TWI789775B - 形成微電子裝置的方法、及相關的微電子裝置、記憶體裝置、電子系統、及其他方法 - Google Patents

形成微電子裝置的方法、及相關的微電子裝置、記憶體裝置、電子系統、及其他方法 Download PDF

Info

Publication number
TWI789775B
TWI789775B TW110119678A TW110119678A TWI789775B TW I789775 B TWI789775 B TW I789775B TW 110119678 A TW110119678 A TW 110119678A TW 110119678 A TW110119678 A TW 110119678A TW I789775 B TWI789775 B TW I789775B
Authority
TW
Taiwan
Prior art keywords
structures
conductive
microelectronic device
forming
line structures
Prior art date
Application number
TW110119678A
Other languages
English (en)
Other versions
TW202213740A (zh
Inventor
庫諾 R 派瑞克
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW202213740A publication Critical patent/TW202213740A/zh
Application granted granted Critical
Publication of TWI789775B publication Critical patent/TWI789775B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明提供一種形成一微電子裝置之方法,其包含形成包含導電材料及上覆於該導電材料之絕緣材料之線結構,該等線結構藉由溝槽彼此分隔開。一隔離材料形成於該等溝槽內部及外部之該等線結構之表面上,該隔離材料僅部分地填充該等溝槽以形成插入於該等線結構之間的氣隙。開口形成為延伸穿過該隔離材料且曝露該等線結構之該絕緣材料之部分。移除該等線結構之該絕緣材料之曝露部分以形成延伸至該等線結構之該導電材料之延伸開口。導電接觸結構形成於該等延伸開口內。導電襯墊結構形成於該等導電接觸結構上。亦描述了其他方法、微電子裝置、記憶體裝置及電子系統。

