TWI817319B - 三維and快閃記憶體元件及其製造方法 - Google Patents

三維and快閃記憶體元件及其製造方法 Download PDF

Info

Publication number
TWI817319B
TWI817319B TW111101397A TW111101397A TWI817319B TW I817319 B TWI817319 B TW I817319B TW 111101397 A TW111101397 A TW 111101397A TW 111101397 A TW111101397 A TW 111101397A TW I817319 B TWI817319 B TW I817319B
Authority
TW
Taiwan
Prior art keywords
pillar
channel
insulating
conductor
flash memory
Prior art date
Application number
TW111101397A
Other languages
English (en)
Other versions
TW202329334A (zh
Inventor
呂函庭
邱家榮
葉騰豪
李冠儒
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW111101397A priority Critical patent/TWI817319B/zh
Publication of TW202329334A publication Critical patent/TW202329334A/zh
Application granted granted Critical
Publication of TWI817319B publication Critical patent/TWI817319B/zh

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一種三維AND快閃記憶體元件,包括閘極堆疊結構、電荷儲存結構、第一導體柱與第二導體柱、絕緣柱以及通道柱。所述閘極堆疊結構包括彼此交替堆疊的多個閘極層與多個絕緣層。第一導體柱與第二導體柱,延伸穿過所述閘極堆疊結構,且以絕緣柱分隔。通道柱延伸穿過所述閘極堆疊結構。電荷儲存結構,位於所述閘極堆疊結構與所述通道柱之間。所述通道柱包括彼此相連接的第一部分以及第二部分。所述第一部分位於所述電荷儲存結構與所述絕緣柱之間。所述第二部分包括與所述第一導體柱電性連接的第一區以及與所述第二導體柱電性連接的第二區。所述第一部分的曲率小於所述第二部分的曲率。

