TWI708873B - 碳化矽基板之表面處理方法 - Google Patents

碳化矽基板之表面處理方法 Download PDF

Info

Publication number
TWI708873B
TWI708873B TW104138124A TW104138124A TWI708873B TW I708873 B TWI708873 B TW I708873B TW 104138124 A TW104138124 A TW 104138124A TW 104138124 A TW104138124 A TW 104138124A TW I708873 B TWI708873 B TW I708873B
Authority
TW
Taiwan
Prior art keywords
etching
silicon carbide
carbide substrate
treatment method
surface treatment
Prior art date
Application number
TW104138124A
Other languages
English (en)
Other versions
TW201629281A (zh
Inventor
金子忠昭
芦田晃嗣
久津間保徳
鳥見聡
篠原正人
寺元陽次
矢吹紀人
野上暁
Original Assignee
日商東洋炭素股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東洋炭素股份有限公司 filed Critical 日商東洋炭素股份有限公司
Publication of TW201629281A publication Critical patent/TW201629281A/zh
Application granted granted Critical
Publication of TWI708873B publication Critical patent/TWI708873B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • H01L21/30621Vapour phase etching
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

提供一種碳化矽基板(40)之表面處理方法,其能對有無產生台階聚束或產生之台階聚束的種類進行控制。於藉由在Si的蒸汽壓力下加熱碳化矽基板(40)而對該碳化矽基板(40)之表面進行蝕刻之表面處理方法中,藉由控制至少基於蝕刻速度而決定之蝕刻模式、及蝕刻深度來進行碳化矽基板(40)之蝕刻,對蝕刻處理後之碳化矽基板(40)的表面形狀進行控制。