Description

形成微電子裝置的方法、及相關的微電子裝置、記憶體裝置、電子系統、及其他方法
在各種實施例中,本發明大體上係關於微電子裝置設計及製造之領域。更特定言之,本發明係關於形成微電子裝置之方法,且係關於相關的微電子裝置、記憶體裝置、電子系統及其他方法。
微電子裝置設計者常常需要藉由減小個別特徵之尺寸且藉由減小鄰近特徵之間的分隔距離來提高微電子裝置內的特徵之整合或密度的等級。另外,微電子裝置設計者常常需要設計不僅緊湊而且提供效能優勢以及簡化設計的架構。
微電子裝置之一個實例係記憶體裝置。記憶體裝置通常經提供為電腦或電子裝置中之內部積體電路。存在許多類型之記憶體裝置,包括但不限於非揮發性記憶體裝置(例如,反及閘快閃記憶體裝置)。增大非揮發性記憶體裝置中之記憶體密度的一種方式為利用豎直記憶體陣列(亦被稱作「三維(3D)記憶體陣列」)架構。習知豎直記憶體陣列包括豎直記憶體串,其延伸穿過包括具有導電結構與介電材料之層級的一或多個層面(例如,堆疊結構)中的開口。每一豎直記憶體串可包括至少一個選擇裝置,其串聯耦接至豎直堆疊之記憶體單元的串聯組合。相較於運用習知平坦(例如,二維)電晶體配置之結構,此組態藉由在晶粒上向上(例如,豎直地)建構陣列來准許較大數目個切換裝置(例如,電晶體)被定位在一晶粒區單位中(亦即,所消耗的主動表面之長度及寬度)。
下伏於記憶體裝置(例如,非揮發性記憶體裝置)之記憶體陣列的基底控制邏輯結構內的控制邏輯裝置已被用以控制記憶體裝置之記憶體單元上的操作(例如,存取操作、讀取操作、寫入操作)。控制邏輯裝置之裝配可經提供為藉助於佈線及互連結構與記憶體陣列之記憶體單元電連通。然而,用於在基底控制邏輯結構上方形成記憶體陣列的處理條件(例如,溫度、壓力、材料)可限制基底控制邏輯結構內的控制邏輯裝置之組態及效能。另外,用於基底控制邏輯結構內的不同控制邏輯裝置之數量、尺寸及配置亦可不合需要地妨礙記憶體裝置之大小(例如,水平覆蓋面積)的減小,及/或記憶體裝置之效能的改良(例如,較快記憶體單元接通/斷開速度、下臨限值切換電壓要求、較快資料傳送速率、較低功率消耗)。
在一些實施例中,一種形成微電子裝置之方法包含形成包含導電材料及上覆於該導電材料之絕緣材料之線結構,該等線結構藉由溝槽彼此分隔開。隔離材料形成於該等溝槽內部及外部之該等線結構之表面上,該隔離材料僅部分地填充該等溝槽以形成插入於該等線結構之間的氣隙。開口形成為延伸穿過該隔離材料且曝露該等線結構之該絕緣材料之部分。移除該等線結構之該絕緣材料之曝露部分以形成延伸至該等線結構之該導電材料之延伸開口。導電接觸結構形成於該等延伸開口內。導電襯墊結構形成於該等導電接觸結構上。亦描述了其他方法、微電子裝置、記憶體裝置及電子系統。
在其他實施例中,一種微電子裝置包含導線結構、絕緣線結構、部分填充溝槽、導電接觸結構及導電襯墊結構。導線結構在第一水平方向上延伸。絕緣線結構在導線結構上且在第一水平方向上延伸。部分填充溝槽在正交於第一水平方向之第二水平方向上介入於導線結構之間。部分填充溝槽包含導線結構及絕緣線結構之側表面上之隔離材料及由隔離材料環繞之氣隙。導電接觸結構豎直地延伸穿過絕緣線結構之部分且接觸導線結構。導電襯墊結構在該等導電接觸結構上。
在又其他實施例中,根據本發明之實施例的記憶體裝置包含記憶體陣列區域、豎直地下伏於記憶體陣列區域之控制邏輯區域,及豎直地插入於記憶體陣列區域與控制邏輯區域之間的互連區域。記憶體陣列區域包含堆疊結構,其包含豎直交錯之導電結構與絕緣結構;處於該堆疊結構內的記憶體單元之豎直延伸串;源極結構,其豎直地上覆於該堆疊結構且耦接至記憶體單元之該等豎直延伸串;數位線結構,其豎直地下伏於該堆疊結構且耦接至記憶體單元之該等豎直延伸串;介電帽結構,其豎直地下伏於該等數位線結構;隔離材料,其水平地插入於該等數位線結構之間且水平地插入於該等介電帽結構之間;以及氣隙,其由該隔離材料環繞且與該等數位線結構水平交錯。該控制邏輯區域包含控制邏輯裝置,其經組態以實現記憶體單元之豎直延伸串的控制操作之一部分。該互連區域包含將記憶體陣列區域之數位線結構耦接至控制邏輯區域之控制邏輯裝置的結構。
在其他實施例中,一種形成記憶體裝置之方法包含形成包含控制邏輯裝置之第一微電子裝置構造。第二微電子裝置構造形成為包含載體結構;上覆於該載體結構且包含豎直交錯之導電結構與絕緣結構之堆疊結構;處於該堆疊結構內的記憶體單元之豎直延伸串;豎直地上覆於堆疊結構之數位線結構;豎直地上覆於數位線結構之介電帽結構;水平地介入於數位線結構之間且水平地介入於介電帽結構之間的介電材料;以及由介電材料環繞且水平地介入於數位線結構之間的氣隙。將該第二微電子裝置構造附接至該第一微電子裝置構造以形成微電子裝置結構總成,該等數位線結構豎直地插入於該微電子裝置結構總成內之該堆疊結構與該等控制邏輯裝置之間。自微電子裝置結構總成移除載體結構。至少一個源極結構形成於該微電子裝置結構總成之該堆疊結構上方。
在又其他實施例中,一種電子系統包含輸入裝置、輸出裝置、可操作地耦接至該輸入裝置及該輸出裝置之處理器裝置,及可操作地耦接至該處理器裝置之記憶體裝置。記憶體裝置包含堆疊結構、源極結構、數位線、記憶體單元串、介電氮化物結構、絕緣材料、絕緣材料內之氣隙、導電接觸件、導電襯墊,及控制邏輯電路系統。該堆疊結構包含層級,其各自包含導電結構及豎直鄰近該導電結構之絕緣結構。源極結構上覆於堆疊結構。數位線下伏於堆疊結構。記憶體單元串延伸穿過堆疊結構且耦接至源極結構及數位線。介電氮化物結構下伏於數位線。絕緣材料插入於數位線之間且插入於介電氮化物結構之間。絕緣材料內之氣隙插入於數位線之間。導電接觸件延伸穿過介電氮化物結構且耦接至數位線。導電襯墊下伏於且耦接至導電接觸件。控制邏輯電路系統下伏於且耦接至導電襯墊。
相關申請案之交叉參考
本申請案主張2020年6月18日申請之美國專利申請案第16/905,452號「形成微電子裝置的方法、及相關的微電子裝置、記憶體裝置、電子系統、及其他方法(METHODS OF FORMING MICROELECTRONIC DEVICES, AND RELATED MICROELECTRONIC DEVICES, MEMORY DEVICES,ELECTRONIC SYSTEMS, AND ADDITIONAL METHODS)」的申請日之權益,該美國專利申請案涉及2020年6月18日申請之列出Kunal R.Parekh作為發明人的美國專利申請案第16/905,385號「微電子裝置,及相關的方法、記憶體裝置及電子系統(MICROELECTRONIC DEVICES, AND RELATED METHODS, MEMORY DEVICES, AND ELECTRONIC SYSTEMS)」。本申請案亦涉及2020年6月18日申請之列出Kunal R.Parekh作為發明人的美國專利申請案第16/905,698號「形成微電子裝置之方法,及相關的微電子裝置及電子系統(METHODS OF FORMING MICROELECTRONIC DEVICES, AND RELATED MICROELECTRONIC DEVICES AND ELECTRONIC SYSTEMS)」。本申請案亦涉及2020年6月18日申請之列出Kunal R.Parekh作為發明人的美國專利申請案第16/905,747號「形成微電子裝置之方法,及相關的微電子裝置及電子系統(METHODS OF FORMING MICROELECTRONIC DEVICES, AND RELATED MICROELECTRONIC DEVICES AND ELECTRONIC SYSTEMS)」。本申請案亦涉及2020年6月18日申請之列出Kunal R.Parekh作為發明人的美國專利申請案第16/905,763號「形成微電子裝置之方法,及相關的微電子裝置及電子系統(METHODS OF FORMING MICROELECTRONIC DEVICES, AND RELATED MICROELECTRONIC DEVICES AND ELECTRONIC SYSTEMS)」。本申請案亦涉及2020年6月18日申請之列出Kunal R.Parekh作為發明人的美國專利申請案第16/905,734號「形成微電子裝置之方法,及相關的用於微電子裝置之基底結構(METHODS OF FORMING MICROELECTRONIC DEVICES, AND RELATED BASE STRUCTURES FOR MICROELECTRONIC DEVICES)」。前述文件中之每一者的揭示內容皆在此以全文引用的方式併入本文中。
下文描述提供諸如材料組成、形狀及大小之特定細節,以便提供本發明之實施例的充分描述。然而,一般熟習此項技術者將理解可在不採用此等特定細節的情況下實踐本發明之實施例。實際上,本發明之實施例可結合行業中採用之習知微電子裝置製造技術而實踐。另外,下文所提供之描述並未形成用於製造微電子裝置(例如,記憶體裝置,諸如3D NAND快閃記憶體裝置)之完整製程流程。下文描述之結構未形成完整微電子裝置。下文詳細地描述理解本發明之實施例所必需的僅僅彼等製程動作及結構。可藉由習知製造技術執行其他動作以自結構形成完整微電子裝置。
本文中呈現之圖式僅僅出於說明之目的,且並不意欲為任何特定材料、組件、結構、裝置或系統的實際視圖。預期圖式中描繪的形狀因例如製造技術及/或公差所致的變化。因此,本文中所描述之實施例不應解釋為限於如所說明之特定形狀或區域,但包括由於例如製造造成的形狀偏差。舉例而言,經說明或描述為盒狀的區域可具有粗略及/或非線性特徵,且經說明或描述為圓形的區域可包括一些粗略及/或線性特徵。此外,所說明之銳角可圓化,且反之亦然。因此,圖中所說明之區域在本質上係示意性的,且其形狀並不意欲說明區域之精確形狀,且並不限制本申請專利範圍之範疇。圖式未必按比例。另外,圖式之間共同之元件可保持相同數字名稱。
如本文中所使用,「記憶體裝置」意謂且包括展現記憶體功能性但未必限於記憶體功能性的微電子裝置。換言之且僅作為非限制性實例,術語「記憶體裝置」不僅包括習知記憶體(例如,習知揮發性記憶體,諸如習知動態隨機存取記憶體(DRAM);習知非揮發性記憶體,諸如習知NAND記憶體),而且包括特殊應用積體電路(ASIC)(例如,系統單晶片(SoC))、組合邏輯與記憶體之微電子裝置,及併有記憶體之圖形處理單元(GPU)。
如本文中所使用,術語「經組態」指至少一個結構及至少一個設備中之一或多者以預定方式促進該結構及該設備中之一或多者之操作的大小、形狀、材料組成、定向及配置。
如本文中所使用,術語「豎直」、「縱向」、「水平」及「側向」參考結構之主要平面,且未必由地球之重力場界定。「水平」或「側向」方向為實質上平行於結構之主要平面的方向,而「豎直」或「縱向」方向為實質上垂直於結構之主要平面的方向。結構之主要平面係由與結構之其他表面相比具有相對較大面積的結構之表面界定。參考圖式,「水平」或「側向」方向可垂直於所指示之「Z」軸,且可平行於所指示之「X」軸及/或平行於所指示之「Y」軸;且「豎直」或「縱向」方向可平行於所指示之「Z」軸,可垂直於所指示之「X」軸,且可垂直於所指示之「Y」軸。
如本文中所使用,描述為彼此「鄰近」之特徵(例如,區域、結構、裝置)意謂且包括經定位彼此最接近(例如,最靠近)的所揭示標識(或多個標識)的特徵。未匹配「鄰近」特徵之所揭示標識(或多個標識)的其他特徵(例如,其他區域、其他結構、其他裝置)可安置於「鄰近」特徵之間。換言之,「鄰近」特徵可直接定位為彼此相鄰,使得「鄰近」特徵之間未插入其他特徵;或「鄰近」特徵可間接定位為彼此相鄰,使得具有除與至少一個「鄰近」特徵相關聯之彼標識之外的標識的至少一個特徵定位於「鄰近」特徵之間。因此,描述為彼此「豎直鄰近」之特徵意謂且包括經定位彼此豎直最接近(例如,豎直最靠近)的所揭示標識(或多個標識)之特徵。此外,描述為彼此「水平鄰近」之特徵意謂且包括經定位彼此水平最接近(例如,水平最靠近)的所揭示標識(或多個標識)之特徵。
如本文中所使用,為易於描述,空間相對術語,諸如「在……下方」、「下方」、「下部」、「底部」、「上方」、「上部」、「頂部」、「前方」、「後方」、「左方」、「右方」及其類似者可用於描述如圖式中所說明之一個元件或特徵與其他元件或特徵的關係。除非另外指定,否則除圖式中所描繪的定向以外,空間相對術語意欲涵蓋材料之不同定向。舉例而言,若在圖式中之材料經反轉,則描述為「低於其他元件或特徵」或「在其他元件或特徵下方」或「其他元件或特徵下方」或「在其他元件或特徵底部」的元件接著將「高於其他元件或特徵」或「在其他元件或特徵頂部」而定向。因此,術語「低於」可涵蓋高於及低於之定向兩者,此取決於使用術語之上下文,其將為一般熟習此項技術者所顯而易見。材料可以其他方式定向(例如,旋轉90度、反轉、翻轉)且本文中使用之空間相對描述詞相應地進行解譯。
如本文中所使用,單數形式「一(a/an)」及「該」意欲亦包括複數形式,除非上下文另外清楚地指示。
如本文中所使用,「及/或」包括相關聯所列項目中之一或多者之任何及所有組合。
如本文中所使用,片語「耦接至」指結構以可操作方式彼此連接,諸如經由直接歐姆連接或經由間接連接(例如,藉助於另一結構)電連接。
如本文中所使用,參考給定參數、性質或條件之術語「實質上」意謂且包括一般熟習此項技術者將在一定程度上理解給定參數、性質或條件符合一定程度之差異(諸如在可接受的製造公差內)。藉助於實例,取決於實質上滿足之特定參數、性質或條件,參數、性質或條件可滿足至少90.0%、滿足至少95.0%、滿足至少99.0%、滿足至少99.9%,或滿足甚至100.0%。
如本文中所使用,參考特定參數之數值的「約」或「大致」包括該數值,且一般熟習此項技術者應理解的自該數值的變化程度處於該特定參數之可接受公差內。舉例而言,參考一數值的「約」或「大致」可包括處於自該數值之90.0%至110.0%之範圍內的其他數值,諸如處於自該數值之95.0%至105.0%之範圍內、處於自該數值之97.5%至102.5%之範圍內、處於自該數值之99.0%至101.0%之範圍內、處於自該數值之99.5%至100.5%之範圍內,或處於自該數值之99.9%至100.1%之範圍內。
如本文中所使用,「導電材料」意謂且包括導電性材料,諸如金屬(例如,鎢(W)、鈦(Ti)、鉬(Mo)、鈮(Nb)、釩(V)、鉿(Hf)、鉭(Ta)、鉻(Cr)、鋯(Zr)、鐵(Fe)、釕(Ru)、鋨(Os)、鈷(Co)、銠(Rh)、銥(Ir)、鎳(Ni)、鈀(Pa)、鉑(Pt)、銅(Cu)、銀(Ag)、金(Au)、鋁(Al)、合金(例如,Co基合金、Fe基合金、Ni基合金、Fe及Ni基合金、Co及Ni基合金、Fe及Co基合金、Co及Ni及Fe基合金、Al基合金、Cu基合金、鎂(Mg)基合金、Ti基合金、鋼、低碳鋼、不鏽鋼)、含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物),及導電摻雜半導體材料(例如,導電摻雜多晶矽、導電摻雜鍺(Ge)、導電摻雜矽鍺(SiGe))中之一或多者。另外,「導電結構」意謂且包括由導電材料形成且包括導電材料之結構。
如本文中所使用,「絕緣材料」意謂且包括電絕緣材料,諸如以下各者中之一或多者:至少一種介電氧化物材料(例如,氧化矽(SiO x)、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽玻璃、氟矽酸鹽玻璃、氧化鋁(AlO x)、氧化鉿(HfO x)、氧化鈮(NbO x)、氧化鈦(TiO x)、氧化鋯(ZrO x)、氧化鉭(TaO x)及氧化鎂(MgO x)中之一或多者)、至少一種介電氮化物材料(例如,氮化矽(SiN y))、至少一種介電氮氧化物材料(例如,氮氧化矽(SiO xN y))、至少一種介電碳氧化物材料(例如,碳氧化矽(SiO xC y))、至少一種氫化介電碳氧化物材料(例如,氫化碳氧化矽(SiC xO yH z))及至少一種介電碳氮化物材料(例如,碳氮化矽(SiO xC zN y))。本文中包括「x」、「y」及「z」中之一或多者的化學式(例如,SiO x、AlO x、HfO x、NbO x、TiO x、SiN y、SiO xN y、SiO xC y、SiC xO yH z、SiO xC zN y)表示含有一個元素之「x」個原子、另一元素之「y」個原子及針對另一元素之每一個原子的其他元素(若存在)之「z」個原子的平均比率的材料(例如,Si、Al、Hf、Nb、Ti)。由於化學式表示相對原子比且並非嚴格的化學結構,因此絕緣材料可包含一或多個化學計量化合物及/或一或多個非化學計量化合物,且「x」、「y」及「z」(若存在)之值可為整數或可為非整數。如本文中所使用,術語「非化學計量化合物」意謂且包括具有不可表示為定義明確的自然數之比且違反定比定律之元素組成的化合物。另外,「絕緣結構」意謂且包括由絕緣材料形成且包括絕緣材料之結構。
除非上下文另外指示,否則本文中所描述之材料可藉由任何合適的技術形成,包括但不限於旋塗、毯覆式塗佈、化學氣相沈積(「CVD」)、原子層沈積(「ALD」)、電漿增強ALD、物理氣相沈積(「PVD」) (例如,濺鍍)或磊晶生長。取決於待形成之特定材料,可藉由一般熟習此項技術者選擇用於沈積或生長材料之技術。另外,除非上下文另外指示,否則本文中所描述之材料移除可藉由任何合適的技術實現,包括但不限於蝕刻(例如,乾式蝕刻、濕式蝕刻、氣相蝕刻)、離子銑削、研磨平坦化或其他已知方法。
圖1A至圖6B為說明形成微電子裝置(例如,記憶體裝置,諸如三維反及閘快閃記憶體裝置)之微電子裝置結構(例如,記憶體裝置結構)之方法之實施例的簡化部分截面(亦即,圖1A、圖2A、圖3A、圖4A、圖5A及圖6A)及簡化部分平面(亦即,圖1B、圖2B、圖3B、圖4B、圖5B及圖6B)視圖。藉由如下文所提供之描述,一般熟習此項技術者將顯而易見,本文中所描述之方法可用於各種應用中。換言之,每當需要形成微電子裝置時,可使用本發明之方法。
參考圖1A,微電子裝置結構100可形成為包括基底結構101上或上方之導線結構102、導線結構102上或上方之絕緣線結構104,及與導線結構102(及因此絕緣線結構104)水平交錯(例如,在X方向上)之溝槽106。在下文中進一步詳細描述基底結構101、導線結構102、絕緣線結構104及溝槽106。圖1B為在圖1A中所描繪之製程階段處的微電子裝置結構100之簡化平面視圖。
基底結構101可包含上面可形成其他材料之基底材料或構造。基底結構101可由半導電材料、導電材料及介電材料中之一或多者形成且包括半導電材料、導電材料及介電材料中之一或多者。舉例而言,基底結構101可包含半導電結構(例如,半導體基板);支撐結構上之基底半導電材料;導電結構(例如,金屬電極);介電結構;包括不同材料、結構及區域中之一或多者的結構;另一基底材料;或另一構造。在一些實施例中,基底結構101包含記憶體裝置(例如,三維反及閘快閃記憶體裝置)之堆疊結構,如在下文更詳細地描述。舉例而言,堆疊結構可包括以層級配置之導電結構與絕緣結構之豎直交錯序列。
導線結構102可呈現在第一水平方向(例如,Y方向)上平行延伸之水平細長形狀。如本文中所使用,術語「平行」意謂實質上平行。導線結構102可各自呈現實質上相同尺寸(例如,X方向上之寬度、Y方向上之長度、Z方向上之高度)、形狀及間距(例如,在X方向上)。在其他實施例中,導線結構102中之一或多者可呈現相較於一或多個其他導線結構102的至少一個不同尺寸(例如,不同長度、不同寬度、不同高度)及不同形狀中之一或多者,且/或至少兩個水平鄰近導線結構102之間的間距(例如,在X方向上)可不同於至少兩個其他水平鄰近導線結構102之間的間距。在一些實施例中,導線結構102用作記憶體裝置之數位線結構(例如,資料線結構、位元線結構),如在下文更詳細地描述。
導線結構102可由導電材料形成且包括導電材料。藉助於非限制性實例,導線結構102可各自個別地由金屬材料形成且包括該金屬材料,該金屬材料包含以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,導線結構102各自個別地由W形成且包括W。導線結構102中之每一者可個別地為實質上均質的,或導線結構102中之一或多者可個別地為實質上異質的。如本文中所使用,術語「均質」意謂特徵(例如,結構、材料)中包括之元件之相對量貫穿特徵之不同部分(例如,不同水平部分、不同豎直部分)不發生改變。相對而言,如本文中所使用,術語「異質」意謂特徵(例如,材料、結構)中包括之元件之相對量貫穿特徵之不同部分發生改變。若導線結構102為異質的,則導線結構102中包括之一或多個元件之量可貫穿導線結構102之不同部分逐步地改變(例如,突然改變)或可連續地改變(例如,逐漸地改變,諸如線性地、拋物線式)。在一些實施例中,導線結構102中之每一者為實質上均質的。在其他實施例中,導線結構102中之每一者為異質的。舉例而言,每一導線結構102可由至少兩種不同導電材料之堆疊(例如,層壓物)形成且包括至少兩種不同導電材料之堆疊(例如,層壓物)。
如圖1A所示,絕緣線結構104可豎直地上覆於(例如,直接豎直地上覆於)導線結構102。絕緣線結構104可充當用於導線結構102之絕緣帽結構(例如,介電帽結構)。絕緣線結構104可具有在第一水平方向(例如,Y方向)上平行延伸之水平細長形狀。絕緣線結構104之水平尺寸、水平路徑及水平間距可與導線結構102之水平尺寸、水平路徑及水平間距實質上相同。