Description

三維AND快閃記憶體元件及其製造方法
本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種三維AND快閃記憶體元件及其製造方法。
非揮發性記憶體具有可使得存入的資料在斷電後也不會消失的優點,因此廣泛採用於個人電腦和其他電子設備中。目前業界較常使用的三維記憶體包括反或式(NOR)記憶體以及反及式(NAND)記憶體。此外,另一種三維記憶體為及式(AND)記憶體,其可應用在多維度的記憶體陣列中而具有高積集度與高面積利用率,且具有操作速度快的優點。因此,三維記憶體元件的發展已逐漸成為目前的趨勢。
本發明提出一種三維AND快閃記憶體元件可以減少通道區的電場效應。
本發明提出一種三維AND快閃記憶體元件的製造方法可以減少通道柱遭受蝕刻的破壞。
本發明的一實施例提出一種三維AND快閃記憶體元件,包括閘極堆疊結構,位於介電基底的表面上。所述閘極堆疊結構包括彼此交替堆疊的多個閘極層與多個絕緣層。第一導體柱與第二導延伸穿過所述閘極堆疊結構。絕緣柱分隔所述第一導體柱與所述第二導體柱。通道柱延伸穿過所述閘極堆疊結構。電荷儲存結構,位於所述閘極堆疊結構與所述通道柱之間,且所述通道柱、所述第一導體柱、所述第二導體柱與所述絕緣柱被圍在所述電荷儲存結構內。所述通道柱包括:彼此相連接的第一部分以及第二部分。所述第一部分位於所述電荷儲存結構與所述絕緣柱之間。所述第二部分與所述第一導體柱以及所述第二導體柱電性連接。所述第一部分的曲率小於所述第二部分的曲率。
本發明的一實施例提出一種三維AND快閃記憶體元件的製造方法,包括於介電基底的表面上形成堆疊結構,其中所述堆疊結構包括彼此交替堆疊的多個犧牲層與多個絕緣層。於所述堆疊結構形成開孔。於所述開孔中形成通道柱,所述通道柱包括第一部分與第二部分,其中所述第一部分的曲率小於所述第二部分的曲率。於所述開孔中填入填充層。於所述填充層形成第一孔洞並移除第一孔洞周圍的部分所述填充層而擴大形成第二孔洞。於所述第二孔洞中填入絕緣材料形成絕緣柱。於所述絕緣柱兩側形成第一導體柱與第二導體柱。移除所述多個犧牲層,以形成多個水平開口。在所述多個水平開口中形成多個閘極層。於所述多個閘極層與所述通道層之間形成至少一電荷儲存結構。
本發明的一實施例提出一種三維AND快閃記憶體元件包括:閘極堆疊結構,位於介電基底的表面上,其中所述閘極堆疊結構包括彼此交替堆疊的多個閘極層與多個絕緣層。通道柱,延伸穿過所述閘極堆疊結構。所述通道柱投影在所述介電基底的所述表面上具有橢圓形輪廓。電荷儲存結構,位於所述多個閘極層與所述通道柱之間。絕緣柱位於所述通道柱內。源極柱與汲極柱,設置在所述橢圓形輪廓的長軸上,延伸穿過所述閘極堆疊結構,被所述電荷儲存結構環繞,被所述絕緣柱分隔,且與所述通道柱電性連接。
基於上述,在本發明實施例中,通道柱中做為通道區的第一部分具有較小的曲率,可以降低電場的效應,減少電流在行進方向受到干擾,因此,可以提升記憶體的讀取的正確性。再者,本發明實施例之三維AND快閃記憶體元件的製造方法可以減少通道柱遭受蝕刻的破壞。
圖1A為包括配置成列及行的垂直AND記憶陣列10的2個區塊BLOCK (i)與BLOCK (i+1)的示意圖。區塊BLOCK (i)中包括記憶陣列A (i)。記憶陣列A (i)的一列(例如是第m+1列)是具有共同字元線(例如WL (i) m+1)的AND記憶單元20集合。記憶陣列A (i)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i) m+1),且耦接至不同的源極柱(例如SP (i) n與SP (i) n+1)與汲極柱(例如DP (i) n與DP (i) n+1),從而使得AND記憶單元20沿共同字元線(例如WL (i) m+1)邏輯地配置成一列。
記憶陣列A ( i )的一行(例如是第n行)是具有共同源極柱(例如SP ( i ) n)與共同汲極柱(例如DP ( i ) n)的AND記憶單元20集合。記憶陣列A (i)的每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL ( i ) m+1與WL ( i ) m),且耦接至共同的源極柱(例如SP ( i ) n)與共同的汲極柱(例如DP ( i ) n)。因此,記憶陣列A (i)的AND記憶單元20沿共同源極柱(例如SP ( i ) n)與共同汲極柱(例如DP ( i ) n)邏輯地配置成一行。在實體佈局中,根據所應用的製造方法,行或列可經扭曲,以蜂巢式模式或其他方式配置,以用於高密度或其他原因。
在圖1A中,在區塊BLOCK (i)中,記憶陣列A (i)的第n行的AND記憶單元20共用共同的源極柱(例如SP ( i ) n)與共同的汲極柱(例如DP ( i ) n)。第n+1行的AND記憶單元20共用共同的源極柱(例如SP (i) n+1)與共同的汲極柱(例如DP ( i ) n+1)。
共同的源極柱(例如SP ( i ) n)耦接至共同的源極線(例如SL n);共同的汲極柱(例如DP ( i ) n)耦接至共同的位元線(例如BL n)。共同的源極柱(例如SP ( i ) n+1)耦接至共同的源極線(例如SL n+1);共同的汲極柱(例如DP ( i ) n+1)耦接至共同的位元線(例如BL n+1)。
相似地,區塊BLOCK (i+1)包括記憶陣列A (i+1),其與在區塊BLOCK (i)中的記憶陣列A (i)相似。記憶陣列A (i+1)的一列(例如是第m+1列)是具有共同字元線(例如WL (i+1) m+1)的AND記憶單元20集合。記憶陣列A (i+1)的每一列(例如是第m+1列)的AND記憶單元20對應於共同字元線(例如WL (i+1) m+1),且耦接至不同的源極柱(例如SP (i+1) n與SP (i+1) n+1)與汲極柱(例如DP (i+1) n與DP (i+1) n+1)。記憶陣列A ( i+1 )的一行(例如是第n行)是具有共同源極柱(例如SP ( i+1 ) n)與共同汲極柱(例如DP ( i+1 ) n)的AND記憶單元20集合。記憶陣列A (i+1)的每一行(例如是第n行)的AND記憶單元20對應於不同字元線(例如WL ( i+1 ) m+1與WL ( i+1 ) m),且耦接至共同的源極柱(例如SP ( i+1 ) n)與共同的汲極柱(例如DP ( i+1 ) n)。因此,記憶陣列A (i+1)的AND記憶單元20沿共同源極柱(例如SP ( i+1 ) n)與共同汲極柱(例如DP ( i+1 ) n)邏輯地配置成一行。