Description

碳化矽基板之表面處理方法
本發明主要關於一種藉由在Si的蒸汽壓力下加熱碳化矽基板而進行蝕刻之表面處理方法。
與矽(Si)等比較,碳化矽(SiC)在耐熱性及機械強度等方面相對更優異,因而作為新的半導體材料已受到矚目。
專利文獻1揭示一種對碳化矽基板之表面進行平坦加工之表面處理方法。於此表面處理方法中,將碳化矽基板收納於收納容器,且於將收納容器內設定為Si的蒸汽壓力下之狀態下加熱該收納容器。藉此,對收納容器內部之碳化矽基板進行蝕刻,從而能獲得分子級平坦之碳化矽基板。
其中,碳化矽基板係對由單晶SiC構成之晶碇以規定之角度進行切割而獲得者。於自被切割之碳化矽基板製造半導體元件之情況雖有進行磊晶生長(Epitaxy Growth),但由於切割之狀態下的表面粗糙度大,因而需要進行機械研磨(MP)及化學機械研磨(CMP)等之加工步驟 而將表面研磨平坦。然而,因進行機械研磨及化學機械研磨等,於碳化矽基板之表面產生有研磨損傷。此外,因於機械研磨時及化學機械研磨時等對碳化矽基板之表面施加有壓力,而會產生結晶性凌亂之變質層(以下稱為潛傷)。
[先前技術文獻] [專利文獻]
專利文獻1:日本特開2008-16691號公報
附帶地,若於存在有潛傷之碳化矽基板上進行磊晶生長,因潛傷之影響,會有大量之傷痕浮現於碳化矽基板之表面。此外,於對具有偏離角(off angle)的碳化矽基板進行加熱之情況,有時可能於碳化矽基板之表面產生台階聚束(step bunching)。台階聚束係指複數個SiC層被聚束而形成之台階差(例如,高度1nm以上之台階差)。
若自產生有台階聚束之碳化矽基板生成半導體元件,則半導體元件之元件構造變得不穩定,或者因電場局部集中而導致半導體元件之性能降低。此外,於碳化矽基板之表面殘留有潛傷之情況下,在磊晶生長時以潛傷為起點朝磊晶層中產生層積缺陷,造成結晶品質劣化。已知此層積缺陷會造成製作之半導體元件、尤其是功率元件之特性劣化。因此,為了達到SiC半導體元件之高品質化及低成本化,必須將潛傷除去。另一方面,近年來,已知 若使用台階聚束之台階差進行溶液生長法等,則與普通情況比較,有可能減輕結晶錯位之影響。此外,已知台階聚束存在有複數之種類(例如,參照後述之圖5),且可認為其等之特性互不相同。
本發明係鑒於以上問題而完成,其主要目的在於,提供一種碳化矽基板之表面處理方法,其用以獲得除去潛藏於碳化矽基板之表面內的潛傷且表面被平坦加工之碳化矽基板。此外,作為另一目的在於,提供一種碳化矽基板之表面處理方法,其能藉由本表面處理方法對有無產生台階聚束或產生之台階聚束的種類進行控制。
(解決問題之技術手段及功效)
本發明所欲解決之問題誠如上述,下面對用以解決此問題之技術手段及其功效進行說明。
根據本發明之第一方面,於藉由在Si的蒸汽壓力下加熱碳化矽基板而對該碳化矽基板之表面進行蝕刻之表面處理方法中,提供有以下之表面處理方法。亦即,於該表面處理方法中,藉由控制至少基於蝕刻速度而決定之蝕刻模式、及蝕刻深度來進行上述碳化矽基板之蝕刻,而對蝕刻處理後之上述碳化矽基板的表面形狀進行控制。
藉此,藉由使蝕刻速度變化,例如,可選擇有無產生台階聚束、或產生之台階聚束的種類。並且,藉由控制蝕刻深度來進行蝕刻,可獲得例如具有於供磊晶生長之碳化矽基板的加工步驟中被除去了潛傷的光滑平台之 碳化矽基板。
根據本發明之另一方面,於藉由在Si的蒸汽壓力下加熱碳化矽基板而對該碳化矽基板之表面進行蝕刻的表面處理方法中,較佳為構成如下。亦即,藉由控制至少基於蝕刻速度而決定之蝕刻模式來進行碳化矽基板之蝕刻,對蝕刻處理後之上述碳化矽基板的表面形狀進行控制。此外,於上述蝕刻模式中存在有蝕刻速度比基準蝕刻速度小的情況之異向性蝕刻模式、及蝕刻速度比上述基準蝕刻速度大的情況之等向性蝕刻模式。於以上述異向性蝕刻模式進行蝕刻之情況,殘留有台階聚束,於以上述等向性蝕刻模式進行蝕刻之情況,台階聚束被分解。
因此,藉由使蝕刻速度變化,例如,能選擇有無產生台階聚束、或產生之台階聚束的種類。並且,能以不產生台階聚束、或產生台階聚束之方式進行蝕刻。
於上述碳化矽基板之表面處理方法中,較佳為,上述基準蝕刻速度係基於進行蝕刻時之溫度而決定。
藉此,由於根據進行蝕刻之溫度,改變Si自碳化矽基板的脫離速度,因而藉由將這點考慮在內來決定基準蝕刻速度,能更正確地控制有無台階聚束之產生。
於上述碳化矽基板之表面處理方法中,較佳為,上述基準蝕刻速度係基於上述碳化矽基板之偏離角而決定。
於上述碳化矽基板之表面處理方法中,較佳為,上述碳化矽基板具有偏離角,偏離角為0.71°以上且 4°以下。
藉此,發現露出於SiC最表面之SiC分子層台階端密度係隨碳化矽基板之偏離角而變化,且台階聚束之產生容易度不同,因而藉由將這點考慮在內來決定基準蝕刻速度,能更正確地控制有無台階聚束之產生。
於上述碳化矽基板之表面處理方法中,較佳為,上述偏離角係相對於[11-20]方向而構成之偏離角。
於上述碳化矽基板之表面處理方法中,較佳為,上述蝕刻模式係基於蝕刻速度而決定,該蝕刻速度係藉由加熱上述碳化矽基板之氣體氛圍中的惰性氣體之壓力而決定。
藉此,由於惰性氣體之壓力越高,越可抑制Si自碳化矽基板之熱分解,因而藉由將這點考慮在內來決定基準蝕刻速度,能更正確地控制有無台階聚束之產生。
