TWI684836B - Pattern drawing device - Google Patents
Pattern drawing device Download PDFInfo
- Publication number
- TWI684836B TWI684836B TW108114726A TW108114726A TWI684836B TW I684836 B TWI684836 B TW I684836B TW 108114726 A TW108114726 A TW 108114726A TW 108114726 A TW108114726 A TW 108114726A TW I684836 B TWI684836 B TW I684836B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- line
- light
- rotating cylinder
- pattern
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 328
- 238000001514 detection method Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 30
- 230000002093 peripheral effect Effects 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 19
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 8
- 239000000523 sample Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 48
- 230000003287 optical effect Effects 0.000 description 138
- 230000007246 mechanism Effects 0.000 description 54
- 238000006073 displacement reaction Methods 0.000 description 43
- 230000000875 corresponding effect Effects 0.000 description 40
- 210000003128 head Anatomy 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 35
- 238000010586 diagram Methods 0.000 description 32
- 238000012937 correction Methods 0.000 description 19
- 238000009826 distribution Methods 0.000 description 17
- 230000032258 transport Effects 0.000 description 16
- 239000010410 layer Substances 0.000 description 15
- 230000004044 response Effects 0.000 description 15
- 239000010408 film Substances 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 238000000926 separation method Methods 0.000 description 12
- 101100528457 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RMP1 gene Proteins 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000009434 installation Methods 0.000 description 9
- 239000002346 layers by function Substances 0.000 description 9
- 230000010355 oscillation Effects 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 101100058542 Danio rerio bmi1a gene Proteins 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000003672 processing method Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 101100223811 Caenorhabditis elegans dsc-1 gene Proteins 0.000 description 4
- 101150042817 NFS1 gene Proteins 0.000 description 4
- 101100126298 Rickettsia conorii (strain ATCC VR-613 / Malish 7) iscS gene Proteins 0.000 description 4
- 101150114492 SPL1 gene Proteins 0.000 description 4
- 101150056353 SPL2 gene Proteins 0.000 description 4
- 101150090744 SPL3 gene Proteins 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000007723 transport mechanism Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/24—Curved surfaces
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/162—Coating on a rotating support, e.g. using a whirler or a spinner
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70275—Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70516—Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706843—Metrology apparatus
- G03F7/706845—Calibration, e.g. tool-to-tool calibration, beam alignment, spot position or focus
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
- G03F7/70825—Mounting of individual elements, e.g. mounts, holders or supports
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7085—Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7065—Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7088—Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
基板處理裝置,係以藉由複數個描繪單元之各描繪線在基板上描繪之圖案彼此能隨著基板往長條方向之移動而在基板之寬度方向接合之方式,將複數個描繪單元配置於基板之寬度方向。控制部,預先儲存關於藉由複數個描繪單元之各個形成在基板上之描繪線彼此之位置關係之校準資訊,且根據該校準資訊與從移動測量裝置輸出之移動資訊,調整藉由複數個描繪單元之各個之描繪束形成在基板上之圖案之描繪位置。 The substrate processing apparatus is to arrange the plurality of drawing units in a manner that the patterns drawn on the substrate by each drawing line of the plurality of drawing units can be joined in the width direction of the substrate as the substrate moves in the longitudinal direction, The width direction of the substrate. The control unit pre-stores calibration information about the positional relationship of the drawing lines formed on the substrate by the plurality of drawing units, and adjusts the drawing by the plural according to the calibration information and the movement information output from the mobile measuring device The drawing position of the pattern formed on the substrate by each drawing beam of the unit.
Description
本發明係關於用以在基板上形成細微電子元件之構造體之基板處理裝置、元件製造方法及基板處理方法。 The present invention relates to a substrate processing apparatus, a device manufacturing method, and a substrate processing method for forming a structure of fine electronic components on a substrate.
作為習知基板處理裝置,有一種在片狀媒體(基板)上之既定位置進行描繪的製造裝置廣為人知(例如,參照專利文獻1)。專利文獻1中記載之製造裝置,係對於寬度方向易伸縮之可撓性長條片狀基板,藉檢測對準標記以測量片狀基板之伸縮,依據伸縮修正描繪位置(加工位置)。
As a conventional substrate processing apparatus, there is a manufacturing apparatus that draws at a predetermined position on a sheet medium (substrate) and is widely known (for example, refer to Patent Document 1). The manufacturing apparatus described in
專利文獻1:日本特開2010-91990號公報 Patent Document 1: Japanese Patent Application Publication No. 2010-91990
於專利文獻1之製造裝置,係藉由一邊將基板往搬送方向搬送、一邊切換空間調變元件(DMD:Digital Micro mirror Device)據以進行曝光,以複數個描繪單元將圖案描繪於基板。於專利文獻1之製造裝置,雖係將於基板之寬度方向相鄰之圖案彼此以複數個描繪單元加以接合曝光,但為抑制接合曝光之誤差,係反饋(feedback)進行測試(test)曝光與顯影所生成之在接合部之圖案之位置誤差的測量結果。然而,包含此種測試曝光、顯影、測量等作業之反饋步驟,雖亦視其頻度,但卻得暫時停止製造線,不僅降低製品之生產性、亦有可能產生基板之浪費。
In the manufacturing apparatus of
本發明之態樣係有鑑於上述課題而生,其目的在提供一種即使是使用複數個描繪單元於基板之寬度方向接合圖案以進行曝光(描繪)之情形時,亦能降低圖案彼此之接合誤差,而能於基板高精度安定的描繪大面積圖案之基板處理裝置、元件製造方法及基板處理方法。 The aspect of the present invention was developed in view of the above-mentioned problems, and its purpose is to provide a case where a plurality of drawing units are used to join patterns in the width direction of the substrate for exposure (drawing), which can reduce the joining error of the patterns. In addition, a substrate processing device, a device manufacturing method, and a substrate processing method capable of drawing a large-area pattern with high accuracy and stability on a substrate.
