TWI840172B - 記憶體元件及其製造方法 - Google Patents

記憶體元件及其製造方法 Download PDF

Info

Publication number
TWI840172B
TWI840172B TW112110385A TW112110385A TWI840172B TW I840172 B TWI840172 B TW I840172B TW 112110385 A TW112110385 A TW 112110385A TW 112110385 A TW112110385 A TW 112110385A TW I840172 B TWI840172 B TW I840172B
Authority
TW
Taiwan
Prior art keywords
layer
conductive
column
insulating
extension portion
Prior art date
Application number
TW112110385A
Other languages
English (en)
Inventor
洪敏峰
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW112110385A priority Critical patent/TWI840172B/zh
Application granted granted Critical
Publication of TWI840172B publication Critical patent/TWI840172B/zh

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

一種記憶體元件,包括堆疊結構、通道柱、多個導體柱以及分隔牆。所述堆疊結構,位於介電基底上,包括彼此交替堆疊的多個導體層與多個絕緣層。所述通道柱,延伸穿過所述堆疊結構。所述多個導體柱,位於所述通道柱內,且與所述通道柱電性連接。所述電荷儲存結構,位於所述多個導體層與所述通道柱之間。所述分隔牆,位於所述堆疊結構中。所述分隔牆包括主體部與延伸部。所述主體部,延伸穿過所述堆疊結構。所述延伸部,與所述主體部連接,位於所述堆疊結構與所述介電基底之間。所述記憶體元件可以應用於3D AND快閃記憶元件中。

