US10464816B2 - Aerogel blanket for ultra-high temperature, production method thereof, and construction method thereof - Google Patents

Aerogel blanket for ultra-high temperature, production method thereof, and construction method thereof Download PDF

Info

Publication number
US10464816B2
US10464816B2 US15/766,318 US201715766318A US10464816B2 US 10464816 B2 US10464816 B2 US 10464816B2 US 201715766318 A US201715766318 A US 201715766318A US 10464816 B2 US10464816 B2 US 10464816B2
Authority
US
United States
Prior art keywords
aerogel blanket
blanket
silica
hydroxide
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/766,318
Other languages
English (en)
Other versions
US20190010060A1 (en
Inventor
Kyoung Shil Oh
Je Kyun Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Assigned to LG CHEM, LTD. reassignment LG CHEM, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, JE KYUN, OH, KYOUNG SHIL
Publication of US20190010060A1 publication Critical patent/US20190010060A1/en
Application granted granted Critical
Publication of US10464816B2 publication Critical patent/US10464816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • C01B33/143Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • C01B33/154Preparation of hydrogels by acidic treatment of aqueous silicate solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a hydrophilic silica aerogel blanket for ultra-high temperature insulation, a production method thereof, and a construction method thereof.
  • An aerogel is a superporous, high specific surface area ( ⁇ 500 m 2 /g) material having a porosity of about 90 to 99.9% and a pore size in the range of 1 to 100 nm, and is a material excellent in ultra-light weight, super heat insulation, ultra-low dielectric, and the like. Accordingly, research on the development of aerogel materials as well as research on the practical use thereof as transparent insulation materials, environmentally friendly high temperature insulation materials, ultra-low dielectric thin films for highly integrated devices, catalysts and catalyst carriers, electrodes for supercapacitors, and electrode materials for seawater desalination have been actively studied.
  • the biggest advantage of the aerogel is that the aerogel has a super-insulation exhibiting a thermal conductivity of 0.03 W/m ⁇ K or less, which is lower than that of an organic insulation material such as conventional Styrofoam, and that fire vulnerability and the occurrence of harmful gases in case of fire which are fatal weaknesses of the organic insulation material can be solved.
  • the aerogel has very low mechanical strength due to a porous structure thereof, an aerogel composite in which an aerogel is bonded to a fibrous blanket by being impregnated therewith, the fibrous blanket such as an inorganic fiber or an organic fiber, both of which are conventional heat insulation fibers, has been developed.
  • the above aerogel blanket has flexibility so that it can be bent, folded, or cut in any size or shape, and easily handled.
  • the aerogel blanket is used not only for industrial applications such as heat insulation panels for LNG carriers, industrial insulation materials, spacesuits, transportation, vehicles, and insulation materials for electric power production, but also for household goods such as jackets and sports shoes.
  • an aerogel is produced by a silica sol preparation step, a gelation step, an aging step, a surface modification step, and a drying step.
  • an aerogel blanket produced by the above conventional method has two disadvantages.
  • the surface of the silica aerogel has been hydrophobized through surface modification to be used.
  • production time is lengthened, and production cost is increased due to a high raw material cost of a surface modifier.
  • the present inventors have developed a hydrophilic silica aerogel blanket for ultra-high temperature insulation, a production method thereof, and a construction method thereof.
  • Patent Document 1
  • An aspect of the present invention provides a production method of a hydrophilic silica aerogel blanket, the method capable of strengthening the structure of a silica gel by adding a basic catalyst in an aging step, reducing processing time and cost by omitting a surface modification step, thereby reducing manufacturing cost, and suppressing the generation of a bad odor by fundamentally blocking a volatile organic compound (VOC) when constructing the hydrophilic silica aerogel blanket on an ultra-high temperature piping equipment.
  • VOC volatile organic compound
  • Another aspect of the present invention provides a hydrophilic silica aerogel blanket for ultra-high temperature insulation produced by the above production method.
  • Another aspect of the present invention provides a construction method of an aerogel blanket, the method capable of suppressing the generation of a bad odor when constructing a hydrophilic aerogel blanket produced by the above production method on an ultra-high temperature piping equipment, and at the same time, preventing the loss of heat insulation performance due to moisture in the air.
  • a production method of a hydrophilic aerogel blanket including the steps of 1) preparing a silica sol by mixing a silica precursor, alcohol, and an acidic aqueous solution; 2) adding a basic catalyst to the silica sol, and then depositing the silica sol added with the basic catalyst in a base material for blanket; 3) subjecting the silica sol to a gelation reaction while being in a state of being deposited in the base material for blanket; 4) adding a mixed solution of a basic catalyst and alcohol to the silica gel produced upon the completion of the gelation reaction and aging the silica gel added with the mixed solution; and 5) drying the aged silica gel.
  • hydrophilic aerogel blanket produced by the above production method.
  • a construction method of an aerogel blanket including the steps of 1) constructing at least one layer of the hydrophilic aerogel blanket on the surface of a piping equipment; and 2) constructing at least one layer of a hydrophobic aerogel blanket on the hydrophilic aerogel blanket.