本發明第1態樣之基板處理裝置,具備:搬送裝置,將長條片狀基板之一部分一邊以具有往該長條方向彎曲之支承面之支承構件支承一邊使其往該長條方向移動;描繪裝置,包含對以該支承面支承之該基板一邊投射已調變之描繪束、一邊在與該長條方向交叉之該基板之寬度方向於較該基板之寬度窄之範圍掃描並沿著以該掃描所得之描繪線描繪既定圖案之複數個描繪單元,以該複數個描繪單元之各描繪線描繪於該基板上之圖案彼此隨著該基板往長條方向之移動而於該基板之寬度方向接合之方式,將該複數個描繪單元配置於該基板之寬度方向;移動測量裝置,輸出對應該搬送裝置進行之該基板之移動量或移動位置之移動資訊;以及控制部,預先儲存關於藉由該複數個描繪單元之各個形成在該基板上之該描繪線彼此之位置關係之校準資訊,且根據該校準資訊與從該移動測量裝置輸出之移動資訊,調整藉由該複數個描繪單元之各個之該描繪束形成在該基板上之圖案之描繪位置。 The substrate processing apparatus according to the first aspect of the present invention includes: a conveying device that moves a part of the long sheet-shaped substrate in the elongated direction while being supported by a support member having a support surface curved in the elongated direction; The drawing device includes scanning the modulated beam on the substrate supported by the supporting surface while scanning in a narrower range than the width of the substrate in the width direction of the substrate crossing the strip direction and along The scanning lines obtained by the scanning draw a plurality of drawing units of a given pattern, and the patterns drawn on the substrate by the drawing lines of the plurality of drawing units are in the width direction of the substrate as the substrate moves in the longitudinal direction In the joining method, the plurality of drawing units are arranged in the width direction of the substrate; the movement measuring device outputs the movement information of the movement amount or the movement position of the substrate corresponding to the conveying device; and the control section stores in advance about Calibration information of the positional relationship of the drawing lines formed on the substrate of each of the plurality of drawing units, and adjusting each of the plurality of drawing units according to the calibration information and the movement information output from the mobile measuring device The drawing position of the pattern formed on the substrate by the drawing beam.
本發明第2態樣之元件製造方法,使用本發明第1態樣之基板處理裝置以將該圖案形成於該基板。 The device manufacturing method of the second aspect of the present invention uses the substrate processing apparatus of the first aspect of the present invention to form the pattern on the substrate.
本發明第3態樣之基板處理方法,係將電子元件之圖案描繪在長條片狀基板,其特徵在於,包含:以既定速度將該片狀基板往長條方向搬送之動作;使從脈衝光源裝置以頻率Fz脈衝振盪之紫外波長域之光束 在該片狀基板之表面聚光成點光,且藉由光掃描器使該光束振盪,使該點光沿著往與該長條方向交叉之寬度方向延伸之長度LBL之描繪線掃描之動作;以及在該點光掃描之期間,根據對應該圖案之描繪資料調變該點光之強度之動作;設該光束之一個脈衝之聚光形成之點光與下一個脈衝之聚光形成之點光沿著該描繪線之間隔為CXs、該點光沿著該描繪線之實效尺寸為Xs、該點光掃描該長度LBL之掃描時間為Ts時,設定成滿足Xs>CXs且Fz>LBL/(Ts‧Xs)之關係。 A substrate processing method according to a third aspect of the present invention draws a pattern of electronic components on a long sheet-shaped substrate, which is characterized by including: an operation of transporting the sheet-shaped substrate in a long direction at a predetermined speed; The light beam of the ultraviolet wavelength region of the light source device oscillated by the frequency Fz pulse Spot light is condensed on the surface of the sheet substrate, and the light beam is oscillated by an optical scanner, so that the spot light is scanned along the drawing line of the length LBL extending in the width direction crossing the strip direction ; And during the scanning of the spot light, the action of modulating the intensity of the spot light according to the description data of the corresponding pattern; set the spot light formed by the spotlight of one pulse and the spot formed by the spotlight of the next pulse When the interval of light along the drawing line is CXs, the effective size of the spot light along the drawing line is Xs, and the scanning time of the spot light scanning the length LBL is Ts, set to satisfy Xs>CXs and Fz>LBL/ (Ts‧Xs) relationship.
本發明第4態樣之基板處理方法,係將電子元件之圖案描繪在長條片狀基板,其特徵在於,包含:以既定速度將該片狀基板往長條方向搬送之步驟;使從脈衝光源裝置以頻率Fz脈衝振盪之紫外波長域之光束在該片狀基板之表面聚光成點光,且使該點光沿著往與該片狀基板之長條方向交叉之寬度方向延伸之描繪線掃描之步驟;以及在該點光掃描之期間,根據該圖案分割成像素單位之描繪資料,藉由光切換元件調變該光束之強度之步驟;將該光切換元件調變時之回應頻率Fss與該光束之脈衝振盪之頻率Fz設定成Fz>Fss之關係。 The substrate processing method of the fourth aspect of the present invention is to draw the pattern of the electronic component on the long sheet-shaped substrate, which is characterized by comprising: the step of conveying the sheet-shaped substrate in the longitudinal direction at a predetermined speed; The light source device condenses light beams in the ultraviolet wavelength range with a frequency Fz pulse on the surface of the sheet substrate to form spot light, and makes the spot light extend along the width direction crossing the longitudinal direction of the sheet substrate The step of line scanning; and the step of modulating the intensity of the light beam by the light switching element during the scanning of the spot, dividing the pattern into pixel units according to the pattern; the response frequency when the light switching element is modulated Fss and the frequency Fz of the pulse oscillation of the light beam are set to a relationship of Fz>Fss.
根據本發明之態樣,能提供一種降低使用複數個描繪單元於基板之寬度方向接合圖案進行曝光時之接合誤差,而能對基板合適地進行使用複數個描繪單元進行之描繪的基板處理裝置、元件製造方法。再者,可提供一種提高一個描繪單元沿著描繪線描繪圖案時之描繪精度(曝光量之均勻性等)或忠實度之基板處理方法。 According to the aspect of the present invention, it is possible to provide a substrate processing apparatus capable of appropriately drawing a plurality of drawing units on a substrate by reducing a bonding error when performing exposure using a plurality of drawing units on a bonding pattern in a width direction of the substrate, Component manufacturing method. Furthermore, it is possible to provide a substrate processing method that improves the drawing accuracy (uniformity of exposure amount, etc.) or faithfulness when one drawing unit draws a pattern along a drawing line.