於上述碳化矽基板之表面處理方法中,較佳為,於以上述異向性蝕刻模式進行蝕刻之情況,藉由控制蝕刻速度、進行蝕刻時之溫度、上述碳化矽基板之偏離角、及惰性氣體之壓力中的至少任一者而進行蝕刻,對蝕刻處理後之平台的端部為直線狀或Z字狀之情況進行控制。
藉此,可選擇性地產生特性不同之2種類的台階聚束中的任一之台階聚束。
於上述碳化矽基板之表面處理方法中,較佳為,上述碳化矽基板之表面係4H-SiC(0001)Si面。
於上述碳化矽基板之表面處理方法中,較佳為,上述蝕刻速度係基於進行蝕刻時之溫度、惰性氣體之壓力、及設於收容上述碳化矽基板之收容容器內側的矽化鉭之組成中的至少任一者而被調整。
藉此,由於能以各種方法使蝕刻速度變化,因而即使於例如不打算使進行蝕刻時之溫度變化的情況,也能調整蝕刻速度。
於上述碳化矽基板之表面處理方法中,較佳為,上述蝕刻深度係基於蝕刻前對上述碳化矽基板進行之加工處理而決定。
藉此,由於存在於碳化矽基板之潛傷的深度根據加工處理之不同而不同,因而藉由將加工處理考慮在內來規定蝕刻深度,能更正確地控制碳化矽基板之表面形狀。
於上述碳化矽基板之表面處理方法中,較佳為,上述加工處理係機械研磨或化學機械研磨。
藉此,能除去在自晶碇切割後的普通加工方法中產生之潛傷。
10‧‧‧高溫真空爐
30‧‧‧坩堝
40‧‧‧碳化矽基板
圖1為說明在本發明之加熱處理中採用之高溫真空爐的概要之圖。
圖2為顯示坩堝之壁面的組成之概略圖。
圖3為顯示對蝕刻深度不同之碳化矽基板進行磊晶生長之後的表面狀況之顯微鏡照片。
圖4為顯示對蝕刻深度不同之碳化矽基板進行加熱處理之後的碳化矽基板之表面狀況之顯微鏡照片。
圖5為顯示Si的蒸汽壓力蝕刻量與層積缺陷密度的關係之圖表。
圖6為僅進行機械研磨之碳化矽基板與僅進行化學機械研磨的碳化矽基板之表面之顯微鏡照片。
圖7為概略顯示根據蝕刻深度及蝕刻速度而被規定之碳化矽基板之表面形狀的狀況之圖。
圖8為顯示產生Z字狀聚束之狀況及產生直線狀聚束的狀況之圖。
圖9為顯示等向性蝕刻模式及異向性蝕刻模式的交界線根據加熱溫度及偏離角而如何進行變化之曲線圖。
圖10為顯示產生直線狀聚束之區域及產生Z字狀聚束的區域之曲線圖。
圖11為顯示將以3種類之溫度帶進行蝕刻的結果與加熱溫度及蝕刻速度關聯對應之曲線圖。
圖12為顯示將以3種類之溫度帶進行蝕刻的結果與蝕刻深度及蝕刻速度關聯對應之曲線圖。
圖13為顯示使氬的壓力變化時出現之台階聚束的種類之曲線圖。
圖14為顯示使氬的壓力變化時出現之台階聚束之AFM像。
圖15為詳細地顯示使氬的壓力變化時出現之Z字狀聚束及直線狀聚束之AFM像及SEM像。
下面,參照圖式對本發明之實施形態進行說明。首先,參照圖1對本實施形態之加熱處理中採用之高溫真空爐10進行說明。
如圖1所示,高溫真空爐10具備主加熱室21及預備加熱室22。主加熱室21可將至少表面由單晶SiC構成之碳化矽基板40(單晶碳化矽基板)加熱至1000℃以上且2300℃以下的溫度。預備加熱室22係用以進行預備加熱之空間,該預備加熱係於利用主加熱室21對碳化矽基板40加熱之前進行。
於主加熱室21連接有真空形成用閥23、惰性氣體注入用閥24及真空計25。真空形成用閥23能調整主加熱室21之真空度。惰性氣體注入用閥24能調整主加熱室21內的惰性氣體(例如Ar氣體)之壓力。真空計25能測量主加熱室21內之真空度。
主加熱室21之內部具備加熱器26。此外,於主加熱室21之側壁或頂部固定有省略圖示的熱反射金屬板,此熱反射金屬板係構成為使加熱器26的熱朝主加熱室21之中央部反射。藉此,能強力且均勻地加熱碳化矽基板40,使其昇溫至1000℃以上且2300℃以下的溫度。再者,作為加熱器26例如可使用電阻加熱式之加熱器或 高頻感應加熱式之加熱器。
此外,碳化矽基板40係於收容於坩堝(收容容器)30之狀態下被加熱。坩堝30係載置於適宜之支撐台等上,且被構成為藉由移動此支撐台,至少能自預備加熱室移動至主加熱室。坩堝30具備能相互嵌合之上容器31及下容器32。再者,關於坩堝30之詳細構成,容待後述。
於對碳化矽基板40進行加熱處理時,首先如圖1之點劃線所示,將坩堝30配置於高溫真空爐10的預備加熱室22,且以適宜之溫度(例如,約800℃)進行預備加熱。接著,使坩堝30朝預先被昇溫至設定溫度(例如,約1800℃)之主加熱室21移動。然後,一面調整壓力等一面加熱碳化矽基板40。再者,也可省略預備加熱。
其次,參照圖2對坩堝30之壁面的組成進行說明。
坩堝30係於構成收容碳化矽基板40之內部空間之壁面的部分,成為圖2所示之構成。具體而言,坩堝30係自外部側朝內部空間側依序由鉭層(Ta)、碳化鉭層(TaC及Ta2C)、及矽化鉭層(TaSi2)構成。
由鉭層及碳化鉭層構成之坩堝早已周知,本實施形態中更形成有矽化鉭層。此矽化鉭層係用以朝內部空間供給Si而將內部空間設定為Si的蒸汽壓力者。再者,也可取代將坩堝30之內壁面設為矽化鉭層,而於坩堝30內配置固態的Si。
以下,對矽化鉭層之形成方法簡單地進行說明。矽化鉭層係藉由使熔融的Si接觸於坩堝之內壁面,且以規定之溫度加熱而形成。藉此,可實現例如由TaSi2構成之矽化鉭層。再者,本實施形態中,形成30μm至50μm左右的矽化鉭層,但根據內部空間之體積等,也可為例如1μm至300μm的厚度。