  • a production method of a hydrophilic aerogel blanket according to the present invention has an effect of strengthening the structure of a silica gel by adding a basic catalyst in an aging step. Therefore, even without going through a surface modification step, the silica gel may have good resistance to the shrinkage of the pores during a drying process, so that the surface modification step may be omitted resulting in the reduction of processing time and cost, and the reduction of manufacturing cost. In addition, there is an effect of suppressing the generation of a bad odor during construction by fundamentally blocking a volatile organic compound (VOC).
  • VOC volatile organic compound
  • a construction method of an aerogel blanket according to the present invention has an effect of suppressing generation of a bad odor when constructing a hydrophilic aerogel blanket produced by the above production method on an ultra-high temperature piping equipment, and at the same time, preventing the loss of heat insulation performance due to moisture in the air.
  • FIG. 1 is a flowchart schematically showing a production method of a hydrophilic aerogel blanket according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram a construction method of an aerogel blanket according to an embodiment of the present invention.
  • FIG. 3 is a photograph showing the result of flame retardancy test of a silica aerogel according to an example and a comparative example of the present invention.
  • FIG. 4 is a graph showing the thermal conductivity of a hydrophilic aerogel blanket according to an example and a comparative example of the present invention.
  • a production method of a hydrophilic aerogel blanket is characterized in including the steps of 1) preparing a silica sol by mixing a silica precursor, alcohol, and an acidic aqueous solution; 2) adding a basic catalyst to the silica sol, and then depositing the silica sol added with the basic catalyst in a base material for blanket; 3) subjecting the silica sol to a gelation reaction while being in a state of being deposited in the base material for blanket; 4) adding a mixed solution of a basic catalyst and alcohol to the silica gel produced upon the completion of the gelation reaction and aging the silica gel added with the mixed solution; and 5) drying the aged silica gel.
  • a silica aerogel blanket is a material which is made of a silica aerogel material in the form of a mattress or a sheet by being composited with a fiber and the like as a base material for blanket, and has a characteristic of being bent, folded or cut due to the flexibility thereof.
  • a silica aerogel imparts heat insulation properties due to the porosity thereof, and a base material for blanket such as a fiber serves to enhance the flexibility and mechanical strength of the silica aerogel blanket.
  • silica aerogel blanket is a new material superior in heat resistance and heat insulation to a polystyrene foam or a polyurethane foam, which is a conventional polymer insulation material, and is attracting attention as a high-tech material capable of solving the energy saving and environmental problems developed in the future. Accordingly, a silica aerogel blanket is used as an insulation material, a heat insulation material, or a non-flammable material for an aircraft, a ship, an automobile, a building structure, and the like, as well as for piping of various industrial facilities, or plant facilities for insulation and cooling such as an industrial furnace.
  • a silica aerogel blanket has a disadvantage in that water in the air is absorbed due to the hydrophilic properties of a silanol group (Si—OH) on the surface of a silica, so that the thermal conductivity is gradually increased. Also, there is a problem in that it is difficult to manufacture a super-insulation product having a meso pore since it is difficult to expect a spring break phenomenon due to the intensified pore destruction in a drying process.
  • a step of modifying the surface of a silica aerogel so as to be hydrophobic is essentially required.
  • the present invention provides a production method of an aerogel blanket, the method capable of omitting a surface modification step of the aerogel blanket in order to reduce processing time and cost by simplifying a manufacturing process, and to suppress the generation of a bad odor.
  • Step 1) is a step of preparing a silica sol, wherein the silica sol is prepared by mixing a silica precursor, alcohol, and an acidic aqueous solution.
  • a silica precursor which can be used in the production of the silica sol may be an alkoxide-based compound containing silicon, specifically, tetraalkyl silicate such as tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), methyl triethyl orthosilicate, dimethyl diethyl orthosilicate, tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate, tetra secondary butyl orthosilicate, tetra tertiary butyl orthosilicate, tetrahexyl orthosilicate, tetracyclohexyl orthosilicate, and tetradodecyl orthosilicate. More specifically, in the case of the present invention, the silica precursor may be tetraethyl orthosilicate (TEOS).
  • TEOS tetraethy
  • the silica precursor may be used in an amount such that the content of silica (SiO 2 ) contained in a silica sol becomes 0.1 wt % to 30 wt %. If the content of the silica is less than 0.1 wt %, the content of a silica aerogel in the finally produced blanket is too low to achieve the desired level of heat insulation effect. If the content of the silica is greater than 30 wt %, due to an excessive formation of a silica aerogel, there is a possibility that the mechanical properties of the blanket, particularly the flexibility thereof may deteriorate.
  • alcohol which can be used in the production of the silica sol of the present invention may specifically be a monohydric alcohol such as methanol, ethanol, isopropanol, and butanol; or a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and any one or a mixture of two or more thereof may be used.
  • the alcohol may be a monohydric alcohol having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, and butanol.
  • the above alcohol (polar organic solvent) may be used in an appropriate amount in consideration of the finally produced silica aerogel.
  • an acidic aqueous solution which can be used in the production of a silica sol of the present invention may promote the gelation of the silica sol, later.
  • An acid catalyst contained in the acidic aqueous solution may specifically include one or more kinds of inorganic acid such as nitric acid, hydrochloric acid, acetic acid, sulfuric acid, and hydrofluoric acid, and may be used in an amount so as to promote the gelation of the silica sol, later.