1‧‧‧元件製造系統 1‧‧‧Component manufacturing system
11‧‧‧描繪裝置 11‧‧‧Drawing device
12‧‧‧基板搬送機構 12‧‧‧Substrate transfer mechanism
13‧‧‧裝置框架 13‧‧‧ Installation frame
14‧‧‧旋轉位置檢測機構 14‧‧‧ Rotation position detection mechanism
16‧‧‧控制部 16‧‧‧Control Department
23‧‧‧第1光學平台 23‧‧‧First optical platform
24‧‧‧移動機構 24‧‧‧Movement mechanism
25‧‧‧第2光學平台 25‧‧‧ 2nd optical platform
31‧‧‧校準檢測系 31‧‧‧ Calibration and Inspection Department
31Cs‧‧‧光電感測器 31Cs‧‧‧Photoelectric sensor
31f‧‧‧遮光構件 31f‧‧‧Shading member
73‧‧‧第4分束器 73‧‧‧ 4th beam splitter
81‧‧‧光偏向器 81‧‧‧Optical deflector
83‧‧‧掃描器 83‧‧‧ Scanner
96‧‧‧反射鏡 96‧‧‧Reflecting mirror
97‧‧‧旋轉多面鏡 97‧‧‧rotating polygon mirror
97a‧‧‧旋轉軸 97a‧‧‧rotation axis
97b‧‧‧反射面 97b‧‧‧Reflecting surface
98‧‧‧原點檢測器 98‧‧‧Origin detector
AM1、AM2‧‧‧對準顯微鏡 AM1, AM2 ‧‧‧ alignment microscope
DR‧‧‧旋轉圓筒 DR‧‧‧rotating cylinder
EN1、EN2、EN3、EN4‧‧‧編碼器讀頭 EN1, EN2, EN3, EN4 ‧‧‧ Encoder read head
EX‧‧‧曝光裝置 EX‧‧‧Exposure device
I‧‧‧旋轉軸 I‧‧‧rotation axis
LL1~LL5‧‧‧描繪線 LL1~LL5‧‧‧Drawing line
PBS‧‧‧偏向分束器 PBS‧‧‧Beam splitter
UW1~UW5‧‧‧描繪單元 UW1~UW5‧‧‧Drawing unit
圖1係顯示第1實施形態之曝光裝置(基板處理裝置)之全體構成的圖。 FIG. 1 is a diagram showing the overall configuration of an exposure apparatus (substrate processing apparatus) according to the first embodiment.
圖2係顯示圖1之曝光裝置主要部之配置的立體圖。 FIG. 2 is a perspective view showing the arrangement of main parts of the exposure apparatus of FIG. 1.
圖3係顯示在基板上之對準顯微鏡與描繪線之配置關係的圖。 FIG. 3 is a diagram showing the arrangement relationship between the alignment microscope and the drawing line on the substrate.
圖4係顯示圖1之曝光裝置之旋轉圓筒及描繪裝置之構成的圖。 4 is a diagram showing the configuration of the rotating cylinder and the drawing device of the exposure device of FIG. 1.
圖5係顯示圖1之曝光裝置主要部之配置的俯視圖。 FIG. 5 is a plan view showing the arrangement of main parts of the exposure apparatus of FIG. 1.
圖6係顯示圖1之曝光裝置之分歧光學系之構成的立體圖。 6 is a perspective view showing the configuration of the divergent optical system of the exposure apparatus of FIG. 1.
圖7係顯示圖1之曝光裝置之複數個掃描器之配置關係的圖。 7 is a diagram showing the arrangement relationship of a plurality of scanners of the exposure apparatus of FIG. 1.
圖8係說明用以消除因掃描器反射面之傾斜造成之描繪線偏移之光學構成的圖。 FIG. 8 is a diagram illustrating the optical configuration for eliminating the shift of the drawing line caused by the inclination of the scanner reflective surface.
圖9係顯示在基板上之對準顯微鏡與描繪線與編碼器讀頭之配置關係的立體圖。 FIG. 9 is a perspective view showing the arrangement relationship between the alignment microscope on the substrate and the drawing line and the encoder read head.
圖10係顯示圖1之曝光裝置之旋轉圓筒之表面構造的立體圖。 10 is a perspective view showing the surface structure of the rotating cylinder of the exposure apparatus of FIG. 1.
圖11係顯示在基板上之描繪線與描繪圖案之位置關係的說明圖。 FIG. 11 is an explanatory diagram showing the positional relationship between drawing lines and drawing patterns on a substrate.
圖12係顯示光束點與描繪線之關係的說明圖。 12 is an explanatory diagram showing the relationship between the beam spot and the drawn line.
圖13係模擬在基板上所得之2脈衝份之光束點之重疊量造成之強度分布變化的圖表。 FIG. 13 is a graph simulating the change in intensity distribution caused by the overlapping amount of beam points of two pulses obtained on a substrate.
圖14係關於第1實施形態之曝光裝置之調整方法的流程圖。 FIG. 14 is a flowchart of the adjustment method of the exposure apparatus according to the first embodiment.
圖15係以示意方式顯示旋轉圓筒之基準圖案與描繪線之關係的說明圖。 15 is an explanatory diagram schematically showing the relationship between the reference pattern of the rotating cylinder and the drawn line.
圖16係以示意方式顯示從將來自旋轉圓筒之基準圖案之反射光於亮視野受光之光電感測器輸出之訊號的說明圖。 16 is an explanatory diagram schematically showing a signal output from a photoelectric sensor that receives reflected light from a reference pattern of a rotating cylinder in a bright field of view.
圖17係以示意方式顯示將來自旋轉圓筒之基準圖案之反射光於暗視野受光之光電感測器的說明圖。 FIG. 17 is an explanatory diagram schematically showing a photoelectric sensor that receives reflected light from a reference pattern of a rotating cylinder in a dark field.
圖18係以示意方式顯示從將來自旋轉圓筒之基準圖案之反射光於暗視野受光之光電感測器輸出之訊號的說明圖。 18 is an explanatory diagram schematically showing a signal output from a photoelectric sensor that receives reflected light from a reference pattern of a rotating cylinder in a dark field.
圖19係以示意方式顯示旋轉圓筒之基準圖案彼此之位置關係的說明圖。 FIG. 19 is an explanatory diagram schematically showing the positional relationship between the reference patterns of the rotating cylinder.
圖20係以示意方式顯示複數個描繪線之相對位置關係的說明圖。 FIG. 20 is an explanatory diagram schematically showing the relative positional relationship of a plurality of drawing lines.