區塊BLOCK (i+1)與區塊BLOCK (i)共用源極線(例如是SL n與SL n+1)與位元線(例如BL n與BL n+1)。因此,源極線SL n與位元線BL n耦接至區塊BLOCK (i)的AND記憶陣列A (i)中的第n行AND記憶單元20,且耦接至區塊BLOCK (i+1)中的AND記憶陣列A (i+1)中的第n行AND記憶單元20。同樣,源極線SL n+1與位元線BL n+1耦接至區塊BLOCK (i)的AND記憶陣列A (i)中的第n+1行AND記憶單元20,且耦接至區塊BLOCK (i+1)中的AND記憶陣列A (i+1)中的第n+1行AND記憶單元20。
請參照圖1B,記憶陣列10可安置於半導體晶粒的內連線結構上,諸如,安置於在半導體基底上形成的一或多個主動元件(例如電晶體)上方。因此,介電基底50例如是形成於矽基板上的金屬內連線結構上方的介電層,例如氧化矽層。記憶陣列10可包括閘極堆疊結構52、多個通道柱16、多個第一導體柱(又可稱為源極柱)32a與多個第二導體柱(又可稱為汲極柱)32b和多個電荷儲存結構40。
請參照圖1B,閘極堆疊結構52形成在陣列區(未示出)與階梯區(未示出)的介電基底50上。閘極堆疊結構52包括在介電基底50的表面50s上垂直堆疊的多個閘極層(又稱為字元線)38與多層的絕緣層54。在Z方向上,這些閘極層38藉由設置在其彼此之間的絕緣層54電性隔離。閘極層38在與介電基底50的表面平行的方向上延伸。在階梯區的閘極層38可具有階梯結構(未示出)。因此,下部的閘極層38比上部閘極層38長,且下部的閘極層38的末端橫向延伸出上部閘極層38的末端。用於連接閘極層38的接觸窗(未示出)可著陸於閘極層38的末端,藉以將各層閘極層38連接至各個導線。
請參照圖1B至圖1G,記憶陣列10還包括多個通道柱16。通道柱16連續延伸穿過閘極堆疊結構52。通道柱16的材料可以是半導體,例如是未摻雜的多晶矽。
請參照圖1B至圖1G,記憶陣列10還包括絕緣柱28、多個第一導體柱32a與多個第二導體柱32b。在此例中,第一導體柱32a做為源極柱;第二導體柱32b做為汲極柱。第一導體柱32a與第二導體柱32b以及絕緣柱28各自在垂直於閘極層38的方向(即Z方向)上延伸。第一導體柱32a與第二導體柱32b藉由絕緣柱28分隔。第一導體柱32a與第二導體柱32b電性連接該通道柱16。第一導體柱32a與第二導體柱32b包括摻雜的多晶矽或金屬材料。絕緣柱28例如是氮化矽或是氧化矽。請參照圖1C、圖1E、圖1F與圖1G,電荷儲存結構40圍繞通道柱16、第一導體柱32a、第二導體柱32b、絕緣柱28以及通道柱16。至少一部份的電荷儲存結構40設置於通道柱16與多層閘極層38之間。電荷儲存結構40可以包括穿隧層(或稱為能隙工程穿隧氧化層)14、電荷儲存層12以及阻擋層36。電荷儲存層12位於穿隧層14與阻擋層36之間。在一些實施例中,穿隧層14以及阻擋層36包括氧化矽。電荷儲存層12包括氮化矽,或其他包括可以捕捉以電荷的的材料。在一些實施例中,如圖1F所示,電荷儲存結構40(穿隧層14、電荷儲存層12與阻擋層36)環繞於閘極層38的周圍。在另一些實施例中,如圖1G所示,電荷儲存結構40的一部分(穿隧層14與電荷儲存層12)在垂直於閘極層38的方向(即Z方向)上連續延伸,而電荷儲存結構40的另一部分(阻擋層36)環繞於閘極層38的周圍。
請參照圖1F,電荷儲存結構40、通道柱16以及源極柱32a與汲極柱32b被閘極層38環繞,並且界定出記憶單元20。記憶單元20可藉由不同的操作方法進行1位元操作或2位元操作。舉例來說,在對源極柱32a與汲極柱32b施加電壓時,由於源極柱32a與汲極柱32b與通道柱16連接,因此電子可沿著通道柱16傳送並儲存在整個電荷儲存結構40中,如此可對記憶單元20進行1位元的操作。此外,對於利用福勒-諾德漢穿隧(Fowler-Nordheim tunneling)的操作來說,可使電子或是電洞被捕捉在源極柱32a與汲極柱32b之間的電荷儲存結構40中。對於源極側注入(source side injection)、通道熱電子(channel-hot-electron)注入或帶對帶穿隧熱載子(band-to-band tunneling hot carrier)注入的操作來說,可使電子或電洞被局部地捕捉在鄰近兩個源極柱32a與汲極柱32b中的一者的電荷儲存結構40中,如此可對記憶單元20進行單位晶胞(SLC,1位元)或多位晶胞(MLC,大於或等於2位元)的操作。
在進行操作時,將電壓施加至所選擇的字元線(閘極層)38,例如施加高於對應記憶單元20的相應起始電壓(V th)時,與所選擇的字元線38相交的通道柱16的通道區被導通,而允許電流從位元線BL n或BL n+1(示於圖1B與圖1D)進入汲極柱32b,並經由導通的通道區流至源極柱32a(例如,在由箭頭60所指示的方向上),最後流到源極線SL n或SL n+1(示於圖1B與圖1D)。
然而,若是通道柱16為圓環狀,會因為曲率過大而造成較大的電場,因而造成記憶體的讀取干擾。參照圖1B至圖1E,在本發明的實施例中,通道柱16於上視角度來看,也就是投影在介電基底50的表面50s上具有長形的輪廓,例如是環狀的橢圓形,電荷儲存結構40以及絕緣柱28可以分別是橢圓形。做為源極柱與汲極柱的第一導體柱32a與第二導體柱32b設置在通道柱16的橢圓形輪廓的長軸上,可以增加兩者之間的路徑,因此降低電場的效應,減少記憶體的讀取干擾。