藉由依上述進行處理,可形成矽化鉭層。再者,本實施形態中,矽化鉭為形成有TaSi2之構成,但也可形成由其他之化學式表示之矽化鉭(例如Ta5Si3)。此外,也可重疊形成複數種類之矽化鉭。本實施形態中,於構成內部空間之壁面整體全域形成有矽化鉭層。藉此,能使內部空間內之Si的壓力達成均勻。
此外,坩堝30具有自內部空間連續地吸附取入C原子之功能。藉此,能僅將加熱處理時包含於坩堝30內之氣體氛圍的Si蒸氣及C蒸氣中的C蒸氣選擇性地吸附於坩堝30,因而可將坩堝30內保持為更高純度之Si的氣體氛圍。
接著,參照圖3至圖6對存在於碳化矽基板4之潛傷、及用以除去潛傷之蝕刻進行說明。
作為製造半導體元件之基本要素的塊狀基板(Bulk Substrate),係藉由將由4H-SiC單晶或6H-SiC單晶構成之晶碇切割成規定的厚度而獲得。再者,藉由傾斜地切割晶碇,可獲得具有偏離角(例如,相對於[11-20]而構成之偏離角)之塊狀基板。然後,為了除去塊狀基板之表 面的凹凸,進行機械研磨及化學機械研磨等。然而,藉由進行機械研磨及化學機械研磨等,雖能大致除去殘留於碳化矽基板40的表面之研磨損傷,但仍有可能殘留一部分較深之研磨損傷、及於機械研磨時或化學機械研磨時等對碳化矽基板40的表面施加壓力而形成之結晶性凌亂之變質層(加工變形、潛傷)。因此,可認為市售之碳化矽基板40中存在有來源於機械研磨及化學機械研磨等之加工步驟的潛傷。
以下,參照圖3及圖4對為了確認潛傷之影響而進行的實驗進行說明。本實驗中,準備4片市售之碳化矽基板40,對各碳化矽基板40僅進行化學機械研磨而不進行Si的蒸汽壓力蝕刻,然後於進行了機械研磨之後,製作分別進行了5μm之深度的Si的蒸汽壓力蝕刻、13μm之深度的Si的蒸汽壓力蝕刻、25μm之深度的Si的蒸汽壓力蝕刻之碳化矽基板40,然後藉由普通之化學氣相沉積法進行約10μm之磊晶生長,觀察碳化矽基板40之表面((0001)Si面)。再者,於以下之說明中,將Si的蒸汽壓力蝕刻簡稱為蝕刻。然後,於蝕刻後以規定之溫度及時間對4片碳化矽基板40進行加熱處理,觀察碳化矽基板40之表面((0001)Si面)。
圖3為顯示進行了上述蝕刻及磊晶生長後之碳化矽基板40的表面之狀況之顯微鏡照片。如圖3所示,可知即使於蝕刻之前後未出現表面粗化,在該情況下,藉由形成氫蝕刻及磊晶生長膜,仍會產生表面粗化 (結晶缺陷)。可認為藉由將碳化矽基板40之蝕刻深度設定為大於13μm,可以大致上完全除去潛傷。
圖4為進一步顯示進行加熱處理後的碳化矽基板40之表面狀況之顯微鏡照片。如圖4所示,可知在未進行蝕刻之情況下,藉由進行加熱處理,就會產生表面粗化(台階聚束)。此外,可知加熱溫度越高,則表面越容易粗化。然而,藉由對碳化矽基板40進行蝕刻,可抑制表面粗化。然而,考慮到與上述同樣在蝕刻深度為13μm之情況下產生有些許表面粗化,因此可認為藉由將蝕刻深度設定為比此蝕刻深度大,就能大致上完全除去潛傷。
此外,同樣準備4片市售之碳化矽基板40,對各碳化矽基板40僅進行化學機械研磨而不蝕刻,僅進行機械研磨而不蝕刻,製作進行了4.7μm之深度的蝕刻、11.8μm之深度的蝕刻之碳化矽基板40,且進行了約10μm之磊晶生長。然後,藉由對磊晶層內的層積缺陷進行光致發光(PL)影像檢測(激發波長313nm、觀測波長400nm-678nm),觀察4吋晶圓中央之400mm2。圖5顯示藉由PL影像檢測而觀測之磊晶生長後的層積缺陷密度。於殘留大量潛傷之機械研磨的碳化矽基板40中觀察到約1000個/cm2之層積缺陷密度。於蝕刻深度為4.7μm之碳化矽基板40中觀察到約38個/cm2之層積缺陷密度,但於蝕刻深度為11.8μm之碳化矽基板40中,層積缺陷密度減少至約4.8個/cm2。此時,於僅進行化學機械研磨之碳化矽基板40中,層積缺陷密度約為9.6個/cm2,由此可見,藉由約 11μm之蝕刻,可獲得與化學機械研磨相同以上之層積缺陷密度。此外,圖6顯示此時獲得之PL檢測影像。可知於進行了化學機械研磨之碳化矽基板40及僅進行機械研磨而不蝕刻之碳化矽基板40中,在磊晶層與塊狀基板交界面有觀察到潛傷,且以潛傷為起點產生有層積缺陷。另一方面,可知於進行機械研磨之後進行了蝕刻的碳化矽基板40中,已將在僅進行機械研磨的碳化矽基板40中能見到之大部分的潛傷除去,層積缺陷被抑制。如此,藉由蝕刻將機械研磨之潛傷除去,能降低潛傷起因之層積缺陷,獲得到高品質之磊晶層。
其次,對在本實施形態中進行之蝕刻進行說明。本實施形態中,於坩堝30內收容具有偏離角之碳化矽基板40,於高純度之Si的蒸汽壓力下,且於1500℃以上且2200℃以下、較適為1600℃以上且2000℃以下之溫度範圍內使用高溫真空爐10進行加熱。於此條件下將碳化矽基板40加熱,對表面進行蝕刻。於此蝕刻時,進行以下所示之反應。若簡單地說明,藉由在Si的蒸汽壓力下將碳化矽基板40加熱,Si原子因熱分解而自SiC脫離。此外,自矽化鉭層供給有Si蒸氣。因Si原子經熱分解脫離而殘留之C,藉由與Si蒸氣反應,成為Si2C或SiC2等而昇華。
(1)SiC(s)→Si(v)I+C(s)
(2)TaxSiy→Si(v)II+Tax’Siy’