Description

記憶體元件及其製造方法
本發明實施例是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶體元件及其製造方法。
非揮發性記憶體元件(如,快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體元件。
目前業界較常使用的快閃記憶體陣列包括反或閘(NOR)快閃記憶體與反及閘(NAND)快閃記憶體。由於NAND快閃記憶體的結構是使各記憶胞串接在一起,其積集度與面積利用率較NOR快閃記憶體佳,已經廣泛地應用在多種電子產品中。此外,為了進一步地提升記憶體元件的積集度,發展出一種三維NAND快閃記憶體。然而,仍存在許多與三維NAND快閃記憶體相關的挑戰。
本發明提供一種記憶體元件及其製造方法可以避免導體柱與堆疊閘極下方的導體層發生不正常橋接的問題。
本發明的實施例的一種記憶體元件,包括堆疊結構、通道柱、多個導體柱以及分隔牆。所述堆疊結構,位於介電基底上,包括彼此交替堆疊的多個導體層與多個絕緣層。所述通道柱,延伸穿過所述堆疊結構。所述多個導體柱,位於所述通道柱內,且與所述通道柱電性連接。所述電荷儲存結構,位於所述多個導體層與所述通道柱之間。所述分隔牆,位於所述堆疊結構中。所述分隔牆包括:主體部與延伸部。所述主體部,延伸穿過所述堆疊結構。所述延伸部,與所述主體部連接,位於所述堆疊結構與所述介電基底之間。
本發明的實施例的一種記憶體元件的製造方法,包括以下步驟。形成第一導體層於介電基底上。形成堆疊結構於導體層上。所述堆疊結構包括彼此交替堆疊的多個中間層與多個絕緣層。形成通道柱延伸穿過所述堆疊結構與所述第一導體層。於所述通道柱內形成與所述通道柱電性連接的多個導體柱。形成分隔溝渠,延伸穿過所述堆疊結構與所述第一導體層。移除部分所述第一導體層、部分所述通道柱以及部分所述多個導體柱,以形成第一水平開口。局部地移除所述多個中間層,以形成多個第二水平開口。於所述第一水平開口以及所述多個第二水平開口中形成電荷儲存層。於所述多個第二水平開口中形成多個第二導體層。於所述分隔溝渠分隔牆的主體部,並在所述第一水平開口之中形成所述分隔牆的延伸部。
基於上述,本發明實施例之記憶體元件將原本設置在堆疊結構下方的導體層移除,再重新形成絕緣層可以避免導體柱與堆疊閘極下方的導體層發生不正常橋接的問題。
圖1A示出根據一些實施例的3D AND快閃記憶體陣列的電路圖。圖1B示出圖1A中部分的記憶體陣列的局部三維視圖。圖1C與圖1D示出圖1B的切線I-I’的剖面圖。圖1E示出圖1B、圖1C與圖1D的切線II-II’的上視圖。
圖1A為包括配置成列及行的垂直AND記憶體陣列10的2個區塊BLOCK (i)與BLOCK (i+1)的示意圖。區塊BLOCK (i)中包括記憶體陣列A (i)。記憶體陣列A (i)的一列(例如是第m+1列)是具有共同字元線(例如WL (i) m+1)的AND記憶單元20集合。記憶體陣列A (i)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i) m+1),且耦接至不同的源極柱(例如SP (i) n與SP (i) n+1)與汲極柱(例如DP (i) n與DP (i) n+1),從而使得AND記憶單元20沿共同字元線(例如WL (i) m+1)邏輯地配置成一列。
記憶體陣列A (i)的一行(例如是第n行)是具有共同源極柱(例如SP (i) n)與共同汲極柱(例如DP (i) n)的AND記憶單元20集合。記憶體陣列A (i)的每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL (i) m+1與WL (i) m),且耦接至共同的源極柱(例如SP (i) n)與共同的汲極柱(例如DP (i) n)。因此,記憶體陣列A (i)的AND記憶單元20沿共同源極柱(例如SP (i) n)與共同汲極柱(例如DP (i) n)邏輯地配置成一行。在實體佈局中,根據所應用的製造方法,行或列可經扭曲,以蜂巢式模式或其他方式配置,以用於高密度或其他原因。
在圖1A中,在區塊BLOCK (i)中,記憶體陣列A (i)的第n行的AND記憶單元20共用共同的源極柱(例如SP (i) n)與共同的汲極柱(例如DP (i) n)。第n+1行的AND記憶單元20共用共同的源極柱(例如SP (i) n+1)與共同的汲極柱(例如DP (i) n+1)。
共同的源極柱(例如SP (i) n)耦接至共同的源極線(例如SL n);共同的汲極柱(例如DP (i) n)耦接至共同的位元線(例如BL n)。共同的源極柱(例如SP (i) n+1)耦接至共同的源極線(例如SL n+1);共同的汲極柱(例如DP (i) n+1)耦接至共同的位元線(例如BL n+1)。