絕緣線結構104可由絕緣材料形成且包括絕緣材料。藉助於非限制性實例,絕緣線結構104可各自個別地由諸如SiN y(例如,Si 3N 4)之介電氮化物材料形成且包括介電氮化物材料。絕緣線結構104可各自為實質上均質的,或絕緣線結構104中之一或多者可為異質的。若絕緣線結構104為異質的,則絕緣線結構104中包括之一或多個元件之量可貫穿絕緣線結構104之不同部分逐步地改變(例如,突然改變)或可連續地改變(例如,逐漸地改變,諸如線性地、拋物線式)。在一些實施例中,絕緣線結構104中之每一者為實質上均質的。在其他實施例中,絕緣線結構104中之每一者為異質的。舉例而言,每一絕緣線結構104可由至少兩種不同介電材料之堆疊(例如,層壓物)形成且包括至少兩種不同介電材料之堆疊(例如,層壓物)。
繼續參考圖1A,溝槽106可水平地介入於(例如,在X方向上)水平鄰近導線結構102 (及因此水平鄰近絕緣線結構104)之間且分隔開水平鄰近導線結構102 (及因此水平鄰近絕緣線結構104)。溝槽106可在導線結構102延伸之水平方向(例如,Y方向)上平行延伸。另外,如圖1A中所示,溝槽106可自絕緣線結構104之上部豎直邊界(例如,上表面)豎直地延伸(例如,在Z方向上)至導線結構102之下部豎直邊界(例如,下表面)。導線結構102及絕緣線結構104之側表面可界定溝槽106之水平邊界,導線結構102之下表面可界定溝槽106之下部豎直邊界,且絕緣線結構104之上表面可界定溝槽106之上部豎直邊界。
導線結構102、絕緣線結構104及溝槽106可使用習知製程(例如,習知沈積製程,諸如原位生長、旋塗、毯覆式塗佈、CVD、PECVD、ALD及PVD中之一或多者;習知圖案化製程,諸如習知光微影製程;習知材料移除製程,諸如習知蝕刻製程)及習知處理設備形成,這在本文中未詳細地描述。
接下來參考圖2A,隔離材料108可形成於微電子裝置結構100之曝露表面上方。隔離材料108可呈現至少部分地由基底結構101、導線結構102及絕緣線結構104之表面(例如,上表面、側表面)之構形界定的實質上平坦的上邊界(例如,上表面)及不平坦的下邊界。隔離材料108可部分地(例如,不完全)填充溝槽106 (圖1A及圖1B)。因此,如圖2A中所示,對應於保持未由隔離材料108填充之溝槽106 (圖1A及圖1B)之部分的氣隙110可在隔離材料108之形成之後水平地介入於(例如,在X方向上)水平鄰近導線結構102及水平鄰近絕緣線結構104之間。氣隙110可充當具有約1之介電常數(k)之絕緣體。氣隙110可限制電容(例如,寄生電容、雜散電容)且增大水平鄰近導線結構102之間的短路裕度,且可減小水平鄰近導線結構102之間的串擾。圖2B為在圖2A中所描繪之製程階段處的微電子裝置結構100之簡化平面視圖。
隔離材料108可由至少一種絕緣材料形成且包括至少一種絕緣材料。藉助於非限制性實例,隔離材料108可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種介電氧化物材料(例如,SiO x、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽玻璃、氟矽酸鹽玻璃、AlO x、HfO x、NbO x及TiO x中之一或多者)、至少一種介電氮化物材料(例如,SiN y)、至少一種介電氮氧化物材料(例如,SiO xN y)、至少一種介電碳氮化物材料(例如,SiO xC zN y)及非晶碳。在一些實施例中,隔離材料108由SiO x(例如,SiO 2)形成且包括SiO x(例如,SiO 2)。
如圖2A所示,氣隙110可自豎直地處於或豎直地低於絕緣線結構104之上部豎直邊界之位置豎直地延伸(例如,在Z方向上)至豎直地處於或豎直地高於導線結構102之下部豎直邊界之其他位置。在一些實施例中,氣隙110自豎直地低於絕緣線結構104之上表面且豎直地高於導線結構102之上表面的位置豎直地延伸至豎直地高於導線結構102之下表面之其他位置。氣隙110可各自個別地實質上由隔離材料108環繞(例如,埋入該隔離材料內、嵌入該隔離材料內)。另外,氣隙110可圍繞溝槽106 (圖1A)之水平中心線(例如,在X方向上)定位,且可自溝槽106 (圖1A)之水平中心線向外水平地延伸(例如,在X方向上)。
隔離材料108及氣隙110可使用習知製程(例如,習知沈積製程、習知材料移除製程)及習知處理設備形成,這在本文中未詳細地描述。舉例而言,隔離材料108 (及因此氣隙110)可使用一或多種習知非保形沈積製程(例如,至少一種習知非保形PVD製程)形成於微電子裝置結構100之曝露表面之部分上或上方。此後,隔離材料108可經歷至少一個習知平坦化製程(例如,至少一個習知CMP製程)以有助於或增強隔離材料108之上邊界(例如,上表面)之平坦度。以上文所描述之方式形成氣隙110可實現微電子裝置結構100之水平鄰近導電性特徵(例如,導線結構102)之間的非所要電容耦合之減小,同時避開可在氣隙110經由其他製程,諸如藉由蝕刻形成於導線結構102之間的絕緣材料而形成之情況下以其他方式發生的對水平鄰近導電性特徵之非所要損害。因此,以上文所描述之方式形成氣隙110可保持水平鄰近導電性特徵及氣隙110兩者之完整性。
接下來參考圖3A,豎直地上覆於絕緣線結構104的隔離材料108之部分可經移除(例如,經蝕刻)以曝露(例如,露出)絕緣線結構104之部分。如圖3A中所示,材料移除製程可形成自隔離材料108之上表面豎直地延伸(例如,在Z方向上)至絕緣線結構104之開口112。在一些實施例中,材料移除製程移除隔離材料108之預定部分而不移除絕緣線結構104之部分。在其他實施例中,材料移除製程移除隔離材料108之預定部分且亦部分地移除豎直地下伏於且與隔離材料108之預定部分水平地重疊(例如,至少部分地水平對準)的絕緣線結構104之部分。圖3B為在圖3A中所描繪之製程階段處的微電子裝置結構100之簡化平面視圖。
如圖3B所示,個別開口112可在X方向上與個別絕緣線結構104 (及因此個別導線結構102 (圖3A))至少部分地(例如,實質上)水平對準。舉例而言,在X方向上的開口112之水平中心線可與在X方向上的絕緣線結構104之水平中心線實質上對準。每一開口112可水平地定位於在X方向上彼此水平鄰近之兩個氣隙110之間。另外,個別開口112可沿著個別絕緣線結構104 (及因此個別導線結構102 (圖3A))在Y方向上定位於所要位置處。在一些實施例中,開口112中之至少一些設置於在Y方向上彼此不同之位置處。舉例而言,相較於沿著絕緣線結構104中之第二者在Y方向上之長度的開口112中之第二者之位置,開口112中之第一者可沿著絕緣線結構104中之第一者在Y方向上之長度設置於不同位置處。換言之,開口112中之至少一些(例如,全部)可在Y方向上彼此水平地偏移。在其他實施例中,開口112中之兩者或更多者在Y方向上彼此水平對準。
開口112可各自個別地形成為呈現幾何組態(例如,尺寸、形狀),其有助於隨後形成於開口中之其他特徵(例如,其他結構、其他材料)之所要幾何組態。如圖3B所示,在一些實施例中,個別開口112形成為在X方向上相較於豎直地在該等開口下方之個別絕緣線結構104 (及因此個別導線結構102 (圖3A))相對較寬。舉例而言,每一開口112可在X方向上水平地延伸超出與其相關聯(例如,由此曝露)之絕緣線結構104在X方向上之水平邊界。在一些實施例中,每一開口112在X方向上之寬度為與其相關聯的絕緣線結構104在X方向上之寬度的至多兩倍(2X),諸如在自約絕緣線結構104在X方向上之寬度的一又四分之一倍(1.25X)至約絕緣線結構104在X方向上之寬度的兩倍(2X)的範圍內。開口112可在絕緣線結構104與水平地鄰近絕緣線結構104之氣隙110之水平邊界之間在X方向上水平地終止,使得開口112並不與氣隙110水平地重疊;或開口112可在水平地鄰近絕緣線結構104之氣隙110之水平邊界內在X方向上水平地終止,使得開口112部分地與氣隙110水平地重疊。在其他實施例中,開口112中之一或多者(例如,每一者)個別地形成為呈現小於或等於與其相關聯的絕緣線結構104在X方向上之寬度的X方向上之寬度。另外,如圖3B中所示,相較於豎直地在該等開口下方之個別絕緣線結構104 (及因此個別導線結構102 (圖3A)),個別開口112可形成為具有小於Y方向上之長度的Y方向上之長度。在一些實施例中,每一開口112形成為具有實質上正方形的水平截面形狀。在其他實施例中,開口112中之一或多者(例如,每一者)形成為具有不同(例如,非正方形)水平截面形狀,諸如圓形水平截面形狀、不同的四邊形水平截面形狀、卵形水平截面形狀、橢圓形水平截面形狀及三角形水平截面形狀中之一或多者。開口112中之每一者可形成為呈現與開口112彼此實質上相同的幾何組態,或開口112中之一或多者可形成為呈現與開口112中之一或多個其他者不同的幾何組態。
開口112可使用一或多個習知材料移除製程(例如,習知各向異性蝕刻製程)形成,這在本文中未詳細地描述。舉例而言,隔離材料108之預定部分可藉由各向異性乾式蝕刻(例如,反應性離子蝕刻(RIE)、深度RIE、電漿蝕刻、反應性離子束蝕刻、化學輔助離子束蝕刻)及各向異性濕式蝕刻(例如,氫氟酸(HF)蝕刻、緩衝HF蝕刻、緩衝氧化物蝕刻)中之一或多者來移除。
接下來參考圖4A,視需要,間隔件材料114可形成於開口112內部及外部的隔離材料108及絕緣線結構104之表面上或上方。舉例而言,如圖4A中所示,間隔件材料114可保形地形成於界定開口112之水平邊界的隔離材料108之表面(例如,側表面)上、界定開口112之下部豎直邊界的絕緣線結構104及隔離材料108之表面上,及開口112外部的隔離材料108之表面(例如,上表面)上。如圖4A中所示,間隔件材料114 (若存在)可部分地(例如,不完全)填充開口112。圖4B為在圖4A中所描繪之製程階段處的微電子裝置結構100之簡化平面視圖。為了清楚且易於理解圖式及相關聯描述起見,開口112之水平邊界外部的間隔件材料114之部分在圖4B中省略。然而,如圖4A中所示且如上文所描述,間隔件材料114 (若存在)可形成為水平地延伸超出開口112之水平邊界。
間隔件材料114 (若存在)可由具有不同於絕緣線結構104之蝕刻選擇性之至少一種絕緣材料形成且包括至少一種絕緣材料。間隔件材料114可在曝露於第一蝕刻劑之共同(例如,集合、相互)曝露期間相對於絕緣線結構104選擇性地蝕刻,且絕緣線結構104可在曝露於第二不同蝕刻劑之共同曝露期間相對於間隔件材料114選擇性地蝕刻。如本文中所使用,若材料呈現比另一材料之蝕刻速率高至少約三倍(3x),諸如高約五倍(5x)、高約十倍(10x)、高約二十倍(20x)或高約四十倍(40x)的蝕刻速率,則材料可相對於另一材料「選擇性地蝕刻」。藉助於非限制性實例,間隔件材料114可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種介電氧化物材料(例如,SiO x、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽玻璃、氟矽酸鹽玻璃、AlO x、HfO x、NbO x、TiO x、ZrO x、TaO x及MgO x中之一或多者)、至少一種介電氮化物材料(例如,SiN y)、至少一種介電氮氧化物材料(例如,SiO xN y)及至少一種介電碳氮化物材料(例如,SiO xC zN y)。在一些實施例中,諸如絕緣線結構104由至少一種介電氮化物材料(例如,SiN y,諸如Si 3N 4)形成且包括至少一種介電氮化物材料的一些實施例,間隔件材料114由至少一種介電氧化物材料(例如,SiO x,諸如SiO 2)形成且包括至少一種介電氧化物材料。
間隔件材料114 (若存在)可形成為任何所要厚度,至少部分地取決於個別絕緣線結構104 (及因此導線結構102)與水平地鄰近絕緣線結構104之個別氣隙110之間的水平距離(例如,在X方向上)。間隔件材料114可用以形成在微電子裝置結構100之後續處理期間至少部分地保護(例如,保持、維持)氣隙110之間隔件結構,如在下文更詳細地描述。藉助於非限制性實例,間隔件材料114 (若存在)可形成為具有在自約10奈米(nm)至約100 nm,諸如自約20 nm至約75 nm或自約30 nm至約50 nm範圍內之厚度。在一些實施例中,間隔件材料114形成為呈現在自約30 nm至約50 nm範圍內之厚度。
間隔件材料114 (若存在)可使用習知製程及習知處理設備形成,這在本文中未詳細地描述。藉助於非限制性實例,間隔件材料114可經由保形CVD製程及ALD製程中之一或多者保形地形成於微電子裝置結構100之曝露表面上。
接下來參考圖5A,間隔件材料114 (圖4A及圖4B)(若存在)及開口112 (圖4A及圖4B)之水平邊界內的絕緣線結構104之部分可經歷至少一個材料移除製程以由間隔件材料114 (圖4A及圖4B)形成間隔件結構116且選擇性地移除絕緣線結構104之部分。如圖5A中所示,材料移除製程可形成豎直地延伸至且曝露(例如,露出)導線結構102之部分的延伸開口118。圖5B為在圖5A中所描繪之製程階段處的微電子裝置結構100之簡化平面視圖。
如圖5A所示,材料移除製程可實質上(例如,完全)移除開口112 (圖4A及圖4B)之水平邊界外部的隔離材料108之上表面上或上方的間隔件材料114 (若存在)之部分,且可部分地移除開口112之下部豎直邊界處的間隔件材料114之部分。間隔件結構116 (若存在)在開口112之水平邊界處可包含隔離材料108之側表面上的間隔件材料114之剩餘(例如,未經移除)部分。在未形成間隔件材料114之其他實施例中,自微電子裝置結構100省略(例如,不存在)間隔件結構116。
仍參考圖5A,材料移除製程可移除開口112 (圖4A及圖4B)之水平邊界(例如,在X方向及Y方向上)內的絕緣線結構104之部分以形成延伸開口118。延伸開口118可包括包含開口112 (圖4A及圖4B)之剩餘(例如,未填充)部分之上部部分118A,及豎直地下伏於且與上部部分118A相連之下部部分118B。如圖5A所示,延伸開口118之下部部分118B可在X方向上水平地窄於延伸開口118之上部部分118A。在一些實施例中,間隔件結構116之內部側表面界定延伸開口118之上部部分118A之水平邊界,且豎直地下伏於間隔件結構116的隔離材料108之內部側表面界定延伸開口118之下部部分118B之水平邊界。延伸開口118可自隔離材料108之上部豎直邊界(例如,上表面)豎直地延伸(例如,在Z方向上)至導線結構102之上部豎直邊界(例如,上表面)。
間隔件結構116 (若存在)及延伸開口118可使用習知製程(例如,習知各向異性蝕刻製程)及習知處理設備形成,這在本文中未詳細地描述。在一些實施例中,第一各向異性乾式蝕刻製程用於移除間隔件材料114 (圖4A及圖4B)之部分且形成間隔件結構116,且接著第二各向異性乾式蝕刻製程用於選擇性地移除絕緣線結構104之新近曝露(例如,露出)部分且形成延伸開口118。第一各向異性乾式蝕刻製程可採用第一乾式蝕刻劑,其相較於絕緣線結構104具有朝向間隔件材料114 (圖4A及圖4B)之較高蝕刻選擇性;且第二各向異性乾式蝕刻製程可採用第二乾式蝕刻劑,其相較於間隔件材料114 (圖4A及圖4B)具有朝向絕緣線結構104之較高蝕刻選擇性。
接下來參考圖6A,導電接觸結構120可形成於延伸開口118 (圖5A及圖5B)內,且導電襯墊結構124可形成於導電接觸結構120上或上方。導電接觸結構120可實質上受限於延伸開口118 (圖5A及圖5B)之邊界(例如,水平邊界、豎直邊界)內,且導電襯墊結構124可至少部分地定位於延伸開口118 (圖5A及圖5B)之邊界外部。另外,其他隔離材料122可形成於隔離材料108上或上方,且可水平地鄰近導電襯墊結構124。圖6B為在圖6A中所描繪之製程階段處的微電子裝置結構100之簡化平面視圖。為了清楚且易於理解圖式及相關聯描述起見,其他隔離材料122在圖6B中省略。
如圖6A所示,導電接觸結構120可實質上填充延伸開口118 (圖5A及圖5B),且可呈現與隔離材料108及間隔件結構116 (若存在)之上表面實質上共面的實質上平坦的上表面。導電接觸結構120可自隔離材料108及間隔件結構116 (若存在)之上邊界(例如,上表面)豎直地延伸(例如,在Z方向上)至導線結構102之上邊界(例如,上表面)。在一些實施例中,導電接觸結構120之尺寸、形狀及間距分別與延伸開口118 (圖5A及圖5B)之尺寸、形狀及間距實質上相同。導電接觸結構120可耦接至導線結構102。在一些實施例中,導電接觸結構120用作用於記憶體裝置之數位線接觸結構(例如,資料線接觸結構、位元線接觸結構),如在下文更詳細地描述。
導電接觸結構120可各自個別地由導電材料形成且包括導電材料。藉助於非限制性實例,導電接觸結構120可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,導電接觸結構120由Cu形成且包括Cu。在其他實施例中,導電接觸結構120由W形成且包括W。
導電接觸結構120可使用習知製程及習知處理設備形成,這在本文中未詳細地描述。藉助於非限制性實例,導電材料可形成於(例如,非保形地沈積於)延伸開口118 (圖5A及圖5B)內部及外部,且接著延伸開口118 (圖5A及圖5B)之邊界(例如,水平邊界、豎直邊界)外部的導電材料之部分可經移除(例如,經由至少一個材料移除製程,諸如至少一個CMP製程)以形成導電接觸結構120。
繼續參考圖6A,其他隔離材料122可形成於隔離材料108之上表面上或上方。其他隔離材料122可由至少一種絕緣材料形成且包括至少一種絕緣材料。藉助於非限制性實例,其他隔離材料122可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種介電氧化物材料(例如,SiO x、磷矽酸鹽玻璃、硼矽酸鹽玻璃、硼磷矽玻璃、氟矽酸鹽玻璃、AlO x、HfO x、NbO x及TiO x中之一或多者)、至少一種介電氮化物材料(例如,SiN y)、至少一種介電氮氧化物材料(例如,SiO xN y)、至少一種介電碳氮化物材料(例如,SiO xC zN y)及非晶碳。其他隔離材料122之材料組成可與隔離材料108之材料組成實質上相同,或其他隔離材料122之材料組成可不同於隔離材料108之材料組成。在一些實施例中,其他隔離材料122由SiO x(例如,SiO 2)形成且包括SiO x(例如,SiO 2)。
導電襯墊結構124可形成於導電接觸結構120、間隔件結構116 (若存在)及隔離材料108之表面上或上方。導電襯墊結構124可形成於形成於其他隔離材料122內之孔隙內且可實質上填充孔隙。如圖6A及圖6B中所示,導電襯墊結構124可形成為在多個絕緣線結構104 (及因此多個導線結構102)及氣隙110上方水平地延伸。個別導電襯墊結構124可耦接至個別導電接觸結構120。導電襯墊結構124可用作接合襯墊以將導電接觸結構120耦接至其他導電襯墊結構及其他導電接觸結構,如在下文更詳細地描述。
導電襯墊結構124可各自個別地由導電材料形成且包括導電材料。藉助於非限制性實例,導電襯墊結構124可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。導電襯墊結構124之材料組成可與導電接觸結構120之材料組成實質上相同,或導電襯墊結構124之材料組成可不同於導電接觸結構120之材料組成。在一些實施例中,導電襯墊結構124由Cu形成且包括Cu。
其他隔離材料122及導電襯墊結構124可使用習知製程及習知處理設備形成,這在本文中未詳細地描述。作為非限制性實例,其他隔離材料122可(例如,經由至少一個材料沈積製程,諸如ALD製程、CVD製程、PECVD製程、PVD製程及旋塗製程中之一或多者)形成於導電接觸結構120、間隔件結構116 (若存在)及隔離材料108之曝露表面上或上方;孔隙可形成(例如,蝕刻)於其他隔離材料122內;且接著導電襯墊結構124可經由金屬鑲嵌製程形成於孔隙內。金屬鑲嵌製程可包括藉由導電材料填充孔隙(例如,經由至少一個其他材料沈積製程,諸如ALD製程、CVD製程、PECVD製程、PVD製程及旋塗製程中之一或多者),且接著使用至少一個平坦化製程(例如,至少一個CMP製程)移除孔隙之邊界(例如,水平邊界、豎直邊界)外部的導電材料之部分。作為另一非限制性實例,導電材料可(例如,經由至少一個材料沈積製程,諸如ALD製程、CVD製程、PECVD製程、PVD製程及旋塗製程中之一或多者)形成於導電接觸結構120、間隔件結構116 (若存在)及隔離材料108之曝露表面上或上方;導電材料之部分可經移除(例如,經蝕刻)以經由減色製程形成導電襯墊結構124;且接著可圍繞導電襯墊結構124形成(例如,使用至少一個材料沈積製程及至少一個平坦化製程)其他隔離材料122。
上文參考圖1A至圖6B所描述之本發明之方法可有助於導電襯墊結構124與導線結構102之自對準,且可相較於在類似導線結構上方形成導電接合襯墊結構之習知方法避免或放寬疊對約束。相較於形成所要微電子裝置結構之習知方法,本發明之方法可減小形成所要微電子裝置結構所需的處理動作(例如,對準及遮蔽動作)、材料及結構之數目。
因此,根據本發明之實施例,形成微電子裝置之方法包含形成包含導電材料及上覆於該導電材料之絕緣材料之線結構,該等線結構藉由溝槽彼此分隔開。隔離材料形成於該等溝槽內部及外部之該等線結構之表面上,該隔離材料僅部分地填充該等溝槽以形成插入於該等線結構之間的氣隙。開口形成為延伸穿過該隔離材料且曝露該等線結構之該絕緣材料之部分。移除該等線結構之該絕緣材料之曝露部分以形成延伸至該等線結構之該導電材料之延伸開口。導電接觸結構形成於該等延伸開口內。導電襯墊結構形成於該等導電接觸結構上。亦描述了其他方法、微電子裝置、記憶體裝置及電子系統。