(3)2C(s)+Si(v)I+II→SiC2(v)
(4)C(s)+2Si(v)I+II→Si2C(v)通過以上之反應,碳化矽基板40與Si蒸氣反應,將SiC2或Si2C作為反應生成物而被蝕刻。
圖7為概略顯示將縱軸設為蝕刻深度,且將橫軸設為蝕刻速度時之碳化矽基板40的表面形狀之狀況之圖。藉由對具有偏離角之碳化矽基板40進行蝕刻處理,形成台階/平台構造。台階/平台構造係指由複數個台階差構成之構造,且稱平坦之部分為平台,稱高度變化之台階差部分為台階。
如圖7所示,於蝕刻速度比基準蝕刻速度(詳細容待後述)小之情況下,成為異向性蝕刻模式,台階/平台構造難以被分解,容易形成晶面(facet)。因此,產生有平台寬度及台階高度大之部分(台階聚束)。另一方面,於蝕刻速度比基準蝕刻速度大之情況下,成為等向性蝕刻模式,台階/平台構造變得容易被分解,因而不產生台階聚束。因此,形成由平台寬度及台階高度小之複數個台階差構成之平坦面。
在此,於以異向性蝕刻模式進行蝕刻之情況,如圖7所示,產生有Z字狀聚束或直線狀聚束。此現象可由成因於碳化矽基板40之表面之偏離角的、在台階端的Si或C原子之反應模型進行考察。圖8顯示於加熱溫度恆定之基礎上,將壓力條件設定為高真空下或惰性氣體Ar氣體壓力下的情況之聚束形成模型之概念圖。如圖8(a)所示,於高真空之情況下,碳化矽基板40之因熱分解 而引起的Si原子之脫離變為優勢,使得與外部之Si蒸氣反應而作為Si2C等脫離之速度,變得比碳化矽基板40之因熱分解而引起的Si原子脫離之速度慢。其結果,於平台之端部變得容易殘留C,容易產生Z字狀之聚束。(C脫離律速反應)。另一方面,如圖8(b)所示,於包含惰性氣體之情況,因惰性氣體之分壓效應,碳化矽基板40之因熱分解而引起的Si原子之脫離被抑制,使得與外部之Si蒸氣反應而作為Si2C等脫離之速度,變得比碳化矽基板40之因熱分解而引起的Si原子脫離之速度快。其結果,Si變得容易殘留,容易產生直線狀之聚束。(Si脫離律速反應)。
如此,藉由變更進行蝕刻之氣體氛圍,可控制(選擇)是產生Z字狀之聚束、還是產生直線狀之聚束。此外,由於基準蝕刻速度係基於蝕刻中之C的脫離速度及Si的脫離速度而決定,因此,藉由變更進行蝕刻之氣體氛圍,還可對有無台階聚束之產生進行控制。
接著,參照圖9對在壓力條件恆定之基礎上進行蝕刻時的溫度(以下稱為加熱溫度)及使碳化矽基板40之偏離角不同時的基準蝕刻速度之變化進行說明。再者,碳化矽基板40係使用偏離角方向為[11-20]者。
圖9之曲線圖的縱軸為蝕刻速度,橫軸顯示加熱溫度。於此曲線圖顯示有TaSi2及Ta5Si3之加熱溫度與蝕刻速度的關係。如此,藉由使坩堝30之矽化鉭層的組成變化,不需使加熱溫度變化即可改變蝕刻速度。藉 此,可以各種之條件測量碳化矽基板40之表面形狀。
此外,圖9中依碳化矽基板40之各偏離角(具體為0.71°、1°、2°、4°)顯示等向性蝕刻模式與異向性蝕刻模式之交界的直線。比各直線靠右上方之區域為顯示等向性蝕刻模式之區域,比各直線靠左下方之區域為顯示異向性蝕刻模式之區域。換言之,此直線顯示每個加熱溫度之基準蝕刻速度的變化。如圖9所示,可知加熱溫度越高,基準蝕刻速度越大。此外,可知偏離角越小,基準蝕刻速度越大。
此外,圖10顯示在壓力條件恆定之基礎上使加熱溫度變化且以異向性蝕刻模式進行蝕刻時是產生Z字狀聚束還是產生直線狀聚束之情況。如圖10所示,於以異向性蝕刻模式進行蝕刻時,加熱溫度高時產生直線狀聚束,而於加熱溫度低之情況下,產生Z字狀聚束。這可認為是以下原因造成,即:加熱溫度越高,則Si原子越容易自碳化矽基板40脫離。此外,圖10雖未顯示,是產生Z字狀聚束還是產生直線狀聚束,也根據碳化矽基板40之偏離角而變化。
如此,藉由變更進行蝕刻之碳化矽基板40的偏離角及加熱溫度,能對有無台階聚束之產生、及產生之台階聚束進行控制。
圖11及圖12顯示相對於偏離角為4°之4H-碳化矽基板40的(0001)Si面,在1680℃左右、1750℃左右、1920℃左右進行蝕刻時之結果。圖11之曲線圖顯示 以規定之蝕刻速度及加熱溫度進行蝕刻時之碳化矽基板40的表面形狀。圖11中,1920℃左右之結果係以粗線顯示,1750℃左右之結果係以普通之線顯示,1680℃左右之結果係以虛線顯示。此外,圖12之曲線圖為基於蝕刻深度及蝕刻速度對在圖11中進行之實驗之結果進行描繪而成者。於以下之說明中,稱殘留有潛傷之區域與無潛傷存在之區域的交界為“基準蝕刻深度”。再者,存在潛傷之區域,係依對碳化矽基板40進行之處理而定(機械研磨及化學機械研磨等)(換言之,依碳化矽基板40之製造廠商而定)。
圖11中,與圖9等同樣,標示為4°OFF之直線的右上方成為顯示等向性蝕刻模式之區域,此直線的左下方成為顯示異向性蝕刻模式之區域。圖12中,加熱溫度為1680℃之基準蝕刻速度,係以上下方向延伸之虛線的直線顯示。加熱溫度為1680℃之表面形狀,係以虛線之記號顯示。於虛線之記號位於比虛線之直線靠右側之情況,顯示以等向性蝕刻模式進行蝕刻之結果。此外,於虛線之記號位於比虛線之直線靠左側之情況,顯示以異向性蝕刻模式進行蝕刻之結果。其他之溫度也同樣。