相似地,區塊BLOCK (i+1)包括記憶體陣列A (i+1),其與在區塊BLOCK (i)中的記憶體陣列A (i)相似。記憶體陣列A (i+1)的一列(例如是第m+1列)是具有共同字元線(例如WL (i+1) m+1)的AND記憶單元20集合。記憶體陣列A (i+1)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i+1) m+1),且耦接至不同的源極柱(例如SP (i+1) n與SP (i+1) n+1)與汲極柱(例如DP (i+1) n與DP (i+1) n+1)。記憶體陣列A (i+1)的一行(例如是第n行)是具有共同源極柱(例如SP (i+1) n)與共同汲極柱(例如DP (i+1) n)的AND記憶單元20集合。記憶體陣列A (i+1)的每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL (i+1) m+1與WL (i+1) m),且耦接至共同的源極柱(例如SP (i+1) n)與共同的汲極柱(例如DP (i+1) n)。因此,記憶體陣列A (i+1)的AND記憶單元20沿共同源極柱(例如SP (i+1) n)與共同汲極柱(例如DP (i+1) n)邏輯地配置成一行。
區塊BLOCK (i+1)與區塊BLOCK (i)共用源極線(例如是SL n與SL n+1)與位元線(例如BL n與BL n+1)。因此,源極線SL n與位元線BL n耦接至區塊BLOCK (i)的AND記憶體陣列A (i)中的第n行AND記憶單元20,且耦接至區塊BLOCK (i+1)中的AND記憶體陣列A (i+1)中的第n行AND記憶單元20。同樣,源極線SL n+1與位元線BL n+1耦接至區塊BLOCK (i)的AND記憶體陣列A (i)中的第n+1行AND記憶單元20,且耦接至區塊BLOCK (i+1)中的AND記憶體陣列A (i+1)中的第n+1行AND記憶單元20。
請參照圖1B至圖1D,記憶體陣列10可安置於半導體晶粒的內連線結構上,諸如,安置於在半導體基底上形成的一或多個主動元件(例如電晶體)上方。因此,介電基底(或稱為介電層)50例如是形成於矽基板上的金屬內連線結構上方的介電層,例如氧化矽層。記憶體陣列10可包括堆疊結構52、多個通道柱16、多個第一導體柱(又可稱為源極柱)32a與多個第二導體柱(又可稱為汲極柱)32b和多個電荷儲存結構40。
請參照圖1B,堆疊結構52形成在介電基底50上。堆疊結構52包括在介電基底50的表面50s上垂直堆疊的多個閘極層(又稱為字元線或導體層)38與多層的絕緣層54。在第三方向Z上,這些閘極層38藉由設置在其彼此之間的絕緣層54電性隔離。閘極層38在與介電基底50的表面平行的方向上延伸。階梯區(未示出)的閘極層38可具有階梯結構(未示出)。因此,下部的閘極層38比上部閘極層38長,且下部的閘極層38的末端橫向延伸出上部閘極層38的末端。用於連接閘極層38的接觸窗(未示出)可著陸於閘極層38的末端,藉以將各層閘極層38連接至各個導線。
請參照圖1B至圖1D,記憶體陣列10還包括多個通道柱16、絕緣柱28、多個第一導體柱32a與多個第二導體柱32b,形成於延伸穿過堆疊結構52的垂直通道孔(未示出)之中。通道柱16連續延伸穿過堆疊結構52。在一些實施例中,通道柱16於上視角度來看可具有環形的輪廓。通道柱16的材料可以是半導體,例如是未摻雜的多晶矽。在此例中,第一導體柱32a做為源極柱;第二導體柱32b做為汲極柱。第一導體柱32a與第二導體柱32b以及絕緣柱28各自在垂直於閘極層38的表面(即XY平面)的方向(即第三方向Z)上延伸。第一導體柱32a與第二導體柱32b藉由絕緣柱28分隔,且被絕緣填充層24環繞。第一導體柱32a與第二導體柱32b電性連接該通道柱16。第一導體柱32a與第二導體柱32b包括摻雜的多晶矽或金屬材料。絕緣柱28例如是氮化矽或是氧化矽,絕緣填充層24例如是氧化矽。
請參照圖1C與圖1D,電荷儲存結構40設置於通道柱16與多個閘極層(或稱導體層)38之間。電荷儲存結構40可以包括穿隧層(或稱為能隙工程穿隧氧化層)14、電荷儲存層12以及阻擋層36。電荷儲存層12位於穿隧層14與阻擋層36之間。在一些實施例中,穿隧層14以及阻擋層36包括氧化矽。電荷儲存層12包括氮化矽,或其他包括可以捕捉以電荷的材料。在一些實施例中,如圖1C所示,電荷儲存結構40的一部分(穿隧層14與電荷儲存層12)在垂直於閘極層38的方向(即第三方向Z)上連續延伸,而電荷儲存結構40的另一部分(阻擋層36)環繞於閘極層38的周圍。在另一些實施例中,如圖1D所示,電荷儲存結構40(穿隧層14、電荷儲存層12與阻擋層36)環繞於閘極層38的周圍。
請參照圖1E,電荷儲存結構40、通道柱16以及源極柱32a與汲極柱32b被閘極層38環繞,並且界定出記憶單元20。記憶單元20可藉由不同的操作方法進行1位元操作或2位元操作。舉例來說,在對源極柱32a與汲極柱32b施加電壓時,由於源極柱32a與汲極柱32b與通道柱16連接,因此電子可沿著通道柱16傳送並儲存在整個電荷儲存結構40中,如此可對記憶單元20進行1位元的操作。此外,對於利用福勒-諾德漢穿隧(Fowler-Nordheim tunneling)的操作來說,可使電子或是電洞被捕捉在源極柱32a與汲極柱32b之間的電荷儲存結構40中。對於源極側注入(source side injection)、通道熱電子(channel-hot-electron)注入或帶對帶穿隧熱載子(band-to-band tunneling hot carrier)注入的操作來說,可使電子或電洞被局部地捕捉在鄰近兩個源極柱32a與汲極柱32b中的一者的電荷儲存結構40中,如此可對記憶單元20進行單位晶胞(SLC,1位元)或多位晶胞(MLC,大於或等於2位元)的操作。