根據本發明之實施例的微電子裝置結構(例如,在上文參考圖6A及圖6B所描述之製程階段之後的微電子裝置結構100)可用於本發明之微電子裝置(例如,記憶體裝置,諸如三維反及閘快閃記憶體裝置)中。藉助於非限制性實例,圖7為根據本發明之實施例的微電子裝置200 (例如,記憶體裝置,諸如三維反及閘快閃記憶體裝置)之簡化部分截面視圖。如圖7所示且在下文中進一步詳細描述,微電子裝置200可包括由完成先前參考圖6A及圖6B所描述之製程階段產生的微電子裝置結構100。藉由下文所提供之描述,一般熟習此項技術者將顯而易見,本文中所描述之微電子裝置可包括於各種相對較大的裝置及各種電子系統中。
如圖7所示,微電子裝置200可包括控制邏輯區域202、記憶體陣列區域204、第一互連區域206及第二互連區域208。如圖7中所示,第一互連區域206可豎直地上覆於(例如,在Z方向上)控制邏輯區域202並與控制邏輯區域電連通,且記憶體陣列區域204可豎直地上覆於第一互連區域206並與第一互連區域電連通。第一互連區域206可豎直地插入於控制邏輯區域202與記憶體陣列區域204之間且與控制邏輯區域及記憶體陣列區域電連通。另外,第二互連區域208可豎直地上覆於記憶體陣列區域204且與記憶體陣列區域電連通。記憶體陣列區域204可豎直地插入於第一互連區域206與第二互連區域208之間且與第一互連區域及第二互連區域電連通。先前參考圖6A及圖6B所描述之微電子裝置結構100可形成微電子裝置200之記憶體陣列區域204及第一互連區域206之部分。
微電子裝置200之控制邏輯區域202可包括半導電基底結構210、閘極結構212、第一佈線結構214及第一接觸結構216。半導電基底結構210、閘極結構212、第一佈線結構214及第一接觸結構216之部分形成控制邏輯區域202之各種控制邏輯裝置215,如在下文更詳細地描述。
控制邏輯區域202之半導電基底結構210 (例如,半導電晶圓)包含基底材料或構造,其上形成有微電子裝置200之其他特徵(例如,材料、結構、裝置)。半導電基底結構210可包含半導電結構(例如,半導電晶圓)或處於支撐結構上之基底半導電材料。舉例而言,半導電基底結構210可包含習知矽基板(例如,習知矽晶圓),或包含半導電材料之另一塊體基板。在一些實施例中,半導電基底結構210包含矽晶圓。另外,半導電基底結構210可包括其中及/或其上形成之一或多個層、結構及/或區域。舉例而言,半導電基底結構210可包括導電摻雜區域及未摻雜區域。導電摻雜區域可例如用作控制邏輯區域202之控制邏輯裝置215之電晶體的源極區域及汲極區域;且未摻雜區域可例如用作控制邏輯裝置215之電晶體的通道區域。
如圖7所示,微電子裝置200之控制邏輯區域202之閘極結構212可豎直地上覆於(例如,在Z方向上)半導電基底結構210之部分。閘極結構212可個別地在微電子裝置200之控制邏輯區域202內的控制邏輯裝置215之電晶體之間水平地延伸且由該等電晶體採用。閘極結構212可由導電材料形成且包括導電材料。閘極介電材料(例如,介電氧化物)可豎直地介入於(例如,在Z方向上)閘極結構212與電晶體之通道區域(例如,半導電基底結構210內)之間。
第一佈線結構214可豎直地上覆於(例如,在Z方向上)半導電基底結構210,且可藉助於第一接觸結構216電連接至半導電基底結構210。第一佈線結構214可充當微電子裝置200之局部佈線結構。第一接觸結構216之第一群組216A可在半導電基底結構210之區域(例如,導電摻雜區域,諸如源極區域及汲極區域)與第一佈線結構214中之一或多者之間豎直地延伸且將該等區域耦接至該一或多者。另外,第一接觸結構216之第二群組216B可在第一佈線結構214中之一些之間豎直地延伸且將其彼此耦接。
第一佈線結構214可各自個別地由導電材料形成且包括導電材料。藉助於非限制性實例,第一佈線結構214可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,第一佈線結構214由Cu形成且包括Cu。在其他實施例中,第一佈線結構214由W形成且包括W。
第一接觸結構216 (包括其第一群組216A及第二群組216B)可各自個別地由導電材料形成且包括導電材料。藉助於非限制性實例,第一佈線結構214可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,第一接觸結構216由Cu形成且包括Cu。在其他實施例中,第一接觸結構216由W形成且包括W。在其他實施例中,第一接觸結構216之第一群組216A中的第一接觸結構216由第一導電材料(例如,W)形成且包括第一導電材料;且第一接觸結構216之第二群組216B中的第一接觸結構216由第二不同導電材料(例如,Cu)形成且包括第二不同導電材料。
如先前所提及,半導電基底結構210之部分(例如,充當源極區域及汲極區域之導電摻雜區域、充當通道區域之未摻雜區域)、閘極結構212、第一佈線結構214及第一接觸結構216形成控制邏輯區域202之各種控制邏輯裝置215。在一些實施例中,控制邏輯裝置215包含互補金屬氧化物半導體(CMOS)電路系統。控制邏輯裝置215可經組態以控制微電子裝置200之其他組件(例如,記憶體陣列區域204內之記憶體單元)的各種操作。作為非限制性實例,控制邏輯裝置215可包括電荷泵(例如,V CCP電荷泵、V NEGWL電荷泵、DVC2電荷泵)、延遲鎖定迴路(DLL)電路系統(例如,環式振盪器)、V dd調節器、串驅動器、頁面緩衝器及各種晶片/層面控制電路系統中之一或多者(例如,每一者)。作為另一非限制性實例,控制邏輯裝置215可包括經組態以控制微電子裝置200之記憶體陣列區域204內的陣列(例如,記憶體元件陣列、存取裝置陣列)之行操作的裝置,諸如解碼器(例如,本端層面解碼器、行解碼器)、感測放大器(例如,均衡(EQ)放大器、隔離(ISO)放大器、NMOS感測放大器(NSA)、PMOS感測放大器(PSA))、修復電路系統(例如,行修復電路系統)、I/O裝置(例如,本端I/O裝置)、記憶體測試裝置、陣列多工器(MUX)及誤差檢查與校正(ECC)裝置中之一或多者(例如,每一者)。作為另一非限制性實例,控制邏輯裝置215可包括經組態以控制微電子裝置200之記憶體陣列區域204內的陣列(例如,記憶體元件陣列、存取裝置陣列)之列操作的裝置,諸如解碼器(例如,本端層面解碼器、列解碼器)、驅動器(例如,WL驅動器)、修復電路系統(例如,列修復電路系統)、記憶體測試裝置、MUX、ECC裝置及自再新/損耗平衡裝置中之一或多者(例如,每一者)。
仍參考圖7,微電子裝置200之記憶體陣列區域204可包括堆疊結構218;微電子裝置結構100之部分,包括導線結構102、絕緣線結構104、隔離材料108及氣隙110;以及源極層級237,包括一或多個源極結構238及一或多個接觸襯墊240。堆疊結構218可對應於微電子裝置結構100之先前參考圖1A及圖1B所描述之基底結構101。另外,導線結構102可充當微電子裝置200之數位線結構(例如,資料線結構、位元線結構),且絕緣線結構104可充當微電子裝置200之數位線帽結構(例如,資料線帽結構、位元線帽結構)。堆疊結構218可豎直地插入於導線結構102與源極層級237之間。導線結構102可豎直地下伏於(例如,在Z方向上)堆疊結構218,且可電連接至堆疊結構218內之特徵(例如,柱結構、填充通孔)。源極層級237可豎直地上覆於(例如,在Z方向上)堆疊結構218。源極層級237之源極結構238及接觸襯墊240可耦接(例如,電連接)至堆疊結構218內之特徵(例如,柱結構、填充通孔)及微電子裝置200之第二互連區域208內之其他特徵(例如,互連結構)。如圖7中所示,微電子裝置結構100之導電接觸結構120之部分亦可位於微電子裝置200之記憶體陣列區域204內。導電接觸結構120之其他部分可位於微電子裝置200之第一互連區域206內。
記憶體陣列區域204之堆疊結構218包括以層級224配置之導電結構220與絕緣結構222的豎直交錯(例如,在Z方向上)序列。堆疊結構218之層級224中之每一者可包括豎直鄰近絕緣結構222中之至少一者的導電結構220中之至少一者。在一些實施例中,導電結構220由鎢(W)形成且包括鎢,且絕緣結構222由二氧化矽(SiO 2)形成且包括二氧化矽。堆疊結構218之層級224的導電結構220及絕緣結構222可各自個別地為實質上平坦的,且可各自個別地呈現所要厚度。
如圖7所示,一或多個深接觸結構226可豎直地延伸穿過堆疊結構218。深接觸結構226可經組態及定位以將微電子裝置200之豎直地上覆於堆疊結構218的一或多個組件與微電子裝置200之豎直地下伏於堆疊結構218的一或多個其他組件電連接。深接觸結構226可由導電材料形成且包括導電材料。在一些實施例中,深接觸結構由W形成且包括W。
如圖7所示,記憶體陣列區域204進一步包括豎直地延伸穿過堆疊結構218之單元柱結構228。單元柱結構228可各自個別地包括至少部分地由一或多個電荷儲存結構(例如,電荷捕集結構,諸如包含氧化物-氮化物-氧化物(「ONO」)材料之電荷捕集結構;浮動閘極結構)環繞的半導電柱(例如,多晶矽柱、矽鍺柱)。單元柱結構228與堆疊結構218之層級224之導電結構220的交叉點可界定微電子裝置200之記憶體陣列區域204內的彼此串聯耦接之記憶體單元230的豎直延伸串。在一些實施例中,在堆疊結構218之層級224內形成於導電結構220與單元柱結構228之交叉點處的記憶體單元230包含所謂的「MONOS」(金屬-氧化物-氮化物-氧化物-半導體)記憶體單元。在其他實施例中,記憶體單元230包含所謂的「TANOS」(氮化鉭-氧化鋁-氮化物-氧化物-半導體)記憶體單元,或所謂的「BETANOS」(經頻帶/阻障工程設計之TANOS)記憶體單元,其中每一者為MONOS記憶體單元之子集。在其他實施例中,記憶體單元包含所謂的「浮動閘極」記憶體單元,其包括浮動閘極(例如,金屬性浮動閘極)作為電荷儲存結構。浮動閘極可水平地介入於單元柱結構228與堆疊結構218之不同層級224之導電結構220的中心結構之間。
如圖7所示,導線結構102可豎直地插入於堆疊結構218與下伏於堆疊結構218之第一互連區域206之間。個別導線結構102可耦接至記憶體單元230之個別豎直延伸串。在一些實施例中,導線結構102與單元柱結構228直接實體接觸。在其他實施例中,接觸結構可豎直地介入於導線結構102與單元柱結構228之間,且可將導線結構102耦接至記憶體單元230之豎直延伸串。
繼續參考圖7,源極層級237可豎直地插入於堆疊結構218與上覆於堆疊結構218之第二互連區域208之間。在源極層級237內,源極結構238及接觸襯墊240可水平地彼此鄰近(例如,在X方向上,在Y方向上)。源極結構238可與接觸襯墊240電隔離,且可定位在與接觸襯墊240實質上相同的豎直位置處(例如,在Z方向上)。至少一種絕緣材料可水平地插入於源極結構238與接觸襯墊240之間,如在下文更詳細地描述。
源極層級237之源極結構238可耦接至記憶體單元230之豎直延伸串。在一些實施例中,源極結構238與單元柱結構228直接實體接觸。在其他實施例中,接觸結構可豎直地介入於源極結構238與單元柱結構228之間,且可將源極結構238耦接至記憶體單元230之豎直延伸串。另外,源極結構238可耦接至第二互連區域208內的其他結構(例如,接觸結構、佈線結構、襯墊結構),如在下文更詳細地描述。
源極層級237之接觸襯墊240可耦接至堆疊結構218內之其他導電特徵(例如,導電接觸結構、導電柱、導電填充通孔)。舉例而言,如圖7中所示,接觸襯墊240可耦接至豎直地延伸穿過堆疊結構218之深接觸結構226。在一些實施例中,接觸襯墊240與深接觸結構226直接實體接觸。在其他實施例中,其他接觸結構可豎直地介入於接觸襯墊240與深接觸結構226之間,且可將接觸襯墊240耦接至深接觸結構226。另外,接觸襯墊240可耦接至第二互連區域208內的其他結構(例如,互連結構、佈線結構、襯墊結構),如在下文更詳細地描述。
源極結構238及接觸襯墊240可各自由導電材料形成且包括導電材料。源極結構238之材料組成可與接觸襯墊240之材料組成實質上相同。在一些實施例中,源極結構238及接觸襯墊240由導電摻雜半導電材料形成且包括導電摻雜半導電材料,諸如以下各者中之一或多者的導電摻雜形式:矽材料,諸如單晶矽或多晶矽;矽鍺材料;鍺材料;砷化鎵材料;氮化鎵材料;以及磷化銦材料。作為非限制性實例,源極結構238及接觸襯墊240可由摻雜有至少一種摻雜劑(例如,至少一種n型摻雜劑、至少一種p型摻雜劑及至少另一摻雜劑中之一或多者)之磊晶矽(例如,經由磊晶生長形成之單晶矽)形成且包括磊晶矽。作為另一非限制性實例,源極結構238及接觸襯墊240可由摻雜有至少一種摻雜劑(例如,至少一種n型摻雜劑、至少一種p型摻雜劑及至少另一摻雜劑中之一或多者)之多晶矽形成且包括多晶矽。
如圖7所示,視需要,跨接結構241可位於源極結構238及接觸襯墊240上或上方。跨接結構241可豎直地插入於源極結構238及接觸襯墊240與第二互連區域208內之其他特徵(例如,其他結構、其他材料)之間。若存在,跨接結構241可由導電材料形成且包括導電材料。可選擇跨接結構241之材料組成以降低第二互連區域208內之導電結構與源極層級237之源極結構238及接觸襯墊240中之每一者之間的接觸電阻(相對於跨接結構241不存在處之組態)。藉助於非限制性實例,跨接結構241 (若存在)可由金屬材料形成且包括該金屬材料,該金屬材料包含以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,跨接結構241由矽化鎢(WSi x)形成且包括矽化鎢。在其他實施例中,跨接結構241由W及氮化鎢(WN x)中之一或多者(例如,堆疊)形成且包括W及氮化鎢中之一或多者(例如,堆疊)。
繼續參考圖7,微電子裝置200之第一互連區域206可豎直地插入於微電子裝置200之控制邏輯區域202與記憶體陣列區域204之間。第一互連區域206可耦接控制邏輯區域202之特徵與記憶體陣列區域204之特徵。如圖7中所示,第一互連區域206可包括耦接至控制邏輯區域202之第一佈線結構214之第二接觸結構242;耦接至記憶體陣列區域204之導線結構102的微電子裝置結構100之導電接觸結構120之部分;以及在第二接觸結構242與導電接觸結構120之間延伸且耦接該等第二接觸結構與該等導電接觸結構之經連接接合襯墊246。經連接接合襯墊246可包括第二接觸結構242上(例如,豎直地上覆於該第二接觸結構且與該第二接觸結構直接相鄰)之第一接合襯墊248,及微電子裝置結構100之導電襯墊結構124 (充當第二接合襯墊)。第一接合襯墊248及導電襯墊結構124可實體上彼此連接以形成經連接接合襯墊246。
第一互連區域206之第二接觸結構242可自第一接合襯墊248且在其與控制邏輯區域202之第一佈線結構214中的一些之間豎直地延伸。在一些實施例中,第二接觸結構242包含豎直地延伸穿過插入於第一接合襯墊248與第一佈線結構214之間的介電材料的導電填充通孔。第二接觸結構242可由導電材料形成且包括導電材料。藉助於非限制性實例,第二接觸結構242可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,第二接觸結構242中之每一者由Cu形成且包括Cu。
第一互連區域206之經連接接合襯墊246可自第二接觸結構242且在其與微電子裝置結構100之導電接觸結構120之間豎直地延伸。經連接接合襯墊246之第一接合襯墊248可自第二接觸結構142且在其與經連接接合襯墊246之導電襯墊結構124之間豎直地延伸;且經連接接合襯墊246之導電襯墊結構124可自導電接觸結構120且在其與經連接接合襯墊246之第一接合襯墊248之間豎直地延伸。雖然在圖1中,每一經連接接合襯墊246之第一接合襯墊248及導電襯墊結構124藉助於虛線區別於彼此,但第一接合襯墊248及導電襯墊結構124可彼此整合且相連。換言之,每一經連接接合襯墊246可為實質上單體結構,其包括第一接合襯墊248作為其第一區域且包括導電襯墊結構124作為其第二區域。對於每一經連接接合襯墊246,其第一接合襯墊248可在無接合線之情況下附接至其導電襯墊結構124。
經連接接合襯墊246 (包括其第一接合襯墊248及導電襯墊結構124)可由導電材料形成且包括導電材料。藉助於非限制性實例,經連接接合襯墊246可由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種金屬、至少一種合金及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,經連接接合襯墊246 (包括其第一接合襯墊248及導電襯墊結構124)中之每一者由Cu形成且包括Cu。
仍參考圖7,至少一種絕緣材料232可覆蓋及環繞第二接觸結構242及經連接接合襯墊246之第一接合襯墊248。絕緣材料232可附接至微電子裝置結構100之其他隔離材料122。絕緣材料232之材料組成可與其他隔離材料122之材料組成實質上相同,或絕緣材料232之材料組成可不同於其他隔離材料122之材料組成。在一些實施例中,絕緣材料232由諸如SiO x(例如,SiO 2)之至少一種介電氧化物材料形成且包括至少一種介電氧化物材料。在其他實施例中,絕緣材料232由諸如以下各者中之一或多者的至少一種低k介電材料形成且包括至少一種低k介電材料:SiO xC y、SiO xN y、SiC xO yH z及SiO xC zN y。絕緣材料232可為實質上均質的或絕緣材料232可為異質的。在一些實施例中,絕緣材料232為實質上均質的。在其他實施例中,絕緣材料232為異質的。舉例而言,絕緣材料232可由至少兩種不同介電材料之堆疊形成且包括至少兩種不同介電材料之堆疊。
繼續參考圖7,微電子裝置200之第二互連區域208可豎直地上覆於微電子裝置200之記憶體陣列區域204。第二互連區域208可包括第二佈線結構252及導電襯墊256。第二佈線結構252可豎直地上覆於記憶體陣列區域204之源極層級237 (包括其源極結構238及接觸襯墊240),且可藉助於第三接觸結構254耦接至源極結構238及接觸襯墊240。第三接觸結構254可在第二佈線結構252與源極層級237之源極結構238及接觸襯墊240之間延伸。若存在,則跨接結構241可豎直地介入於第三接觸結構254與源極結構238及接觸襯墊240之間。導電襯墊256可豎直地上覆於第二佈線結構252,且可藉助於第四接觸結構258耦接至第二佈線結構252。第四接觸結構258可自第二佈線結構252且在其與導電襯墊256之間延伸。
第二佈線結構252及導電襯墊256可充當用於微電子裝置200之全域佈線結構。舉例而言,第二佈線結構252及導電襯墊256可經組態以自外部匯流排接收全域信號,且將全域信號轉送至微電子裝置200之其他組件(例如,結構、裝置)。
第二佈線結構252、第三接觸結構254、導電襯墊256及第四接觸結構258可各自由導電材料形成且包括導電材料。藉助於非限制性實例,第二佈線結構252、第三接觸結構254、導電襯墊256及第四接觸結構258可各自個別地由以下各者中之一或多者形成且包括以下各者中之一或多者:至少一種金屬、至少一種合金,及至少一種含有導電金屬之材料(例如,導電金屬氮化物、導電金屬矽化物、導電金屬碳化物、導電金屬氧化物)。在一些實施例中,第二佈線結構252及第三接觸結構254各自由Cu形成且包括Cu,導電襯墊256由Al形成且包括Al,且第四接觸結構258由W形成且包括W。在其他實施例中,第二佈線結構252由Cu形成且包括Cu,導電襯墊256由Al形成且包括Al,且第三接觸結構254及第四接觸結構258各自由W形成且包括W。
仍參考圖7,至少一種其他絕緣材料260可覆蓋及環繞第二佈線結構252、第三接觸結構254、導電襯墊256及第四接觸結構258。至少一種其他絕緣材料260亦可覆蓋且環繞源極結構238及接觸襯墊240之部分。其他絕緣材料260之材料組成可實質上相同於或可不同於絕緣材料132之材料組成。在一些實施例中,其他絕緣材料260由諸如SiO x(例如,SiO 2)之至少一種介電氧化物材料形成且包括至少一種介電氧化物材料。在其他實施例中,其他絕緣材料260由諸如以下各者中之一或多者的至少一種低k介電材料形成且包括至少一種低k介電材料:SiO xC y、SiO xN y、SiC xO yH z及SiO xC zN y。其他絕緣材料260可為實質上均質的或其他絕緣材料260可為異質的。若其他絕緣材料260為異質的,則包括於其他絕緣材料260中之一或多種元素的量可貫穿其他絕緣材料260之不同部分逐步地改變(例如,突然改變)或可連續地改變(例如,逐漸地改變,諸如線性地、拋物線式)。在一些實施例中,其他絕緣材料260為實質上均質的。在其他實施例中,其他絕緣材料260為異質的。舉例而言,其他絕緣材料260由至少兩種不同介電材料之堆疊形成且包括至少兩種不同介電材料之堆疊。
因此,根據本發明之實施例的微電子裝置包含導線結構、絕緣線結構、部分填充溝槽、導電接觸結構及導電襯墊結構。導線結構在第一水平方向上延伸。絕緣線結構在導線結構上且在第一水平方向上延伸。部分填充溝槽在正交於第一水平方向之第二水平方向上介入於導線結構之間。部分填充溝槽包含導線結構及絕緣線結構之側表面上之隔離材料及由隔離材料環繞之氣隙。導電接觸結構豎直地延伸穿過絕緣線結構之部分且接觸導線結構。導電襯墊結構在該等導電接觸結構上。