藉此,如圖11及圖12所示,關於以等向性蝕刻模式進行蝕刻之碳化矽基板40,絕大部分之碳化矽基板40可獲得平坦之表面形狀。如圖11及圖12中以點劃線之圓所示,亦有產生有聚束之碳化矽基板40,但如圖12所示,由於蝕刻深度比基準蝕刻深度淺,因而估計 是起因於潛傷之台階聚束。
接著,參照圖13至圖15對將氬(惰性氣體)導入加熱氣體氛圍中而進行蝕刻之情況進行說明。
圖13(a)中依每個規定溫度顯示氬的背壓(壓力)與蝕刻速度之關係。由此曲線圖中可知,藉由使氬的背壓上昇,則蝕刻速度下降。這可認為是以下原因造成,即:氬增加越多則Si原子越不容易自碳化矽基板40脫離。此外,圖13(b)中依各規定溫度顯示氬的背壓與蝕刻後之表面粗糙度的關係。一般來說,於直線狀聚束容易形成大之台階,因此表面粗糙度大。
圖14顯示以AFM(原子間力顯微鏡)觀察碳化矽基板40(4H-SiC、偏離角:4°、Si面)的表面之AFM像,該碳化矽基板40係由圖13中進行之實驗而獲得。圖14中以方形圍成之4個AFM像,顯示產生Z字狀聚束之狀況,其他之AFM像顯示產生直線狀聚束之狀況。
圖15為對在該圖13中進行之實驗中的加熱溫度為1710℃之碳化矽基板40的表面形成之台階聚束更詳細地進行顯示之圖。圖15(a)為更詳細地顯示與圖14同樣之AFM像之圖,圖15(b)為以SEM(掃描型電子顯微鏡)觀察該碳化矽基板40的表面而得之SEM像。圖15(b)中明確地顯示,於氬的背壓為10-5Pa及1.3Pa之情況產生Z字狀聚束,於氬的背壓為133Pa及6420Pa之情況產生直線狀聚束。
由圖13至圖15可知,於不導入氬或氬的導 入量少之情況,主要產生Z字狀聚束(即Si之脫離速度變快),隨著氬的導入量增加,變得容易產生直線狀聚束(即C之脫離速度變快)。再者,於圖13之實驗中,蝕刻速度藉由矽化鉭層之組成而被抑制,因此始終為異向性蝕刻模式,但若利用蝕刻速度根據氬的導入量而變化之現象,則可根據氬的導入量對是以等向性蝕刻模式進行蝕刻還是以異向性蝕刻模式進行蝕刻進行切換。
如以上所示,是否產生台階聚束、及於產生之情況下是產生Z字狀聚束還是產生直線狀聚束,係根據蝕刻速度、蝕刻深度、加熱溫度、碳化矽基板40之偏離角、及惰性氣體的壓力等而決定。因此,藉由使這些參數變化,能製造具有所期望之表面形狀的碳化矽基板40。
此外,由於不產生台階聚束之碳化矽基板40,不會產生電場之局部集中等,因而作為半導體元件之性能高。然而,已知產生有台階聚束之情況,相對更能有力地發揮在進行MSE法(準穩定溶劑磊晶法)等時消除結晶缺陷(錯位)的功效。此外,由於在Z字狀聚束及直線狀聚束中形狀不同,因此其特性也不同。並且,藉由將深蝕刻深度設定為比基準蝕刻深度更深,可生成表面粗化小之碳化矽基板40。根據上述說明,藉由改變進行蝕刻時之條件,可製造具有所期望之表面形狀的碳化矽基板40。
如以上說明,本實施形態中,於藉由在Si的蒸汽壓力下加熱碳化矽基板40而對該碳化矽基板40之表面進行蝕刻的表面處理方法中,藉由控制至少基於蝕刻速 度而決定之蝕刻模式及蝕刻深度來進行碳化矽基板40之蝕刻,對蝕刻處理後之碳化矽基板40的表面形狀進行控制。
藉此,藉由改變蝕刻速度,能選擇例如有無台階聚束之產生、或產生之台階聚束之種類。並且,藉由控制蝕刻深度而進行蝕刻,可抑制例如潛傷之影響,獲得具有光滑之平台的碳化矽基板40。
此外,於本實施形態之表面處理方法中,存在有蝕刻速度比基準蝕刻速度小之情況的異向性蝕刻模式、及蝕刻速度比基準蝕刻速度大之情況的等向性蝕刻模式。於以異向性蝕刻模式進行蝕刻之情況殘留有台階聚束,於以等向性蝕刻模式進行蝕刻之情況,台階聚束被分解。
藉此,能以不產生台階聚束、或產生台階聚束之方式進行蝕刻。
此外,本實施形態之表面處理方法中,基準蝕刻速度係根據進行蝕刻時之溫度、碳化矽基板40的偏離角、惰性氣體之壓力而決定。
藉此,藉由控制上述條件來決定基準蝕刻速度,能更正確地控制有無台階聚束之產生及產生之台階聚束的種類。
此外,本實施形態之表面處理方法中,於以異向性蝕刻模式進行蝕刻之情況,藉由控制蝕刻速度、進行蝕刻時之溫度、碳化矽基板40的偏離角、及惰性氣體 之壓力中的至少任一者而進行蝕刻,對蝕刻處理後之平台端部為直線狀或Z字狀之情況進行控制。
藉此,可選擇性地產生特性不同之2種類的台階聚束中的任一之台階聚束。
此外,本實施形態之表面處理方法中,蝕刻速度係根據進行蝕刻時之溫度、惰性氣體之壓力、及設於收容碳化矽基板40之坩堝30的內側之矽化鉭之組成中的至少任一者而被調整。
藉此,由於能以各種方法使蝕刻速度變化,因而即使於例如不打算使進行蝕刻時之溫度變化的情況,也能調整蝕刻速度。
以上對本發明之較佳實施形態進行了說明,但上述構成例如也能依如下之方式進行變更。
上述構成係對進行了機械研磨及化學機械研磨等之碳化矽基板40進行蝕刻之構成,但於對離子植入及離子活化時被粗化之表面進行蝕刻時,也可進行相同之控制。此外,也可藉由提高蝕刻速度,使用Si的蒸汽壓力蝕刻,來取代機械研磨及化學機械研磨等。
上述說明中,控制蝕刻模式及蝕刻深度之雙方,對碳化矽基板40的表面形狀進行控制,但也可不控制蝕刻深度而僅基於蝕刻模式來控制碳化矽基板40之表面形狀。
上述說明之溫度條件及壓力條件等僅為一例而已,能適宜地進行變更。此外,也可採用上述高溫真空 爐10以外之加熱裝置、或者使用與坩堝30不同之形狀或素材之容器。