在進行操作時,將電壓施加至所選擇的字元線(閘極層)38,例如施加高於對應記憶單元20的相應起始電壓(V th)時,與所選擇的字元線38相交的通道柱16的通道區被導通,而允許電流從位元線BL n或BL n+1(示於圖1B)進入汲極柱32b,並經由導通的通道區流至源極柱32a(例如,在由箭頭60所指示的方向上),最後流到源極線SL n或SL n+1(示於圖1B)。
在一些實施例中,在堆疊結構52與介電基底50基底之間還設置有導體層,以做為蝕刻垂直通道孔的停止層,並且此導體層將接地以使得字元線無法控制的通道可以被正常關閉。然而,由於製程的因素,垂直通道孔的側壁通常具有傾斜的輪廓,使得垂直通道孔呈錐形。在形成源極柱(導體柱)32a與汲極柱(導體柱)32b的孔時,導體層側壁上的介電層很可能在進行蝕刻的過程或是在清洗的過程中被耗盡或被移除,使得導體層的側壁被裸露於孔之中,導致後續形成的源極柱(導體柱)32a與汲極柱(導體柱)32b與導體層發生不正常的橋接。
本發明實施例提出的記憶體元件藉由後續的製程將原本設置在堆疊結構下方的導體層移除,再重新形成絕緣層可以避免導體柱與堆疊結構下方的導體層發生不正常橋接的問題。
圖2A至圖2K是依照本發明實施例的一種記憶體元件的製造流程的上視圖。圖3A至圖3K是圖2A至圖2K的線x-x’的剖面圖。圖3I’至圖3K’是圖2I至圖2K的線y-y’的剖面圖。圖2A至圖2G是圖3A至圖3G的線I-I’的上視圖。圖2H至圖2K是圖3H至圖3K’的線II-II’的上視圖。
參照圖2A與圖3A,提供介電基底100。介電基底100例如是具有形成於矽基板上的金屬內連線結構的介電層,例如氧化矽層。介電基底100中具有停止層92。停止層92例如是圖案化的多晶矽層。於介電基底100上形成導體層94。導體層94的材料例如是多晶矽。於導體層94上形成堆疊結構102。堆疊結構102又可稱為絕緣堆疊結構102。在本實施例中,堆疊結構102由依序交錯堆疊於介電基底100上的絕緣層104與中間層106所構成。在其他實施例中,中間層106與絕緣層104以相反順序交錯堆疊於介電基底100上。此外,在本實施例中,堆疊結構102的最上層為絕緣層104。最下層絕緣層104 1的厚度t1大於多個中間層106之間的絕緣層104 2的厚度t2。絕緣層104例如為氧化矽層。中間層106例如為氮化矽層。在本實施例中,堆疊結構102具有4層絕緣層104與3層中間層106,但本發明不限於此。在其他實施例中,可視實際需求來形成更多的絕緣層104與中間層106。之後,將堆疊結構102圖案化,以形成階梯結構(未示出)。進行微影與蝕刻製程,於堆疊結構102中形成多個開孔108(或稱為垂直通道孔VC)。然而,在圖2A與圖2B中僅示出單一個開孔108。開孔108的底面暴露出導體層94,而未暴露出介電基底100。
參照圖2B與圖3B,繼續進行蝕刻製程,以加深開孔108的深度,使得開孔108的底部延伸至介電基底100中。在本實施例中,以上視角度來看,開孔108具有圓形的形狀,但本發明不限於此。在其他實施例中,開孔108可具有其他形狀的形狀,例如多邊形(未示出)。
參照圖2C與圖3C,進行熱氧化製程,以使得開孔108所裸露的中間層106的側壁的表面被氧化而形成保護層110。保護層110的材料例如是氧化矽。
參照圖2D與圖3D,在開孔108的側壁形成通道柱116。通道柱116的材料可為半導體材料,例如未摻雜多晶矽。通道柱116的形成方法例如是在堆疊結構102上以及開孔108之中形成通道材料。之後,進行回蝕製程,以局部移除通道材料,形成通道柱116。通道柱116的上視圖例如為環形,且在其延伸方向上(例如垂直介電基底100的方向上)可為連續的。也就是說,通道柱116在其延伸方向上為整體的,並未分成多個不相連的部分。在一些實施例中,通道柱116於上視角度來看可具有圓形,但本發明不限於此。在其他實施例中,通道柱116以上視角度來看也可具有其他形狀(例如多邊形)的形狀。
參照圖2E與圖3E,在堆疊結構102上方以及開孔108中形成絕緣填充層124。絕緣填充層124的材料例如是氧化矽。在絕緣填充層124填充開孔108時,在尚未完全填滿開孔108的中心而留下孔洞之際,填入不同於絕緣填充層124的絕緣材料,例如是氮化矽,將開孔108完全封口。在經由乾蝕刻或濕蝕刻製程將絕緣材料回蝕至絕緣填充層124的表面裸露出來,留在開孔108正中心的絕緣材料形成絕緣柱128。
參照圖2F與圖3F,進行圖案化製程,以在絕緣填充層124中形成孔130a與130b。孔130a與130b從絕緣填充層124的頂面延伸至介電基底100。圖案化製程所定義的孔的圖案的形狀可以與絕緣柱128的形狀相切。圖案化製程所定義的孔的圖案的形狀也可超出絕緣柱128的形狀。由於絕緣柱128的蝕刻速率小於絕緣填充層124的蝕刻速率,因此,絕緣柱128幾乎不會遭受蝕刻的破壞而保留下來。在孔130a與130b中形成第一導體柱132a與第二導體柱132b。第一導體柱132a與第二導體柱132b可分別做為源極柱與汲極柱,且分別與通道柱116電性連接。第一導體柱132a與第二導體柱132b可以是在絕緣填充層124上以及孔130a與130b中形成導體層,然後再經由回蝕刻而形成。第一導體柱132a與第二導體柱132b例如是摻雜的多晶矽。
