006-11-09 | Epcos Ag | Piezoceramic device |
| US6960271B2 (en) * | 2000-12-28 | 2005-11-01 | Denso Corporation | Laminate-type dielectric device, a production method and an electrode paste material |
| US20040050477A1 (en) * | 2000-12-28 | 2004-03-18 | Denso Corporation | Laminate-type dielectric device,a production method and an electrode paste material |
| US20060210781A1 (en) * | 2001-12-14 | 2006-09-21 | Denso Corporation | Stacked ceramic body and production method thereof |
| US7063813B1 (en) | 2001-12-14 | 2006-06-20 | Denso Corporation | Stacked ceramic body and production method thereof |
| US20090141460A1 (en) * | 2002-02-13 | 2009-06-04 | Epcos Ag, A German Corporation | Ceramic multilayer component, method for the production thereof and retaining device |
| US7781945B2 (en) | 2002-02-13 | 2010-08-24 | Epcos Ag | Ceramic multilayer component, method for the production thereof, and retaining device |
| US7508112B2 (en) * | 2002-02-13 | 2009-03-24 | Epcos Ag | Ceramic multilayer component, method for the production thereof and retaining device |
| US20060234020A1 (en) * | 2002-02-13 | 2006-10-19 | Peter Sedlmaier | Ceramic multilayer component, method for the production thereof and retaining device |
| US20090142722A1 (en) * | 2002-02-13 | 2009-06-04 | Epcos Ag, A German Corporation | Ceramic multilayer component, method for the production thereof, and retaining device |
| US20030188820A1 (en) * | 2002-04-05 | 2003-10-09 | Eturo Yasuda | Method for producing stacked ceramic body |
| US6972060B2 (en) * | 2002-04-05 | 2005-12-06 | Nippon Soken, Inc. | Method for producing stacked ceramic body |
| US7074507B2 (en) | 2002-05-06 | 2006-07-11 | North Carolina State University | Structures including perovskite dielectric layers and variable oxygen concentration gradient layers |
| US6936301B2 (en) * | 2002-05-06 | 2005-08-30 | North Carolina State University | Methods of controlling oxygen partial pressure during annealing of a perovskite dielectric layer |
| US20050227098A1 (en) * | 2002-05-06 | 2005-10-13 | North Carolina State University | Structures including perovskite dielectric layers and variable oxygen concentration gradient layers |
| US20040129919A1 (en) * | 2002-07-25 | 2004-07-08 | Katsuhiro Horikawa | Manufacturing method for monolithic piezoelectric part, and monolithic piezoelectric part |
| US7431785B2 (en) * | 2002-07-25 | 2008-10-07 | Murata Manufacturing Co., Ltd. | Manufacturing method for monolithic piezoelectric part, and monolithic piezoelectric part |
| US20060145571A1 (en) * | 2002-09-27 | 2006-07-06 | Alexander Glazunov | Piezoelectric transformer provided with internal copper electrodes |
| US20060119228A1 (en) * | 2002-10-25 | 2006-06-08 | Heinz Florian | Piezoelectric component |
| US7432639B2 (en) | 2002-10-25 | 2008-10-07 | Epcos Ag | Piezoelectric component |
| US20060279178A1 (en) * | 2003-05-13 | 2006-12-14 | Xiaobing Ren | Piezoelectric material, manufacturing method thereof, and non-linear piezoelectric element |
| KR101156524B1 (ko) * | 2003-05-13 | 2012-06-20 | 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 | 압전 재료와 그 제조 방법 및 비선형 압전 소자 |
| US7408292B2 (en) | 2003-09-30 | 2008-08-05 | Epcos Ag | Piezoelectric ceramic material multi-layered component and method for the production of a ceramic material |
| US8776364B2 (en) | 2003-09-30 | 2014-07-15 | Epcos Ag | Method for producing a multilayer ceramic component |