此外,根據本發明之實施例的記憶體裝置包含記憶體陣列區域、豎直地下伏於記憶體陣列區域之控制邏輯區域,及豎直地插入於記憶體陣列區域與控制邏輯區域之間的互連區域。記憶體陣列區域包含堆疊結構,其包含豎直交錯之導電結構與絕緣結構;處於該堆疊結構內的記憶體單元之豎直延伸串;源極結構,其豎直地上覆於堆疊結構且耦接至記憶體單元之豎直延伸串;數位線結構,其豎直地下伏於堆疊結構且耦接至記憶體單元之豎直延伸串;介電帽結構,其豎直地下伏於數位線結構;隔離材料,其水平地插入於數位線結構之間且水平地插入於介電帽結構之間;以及氣隙,其由隔離材料環繞且與數位線結構水平交錯。該控制邏輯區域包含控制邏輯裝置,其經組態以實現記憶體單元之豎直延伸串的控制操作之一部分。該互連區域包含將記憶體陣列區域之數位線結構耦接至控制邏輯區域之控制邏輯裝置的結構。
圖8A至圖8D為說明形成上文參考圖7所描述之微電子裝置200之方法的實施例的簡化部分截面視圖。藉由下文所提供之描述,一般熟習此項技術者將顯而易見,本文中所描述之方法及結構可用於形成各種裝置及電子系統。
參考圖8A,第一微電子裝置構造201可形成為包括微電子裝置200 (圖7)之控制邏輯區域202,包括其半導電基底結構210、閘極結構212、第一佈線結構214及第一接觸結構216。第一微電子裝置構造201亦可形成為包括第二接觸結構242、第一接合襯墊248及絕緣材料232。第一微電子裝置構造201可使用習知製程(例如,習知材料沈積製程、習知材料移除製程)及習知處理設備形成,這在本文中未詳細地描述。
接下來參考圖8B,第二微電子裝置構造203可形成為包括載體結構233 (例如,載體晶圓);載體結構233上或上方之經摻雜半導電材料235 (例如,導電摻雜矽,諸如一或多個經導電摻雜的單晶矽及經導電摻雜的多晶矽);堆疊結構218;深接觸結構226;單元柱結構228;以及微電子裝置結構100,包括其導線結構102、絕緣線結構104、隔離材料108、氣隙110、導電接觸結構120、其他隔離材料122及導電襯墊結構124。第二微電子裝置構造203可形成為與第一微電子裝置構造201 (圖8A)分隔開。
第二微電子裝置構造203之載體結構233包含上面形成第二微電子裝置構造203之其他特徵(例如,材料、結構、裝置)之基底材料或構造。舉例而言,載體結構233可由以下各者中之一或多者形成且包括以下各者中之一或多者:半導電材料(例如,矽材料,諸如單晶矽或多晶矽(在本文中亦被稱作「多晶矽」);矽鍺;鍺;砷化鎵;氮化鎵;磷化鎵;磷化銦;氮化銦鎵;以及氮化鋁鎵中之一或多者);支撐結構上之基底半導電材料;玻璃材料(例如,硼矽酸鹽玻璃(BSP)、磷矽酸鹽玻璃(PSG)、氟矽酸鹽玻璃(FSG)、硼磷矽酸鹽玻璃(BPSG)、鋁矽酸鹽玻璃、鹼土硼鋁矽酸鹽玻璃、石英、二氧化鈦矽酸鹽玻璃及鈉鈣玻璃中之一或多者),及陶瓷材料(例如,聚氮化鋁(p-AlN)、聚氮化鋁上矽(SOPAN)、氮化鋁(AlN)、氧化鋁(例如,藍寶石;α-Al 2O 3)及碳化矽中之一或多者)。載體結構233可經組態以有助於第二微電子裝置構造203之安全處置以供後續附接至第一微電子裝置構造201,如在下文更詳細地描述。
在一些實施例中,經摻雜半導電材料235形成於載體結構233上或上方,且接著堆疊結構218 (此處包括導電結構220及絕緣結構222之層級224)形成於經摻雜半導電材料235上或上方。深接觸結構226、單元柱結構228及其他特徵(例如,填充溝槽、接觸區域、其他接觸結構)可接著形成於堆疊結構218內。此後,微電子裝置結構100 (包括其導線結構102、絕緣線結構104、隔離材料108、氣隙110、導電接觸結構120、其他隔離材料122及導電襯墊結構124)可經由本文中先前參考圖1A至圖6B所描述之製程形成於堆疊結構218上或上方(其中堆疊結構218在圖1A至圖6B中對應於基底結構101)。
接下來參考圖8C,在第一微電子裝置構造201之形成及第二微電子裝置構造203之單獨形成之後,第二微電子裝置構造203可豎直地反轉(例如,在Z方向上翻轉倒置)且附接(例如,接合)至第一微電子裝置構造201以形成微電子裝置結構總成205。替代地,第一微電子裝置構造201可豎直地反轉(例如,在Z方向上翻轉倒置)且附接至第二微電子裝置構造203以形成微電子裝置結構總成205。第二微電子裝置構造203至第一微電子裝置構造201之附接可將第二微電子裝置構造203之導電襯墊結構124附接至第一微電子裝置構造201之第一接合襯墊248以形成經連接接合襯墊246。另外,第二微電子裝置構造203至第一微電子裝置構造201之附接亦可將第二微電子裝置構造203之其他隔離材料122附接至第一微電子裝置構造201之絕緣材料232。在圖8C中,在將第一微電子裝置構造201附接至第二微電子裝置構造203以形成微電子裝置結構總成205之前,第一微電子裝置構造201相對於第二微電子裝置構造203之豎直邊界由虛線A-A描繪。第一微電子裝置構造201可在無接合線之情況下附接至第二微電子裝置構造203。
接下來參考圖8D,在將第二微電子裝置構造203 (圖8C)附接至第一微電子裝置構造201 (圖8C)之後,載體結構233 (圖8C)可自微電子裝置結構總成205移除(例如,經由習知脫離製程及/或習知研磨製程)以曝露(例如,露出)經摻雜半導電材料235。視需要,在移除載體結構233 (圖2A)之後,其他量(例如,其他體積)的經摻雜半導電材料(例如,經摻雜多晶矽)可形成於經摻雜半導電材料235上。若經形成,則其他量之經摻雜半導電材料可具有與經摻雜半導電材料235之材料組成實質上相同的材料組成,或可具有與經摻雜半導電材料235之材料組成不同的材料組成。另外,視需要,跨接材料239可形成於經摻雜半導電材料235上或上方。跨接材料239 (若存在)可包含先前關於跨接結構241 (圖7)所描述之導電材料中之一或多者。在形成跨接材料239 (若存在)之前及/或之後,經摻雜半導電材料235 (及其他量之經摻雜半導電材料(若存在))可視需要經退火(例如,熱退火)。舉例而言,使經摻雜半導電材料235退火可促進或增強經摻雜半導電材料235內之摻雜劑活化。
共同參考圖7及圖8D,在移除載體結構233 (圖8C)之後,經摻雜半導電材料235 (及其他量之經摻雜半導電材料,若存在)及跨接材料239 (圖8D)(若存在)之部分可經移除(例如,經蝕刻)以分別形成源極結構238 (圖7)、接觸襯墊240 (圖7)及跨接結構241 (圖7)(若存在)。此後,第三接觸結構254 (圖7)可形成於源極結構238及接觸襯墊240上或上方,且第二佈線結構252 (圖7)可接著形成於第三接觸結構254上或上方。第四接觸結構258 (圖7)可接著形成於第二佈線結構252上或上方,且導電襯墊256 (圖7)可形成於第四接觸結構258上或上方以實現微電子裝置200 (圖7)之形成。
因此,根據本發明之實施例,形成記憶體裝置之方法包含形成第一微電子裝置構造,該第一微電子裝置構造包含控制邏輯裝置。第二微電子裝置構造形成為包含載體結構;上覆於該載體結構且包含豎直交錯之導電結構與絕緣結構之堆疊結構;處於該堆疊結構內的記憶體單元之豎直延伸串;豎直地上覆於堆疊結構之數位線結構;豎直地上覆於數位線結構之介電帽結構;水平地介入於數位線結構之間且水平地介入於介電帽結構之間的介電材料;以及由介電材料環繞且水平地介入於數位線結構之間的氣隙。將該第二微電子裝置構造附接至該第一微電子裝置構造以形成微電子裝置結構總成,該等數位線結構豎直地插入於該微電子裝置結構總成內之該堆疊結構與該等控制邏輯裝置之間。自微電子裝置結構總成移除載體結構。至少一個源極結構形成於該微電子裝置結構總成之該堆疊結構上方。
根據本發明之實施例的微電子裝置結構(例如,微電子裝置結構100 (圖6A及圖6B))及微電子裝置(例如,微電子裝置200 (圖7))可用於本發明之電子系統之實施例中。舉例而言,圖9為根據本發明之實施例的說明性電子系統300之方塊圖。舉例而言,電子系統300可包含電腦或電腦硬體組件、伺服器或其他網路連接硬體組件、蜂巢式電話、數位攝影機、個人數位助理(PDA)、攜帶型媒體(例如,音樂)播放器、具Wi-Fi或蜂巢式功能之平板電腦(諸如iPad®或SURFACE®平板電腦)、電子書、導航裝置等。電子系統300包括至少一個記憶體裝置302。舉例而言,記憶體裝置302可包含本文中先前所描述之微電子裝置結構(例如,微電子裝置結構100 (圖6A及圖6B))及微電子裝置(例如,微電子裝置200 (圖7))中之一或多者。電子系統300可進一步包括至少一個電子信號處理器裝置304 (常常被稱作「微處理器」)。電子信號處理器裝置304可視需要包括本文中先前所描述之微電子裝置結構(例如,微電子裝置結構100 (圖6A及圖6B))及微電子裝置(例如,微電子裝置200 (圖7))中之一或多者。雖然在圖7中記憶體裝置302及電子信號處理器裝置304經描繪為兩(2)個分開的裝置,但在其他實施例中,具有記憶體裝置302及電子信號處理器裝置304之功能性的單個(例如,僅一個)記憶體/處理器裝置包括於電子系統300中。在此類實施例中,記憶體/處理器裝置可包括本文中先前所描述之微電子裝置結構(例如,微電子裝置結構100 (圖6A及圖6B))及微電子裝置(例如,微電子裝置200 (圖7))中之一或多者。電子系統300可進一步包括用於藉由使用者將資訊輸入至電子系統300的一或多個輸入裝置306,諸如滑鼠或其他指標裝置、鍵盤、觸控板、按鈕或控制面板。電子系統300可進一步包括用於將資訊(例如,視覺或音訊輸出)輸出至使用者之一或多個輸出裝置308,諸如監視器、顯示器、印表機、音訊輸出插口、揚聲器等。在一些實施例中,輸入裝置306及輸出裝置308可包含可用以將資訊輸入至電子系統300及將視覺資訊輸出至使用者兩者的單個觸控式螢幕裝置。輸入裝置306及輸出裝置308可與記憶體裝置302及電子信號處理器裝置304中之一或多者電通信。
因此,根據本發明之實施例的電子系統包含輸入裝置;輸出裝置;處理器裝置,其可操作地耦接至輸入裝置及輸出裝置;及記憶體裝置,其可操作地耦接至處理器裝置。記憶體裝置包含堆疊結構、源極結構、數位線、記憶體單元串、介電氮化物結構、絕緣材料、絕緣材料內之氣隙、導電接觸件、導電襯墊,及控制邏輯電路系統。該堆疊結構包含層級,其各自包含導電結構及豎直鄰近該導電結構之絕緣結構。源極結構上覆於堆疊結構。數位線下伏於堆疊結構。記憶體單元串延伸穿過堆疊結構且耦接至源極結構及數位線。介電氮化物結構下伏於數位線。絕緣材料插入於數位線之間且插入於介電氮化物結構之間。絕緣材料內之氣隙插入於數位線之間。導電接觸件延伸穿過介電氮化物結構且耦接至數位線。導電襯墊下伏於且耦接至導電接觸件。控制邏輯電路系統下伏於且耦接至導電襯墊。
相較於習知結構、習知裝置及習知方法,本發明之結構、裝置及方法有利地促進以下各者中之一或多者:改善的微電子裝置效能;減小的成本(例如,製造成本、材料成本);增加的組件小型化;及較大的封裝密度。相較於習知結構、習知裝置及習知方法,本發明之結構、裝置及方法亦可改善可擴展性、效率及簡單性。
本發明之非限制性實例實施例包括:
實施例1:一種形成一微電子裝置之方法,其包含:形成包含導電材料及上覆於該導電材料之絕緣材料之線結構,該等線結構藉由溝槽彼此分隔開;在該等溝槽內部及外部的該等線結構之表面上形成一隔離材料,該隔離材料僅部分地填充該等溝槽以形成插入於該等線結構之間的氣隙;將開口形成為延伸穿過該隔離材料且曝露該等線結構之該絕緣材料之部分;移除該等線結構之該絕緣材料之曝露部分以形成延伸至該等線結構之該導電材料之延伸開口;在該等延伸開口內形成導電接觸結構;以及在該等導電接觸結構上形成導電襯墊結構。
實施例2:如實施例1之方法,其中在該等溝槽內部及外部之該等線結構之表面上形成一隔離材料包含在該導電材料及該絕緣材料中之每一者之側表面上及該絕緣材料之上表面上形成該隔離材料。
實施例3:如實施例1及2中任一項之方法,其進一步包含:選擇該等線結構之該絕緣材料以包含一介電氮化物材料;及選擇該隔離材料以包含一介電氧化物材料。
實施例4:如實施例1至3中任一項之方法,其中將開口形成為延伸穿過該隔離材料且曝露該等線結構之該絕緣材料之部分包含將該等開口中之每一者形成為與該等開口下方之該等線結構中之一者水平對準。
實施例5:如實施例1至4中任一項之方法,其中將開口形成為延伸穿過該隔離材料且曝露該等線結構之該絕緣材料之部分包含將該等開口中之每一者形成為水平地延伸超出該等開口下方之該等線結構中之一者之水平邊界。
實施例6:如實施例1至5中任一項之方法,其進一步包含在移除該等線結構之該絕緣材料之該等曝露部分以形成該等延伸開口之前在該等開口內形成間隔件結構,該等間隔件結構部分地填充該等開口且包含介電材料。
實施例7:如實施例6之方法,其進一步包含形成該等間隔件結構以至少部分地水平地介入於該等開口之剩餘未填充部分與該等氣隙之間。
實施例8:如實施例1至7中任一項之方法,其中移除該等線結構之該絕緣材料之該等曝露部分以形成延伸開口包含形成該等延伸開口之豎直下部部分以水平地寬於該等延伸開口之豎直較高部分。
實施例9:如實施例1至8中任一項之方法,其中在該等延伸開口內形成導電接觸結構包含:在該等延伸開口內部及外部形成一導電接觸材料,該導電接觸材料實質上填充該等延伸開口;及移除該等延伸開口之邊界外部的該導電接觸材料之部分。
實施例10:如實施例1至9中任一項之方法,其中在該等導電接觸結構上形成導電襯墊結構包含經由一金屬鑲嵌製程形成該等導電襯墊結構。
實施例11:如實施例1至10中任一項之方法,其中在該等導電接觸結構上形成導電襯墊結構包含將該等導電襯墊結構中之每一者形成為水平地延伸超出與其實體接觸的該等導電接觸結構中之一者之水平邊界。
實施例12:如實施例1至11中任一項之方法,其中在該等導電接觸結構上形成導電襯墊結構包含形成該等導電襯墊結構以包含銅。
實施例13:一種微電子裝置,其包含:導線結構,其在一第一水平方向上延伸;絕緣線結構,其在該等導線結構上且在該第一水平方向上延伸;部分填充溝槽,其在正交於該第一水平方向之一第二水平方向上介入於該等導線結構之間,該等部分填充溝槽包含:在該等導線結構及該等絕緣線結構之側表面上之一隔離材料;及由該隔離材料環繞之氣隙;導電接觸結構,其豎直地延伸穿過該等絕緣線結構之部分且接觸該等導線結構;以及導電襯墊結構,其在該等導電接觸結構上。
實施例14:如實施例13之微電子裝置,其中該隔離材料在該等絕緣線結構之上表面上方水平地延伸。
實施例15:如實施例13及14中任一項之微電子裝置,其中該等導電接觸結構之豎直下部部分相對水平地窄於該等導電接觸結構之豎直上部部分。
實施例16:如實施例15之微電子裝置,其進一步包含實體上接觸該等導電接觸結構之該等豎直上部部分之側表面而非實體上接觸該等導電接觸結構之該等豎直下部部分之側表面的介電間隔件結構。
實施例17:如實施例13至16中任一項之微電子裝置,其中該等導電襯墊結構包含銅。
實施例18:一種記憶體裝置,其包含:一記憶體陣列區域,其包含:包含豎直交錯之導電結構與絕緣結構之一堆疊結構;處於該堆疊結構內的記憶體單元之豎直延伸串;一源極結構,其豎直地上覆於該堆疊結構且耦接至記憶體單元之該等豎直延伸串;數位線結構,其豎直地下伏於該堆疊結構且耦接至記憶體單元之該等豎直延伸串;介電帽結構,其豎直地下伏於該等數位線結構;一隔離材料,其水平地插入於該等數位線結構之間且水平地插入於該等介電帽結構之間;以及氣隙,其由該隔離材料環繞且與該等數位線結構水平交錯;一控制邏輯區域,其豎直地下伏於該記憶體陣列區域且包含控制邏輯裝置,該等控制邏輯裝置經組態以實現記憶體單元之該等豎直延伸串的控制操作之一部分;以及一互連區域,其豎直地插入於該記憶體陣列區域與該控制邏輯區域之間,且包含將該記憶體陣列區域之該等數位線結構耦接至該控制邏輯區域之該等控制邏輯裝置的結構。
實施例19:如實施例18之記憶體裝置,其中該互連區域之該等結構包含:導電接觸結構,其豎直地延伸穿過該記憶體陣列區域之該等介電帽結構且實體上接觸該等數位線結構;其他導電接觸結構,其實體上接觸該控制邏輯區域內之導電佈線結構;以及導電襯墊結構,其自該等導電接觸結構及該等其他導電接觸結構且在該等導電接觸結構與該等其他導電接觸結構之間豎直地延伸。
實施例20:如實施例19之記憶體裝置,其中導電接觸結構包含相對豎直地較接近於該等數位線結構之第一部分及相對豎直地較接近於該等導電襯墊結構之第二部分,該等導電接觸結構之該等第二部分相對水平地寬於該等導電接觸結構之該等第一部分。
實施例21:如實施例20之記憶體裝置,其進一步包含水平地插入於該等導電接觸結構之該等第二部分與該隔離材料及該等介電帽結構中之每一者之間的介電間隔件結構。
實施例22:一種形成一記憶體裝置之方法,其包含:形成包含控制邏輯裝置之一第一微電子裝置構造;形成一第二微電子裝置構造,包含:一載體結構;上覆於該載體結構且包含豎直交錯之導電結構與絕緣結構之一堆疊結構;處於該堆疊結構內的記憶體單元之豎直延伸串;豎直地上覆於該堆疊結構之數位線結構;豎直地上覆於該等數位線結構之介電帽結構;水平地介入於該等數位線結構之間且水平地介入於該等介電帽結構之間的一介電材料;以及由該介電材料環繞且水平地介入於該等數位線結構之間的氣隙;將該第二微電子裝置構造附接至該第一微電子裝置構造以形成一微電子裝置結構總成,該等數位線結構豎直地插入於該微電子裝置結構總成內之該堆疊結構與該等控制邏輯裝置之間;自該微電子裝置結構總成移除該載體結構;以及在該微電子裝置結構總成之該堆疊結構上方形成至少一個源極結構。
實施例23:如實施例22之方法,其中:形成一第二微電子裝置構造包含形成該第二微電子裝置構造以進一步包含延伸穿過該等介電帽結構且實體上接觸該等數位線結構之導電接觸結構,及上覆於且實體上接觸該等導電接觸結構及該介電材料之導電襯墊結構;及將該第二微電子裝置構造附接至該第一微電子裝置構造包含將該第二微電子裝置構造之該等導電襯墊結構附接至該第一微電子裝置構造之其他導電結構。
實施例24:如實施例23之方法,其進一步包含經由一金屬鑲嵌製程形成該第二微電子裝置構造之該等導電襯墊結構。
實施例25:一種電子系統,其包含:一輸入裝置;一輸出裝置;一處理器裝置,其可操作地耦接至該輸入裝置及該輸出裝置;以及一記憶體裝置,其可操作地耦接至該處理器裝置且包含:一堆疊結構,其包含各自包含一導電結構及豎直鄰近該導電結構之一絕緣結構的層級;一源極結構,其上覆於該堆疊結構;數位線,其下伏於該堆疊結構;記憶體單元串,其延伸穿過堆疊結構且耦接至該源極結構及該等數位線;介電氮化物結構,其下伏於該等數位線;絕緣材料,其插入於該等數位線之間且插入於該等介電氮化物結構之間;氣隙,其在該絕緣材料內且插入於該等數位線之間;導電接觸件,其延伸穿過該等介電氮化物結構且耦接至該等數位線;導電襯墊,其下伏於且耦接至該等導電接觸件;以及控制邏輯電路系統,其下伏於且耦接至該等導電襯墊。
雖然本發明易受各種修改及替代形式之影響,但在圖式中以舉例方式展示了特定實施例,且已在本文中對其進行詳細描述。然而,本發明不限於所揭示之特定形式。更確切而言,本發明將涵蓋屬於以下所附申請專利範圍及其合法等效物之範疇內之所有修改、等效物及替代物。舉例而言,關於一個實施例所揭示之元件及特徵可與關於本發明之其他實施例所揭示之元件及特徵組合。
100:微電子裝置結構 101:基底結構 102:導線結構 104:絕緣線結構 106:溝槽 108:隔離材料 110:氣隙 112:開口 114:間隔件材料 116:間隔件結構 118:延伸開口 118A:上部部分 118B:下部部分 120:導電接觸結構 122:其他隔離材料 124:導電襯墊結構 132:絕緣材料 142:第二接觸結構 200:微電子裝置 201:第一微電子裝置構造 202:控制邏輯區域 203:第二微電子裝置構造 204:記憶體陣列區域 205:微電子裝置結構總成 206:第一互連區域 208:第二互連區域 210:半導電基底結構 212:閘極結構 214:第一佈線結構 215:控制邏輯裝置 216:第一接觸結構 216A:第一群組 216B:第二群組 218:堆疊結構 220:導電結構 222:絕緣結構 224:層級 226:深接觸結構 228:單元柱結構 230:記憶體單元 232:絕緣材料 233:載體結構 235:經摻雜半導電材料 237:源極層級 238:源極結構 239:跨接材料 240:接觸襯墊 241:跨接結構 242:第二接觸結構 246:經連接接合襯墊 248:第一接合襯墊 252:第二佈線結構 254:第三接觸結構 256:導電襯墊 258:第四接觸結構 260:其他絕緣材料 300:電子系統 302:記憶體裝置 304:電子信號處理器裝置 306:輸入裝置 308:輸出裝置
圖1A至圖6B為說明根據本發明之實施例的形成微電子裝置之方法的簡化部分截面(圖1A、圖2A、圖3A、圖4A、圖5A及圖6A)及簡化部分平面(圖1B、圖2B、圖3B、圖4B、圖5B及圖6B)視圖。 圖7為根據本發明之實施例的藉由參考圖1A至圖6B所描述之方法形成之包括微電子裝置結構之微電子裝置之簡化部分截面視圖。 圖8A至圖8D為說明根據本發明之實施例的形成圖7中所展示之微電子裝置之方法的簡化部分截面視圖。 圖9為根據本發明之實施例的電子系統之示意性方塊圖。
100:微電子裝置結構
101:基底結構
102:導線結構
104:絕緣線結構
108:隔離材料
110:氣隙
116:間隔件結構
120:導電接觸結構
122:其他隔離材料
124:導電襯墊結構