參照圖2G與圖3G,在絕緣填充層124、第一導體柱132a與第二導體柱132b以及絕緣柱128上形成介電層125。介電層125的材料包括氧化矽、氮化矽、氮氧化矽、或其組合。接著,進行圖案化製程,以形成多個分隔溝渠133。分隔溝渠133沿X方向延伸,使堆疊結構102以及導體層94分割成多個區塊。分隔溝渠133從介電層125向下穿過堆疊結構102,而且還延伸至導體層94。分隔溝渠133的底部可以裸露出介電基底100,或是裸露出部分的導體層94(未示出)。
參照圖2H與圖3H,進行蝕刻製程,例如濕式蝕刻製程,以將導體層94以及在導體層94側壁的保護層110移除,以形成水平開口OP1。水平開口OP1裸露出通道柱116的外側壁。
參照圖2I、圖3I與圖3I’,進行蝕刻製程,例如濕式蝕刻製程,以將部分的通道柱116、部分的第一導體柱132a以及部分的第二導體柱132b移除,以形成水平開口OP2。水平開口OP2裸露出絕緣填充層124。在進行蝕刻製程時,先進行主蝕刻製程,之後,進行過度蝕刻製程,以移除更多的通道柱116、第一導體柱132a以及第二導體柱132b,以使得水平開口OP2具有凹槽R1與R2。凹槽R1向上延伸至最底層的絕緣層104的頂面與底面之間,裸露出剩餘的通道柱116、第一導體柱132a與第二導體柱132b的底面。第一導體柱132a與第二導體柱132b的底面位於最下層的絕緣層104 1的頂面與底面之間。凹槽R2向下延伸至介電基底100之中,裸露出剩餘的第一導體柱132a’與第二導體柱132b’。
參照圖2J、圖3J與圖3J’,進行閘極取代製程。首先,進行蝕刻製程,例如濕式蝕刻製程,以將部分的多層中間層106移除,以形成多個水平開口134。多個水平開口134裸露出保護層110。在進行蝕刻的過程中,由於保護層110與中間層106的材料不同,因此,保護層110可以做為蝕刻停止層,以保護通道柱116。
參照圖2K、圖3K與圖3K’,於多個水平開口134中形成穿隧層114、電荷儲存層112、阻擋層136、阻障層137以及導體層138。穿隧層114以及電荷儲存層112還形成在水平開口OP2之中。穿隧層114、電荷儲存層112、阻擋層136、阻障層137以及導體層138的形成方法例如是於多個分隔溝渠133、多個水平開口134以及OP2中形成穿隧材料、電荷儲存材料、阻擋材料、阻障材料以及導體材料。之後,進行回蝕刻製程,移除在多個分隔溝渠133以及水平開口OP2之中的導體材料、阻障材料以及阻擋材料,以在水平開口134之中形成導體層138、阻擋層136以及阻障層137。
接著,進行另一個蝕刻製程,以移除在多個分隔溝渠133之中的電荷儲存材料以及穿隧材料,以在水平開口134以及OP2之中形成電荷儲存層112以及穿隧層114。至此,形成閘極堆疊結構150。閘極堆疊結構150,設置於介電基底100上,且包括多層閘極層138與多層絕緣層104彼此交互堆疊。
其後,在多個分隔溝渠133之中形成分隔牆SLIT。分隔牆SLIT的形成方法包括在閘極堆疊結構150上以及分隔溝渠133中填入絕緣材料,然後經由回蝕刻製程或是平坦化製程移除閘極堆疊結構150上多餘的絕緣材料。絕緣材料例如氧化矽是或是氮化矽。在其他實施例中,分隔牆SLIT可以包括導體層與包覆蓋導體層外側壁的絕緣襯層。在另一些實施例中,分隔牆SLIT也可以包括絕緣層且絕緣層中具有氣隙。
在本發明的實施例中,分隔牆SLIT包括主體部P1與延伸部P2。主體部P1,在第三方向Z延伸,穿過堆疊結構150,分隔相鄰區塊的導體層138。延伸部P2,與主體部P1連接,位於堆疊結構150與介電基底100之間。延伸部P2被穿隧層114以及電荷儲存層112包覆。延伸部P2與第一導體柱132a以及第二導體柱132b之間隔著穿隧層114以及電荷儲存層112。延伸部P2與剩餘的第一導體柱132a1以及剩餘的第二導體柱132b1之間隔著穿隧層114以及電荷儲存層112。
在第一方向X上的延伸部P2的高度H1大於在第二方向Y上的延伸部P2的高度H2。延伸部P2包括第一突部Q1、第二突部Q2以及中間部Q3。中間部Q3在第一突部Q1與第二突部Q2之間,且與其二者連接。第一突部Q1和第二突部Q2與第一導體柱132a與第二導體柱132b以及剩餘的第一導體柱132a1以及剩餘的第二導體柱132b1嵌合。第一突部Q1與第二突部Q2朝相反方向延伸。第一突部Q1,向通道柱116延伸。第一突部Q1的頂面位於最下層的絕緣層104 1的頂面與底面之間。第二突部Q2,向介電基底100延伸。
在第一平面XZ上的延伸部P2的剖面例如是呈橫置的T型,如圖3K所示。在第二平面YZ上的延伸部P2的剖面例如是呈矩形,如圖3K’所示。延伸部P2的上視圖呈半圓形或半橢圓形,如圖2K所示。在第一方向X上延伸部P2與絕緣柱128之間的第一距離d1小於在第二方向Y上的延伸部P2與絕緣柱128之間的第二距離d2。最下層絕緣層104 1的厚度t1大於多個導體層138之間的絕緣層104 2的厚度t2。
在以上的實施例中,堆疊結構102下方具有單一的導體層94。然而,本發明不以此為限,在其他的實施例中,堆疊結構102下方可以設置多層的導體層94a、94b,並以絕緣層104分隔開,其製程如圖4A至圖4D所示。
圖4A至圖4D是依照本發明另一實施例的一種記憶體元件的製造流程的剖視圖。
參照圖4A,在介電基底100上形成導體層94a、絕緣層93以及導體層94b。導體層94a、94b例如是半導體材料。絕緣層93的材料例如氧化矽。接著,在導體層94b上形成堆疊結構102。