| US7525241B2 (en) | 2003-09-30 | 2009-04-28 | Epcos Ag | Ceramic multi-layer component and method for the production thereof |
| US20070267948A1 (en) * | 2003-09-30 | 2007-11-22 | Adalbert Feltz | Piezoelectric Ceramic Material Multi-Layered Component and Method for the Production of a Ceramic Material |
| US9186870B2 (en) | 2003-09-30 | 2015-11-17 | Epcos Ag | Ceramic multi-layer component and method for the production thereof |
| US20090193636A1 (en) * | 2003-09-30 | 2009-08-06 | Epcos Ag, A Germany Corporation | Ceramic multi-layer component and method for the production thereof |
| US20070206341A1 (en) * | 2003-09-30 | 2007-09-06 | Epcos Ag | Ceramic Multi-Layer Component And Method For The Production Thereof |
| EP1580820A1 (en) * | 2004-03-26 | 2005-09-28 | TDK Corporation | Method of manufacturing multilayer ceramic device |
| US20050213283A1 (en) * | 2004-03-26 | 2005-09-29 | Tdk Corporation | Method of manufacturing multilayer ceramic device |
| US20080057798A1 (en) * | 2004-04-26 | 2008-03-06 | Heinz Florian | Electrical Functional Unit and Method for its Production |
| US7723897B2 (en) | 2004-04-26 | 2010-05-25 | Epcos Ag | Electrical component and method for the production thereof |
| US20100193107A1 (en) * | 2004-04-26 | 2010-08-05 | EPCOS AG, a corporation of Germany | Electric functional unit and method for the production thereof |
| US8956485B2 (en) | 2004-04-26 | 2015-02-17 | Epcos Ag | Electric functional unit and method for the production thereof |
| US20090243441A1 (en) * | 2005-01-26 | 2009-10-01 | Epcos Ag | Piezoelectric Component |
| US7868524B2 (en) | 2005-01-26 | 2011-01-11 | Epcos Ag | Piezoelectric component |
| US7605522B2 (en) | 2005-06-03 | 2009-10-20 | Murata Manufacturing Co., Ltd. | Piezoelectric device |
| US20080074004A1 (en) * | 2005-06-03 | 2008-03-27 | Murata Manufacturing Co., Ltd. | Piezoelectric device |
| US20070080317A1 (en) * | 2005-10-04 | 2007-04-12 | Tdk Corporation | Piezoelectric ceramic composition and laminated piezoelectric element |
| EP1959510A4 (en) * | 2005-12-08 | 2012-07-11 | Murata Manufacturing Co | LAMINATED PIEZOELECTRIC ELEMENT AND MANUFACTURING PROCESS THEREFOR |
| US20100107390A1 (en) * | 2005-12-08 | 2010-05-06 | Murata Manufacturing Co., Ltd. | Multilayer Piezoelectric Device and Method for Manufacturing the Same |
| US7667377B2 (en) | 2005-12-08 | 2010-02-23 | Murata Manufacturing Co., Ltd. | Laminated piezoelectric element and process for producing the same |
| US20080231147A1 (en) * | 2005-12-08 | 2008-09-25 | Murata Manufacturing Co., Ltd. | Laminated piezoelectric element and process for producing the same |
| US8021568B2 (en) | 2005-12-22 | 2011-09-20 | Siemens Aktiengesellschaft | Nickel-molybdenum-doped lead zirconate titanate, method for the production of a piezoceramic component using said lead zirconate titanate, and use of the piezoceramic component |
| US20080245991A1 (en) * | 2005-12-22 | 2008-10-09 | Francois Bamiere | Nickel-Molybdenum-Doped Lead Zirconate Titanate, Method for the Production of a Piezoceramic Component Using Said Lead Zirconate Titanate, and Use of the Piezoceramic Component |
| US20070216264A1 (en) * | 2006-03-20 | 2007-09-20 | Tdk Corporation | Multilayer piezoelectric element |
| US7808155B2 (en) * | 2006-12-06 | 2010-10-05 | Murata Manufacturing Co., Ltd. | Monolithic piezoelectric element |