  • Step 2) is a step of preparing a silica gel composite, and may be performed by adding a basic catalyst to the silica sol and depositing the silica sol added with the basic catalyst in a base material for blanket.
  • the basic catalyst which can be used for producing a silica gel of the present invention serves to promote gelation by increasing the pH of the silica sol.
  • the basic catalyst may be an inorganic base such as sodium hydroxide and potassium hydroxide; or an organic base such as ammonium hydroxide. More specifically, the basic catalyst may be one or more selected from the group consisting of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca(OH) 2 ), ammonium hydroxide (NH 4 OH), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), methylamine, ethylamine, isopropylamine, monoisopropylamine, diethylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, choline, monoethanolamine, diethanolamine, 2-aminoethanol, 2-(
  • the basic catalyst may be included in an amount such that the pH of the silica sol becomes 4 to 8. If the pH of the silica sol is out of the above range, gelation is not easily achieved, or a gelation rate becomes too slow, thereby deteriorating the processability.
  • the base since the base may be precipitated when added in a solid phase, it may be preferable that the base is added in the form of a solution diluted with the above alcohol (polar organic solvent).
  • Step 3) is a step of producing a silica gel composite, and may be performed by subjecting the silica sol to a gelation reaction while being in a state of being deposited in the base material for blanket.
  • Gelation of a production method of a hydrophilic aerogel blanket according to an embodiment of the present invention may be one forming a network structure from a silica precursor material, wherein the network structure may be a planar mesh structure in which specific polygons having one or more types of atomic arrangement are linked to each other, or a structure in which specific polyhedrons share their vertices, edges, faces, etc., with each other to form a three dimensional skeleton structure.
  • the deposition may be performed in a reaction vessel capable of accommodating a base material for blanket, and may be performed either by pouring a silica sol into the reaction vessel, or by placing a base material for blanket in a reaction vessel containing a silica sol to be soaked.
  • the base material for blanket may be lightly pressed down so as to be sufficiently deposited. Thereafter, the base material for blanket may be pressed to a predetermined thickness at a constant pressure to remove the remaining silica sol, so that drying time may be reduced.
  • a base material for blanket which can be used in the present invention may be a film, a sheet, a net, a fiber, a porous body, a foam, a non-woven body, or a laminate of two or more layers thereof.
  • surface roughness may be formed or patterned on the surface thereof.
  • the base material for blanket may be a fiber capable of further improving the heat insulation performance by including a space or a void through which a silica aerogel may be easily inserted into the base material for blanket.
  • the base material for blanket may preferably have a low thermal conductivity.
  • the base material for blanket may be polyamide, polybenzimidazole, polyaramid, an acryl resin, a phenol resin, polyester, polyetheretherketone (PEEK), polyolefin (for example, polyethylene, polypropylene, or a copolymer thereof, and the like), cellulose, carbon, cotton, wool, hemp, a non-woven fabric, a glass fiber, or ceramic wool, and the like. More specifically, the base material for blanket may include a glass fiber or polyethylene.
  • Step 4) is a step of strengthening the structure of an aerogel, and may be performed by a step of adding a mixed solution of a basic catalyst and alcohol to the silica gel produced upon the completion of the gelation reaction and aging the silica gel added with the mixed solution.
  • sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), triethylamine and pyridine may be used. More specifically, potassium hydroxide (KOH) or ammonium hydroxide (NH 4 OH) may be used.
  • the aging is a process in which the silica gel is left at an appropriate temperature such that the chemical change thereof may be completely achieved.
  • the formed network structure may be more firmly formed, so that the mechanical stability of an aerogel blanket of the present invention may be enhanced.
  • an excess of a specific basic catalyst may be added to enhance a silica gel structurally.
  • the basic catalyst may induce Si—O—Si bonding in an aerogel to a maximum degree to further strengthen the network structure of the silica gel. Therefore, there is an effect of facilitating the maintenance of the pore structure in a fast supercritical drying process to be performed afterwards.
  • the basic catalyst should be added in an appropriate amount to strengthen the pore structure of the silica gel.
  • ammonium hydroxide in the case of ammonium hydroxide, ammonium hydroxide is added in an amount of 10 to 20 vol % based on ethanol, and in the case of potassium hydroxide, potassium hydroxide is added in an amount of 0.05 to 0.15 g/L based on ethanol.
  • ammonium hydroxide if ammonium hydroxide is added in a small amount of less than 10 vol %, or in a large amount of greater than 20 vol %, it is impossible to strengthen the pore structure of the silica gel, which is an objective of the present invention.
  • the pore structure may easily be destructed in a drying process so that the density is increased resulting in a problem of the deterioration of heat insulation performance.
  • potassium hydroxide if potassium hydroxide is added in a small amount of less than 0.05 g/L based on ethanol, as seen in the case of ammonium hydroxide, there may be a problem in that strengthening the pore structure, which is an objective of the present invention, may not be achieved. If potassium hydroxide is added in an excessive amount of greater than 0.15 g/L, the bonding force between the base material for blanket and the silica gel is reduced so that a large amount of silica gel may be separated resulting in problems of the deterioration of heat insulation performance and the generation of high dust.
  • the aging should be performed in an appropriate temperature range for optimum pore structure enhancement.