Claims (25)

  1. 一種形成一微電子裝置之方法,其包含:形成包含導電位元線結構及與該等導電位元線結構豎直相鄰之絕緣線結構之線結構,該等線結構藉由溝槽彼此分隔開;在該等溝槽內部及外部之該等線結構之表面上形成一隔離材料,該隔離材料僅部分地填充該等溝槽以形成插入於該等線結構之間且豎直重疊該等導電位元線結構的氣隙;將開口形成為延伸穿過該隔離材料且曝露該等線結構之該等絕緣線結構之部分;移除該等線結構之該等絕緣線結構之曝露部分以形成延伸至該等線結構之該等導電位元線結構之延伸開口;在該等延伸開口內形成導電接觸結構;以及形成豎直相鄰該等導電接觸結構之導電襯墊結構。
  2. 如請求項1之方法,其中在該等溝槽內部及外部之該等線結構之表面上形成該隔離材料包含在該等導電位元線結構及該等絕緣線結構中之每一者之側表面上及該等絕緣線結構之上表面上形成該隔離材料。
  3. 如請求項1之方法,其進一步包含:選擇該等線結構之該等絕緣線結構以包含一介電氮化物材料;及選擇該隔離材料以包含一介電氧化物材料。
  4. 如請求項1之方法,其中將該等開口形成為延伸穿過該隔離材料且曝露該等線結構之該等絕緣線結構之部分包含將該等開口中之每一者形成為與該等開口下方之該等線結構中之一者水平對準。
  5. 如請求項1之方法,其中將該等開口形成為延伸穿過該隔離材料且曝露該等線結構之該等絕緣線結構之部分包含將該等開口中之每一者形成為水平地延伸超出該等開口下方之該等線結構中之一者之水平邊界。
  6. 如請求項1至5中任一項之方法,其進一步包含在移除該等線結構之該等絕緣線結構之該等曝露部分以形成該等延伸開口之前在該等開口內形成間隔件結構,該等間隔件結構部分地填充該等開口且包含介電材料。
  7. 如請求項6之方法,其進一步包含形成該等間隔件結構以至少部分地水平地介入於該等開口之剩餘未填充部分與該等氣隙之間。
  8. 如請求項1至5中任一項之方法,其中移除該等線結構之該等絕緣線結構之該等曝露部分以形成該等延伸開口包含形成該等延伸開口之豎直下部部分以水平地窄於該等延伸開口之豎直較高部分。
  9. 如請求項1至5中任一項之方法,其中在該等延伸開口內形成該等導電接觸結構包含:在該等延伸開口內部及外部形成一導電接觸材料,該導電接觸材料實質上填充該等延伸開口;及 移除該等延伸開口之邊界外部的該導電接觸材料之部分。
  10. 如請求項1至5中任一項之方法,其中在該等導電接觸結構上形成該等導電襯墊結構包含經由一金屬鑲嵌製程形成該等導電襯墊結構。
  11. 如請求項1至5中任一項之方法,其中在該等導電接觸結構上形成該等導電襯墊結構包含將該等導電襯墊結構中之每一者形成為水平地延伸超出與其實體接觸的該等導電接觸結構中之一者之水平邊界。
  12. 如請求項1至5中任一項之方法,其中在該等導電接觸結構上形成該等導電襯墊結構包含形成該等導電襯墊結構以包含銅。
  13. 一種微電子裝置,其包含:導電位元線結構,其在一第一水平方向上延伸;絕緣線結構,其豎直相鄰該等導電位元線結構且在該第一水平方向上延伸;部分填充溝槽,其在正交於該第一水平方向之一第二水平方向上介入於該等導電位元線結構之間,該等部分填充溝槽包含:一隔離材料,其在該等導電位元線結構及該等絕緣線結構之側表面上;及氣隙,其由該隔離材料環繞且豎直重疊該等導電位元線結構;導電接觸結構,其豎直地延伸穿過該等絕緣線結構之部分且接觸該等導線結構;以及 導電襯墊結構,其豎直相鄰該等導電接觸結構。
  14. 如請求項13之微電子裝置,其中該隔離材料在該等絕緣線結構之上表面上方水平地延伸。
  15. 如請求項13之微電子裝置,其中該等導電接觸結構之豎直下部部分相對水平地窄於該等導電接觸結構之豎直上部部分。
  16. 如請求項15之微電子裝置,其進一步包含實體上接觸該等導電接觸結構之該等豎直上部部分之側表面而非實體上接觸該等導電接觸結構之該等豎直下部部分之側表面的介電間隔件結構。
  17. 如請求項13至16中任一項之微電子裝置,其中該等導電襯墊結構包含銅。
  18. 一種記憶體裝置,其包含:一記憶體陣列區域,其包含:包含豎直交錯之導電結構與絕緣結構之一堆疊結構;處於該堆疊結構內的記憶體單元之豎直延伸串;一源極結構,其豎直地上覆於該堆疊結構且耦接至記憶體單元之該等豎直延伸串;數位線結構,其豎直地下伏於該堆疊結構且耦接至記憶體單元之該等豎直延伸串; 介電帽結構,其豎直地下伏於該等數位線結構;一隔離材料,其水平地插入於該等數位線結構之間且水平地插入於該等介電帽結構之間;以及氣隙,其由該隔離材料環繞且與該等數位線結構水平交錯;一控制邏輯區域,其豎直地下伏於該記憶體陣列區域且包含控制邏輯裝置,該等控制邏輯裝置經組態以實現記憶體單元之該等豎直延伸串的控制操作之一部分;以及一互連區域,其豎直地插入於該記憶體陣列區域與該控制邏輯區域之間,且包含將該記憶體陣列區域之該等數位線結構耦接至該控制邏輯區域之該等控制邏輯裝置的結構。
  19. 如請求項18之記憶體裝置,其中該互連區域之該等結構包含:導電接觸結構,其豎直地延伸穿過該記憶體陣列區域之該等介電帽結構且實體上接觸該等數位線結構;其他導電接觸結構,其實體上接觸該控制邏輯區域內之導電佈線結構;以及導電襯墊結構,其自該等導電接觸結構及該等其他導電接觸結構且在該等導電接觸結構與該等其他導電接觸結構之間豎直地延伸。
  20. 如請求項19之記憶體裝置,其中導電接觸結構包含相對豎直地較接近於該等數位線結構之第一部分及相對豎直地較接近於該等導電襯墊結構之第二部分,該等導電接觸結構之該等第二部分相對水平地寬於該等導電接觸結構之該等第一部分。
  21. 如請求項20之記憶體裝置,其進一步包含水平地插入於該等導電接觸結構之該等第二部分與該隔離材料及該等介電帽結構中之每一者之間的介電間隔件結構。
  22. 一種形成一記憶體裝置之方法,其包含:形成包含控制邏輯裝置之一第一微電子裝置構造;形成一第二微電子裝置構造,包含:一載體結構;上覆於該載體結構且包含豎直交錯之導電結構與絕緣結構之一堆疊結構;處於該堆疊結構內的記憶體單元之豎直延伸串;豎直地上覆於該堆疊結構之數位線結構;豎直地上覆於該等數位線結構之介電帽結構;水平地介入於該等數位線結構之間且水平地介入於該等介電帽結構之間的一介電材料;以及由該介電材料環繞且水平地介入於該等數位線結構之間的氣隙;將該第二微電子裝置構造附接至該第一微電子裝置構造以形成一微電子裝置結構總成,該等數位線結構豎直地插入於該微電子裝置結構總成內之該堆疊結構與該等控制邏輯裝置之間;自該微電子裝置結構總成移除該載體結構;以及在該微電子裝置結構總成之該堆疊結構上方形成至少一個源極結構。
  23. 如請求項22之方法,其中:形成一第二微電子裝置構造包含形成該第二微電子裝置構造以進一步包含延伸穿過該等介電帽結構且實體上接觸該等數位線結構之導電接觸結構,及上覆於且實體上接觸該等導電接觸結構及該介電材料之導電襯墊結構;及將該第二微電子裝置構造附接至該第一微電子裝置構造包含將該第二微電子裝置構造之該等導電襯墊結構附接至該第一微電子裝置構造之其他導電結構。
  24. 如請求項23之方法,其進一步包含經由一金屬鑲嵌製程形成該第二微電子裝置構造之該等導電襯墊結構。
  25. 一種電子系統,其包含:一輸入裝置;一輸出裝置;一處理器裝置,其可操作地耦接至該輸入裝置及該輸出裝置;以及一記憶體裝置,其可操作地耦接至該處理器裝置且包含:一堆疊結構,其包含各自包含一導電結構及豎直鄰近該導電結構之一絕緣結構的層級;一源極結構,其上覆於該堆疊結構;數位線,其下伏於該堆疊結構;記憶體單元串,其延伸穿過堆疊結構且耦接至該源極結構及該等 數位線;介電氮化物結構,其下伏於該等數位線;絕緣材料,其插入於該等數位線之間且插入於該等介電氮化物結構之間;氣隙,其在該絕緣材料內且插入於該等數位線之間;導電接觸件,其延伸穿過該等介電氮化物結構且耦接至該等數位線;導電襯墊,其下伏於且耦接至該等導電接觸件;以及控制邏輯電路系統,其下伏於且耦接至該等導電襯墊。
TW110119678A 2020-06-18 2021-05-31 形成微電子裝置的方法、及相關的微電子裝置、記憶體裝置、電子系統、及其他方法 TWI789775B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/905,452 US11705367B2 (en) 2020-06-18 2020-06-18 Methods of forming microelectronic devices, and related microelectronic devices, memory devices, electronic systems, and additional methods
US16/905,452 2020-06-18