圖21係以示意方式顯示基板之每單位時間之移動距離與移動距離內所含之描繪線條數之關係的說明圖。 21 is an explanatory diagram schematically showing the relationship between the moving distance of the substrate per unit time and the number of drawing lines included in the moving distance.
圖22係以示意方式顯示與脈衝光源之系統時脈同步之脈衝光的說明圖。 FIG. 22 is an explanatory diagram schematically showing pulsed light synchronized with the system clock of the pulsed light source.
圖23係說明產生脈衝光源之系統時脈之電路構成之一例之方塊圖。 23 is a block diagram illustrating an example of the circuit configuration of a system clock that generates a pulsed light source.
圖24係顯示圖23之電路構成中各部之訊號之遷移之時序圖。 FIG. 24 is a timing diagram showing the signal migration of each part in the circuit configuration of FIG. 23.
圖25係顯示各元件製造方法的流程圖。 FIG. 25 is a flowchart showing the manufacturing method of each element.
針對用以實施本發明之形態(實施形態),一邊參照圖面一邊詳細說明。本發明當然不受限於以下實施形態記載之內容。又,以下記載之構成要素中,包含業者容易想定者、以及實質相同之物。此外,以下記載之構成要素可適當組合。又,在不脫離本發明要旨範圍內,可進行構成要素之各種省略、置換或變更。 The form (embodiment) for implementing the present invention will be described in detail with reference to the drawings. Of course, the present invention is not limited to the contents described in the following embodiments. In addition, the constituent elements described below include those that are easy for the operator to imagine and those that are substantially the same. In addition, the constituent elements described below can be combined as appropriate. In addition, various omissions, substitutions, or changes of constituent elements can be made without departing from the scope of the present invention.
圖1係顯示第1實施形態之曝光裝置(基板處理裝置)之全體構成的
圖。第1實施形態之基板處理裝置係對基板P施以曝光處理的曝光裝置EX,曝光裝置EX組裝在對曝光後基板P施以各種處理以製造元件之元件製造系統1中。首先,說明元件製造系統1。
FIG. 1 shows the overall structure of an exposure apparatus (substrate processing apparatus) according to the first embodiment
Figure. The substrate processing apparatus of the first embodiment is an exposure apparatus EX that performs exposure processing on a substrate P, and the exposure apparatus EX is incorporated in a
<元件製造系統> <Component Manufacturing System>
元件製造系統1,係製造作為元件之可撓性顯示器的生產線(可撓性顯示器製造線)。可撓性顯示器,例如有機EL顯示器等。此元件製造系統1,係將可撓性(flexible)長條基板P捲成筒狀之未圖示之供應用捲筒送出該基板P,在對送出之基板P連續的施以各種處理後,將處理後之基板P作為可撓性元件捲繞於未圖示之回收用捲筒之所謂的捲對捲(Roll to Roll)方式。於第1實施形態之元件製造系統1,係將薄膜狀之片狀基板P從供應用捲筒送出,從供應用捲筒送出之基板P依序經處理裝置U1、曝光裝置EX、處理裝置U2後,捲繞於回收用捲筒之例。此處,說明元件製造系統1之處理對象的基板P。
The
基板P,係由例如樹脂薄膜、不鏽鋼等之金屬或合金構成之箔(foil)等。樹脂薄膜之材質,可使用包含例如聚乙烯樹脂、聚丙烯樹脂、聚酯樹脂、乙烯乙烯基共聚物樹脂、聚氯乙烯樹脂、纖維素樹脂、聚醯胺樹脂、聚醯亞胺樹脂、聚碳酸酯樹脂、聚苯乙烯樹脂、聚乙烯醇樹脂等材料中之一種或二種以上者。 The substrate P is a foil made of a metal or alloy such as a resin film or stainless steel. The material of the resin film may include, for example, polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate One or more of ester resin, polystyrene resin, polyvinyl alcohol resin and other materials.
基板P,以選擇例如熱膨脹係數顯著不大、可實質忽視在對基板P實施之各種處理中因受熱而產生之變形量者較佳。熱膨脹係數,可藉由例如將無機填充物混合於樹脂薄膜據以設定為較對應處理温度等之閾值小。無機填充物,可以是例如氧化鈦、氧化鋅、氧化鋁、氧化矽等。又, 基板P可以是以浮製法等製造之厚度100μm程度之極薄玻璃之單層體、或於此極薄玻璃貼合上述樹脂薄膜、或箔等的積層體。 For the substrate P, for example, it is preferable to select, for example, a coefficient of thermal expansion that is not significantly large, and the amount of deformation caused by heat in various treatments performed on the substrate P can be substantially ignored. The thermal expansion coefficient can be set to be lower than the threshold value corresponding to the processing temperature by, for example, mixing an inorganic filler in the resin film. The inorganic filler may be, for example, titanium oxide, zinc oxide, aluminum oxide, silicon oxide, or the like. also, The substrate P may be a single layer body of extremely thin glass having a thickness of about 100 μm manufactured by a float method or the like, or a laminate in which the above-mentioned resin film, foil, or the like is bonded to the extremely thin glass.