  • the aging of the present invention may be performed by leaving the silica gel added with the mixed solution at a temperature of 30 to 70° C. for 1 to 10 hours. If an aging temperature is lower than 30° C., aging time is excessively lengthened leading to an increase of the total processing time resulting in a problem of the deterioration of productivity. If an aging temperature is higher than 70° C., since the temperature is out of the boiling point of ethanol, the loss of solvent due to evaporation become large resulting in a problem of an increase in the raw material cost.
  • a silica gel composite of the present invention which has gone through the aging step of adding the basic catalyst, is characterized in not going through a surface modification step.
  • a hydrophilic aerogel blanket of the present invention has good resistance good resistance to the shrinkage of the pores during a fast supercritical drying process without going through a surface modification step.
  • a silica gel composite which has not gone through the aging step of adding the basic catalyst has poor resistance to the shrinkage of the pores during a drying process due to the hydrophilic properties of a silanol group (Si—OH) on the surface of a silica so that a surface modification step is essentially needed.
  • Si—OH silanol group
  • the present invention is characterized in that a surface modification step is not performed.
  • a large a large amount of an organic solvent and an expensive hydrophobic agent are not needed so that manufacturing cost is reduced.
  • a step of recovering and separating by-products generated in the surface modification step is not needed so that there is an effect of simplifying a process.
  • a hydrophilic aerogel blanket of the present invention is for ultra-high temperature insulation of 500° C. or higher.
  • Step 5) is a step for producing an aerogel blanket, and may be performed through a drying process for removing a solvent while maintaining the pore structure of the aged silica gel.
  • the drying process may be performed by an ambient drying process or a supercritical drying process.
  • Carbon dioxide (CO 2 ) is in a gaseous state at room temperature and atmospheric pressure. However, when a temperature and pressure exceed a predetermined temperature and pressure limit called a supercritical point, the evaporation process does not occur so that carbon dioxide becomes to be in a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in a critical state is referred to a supercritical carbon dioxide.
  • a supercritical carbon dioxide has a molecular density close to that of a liquid, however, has a low viscosity, thereby having properties close to those of gas. Therefore, a supercritical carbon dioxide has a high diffusion rate and a high thermal conductivity so that drying efficiency thereof is high, and drying process time may be shortened.
  • the present invention includes a step of aging by adding the above basic catalyst.
  • the pore structure is strengthened, and therefore is resistant to the destruction of the pore structure during the fast supercritical drying process so that a low density and a low thermal conductivity may be maintained.
  • the supercritical drying process performs a solvent substitution process in which an aged silica gel is placed into a supercritical drying reactor, CO 2 in a liquid state is filled therein, and an alcohol solvent inside a silica aerogel is substituted with CO 2 . Thereafter, the temperature is raised to 40 to 50° C. at a certain temperature raising rate, specifically, 0.1° C./min to 1° C./min, and the pressure which is greater than a pressure at which carbon dioxide becomes a supercritical state, specifically, pressure of 100 bar to 150 bar is maintained to allow the carbon dioxide to remain in a supercritical state for a certain amount of time, specifically for 20 minutes to 1 hour. In general, carbon dioxide becomes to be in a supercritical state at a temperature of 31° C.
  • the carbon dioxide is maintained to remain at a certain temperature and certain pressure, at which the carbon dioxide becomes supercritical, for 2 hours to 12 hours, more specifically, 2 hours to 6 hours, and then, the pressure is generally lowered to complete the supercritical drying process so that a hydrophobic silica aerogel may be produced.
  • a production method may further perform a washing step before the drying.
  • the washing is a step for removing impurities (sodium ions, unreacted substances, by-products, and the like) generated during the reaction to obtain a hydrophobic silica aerogel with high purity, and may be performed through a dilution process or an exchange process using a nonpolar organic solvent.
  • the present invention may provide a hydrophilic aerogel blanket produced by the production method of the present invention.
  • the heat insulation property of an aerogel blanket increases as the content of a silica aerogel in a blanket increases.
  • the content of a silica aerogel contained in a blanket is appropriately adjusted in consideration of the use of the blanket.
  • the silica aerogel may be included in an amount of 20 wt % to 80 wt % based on the total weight of a silica aerogel blanket.
  • the present invention may provide a construction method of an aerogel blanket including the steps of 1) constructing at least one layer of the hydrophilic aerogel blanket produced by the production method of the present invention on the surface of a piping equipment; and 2) constructing at least one layer of a hydrophobic aerogel blanket on the hydrophilic aerogel blanket.
  • the piping equipment be an ultra-high temperature piping equipment of 500° C. or higher.
  • an aerogel blanket of the present invention it is possible to fundamentally prevent the bad odor generation problem caused by a VOC by constructing a hydrophilic aerogel blanket produced by the production method of the present invention on the surface of the piping equipment first as in Step 1).
  • Step 2 when a hydrophobic aerobic blanket is secondarily constructed on the hydrophilic aerobic blanket of the present invention constructed on the surface of the piping equipment, the hydrophobic silica aerogel is constructed on the outermost layer which is in contact with the air, so that an effect of preventing an increase in thermal conductivity due to the absorption of moisture in the air may be obtained.