參照圖4B,依照以上所述的方法形成絕緣填充層124、絕緣柱128、第一導體柱132a、第二導體柱132b以及介電層125。
參照圖4C,進行圖案化製程,以形成多個分隔溝渠133。接著,進行蝕刻製程,以移除保護層110、導體層94a與94b、部分的通道柱116、部分的第一導體柱132a以及部分的第二導體柱132b,以形成水平開口OP3以及OP4,並在水平開口OP3以及OP4之間留下剩餘的第一導體柱132a2以及剩餘的第二導體柱132b2,在水平開口OP4下方留下剩餘的第一導體柱132a1以及剩餘的第二導體柱132b1。
參照圖4D,依照上述方法進行閘極取代製程,以將多層中間層106取代為穿隧層114、電荷儲存層112、阻擋層136、阻障層137以及導體層138。同樣地,穿隧層114以及電荷儲存層112還形成在水平開口OP3與OP4之中。之後,在多個分隔溝渠133之中填入在分隔溝渠133中形成分隔牆SLIT。
在本實施例中,分隔牆SLIT包括主體部P1與延伸部P2。主體部P1,在第三方向Z延伸,穿過堆疊結構150,分隔相鄰區塊的導體層138。延伸部P2包括第一部G2與第二部G3。第一部G2與第二部G3位於堆疊結構150與介電基底100之間,與主體部P1連接。第一部G2位於第二部G3上方。第一部G2與第二部G3藉由絕緣層93、剩餘的第一導體柱132a2以及剩餘的第二導體柱132b2彼此分離。
第一部G2與第二部G3的剖面例如是呈橫置的T型。第一部G2與第二部G3可以各自別包括第一突部S1、第二突部S2以及中間部S3。中間部S3在第一突部S1與第二突部S2之間,且與其二者連接。第一突部S1,向通道柱116延伸。第一突部S1的頂面位於最下層的絕緣層104 1的頂面與底面之間。第二突部S2,向介電基底100延伸。
圖5A至圖5B是依照本發明又一實施例的一種記憶體元件的製造流程的剖視圖。
參照圖5A,在以上圖4C中,若未剩餘第一導體柱132a2以及第二導體柱132b2,絕緣層93被留在介電基底100的情況,將形成水平開口OP5,如圖5A所示。
參照圖5B,依照上述方法,直至形成分隔牆SLIT。分隔牆SLIT包括主體部P1與延伸部P2。主體部P1,在第三方向Z延伸,穿過堆疊結構150。延伸部P2,與主體部P1連接,位於堆疊結構150與介電基底100之間。延伸部P2的剖面例如是呈橫置的T型。延伸部P2包括第一突部M1、第二突部M2以及中間部M3。中間部M3在第一突部M1與第二突部M2之間,且與其二者連接。第一突部M1,向通道柱116延伸。第一突部M1的頂面位於最下層的絕緣層104 1的頂面與底面之間。第二突部M2,向介電基底100延伸。
綜上所述,本發明實施例之記憶體元件將原本設置在堆疊結構下方的導體層移除,再重新形成絕緣層可以避免導體柱與堆疊閘極下方的導體層發生不正常橋接的問題。
10、A(i)、A(i+1):記憶體陣列
12、112:電荷儲存層
14、114:穿隧層
16、116:通道柱
20:記憶單元
24、124:絕緣填充層
28、128:絕緣柱
32a:第一導體柱/源極柱
32b:第二導體柱/汲極柱
36、136:阻擋層
38:閘極層
38:字元線
40:電荷儲存結構
50、100:介電基底
50s:表面
54、93、104、1041、1042:絕緣層
60:箭頭
92:停止層
94、94a、94b、138:導體層
52、102、150:堆疊結構
106:中間層
108:開孔
110:保護層
125:介電層
130a、130b:孔
132a、132a1、132a2、132a’:第一導體柱
132b、132b1、132b2、132b’:第二導體柱
133:分隔溝渠
134、OP1、OP2、OP3、OP4:水平開口
137:阻障層
138:多層閘極層
BLOCK(i)、BLOCK(i+1):區塊
BLn、BLn+1:位元線
SP( i ) n、SP(i) n+1、SP( i+1 ) n、SP(i+1) n+1:源極柱
DP(i) n、DPi ) n+1、DPi+1) n、DP(i+1) n+1:源極柱
G2:第一部
G3:第二部
H1、H2:高度
M1、Q1、S1:第一突部
M2、Q2、S2:第二突部
M3、Q3、S3:中間部
P1:主體部
P2:延伸部
R1、R2:凹槽
SLIT:分隔牆
VC:垂直通道孔
X:第一方向
Y:第二方向
Z:第三方向
d1:第一距離
d2:第二距離
t1、t2:厚度
I-I’、II-II’、x-x’、y-y’:線
圖1A示出根據一些實施例的3D AND快閃記憶體陣列的電路圖。 圖1B示出圖1A中部分的記憶體陣列的局部三維視圖。 圖1C與圖1D示出圖1B的切線I-I’的剖面圖。 圖1E示出圖1B、圖1C、圖1D的切線II-II’的上視圖。 圖2A至圖2K是依照本發明實施例的一種記憶體元件的製造流程的上視圖。 圖3A至圖3K’是圖2A至圖2K的線x-x’以及y-y’的剖面圖。 圖4A至圖4D是依照本發明另一實施例的一種記憶體元件的製造流程的剖視圖。 圖5A至圖5B是依照本發明又一實施例的一種記憶體元件的製造流程的剖視圖。
133:分隔溝渠
125:介電層
124:絕緣填充層
104、1041、1042:絕緣層
OP2:水平開口
R1、R2:凹槽
92:停止層
II-II’、x-x’:線
132a、132a’:第一導體柱
132b、132b’:第二導體柱
128:絕緣柱
116:通道柱
110:保護層
134:水平開口
100:介電基底