以此方式構成之基板P,被捲繞成捲筒狀而成為供應用捲筒,此供應用捲筒被裝著於元件製造系統1。裝有供應用捲筒之元件製造系統1,對從供應用捲筒往長條方向送出之基板P反覆實行用以製造元件之各種處理。因此,於處理後之基板P上,於長條方向以一定間隔連接之狀態形成有複數個電子元件(顯示面板、印刷基板等)用之圖案。也就是說,從供應用捲筒送出之基板P,為多面用之基板。此外,基板P亦可以是預先藉由既定前處理,將其表面予以改質而活性化者、或於表面形成用以精密圖案化之微細間隔壁構造(以壓印(imprint)法形成之凹凸構造)者。
The substrate P configured in this way is wound into a roll shape to become a supply roll, and this supply roll is mounted on the
經處理後之基板P,被捲繞成捲筒狀作為回收用捲筒加以回收。回收用捲筒,被安裝於未圖示之切割裝置。裝有回收用捲筒之切割裝置,將處理後之基板P分割(切割)成各個元件,據以成為複數個元件。基板P之尺寸,例如,寬度方向(短邊之方向)之尺寸為10cm~2m程度、而長度方向(長條之方向)尺寸則為10m以上。當然,基板P之尺寸不限於上述尺寸 The processed substrate P is wound into a roll and collected as a roll for collection. The reel for recovery is installed on a cutting device (not shown). A cutting device equipped with a reel for recycling divides (cuts) the processed substrate P into individual components, thereby forming a plurality of components. The size of the substrate P is, for example, the size in the width direction (the direction of the short side) is about 10 cm to 2 m, and the size in the length direction (the direction of the long direction) is more than 10 m. Of course, the size of the substrate P is not limited to the above size
接著,參照圖1說明元件製造系統1。元件製造系統1具備處理裝置U1、曝光裝置EX、以及處理裝置U2。又,圖1,係X方向、Y方向及Z方向成正交之正交座標系。X方向,係於水平面內從處理裝置U1經曝光裝置EX朝向處理裝置U2之方向。Y方向,係於水平面內與X方向正交之方向,為基板P之寬度方向。Z方向,係X方向與Y方向正交之方向(鉛直方向),XY面,係與設置曝光裝置EX之製造線之設置面E平行。
Next, the
處理裝置U1,係對於曝光裝置EX進行曝光處理之基板P進行前製程之處理(前處理)。處理裝置U1,將經前處理之基板P送向曝光裝置EX。此時,被送至曝光裝置EX之基板P,係其表面形成有感光性機能層(光感應層)之基板(感光基板)P。 The processing device U1 performs a pre-process (pre-processing) process on the substrate P that is exposed by the exposure device EX. The processing device U1 sends the pre-processed substrate P to the exposure device EX. At this time, the substrate P sent to the exposure device EX is a substrate (photosensitive substrate) P having a photosensitive functional layer (photosensitive layer) formed on its surface.
此處,感光性機能層係作為溶液塗於基板P上,經乾燥而成為層(膜)。典型的感光性機能層,有光阻劑作為顯影處理後無需之材料,在受紫外線照射之部分之親撥液性經改質之感光性矽烷耦合劑(SAM)、或受紫外線照射之部分露出鍍敷還元基之感光性還元材等。作為感光性機能層使用感光性矽烷耦合劑時,由於基板P上被紫外線曝光之圖案部分由撥液性改質為親液性,因此於成為親液性之部分上選擇性塗布導電性墨水(含有銀或銅等導電性奈米粒子之墨水),以形成圖案層。作為感光性機能層使用感光性還元材時,由於會在基板P上被紫外線曝光之圖案部分露出鍍敷還元基,因此,曝光後,立即將基板P浸漬於含鈀離子等之鍍敷液中一定時間,以形成(析出)鈀之圖案層。 Here, the photosensitive functional layer is applied on the substrate P as a solution, and dried to form a layer (film). A typical photosensitive functional layer, with a photoresist as an unnecessary material after development, is exposed to the liquid-modified photosensitive silane coupling agent (SAM) in the portion irradiated with ultraviolet rays or the portion irradiated with ultraviolet rays Plating to restore the base of the photosensitive material, etc. When a photosensitive silane coupling agent is used as the photosensitive functional layer, the pattern portion exposed to ultraviolet rays on the substrate P is changed from liquid-repellent to lyophilic, so the conductive ink is selectively coated on the portion that becomes lyophilic ( Ink containing conductive nano particles such as silver or copper) to form a pattern layer. When a photosensitive reduction material is used as the photosensitive functional layer, the patterned portion exposed to ultraviolet light on the substrate P exposes the plating reduction element. Therefore, immediately after exposure, the substrate P is immersed in a plating solution containing palladium ions or the like A certain period of time to form (precipitate) a palladium pattern layer.
曝光裝置EX,對從處理裝置U1供應之基板P描繪例如顯示器面板用之各種電路或各種配線等之圖案。詳情留待後敘,此曝光裝置EX,係將從複數個描繪單元UW1~UW5之各個投射向基板P之光束LB(以下,亦稱描繪光束LB。)之各個掃描於既定掃描方向所得之複數個描繪線LL1~LL5,於基板P曝光出既定圖案。 The exposure device EX draws patterns such as various circuits or various wiring for display panels on the substrate P supplied from the processing device U1. Details will be described later. This exposure device EX is a plurality of beams LB (hereinafter, also referred to as drawing beams LB) projected from each of the plurality of drawing units UW1 to UW5 onto the substrate P in a predetermined scanning direction Draw lines LL1~LL5 to expose a predetermined pattern on the substrate P.
處理裝置U2承接於曝光裝置EX曝光處理後之基板P,對基板P進行後製程之處理(後處理)。處理裝置U2,在基板P之感光性機能層為光阻劑之情形時,進行在基板P之玻璃轉移温度以下之後烘烤處理、 顯影處理、洗淨處理、乾燥處理等。又,在基板P之感光性機能層為感光性鍍敷還元材之情形時,處理裝置U2則進行無電電鍍處理、洗淨處理、乾燥處理等。此外,在基板P之感光性機能層為感光性矽烷耦合劑之情形時,處理裝置U2係進行對基板P上成為親液性之部分之液狀墨水之選擇性塗布處理、乾燥處理等。經由此種處理裝置U2,於基板P上形成元件之圖案層。 The processing device U2 receives the substrate P after the exposure processing by the exposure device EX, and performs a post-process processing (post-processing) on the substrate P. The processing device U2, when the photosensitive functional layer of the substrate P is a photoresist, performs a baking process after the glass transition temperature of the substrate P or less, Development treatment, washing treatment, drying treatment, etc. In addition, when the photosensitive functional layer of the substrate P is a photosensitive plating return material, the processing device U2 performs electroless plating processing, cleaning processing, drying processing, and the like. In addition, when the photosensitive functional layer of the substrate P is a photosensitive silane coupling agent, the processing device U2 performs selective coating processing, drying processing, and the like of the liquid ink on the substrate P that becomes lyophilic. Through such a processing device U2, a pattern layer of elements is formed on the substrate P.
<曝光裝置(基板處理裝置)> <Exposure device (substrate processing device)>
接著,參照圖1至圖10,說明曝光裝置EX。圖2係顯示圖1之曝光裝置主要部之配置的立體圖。圖3係顯示在基板上之對準顯微鏡與描繪線之配置關係的圖。圖4係顯示圖1之曝光裝置之旋轉圓筒及描繪裝置(描繪單元)之構成的圖。圖5係顯示圖1之曝光裝置主要部之配置的俯視圖。圖6係顯示圖1之曝光裝置之分歧光學系之構成的立體圖。圖7係顯示圖1之曝光裝置之複數個描繪單元內之掃描器之配置關係的圖。圖8係說明用以消除因掃描器反射面之傾斜造成之描繪線偏移之光學構成的圖。圖9係顯示在基板上之對準顯微鏡與描繪線之編碼器讀頭之配置關係的立體圖。圖10係顯示圖1之曝光裝置之旋轉圓筒表面構造之一例的立體圖。 Next, the exposure apparatus EX will be described with reference to FIGS. 1 to 10. FIG. 2 is a perspective view showing the arrangement of main parts of the exposure apparatus of FIG. 1. FIG. 3 is a diagram showing the arrangement relationship between the alignment microscope and the drawing line on the substrate. 4 is a diagram showing the configuration of a rotating cylinder and a drawing device (drawing unit) of the exposure device of FIG. 1. FIG. 5 is a plan view showing the arrangement of main parts of the exposure apparatus of FIG. 1. 6 is a perspective view showing the configuration of the divergent optical system of the exposure apparatus of FIG. 1. 7 is a diagram showing the arrangement relationship of scanners in a plurality of drawing units of the exposure apparatus of FIG. 1. FIG. 8 is a diagram illustrating the optical configuration for eliminating the shift of the drawing line caused by the inclination of the scanner reflective surface. FIG. 9 is a perspective view showing the arrangement relationship between the alignment microscope on the substrate and the encoder read head drawing the line. 10 is a perspective view showing an example of the surface structure of a rotating cylinder of the exposure apparatus of FIG.
如圖1所示,曝光裝置EX,係不使用光罩之曝光裝置、所謂的無光罩方式的描繪曝光裝置,於本實施形態,係藉由將基板P一邊以一定速度連續往搬送方向(長條方向)搬送、一邊將描繪光束LB之點(spot)光於既定掃描方向(基板P之寬度方向)高速掃描,據以進行於基板P表面之描繪,於基板P上形成既定圖案之逐線(raster scan)方式的直接描繪曝光裝置。 As shown in FIG. 1, the exposure apparatus EX is an exposure apparatus that does not use a mask, a so-called maskless exposure apparatus. In this embodiment, the substrate P side is continuously moved in the transport direction at a constant speed ( Long direction), while scanning the spot light of the drawing beam LB in a predetermined scanning direction (the width direction of the substrate P) at a high speed, according to the drawing on the surface of the substrate P, a predetermined pattern is formed on the substrate P Line (raster scan) direct drawing exposure device.
如圖1所示,曝光裝置EX具備描繪裝置11、基板搬送機
構12、對準顯微鏡AM1、AM2、以及控制部16。描繪裝置11具備複數個描繪單元UW1~UW5。描繪裝置11,在被作為基板搬送機構12一部分之圓筒狀旋轉圓筒DR之外周面上方緊貼支承之狀態下搬送之基板P之一部分,藉由複數個描繪單元UW1~UW5描繪既定圖案。基板搬送機構12,將從前製程之處理裝置U1搬送而來之基板P,以既定速度往後製程之處理裝置U2搬送。對準顯微鏡AM1、AM2,為進行待描繪於基板P上之圖案與基板P之相對的位置對準,檢測預先形成在基板P之對準標記等。包含電腦、微電腦、CPU、FPGA等之控制部16,控制曝光裝置EX之各部,使各部實施處理。控制部16可以是控制元件製造系統1之上位控制裝置之一部分或全部。又,控制部16受上位控制裝置控制。上位控制裝置,可以是例如管理生產線之主電腦等之其他裝置。
As shown in FIG. 1, the exposure apparatus EX includes a
又,如圖2所示,曝光裝置EX具備支承描繪裝置11及基板搬送機構12之至少一部(旋轉圓筒DR等)之裝置框架13,於該裝置框架13安裝有檢測旋轉圓筒DR之旋轉角度位置及旋轉速度、旋轉軸方向之變位等的旋轉光束點光SP位置檢測機構(圖4及圖9所示之編碼器讀頭等)、與圖1(或圖3、圖9)所示之對準顯微鏡AM1、AM2等。再者,於曝光裝置EX內,如圖4、圖5所示的設有射出作為描繪光束LB之紫外雷射光(脈衝光)的光源裝置CNT。此曝光裝置EX,將從光源裝置CNT射出之描繪光束LB,以大致均等光量(照度)分配至構成描繪裝置11之複數個描繪單元UW1~UW5之各個。
Further, as shown in FIG. 2, the exposure apparatus EX includes an
如圖1所示,曝光裝置EX係收納在調溫室EVC內。調溫室EVC,透過被動或主動的防振單元SU1、SU2設置在製造工場之設置面 (地面)E。防振單元SU1、SU2設在設置面E上,用以降低來自設置面E之振動。調溫室EVC,藉由將內部保持於既定温度,據以抑制在內部搬送之基板P因温度造成之形狀變化。 As shown in FIG. 1, the exposure device EX is housed in the greenhouse EVC. Adjust the greenhouse EVC and install it on the installation surface of the manufacturing workshop through the passive or active anti-vibration units SU1 and SU2 (Ground) E. Anti-vibration units SU1 and SU2 are provided on the installation surface E to reduce the vibration from the installation surface E. The greenhouse EVC is adjusted to keep the inside at a predetermined temperature, thereby suppressing the shape change of the substrate P transported inside due to temperature.
曝光裝置EX之基板搬送機構12,從基板P之搬送方向上游側起依序具有邊緣位置控制器EPC、驅動滾輪DR4、張力調整滾輪RT1、旋轉圓筒(圓筒圓筒)DR、張力調整滾輪RT2、驅動滾輪DR6、及驅動滾輪DR7。
The
邊緣位置控制器EPC係調整從處理裝置U1搬送之基板P於寬度方向(Y方向)之位置。邊緣位置控制器EPC,以從處理裝置U1送來之基板P之寬度方向端部(邊緣)位置,能相對目標位置在±十數μm~數十μm程度之範圍內,而使基板P於寬度方向微動,修正基板P於寬度方向之位置。 The edge position controller EPC adjusts the position of the substrate P transferred from the processing device U1 in the width direction (Y direction). The edge position controller EPC can position the substrate P within the width of the end position (edge) of the substrate P sent from the processing device U1 in the range of ± tens μm to tens μm relative to the target position The direction is slightly moved to correct the position of the substrate P in the width direction.