Claims (10)

  1. 一種碳化矽基板之表面處理方法,係於Si的蒸汽壓力下以1000℃以上且2300℃以下的溫度加熱碳化矽基板,對該碳化矽基板之表面進行蝕刻的方法,其特徵在於:藉由控制1~100μm的蝕刻深度、及至少基於1~100000nm/min的蝕刻速度而決定之蝕刻模式來進行上述碳化矽基板之蝕刻,而對蝕刻處理後之上述碳化矽基板的表面形狀進行控制,於上述蝕刻模式中存在有:蝕刻速度比基準蝕刻速度小的情況之異向性蝕刻模式、及蝕刻速度比上述基準蝕刻速度大的情況之等向性蝕刻模式,若以上述異向性蝕刻模式進行蝕刻,係藉由控制蝕刻速度、進行蝕刻時之溫度、及惰性氣體之壓力中的至少任一者來進行蝕刻,而對蝕刻處理後之平台的端部是直線狀還是Z字狀之情況進行控制,於以上述異向性蝕刻模式進行蝕刻後之情況,係殘留有台階聚束,於以上述等向性蝕刻模式進行蝕刻後之情況,係台階聚束被分解。
  2. 如請求項1之碳化矽基板之表面處理方法,其中,上述基準蝕刻速度係進行蝕刻時之溫度越高而越大。
  3. 如請求項1之碳化矽基板之表面處理方法,其中,上述基準蝕刻速度係上述碳化矽基板之偏離角越小而越大。
  4. 如請求項3之碳化矽基板之表面處理方法,其中,上述碳化矽基板具有偏離角,且偏離角為0.71°以上且4°以下。
  5. 如請求項3之碳化矽基板之表面處理方法,其中,上述偏離角係相對於[11-20]方向而構成之偏離角。
  6. 如請求項1之碳化矽基板之表面處理方法,其中,上述蝕刻模式係基於蝕刻速度而決定,該蝕刻速度係藉由加熱上述碳化矽基板之氣體氛圍中的惰性氣體之壓力而決定。
  7. 如請求項1之碳化矽基板之表面處理方法,其中,上述碳化矽基板之表面係4H-SiC(0001)Si面。
  8. 如請求項1至7中任一項之碳化矽基板之表面處理方法,其中,上述蝕刻速度係基於進行蝕刻時之溫度、惰性氣體之壓力、及設於收容上述碳化矽基板之收容容器內側的矽化鉭之組成中的至少任一者而被調整。
  9. 如請求項1之碳化矽基板之表面處理方法,其中,上述蝕刻深度係基於蝕刻前對上述碳化矽基板進行之加工處理而決定。
  10. 如請求項9之碳化矽基板之表面處理方法,其中,上述加工處理係機械研磨或化學機械研磨。
TW104138124A 2014-11-18 2015-11-18 碳化矽基板之表面處理方法 TWI708873B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014233632 2014-11-18
JP2014-233632 2014-11-18