Publications (2)

Publication Number Publication Date
TW202213740A TW202213740A (zh) 2022-04-01
TWI789775B true TWI789775B (zh) 2023-01-11

Family

ID=79021978

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119678A TWI789775B (zh) 2020-06-18 2021-05-31 形成微電子裝置的方法、及相關的微電子裝置、記憶體裝置、電子系統、及其他方法

Country Status (4)

Country Link
US (2) US11705367B2 (zh)
CN (1) CN115917727A (zh)
TW (1) TWI789775B (zh)
WO (1) WO2021257229A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11282815B2 (en) 2020-01-14 2022-03-22 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices and electronic systems
US11563018B2 (en) * 2020-06-18 2023-01-24 Micron Technology, Inc. Microelectronic devices, and related methods, memory devices, and electronic systems
US11557569B2 (en) 2020-06-18 2023-01-17 Micron Technology, Inc. Microelectronic devices including source structures overlying stack structures, and related electronic systems
US11335602B2 (en) 2020-06-18 2022-05-17 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices and electronic systems
US11699652B2 (en) 2020-06-18 2023-07-11 Micron Technology, Inc. Microelectronic devices and electronic systems
US11469233B2 (en) * 2020-06-25 2022-10-11 Nanya Technology Corporation Method for preparing a memory device with air gaps for reducing capacitive coupling
US11404390B2 (en) * 2020-06-30 2022-08-02 Micron Technology, Inc. Semiconductor device assembly with sacrificial pillars and methods of manufacturing sacrificial pillars
KR20220018134A (ko) * 2020-08-05 2022-02-15 삼성전자주식회사 3차원 반도체 메모리 소자
US11825658B2 (en) 2020-08-24 2023-11-21 Micron Technology, Inc. Methods of forming microelectronic devices and memory devices
US11417676B2 (en) 2020-08-24 2022-08-16 Micron Technology, Inc. Methods of forming microelectronic devices and memory devices, and related microelectronic devices, memory devices, and electronic systems
KR20220109911A (ko) * 2021-01-29 2022-08-05 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US11751408B2 (en) 2021-02-02 2023-09-05 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices, memory devices, and electronic systems
TWI803318B (zh) * 2022-05-16 2023-05-21 南亞科技股份有限公司 半導體結構及其製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124726A1 (en) * 2012-11-08 2014-05-08 Samsung Electronics Co., Ltd. Phase-change memory devices and methods of fabricating the same