  • the hydrophobic silica aerogel blanket is not directly constructed on the surface of an ultra-high temperature piping equipment, but constructed on the hydrophilic aerogel blanket of the present invention, so that heat conducted in a pipe is greatly reduced, and therefore a bad odor generation problem of may not occur.
  • an aerogel blanket of the present invention it is possible to obtain effects of suppressing the generation of a bad odor, and at the same time, preventing the loss of heat insulation performance due to moisture in the air.
  • ammonium hydroxide NH 4 OH, 30 wt % NH 3
  • a hydrophilic aerogel blanket was produced in the same manner as in Example 1, except that potassium hydroxide (KOH) was used as a basic catalyst in an amount of 0.12 g/L of EtOH instead of ammonium hydroxide (NH 4 OH) in Example 1.
  • KOH potassium hydroxide
  • a hydrophilic aerogel blanket was produced in the same manner as in Example 1, except that pyridine was used as a basic catalyst in an amount of 10 vol % of EtOH instead of ammonium hydroxide (NH 4 OH) in Example 1.
  • a hydrophilic aerogel blanket was produced in the same manner as in Example 1, except that triethylamine was used as a basic catalyst in an amount of 10 vol % of EtOH instead of ammonium hydroxide (NH 4 OH) in Example 1.
  • a hydrophilic aerogel blanket was produced in the same manner as in Example 1, except that sodium hydroxide (NaOH) was used as a basic catalyst in an amount of 0.12 g/L of EtOH instead of ammonium hydroxide (NH 4 OH) in Example 1.
  • NaOH sodium hydroxide
  • EtOH ammonium hydroxide
  • An aerogel blanket was produced in the same manner as in Example 1, except that a basic catalyst was not added.
  • An aerogel blanket was produced in the same manner as in Example 1, except that aging was performed without adding a basic catalyst, a surface modifier solution prepared by mixing hexamethyldisilazane (HMDS) and ethanol in a volume ratio of 1:19 was added in an amount of 90 vol % based on the wet gel, and surface modification was performed at 70° C. for 4 hours to produce a hydrophobic aerogel blanket in Example 1.
  • HMDS hexamethyldisilazane
  • An aerogel blanket was produced in the same manner as in Example 1, except that after aging was performed, a surface modifier solution prepared by mixing hexamethyldisilazane (HMDS) and ethanol in a volume ratio of 1:19 was added in an amount of 90 vol % based on the wet gel, and surface modification was performed at 70° C. for 4 hours to produce a hydrophobic aerogel blanket in Example 1.
  • HMDS hexamethyldisilazane
  • a hydrophilic aerogel blanket was produced in the same manner as in Example 1, except that ammonium hydroxide (NH 4 OH) was used in an amount of 2 vol % of EtOH in Example 1.
  • ammonium hydroxide NH 4 OH
  • a hydrophilic aerogel blanket was produced in the same manner as in Example 1, except that ammonium hydroxide (NH 4 OH) was used in an amount of 30 vol % of EtOH in Example 1.
  • a wire was put into contact with an aerogel blanket sample produced in Example 1 and Comparative Example 3, and then the wire was heated to 1050° C. in order to observe smoke, a bad odor, and soot formation.
  • the results are shown in Table 1 and FIG. 3 .
  • Example 1 in which aging was performed by adding the same ammonium hydroxide as in Comparative Example 3, but surface modification was not performed, it was confirmed that smoke, sooth, and a bad odor were not generated.
  • a hydrophilic aerogel blanket of the present invention is capable of suppressing the generation of a bad odor by reducing a VOC compound, and improving flame retardancy.
  • the guarded hot plate (GHP) high temperature thermal conductivity of an aerogel blanket produced in Examples 1 to 5 Comparative Examples 1 to 5 was measured using GHP 456 equipment of NETZSCH Co., and the results are shown in Table 1 and FIG. 4 .
  • Comparative Example 1 the thermal conductivity was significantly increased compared with other aerogel blankets. This attributes to an effect of performing an aging step without adding a basic catalyst and not performing surface modification.
  • the pore structure was not strengthened and furthermore, the surface modification was not performed.
  • Si—OH silanol group
  • Comparative Example 2 the aging step was performed by not adding a basic catalyst, but the surface modification step was performed in Comparative Example 2, unlike in Comparative Example 1. Therefore, the thermal conductivity of Comparative Example 2 was somewhat improved as compared with Comparative Example 1.
  • the aging step was performed by adding a basic catalyst so that the structure of the silica gel was strengthened. Furthermore, the surface modification step was additionally performed, so that the thermal conductivity was the lowest and the heat insulation performance was the most excellent.
  • Example 1 At an ultra-high temperature of 500° C. or higher, the thermal conductivity was sharply increased to the same or similar level as that of Example 1 in which the surface modification was not performed, so that the difference in heat insulation performance from Example 1 was not large. However, as shown in Experimental Example 1 and FIG. 3 , the effects of improving the flame retardancy and reducing a bad odor were lower than those of Example 1.
  • Comparative Example 3 In other words, in the case of using an aerogel blanket for ultra-high temperature insulation as in Comparative Example 3, there was no difference in heat insulation performance from Example 1 of the present invention. However, since a surface modification step is additionally performed, there are problems in that the process becomes complicated, manufacturing cost is increased and a bad odor is generated. Therefore, as an aerogel blanket for ultra-high temperature insulation, Comparative Example 3 is not superior to Example 1.
  • an aerogel blanket of the present invention may secure an excellent heat insulation performance for ultra-high temperature, and exhibit an effect of reducing a bad odor at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
US15/766,318 2016-10-12 2017-10-10 Aerogel blanket for ultra-high temperature, production method thereof, and construction method thereof Active US10464816B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160132167A KR101953800B1 (ko) 2016-10-12 2016-10-12 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
KR10-2016-0132167 2016-10-12
PCT/KR2017/011119 WO2018070752A1 (ko) 2016-10-12 2017-10-10 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법

