TWI792589B - 高分子電解質膜、製造其的方法、膜-電極組件以及燃料電池 - Google Patents

高分子電解質膜、製造其的方法、膜-電極組件以及燃料電池 Download PDF

Info

Publication number
TWI792589B
TWI792589B TW110136107A TW110136107A TWI792589B TW I792589 B TWI792589 B TW I792589B TW 110136107 A TW110136107 A TW 110136107A TW 110136107 A TW110136107 A TW 110136107A TW I792589 B TWI792589 B TW I792589B
Authority
TW
Taiwan
Prior art keywords
polymer electrolyte
electrolyte membrane
porous support
dispersion medium
ion conductor
Prior art date
Application number
TW110136107A
Other languages
English (en)
Other versions
TW202213846A (zh
Inventor
金娜玲
李瞳熏
李殷受
朴重華
李蕙松
Original Assignee
南韓商可隆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210127503A external-priority patent/KR20220043887A/ko
Application filed by 南韓商可隆股份有限公司 filed Critical 南韓商可隆股份有限公司
Publication of TW202213846A publication Critical patent/TW202213846A/zh
Application granted granted Critical
Publication of TWI792589B publication Critical patent/TWI792589B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

本發明是有關於一種製造高分子電解質膜之方法以及以其製造的高分子電解質膜、膜-電極組件以及燃料電池。所述方法包括以下步驟:(a)準備包含多個孔隙的多孔性支持體;(b)使離子導體分散於分散媒介來準備離子導體分散溶液;(c)使所述分散媒介與所述多孔性支持體接觸並在多孔性支持體上對分散媒介進行濕潤;以及(d)將離子導體分散溶液塗佈於所述分散媒介被濕潤的多孔性支持體,以將離子導體導入所述多孔性支持體的至少任一面。

Description

高分子電解質膜、製造其的方法、膜-電極組件 以及燃料電池
本發明是有關於一種製造高分子電解質膜之方法以及以其製造的高分子電解質膜,更詳細而言是有關於一種在提高離子導體的含浸性的同時離子電導率性能優異的製造高分子電解質膜之方法以及以其製造的高分子電解質膜。
燃料電池是一種將如甲醇、乙醇、天然氣等烴系列的燃料物質內所含的氫與氧的氧化/還原反應等化學反應能直接轉化為電能的具有發電系統的電池,由於高能效性與污染物排出少的環保特徵,作為可替代化石能的下一代清潔能源而備受青睞。
此種燃料電池具有由單位電池的積層形成的堆(stack)構成而可進行各種範圍的輸出的優點,且與小型鋰電池相比表現出4倍至10倍的能量密度,因此作為小型及移動用便攜電源而受到關注。
燃料電池中實質上產生電的堆具有積層有數個至數十個 由膜-電極組件(Membrane-Electrode Assembly,MEA)與分隔件(Separator)(或稱為雙極板(Bipolar Plate))形成的單位電池的結構,且膜-電極組件一般而言形成將電解質膜置於之間並在其兩側分別配置氧化極(陽極(Anode)或燃料極)與還原極(陰極(Cathode)或空氣極)的結構。
燃料電池根據電解質的狀態及種類可分為鹼性電解質燃料電池、高分子電解質燃料電池(Polymer Electrolyte Membrane Fuel Cell,PEMFC)等,其中,由於高分子電解質燃料電池具有小於100℃的低作業溫度、啟動與響應特性快、以及耐久性優異等優點,作為便攜式、車輛用及家庭用電源裝置而備受青睞。
作為高分子電解質燃料電池的代表性例子,可列舉使用氫氣作為燃料的氫離子交換膜燃料電池(質子交換交換膜燃料電池(Proton Exchange Membrane Fuel Cell,PEMFC))、使用液相甲醇作為燃料的直接甲醇型燃料電池(Direct Methanol Fuel Cell,DMFC)等。
對高分子電解質燃料電池中發生的反應進行概括,首先,在將氫氣等燃料供應至氧化極時在氧化極中藉由氫的氧化反應生成氫離子(H+)與電子(e-)。生成的氫離子藉由高分子電解質膜傳遞至還原極,生成的電子藉由外部電路傳遞至還原極。在還原極中供應氧,氧與氫離子及電子結合,藉由氧的還原反應生成水。
另一方面,為了實現高分子電解質燃料電池的商業化, 仍存在許多應解決的技術障礙,必不可少的改進因素有實現高性能、長壽命化、降低生產成本等。對此造成最大影響的構成要素是膜-電極組件,且其中,高分子電解質膜是對膜-電極組件的性能與價格帶來最大影響的關鍵因素之一。
作為所述高分子電解質燃料電池運行所需的高分子電解質膜的要求條件有高氫離子電導率、化學穩定性、低燃料透過性、高機械強度、低含水率、優異的尺寸穩定性等。先前的高分子電解質膜往往難以在特定溫度及相對濕度環境下、尤其是在高溫/低加濕條件下正常表現出高性能。因此,應用先前的高分子電解質膜的高分子電解質燃料電池的使用範圍受到限制。
為了同時確保此種高分子電解質膜的性能及耐久性、機械、化學物性,已經進行應用增強材料的強化複合膜型的高分子電解質膜的開發。然而,在導入增強材料以提高電解質膜的機械耐久性時,電阻損失增加並且電解質膜的離子電導率降低,因此具有可能使包括增強材料的燃料電池的性能下降的缺點。
另一方面,強化複合膜可藉由將多孔性增強材料浸入分散有離子導體的分散溶液中製造,或者額外在一面或兩面額外附加離子導體層來形成。
此時,在離子導體並未充分含浸於多孔性增強材料的情況下,存在以下問題:填充的孔隙會妨礙氫離子傳導並降低氫離子電導率,此為使燃料電池的性能下降的原因。
因此,為了提高高分子電解質膜的機械耐久性同時防止 氫離子電導率下降,提高強化複合膜的含浸率重要,且為了使高分子電解質膜商品化,需要提高高性能與含水乾燥時的尺寸穩定性,以提高機械耐久性,為此,要求確保強化複合膜的最適結構並同時提高離子電導率。
本發明的目的是提供高分子電解質膜的製造方法,所述製造方法可使形態穩定性優異,在提高電解質膜的機械耐久性的同時提高高分子電解質膜的含浸率,離子電導率優異且降低氫透過率。
本發明的另一目的是提供藉由所述高分子電解質膜的製造方法製造的高分子電解質膜。
本發明的又一目的是提供包括所述高分子電解質膜的膜-電極組件。
本發明的又一目的是提供包括所述膜-電極組件的燃料電池。
本發明的一實施例提供一種高分子電解質膜的製造方法,所述製造方法包括以下步驟:(a)準備包含多個孔隙的多孔性支持體;(b)使離子導體分散於分散媒介來準備離子導體分散溶液;(c)使所述分散媒介與所述多孔性支持體接觸並在多孔性支 持體上對分散媒介進行濕潤;以及(d)將離子導體分散溶液塗佈於所述分散媒介被濕潤的多孔性支持體,以將離子導體導入所述多孔性支持體的至少任一面。
所述(c)步驟中,氣體狀態的分散媒介可與多孔性支持體接觸。
所述(c)步驟可在供應氣體狀態的分散媒介的腔室(chamber)中執行。
所述腔室的內部溫度可為60℃至100℃。
所述腔室內部的相對濕度(RH)可為50%至120%。
所述(c)步驟的分散媒介與多孔性支持體可接觸0.1分鐘至60分鐘時間。
所述分散媒介可包括水、乙醇(ethanol)、異丙醇(isopropyl alcohol)、正丙醇(n-propyl alcohol)、丁醇(butyl alcohol)、二甲基乙醯胺(N,N-dimethylacetamide)、二甲基甲醯胺(N,Ndimethyl formamide)、二甲基亞碸(dimethylsulphoxide)、N-甲基吡咯啶酮(N-methyl-2-pyrolidone)、磷酸三乙酯(triethylphosphate)、甲基乙基酮(methylethylketone)、四氫呋喃(tetrahydrofuran)、丙酮(acetone)及其等的組合。
所述高分子電解質膜的製造方法可更包括以下步驟:(e)在40℃至120℃下對導入離子導體的多孔性支持體進行乾燥。
本發明的又一實施例提供一種藉由所述製造方法製造而成的高分子電解質膜。
本發明的又一實施例提供一種膜-電極組件,所述膜-電極組件包括:彼此對向定位的陽極電極與陰極電極,以及位於所述陽極電極與陰極電極之間的所述高分子電解質膜。
本發明的又一實施例提供一種包括所述膜-電極組件的燃料電池。
根據本發明的高分子電解質膜的製造方法可實現改善多孔性支持體的離子導體含浸性,在提高電解質膜的機械耐久性的同時使離子電導率優異的高分子電解質膜。
20、20':電極
30、30':觸媒層
40、40':電極基材
50:高分子電解質膜
100:膜-電極組件
200:燃料電池
210:燃料供應部
220:改質部
230:堆
231:第一供應管
232:第二供應管
233:第一排出管
234:第二排出管
240:氧化劑供應部
圖1是概略性示出根據本發明一實施例的膜-電極組件的剖面圖。
圖2是示出根據本發明一實施例的燃料電池的整體構成的示意圖。
以下,對本發明的實施例詳細地進行說明,以使本發明所屬技術領域內具有通常知識者可容易地實施。然而,本發明可實現為各種不同的形態,且不限於此處說明的實施例。
本說明書中使用的用語及詞語是考慮到實施例中的功能而選擇的用語,該用語的含義可根據發明的意圖或習慣等而不同。因此,以下實施例中所使用的用語當在本說明書中具體定義 時遵循其定義,在沒有具體定義時應理解為本領域技術人員普遍認知的含義。
為了明確地表現圖中的各個層及區域,將厚度放大示出,貫穿說明書全文,對相似的部分賦予相同的圖示符號。在記載層、膜、區域、板等部分位於另一部分「上」時,不僅包括其直接位於另一部分「上」的情況,亦包括中間存在又一部分的情況。相反,在某一部分直接位於另一部分「上」時,意指中間不存在其他部分。
以下,對根據一實施例的高分子電解質膜的製造方法進行說明。
本發明是有關於一種高分子電解質膜的製造方法以及以其製造的高分子電解質膜,所述製造方法可將在燃料電池的驅動過程中由反復加濕、乾燥條件引起的電解質膜的物理耐久性下降最小化,並提高電解質膜的離子電導率及性能。
具體而言,根據本發明一實施例的高分子電解質膜的製造方法包括以下步驟:(a)準備包含多個孔隙的多孔性支持體;(b)使離子導體分散於分散媒介來準備離子導體分散溶液;(c)使所述分散媒介與所述多孔性支持體接觸並在多孔性支持體上對分散媒介進行濕潤;以及(d)將離子導體分散溶液塗佈於所述分散媒介被濕潤的多孔性支持體,以將離子導體導入所述多孔性支持體的至少任一面。
首先,準備包括多個孔隙的多孔性支持體。
作為一例,所述多孔性支持體可包括對熱及化學分解的抵抗性優異的高度氟化聚合物,較佳為全氟化聚合物。例如,所述多孔性支持體可為聚四氟乙烯(PTFE)或四氟乙烯與CF2=CFCnF2n+1(n是1至5的實數)或CF2=CFO-(CF2CF(CF3)O)mCnF2n+1(m是0至15的實數,n是1至15的實數)的共聚物。
所述PTFE已用於商業且可適合用作所述多孔性支持體。另外,具有高分子原纖維(fibril)的微結構或節點藉由原纖維彼此連接的微結構的發泡聚四氟乙烯聚合物(e-PTFE)亦可適合用作所述多孔性支持體,且具有不存在所述節點的高分子原纖維的微結構的膜亦可適合用作所述多孔性支持體。
包含所述全氟化聚合物的多孔性支持體在潤滑劑的存在下將分散聚合的PTFE壓縮成形於膠帶,並拉伸藉此所得的材料,從而可製造更多孔且更強的多孔性支持體。另外,亦可藉由在超過所述PTFE的熔點(約342℃)的溫度下對所述e-PTFE進行熱處理來增加PTFE的非晶質含有率。藉由所述方法製造的e-PTFE膜可具有具有各種直徑的微氣孔及孔隙率。藉由所述方法製造的e-PTFE膜可具有至少35%的孔隙,且所述微氣孔的直徑可為約0.01μm至1μm。
作為所述多孔性支持體的另一例示,所述多孔性支持體可為非織纖維網(nonwoven fibrous web)。
所述非織纖維網是指夾於其間(interlaid)具有個個纖維或長絲結構的片材,但並非與織造織物相同的方式。所述非織纖 維網可藉由選自由梳理(carding)、加網(garneting)、氣流成網(air-laying)、濕法成網(wet-laying)、熔噴(melt blowing)、紡黏(spunbonding)及縫編(stitch bonding)組成的群組中的任一種方法製造。
所述纖維可包含一種以上的聚合物材料,且只要是通常用作纖維形成聚合物材料者則可使用任一者,具體而言,可使用烴系纖維形成聚合物材料。例如,所述纖維形成聚合物材料包括選自由以下組成的群組中的任一者:聚烯烴,例如聚丁烯、聚丙烯及聚乙烯;聚酯,例如聚對苯二甲酸乙二醇酯及聚對苯二甲酸丁二醇酯;聚醯胺(尼龍-6及尼龍-6,6);聚胺基甲酸酯;聚丁烯;聚乳酸;聚乙烯醇;聚苯硫醚;聚碸;流體結晶聚合物;聚乙烯-共-醋酸乙烯酯;聚丙烯腈;環狀聚烯烴;聚甲醛;聚烯烴系熱塑性彈性聚合物;以及其等的組合,但不限於此。
作為所述非織纖維網形態的多孔性支持體的又一例示,所述多孔性支持體可包括奈米纖維以包括多個氣孔的不織布形態整合的奈米網。
所述奈米纖維可較佳為使用表現出優異的耐化學性且具有疏水性,不必擔心在高濕環境中由水分引起的形態變形的烴系高分子。具體而言,作為所述烴系高分子,可使用選自由以下組成的群組中者:尼龍、聚醯亞胺、聚芳醯胺、聚醚醯亞胺、聚丙烯腈、聚苯胺、聚環氧乙烷、聚萘二甲酸乙二醇酯、聚對苯二甲酸丁二醇酯、丁苯橡膠、聚苯乙烯、聚氯乙烯、聚乙烯醇、聚偏 氟乙烯、聚乙烯丁烯、聚胺基甲酸酯、聚苯並噁唑、聚苯並咪唑、聚醯胺醯亞胺、聚對苯二甲酸乙二醇酯、聚苯硫醚、聚乙烯、聚丙烯、其等的共聚物及其等的混合物,其中可較佳為使用耐熱性、耐化學性及形態穩定性更優異的聚醯亞胺。
所述奈米網是將藉由靜電紡絲製造的奈米纖維排列的奈米纖維的集合體。此時,所述奈米纖維在考慮到所述奈米網的多孔度及厚度,使用掃描電子顯微鏡(Scanning Electron Microscope)(JSM6700F、JEOL)測定50根纖維的直徑並計算其平均值時,較佳為具有40nm至5,000nm的平均直徑。如果所述奈米纖維的平均直徑小於40nm時,則所述多孔性支持體的機械強度可能下降,在所述奈米纖維的平均直徑超過5,000nm時,則多孔度顯著降低並且厚度可能增加。
所述非織纖維網基重(basic weight)可為5mg/cm2至30mg/cm2。在所述非織纖維網的基重小於5mg/cm2時,會形成肉眼可見的氣孔且可能難以作為多孔性支持體發揮作用,而在超過30mg/cm2時,可能製造為如幾乎不形成氣孔的紙或織物的形態。
所述多孔性支持體的多孔度可為45%以上,具體而言可為60%以上。另一方面,所述多孔性支持體較佳為具有90%以下的多孔度。如果所述多孔性支持體的多孔度超過90%,則形態穩定性降低,從而後續製程可能無法順利進行。所述多孔度可藉由根據下述數學式1空氣體積與所述多孔性支持體的總體積之比來計算。此時,所述總體積是藉由製造矩形形態的樣品並測定寬度、 長度、厚度來計算,空氣體積可藉由測定樣品的質量然後自總體積減去根據密度逆運算所得的高分子體積而得到。
[數學式1]多孔度(%)=(多孔性支持體內空氣的體積/多孔性支持體的總體積)×100
所述多孔性支持體的厚度可為0.1μm至100μm,具體而言可為1μm至50μm。在所述多孔性支持體的厚度小於0.1μm時,由於包括其的電解質膜的機械強度降低而物理耐久性可能會降低,且由於燃料電池驅動系統被加濕,電解質膜可能會膨潤而穩定性下降。在所述多孔性支持體的厚度超過100μm時,電解質膜的電阻損失增加,且輕量化及積體化可能降低。
接下來,將離子導體分散於分散媒介來準備離子導體分散溶液。
所述離子導體可為如質子等具有陽離子交換基的陽離子導體,或為如羥基離子、碳酸根或碳酸氫根等具有陰離子交換基的陰離子導體。
所述陽離子交換基可為選自由磺酸基、羧基、硼酸基、磷酸基、醯亞胺基、磺醯亞胺基、磺醯胺基、磺醯氟基及其等的組合組成的群組的任一者,通常可為磺酸基或羧基。
所述陽離子導體包含所述陽離子交換基,可列舉在主鏈含有氟的氟系高分子;苯並咪唑、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚縮醛、聚乙烯、聚丙烯、丙烯酸樹脂、聚酯、聚碸、聚 醚、聚醚醯亞胺、聚酯、聚醚碸、聚醚醯亞胺、聚碳酸酯、聚苯乙烯、聚苯硫醚、聚醚醚酮、聚醚酮、聚芳基醚碸、聚磷腈或聚苯喹喔啉等烴系高分子;聚苯乙烯-接枝-乙烯四氟乙烯共聚物或聚苯乙烯-接枝-聚四氟乙烯共聚物等部分氟化的高分子;磺醯亞胺等。
更具體而言,在所述陽離子導體為氫離子陽離子導體的情況下,所述高分子在側鏈可包括選自由磺酸基、羧酸基、磷酸基、膦酸基及其等的衍生物組成的群組的陽離子交換基,作為其具體例子,可列舉:氟系高分子,包括聚(全氟磺酸)、聚(全氟羧酸)、含有磺酸基的四氟乙烯與氟乙烯基醚的共聚物、脫氟硫化聚醚酮、或其等的混合物;烴系高分子,包括磺化聚醯亞胺(sulfonated polyimide,S-PI)、磺化聚芳基醚碸(sulfonated polyarylethersulfone,S-PAES)、磺化聚醚醚酮(sulfonated polyetheretherketone,SPEEK)、磺化聚苯並咪唑(sulfonated polybenzimidazole,SPBI)、磺化聚碸(sulfonated polysulfone,S-PSU)、磺化聚苯乙烯(sulfonated polystyrene,S-PS)、磺化聚磷腈(sulfonated polyphosphazene)、磺化聚喹喔啉(sulfonated polyquinoxaline)、磺化聚酮(sulfonated polyketone)、磺化聚苯醚(sulfonated polyphenylene oxide)、磺化聚醚碸(sulfonated polyether sulfone)、磺化聚醚酮(sulfonated polyether ketone)、磺化聚苯碸(sulfonated polyphenylene sulfone)、磺化聚苯硫醚(sulfonated polyphenylene sulfide)、磺化聚苯硫醚碸(sulfonated polyphenylene sulfide sulfone)、磺化聚苯硫醚碸腈(sulfonated polyphenylene sulfide sulfone nitrile)、磺化聚伸芳基醚(sulfonated polyarylene ether)、磺化聚伸芳基醚腈(sulfonated polyarylene ether nitrile)、磺化聚伸芳基醚醚腈(sulfonated polyarylene ether ether nitrile)、聚伸芳基醚碸酮(sulfonated polyarylene ether sulfone ketone)以及其等的混合物,但不限於此。
所述陰離子導體是可移送羥基離子、碳酸根或碳酸氫根等陰離子的聚合物,而陰離子導體可以氫氧化物或鹵化物(通常是氯化物)形態在市場上購得,而所述陰離子導體可用於工業淨水(water purification)、金屬分離或觸媒製程等。
作為所述陰離子導體,通常可使用摻雜金屬氫氧化物的聚合物,具體而言,可使用摻雜金屬氫氧化物的聚(醚碸)、聚苯乙烯、乙烯基系聚合物、聚(氯乙烯)、聚(偏氟乙烯)、聚(四氟乙烯)、聚(苯並咪唑)或聚(乙二醇)等。
具體而言,所述離子導體可為氟化高分子,具體而言,可為包括高度氟化的側鏈的高度氟化高分子。所述用語「高度氟化」是指鹵素及氫原子的總數的至少90莫耳%以上被氟原子取代。
所述高度氟化高分子包括高分子骨架及連接至所述骨架的環狀側鏈,所述側鏈可具有所述離子交換基。例如,可為第一氟化乙烯基單體及具有磺酸基的第二氟化乙烯基單體的共聚物。
所述第一氟化乙烯基單體可為四氟乙烯(TFE)、六氟丙烯、氟乙烯、偏氟乙烯、三氟乙烯、三氟氯乙烯、全氟(烷基乙烯 基醚)及其等的混合物,具有所述磺酸基的第二氟化乙烯基單體可為具有磺酸基的各種氟化乙烯基醚類。
作為用於製造所述離子導體分散溶液或分散液的分散媒介,只要是能夠使離子導體分散來製造均勻的組成的分散液則不進行限制,但可使用選自以下中者:例如水、乙醇(ethanol)、異丙醇(isopropyl alcohol)、正丙醇(n-propyl alcohol)、丁醇(butyl alcohol)、二甲基乙醯胺(N,N-dimethylacetamide)、二甲基甲醯胺(N,Ndimethyl formamide)、二甲基亞碸(dimethylsulphoxide)、N-甲基吡咯啶酮(N-methyl-2-pyrolidone)、磷酸三乙酯(triethylphosphate)、甲基乙基酮(methylethylketone)、四氫呋喃(tetrahydrofuran)、丙酮(acetone)及其等的組合。使所述離子導體分散於溶劑的方法可使用先前通常所熟知的方法,因此省略具體的說明。
進而,使所述分散媒介與所述多孔性支持體接觸並在多孔性支持體上對分散媒介進行濕潤。
為了實現高性能的燃料電池,在為確保高分子電解質膜的耐久性、機械物性、化學物性的同時應用增強材料的所謂的強化複合膜型高分子電解質的情況,藉由在所述增強材料即支持體的微氣孔形成離子導體,從而可確保電解質膜的離子電導率,但離子導體並未完全含浸於支持體的微氣孔中,從而產生死孔(dead pore),因此存在高分子電解質膜的性能下降的問題。
本發明的高分子電解質膜的製造方法為了確保電解質膜 的物理特性、機械特性,在向電解質膜導入多孔性支持體的同時將離子導體導入至所述多孔性支持體之前,包括使離子導體分散溶液的分散介質首先與所述多孔性支持體接觸並將多孔性支持體濕潤的步驟,因此可使離子導體含浸於多孔性支持體的內部氣孔,從而減少死孔的產生,提高離子導體的遷移率(mobility)並提高自支持體表面的含浸速度。
在一實施例中,所述支持體可與氣體狀態的分散媒介接觸以對多孔性支持體進行濕潤。藉由對所述分散媒介進行加熱,可確保氣體狀態的分散媒介,且根據分散媒介的種類,各分散媒介的沸點(boiling point,BP)可能不同,因此考慮到欲導入的離子導體的特性與分散媒介的沸點,適當選擇分散媒介的加熱溫度。如上所述,在藉由氣體狀態的分散媒介對多孔性支持體進行潤濕時,直至多孔性支持體的微氣孔內部均被分散媒介潤濕,從而可增加離子導體分散溶液的含浸性(wetting),藉此可不降低高分子電解質膜的離子電導率,並防止電阻損失。
在一實施例中,所述潤濕過程可在供應氣體狀態的分散媒介的腔室(chamber)中執行。腔室是指將所述多孔性支持體定位於內部空間並進行被氣體狀態的分散媒介潤濕的工作空間。在所述腔室內部可構成有可引入多孔性支持體的移送部或可放置多孔性支持體的平台等。另外,在腔室中亦可配置能夠加熱內部的加熱器及控制溫度的裝置,且可包括向腔室外部供應分散媒介的供應部、真空泵、真空管線等。
在一實施例中,腔室內部的相對濕度(RH)可為50%至120%,較佳可為70%至120%。如果腔室內部的相對濕度小於50%,則氣體狀態的分散媒介可能無法傳遞至多孔性支持體內部的微氣孔中,因此離子導體分散溶液的含浸性可能降低,且在腔室內部的相對濕度超過120%時,由於腔室內部的壓力過度地上升而可能存在穩定性問題,以氣體狀態供應的分散媒介因高蒸氣壓而可能再次冷凝並液化,因此在所述範圍內適當地調節腔室內部的相對濕度。
在一實施例中,腔室內部的溫度可為40℃至120℃,且較佳可為50℃至100℃。在腔室內部的溫度小於40℃時,分散媒介不會氣化,因此可能難以確保氣體狀態的分散媒介,因此存在離子導體的含浸性降低的擔憂,且在腔室內部的溫度超過120℃時,由於多孔性支持體熔融而微氣孔堵塞,或者可能由於氣體狀態的分散媒介燃燒而存在穩定性問題,因此在所述範圍內適當地調節腔室內部的溫度。
在一實施例中,所述分散媒介與所述多孔性支持體可接觸0.1分鐘至60分鐘時間。在分散媒介與多孔性支持體的接觸時間小於0.1分鐘時,分散媒介與多孔性支持體的接觸時間短而多孔性支持體可能無法被分散媒介充分潤濕,因此離子導體分散溶液可能無法充分含浸於多孔性支持體,且在分散媒介與多孔性支持體的接觸時間超過60分鐘時,由於多孔性支持體的過度潤濕,因此在離子導體分散溶液含浸之後分散媒介可能會殘留於多孔性支 持體。
接著,將離子導體分散溶液塗佈於所述分散媒介被濕潤的多孔性支持體,並將離子導體導入所述多孔性支持體的至少任一面。將離子導體引入多孔性支持體的方法可使用將離子導體分散溶液旋塗至多孔性支持體的方法,亦可經由將多孔性支持體放入或含浸於離子導體分散溶液以使用離子導體填充多孔性支持體的孔隙的步驟來進行。
在一實施例中,可更包括在40℃至120℃下對導入有所述離子導體的多孔性支持體進行乾燥的步驟,例如可在50℃至120℃下,更佳為在60℃至120℃的溫度下執行。此時,所述乾燥溫度可定義為為了進行乾燥而供應的熱介質的溫度或在乾燥製程中的熱介質及乾燥反應器內部的溫度。在乾燥溫度低而乾燥時間變長的情況下,製程效率性降低,因此為了防止此情況,乾燥溫度較佳為40℃以上。在所述乾燥步驟中,對乾燥時間沒有特別限制,但考慮到製程效率及高分子電解質膜的物性等,在所述乾燥溫度下可調節為10分鐘至60分鐘。
根據本發明又一實施例的高分子電解質膜可為藉由所述製造方法製造的高分子電解質膜。
根據所述一實施例的高分子電解質膜可包括具有多個孔隙的多孔性支持體、位於所述多孔性支持體的至少任一面的離子導體。由於所述多孔性支持體及離子導體與上述內容相同,因此以下省略具體說明。
根據本發明一實施例的高分子電解質膜為了確保電解質膜的物理特性、機械特性,在電解質膜包括多孔性支持體的同時將離子導體導入多孔性支持體之前,在首先接觸離子導體的分散溶液所使用的溶劑並將多孔性支持體濕潤的狀態下使離子導體含浸,因此離子導體含浸至多孔性支持體的內部氣孔中,從而減少死孔的產生,提高離子導體的遷移率(mobility)並提高離子導體自支持體表面的含浸速度,因此可實現優異性能的高分子電解質膜。
根據本發明的又一實施例,提供包括所述高分子電解質膜的膜-電極組件及燃料電池。
具體而言,所述膜-電極組件包括彼此對向定位的陽極電極與陰極電極以及位於所述陽極電極與陰極電極之間的所述高分子電解質膜。
圖1是概略性示出根據本發明一實施例的膜-電極組件的剖面圖。參照圖1進行說明,所述膜-電極組件100包括所述高分子電解質膜50及分別配置於所述高分子電解質膜50的兩面的所述燃料電池用電極20、20'。所述電極20、20'包括電極基材40、40'以及形成於所述電極基材40、40'表面的觸媒層30、30',且亦可包括含有碳粉、炭黑等導電微細粒子的微氣孔層(未示出),以使所述電極基材40、40'中的物質容易地擴散至所述電極基材40、40'與所述觸媒層30、30'之間。
在所述膜-電極組件100中,將產生由配置於所述高分子 電解質膜50的一面並經由所述電極基材40傳遞至所述觸媒層30的燃料生成氫離子與電子的氧化反應的電極20稱為陽極電極,並將產生由配置於所述高分子電解質膜50的另一面、藉由所述高分子電解質膜50接收的氫離子與經由電極基材40'傳遞至所述觸媒層30'的氧化劑生成水的還原反應的電極20'稱為陰極電極。
所述陽極電極20及陰極電極20'的觸媒層30、30'包括觸媒。作為所述觸媒,任何可參與電池的反應並用作普通的燃料電池的觸媒者均可使用。具體而言,較佳為可使用鉑系金屬。
所述鉑系金屬可包括選自由以下組成的群組中的一者:鉑(Pt)、鈀(Pd)、釕(Ru)、銥(Ir)、鋨(Os)、鉑-M合金(所述M為選自由鈀(Pd)、釕(Ru)、銥(Ir)、鋨(Os)、鎵(Ga)、鈦(Ti)、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、銀(Ag)、金(Au)、鋅(Zn)、錫(Sn)、鉬(Mo)、鎢(W)、鑭(La)及銠(Rh)組成的群組的任一種以上)、非鉑合金及其等的組合,更佳為可使用選自所述鉑系觸媒金屬群組的兩種以上金屬的組合,但不限於此,並且只要是本技術領域中可使用的鉑系觸媒金屬則可不受限制地使用。
具體而言,所述鉑合金可將選自由以下組成的群組中的材料單獨使用或混合兩種以上使用:Pt-Pd、Pt-Sn、Pt-Mo、Pt-Cr、Pt-W、Pt-Ru、Pt-Ru-W、Pt-Ru-Mo、Pt-Ru-Rh-Ni、Pt-Ru-Sn-W、Pt-Co、Pt-Co-Ni、Pt-Co-Fe、Pt-Co-Ir、Pt-Co-S、Pt-Co-P、Pt-Fe、Pt-Fe-Ir、Pt-Fe-S、Pt-Fe-P、Pt-Au-Co、Pt-Au-Fe、Pt-Au-Ni、Pt-Ni、 Pt-Ni-Ir、Pt-Cr、Pt-Cr-Ir及其等的組合。
另外,所述非鉑合金可將選自由以下組成的群組中的材料單獨使用或混合兩種以上使用:Ir-Fe、Ir-Ru、Ir-Os、Co-Fe、Co-Ru、Co-Os、Rh-Fe、Rh-Ru、Rh-Os、Ir-Ru-Fe、Ir-Ru-Os、Rh-Ru-Fe、Rh-Ru-Os及其等的組合。
此種觸媒可以觸媒本身(黑色)使用,且亦可擔載於載體使用。
所述載體可選自碳系載體、氧化鋯、氧化鋁、二氧化鈦、二氧化矽、二氧化鈰等多孔性無機氧化物、沸石等。所述碳系載體可選自以下材料:石墨、超P(super P)、碳纖維(carbon fiber)、碳片(carbon sheet)、炭黑(carbon black)、科琴黑(Ketjen Black)、乙炔黑(Denka black)、乙炔炭黑(acetylene black)、碳奈米管(carbon nano tube,CNT)、碳球(carbon sphere)、碳色帶(carbon ribbon)、富勒烯(fullerene)、活性炭、碳奈米纖維、碳奈米線、碳奈米球、碳奈米角、碳奈米籠、碳奈米環、有序奈米多孔性碳(ordered nano-/meso-porous carbon)、碳氣凝膠、介孔碳(mesoporous carbon)、石墨烯、穩定碳、活性化碳及其等一種以上的組合,且不限於此,且可使用本技術領域中可用的載體而不進行限制。
所述觸媒粒子亦可位於載體的表面上,且亦可在填充載體的內部氣孔(pore)的同時滲透至載體內部。
在將所述載體所負載的貴金屬用作觸媒的情況下,可使 用可商購的市售者,或者亦可使貴金屬負載於載體來製造以進行使用。由於在所述載體負載貴金屬的製程是本領域廣泛熟知的內容,因此即使在本說明書中省略詳細說明,對本領域中的從業者而言亦是可容易理解的內容。
所述觸媒粒子可含有相較於所述觸媒電極30、30'的整體重量而為20重量%至80重量%,且在含有小於20重量%的情況下,存在活性下降的問題,而在超過80重量%的情況下,由於所述觸媒粒子的聚集而活性面積減小,反而使得觸媒活性可能下降。
另外,所述觸媒電極30、30'可包括黏合劑以提高所述觸媒電極30、30'的黏合力及氫離子的傳遞。作為所述黏合劑,較佳為使用具有離子導電性的離子導體,且由於對所述離子導體的說明與上述內容相同,因此省略重複的說明。
然而,所述離子導體可以單一物或混合物的形態使用,且出於選擇性進一步提高與高分子電解質膜50的黏合力的目的,亦可與非導電性化合物一起使用。較佳為調節其使用量進行使用以適於使用目的。
作為所述非導電性化合物,可使用選自由以下組成的群組的一種以上:聚四氟乙烯(PTFE)、四氟乙烯-六氟丙烯共聚物(FEP)、四氟乙烯-全氟烷基乙烯基醚共聚物(PFA)、乙烯/四氟乙烯/四氟乙烯(ethylene/tetrafluoroethylene(ETFE))、乙烯三氟氯乙烯共聚物(ECTFE)、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物(PVdF-HFP)、十二烷基苯磺酸及山梨糖醇(sorbitol)。
所述黏合劑可相較於所述觸媒電極30、30'的整體重量而包括20重量%至80重量%。在所述黏合劑的含量為小於20重量%的情況下,生成的離子不能很好地傳遞,在超過80重量%的情況下,由於氣孔不足而難以供應氫或氧(空氣),從而可能減少可進行反應的活性面積。
作為所述電極基材40、40',可使用多孔性導電基材,以使得可順利地供應氫或氧。作為其代表性的例子,可使用碳紙(carbon paper)、碳佈(carbon cloth)、碳氈(carbon felt)或金屬佈(是指由纖維狀態的金屬佈形成的多孔性膜或在由高分子纖維形成的佈的表面形成的金屬膜)),但不限於此。另外,所述電極基材40、40'較佳為使用氟系樹脂進行防水處理,從而可防止由於驅動燃料電池時產生的水而使反應物擴散效率降低。作為所述氟系樹脂,可使用聚四氟乙烯、聚偏氟乙烯、聚六氟丙烯、聚全氟烷基乙烯基醚、聚全氟磺醯氟烷氧基乙烯基醚、氟化乙烯丙烯(Fluorinated ethylene propylene)、聚氯三氟乙烯或其等的共聚物。
另外,亦可進一步包括用於增強反應物在所述電極基材40、40'中的擴散效果的微氣孔層(microporous layer)。此微氣孔層通常為粒徑小的導電粉末,例如碳粉、炭黑、乙炔黑、活性炭、碳纖維、富勒烯(fullerene)、碳奈米管、碳奈米線、碳奈米角(carbon nano-horn)或碳奈米環(carbon nano ring)。
所述微氣孔層藉由在所述電極基材40、40'塗覆包括導電粉末、黏合劑樹脂及溶劑的組成物來製造。作為所述黏合劑樹脂, 可較佳為使用聚四氟乙烯、聚偏氟乙烯、聚六氟丙烯、聚全氟烷基乙烯基醚、聚全氟磺醯氟、烷氧基乙烯基醚、聚乙烯醇、醋酸纖維素或其等的共聚物等。作為所述溶劑,可較佳為使用如乙醇、異丙醇、正丙醇、丁醇等醇類、水、二甲基乙醯胺、二甲亞碸、N-甲基吡咯啶酮、四氫呋喃等。塗覆製程可根據組成物的黏性而使用絲網印刷法、噴塗法或使用刮刀的塗覆法等,但不限於此。
除了使用根據本發明的高分子電解質膜50作為所述高分子電解質膜50之外,所述膜-電極組件100可根據通常的燃料電池用膜-電極組件的製造方法來製造。
根據本發明又一實施例的燃料電池可包括所述膜-電極組件100。
圖2是表示所述燃料電池的整體構成的示意圖。
參照所述圖2,所述燃料電池200包括:燃料供應部210,供應燃料與水混合的混合燃料;改質部220,將所述混合染料改質以產生包括氫氣的改質氣體;堆230,包括自所述改質部220供應的氫氣的改質氣體與氧化劑發生電化學反應以產生電能;以及氧化劑供應部240,將氧化劑供應至所述改質部220及所述堆230。
所述堆230具有多個單位電池,所述多個單位電池誘導包含自所述改質部220供應的氫氣的改質氣體與自氧化劑供應部240供應的氧化劑的氧化/還原反應,以產生電能。
各個單位電池是指產生電的單位電池,包括使包含氫氣的改質氣體與氧化劑中的氧進行氧化/還原的所述膜-電極接合 體、以及用於將含有氫氣的改質氣體與氧化劑供應至膜-電極接合體的分離板(或亦稱為雙極板(bipolar plate),以下稱為「分離板」)。所述分離板將所述膜-電極接合體置於中心並配置於其兩側。此時,亦可將分別位於所述堆最外側的分離板具體稱為端板(end plate)。
在所述分離板中的所述端板中,包括用於注入包含自所述改質部220供應的氫氣的改質氣體的管狀第一供應管231、以及用於注入氧氣的管狀第二供應管232,且在另一端板中包括:第一排出管233,用於將多個單位電池中包含最終未反應而剩餘的氫氣的改質氣體排出至外部;以及第二排出管234,用於將所述單位電池中最終未反應而剩餘的氧化劑排出至外部。
在所述燃料電池中,除了使用根據本發明一實施例的膜-電極組件100之外,構成所述電產生部的分隔件、燃料供應部及氧化劑供應部在普通的燃料電池中使用,因此在本說明書中省略詳細的說明。
[用於實施發明的形態]
以下,對本發明的實施例詳細地進行說明,以使本發明所屬技術領域中具有通常知識者可容易地實施例。然而,本發明可實現為各種不同的形態,且不限於此處說明的實施例。
[實施例:高分子電解質膜的製造]
(實施例1)
(1)準備厚度10μm、氣孔率75%的膨體聚四氟乙烯 (expanded Polytetrafluoroethylene,e-PTFE)作為多孔性支持體。
(2)將離子聚合物分散液、即納菲(Nafion)D2021投入至分散媒介、即蒸餾水中,製造包含1重量%含量的所述納菲(Nafion)的離子聚合物分散液。
(3)將所述e-PTFE支持體投入保持50℃的內部溫度、90%的分散媒介氣氛的相對濕度(RH)的腔室,保持10分鐘以使e-PTFE支持體可被分散媒介充分濕潤。
(4)此後,自腔室取出濕潤的所述e-PTFE支持體並使離子聚合物分散液(納菲(Nafion)D2021)含浸於e-PTFE支持體後,在80℃下1小時、在150℃下30分鐘進行乾燥及熱處理,從而製造20μm厚度的強化複合膜、即高分子電解質膜。
(實施例2)
除了可在內部溫度保持為80℃的腔室中使e-PTFE支持體濕潤之外,以與所述實施例1相同的方式製造高分子電解質膜。
(實施例3)
除了可在將相對濕度(RH)保持為70%的腔室中使e-PTFE支持體濕潤之外,以與所述實施例1相同的方式製造高分子電解質膜。
(實施例4)
除了可在將相對濕度(RH)保持為120%的腔室中使e-PTFE支持體濕潤之外,以與所述實施例2相同的方式製造高分子電解質膜。
(實施例5)
除了在腔室內將濕潤保持時間設定為60分鐘之外,以與所述實施例2相同的方式製造高分子電解質膜。
(比較例1)
在將離子聚合物分散液(納菲(Nafion)D2021)塗佈於離型膜、即聚乙烯膜後,在80℃下1小時、在150℃下30分鐘對其進行乾燥及熱處理。
將乾燥的所述高分子膜自離型膜剝離,從而製造20μm厚度的高分子電解質膜。
(比較例2)
將離子聚合物分散液(納菲(Nafion)D2021)含浸於10μm厚度的膨體聚四氟乙烯(expanded Polytetrafluoroethylene,e-PTFE)(氣孔率75%)後,在80℃下1小時、在150℃下30分鐘進行乾燥及熱處理,從而製造20μm厚度的強化複合膜、即高分子電解質膜。
[評估例:高分子電解質膜的氫透過率測定]
使用所述實施例1至實施例5及比較例1至比較例2中製造的各高分子電解質膜來製造膜-電極組件(MEA)後,根據新能源與工業技術發展組織(New Energy and Industrial Technology Development Organization,NEDO)協議測定其濕/乾(wet/dry)循環,並將此結果示於下述表1。
具體而言,在80℃下,在以800NmL/min的流量將氮氣分別 注入陽極及陰極同時重複進行由加濕(150% RH,2分鐘)及乾燥(0% RH,2分鐘)組成的濕/乾(wet/dry)循環。對每1,000次循環使用線性掃描伏安法(linear sweep voltammetry,LSV)測定所述MEA的氫透過率(hydrogen crossover)。具體而言,在80℃及100% RH下,以200NmL/min的流量向陽極注入氫氣並以200NmL/min的流量向陰極注入氮氣,同時以0.5mV/s的掃測速度(scan rate)對0.2V至0.5V區間進行掃描(sweep),以輸出0.4V至0.5V區間的電流密度資料。藉由對所述資料進行線性擬合(linear fitting),得到電壓為0的區間的電流密度值。根據NEDO的燃料電池汽車用機械加速耐久標準,重複達20,000次循環並測定後結束。然而,在每1,000次循環測定的氫透過率是初始氫透過率的10倍以上時,在中途完成評估,並且將直至此時進行的循環次數視為所述MEA的濕/乾循環。例如,在總9,000次循環結束後測得的氫透過率小於初始氫透過率的10倍但在總10,000次循環結束後測得的氫透過率大於初始氫透過率的10倍以上時,MEA的濕/乾循環將在「10,000次循環結束」。
Figure 110136107-A0305-02-0029-1
參照所述表1,實施例1至實施例5的高分子電解質膜的情況確認相較於比較例1或比較例2的高分子電解質膜而MEA濕/乾循環測試前後氫透過率低,且藉此在將離子導體導入多孔性支持體之前包括使離子導體分散溶液的分散媒介首先與所述多孔性支持體接觸而將多孔性支持體濕潤的步驟,因此確認具有以下效果:離子導體含浸至多孔性支持體的內部氣孔,減少死孔的產生,使氣孔內部的離子導體密度變高,從而降低氫透過率。此意味著具有以下效果:自支持體表面的對離子導體分散液的潤濕性得到改善,從而增加離子導體進入支持體氣孔內部的含浸性。
以上,對本發明的較佳實施例詳細地進行說明,但本發明的申請專利範圍並不限於此,且熟習此項技術者使用以下申請專利範圍中定義的本發明的基本概念進行的各種變形及改良形態亦屬於本發明的申請專利範圍。
20、20':電極
30、30':觸媒層
40、40':電極基材
50:高分子電解質膜
100:膜-電極組件

Claims (11)

  1. 一種高分子電解質膜的製造方法,包括以下步驟:步驟(a),準備包含多個孔隙的多孔性支持體;步驟(b),使離子導體分散於分散媒介來準備離子導體分散溶液;步驟(c),使所述分散媒介與所述多孔性支持體接觸並在所述多孔性支持體上對所述分散媒介進行濕潤;以及步驟(d),將所述離子導體分散溶液塗佈於被所述分散媒介濕潤的所述多孔性支持體,以將所述離子導體導入所述多孔性支持體的至少任一面。
  2. 如請求項1所述的高分子電解質膜的製造方法,其中在所述步驟(c)中,氣體狀態的所述分散媒介與所述多孔性支持體接觸。
  3. 如請求項2所述的高分子電解質膜的製造方法,其中所述步驟(c)在供應氣體狀態的所述分散媒介的腔室中執行。
  4. 如請求項3所述的高分子電解質膜的製造方法,其中所述腔室的內部溫度為60℃至100℃。
  5. 如請求項3所述的高分子電解質膜的製造方法,其中 所述腔室內部的相對濕度(RH)為50%至120%。
  6. 如請求項1所述的高分子電解質膜的製造方法,其中所述步驟(c)的所述分散媒介與所述多孔性支持體接觸0.1分鐘至60分鐘時間。
  7. 如請求項1所述的高分子電解質膜的製造方法,其中所述分散媒介包括水、乙醇(ethanol)、異丙醇(isopropyl alcohol)、正丙醇(n-propyl alcohol)、丁醇(butyl alcohol)、二甲基乙醯胺(N,N-dimethylacetamide)、二甲基甲醯胺(N,Ndimethyl formamide)、二甲基亞碸(dimethylsulphoxide)、N-甲基吡咯啶酮(N-methyl-2-pyrolidone)、磷酸三乙酯(triethylphosphate)、甲基乙基酮(methylethylketone)、四氫呋喃(tetrahydrofuran)、丙酮(acetone)或其組合。
  8. 如請求項1所述的高分子電解質膜的製造方法,更包括以下步驟:步驟(e),在40℃至120℃下對導入所述離子導體的所述多孔性支持體進行乾燥。
  9. 一種高分子電解質膜,藉由如請求項1至8中任一項所述的高分子電解質膜的製造方法製造而成。
  10. 一種膜-電極組件,包括:彼此對向定位的陽極電極與陰極電極,以及 位於所述陽極電極與所述陰極電極之間的如請求項9所述的高分子電解質膜。
  11. 一種燃料電池,包括如請求項10所述的膜-電極組件。
TW110136107A 2020-09-29 2021-09-28 高分子電解質膜、製造其的方法、膜-電極組件以及燃料電池 TWI792589B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200127287 2020-09-29
KR10-2020-0127287 2020-09-29
KR10-2021-0127503 2021-09-27
KR1020210127503A KR20220043887A (ko) 2020-09-29 2021-09-27 고분자 전해질 막의 제조 방법 및 이로 제조된 전해질 막

Publications (2)

Publication Number Publication Date
TW202213846A TW202213846A (zh) 2022-04-01
TWI792589B true TWI792589B (zh) 2023-02-11

Family

ID=80950538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136107A TWI792589B (zh) 2020-09-29 2021-09-28 高分子電解質膜、製造其的方法、膜-電極組件以及燃料電池

Country Status (5)

Country Link
EP (1) EP4053950A1 (zh)
JP (1) JP2023509469A (zh)
CN (1) CN114868287A (zh)
TW (1) TWI792589B (zh)
WO (1) WO2022071732A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487736B (zh) * 2009-04-06 2015-06-11 Entegris Inc 非去濕性多孔膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689501B2 (en) * 2001-05-25 2004-02-10 Ballard Power Systems Inc. Composite ion exchange membrane for use in a fuel cell
KR100658739B1 (ko) * 2004-06-30 2006-12-15 삼성에스디아이 주식회사 연료전지용 고분자 전해질막 및 그 제조방법
CN1259999C (zh) * 2004-09-24 2006-06-21 浙江大学 在聚合物分离膜表面进行接枝反应改性的方法
KR101767370B1 (ko) * 2011-07-29 2017-08-24 코오롱인더스트리 주식회사 연료전지용 고분자 전해질막 및 그 제조방법
WO2015059848A1 (ja) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 燃料電池用の電解質膜およびその製造方法、並びに膜電極接合体および燃料電池
KR101993238B1 (ko) * 2014-03-28 2019-06-26 코오롱인더스트리 주식회사 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
JP6819287B2 (ja) * 2015-03-13 2021-01-27 東レ株式会社 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
JP6982220B2 (ja) * 2018-06-29 2021-12-17 コーロン インダストリーズ インク 高分子電解質膜、その製造方法及びこれを含む膜電極アセンブリー
KR102184905B1 (ko) * 2018-09-20 2020-12-01 한국과학기술연구원 연료전지용 강화복합막 및 이의 제조방법
CN110112351A (zh) * 2019-05-21 2019-08-09 清华大学 一种对位芳纶锂离子电池隔膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487736B (zh) * 2009-04-06 2015-06-11 Entegris Inc 非去濕性多孔膜

Also Published As

Publication number Publication date
EP4053950A1 (en) 2022-09-07
JP2023509469A (ja) 2023-03-08
WO2022071732A1 (ko) 2022-04-07
TW202213846A (zh) 2022-04-01
CN114868287A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
KR102246525B1 (ko) 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지
TWI713248B (zh) 觸媒、其製備的方法、包含此觸媒的電極、包含此電極的膜-電極組件以及包含此膜-電極組件的燃料電池
JP6957744B2 (ja) ラジカルスカベンジャー、その製造方法、これを含む膜−電極アセンブリー、及びこれを含む燃料電池
US20230006232A1 (en) Method for manufacturing polymer electrolyte membrane, and electrolyte membrane manufactured by same
TWI792589B (zh) 高分子電解質膜、製造其的方法、膜-電極組件以及燃料電池
TWI783702B (zh) 高分子電解質膜、包括其的膜-電極組件以及燃料電池
KR20220043887A (ko) 고분자 전해질 막의 제조 방법 및 이로 제조된 전해질 막
TWI805118B (zh) 燃料電池用觸媒層、其製造方法、包括其之膜電極組合以及燃料電池
KR20230149144A (ko) 연료전지용 강화복합막, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20230080748A (ko) 연료전지용 강화복합막, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20230082246A (ko) 고분자 전해질막, 이의 제조방법 및 이를 포함하는 전기 화학 장치
KR20230001895A (ko) 고분자 전해질 막 및 이를 포함하는 막 전극 어셈블리
KR20220043886A (ko) 고분자 전해질 막 및 이를 포함하는 막 전극 어셈블리
KR20240040450A (ko) 연료전지용 강화복합막, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20230149160A (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20230082245A (ko) 고분자 전해질 막, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR20230015852A (ko) 고분자 전해질막 제조방법 및 이를 이용하여 제조된 연료전지용 고분자 전해질막
KR20230081646A (ko) 연료전지용 강화복합막, 이의 제조방법, 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR102163538B1 (ko) 이온 교환막의 제조 방법, 이를 이용하여 제조된 이온 교환막, 이를 포함하는 막-전극 어셈블리 및 연료 전지
KR20230082576A (ko) 연료 전지용 강화 복합막 및 이를 포함하는 연료 전지용 막-전극 어셈블리
KR20230171817A (ko) 막-전극 어셈블리 및 이를 포함하는 연료전지
KR20220151906A (ko) 연속적 친수성 기울기를 가진 연료전지용 고분자 전해질막 및 이를 포함하는 연료전지
KR20230080961A (ko) 강화복합막, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR20230034881A (ko) 라디칼 스캐빈저, 그 제조방법, 및 그것을 포함하는 막-전극 접합체
KR20230015842A (ko) 연료전지용 고분자 전해질막 및 이의 제조방법