請參照圖1C與圖1E,本發明實施例的通道柱16包括第一部分P1與第二部分P2。第一部分P1與第二部分P2彼此連接且其組合投影在介電基底50的表面具有橢圓形輪廓。第一部分P1位於電荷儲存層12與絕緣柱28之間,做為通道區。第一部分P1的長度L1為通道的長度。第二部分P2的第一區R1與第一導體柱32a接觸且電性連接;第二部分P2的第二區R2與第二導體柱32b接觸且電性連接。通道柱16的第一部分P1的曲率小於第二部分P2的曲率。
請參照圖1C中,在一些實施例中,通道柱16的第一部分P1以及第二部分P2與電荷儲存結構40的內側壁接觸。通道柱16的第一部分P1與第二部分P2均設置在絕緣柱28與電荷儲存結構40之間且與其二者接觸。第一導體柱32a與第二導體柱32b位於絕緣柱28與通道柱16的第二部分P2之間,且填滿絕緣柱28與通道柱16的第二部分P2之間的空間。第一導體柱32a與第二導體柱32b分別具有開口相對的凹口狀。
請參照圖1D與圖1E中,在另一些實施例中,通道柱16的內側壁與絕緣柱28的外側壁共形。通道柱16的第一部分P1設置在絕緣柱28與電荷儲存結構40之間且與其二者接觸。通道柱16的第二部分P2設置在第一導體柱32a與絕緣柱28之間且與其二者接觸,以及第二導體柱32b與絕緣柱28之間,且與其二者接觸。第一導體柱32a與第二導體柱32b位於通道柱16的第二部分P2與電荷儲存結構40之間,且填滿通道柱16的第二部分P2與電荷儲存結構40之間的空間。第一導體柱32a與第二導體柱32b分別具有開口相對的凹口狀。
由於通道柱16中做為通道區的第一部分P1具有較小的曲率,因此可以降低電場的效應,減少電流在行進方向受到干擾,因此,可以提升記憶體的讀取的正確性。
圖2A至圖2I是依照本發明的實施例的一種三維AND快閃記憶體元件製造流程的上視圖。圖3A至圖3I為沿著圖2A至圖2I中切線IV-IV’的剖面示意圖。
參照圖2A與圖3A,於介電基底100上形成堆疊結構102。介電基底100例如是形成於矽基板上的金屬內連線結構上方的介電層,例如氧化矽層。堆疊結構102可由依序交錯堆疊於介電基底100上的犧牲層106與絕緣層104所構成。堆疊結構102的最上層可以是絕緣層104。堆疊結構102的最底層可以是犧牲層106或絕緣層104。絕緣層104例如為氧化矽層。犧牲層106例如為氮化矽層。在本實施例中,堆疊結構102具有5層絕緣層104與4層犧牲層106,但本發明不限於此。在其他實施例中,可視實際需求來形成更多層的絕緣層104與更多層的犧牲層106。
進行微影與蝕刻製程,於堆疊結構102中形成多個開孔108,然而,為簡要起見,在圖中僅示出單一個開孔108。在本實施例中,開孔108的底面暴露出介電基底100,但本發明不限於此。在其他實施例中,在堆疊結構102的最下層為絕緣層104的情況下,開孔108的底部可位於最下層的絕緣層104中。亦即開孔108的底面裸露出最下層的絕緣層104,而未暴露出介電基底100。或者,在其他實施例中,開孔108的底部還延伸至介電基底100中。
在本實施例中,以上視角度來看,開孔108為長形輪廓。開孔108例如是具有長軸與短軸橢圓形的輪廓,但本發明不限於此。在其他實施例中,開孔108可具有其他形狀的輪廓,例如多邊形(未示出)。
參照圖2B與圖3B,進行熱氧化製程,以使得開孔108所裸露的犧牲層106的側壁的表面被氧化而形成保護層110。接著,在堆疊結構102上以及開孔108之中形成通道材料116’。通道材料116’的材料可為半導體材料,例如非摻雜多晶矽。
參照圖2C與圖3C,接著,在開孔108中填入填充層。在一些實施例中,填充層為絕緣材料,即絕緣填充層124。絕緣填充層124覆蓋在通道材料116’上。絕緣填充層124的材料例如是氧化矽。
參照圖2D與圖3D,經由微影與蝕刻製程在絕緣填充層124的中心區形成孔洞OP1’。孔洞OP1’例如是呈圓形。蝕刻製程例如是非等向性蝕刻製程,例如是乾式蝕刻製程。
參照圖2E與圖3E,進行拉回製程,以移除孔洞OP1’周圍的部分的絕緣填充層124,以使得孔洞OP1’擴口成孔洞OP1。拉回製程可以是等向性蝕刻製程,例如是濕式蝕刻製程。在絕緣填充層124為氧化矽的實施例中,此蝕刻製程可以採用濕式蝕刻製程,例如是以氫氟酸溶液做為蝕刻劑。相較於上述形成孔洞OP1’的乾式蝕刻製程,在形成孔洞OP1時採用濕式蝕刻製程,可以使得絕緣填充層124與通道材料116’之間具有較高的蝕刻選擇比。因此,在進行拉回製程期間,在開孔108的短軸方向上,可以通道材料116’做為停止層;而在開孔108的長軸方向上,則可以繼續蝕刻絕緣填充層124。因此,孔洞OP1具有長形的輪廓。孔洞OP1例如是具有長軸與短軸的橢圓形的輪廓,但本發明不限於此。在其他實施例中,孔洞OP1可具有其他形狀的輪廓,例如多邊形(未示出)。之後,再移除孔洞OP1下方的通道材料116’。孔洞OP1在其短軸的方向上的側壁裸露出通道材料116’;孔洞OP1在其長軸的方向上的側壁裸露出絕緣填充層124。由於絕緣填充層124與通道材料116’之間具有較高的蝕刻選擇比,因此,在進行拉回製程後,通道材料116’(其將做為通道區)幾乎不會遭受到破壞。
參照圖2F與圖3F,接著,在孔洞OP1中填入不同於絕緣填充層124的絕緣材料,例如是氮化矽,將孔洞OP1完全封口。在經由乾蝕刻或濕蝕刻製程將絕緣材料回蝕至絕緣填充層124的表面裸露出來,留在孔洞OP1之中的絕緣材料形成絕緣柱128。
參照圖2G與圖3G,進行蝕刻製程,移除絕緣填充層124,以在絕緣柱128的兩側形成孔130a與130b。亦即開孔OP1被絕緣柱128分隔成二隔間(即孔130a與130b)。在絕緣填充層124為氧化矽的實施例中,此蝕刻製程可以採用濕式蝕刻製程,例如是以氫氟酸溶液做為蝕刻劑。孔130a與130b的側壁裸露出通道材料116’以及絕緣柱128。孔130a與130b的底部裸露出通道材料116’。由於絕緣柱128的蝕刻速率小於絕緣填充層124的蝕刻速率,絕緣柱128幾乎不會遭受蝕刻的破壞而保留下來。