Claims (11)

  1. 一種記憶體元件,包括:堆疊結構,位於介電基底上,其中所述堆疊結構包括彼此交替堆疊的多個導體層與多個絕緣層;通道柱,延伸穿過所述堆疊結構;多個導體柱,位於所述通道柱內,且與所述通道柱電性連接;電荷儲存結構,位於所述多個導體層與所述通道柱之間;分隔牆,位於所述堆疊結構中,其中所述分隔牆包括:主體部,延伸穿過所述堆疊結構;以及延伸部,與所述主體部連接,位於所述堆疊結構與所述介電基底之間,其中所述電荷儲存結構還包覆所述延伸部。
  2. 如請求項1所述的記憶體元件,其中所述延伸部還延伸至所述通道柱以及所述多個導體柱下方。
  3. 如請求項1所述的記憶體元件,其中在第一方向上的所述延伸部的長度大於在第二方向上的所述延伸部的長度。
  4. 如請求項1所述的記憶體元件,其中所述延伸部包括第一突部,向所述通道柱延伸。
  5. 如請求項1所述的記憶體元件,其中所述延伸部包括第二突部,向所述介電基底延伸。
  6. 如請求項1所述的記憶體元件,其中在第一平面上的所述延伸部的剖面呈橫置的T型,在第二平面上的所述延伸部的剖面呈矩形。
  7. 如請求項1所述的記憶體元件,其中所述多個絕緣層的最下層絕緣層的厚度大於所述多個導體層之間的絕緣層的厚度。
  8. 如請求項1所述的記憶體元件,其中所述延伸部包括第一部與第二部,所述第一部位於所述第二部上方且彼此分離。
  9. 一種記憶體元件的製造方法,包括:形成第一導體層於介電基底上;形成堆疊結構於所述第一導體層上,其中所述堆疊結構包括彼此交替堆疊的多個中間層與多個絕緣層;形成通道柱延伸穿過所述堆疊結構與所述第一導體層;於所述通道柱內形成與所述通道柱電性連接的多個導體柱;形成分隔溝渠,延伸穿過所述堆疊結構與所述第一導體層;移除部分所述第一導體層、部分所述通道柱以及部分所述多個導體柱,以形成第一水平開口;局部地移除所述多個中間層,以形成多個第二水平開口;於所述第一水平開口以及所述多個第二水平開口中形成電荷儲存層;於所述多個第二水平開口中形成多個第二導體層;以及於所述分隔溝渠中形成分隔牆的主體部,並在所述第一水平開口之中形成所述分隔牆的延伸部, 其中所述電荷儲存結構還包覆所述延伸部。
  10. 如請求項9所述的記憶體元件的製造方法,更包括形成絕緣柱,於所述通道柱中,分隔所述多個導體柱,其中在第一方向上所述延伸部與所述絕緣柱之間的第一距離小於在第二方向上的所述延伸部與所述絕緣柱之間的第二距離。
  11. 如請求項9所述的記憶體元件的製造方法,其中在第一平面上的所述延伸部的剖面呈橫置的T型,在第二平面上的所述延伸部的剖面呈矩形。
TW112110385A 2023-03-21 2023-03-21 記憶體元件及其製造方法 TWI840172B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112110385A TWI840172B (zh) 2023-03-21 2023-03-21 記憶體元件及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112110385A TWI840172B (zh) 2023-03-21 2023-03-21 記憶體元件及其製造方法