| US20090236945A1 (en) * | 2006-12-06 | 2009-09-24 | Murata Manufacturing Co., Ltd. | Monolithic piezoelectric element and method for manufacturing the same |
| US20180033950A1 (en) * | 2015-02-16 | 2018-02-01 | Mitsubishi Materials Corporation | Piezoelectric ptzt film, and process for producing liquid composition for forming said piezoelectric film |
| US10797219B2 (en) * | 2015-02-16 | 2020-10-06 | Mitsubishi Materials Corporation | Piezoelectric PTZT film, and process for producing liquid composition for forming said piezoelectric film |
| US20210305484A1 (en) * | 2020-03-27 | 2021-09-30 | Tdk Corporation | Piezoelectric element, piezoelectric actuator, and piezoelectric transformer |
| US12096695B2 (en) * | 2020-03-27 | 2024-09-17 | Tdk Corporation | Piezoelectric element, piezoelectric actuator, and piezoelectric transformer |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2001045138A3 (de) | 2002-03-14 |
| BR0016390A (pt) | 2002-08-20 |
| EP1240675B1 (de) | 2010-09-15 |
| DE10062672A1 (de) | 2001-08-02 |
| EP2278634A3 (de) | 2012-09-05 |
| EP2278634A2 (de) | 2011-01-26 |
| DE10062672B9 (de) | 2012-07-12 |
| US20100294419A1 (en) | 2010-11-25 |
| JP4248581B2 (ja) | 2009-04-02 |
| US7855488B2 (en) | 2010-12-21 |
| WO2001045138A2 (de) | 2001-06-21 |
| DE10062672B4 (de) | 2010-01-21 |
| JP2007150350A (ja) | 2007-06-14 |
| ATE481743T1 (de) | 2010-10-15 |
| EP1240675A2 (de) | 2002-09-18 |
| AU2830701A (en) | 2001-06-25 |
| DE50015994D1 (en) | 2010-10-28 |
| JP4744052B2 (ja) | 2011-08-10 |
| JP2003529917A (ja) | 2003-10-07 |
| CN1246914C (zh) | 2006-03-22 |
| US20060251911A1 (en) | 2006-11-09 |
| US8209828B2 (en) | 2012-07-03 |
| DE20023051U1 (de) | 2003-01-09 |
| CN1409876A (zh) | 2003-04-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7855488B2 (en) | Piezoceramic device | |
| US7431785B2 (en) | Manufacturing method for monolithic piezoelectric part, and monolithic piezoelectric part | |
| KR100557520B1 (ko) | 세라믹 재료 및 이를 이용한 압전소자 | |
| US7498725B2 (en) | Piezoelectric ceramic composition and laminated piezoelectric element | |
| EP1876156A1 (en) | Piezoelectric ceramic composition, process for producing said piezoelectric ceramic composition, and piezoelectric ceramic electronic component | |
| KR20030094066A (ko) | 압전 자기의 제조 방법 및 압전 소자의 제조 방법 | |
| US7507347B2 (en) | Piezoelectric ceramic composition and laminated piezoelectric element | |
| US7504042B2 (en) | Piezoelectric ceramic composition and piezoelectric ceramic electronic component | |
| JP2004059335A (ja) | 圧電磁器組成物、及び圧電素子 | |
| JP2002255644A (ja) | セラミック材料及びそれを用いた圧電素子 | |
| JP5150101B2 (ja) | セラミック材料 | |
| US7408292B2 (en) | Piezoelectric ceramic material multi-layered component and method for the production of a ceramic material | |
| JP5506731B2 (ja) | 圧電素子の製造方法 | |
| JP4727458B2 (ja) | 圧電セラミックス用焼結助剤、bnt−bt系圧電セラミックス、積層型圧電デバイスおよびbnt−bt系圧電セラミックスの製造方法 | |
| KR100492813B1 (ko) | 적층형 압전 세라믹 소자의 제조방법 | |
| US20080067897A1 (en) | Production Method of Piezoelectric Ceramic, Production Method of Piezoelectric Element, and Piezoelectric Element | |
| JP4231653B2 (ja) | 積層型の圧電アクチュエータの製造方法 | |
| JPH08198675A (ja) | 鉛系複合ペロブスカイト型誘電体磁器 | |
| CN113402274A (zh) | 压电组合物及电子部件 | |
| JP2003192436A (ja) | 積層型圧電セラミック素子の製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: EPCOS AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FELTZ, ADALBERT;GANSBERGER, SIGRID;FLORIAN, HEINZ;AND OTHERS;REEL/FRAME:011935/0669 Effective date: 20010423 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |