TWI783702B - 高分子電解質膜、包括其的膜-電極組件以及燃料電池 - Google Patents

高分子電解質膜、包括其的膜-電極組件以及燃料電池 Download PDF

Info

Publication number
TWI783702B
TWI783702B TW110136091A TW110136091A TWI783702B TW I783702 B TWI783702 B TW I783702B TW 110136091 A TW110136091 A TW 110136091A TW 110136091 A TW110136091 A TW 110136091A TW I783702 B TWI783702 B TW I783702B
Authority
TW
Taiwan
Prior art keywords
polymer electrolyte
electrolyte membrane
membrane
composite fiber
groups
Prior art date
Application number
TW110136091A
Other languages
English (en)
Other versions
TW202215690A (zh
Inventor
金娜玲
李瞳熏
李殷受
朴重華
李蕙松
Original Assignee
南韓商可隆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210127495A external-priority patent/KR20220043886A/ko
Application filed by 南韓商可隆股份有限公司 filed Critical 南韓商可隆股份有限公司
Publication of TW202215690A publication Critical patent/TW202215690A/zh
Application granted granted Critical
Publication of TWI783702B publication Critical patent/TWI783702B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

本發明是有關於一種高分子電解質膜、膜-電極組件以及燃料電池。所述高分子電解質膜包括:高分子膜,包括離子導體;以及多條複合纖維,所述複合纖維包括沿所述複合纖維的長度方向連續形成的核心部以及包圍所述核心部的基體部,所述核心部包括離子交換官能團。

Description

高分子電解質膜、包括其的膜-電極組件以及燃 料電池
本發明是有關於一種高分子電解質膜、其之製造方法以及包括其的膜-電極組件,且更詳細而言是有關於一種形態穩定性優異並且離子電導率性能優異的高分子電解質膜及包括其之膜-電極組件。
燃料電池是一種將如甲醇、乙醇、天然氣等烴系列的燃料物質內所含的氫與氧的氧化/還原反應等化學反應能直接轉化為電能的具有發電系統的電池,由於高能效性與污染物排出少的環保特徵,作為可替代化石能的下一代清潔能源而備受青睞。
此種燃料電池具有由單位電池的積層形成的堆(stack)構成而可進行各種範圍的輸出的優點,且與小型鋰電池相比表現出4倍至10倍的能量密度,因此作為小型及移動用便攜電源而受到關注。
燃料電池中實質上產生電的堆具有積層有數個至數十個 由膜-電極組件(Membrane-Electrode Assembly,MEA)與分隔件(Separator)(或稱為雙極板(Bipolar Plate))形成的單位電池的結構,且膜-電極組件一般而言形成將電解質膜置於之間並在其兩側分別配置氧化極(陽極(Anode)或燃料極)與還原極(陰極(Cathode)或空氣極)的結構。
燃料電池根據電解質的狀態及種類可分為鹼性電解質燃料電池、高分子電解質燃料電池(Polymer Electrolyte Membrane Fuel Cell,PEMFC)等,其中,由於高分子電解質燃料電池具有小於100℃的低作業溫度、啟動與響應特性快、以及耐久性優異等優點,作為便攜式、車輛用及家庭用電源裝置而備受青睞。
作為高分子電解質燃料電池的代表性例子,可列舉使用氫氣作為燃料的氫離子交換膜燃料電池(質子交換交換膜燃料電池(Proton Exchange Membrane Fuel Cell,PEMFC))、使用液相甲醇作為燃料的直接甲醇型燃料電池(Direct Methanol Fuel Cell,DMFC)等。
對高分子電解質燃料電池中發生的反應進行概括,首先,在將氫氣等燃料供應至氧化極時在氧化極中藉由氫的氧化反應生成氫離子(H+)與電子(e-)。生成的氫離子藉由高分子電解質膜傳遞至還原極,生成的電子藉由外部電路傳遞至還原極。在還原極中供應氧,氧與氫離子及電子結合,藉由氧的還原反應生成水。
另一方面,為了實現高分子電解質燃料電池的商業化, 仍存在許多應解決的技術障礙,必不可少的改進因素有實現高性能、長壽命化、降低生產成本等。對此造成最大影響的構成要素是膜-電極組件,且其中,高分子電解質膜是對膜-電極組件的性能與價格帶來最大影響的關鍵因素之一。
作為所述高分子電解質燃料電池運行所需的高分子電解質膜的要求條件有高氫離子電導率、化學穩定性、低燃料滲透性、高機械強度、低含水率、優異的尺寸穩定性等。先前的高分子電解質膜往往難以在特定溫度及相對濕度環境下、尤其是在高溫/低濕條件下正常表現出高性能。因此,應用先前的高分子電解質膜的高分子電解質燃料電池的使用範圍受到限制。
為了同時確保此種高分子電解質膜的性能及耐久性、機械、化學物性,已經進行應用增強材料的強化複合膜型的高分子電解質膜的開發。然而,在導入增強材料以提高電解質膜的機械耐久性時,電阻損失增加並且電解質膜的離子電導率降低,因此具有可能使包括增強材料的燃料電池的性能下降的缺點。
另一方面,強化複合膜可藉由將多孔性增強材料浸入分散有離子導體的分散溶液中製造,或者額外在一面或兩面額外附加離子導體層來形成,且由於在所述增強材料中不包含可傳遞氫離子的官能團,因此存在以下問題:增強材料本身作為電解質膜的電阻而使高分子電解質膜整體的氫離子傳遞能力下降。
因此,為了使高分子電解質膜商品化,需要提高高性能與含水乾燥時的尺寸穩定性,以提高機械耐久性,為此,要求確 保強化複合膜的最適結構並同時提高離子電導率。
本發明的目的是提供形態穩定性優異,在電解質膜的物理、機械耐久性提高的同時離子電導率優異的高分子電解質膜。
本發明的另一目的是提供包括所述高分子電解質膜的膜-電極組件。
本發明的又一目的是提供包括所述膜-電極組件的燃料電池。
本發明的一實施例提供一種高分子電解質膜,所述高分子電解質膜包括:高分子膜,包括離子導體;以及多條複合纖維,所述複合纖維包括沿所述複合纖維的長度方向連續形成的核心部以及包圍所述核心部的基體部,所述核心部包含離子交換官能團。
所述複合纖維在所述核心部包括包含離子交換官能團的離子導體,或在所述基體部的內側面定位離子交換官能團,或可包括兩者的組合。
所述複合纖維可為沿所述高分子膜的厚度方向(Through-plane,TP)配向的。
所述複合纖維可包括線形狀、纖維狀、針狀、導線形狀、或其等的組合。
所述離子交換官能團可包括磺酸基、羧基、硼酸基、磷 酸基、醯亞胺基、磺醯亞胺基、磺醯胺基、磺醯氟基或其等的組合。
所述複合纖維的平均直徑可為1nm至10μm。
所述複合纖維的核心部的平均直徑可為所述複合纖維的平均直徑的50%至95%的範圍。
所述高分子電解質膜在80℃、50%的相對濕度(RH)下的氫離子電導率可為0.02S/cm至0.2S/cm。
所述高分子電解質膜在80℃、95%的相對濕度(RH)下的氫離子電導率可為0.1S/cm至1.0S/cm。
本發明的另一實施例提供一種膜-電極組件,所述膜-電極組件包括:彼此對向定位的陽極電極與陰極電極,以及位於所述陽極電極與陰極電極之間的所述高分子電解質膜。
本發明的又一實施例提供一種燃料電池,所述燃料電池包括所述膜-電極組件。
本發明的高分子電解質膜在高分子膜導入賦予離子導電性的複合纖維,可實現形態穩定性優異且在電解質膜的機械耐久性提高的同時離子電導率優異的高分子電解質膜。
1、50:高分子電解質膜
2:高分子膜
3:複合纖維
4:核心部
5:基體部
20、20':電極
30、30':觸媒層
40、40':電極基材
100:膜-電極組件
200:燃料電池
210:燃料供應部
220:改質部
230:堆
231:第一供應管
232:第二供應管
233:第一排出管
234:第二排出管
240:氧化劑供應部
圖1是概略性示出根據本發明一實施例的高分子電解質膜的示意圖。
圖2示出根據本發明一實施例的高分子電解質膜所包括的複合纖維的剖面。
圖3是概略性示出根據本發明一實施例的膜-電極組件的剖面圖。
圖4是示出根據本發明一實施例的燃料電池的整體構成的示意圖。
以下,對本發明的實施例詳細地進行說明,以使本發明所屬技術領域內具有通常知識者可容易地實施。然而,本發明可實現為各種不同的形態,且不限於此處說明的實施例。
為了明確地表現圖中的各個層及區域,將厚度放大示出,貫穿說明書全文,對相似的部分賦予相同的圖示符號。在記載層、膜、區域、板等部分位於另一部分「上」時,不僅包括其直接位於另一部分「上」的情況,亦包括中間存在又一部分的情況。相反,在某一部分直接位於另一部分「上」時,意指中間不存在其他部分。
除非本說明書中特別提及,否則重量平均分子量是藉由將粉末試樣溶解於四氫呋喃(THF)後,使用安捷倫科技(Agilent Technologies)公司的1200系列(series)凝膠滲透層析法(Gel Permeation Chromatography,GPC)來測定(柱為昭和(Shodex)公司LF-804,標準試樣使用昭和(Shodex)公司的聚苯乙烯)。
以下,對根據一實施例的高分子電解質膜進行說明。
本發明是有關於一種高分子電解質膜及包括其的膜-電極組件,所述高分子電解質膜可將在燃料電池的驅動過程中由反復加濕、乾燥條件引起的電解質膜的物理耐久性下降最小化,並提高電解質膜的離子電導率及性能。
根據本發明一實施例的高分子電解質膜包括含有離子導體的高分子膜及多條複合纖維,所述複合纖維包括沿所述複合纖維的長度方向連續形成的核心部及包圍所述核心部的基體部,所述核心部包含離子交換官能團。
圖1是示出所述高分子電解質膜的概略性構成的示意圖,圖2是概略性示出所述複合纖維的剖面圖。參照圖1及圖2進行說明,所述高分子電解質膜1在包括離子導體的高分子膜2中包括多條複合纖維3,所述複合纖維3包含離子交換官能團,且包括沿複合纖維的長度方向連續形成的核心部4及包圍所述核心部的基體部5。
所述離子導體(未示出)可為如質子等具有陽離子交換官能團的陽離子導體,或為如羥基離子、碳酸根或碳酸氫根等具有陰離子交換官能團的陰離子導體。
所述陽離子交換官能團可為選自由磺酸基、羧基、硼酸基、磷酸基、醯亞胺基、磺醯亞胺基、磺醯胺基、磺醯氟基及其等的組合組成的群組的任一者,通常可為磺酸基或羧基。
所述陽離子導體包含所述陽離子交換官能團,可列舉在主鏈含有氟的氟系高分子;苯並咪唑、聚醯胺、聚醯胺醯亞胺、 聚醯亞胺、聚縮醛、聚乙烯、聚丙烯、丙烯酸樹脂、聚酯、聚碸、聚醚、聚醚醯亞胺、聚酯、聚醚碸、聚醚醯亞胺、聚碳酸酯、聚苯乙烯、聚苯硫醚、聚醚醚酮、聚醚酮、聚芳基醚碸、聚磷腈或聚苯喹喔啉等烴系高分子;聚苯乙烯-接枝-乙烯四氟乙烯共聚物或聚苯乙烯-接枝-聚四氟乙烯共聚物等部分氟化的高分子;磺醯亞胺等。
更具體而言,在所述陽離子導體為氫離子陽離子導體的情況下,所述高分子在側鏈可包括選自由磺酸基、羧酸基、磷酸基、膦酸基及其等的衍生物組成的群組的陽離子交換基,作為其具體例子,可列舉:氟系高分子,包括聚(全氟磺酸)、聚(全氟羧酸)、含有磺酸基的四氟乙烯與氟乙烯基醚的共聚物、脫氟硫化聚醚酮、或其等的混合物;烴系高分子,包括磺化聚醯亞胺(sulfonated polyimide,S-PI)、磺化聚芳基醚碸(sulfonated polyarylethersulfone,S-PAES)、磺化聚醚醚酮(sulfonated polyetheretherketone,SPEEK)、磺化聚苯並咪唑(sulfonated polybenzimidazole,SPBI)、磺化聚碸(sulfonated polysulfone,S-PSU)、磺化聚苯乙烯(sulfonated polystyrene,S-PS)、磺化聚磷腈(sulfonated polyphosphazene)、磺化聚喹喔啉(sulfonated polyquinoxaline)、磺化聚酮(sulfonated polyketone)、磺化聚苯醚(sulfonated polyphenylene oxide)、磺化聚醚碸(sulfonated polyether sulfone)、磺化聚醚酮(sulfonated polyether ketone)、磺化聚苯碸(sulfonated polyphenylene sulfone)、磺化聚苯硫醚 (sulfonated polyphenylene sulfide)、磺化聚苯硫醚碸(sulfonated polyphenylene sulfide sulfone)、磺化聚苯硫醚碸腈(sulfonated polyphenylene sulfide sulfone nitrile)、磺化聚伸芳基醚(sulfonated polyarylene ether)、磺化聚伸芳基醚腈(sulfonated polyarylene ether nitrile)、磺化聚伸芳基醚醚腈(sulfonated polyarylene ether ether nitrile)、聚伸芳基醚碸酮(sulfonated polyarylene ether sulfone ketone)以及其等的混合物,但不限於此。
所述陰離子導體是可移送羥基離子、碳酸根或碳酸氫根等陰離子的聚合物,而陰離子導體可以氫氧化物或鹵化物(通常是氯化物)形態在市場上購得,而所述陰離子導體可用於工業淨水(water purification)、金屬分離或觸媒製程等。
作為所述陰離子導體,通常可使用摻雜金屬氫氧化物的聚合物,具體而言,可使用摻雜金屬氫氧化物的聚(醚碸)、聚苯乙烯、乙烯基系聚合物、聚(氯乙烯)、聚(偏氟乙烯)、聚(四氟乙烯)、聚(苯並咪唑)或聚(乙二醇)等。
具體而言,所述離子導體可為氟化高分子,具體而言,可為包括高度氟化的側鏈的高度氟化高分子。所述用語「高度氟化」是指鹵素及氫原子的總數的至少90莫耳%以上被氟原子取代。
所述高度氟化高分子包括高分子骨架及連接至所述骨架的環狀側鏈,所述側鏈可具有所述離子交換官能團。例如,可為第一氟化乙烯基單體及具有磺酸基的第二氟化乙烯基單體的共聚物。
所述第一氟化乙烯基單體可為四氟乙烯(TFE)、六氟丙烯、氟乙烯、偏氟乙烯、三氟乙烯、三氟氯乙烯、全氟(烷基乙烯基醚)及其等的混合物,具有所述磺酸基的第二氟化乙烯基單體可為具有磺酸基的各種氟化乙烯基醚類。
所述複合纖維3包括沿複合纖維的長度方向連續形成的核心部4與包圍其的基體部5,且所述核心部4包含離子交換官能團。
所述複合纖維3可形成以複合纖維的剖面為中心的同心圓模樣的核心部-基體部結構,但所述核心部4不一定具有圓形的剖面,且例如可包括橢圓形的核心部,例如可包括共連接體形狀的核心部。包括沿所述複合纖維的長度方向連續形成的核心部及包圍所述核心部的基體部5。
為了實現高性能的燃料電池,在為確保高分子電解質膜的耐久性、機械物性、化學物性的同時應用增強材料的所謂的強化複合膜型高分子電解質膜的情況,由於所述增強材料不包含可傳遞氫離子的官能團,因此存在增強材料本身用作電解質膜的電阻,從而降低高分子電解質膜整體的氫離子濃度的問題。
根據所述一實施例的高分子電解質膜1藉由在電解質膜包括包含表現出高剛性的基體部5的複合纖維3並在所述複合纖維的核心部4導入離子交換官能團以確保電解質膜的物理特性、機械特性,從而可使高分子電解質膜整體的離子電導率下降少,且亦提高在高分子電解質膜的製造過程中離子導體的潤濕性 (wetting)。
作為一例,所述基體部5可包括對熱及化學分解的抵抗性優異的高度氟化聚合物,較佳為全氟化聚合物。例如,所述多孔性支持體可為聚四氟乙烯(PTFE)或四氟乙烯與CF2=CFCnF2n+1(n是1至5的實數)或CF2=CFO-(CF2CF(CF3)O)mCnF2n+1(m是0至15的實數,n是1至15的實數)的共聚物。
另外,所述複合纖維3的基體部5可包括烴系纖維形狀聚合物材料,例如包括選自由以下組成的群組的任一者但不限於此:聚烯烴,例如聚丁烯、聚丙烯及聚乙烯;聚酯,例如聚對苯二甲酸乙二醇酯及聚對苯二甲酸丁二醇酯;聚醯胺(尼龍-6及尼龍-6,6);聚胺基甲酸酯;聚丁烯;聚乳酸;聚乙烯醇;聚苯硫醚;聚碸;流體結晶聚合物;聚乙烯-共-醋酸乙烯酯;聚丙烯腈;環狀聚烯烴;聚甲醛;聚烯烴系熱塑性彈性聚合物;以及其等的組合。
作為又一例示,所述複合纖維3的基體部5可較佳為使用表現出優異的耐化學性且具有疏水性,不必擔心在高濕環境中由水分引起的形態變形的烴系高分子。具體而言,作為所述烴系高分子,可使用選自由以下組成的群組中者:尼龍、聚醯亞胺、聚芳醯胺、聚醚醯亞胺、聚丙烯腈、聚苯胺、聚環氧乙烷、聚萘二甲酸乙二醇酯、聚對苯二甲酸丁二醇酯、丁苯橡膠、聚苯乙烯、聚氯乙烯、聚乙烯醇、聚偏氟乙烯、聚乙烯丁烯、聚胺基甲酸酯、聚苯並噁唑、聚苯並咪唑、聚醯胺醯亞胺、聚對苯二甲酸乙二醇酯、聚苯硫醚、聚乙烯、聚丙烯、其等的共聚物及其等的混合物, 其中可較佳為使用耐熱性、耐化學性及形態穩定性更優異的聚醯亞胺。
在一實施例中,所述複合纖維的核心部4可包括具有離子交換官能團的離子導體,或在所述基體部5的內側面定位有離子交換官能團或者為兩者的組合的形態。具體而言,可為包含所述離子交換官能團的離子導體浸入至所述複合纖維的核心部4的形態。
在所述複合纖維的核心部4包括含有離子交換官能團的離子導體時,所述離子導體如上所述可為如質子等具有陽離子交換官能團的陽離子導體,或為如羥基離子、碳酸根或碳酸氫根等具有陰離子交換官能團的陰離子導體,且作為所述離子導體所包含的陽離子交換官能團,可為選自由以下組成的群組中的任一者:磺酸基、羧基、硼酸基、磷酸基、醯亞胺基、磺醯亞胺基、磺醯胺基、磺酸氟基及其等的組合,通常可為磺酸基或羧基。具體的陽離子導體可為與上述相同種類者。作為所述離子導體所包含的陰離子官能團,可為選自由羥基或鹵化物基及其等的組合組成的群組的任一種,且具體的陰離子導體可為與上述相同種類者。
在一實施例中,所述複合纖維3可為沿高分子電解質膜的厚度方向(Through-plane,TP)配向。所述用語「配向」是指多條複合纖維在高分子電解質膜的厚度方向上優先排列的狀態,且可為不僅包括所述複合纖維垂直於高分子電解質膜的厚度方向配向的排列,並且包括所述複合纖維的長度方向與所述高分子電 解質膜的任一面形成的角的大小為例如45°至90°的情況的概念,另外可為同時包括複合纖維的任一末端與另一末端以橫穿高分子電解質膜的厚度的方式配向等的排列的概念,且可意指複合纖維並非優先排列在高分子電解質膜的面內方向(In-plane,IP)的狀態。參照圖1,如上所述,在所述核心部4包含離子交換官能團的複合纖維3沿所述高分子電解質膜1的厚度方向配向,從而可提供有效的離子移動路徑,使高分子電解質膜的離子電導率不降低,防止電阻損失,並且可實現電解質膜的機械強度及乾濕尺寸穩定性優異的高分子電解質膜。使用如靜電力、磁力等可在一個方向上排列所述複合纖維的方法,從而可使所述複合纖維3在所述高分子電解質膜1的厚度方向上配向。
在一實施例中,所述複合纖維可為包括線形狀、纖維狀、針狀、導線形狀或其等的組合的形狀,且較佳可為纖維狀,但只要是可提高所述高分子電解質膜的厚度方向的機械物性的具有規定強度的形狀的複合纖維,則不特別限制其形狀。
在一實施例中,所述複合纖維3的平均直徑可為1nm至10μm,例如可為0.1μm至10μm,例如1μm至10μm,例如1μm至5μm。在所述複合纖維3的平均直徑小於1nm的情況下,可能不容易將離子交換官能團導入所述複合纖維的核心部,因此所述高分子電解質膜的厚度方向上的離子傳遞路徑減少,從而可能使高分子電解質膜的離子電導率降低。在所述複合纖維3的平均直徑超過10μm的情況下,高分子電解質膜的物理強度、機械強度 降低,因此高分子電解質膜的耐久性及尺寸穩定性可能下降。
所述複合纖維3的核心部4的平均直徑可為所述複合纖維3的平均直徑的50%至95%的範圍,具體而言可為75%至95%。在所述核心部4的平均直徑小於所述複合纖維3的平均直徑的50%範圍時,離子交換官能團未被充分地導入複合纖維,而可能使高分子電解質膜的離子電導率降低。在所述核心部4的平均直徑超過所述複合纖維3平均直徑的95%範圍時,隨著複合纖維本身的機械強度降低,高分子電解質膜的物理、機械強度降低,因此尺寸穩定性可能下降。
所述複合纖維3的平均直徑及複合纖維核心部4的平均直徑可使用例如掃描電子顯微鏡(Scanning Electron Microscope)(JSM6700F、JEOL)進行測定。
在一實施例中,所述高分子電解質膜1的氫離子電導率在80℃、50%的相對濕度(RH)下可為0.02S/cm至0.2S/cm,具體而言,所述高分子電解質膜1的含水量(water uptake)為3%至15%時,氫離子電導率可為0.02S/cm至0.2S/cm。
另外,在一實施例中,所述高分子電解質膜1的氫離子電導率在80℃、95%的相對濕度(RH)下可為0.1S/cm至1.0S/cm,具體而言,所述高分子電解質膜1的含水量(water uptake)為15%至25%時,氫離子電導率可為0.1S/cm至1.0S/cm。
所述高分子電解質膜1藉由在複合纖維3的核心部4包含離子交換官能團,從而容易形成電解質膜的厚度方向的離子傳 遞路徑,因此相較於具有相同的含水量的高分子電解質膜,可表現出高的離子電導率。
所述高分子電解質膜1的氫離子電導率可例如使用膜測試系統(Membrane Test System)(斯伯尼合夥公司(Scribner Associates),MTS 740)將鉑(Pt)觸媒塗佈於高分子電解質膜的兩面,並升高氣體擴散層(GDL)後緊固於貫穿面保持器(Through-Plane Holder)後,使用頻率響應分析儀(Frequency Reponse Analyzer)(索拉頓(Solatron)公司)在80℃的溫度、自30%至95%的相對濕度條件下測量厚度方向的電阻,以計算氫離子電導率。
另外,可使用磁懸浮天平(Magnetic Suspension Balance)(路波瑟母(Rubotherm)公司)在80℃的溫度、自30%至95%的相對濕度的條件下測量高分子電解質膜的含水量。
另一方面,所述高分子膜、複合纖維及其等的組合中的任一者可更包括抗氧化劑。
由於高分子電解質燃料電池的陰極電極中氧的還原反應經由過氧化氫(H2O2)進行,因此在陰極電極中,可由過氧化氫或生成的所述過氧化氫生成羥基自由基(.OH-)。另外,在所述高分子電解質燃料電池的陽極電極中,隨著氧分子穿透高分子電解質膜,陽極電極中亦可能生成所述過氧化氫或羥基自由基。生成的所述過氧化氫或羥基自由基是使所述高分子電解質膜或觸媒電極所包含的包括磺酸基的聚合物劣化的原因。
藉此,藉由包含可分解所述過氧化物或自由基的抗氧化劑,從而抑制由所述過氧化物生成自由基或分解生成的所述自由基,防止所述高分子電解質膜或所述觸媒電極的劣化,從而可提高所述高分子電解質膜的化學耐久性。
作為可分解所述過氧化物或自由基的抗氧化劑,只要可迅速分解高分子電解質燃料電池的工作中生成的過氧化物(特別是過氧化氫)或自由基(特別是羥基自由基),則沒有特別限定,且在本發明中均可使用。具體而言,例如,可分解所述過氧化物或自由基的抗氧化劑可為能夠分解所述過氧化物或自由基的過渡金屬、能夠分解所述過氧化物或自由基的貴金屬、其等的離子形態、其等的鹽形態、或其等的氧化物形態。
具體而言,可分解所述過氧化物或自由基的過渡金屬可為選自由以下組成的群組的任一者:鈰(Ce)、鎳(Ni)、鎢(W)、鈷(Co)、鉻(Cr)、鋯(Zr)、釔(Y)、錳(Mn)、鐵(Fe)、鈦(Ti)、釩(V)、鉬(Mo)、鑭(La)及釹(Nd)。
另外,可分解所述過氧化物或自由基的貴金屬可為選自由銀(Au)、鉑(Pt)、釕(Ru)、鈀(Pd)及銠(Rh)組成的群組中的任一種。
另外,可分解所述過氧化物或自由基的過渡金屬或所述貴金屬的離子可為選自由以下組成的群組的任一者:鈰離子、鎳離子、鎢離子、鈷離子、鉻離子、鋯離子、釔離子、錳離子、鐵離子、鈦離子、釩離子、鉬離子、鑭離子、釹離子、銀離子、鉑 離子、釕離子、鈀離子及銠離子,且具體而言以鈰為例,則可為鈰三價離子(Ce3+)或鈰四價離子(Ce4+)。
另外,可分解所述過氧化物或自由基的過渡金屬或所述貴金屬的氧化物可為選自由以下組成的群組的任一者:氧化鈰、氧化鎳、氧化鎢、氧化鈷、氧化鉻、氧化鋯、氧化釔、氧化錳、氧化鐵、氧化鈦、氧化釩、氧化鉬、氧化鑭及氧化釹。
另外,可分解所述過氧化物或自由基的過渡金屬或所述貴金屬的鹽可為選自由以下組成的群組的任一者:所述過渡金屬或所述貴金屬的碳酸鹽、醋酸鹽、氯化鹽、氟化鹽、硫酸鹽、磷酸鹽、鎢酸鹽、氫氧化鹽、醋酸銨鹽、硫酸銨鹽及乙醯丙酮鹽,具體而言,以鈰為例可列舉碳酸鈰、醋酸鈰、氯化鈰、醋酸鈰、硫酸鈰、醋酸二銨鈰、硫酸四銨鈰等,作為有機金屬錯鹽,可列舉乙醯丙酮鈰等。
根據本發明的又一實施例,提供包括所述高分子電解質膜的膜-電極組件及燃料電池。
具體而言,所述膜-電極組件包括彼此對向定位的陽極電極與陰極電極以及位於所述陽極電極與陰極電極之間的所述高分子電解質膜。
圖3是概略性示出根據本發明一實施例的膜-電極組件的剖面圖。參照圖3進行說明,所述膜-電極組件100包括所述高分子電解質膜50及分別配置於所述高分子電解質膜50的兩面的所述燃料電池用電極20、20'。所述電極20、20'包括電極基材40、 40'以及形成於所述電極基材40、40'表面的觸媒層30、30',且亦可包括含有碳粉、炭黑等導電微細粒子的微氣孔層(未示出),以使所述電極基材40、40'中的物質容易地擴散至所述電極基材40、40'與所述觸媒層30、30'之間。
在所述膜-電極組件100中,將產生由配置於所述高分子電解質膜50的一面並經由所述電極基材40傳遞至所述觸媒層30的燃料生成氫離子與電子的氧化反應的電極20稱為陽極電極,並將產生由配置於所述高分子電解質膜50的另一面、藉由所述高分子電解質膜50接收的氫離子與經由電極基材40'傳遞至所述觸媒層30'的氧化劑生成水的還原反應的電極20'稱為陰極電極。
所述陽極電極20及陰極電極20'的觸媒層30、30'包括觸媒。作為所述觸媒,任何可參與電池的反應並用作普通的燃料電池的觸媒者均可使用。具體而言,較佳為可使用鉑系金屬。
所述鉑系金屬可包括選自由以下組成的群組中的一者:鉑(Pt)、鈀(Pd)、釕(Ru)、銥(Ir)、鋨(Os)、鉑-M合金(所述M為選自由鈀(Pd)、釕(Ru)、銥(Ir)、鋨(Os)、鎵(Ga)、鈦(Ti)、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、銀(Ag)、金(Au)、鋅(Zn)、錫(Sn)、鉬(Mo)、鎢(W)、鑭(La)及銠(Rh)組成的群組的任一種以上)、非鉑合金及其等的組合,更佳為可使用選自所述鉑系觸媒金屬群組的兩種以上金屬的組合,但不限於此,並且只要是本技術領域中可使用的鉑系觸媒金屬則可不受限制地使用。
具體而言,所述鉑合金可將選自由以下組成的群組中的材料單獨使用或混合兩種以上使用:Pt-Pd、Pt-Sn、Pt-Mo、Pt-Cr、Pt-W、Pt-Ru、Pt-Ru-W、Pt-Ru-Mo、Pt-Ru-Rh-Ni、Pt-Ru-Sn-W、Pt-Co、Pt-Co-Ni、Pt-Co-Fe、Pt-Co-Ir、Pt-Co-S、Pt-Co-P、Pt-Fe、Pt-Fe-Ir、Pt-Fe-S、Pt-Fe-P、Pt-Au-Co、Pt-Au-Fe、Pt-Au-Ni、Pt-Ni、Pt-Ni-Ir、Pt-Cr、Pt-Cr-Ir及其等的組合。
另外,所述非鉑合金可將選自由以下組成的群組中的材料單獨使用或混合兩種以上使用:Ir-Fe、Ir-Ru、Ir-Os、Co-Fe、Co-Ru、Co-Os、Rh-Fe、Rh-Ru、Rh-Os、Ir-Ru-Fe、Ir-Ru-Os、Rh-Ru-Fe、Rh-Ru-Os及其等的組合。
此種觸媒可以觸媒本身(黑色)使用,且亦可擔載於載體使用。
所述載體可選自碳系載體、氧化鋯、氧化鋁、二氧化鈦、二氧化矽、二氧化鈰等多孔性無機氧化物、沸石等。所述碳系載體可選自以下材料:石墨、超P(super P)、碳纖維(carbon fiber)、碳片(carbon sheet)、炭黑(carbon black)、科琴黑(Ketjen Black)、乙炔黑(Denka black)、乙炔炭黑(acetylene black)、碳奈米管(carbon nano tube,CNT)、碳球(carbon sphere)、碳色帶(carbon ribbon)、富勒烯(fullerene)、活性炭、碳奈米纖維、碳奈米線、碳奈米球、碳奈米角、碳奈米籠、碳奈米環、有序奈米多孔性碳(ordered nano-/meso-porous carbon)、碳氣凝膠、介孔碳(mesoporous carbon)、石墨烯、穩定碳、活性化碳及其等一種以 上的組合,且不限於此,且可使用本技術領域中可用的載體而不進行限制。
所述觸媒粒子亦可位於載體的表面上,且亦可在填充載體的內部氣孔(pore)的同時滲透至載體內部。
在將所述載體所負載的貴金屬用作觸媒的情況下,可使用可商購的市售者,或者亦可使貴金屬負載於載體來製造以進行使用。由於在所述載體負載貴金屬的製程是本領域廣泛熟知的內容,因此即使在本說明書中省略詳細說明,對本領域中的從業者而言亦是可容易理解的內容。
所述觸媒粒子可含有相較於所述觸媒電極30、30'的整體重量而為20重量%至80重量%,且在含有小於20重量%的情況下,存在活性下降的問題,而在超過80重量%的情況下,由於所述觸媒粒子的聚集而活性面積減小,反而使得觸媒活性可能下降。
另外,所述觸媒電極30、30'可包括黏合劑以提高所述觸媒電極30、30'的黏合力及氫離子的傳遞。作為所述黏合劑,較佳為使用具有離子導電性的離子導體,且由於對所述離子導體的說明與上述內容相同,因此省略重複的說明。
然而,所述離子導體可以單一物或混合物的形態使用,且出於選擇性進一步提高與高分子電解質膜50的黏合力的目的,亦可與非導電性化合物一起使用。較佳為調節其使用量進行使用以適於使用目的。
作為所述非導電性化合物,可使用選自由以下組成的群 組的一種以上:聚四氟乙烯(PTFE)、四氟乙烯-六氟丙烯共聚物(FEP)、四氟乙烯-全氟烷基乙烯基醚共聚物(PFA)、乙烯/四氟乙烯/四氟乙烯(ethylene/tetrafluoroethylene(ETFE))、乙烯三氟氯乙烯共聚物(ECTFE)、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物(PVdF-HFP)、十二烷基苯磺酸及山梨糖醇(sorbitol)。
所述黏合劑可相較於所述觸媒電極30、30'的整體重量而包括20重量%至80重量%。在所述黏合劑的含量為小於20重量%的情況下,生成的離子不能很好地傳遞,在超過80重量%的情況下,由於氣孔不足而難以供應氫或氧(空氣),從而可能減少可進行反應的活性面積。
作為所述電極基材40、40',可使用多孔性導電基材,以使得可順利地供應氫或氧。作為其代表性的例子,可使用碳紙(carbon paper)、碳布(carbon cloth)、碳氈(carbon felt)或金屬布(是指由纖維狀態的金屬布形成的多孔性膜或在由高分子纖維形成的布的表面形成的金屬膜)),但不限於此。另外,所述電極基材40、40'較佳為使用氟系樹脂進行防水處理,從而可防止由於驅動燃料電池時產生的水而使反應物擴散效率降低。作為所述氟系樹脂,可使用聚四氟乙烯、聚偏氟乙烯、聚六氟丙烯、聚全氟烷基乙烯基醚、聚全氟磺醯氟烷氧基乙烯基醚、氟化乙烯丙烯(Fluorinated ethylene propylene)、聚氯三氟乙烯或其等的共聚物。
另外,亦可進一步包括用於增強反應物在所述電極基材40、40'中的擴散效果的微氣孔層(microporous layer)。此微氣孔 層通常為粒徑小的導電粉末,例如碳粉、炭黑、乙炔黑、活性炭、碳纖維、富勒烯(fullerene)、碳奈米管、碳奈米線、碳奈米角(carbon nano-horn)或碳奈米環(carbon nano ring)。
所述微氣孔層藉由在所述電極基材40、40'塗覆包括導電粉末、黏合劑樹脂及溶劑的組成物來製造。作為所述黏合劑樹脂,可較佳為使用聚四氟乙烯、聚偏氟乙烯、聚六氟丙烯、聚全氟烷基乙烯基醚、聚全氟磺醯氟、烷氧基乙烯基醚、聚乙烯醇、醋酸纖維素或其等的共聚物等。作為所述溶劑,可較佳為使用如乙醇、異丙醇、正丙醇、丁醇等醇類、水、二甲基乙醯胺、二甲亞碸、N-甲基吡咯啶酮、四氫呋喃等。塗覆製程可根據組成物的黏性而使用絲網印刷法、噴塗法或使用刮刀的塗覆法等,但不限於此。
除了使用根據本發明的高分子電解質膜50作為所述高分子電解質膜50之外,所述膜-電極組件100可根據通常的燃料電池用膜-電極組件的製造方法來製造。
根據本發明又一實施例的燃料電池可包括所述膜-電極組件100。
圖4是表示所述燃料電池的整體構成的示意圖。
參照所述圖4,所述燃料電池200包括:燃料供應部210,供應燃料與水混合的混合燃料;改質部220,將所述混合染料改質以產生包括氫氣的改質氣體;堆230,包括自所述改質部220供應的氫氣的改質氣體與氧化劑發生電化學反應以產生電能;以及氧化劑供應部240,將氧化劑供應至所述改質部220及所述堆230。
所述堆230具有多個單位電池,所述多個單位電池誘導包含自所述改質部220供應的氫氣的改質氣體與自氧化劑供應部240供應的氧化劑的氧化/還原反應,以產生電能。
各個單位電池是指產生電的單位電池,包括使包含氫氣的改質氣體與氧化劑中的氧進行氧化/還原的所述膜-電極接合體、以及用於將含有氫氣的改質氣體與氧化劑供應至膜-電極接合體的分離板(或亦稱為雙極板(bipolar plate),以下稱為「分離板」)。所述分離板將所述膜-電極接合體置於中心並配置於其兩側。此時,亦可將分別位於所述堆最外側的分離板具體稱為端板(end plate)。
在所述分離板中的所述端板中,包括用於注入包含自所述改質部220供應的氫氣的改質氣體的管狀第一供應管231、以及用於注入氧氣的管狀第二供應管232,且在另一端板中包括:第一排出管233,用於將多個單位電池中包含最終未反應而剩餘的氫氣的改質氣體排出至外部;以及第二排出管234,用於將所述單位電池中最終未反應而剩餘的氧化劑排出至外部。
在所述燃料電池中,除了使用根據本發明一實施例的膜-電極組件100之外,構成所述電產生部的分隔件、燃料供應部及氧化劑供應部在普通的燃料電池中使用,因此在本說明書中省略詳細的說明。
[用於實施發明的形態]
以下,對本發明的實施例詳細地進行說明,以使本發明 所屬技術領域中具有通常知識者可容易地實施例。然而,本發明可實現為各種不同的形態,且不限於此處說明的實施例。
[實施例:高分子電解質膜的製造]
(實施例1)
將離子聚合物分散液(納菲(Nafion)D2021)含浸於由聚偏氟乙烯(PVDF)中空絲製造的10μm厚度的不織布(氣孔率70%,中空絲的配向為隨機配向)後,在80℃下1小時、在150℃下30分鐘進行乾燥及熱處理,從而製造20μm厚度的強化複合膜、即高分子電解質膜。
所述聚偏氟乙烯(PVDF)中空絲使用將離子導體、即全氟化磺酸離子聚合物(PFSA)導入與其平均直徑的75%對應的核心部的複合纖維。
(實施例2)
除了在所述實施例1中使用將離子導體、即全氟化磺酸離子聚合物(PFSA)導入與聚偏氟乙烯(PVDF)中空絲的平均直徑的85%對應的核心部之外,以與所述實施例1相同的方式製造高分子電解質膜。
(實施例3)
除了在所述實施例1中使用將離子導體、即全氟化磺酸離子聚合物(PFSA)導入與聚偏氟乙烯(PVDF)中空絲的平均直徑的95%對應的核心部之外,以與所述實施例1相同的方式製造高分子電解質膜。
(實施例4)
將離子聚合物分散液(納菲(Nafion)D2021)含浸於對聚偏氟乙烯(PVDF)中空絲進行針紮(needle-punching)而使其配向均勻製造而成的10μm厚度的不織布(氣孔率75%)後,在80℃下1小時、在150℃下30分鐘進行乾燥及熱處理,從而製造20μm厚度的強化複合膜、即高分子電解質膜。
所述聚偏氟乙烯(PVDF)中空絲使用將離子導體、即全氟化磺酸離子聚合物(PFSA)導入與其平均直徑的75%對應的核心部的複合纖維。
(實施例5)
除了在所述實施例4中使用將離子導體、即全氟化磺酸離子聚合物(PFSA)導入與聚偏氟乙烯(PVDF)中空絲的平均直徑的85%對應的核心部之外,以與所述實施例4相同的方式製造高分子電解質膜。
(實施例6)
除了在所述實施例4中使用將離子導體、即全氟化磺酸離子聚合物(PFSA)導入與聚偏氟乙烯(PVDF)中空絲的平均直徑的95%對應的核心部之外,以與所述實施例4相同的方式製造高分子電解質膜。
(比較例1)
在將離子聚合物分散液(納菲(Nafion)D2021)塗佈於離型膜、即聚乙烯膜後,在80℃下1小時、在150℃下30分鐘對其進 行乾燥及熱處理。
將乾燥的所述高分子膜自離型膜剝離,從而製造20μm厚度的高分子電解質膜。
(比較例2)
將離子聚合物分散液(納菲(Nafion)D2021)含浸於10μm厚度的聚偏氟乙烯(PVDF)不織布(氣孔率70%)後,在80℃下1小時、在150℃下30分鐘進行乾燥及熱處理,從而製造20μm厚度的強化複合膜、即高分子電解質膜。
(比較例3)
將離子聚合物分散液(納菲(Nafion)D2021)含浸於由聚偏氟乙烯(PVDF)中空絲製造的10μm厚度的不織布(氣孔率70%,中空絲的配向為隨機配向)後,在80℃下1小時、在150℃下30分鐘進行乾燥及熱處理,從而製造20μm厚度的強化複合膜、即高分子電解質膜。
(比較例4)
將離子聚合物分散液(納菲(Nafion)D2021)含浸於對聚偏氟乙烯(PVDF)中空絲進行針紮(needle-punching)而使其配向均勻製造而成的10μm厚度的不織布(氣孔率70%)後,在80℃下1小時、在150℃下30分鐘進行乾燥及熱處理,從而製造20μm厚度的強化複合膜、即高分子電解質膜。
[評估例:測定高分子電解質膜的氫離子電導率]
針對在所述實施例1至實施例6以及比較例1至比較例4中 製造的各高分子電解質膜測定膜厚度方向的氫離子電導率。
使用膜測試系統(Membrane Test System)(斯伯尼合夥公司(Scribner Associates),MTS 740)測定所述高分子電解質膜的厚度方向的氫離子電導率。具體而言,使所述實施例1至實施例6及比較例1至比較例4中製造的各高分子電解質膜的樣品(10mm×30mm)在80℃、50%的相對濕度(RH)條件及80℃、95%的相對濕度(RH)條件下對樣品的兩面施加交流電流,同時測定樣品內發生的交流電勢差來獲得膜電阻(R)(Ω)。然後,使用下面式1計算高分子電解質膜的厚度方向的離子電導率,將其結果示於下述表1。
[式1] σ=L/[R×A]
(但,此處,σ為厚度方向的離子電導率(S/cm),L為電極間的距離(cm),R為膜電阻(Ω),且A為膜的有效面積(cm2))
Figure 110136091-A0305-02-0029-2
參照所述表1可知,藉由根據實施例1至實施例6的高分子電解質膜在80℃、50%的相對濕度(RH)及80℃、95%的相 對濕度(RH)二者的條件下氫離子電導率相較於比較例2至比較例4的高分子電解質膜的氫離子電導率均表現得高,由於高分子電解質膜所包括的複合纖維在核心部包含離子交換官能團,從而防止高分子電解質膜的離子電導率下降。
另外,在藉由針紮使高分子電解質膜內複合纖維在所述膜的厚度方向上均勻地配向的實施例4至實施例6的情況,確認較複合纖維隨機排列的實施例1至實施例3的高分子電解質膜的氫離子電導率高,藉由使複合纖維在所述高分子電解質膜的厚度方向上配向,從而可提供離子的有效的移動路徑,不會使高分子電解質膜的離子電導率下降並防止電阻損失。
以上,對本發明的較佳實施例詳細地進行說明,但本發明的申請專利範圍並不限於此,且熟習此項技術者使用以下申請專利範圍中定義的本發明的基本概念進行的各種變形及改良形態亦屬於本發明的申請專利範圍。
1:高分子電解質膜
2:高分子膜
3:複合纖維
4:核心部
5:基體部

Claims (9)

  1. 一種高分子電解質膜,包括:高分子膜,包括離子導體;以及多條複合纖維,所述複合纖維包括沿所述複合纖維的長度方向連續形成的核心部以及包圍所述核心部的基體部,所述核心部包含離子交換官能團,其中所述離子交換官能團包括磺酸基、羧基、硼酸基、磷酸基、醯亞胺基、磺醯亞胺基、磺醯胺基、磺醯氟基或其組合,其中所述複合纖維的所述核心部的平均直徑為所述複合纖維的平均直徑的50%至95%的範圍。
  2. 如請求項1所述的高分子電解質膜,其中所述複合纖維在所述核心部包括包含所述離子交換官能團的所述離子導體,或在所述基體部的內側面定位所述離子交換官能團,或包括兩者的組合。
  3. 如請求項1所述的高分子電解質膜,其中所述複合纖維是沿所述高分子膜的厚度方向(Through-plane,TP)配向。
  4. 如請求項1所述的高分子電解質膜,其中所述複合纖維包括線形狀、纖維狀、針狀、導線形狀、或其組合。
  5. 如請求項1所述的高分子電解質膜,其中 所述複合纖維的平均直徑為1nm至10μm。
  6. 如請求項1所述的高分子電解質膜,其中所述高分子電解質膜在80℃、50%的相對濕度(RH)下的氫離子電導率為0.02S/cm至0.2S/cm。
  7. 如請求項1所述的高分子電解質膜,其中所述高分子電解質膜在80℃、95%的相對濕度(RH)下的氫離子電導率為0.1S/cm至1.0S/cm。
  8. 一種膜-電極組件,包括:彼此對向定位的陽極電極與陰極電極,以及位於所述陽極電極與所述陰極電極之間的如請求項1所述的高分子電解質膜。
  9. 一種燃料電池,包括如請求項8所述的膜-電極組件。
TW110136091A 2020-09-29 2021-09-28 高分子電解質膜、包括其的膜-電極組件以及燃料電池 TWI783702B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200127385 2020-09-29
KR10-2020-0127385 2020-09-29
KR1020210127495A KR20220043886A (ko) 2020-09-29 2021-09-27 고분자 전해질 막 및 이를 포함하는 막 전극 어셈블리
KR10-2021-0127495 2021-09-27

Publications (2)

Publication Number Publication Date
TW202215690A TW202215690A (zh) 2022-04-16
TWI783702B true TWI783702B (zh) 2022-11-11

Family

ID=80950520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136091A TWI783702B (zh) 2020-09-29 2021-09-28 高分子電解質膜、包括其的膜-電極組件以及燃料電池

Country Status (6)

Country Link
US (1) US20220416284A1 (zh)
EP (1) EP4064398A1 (zh)
JP (1) JP7427095B2 (zh)
CN (1) CN115039262B (zh)
TW (1) TWI783702B (zh)
WO (1) WO2022071731A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047476A (zh) * 2008-05-28 2011-05-04 Lg化学株式会社 离子导电树脂纤维、离子导电复合膜、膜电极组件和燃料电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337175B2 (ja) * 1998-07-06 2009-09-30 東レ株式会社 高分子電解質およびイオン交換体
JP2003132910A (ja) * 2001-10-29 2003-05-09 Matsushita Electric Ind Co Ltd 高分子電解質膜とこれを用いた燃料電池
JP4895563B2 (ja) * 2004-09-30 2012-03-14 旭化成イーマテリアルズ株式会社 補強された高分子電解質膜
JP5151063B2 (ja) * 2006-04-19 2013-02-27 トヨタ自動車株式会社 燃料電池用電解質膜用多孔質材料、その製造方法、固体高分子型燃料電池用電解質膜、膜−電極接合体(mea)、及び燃料電池
JP2009032503A (ja) * 2007-07-26 2009-02-12 Toyota Motor Corp 複合電解質膜、複合電解質膜の製造方法、及び固体高分子型燃料電池
WO2009044766A1 (ja) * 2007-10-02 2009-04-09 Toyo Boseki Kabushiki Kaisha 極細繊維、及びイオン伝導性複合高分子膜並びにその製造方法
KR101117626B1 (ko) * 2009-10-07 2012-02-29 한국생산기술연구원 전지용 고분자 막, 이의 제조 방법 및 이를 포함하는 전지
KR101601145B1 (ko) * 2012-04-25 2016-03-08 주식회사 엘지화학 코어-시스 복합섬유로 이루어진 다공성 부직포 기재를 포함하는 분리막, 및 이를 포함하는 전기화학 소자
KR101995527B1 (ko) * 2012-12-28 2019-07-02 코오롱인더스트리 주식회사 연료전지용 강화복합막 및 이를 포함하는 연료전지용 막-전극 어셈블리
WO2015059848A1 (ja) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 燃料電池用の電解質膜およびその製造方法、並びに膜電極接合体および燃料電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047476A (zh) * 2008-05-28 2011-05-04 Lg化学株式会社 离子导电树脂纤维、离子导电复合膜、膜电极组件和燃料电池

Also Published As

Publication number Publication date
WO2022071731A1 (ko) 2022-04-07
TW202215690A (zh) 2022-04-16
US20220416284A1 (en) 2022-12-29
EP4064398A1 (en) 2022-09-28
JP2023509466A (ja) 2023-03-08
CN115039262B (zh) 2024-06-18
JP7427095B2 (ja) 2024-02-02
CN115039262A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
KR102246525B1 (ko) 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지
JP6957744B2 (ja) ラジカルスカベンジャー、その製造方法、これを含む膜−電極アセンブリー、及びこれを含む燃料電池
US20230006232A1 (en) Method for manufacturing polymer electrolyte membrane, and electrolyte membrane manufactured by same
TWI783702B (zh) 高分子電解質膜、包括其的膜-電極組件以及燃料電池
KR100778438B1 (ko) 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
TWI792589B (zh) 高分子電解質膜、製造其的方法、膜-電極組件以及燃料電池
KR100728188B1 (ko) 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
KR20220043886A (ko) 고분자 전해질 막 및 이를 포함하는 막 전극 어셈블리
KR102277903B1 (ko) 막전극 접합체 및 이를 포함하는 연료전지
TWI805118B (zh) 燃料電池用觸媒層、其製造方法、包括其之膜電極組合以及燃料電池
KR20230001895A (ko) 고분자 전해질 막 및 이를 포함하는 막 전극 어셈블리
KR20230084649A (ko) 연료전지용 고분자 전해질막 및 이를 포함하는 연료전지
KR20220043887A (ko) 고분자 전해질 막의 제조 방법 및 이로 제조된 전해질 막
KR20230149144A (ko) 연료전지용 강화복합막, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20240040450A (ko) 연료전지용 강화복합막, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20230080750A (ko) 패턴화된 금속 박막을 포함한 고분자 전해질 막 복합체 및 이를 포함하는 막-전극 어셈블리
KR20240034594A (ko) 강화복합막, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR20230080961A (ko) 강화복합막, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR20230034881A (ko) 라디칼 스캐빈저, 그 제조방법, 및 그것을 포함하는 막-전극 접합체
KR20230080747A (ko) 연료전지용 고분자 전해질막 및 이를 포함하는 연료전지
KR20230103469A (ko) 연료전지용 고분자 전해질막 및 이를 포함하는 연료전지
KR20230080748A (ko) 연료전지용 강화복합막, 이의 제조방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20230149160A (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20230082245A (ko) 고분자 전해질 막, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR20230080751A (ko) 연료전지용 고분자 전해질막 및 이를 포함하는 연료전지