參照圖2H與圖3H,在通道材料116’以及絕緣柱128上以及在孔130a與130b中形成導體層。導體層例如是摻雜的多晶矽。摻雜的多晶矽中的摻質例如是N型,例如是磷或砷。摻雜的多晶矽中的摻質例如是P型,例如是硼或三氟化硼。之後,經由乾蝕刻或濕蝕刻製程將導體層以及通道材料116’回蝕至堆疊結構102的表面裸露出來,以形成導體柱132a與132b以及通道柱116。導體柱132a與132b可分別做為源極柱與汲極柱。導體柱132a或132b的一側壁SW1分別與絕緣柱128接觸,導體柱132a或132b的另一側壁SW2分別與通道柱116電性連接。第一導體柱132a與第二導體柱132b佔據絕緣柱128與通道柱116的第二部分P2之間的空間容積,因此,第一導體柱132a和第二導體柱132b的體積與絕緣柱128和通道柱116的第二部分P2之間的空間容積大致相同。
之後,參照圖2I與圖3I,進行取代製程。在一些實施例中,取代製程將多層犧牲層106取代為多個穿隧層114、多個電荷儲存層112以及多個閘極層138。首先,對堆疊結構102進行圖案化製程,以在其中形成多個分隔溝槽(未示出),使堆疊結構102分割成多個區塊(block)。接著,進行蝕刻製程,例如濕式蝕刻製程,使蝕刻液注入於分隔溝槽之中,依序將多層犧牲層106移除,以形成多個水平開口134。之後,再於多個分隔溝槽與多個水平開口134中依序形成穿隧材料、儲存材料以及閘極材料。穿隧材料的材料例如為氧化矽。儲存材料例如為氮化矽。閘極材料例如是鎢。之後,進行回蝕刻製程,移除多個分隔溝槽中的穿隧材料、儲存材料以及閘極材料,以在多個水平開口134中形成多個穿隧層114、多個電荷儲存層112以及多個閘極層138。
在其他實施例中,於分隔溝槽(未示出)與水平開口134中除穿隧材料、儲存材料與閘極材料之外,在儲存材料與閘極材料之間還包括阻擋材料(blocking material)與阻障材料(barrier material)。阻擋材料的材料例如為介電常數大於7的高介電常數的材料,例如氧化鋁(Al 2O 3)、氧化鉿(HfO 2)、氧化鑭(La 2O 5)、過渡金屬氧化物、鑭系元素氧化物或其組合。阻障材料的材料例如為鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。穿隧材料、儲存材料、阻擋材料、阻障材料以及閘極材料經回蝕刻製程後,在每個水平開口134中形成穿隧層114、電荷儲存層112、阻擋層136、阻障層137以及閘極層138。阻擋層136、電荷儲存層112與穿隧層114合稱為電荷儲存結構140。以上視角度來看,電荷儲存結構140的穿隧層114的內側壁與通道柱116的外側壁共形且接觸。
至此,形成閘極堆疊結構150。閘極堆疊結構150,設置於介電基底100上,且包括多個閘極層138與多個絕緣層104彼此交互堆疊。
保護層110(示於圖2H與圖3H)可以選擇性被移除或保留下來。圖2I與圖3I示出保護層110在形成穿隧材料前被移除。然而,本發明並不以此為限。在其他實例中,保護層110可以被保留下來(未示出)。
本發明實施例之絕緣填充層124與絕緣柱128的材料不同。在一些實施例中,絕緣填充層124為氧化矽;絕緣柱128為氮化矽,如圖2A至圖2I以及圖3A至圖3I所示。在另一些實施例中,絕緣填充層124為氮化矽;絕緣柱128為氧化矽,如圖4A至圖4I以及圖5A至圖5I所示。圖4A至圖4I是依照本發明的實施例的一種3D AND快閃記憶體元件的製造流程的上視圖。圖4A至圖4I為沿著圖5A至圖5I中切線V-V’的上視圖。參照圖4A至圖4D以及圖5A至圖5D,依照上述方法形成絕緣填充層124與絕緣柱128,但絕緣填充層124為氮化矽;絕緣柱128為氧化矽。
參照圖4E至圖4G、圖5E至圖5G,形成孔洞OP1的拉回製程以及移除絕緣填充層124以形成孔130a與130b的蝕刻製程均可以採用濕式蝕刻製程,例如是以熱磷酸酸做為蝕刻劑。
在以上的實施例中,在開孔108之中先依序填入通道材料116’與絕緣填充層124,之後再形成做為源極柱與汲極柱的導體層。然而,本發明並不以此為限。在另一些實施例中,可以在開孔108形成後,先在開孔108中填入做為源極柱與汲極柱的導體層,再進行後續製程。
圖6A至圖6I是依照本發明的實施例的一種3D AND快閃記憶體元件的製造流程的上視圖。圖6A至圖6I為沿著圖7A至圖7I中切線VI-VI’的上視圖。
參照圖6A、圖6B、圖7A與圖7B,依照上述實施例的方法形成堆疊結構102與開孔108(如圖6A與圖7A所示),並在犧牲層106的側壁形成保護層110(如圖6B與圖7B所示)。
參照圖6C與圖7C,之後,在開孔108之中填入填充層。在一些實施例中,填充層為導體材料(即導體層132)。導體層132例如是摻雜的多晶矽。摻雜的多晶矽中的摻質例如是N型,例如是磷或砷。摻雜的多晶矽中的摻質例如是P型,例如是硼或三氟化硼。
參照圖6D與圖7D,經由微影與蝕刻製程在導體層132之中形成孔洞OP2’。孔洞OP2’例如是呈圓形。蝕刻製程例如是非等向性蝕刻製程,例如是乾式蝕刻製程。
參照圖6E與圖7E,進行拉回製程,例如是蝕刻製程,以移除孔洞OP2’周圍的部分的導體層132,以使得孔洞OP2’擴口成孔洞OP2。拉回製程可以是等向性蝕刻製程,例如是濕式蝕刻製程。相較於上述形成孔洞OP2’的乾式蝕刻製程,在形成孔洞OP2時採用濕式蝕刻製程,可以使得保護層110與導體層132之間具有較高的蝕刻選擇比。因此,在進行拉回製程期間,在開孔108的短軸方向上,可以保護層110做為停止層;而在開孔108的長軸方向上,則可以繼續蝕刻導體層132。因此,孔洞OP2具有長軸與短軸。孔洞OP2例如是具有橢圓形的輪廓,但本發明不限於此。在其他實施例中,孔洞OP2可具有其他形狀的輪廓,例如多邊形(未示出)。孔洞OP2在短軸的方向上的側壁裸露出保護層110;孔洞OP2在長軸的方向上的側壁裸露出導體層132;孔洞OP2的底部裸露出介電基底100。導體層132將用來形成源極柱與汲極柱。
由於通道材料116’(示於圖6F與圖7F)是在開孔108(示於圖6B與圖7B)形成之後才形成,因此,通道材料116’不會有遭受蝕刻破壞的問題。而在形成孔洞OP2的過程中,由於導體層132與保護層110之間具有較高的蝕刻選擇比,因此,在進行拉回製程後,縱使孔洞OP2裸露出保護層110,保護層110也幾乎不會遭受到破壞,而具有平滑的側壁。後續形成在孔洞OP2所裸露出保護層110的側壁上的通道柱116(圖6H與圖7H)將做為通道區。
參照圖6F、圖6G、圖7F與圖7G,在導體層132上以及孔洞OP2之中形成通道材料116’。接著,在孔洞OP2之中形成絕緣材料,例如是氧化矽,以將孔洞OP2完全封口。在經由乾蝕刻或濕蝕刻製程將絕緣材料回蝕至通道材料116’的表面裸露出來,以形成絕緣柱128。由於通道材料116’是形成在保護層110的平滑側壁上,因此,所形成的通道材料116’與保護層110接觸的部分(將做為通道區)也具有平滑的側壁。絕緣柱128將填充層(導體層132)分為二子填充層,該二子填充層形成導體柱132a與132b,如圖6H與圖7H所示。
參照圖6H與圖7H,經由乾蝕刻或濕蝕刻製程將通道材料116’以及導體層132回蝕至堆疊結構102的表面裸露出來,以形成通道柱116以及導體柱132a與132b。通道柱116環繞在絕緣柱128的側壁。導體柱132a與132b可分別做為源極柱與汲極柱。導體柱132a與132b被絕緣柱128分隔。導體柱132a與132b的一側的側壁與通道柱116電性連接;導體柱132a與132b的另一側的側壁與保護層110接觸。
之後,參照圖6I與圖7I,依照上述的方法進行取代製程。在一些實施例中,取代製程將犧牲層106取代為穿隧層114、電荷儲存層112以及閘極層138。在另一些實施例中,取代製程將犧牲層106取代為穿隧層114、電荷儲存層112、阻擋層136、阻障層137以及閘極層138。同樣地,保護層110可以選擇性被移除(如圖6I與圖7I所示)或保留下來(未示出)。導體柱32a或32b的一側壁SW1分別與通道層116電性連接,導體柱32a或32b的另一側壁SW2分別與穿隧層114接觸。在一些實施例中,通道層116與穿隧層114接觸的部分做為通道區,其具有平滑的側壁。第一導體柱132a和第二導體柱132b的體積與通道柱116的第二部分P2和電荷儲存結構140之間的空間容積大致相同。
在以上的實施例中,電荷儲存層112與穿隧層114是形成在水平開口134中。然而,本發明並不以此為限。在其他實施例中,電荷儲存層112與穿隧層114也可以在開孔108形成之後,且在通道材料116’形成之前形成。以上的實施例是以3D AND快閃記憶元件為例來說明。然而,本發明實施例不限於此。本發明也可以應用於3D NOR快閃記憶體。
本發明實施例的快閃記憶元件的通道柱從上視觀之具有長形的輪廓。通道柱中做為通道區的第一部分具有較小的曲率,可以降低電場的效應,減少電流在行進方向受到干擾,因此,可以提升記憶體的讀取的正確性。
本發明實施例的快閃記憶元件的製造方法,形成源極柱與汲極柱的蝕刻製程是在形成通道柱之前進行,因此,通道柱不會在形成源極柱與汲極柱的期間遭受蝕刻的破壞。
10:記憶陣列 12、112:電荷儲存層 14、114:穿隧層 16、116:通道柱 20:記憶單元 24、124:絕緣填充層 28、128:絕緣柱 132a、136b:導體柱 32a:源極柱/導體柱 32b:汲極柱/導體柱 36、136:阻擋層 38、138:閘極層/字元線 40、140:電荷儲存結構 50、100:介電基底 52、150:閘極堆疊結構 54、104:絕緣層 60:箭頭 102:堆疊結構 106:犧牲層 108:開孔 110:保護層 116’:通道材料 130a、130b:孔 134:水平開口 137:阻障層 A (i)、A (i+1):記憶陣列 BLOCK、BLOCK (i)、BLOCK (i+1):區塊 P1:第一部分 P2:第二部分 SW1、SW2:側壁 SP ( i ) n、SP (i) n+1、SP ( i+1 ) n、SP (i+1) n+1:源極柱 DP (i) n、DP i) n+1、DP i+1) n、DP (i+1) n+1:源極柱 BL n、BL n+1:位元線 WL (i) m、WL (i) m+1、WL (i+1) m、WL (i+1) m+1:字元線 OP1’、OP1、OP2’、OP2:孔洞 X、Y、Z:方向 I-I’、II-II’、III-III’:切線 R1:第一區 R2:第二區
圖1A示出根據一些實施例的3D AND快閃記憶體陣列的電路圖。 圖1B是依照本發明的一些實施例的一種記憶陣列的局部三維視圖。 圖1C為沿著圖1B中切線II-II’的剖面示意圖。 圖1D是依照本發明的另一些實施例的一種記憶陣列的局部三維視圖。 圖1E為沿著圖1D中切線III-III’的剖面示意圖。 圖1F為沿著圖1B或圖1D中切線I-I’的剖面示意圖。 圖1G為沿著圖1B或圖1D中切線I-I’的剖面示意圖。 圖2A至圖2I是依照本發明的實施例的一種3D AND快閃記憶體元件的製造流程的上視圖。 圖3A至圖3I為沿著圖2A至圖2I中切線IV-IV’的剖面示意圖。圖4A至圖4I是依照本發明的實施例的一種3D AND快閃記憶體元件的製造流程的上視圖。 圖5A至圖5I為沿著圖4A至圖4I中切線V-V’的剖面示意圖。 圖6A至圖6I是依照本發明的實施例的一種3D AND快閃記憶體元件的製造流程的上視圖。 圖7A至圖7I為沿著圖6A至圖6I中切線VI-VI’的剖面示意圖。
12:電荷儲存層 14:穿隧層 16:通道柱 28:絕緣柱 32a:源極柱/導體柱 32b:汲極柱/導體柱 36:阻擋層 38:閘極層/字元線 40:電荷儲存結構 60:箭頭 P1:第一部分 P2:第二部分 R1:第一區 R2:第二區 L1:長度

Claims (18)

  1. 一種三維AND快閃記憶體元件,包括: 閘極堆疊結構,位於介電基底的表面上,其中所述閘極堆疊結構包括彼此交替堆疊的多個閘極層與多個絕緣層; 第一導體柱與第二導體柱,延伸穿過所述閘極堆疊結構, 絕緣柱,分隔所述第一導體柱與所述第二導體柱; 通道柱,延伸穿過所述閘極堆疊結構; 電荷儲存結構,位於所述閘極堆疊結構與所述通道柱之間,且所述通道柱、所述第一導體柱、所述第二導體柱與所述絕緣柱被圍在所述電荷儲存結構內,其中 所述通道柱包括: 第一部分,位於所述電荷儲存結構與所述絕緣柱之間;以及 第二部分,包括與所述第一導體柱電性連接的第一區以及與所述第二導體柱電性連接的第二區, 其中所述第一部分與所述第二部分相連且所述第一部分的曲率小於所述第二部分的曲率。
  2. 如請求項1所述的三維AND快閃記憶體元件,其中所述通道柱投影在所述介電基底的所述表面具有橢圓形輪廓。
  3. 如請求項2所述的三維AND快閃記憶體元件,其中所述第一導體柱與所述第二導體柱設置在所述橢圓形輪廓的長軸上。
  4. 如請求項1所述的三維AND快閃記憶體元件,其中所述通道柱與所述電荷儲存結構的穿隧層共形且接觸。
  5. 如請求項4所述的三維AND快閃記憶體元件,其中所述第一導體柱與所述第二導體柱位於所述絕緣柱與所述通道柱的所述第二部分之間。
  6. 如請求項5所述的三維AND快閃記憶體元件,其中所述第一導體柱和所述第二導體柱的體積與所述絕緣柱和所述通道柱的所述第二部分之間的空間的容積大致相同。
  7. 如請求項1所述的三維AND快閃記憶體元件,其中所述通道柱的內側壁與所述絕緣柱的外側壁共形。
  8. 如請求項7所述的三維AND快閃記憶體元件,其中所述第一導體柱與所述第二導體柱位於所述通道柱的所述第二部分與所述電荷儲存結構之間。
  9. 如請求項8所述的三維AND快閃記憶體元件,其中所述第一導體柱和所述第二導體柱的體積與所述通道柱的所述第二部分和所述電荷儲存結構之間的空間的容積大致相同。
  10. 一種三維AND快閃記憶體元件的製造方法,包括: 於介電基底的表面上形成堆疊結構,其中所述堆疊結構包括彼此交替堆疊的多個犧牲層與多個絕緣層; 於所述堆疊結構形成開孔; 於所述開孔中形成通道柱,所述通道柱包括第一部分與第二部分,其中所述第一部分的曲率小於所述第二部分的曲率; 於所述開孔中填入填充層; 於所述填充層形成第一孔洞並移除第一孔洞周圍的部分所述填充層而擴大形成第二孔洞; 於所述第二孔洞中填入絕緣材料以形成絕緣柱; 於所述絕緣柱兩側形成第一導體柱與第二導體柱; 移除所述多個犧牲層,以形成多個水平開口; 在所述多個水平開口中形成多個閘極層;以及 於所述多個閘極層與所述通道柱之間形成至少一電荷儲存結構。
  11. 如請求項10所述的三維AND快閃記憶體元件的製造方法,其中於所述開孔中形成所述通道柱至於所述第二孔洞中填入絕緣材料以形成所述絕緣柱的步驟包括: 以導體材料形成所述填充層;以及 在形成所述第二孔洞之後以通道材料覆蓋所述填充層及所述第二孔洞的內壁。
  12. 如請求項10所述的三維AND快閃記憶體元件的製造方法,其中於所述開孔中形成所述通道柱及所述開孔中填入所述填充層的步驟包括: 在所述堆疊結構上以及所述開孔內壁形成通道材料;以及 以絕緣填充材料形成所述填充層,且所述填充層覆蓋在所述通道材料上並填入於所述開孔中。
  13. 如請求項12所述的三維AND快閃記憶體元件的製造方法,其中於形成所述絕緣柱的步驟包括: 覆蓋所述絕緣材料於所述第二孔洞中的所述通道材料上,且所述通道柱的內側壁與所述絕緣柱的外側壁共形。
  14. 如請求項12所述的三維AND快閃記憶體元件的製造方法,其中: 於形成所述絕緣柱之後,移除所述填充層以使所述開孔被所述絕緣柱分隔成二隔間;以及 於所述二隔間中以導體材料形成所述第一導體柱與所述第二導體柱。
  15. 如請求項14所述的三維AND快閃記憶體元件的製造方法,其中所述導體材料填滿二隔間形成所述第一導體柱與所述第二導體柱。
  16. 如請求項13所述的三維AND快閃記憶體元件的製造方法,其中所述絕緣柱分隔所述填充層為二子填充層,該二子填充層形成所述第一導體柱與所述第二導體柱。
  17. 一種三維AND快閃記憶體元件,包括: 閘極堆疊結構,位於介電基底的表面上,其中所述閘極堆疊結構包括彼此交替堆疊的多個閘極層與多個絕緣層; 通道柱,延伸穿過所述閘極堆疊結構,其中所述通道柱投影在所述介電基底的所述表面上具有橢圓形輪廓; 電荷儲存結構,位於所述多個閘極層與所述通道柱之間; 絕緣柱,位於所述通道柱內; 源極柱與汲極柱,設置在所述橢圓形輪廓的長軸上,延伸穿過所述閘極堆疊結構,被所述電荷儲存結構環繞且被所述絕緣柱分隔,且與所述通道柱電性連接。
  18. 如請求項17所述的三維AND快閃記憶體元件,其中所述絕緣柱與所述電荷儲存結構投影在所述介電基底的所述表面上分別具有橢圓形輪廓。
TW111101397A 2022-01-13 2022-01-13 三維and快閃記憶體元件及其製造方法 TWI817319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111101397A TWI817319B (zh) 2022-01-13 2022-01-13 三維and快閃記憶體元件及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111101397A TWI817319B (zh) 2022-01-13 2022-01-13 三維and快閃記憶體元件及其製造方法