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925809A (en) 1987-05-23 1990-05-15 Osaka Titanium Co., Ltd. Semiconductor wafer and epitaxial growth on the semiconductor wafer with autodoping control and manufacturing method therefor
WO1998036888A1 (en) 1997-02-24 1998-08-27 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
JP2002103299A (ja) 2000-09-22 2002-04-09 Aisin Seiki Co Ltd マイクロマシンの製造方法
US20030113669A1 (en) 2001-12-19 2003-06-19 Jao-Chin Cheng Method of fabricating passive device on printed circuit board
JP4012411B2 (ja) 2002-02-14 2007-11-21 株式会社ルネサステクノロジ 半導体装置およびその製造方法
US7148538B2 (en) 2003-12-17 2006-12-12 Micron Technology, Inc. Vertical NAND flash memory array
US7372091B2 (en) 2004-01-27 2008-05-13 Micron Technology, Inc. Selective epitaxy vertical integrated circuit components
US8324725B2 (en) 2004-09-27 2012-12-04 Formfactor, Inc. Stacked die module
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7586784B2 (en) 2006-06-09 2009-09-08 Micron Technology, Inc. Apparatus and methods for programming multilevel-cell NAND memory devices
US8384155B2 (en) 2006-07-18 2013-02-26 Ememory Technology Inc. Semiconductor capacitor
EP3364298B1 (en) 2006-07-31 2019-12-11 Google LLC Memory circuit system and method
US8042082B2 (en) 2007-09-12 2011-10-18 Neal Solomon Three dimensional memory in a system on a chip
KR101448150B1 (ko) 2007-10-04 2014-10-08 삼성전자주식회사 메모리 칩이 적층된 멀티 칩 패키지 메모리, 메모리 칩의적층 방법 및 멀티 칩 패키지 메모리의 동작 제어 방법
KR20090072399A (ko) 2007-12-28 2009-07-02 삼성전자주식회사 3차원 메모리 장치
US7622365B2 (en) 2008-02-04 2009-11-24 Micron Technology, Inc. Wafer processing including dicing
US7906818B2 (en) 2008-03-13 2011-03-15 Micron Technology, Inc. Memory array with a pair of memory-cell strings to a single conductive pillar
US8546876B2 (en) 2008-03-20 2013-10-01 Micron Technology, Inc. Systems and devices including multi-transistor cells and methods of using, making, and operating the same
US9390974B2 (en) 2012-12-21 2016-07-12 Qualcomm Incorporated Back-to-back stacked integrated circuit assembly and method of making
US8765581B2 (en) 2009-11-30 2014-07-01 Micron Technology, Inc. Self-aligned cross-point phase change memory-switch array
KR101662821B1 (ko) 2010-06-16 2016-10-05 삼성전자주식회사 멀티-페이지 프로그램 방법, 그것을 이용한 불 휘발성 메모리 장치, 그리고 그것을 포함한 데이터 저장 시스템
JP5491982B2 (ja) 2010-06-21 2014-05-14 株式会社東芝 不揮発性半導体記憶装置及びその製造方法
US20130126622A1 (en) 2011-08-08 2013-05-23 David Finn Offsetting shielding and enhancing coupling in metallized smart cards
KR101807539B1 (ko) 2010-08-20 2017-12-12 삼성전자주식회사 3차원 비휘발성 메모리 장치의 메모리 셀 어레이의 어드레스 스케쥴링 방법
US8625322B2 (en) 2010-12-14 2014-01-07 Sandisk 3D Llc Non-volatile memory having 3D array of read/write elements with low current structures and methods thereof
CN102544049B (zh) 2010-12-22 2014-04-16 中国科学院微电子研究所 三维半导体存储器件及其制备方法
JP2012146861A (ja) 2011-01-13 2012-08-02 Toshiba Corp 半導体記憶装置
KR101751950B1 (ko) 2011-03-03 2017-06-30 삼성전자주식회사 비휘발성 메모리 장치 및 그것의 읽기 방법
US9196753B2 (en) 2011-04-19 2015-11-24 Micron Technology, Inc. Select devices including a semiconductive stack having a semiconductive material
US9489613B2 (en) 2011-08-08 2016-11-08 Féinics Amatech Teoranta RFID transponder chip modules with a band of the antenna extending inward
US8951859B2 (en) 2011-11-21 2015-02-10 Sandisk Technologies Inc. Method for fabricating passive devices for 3D non-volatile memory
US20140001583A1 (en) 2012-06-30 2014-01-02 Intel Corporation Method to inhibit metal-to-metal stiction issues in mems fabrication
KR20140028969A (ko) 2012-08-31 2014-03-10 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
KR101988434B1 (ko) 2012-08-31 2019-06-12 삼성전자주식회사 불휘발성 메모리 장치 및 그것의 서브-블록 관리 방법
US9230987B2 (en) 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
KR101995910B1 (ko) 2013-03-26 2019-07-03 매크로닉스 인터내셔널 컴퍼니 리미티드 3차원 플래시 메모리
JP6299757B2 (ja) 2013-05-21 2018-03-28 信越化学工業株式会社 太陽電池の製造方法
US9159714B2 (en) 2013-09-28 2015-10-13 Intel Corporation Package on wide I/O silicon
KR20150085155A (ko) 2014-01-13 2015-07-23 에스케이하이닉스 주식회사 상변화 구조물을 갖는 반도체 집적 회로 장치 및 그 제조방법
US9806129B2 (en) 2014-02-25 2017-10-31 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
US9324423B2 (en) 2014-05-07 2016-04-26 Micron Technology, Inc. Apparatuses and methods for bi-directional access of cross-point arrays
US9620217B2 (en) 2014-08-12 2017-04-11 Macronix International Co., Ltd. Sub-block erase
US9768378B2 (en) 2014-08-25 2017-09-19 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
JP6203152B2 (ja) 2014-09-12 2017-09-27 東芝メモリ株式会社 半導体記憶装置の製造方法
KR102249172B1 (ko) 2014-09-19 2021-05-11 삼성전자주식회사 불 휘발성 메모리 장치
JP6430302B2 (ja) 2015-03-13 2018-11-28 東芝メモリ株式会社 不揮発性半導体記憶装置
US10074661B2 (en) 2015-05-08 2018-09-11 Sandisk Technologies Llc Three-dimensional junction memory device and method reading thereof using hole current detection
US9397145B1 (en) 2015-05-14 2016-07-19 Micron Technology, Inc. Memory structures and related cross-point memory arrays, electronic systems, and methods of forming memory structures
KR102358302B1 (ko) 2015-05-21 2022-02-04 삼성전자주식회사 수직형 낸드 플래시 메모리 소자 및 그 제조 방법
US9653617B2 (en) 2015-05-27 2017-05-16 Sandisk Technologies Llc Multiple junction thin film transistor
US9741732B2 (en) 2015-08-19 2017-08-22 Micron Technology, Inc. Integrated structures
JP2017069420A (ja) 2015-09-30 2017-04-06 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
US9553263B1 (en) 2015-11-06 2017-01-24 Micron Technology, Inc. Resistive memory elements including buffer materials, and related memory cells, memory devices, electronic systems
US9853037B2 (en) 2015-11-23 2017-12-26 Micron Technology, Inc. Integrated assemblies
US9530790B1 (en) 2015-12-24 2016-12-27 Sandisk Technologies Llc Three-dimensional memory device containing CMOS devices over memory stack structures
US9922716B2 (en) 2016-04-23 2018-03-20 Sandisk Technologies Llc Architecture for CMOS under array
KR102634947B1 (ko) 2016-08-18 2024-02-07 삼성전자주식회사 수직형 메모리 장치 및 그 제조 방법
GB201620680D0 (en) 2016-12-05 2017-01-18 Spts Technologies Ltd Method of smoothing a surface
NL2018042B1 (en) 2016-12-22 2018-06-29 Stichting Energieonderzoek Centrum Nederland Method for manufacturing photovoltaic cells with a rear side polysiliconpassivating contact
KR20180076298A (ko) 2016-12-27 2018-07-05 아이엠이씨 브이제트더블유 대체 게이트를 갖는 수직 채널형 3차원 비휘발성 반도체 메모리 디바이스의 제조방법
US10141330B1 (en) 2017-05-26 2018-11-27 Micron Technology, Inc. Methods of forming semiconductor device structures, and related semiconductor device structures, semiconductor devices, and electronic systems
CN107658317B (zh) 2017-09-15 2019-01-01 长江存储科技有限责任公司 一种半导体装置及其制备方法
JP2019054150A (ja) 2017-09-15 2019-04-04 東芝メモリ株式会社 半導体装置の製造方法および半導体ウェハ
CN107887395B (zh) 2017-11-30 2018-12-14 长江存储科技有限责任公司 Nand存储器及其制备方法
US10446566B2 (en) 2017-12-15 2019-10-15 Micron Technology, Inc. Integrated assemblies having anchoring structures proximate stacked memory cells
EP4235784A3 (en) 2017-12-29 2023-10-04 INTEL Corporation Microelectronic assemblies with communication networks
EP3732712A4 (en) 2017-12-29 2021-09-01 Intel Corporation MICROELECTRONIC ARRANGEMENTS WITH COMMUNICATION NETWORKS
US10366983B2 (en) 2017-12-29 2019-07-30 Micron Technology, Inc. Semiconductor devices including control logic structures, electronic systems, and related methods
US10510738B2 (en) 2018-01-17 2019-12-17 Sandisk Technologies Llc Three-dimensional memory device having support-die-assisted source power distribution and method of making thereof
US10475771B2 (en) 2018-01-24 2019-11-12 Micron Technology, Inc. Semiconductor device with an electrically-coupled protection mechanism and associated systems, devices, and methods
JP2019165135A (ja) 2018-03-20 2019-09-26 東芝メモリ株式会社 半導体記憶装置
WO2019182657A1 (en) 2018-03-22 2019-09-26 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
CN108447865B (zh) 2018-04-19 2019-09-03 长江存储科技有限责任公司 三维存储器及其制造方法
US10586795B1 (en) 2018-04-30 2020-03-10 Micron Technology, Inc. Semiconductor devices, and related memory devices and electronic systems
US10381362B1 (en) 2018-05-15 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device including inverted memory stack structures and methods of making the same
JP7105612B2 (ja) 2018-05-21 2022-07-25 シャープ株式会社 画像表示素子およびその形成方法
US10651153B2 (en) 2018-06-18 2020-05-12 Intel Corporation Three-dimensional (3D) memory with shared control circuitry using wafer-to-wafer bonding
US10446577B1 (en) 2018-07-06 2019-10-15 Micron Technology, Inc. Integrated assemblies having thicker semiconductor material along one region of a conductive structure than along another region
KR102651818B1 (ko) 2018-07-20 2024-03-26 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3 차원 메모리 장치
US10707228B2 (en) 2018-08-21 2020-07-07 Sandisk Technologies Llc Three-dimensional memory device having bonding structures connected to bit lines and methods of making the same
US10553474B1 (en) 2018-08-29 2020-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a semiconductor-on-insulator (SOI) substrate
US10923493B2 (en) 2018-09-06 2021-02-16 Micron Technology, Inc. Microelectronic devices, electronic systems, and related methods
JP2020047814A (ja) 2018-09-20 2020-03-26 キオクシア株式会社 半導体記憶装置
CN109449158A (zh) 2018-10-26 2019-03-08 中国科学院微电子研究所 半导体器件及其制造方法及包括该器件的电子设备
WO2020103025A1 (en) 2018-11-21 2020-05-28 Yangtze Memory Technologies Co., Ltd. Bonding alignment marks at bonding interface
US11527548B2 (en) 2018-12-11 2022-12-13 Micron Technology, Inc. Semiconductor devices and electronic systems including an etch stop material, and related methods
US10665580B1 (en) 2019-01-08 2020-05-26 Sandisk Technologies Llc Bonded structure including a performance-optimized support chip and a stress-optimized three-dimensional memory chip and method for making the same
US10957680B2 (en) 2019-01-16 2021-03-23 Sandisk Technologies Llc Semiconductor die stacking using vertical interconnection by through-dielectric via structures and methods for making the same
US11201107B2 (en) 2019-02-13 2021-12-14 Sandisk Technologies Llc Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
US10629616B1 (en) 2019-02-13 2020-04-21 Sandisk Technologies Llc Bonded three-dimensional memory devices and methods of making the same by replacing carrier substrate with source layer
JP2021044397A (ja) 2019-09-11 2021-03-18 キオクシア株式会社 半導体記憶装置
JP2021044446A (ja) 2019-09-12 2021-03-18 キオクシア株式会社 半導体記憶装置及びその製造方法
KR102626639B1 (ko) 2019-11-05 2024-01-19 양쯔 메모리 테크놀로지스 씨오., 엘티디. 본딩된 3차원 메모리 디바이스 및 그 형성 방법들
US11282815B2 (en) 2020-01-14 2022-03-22 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices and electronic systems
US11393807B2 (en) 2020-03-11 2022-07-19 Peter C. Salmon Densely packed electronic systems
US11239207B1 (en) 2020-07-24 2022-02-01 Micron Technology, Inc. Semiconductor die stacks and associated systems and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124726A1 (en) * 2012-11-08 2014-05-08 Samsung Electronics Co., Ltd. Phase-change memory devices and methods of fabricating the same

Also Published As

Publication number Publication date
US20230317518A1 (en) 2023-10-05
TW202213740A (zh) 2022-04-01
US20210398847A1 (en) 2021-12-23
US11705367B2 (en) 2023-07-18
WO2021257229A1 (en) 2021-12-23
CN115917727A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
TWI789775B (zh) 形成微電子裝置的方法、及相關的微電子裝置、記憶體裝置、電子系統、及其他方法
US11848309B2 (en) Microelectronic devices, related electronic systems, and methods of forming microelectronic devices
TWI789774B (zh) 微電子裝置、及相關的方法、記憶體裝置、及電子系統
US11557569B2 (en) Microelectronic devices including source structures overlying stack structures, and related electronic systems
TWI789773B (zh) 形成微電子裝置之方法及相關之微電子裝置及電子系統
CN113823631B (zh) 形成微电子装置的方法及相关的微电子装置和电子系统
US20240057340A1 (en) Microelectronic devices, memory devices, and electronic systems
US20240038730A1 (en) Microelectronic devices, and methods of forming microelectronic devices
US20240170427A1 (en) Memory devices and related electronic systems
TW202306126A (zh) 微電子裝置及相關記憶體裝置及電子系統
US20240079361A1 (en) Microelectronic devices, and related memory devices and electronic systems
US11417676B2 (en) Methods of forming microelectronic devices and memory devices, and related microelectronic devices, memory devices, and electronic systems
US20240213150A1 (en) Memory devices and related methods of forming a memory device
US20230389284A1 (en) Microelectronic devices, related electronic systems, and methods of forming microelectronic devices
CN117641902A (zh) 微电子装置及相关存储器装置、电子系统及方法