Publications (2)

Publication Number Publication Date
TW201629281A TW201629281A (zh) 2016-08-16
TWI708873B true TWI708873B (zh) 2020-11-01

Family

ID=56013557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104138124A TWI708873B (zh) 2014-11-18 2015-11-18 碳化矽基板之表面處理方法

Country Status (7)

Country Link
US (1) US10665465B2 (zh)
EP (1) EP3222759A4 (zh)
JP (1) JP6751875B2 (zh)
KR (1) KR20170086068A (zh)
CN (1) CN107002288B (zh)
TW (1) TWI708873B (zh)
WO (1) WO2016079984A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004592B (zh) * 2014-11-18 2020-12-08 东洋炭素株式会社 碳化硅基板的蚀刻方法及收容容器
JP2018199591A (ja) * 2017-05-25 2018-12-20 東洋炭素株式会社 SiCウエハの製造方法、エピタキシャルウエハの製造方法、及びエピタキシャルウエハ
WO2020059810A1 (ja) * 2018-09-21 2020-03-26 東洋炭素株式会社 デバイス作製用ウエハの製造方法
CN114207195A (zh) * 2019-03-05 2022-03-18 学校法人关西学院 SiC衬底的制造方法及其制造装置和减少SiC衬底的宏观台阶聚束的方法
JP2022020995A (ja) 2020-07-21 2022-02-02 三菱電機株式会社 炭化珪素エピタキシャルウエハの製造方法
CN111739796B (zh) * 2020-08-25 2020-11-24 中电化合物半导体有限公司 碳化硅籽晶生长表面的图形化处理方法和装置及形成的碳化硅籽晶
WO2023162472A1 (ja) * 2022-02-24 2023-08-31 学校法人関西学院 積層欠陥の形成を抑制する方法及びその方法により作製された構造、加工変質層の評価方法
JP7364301B1 (ja) * 2023-02-13 2023-10-18 株式会社フィルネックス 半導体基板の製造方法、半導体基板、及び半導体基板の製造装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534808A (zh) * 2010-12-14 2012-07-04 北京天科合达蓝光半导体有限公司 高质量碳化硅表面的获得方法
CN103247679A (zh) * 2012-02-09 2013-08-14 国际商业机器公司 石墨烯器件用的具有低等效氧化物厚度的双层栅极电介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234313A (ja) * 2002-02-07 2003-08-22 Kansai Tlo Kk SiC基板表面の平坦化方法
JP5152887B2 (ja) * 2006-07-07 2013-02-27 学校法人関西学院 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP5213095B2 (ja) * 2007-03-23 2013-06-19 学校法人関西学院 単結晶炭化ケイ素基板の表面平坦化方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
JP5464544B2 (ja) * 2009-05-12 2014-04-09 学校法人関西学院 エピタキシャル成長層付き単結晶SiC基板、炭素供給フィード基板、及び炭素ナノ材料付きSiC基板
SE537101C2 (sv) * 2010-03-30 2015-01-07 Fairchild Semiconductor Halvledarkomponent och förfarande för utformning av en struktur i ett målsubstrat för tillverkning av en halvledarkomponent
JP4850960B2 (ja) * 2010-04-07 2012-01-11 新日本製鐵株式会社 エピタキシャル炭化珪素単結晶基板の製造方法
JP5799458B2 (ja) * 2011-03-29 2015-10-28 学校法人関西学院 半導体素子の製造方法
JP5910393B2 (ja) * 2012-07-26 2016-04-27 住友電気工業株式会社 炭化珪素基板の製造方法
TWI600081B (zh) 2012-11-16 2017-09-21 Toyo Tanso Co Ltd Surface treatment method of single crystal silicon carbide substrate and single crystal silicon carbide substrate
JP6057292B2 (ja) * 2013-06-13 2017-01-11 学校法人関西学院 SiC半導体素子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534808A (zh) * 2010-12-14 2012-07-04 北京天科合达蓝光半导体有限公司 高质量碳化硅表面的获得方法
CN103247679A (zh) * 2012-02-09 2013-08-14 国际商业机器公司 石墨烯器件用的具有低等效氧化物厚度的双层栅极电介质

Also Published As

Publication number Publication date
EP3222759A1 (en) 2017-09-27
CN107002288A (zh) 2017-08-01
US10665465B2 (en) 2020-05-26
CN107002288B (zh) 2020-10-16
EP3222759A4 (en) 2018-05-30
JP6751875B2 (ja) 2020-09-09
WO2016079984A1 (ja) 2016-05-26
US20170345672A1 (en) 2017-11-30
KR20170086068A (ko) 2017-07-25
JPWO2016079984A1 (ja) 2017-08-24
TW201629281A (zh) 2016-08-16

Similar Documents

Publication Publication Date Title
TWI708873B (zh) 碳化矽基板之表面處理方法
TWI746468B (zh) 薄型SiC晶圓之製造方法及薄型SiC晶圓
JP6268277B2 (ja) SiC基板の表面処理方法、SiC基板の製造方法、及び半導体の製造方法
KR102021644B1 (ko) 단결정 SiC 기판의 표면 처리 방법 및 단결정 SiC 기판
JP6232329B2 (ja) SiC種結晶の加工変質層の除去方法、SiC種結晶及びSiC基板の製造方法
TWI659463B (zh) 碳化矽基板之蝕刻方法及收容容器
JP2007119273A (ja) 炭化珪素単結晶の成長方法
KR102067313B1 (ko) 수용 용기, 수용 용기의 제조 방법, 반도체의 제조 방법, 및 반도체 제조 장치
TWI658525B (zh) SiC(碳化矽)基板之潛傷深度推斷方法
WO2020059810A1 (ja) デバイス作製用ウエハの製造方法
JP6151581B2 (ja) 単結晶SiC基板の表面処理方法及び単結晶SiC基板の製造方法
JP7194407B2 (ja) 単結晶の製造方法
JP5934633B2 (ja) 単結晶SiC基板の表面処理方法及び単結晶SiC基板の製造方法
JP2008254941A (ja) サファイア単結晶基板及びその製造方法
WO2014122768A1 (ja) 単結晶炭化珪素基板およびその製造方法