Publications (2)

Publication Number Publication Date
US20190010060A1 US20190010060A1 (en) 2019-01-10
US10464816B2 true US10464816B2 (en) 2019-11-05

Family

ID=61905870

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/766,318 Active US10464816B2 (en) 2016-10-12 2017-10-10 Aerogel blanket for ultra-high temperature, production method thereof, and construction method thereof

Country Status (6)

Country Link
US (1) US10464816B2 (ja)
EP (1) EP3354620B1 (ja)
JP (1) JP6526337B2 (ja)
KR (1) KR101953800B1 (ja)
CN (1) CN108290744B (ja)
WO (1) WO2018070752A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332378B2 (en) * 2018-11-27 2022-05-17 Lg Chem, Ltd. Method for producing silica aerogel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113324B1 (ko) * 2016-09-23 2020-05-20 주식회사 엘지화학 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
CN109231953A (zh) * 2018-10-31 2019-01-18 江苏华跃纺织新材料科技股份有限公司 高性能纤维增强二氧化硅气凝胶耐高温滤袋材料的制备方法
CN109437829A (zh) * 2018-10-31 2019-03-08 江苏华跃纺织新材料科技股份有限公司 破损失效滤袋回收再生纤维增强基气凝胶滤袋材料的制备方法
CN109499204A (zh) * 2018-10-31 2019-03-22 江苏华跃纺织新材料科技股份有限公司 一种一次成型无缝滤袋的制备方法
CN112119036B (zh) 2018-11-27 2023-09-12 株式会社Lg化学 气凝胶毡的制造方法
KR102604537B1 (ko) * 2018-12-14 2023-11-22 주식회사 엘지화학 에어로겔 블랭킷의 제조방법
CN109592689B (zh) * 2018-12-18 2021-04-02 中国科学院苏州纳米技术与纳米仿生研究所 基于线形有机硅寡聚物的氧化硅气凝胶、制备方法及应用
US11187367B2 (en) * 2019-05-07 2021-11-30 Johns Manville Insulation blanket having a deposited passivator for industrial insulation applications
KR102623026B1 (ko) * 2019-09-30 2024-01-10 주식회사 엘지화학 실리카 졸, 이를 이용하여 제조한 실리카 에어로겔 블랭킷 및 그 제조방법
KR102681446B1 (ko) * 2019-12-20 2024-07-05 주식회사 엘지화학 에어로겔 블랭킷의 건조 방법 및 이를 이용한 에어로겔 블랭킷의 제조방법
JP7255911B2 (ja) * 2020-03-12 2023-04-11 ヂェァジァン ユニバーシティ 溶媒の可塑化および発泡によるエアロゲル材料の製造方法
JP7070863B2 (ja) * 2020-04-28 2022-05-18 台湾気凝膠科技材料開発股▲分▼有限公司 高温耐性、断熱性、耐火性を備えたエアロゲル及び無機繊維複合ゲル材料の製造方法、並びにその製品の使用
JP7090294B2 (ja) * 2020-04-28 2022-06-24 台湾気凝膠科技材料開発股▲分▼有限公司 耐寒性と断熱性を有する疎水性エアロゲル複合ゲル状物質を製造する方法及びその関連製品
KR102693340B1 (ko) * 2020-10-15 2024-08-09 주식회사 엘지화학 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
CN113637233B (zh) * 2021-07-23 2022-11-29 浙江理工大学 一种全生物质节能防火用气凝胶的制备方法
CN114232335B (zh) * 2021-11-17 2023-04-28 北京理工大学 一种防爆门用隔音毯的制备方法
TWI807540B (zh) * 2021-12-16 2023-07-01 臺灣塑膠工業股份有限公司 纖維複合材料及其製造方法
CN114956775A (zh) * 2022-05-09 2022-08-30 纳诺科技有限公司 一种二氧化硅气凝胶的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085785A1 (fr) 2001-04-17 2002-10-31 Tokuyama Corporation Procede permettant de produire un materiau poreux anorganique
US20070004306A1 (en) 2004-06-29 2007-01-04 Aspen Aerogels, Inc. Energy efficient and insulated building envelopes
KR20100053350A (ko) * 2008-11-12 2010-05-20 한국세라믹기술원 에어로젤 블랑켓의 제조방법
JP2011136859A (ja) 2009-12-28 2011-07-14 Asahi Fiber Glass Co Ltd 繊維系断熱材及びその製造方法
CN102515181A (zh) 2011-11-25 2012-06-27 航天特种材料及工艺技术研究所 一种提高气凝胶复合材料强度的方法
WO2012172733A1 (ja) 2011-06-17 2012-12-20 パナソニック株式会社 シリカ多孔体の製造方法
CN203230966U (zh) * 2013-04-08 2013-10-09 广东埃力生高新科技有限公司 具有多层复合隔热结构的输送管道
CN103833041A (zh) 2014-03-04 2014-06-04 中国科学技术大学 一种常压干燥制备柔韧性二氧化硅气凝胶块体的方法
US20140252263A1 (en) 2011-10-14 2014-09-11 Enersens Process for manufacturing xerogels