夾持方式之驅動滾輪DR4,一邊夾持從邊緣位置控制器EPC搬送而來之基板P之正反兩面一邊旋轉,將基板P送向搬送方向之下游側,以將基板P往旋轉圓筒DR搬送。旋轉圓筒DR,一邊使基板P上之圖案待曝光之部分緊貼於從延伸於Y方向之旋轉中心線(旋轉軸)AX2具一定半徑之圓筒狀外周面以加以支承、一邊繞旋轉中心線AX2旋轉,據以將基板P往長條方向搬送。 The driving roller DR4 of the clamping method rotates while clamping the front and back sides of the substrate P conveyed from the edge position controller EPC, and sends the substrate P to the downstream side in the conveying direction to move the substrate P to the rotating cylinder DR Transport. Rotate the cylinder DR, around the center of rotation while holding the part of the pattern on the substrate P to be exposed to the cylindrical outer surface with a certain radius from the rotation center line (rotation axis) AX2 extending in the Y direction When the line AX2 rotates, the substrate P is transported in the longitudinal direction.
為使此種旋轉圓筒DR繞旋轉中心線AX2旋轉,於旋轉圓筒DR之兩側設有與旋轉中心線AX2同軸之軸(shaft)部Sf2,軸部Sf2,如圖2所示,透過軸承被軸支於裝置框架13。於此軸部Sf2,賦予來自未圖示之驅動源(馬達及減速齒輪機構等)之旋轉力矩。又,將包含旋轉中心
線AX2與YZ面平行之面,設為中心面p3。
In order to rotate such a rotating cylinder DR around the rotation center line AX2, shaft portions Sf2 coaxial with the rotation center line AX2 and shaft portions Sf2 are provided on both sides of the rotating cylinder DR, as shown in FIG. 2, through The bearing is supported by the
2組張力調整滾輪RT1、RT2,對被捲繞支承於旋轉圓筒DR之基板P賦予既定張力。2組夾持式驅動滾輪DR6、DR7於基板P之搬送方向相隔既定間隔配置,對曝光後之基板P賦予既定之鬆弛DL。藉由驅動滾輪DR6夾持搬送之基板P之上游側旋轉、驅動滾輪DR7夾持搬送之基板P之下游側旋轉,據以將基板P搬送向處理裝置U2。此時,基板P由於被賦予有鬆弛DL,因能吸收較驅動滾輪DR6在搬送方向下游側產生之基板P之搬送速度之變動,隔絕因搬送速度之變動對基板P造成之曝光處理之影響。 The two sets of tension adjusting rollers RT1 and RT2 apply a predetermined tension to the substrate P wound and supported by the rotating cylinder DR. The two sets of nip drive rollers DR6 and DR7 are arranged at a predetermined interval in the conveying direction of the substrate P, and a predetermined slack DL is given to the substrate P after exposure. The substrate P is transferred to the processing device U2 by rotating the upstream side of the transported substrate P by the driving roller DR6 and rotating the downstream side of the transported substrate P by the driving roller DR7. At this time, since the substrate P is given the slack DL, it can absorb the change in the transfer speed of the substrate P that is generated downstream of the driving roller DR6 in the transfer direction, and isolates the influence of the exposure process caused by the change in the transfer speed on the substrate P.
從而,基板搬送機構12,能對從處理裝置U1搬送而來之基板P,藉由邊緣位置控制器EPC調整於寬度方向之位置。基板搬送機構12,將寬度方向之位置經調整之基板P,藉由驅動滾輪DR4搬送至張力調整滾輪RT1,將通過張力調整滾輪RT1之基板P搬送至旋轉圓筒DR。基板搬送機構12,藉由使旋轉圓筒DR旋轉,據以將被支承於旋轉圓筒DR之基板P搬送向張力調整滾輪RT2。基板搬送機構12,將搬送至張力調整滾輪RT2之基板P搬送至驅動滾輪DR6,將搬送至驅動滾輪DR6之基板P搬送至驅動滾輪DR7。接著,基板搬送機構12藉由驅動滾輪DR6及驅動滾輪DR7,一邊對基板P賦予鬆弛DL、一邊將基板P搬送向處理裝置U2。
Therefore, the
再次參照圖2,說明曝光裝置EX之裝置框架13。圖2中,X方向、Y方向及Z方向為一正交之正交座標系,係與圖1相同之正交座標系。
2 again, the
如圖2所示,裝置框架13,從Z方向之下方側依序具有本
體框架21、支承機構三點座22、第1光學平台23、移動機構24、以及第2光學平台25。本體框架21係透過防振單元SU1、SU2設置在設置面E上之部分。本體框架21,將旋轉圓筒DR及張力調整滾輪RT1(未圖示)、RT2軸支(支承)成可旋轉。第1光學平台23,設在旋轉圓筒DR之鉛直方向上方側,透過三點座22設置於本體框架21。三點座22,將第1光學平台23以3個支承點加以支承,於各支承點之Z方向位置(高度位置)可調整。因此,三點座22可將第1光學平台23之平台面相對水平面之傾斜調整為既定傾斜。又,於裝置框架13之組裝時,本體框架21與三點座22之間,可在XY面內,於X方向及Y方向進行位置調整。另一方面,於裝置框架13之組裝後,本體框架21與三點座22之間則成為在XY面內被固定之狀態(剛性狀態)。
As shown in FIG. 2, the
第2光學平台25設在第1光學平台23之鉛直方向上方側,透過移動機構24設置於第1光學平台23。第2光學平台25,其平台面與第1光學平台23之平台面平行。於第2光學平台25,設有描繪裝置11之複數個描繪單元UW1~UW5。移動機構24,可在將第1光學平台23及第2光學平台25各個之平台面保持成平行之狀態下,以延伸於鉛直方向之既定旋轉軸I為中心,相對第1光學平台23使第2光學平台25精密的微幅旋轉。其旋轉範圍,例如係相對基準位置在±數百毫弧度程度,能以1~數毫弧度之分解能力進行角度設定之構造。又,移動機構24,亦具備可在將第1光學平台23及第2光學平台25各個之平台面保持於平行之狀態下,相對第1光學平台23使第2光學平台25於X方向及Y方向之至少一方精密的微幅移動的機構,可使旋轉軸I從基準位置往X方向或Y方向以μm級之
分解能力微幅變位。此旋轉軸I,於基準位置,係於中心面p3內延伸於鉛直方向且通過捲繞在旋轉圓筒DR之基板P表面(順著圓周面彎曲之描繪面)內之既定點(基板P之寬度方向中點)(參照圖3)。藉由此種移動機構24,相對第1光學平台23使第2光學平台25旋轉或移動,即能一體的調整複數個描繪單元UW1~UW5相對旋轉圓筒DR、或被捲繞於旋轉圓筒DR之基板P之位置。
The second optical table 25 is provided on the vertically upper side of the first optical table 23, and is provided on the first optical table 23 through the moving