Publications (1)

Publication Number Publication Date
TWI840172B true TWI840172B (zh) 2024-04-21

Family

ID=91618775

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112110385A TWI840172B (zh) 2023-03-21 2023-03-21 記憶體元件及其製造方法

Country Status (1)

Country Link
TW (1) TWI840172B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI787080B (zh) * 2022-02-10 2022-12-11 旺宏電子股份有限公司 三維快閃記憶體元件
TW202310363A (zh) * 2021-08-30 2023-03-01 旺宏電子股份有限公司 三維and快閃記憶體元件及其製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202310363A (zh) * 2021-08-30 2023-03-01 旺宏電子股份有限公司 三維and快閃記憶體元件及其製造方法
TWI787080B (zh) * 2022-02-10 2022-12-11 旺宏電子股份有限公司 三維快閃記憶體元件

Similar Documents

Publication Publication Date Title
CN110649033B (zh) 3d存储器件及其制造方法
TWI750678B (zh) 半導體記憶體結構及其製造方法
CN114649340A (zh) 三维存储器元件及其制造方法
TWI785764B (zh) 三維and快閃記憶體元件及其製造方法
TWI759015B (zh) 三維記憶體元件及其製造方法
TWI785804B (zh) 三維and快閃記憶體元件及其製造方法
TWI840172B (zh) 記憶體元件及其製造方法
CN111180455B (zh) 3d存储器件及其制造方法
CN115497952A (zh) 存储器元件及快闪存储器元件
TWI837642B (zh) 記憶體元件及其製造方法
TWI768969B (zh) 記憶體元件
TWI822311B (zh) 記憶體元件及其製造方法
TWI817319B (zh) 三維and快閃記憶體元件及其製造方法
TWI805228B (zh) 三維and快閃記憶體元件及其製造方法
TWI809855B (zh) 記憶體元件、半導體元件及其製造方法
TWI817369B (zh) 三維and快閃記憶體元件及其製造方法
TWI830427B (zh) 記憶體元件及其製造方法
TWI812164B (zh) 三維and快閃記憶體元件及其製造方法
TWI830112B (zh) 三維and快閃記憶體元件
TWI794974B (zh) 三維and快閃記憶體元件及其製造方法
US20230262979A1 (en) 3d and flash memory device and method of fabricating the same
US20240081058A1 (en) Memory device and method of fabricating the same
US20230077489A1 (en) 3d and flash memory device and method of fabricating the same
US20230337426A1 (en) Memory device and method of fabricating the same
TW202345359A (zh) 電路結構、半導體元件及其製造方法