CN104496401A (zh) 2014-12-16 2015-04-08 山东工业陶瓷研究设计院有限公司 高效隔热气凝胶复合板材及其制备方法
KR20150089319A (ko) 2014-01-27 2015-08-05 주식회사정양에스지 에어로겔 복합재가 부착된 복합 단열재의 제조방법 및 그에 의한 복합 단열재
WO2016129874A1 (ko) 2015-02-13 2016-08-18 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207370B1 (en) * 1997-09-02 2001-03-27 Sequenom, Inc. Diagnostics based on mass spectrometric detection of translated target polypeptides
KR20100005335A (ko) * 2008-07-07 2010-01-15 최시영 수동크레인 및 수동크레인을 이용한 작업방법
KR101042251B1 (ko) * 2008-12-23 2011-06-17 한국생산기술연구원 소수성을 갖는 에어로겔 과립 제조방법
CN102765726B (zh) * 2012-08-13 2016-03-30 吴建坤 一种以稻壳灰为原料制备二氧化硅气凝胶的方法
CN103342367B (zh) * 2013-07-09 2015-09-02 南京工业大学 一种亲水型SiO2气凝胶的制备方法
CN103496706A (zh) * 2013-09-24 2014-01-08 北京艾若格科技发展有限公司 一种气凝胶复合材料的制备方法
CN103691370A (zh) * 2013-11-20 2014-04-02 余煜玺 一种海绵状柔性疏水气凝胶块体及其制备方法
EP2927194B1 (en) * 2014-02-06 2020-05-27 LG Chem, Ltd. Method for preparing hydrophobic silica aerogel
CN104628357A (zh) * 2015-01-13 2015-05-20 南京工业大学 一种低温保冷用二氧化硅气凝胶复合材料的制备方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040149654A1 (en) 2001-04-17 2004-08-05 Ryoji Takahashi Method for producing inorganic porous material
WO2002085785A1 (fr) 2001-04-17 2002-10-31 Tokuyama Corporation Procede permettant de produire un materiau poreux anorganique
KR101299347B1 (ko) 2004-06-29 2013-08-22 아스펜 에어로겔, 인코포레이티드 에너지 효율적이고 절연된 건물 외피들
US20070004306A1 (en) 2004-06-29 2007-01-04 Aspen Aerogels, Inc. Energy efficient and insulated building envelopes
US20110252739A1 (en) 2004-06-29 2011-10-20 Aspen Aerogels, Inc. Insulated building materials
KR20100053350A (ko) * 2008-11-12 2010-05-20 한국세라믹기술원 에어로젤 블랑켓의 제조방법
JP2011136859A (ja) 2009-12-28 2011-07-14 Asahi Fiber Glass Co Ltd 繊維系断熱材及びその製造方法
US20130330262A1 (en) 2011-06-17 2013-12-12 Panasonic Corporation Method for producing porous silica material
WO2012172733A1 (ja) 2011-06-17 2012-12-20 パナソニック株式会社 シリカ多孔体の製造方法
US20140252263A1 (en) 2011-10-14 2014-09-11 Enersens Process for manufacturing xerogels
JP2014532031A (ja) 2011-10-14 2014-12-04 エネルサンスEnersens キセロゲルを製造する方法
CN102515181A (zh) 2011-11-25 2012-06-27 航天特种材料及工艺技术研究所 一种提高气凝胶复合材料强度的方法
CN203230966U (zh) * 2013-04-08 2013-10-09 广东埃力生高新科技有限公司 具有多层复合隔热结构的输送管道
KR20150089319A (ko) 2014-01-27 2015-08-05 주식회사정양에스지 에어로겔 복합재가 부착된 복합 단열재의 제조방법 및 그에 의한 복합 단열재
CN103833041A (zh) 2014-03-04 2014-06-04 中国科学技术大学 一种常压干燥制备柔韧性二氧化硅气凝胶块体的方法
CN104496401A (zh) 2014-12-16 2015-04-08 山东工业陶瓷研究设计院有限公司 高效隔热气凝胶复合板材及其制备方法
WO2016129874A1 (ko) 2015-02-13 2016-08-18 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
KR20160100082A (ko) 2015-02-13 2016-08-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
EP3257812A1 (en) 2015-02-13 2017-12-20 LG Chem, Ltd. Method for preparing blanket containing silica aerogel, and blanket prepared thereby and containing silica aerogel
US20180010726A1 (en) 2015-02-13 2018-01-11 Lg Chem, Ltd. Preparation method of silica aerogel-containing blanket and silica aerogel-containing blanket prepared by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332378B2 (en) * 2018-11-27 2022-05-17 Lg Chem, Ltd. Method for producing silica aerogel