Publications (2)

Publication Number Publication Date
TW202329334A TW202329334A (zh) 2023-07-16
TWI817319B true TWI817319B (zh) 2023-10-01

Family

ID=88147527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101397A TWI817319B (zh) 2022-01-13 2022-01-13 三維and快閃記憶體元件及其製造方法

Country Status (1)

Country Link
TW (1) TWI817319B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264897A1 (en) * 2013-03-14 2014-09-18 Macronix International Co., Ltd. Damascene conductor for a 3d device
US9589979B2 (en) * 2014-11-19 2017-03-07 Macronix International Co., Ltd. Vertical and 3D memory devices and methods of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264897A1 (en) * 2013-03-14 2014-09-18 Macronix International Co., Ltd. Damascene conductor for a 3d device
US9589979B2 (en) * 2014-11-19 2017-03-07 Macronix International Co., Ltd. Vertical and 3D memory devices and methods of manufacturing the same

Also Published As

Publication number Publication date
TW202329334A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
US10957705B2 (en) Three-dimensional memory devices having a multi-stack bonded structure using a logic die and multiple three-dimensional memory dies and method of making the same
US10950627B1 (en) Three-dimensional memory device including split memory cells and methods of forming the same
CN115497952A (zh) 存储器元件及快闪存储器元件
TWI727761B (zh) 記憶元件及其製造方法
TWI785804B (zh) 三維and快閃記憶體元件及其製造方法
TWI817319B (zh) 三維and快閃記憶體元件及其製造方法
US11532570B2 (en) Three-dimensional memory device containing bridges for enhanced structural support and methods of forming the same
TW202345359A (zh) 電路結構、半導體元件及其製造方法
CN111341780B (zh) 一种3d nand存储器及其制造方法
US20230225126A1 (en) 3d and flash memory device and method of fabricating the same
TWI837642B (zh) 記憶體元件及其製造方法
TWI794974B (zh) 三維and快閃記憶體元件及其製造方法
TWI840172B (zh) 記憶體元件及其製造方法
TWI817369B (zh) 三維and快閃記憶體元件及其製造方法
TWI812164B (zh) 三維and快閃記憶體元件及其製造方法
TWI849885B (zh) 半導體元件及其製造方法
US20240324199A1 (en) Memory device and method of fabricating the same
TWI817485B (zh) 半導體元件、記憶體元件及其製造方法
TWI822311B (zh) 記憶體元件及其製造方法
TWI830427B (zh) 記憶體元件及其製造方法
TWI832643B (zh) 記憶裝置及其製造方法
TWI768969B (zh) 記憶體元件
EP4460163A1 (en) Semiconductor device and method of fabricating the same
TW202439937A (zh) 記憶體元件及其製造方法
US20230337426A1 (en) Memory device and method of fabricating the same