Also Published As

Publication number Publication date
EP3354620A1 (en) 2018-08-01
WO2018070752A1 (ko) 2018-04-19
JP2019503952A (ja) 2019-02-14
JP6526337B2 (ja) 2019-06-05
KR20180040372A (ko) 2018-04-20
EP3354620B1 (en) 2020-04-08
CN108290744A (zh) 2018-07-17
CN108290744B (zh) 2021-08-24
EP3354620A4 (en) 2019-01-23
US20190010060A1 (en) 2019-01-10
KR101953800B1 (ko) 2019-03-04

Similar Documents

Publication Publication Date Title
US10464816B2 (en) Aerogel blanket for ultra-high temperature, production method thereof, and construction method thereof
US10829380B2 (en) Silica aerogel blanket for ultra-high temperature, method for producing same, and method for constructing same
US10384946B2 (en) Low-dust, high insulation aerogel blanket and method for producing the same
US11866324B2 (en) Method for manufacturing aerogel blanket
EP3281928B1 (en) Method for manufacturing low-dust high-insulation aerogel blanket
KR101938655B1 (ko) 실리카 에어로겔 및 실리카 에어로겔 블랭킷의 제조방법
US20230050685A1 (en) Method for manufacturing aerogel blanket and aerogel blanket manufactured thereby
US20240228304A1 (en) Silica sol, silica aerogel blanket manufactured using same, and method for manufacturing same
US12060279B2 (en) Supercritical drying method for silica wet gel blanket
US11365125B2 (en) Supercritical drying method for silica wet gel blanket

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OH, KYOUNG SHIL;LEE, JE KYUN;REEL/FRAME:045452/0585

Effective date: 20180402

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4