接著,參照圖5說明光源裝置CNT。光源裝置CNT設置在裝置框架13之本體框架21上。光源裝置CNT射出投射於基板P之作為描繪光束LB之雷射光。光源裝置CNT,具有射出適於基板P上之感光性機能層之曝光之既定波長帶域、光活性作用強之紫外帶之光的光源。作為光源,可利用例如連續振盪、或以數KHz~數百MHz程度脈衝振盪出YAG之第三高次諧波雷射光(波長355nm)的雷射光源。
Next, the light source device CNT will be described with reference to FIG. 5. The light source device CNT is provided on the
光源裝置CNT具備雷射光產生部CU1及波長轉換部CU2。雷射光產生部CU1具備雷射光源OSC、以及光纖增幅器FB1、FB2。雷射光產生部CU1射出基本波雷射光Ls。光纖增幅器FB1、FB2將基本波雷射光Ls以光纖加以增幅。雷射光產生部CU1使增幅之基本波雷射光Lr射入波長轉換部CU2。於波長轉換部CU2設有波長轉換光學元件、分光鏡及偏光分束器、稜鏡等,藉由此等光(波長)選擇零件之使用取出第三高次諧波雷射波長355nm之雷射光(描繪光束LB)。此時,使發出種光之雷射光源OSC與系統時脈等同步進行脈衝點燈,光源裝置CNT即作為數KHz~數百MHz程度之脈衝光發出波長355nm之描繪光束LB。又,使用此種光纖增幅器之情形時,依據雷射光源OSC之脈衝驅動之態樣,可將最終輸出 之雷射光(Lr及LB)之1脈衝發光時間控制成微微秒級。 The light source device CNT includes a laser light generation unit CU1 and a wavelength conversion unit CU2. The laser light generating unit CU1 includes a laser light source OSC and optical fiber amplifiers FB1 and FB2. The laser light generating unit CU1 emits the basic wave laser light Ls. The optical fiber amplifiers FB1 and FB2 amplify the basic wave laser light Ls with an optical fiber. The laser light generating unit CU1 causes the amplified basic wave laser light Lr to enter the wavelength conversion unit CU2. The wavelength conversion unit CU2 is provided with a wavelength conversion optical element, a beam splitter, a polarizing beam splitter, and so on. By using such light (wavelength) selection components, the laser beam of the third higher harmonic laser wavelength 355 nm is taken out (Drawing light beam LB). At this time, the laser light source OSC that emits seed light is pulsed in synchronization with the system clock, etc., and the light source device CNT emits a drawing light beam LB with a wavelength of 355 nm as pulse light in the range of several KHz to hundreds of MHz. In addition, when using this type of optical fiber amplifier, the final output can be output according to the pulse driving state of the laser light source OSC One pulse light emission time of laser light (Lr and LB) is controlled to picosecond level.
又,作為光源,亦可利用例如具有紫外帶之輝線(g線、h線、i線等)之水銀燈等之燈光源、於波長450nm以下之紫外帶具有振盪峰值之雷射二極體、發光二極體(LED)等之固體光源、或發出遠紫外光(DUV光)之KrF準分子雷射光(波長248nm)、ArF準分子雷射光(波長193nm)、XeCl準分子雷射(波長308nm)等之氣體雷射光源。 Also, as a light source, a lamp light source such as a mercury lamp with a glow line (g-line, h-line, i-line, etc.) in the ultraviolet band, a laser diode with an oscillation peak in the ultraviolet band below 450 nm, and light emission can also be used Solid light sources such as LEDs, or KrF excimer laser light (wavelength 248nm), ArF excimer laser light (wavelength 193nm), XeCl excimer laser light (wavelength 308nm) that emits far ultraviolet light (DUV light) Etc. gas laser light source.
此處,從光源裝置CNT射出之描繪光束LB,如後述般,透過各描繪單元UW1~UW5內所設之偏光分束器PBS投射於基板P。一般而言,偏光分束器PBS會反射為S偏光之直線偏光的光束,而使為P偏光之直線偏光的光束穿透。因此,於光源裝置CNT,以射入偏光分束器PBS之描繪光束LB為射出直線偏光(S偏光)之光束的雷射光較佳。此外,由於雷射光之能量密度高,因此能適當的確保投射於基板P之光束之照度。 Here, the drawing light beam LB emitted from the light source device CNT is projected on the substrate P through the polarizing beam splitter PBS provided in each drawing unit UW1 to UW5 as described later. Generally speaking, the polarizing beam splitter PBS reflects the linearly polarized light beam of S-polarized light, and penetrates the linearly polarized light beam of P-polarized light. Therefore, in the light source device CNT, it is preferable to use the drawing beam LB incident on the polarizing beam splitter PBS as the laser beam that emits a linearly polarized (S-polarized) beam. In addition, since the energy density of the laser light is high, the illuminance of the light beam projected on the substrate P can be appropriately ensured.
其次,針對曝光裝置EX之描繪裝置11,亦參照圖3加以說明。描繪裝置11係使用複數個描繪單元UW1~UW5之所謂的多光束型描繪裝置11。此描繪裝置11,將從光源裝置CNT射出之描繪光束LB分歧為複數條,並將分歧之複數個描繪光束LB沿著如圖3之基板P上之複數條(第1實施形態中例如為5條)描繪線LL1~LL5分別聚光為微小之點光(數μm徑)加以掃描。描繪裝置11,將以複數個描繪線LL1~LL5之各個在基板P上描繪之圖案彼此於基板P之寬度方向加以接合。首先,參照圖3,說明以描繪裝置11掃描複數個描繪光束LB據以在基板P上形成之複數條描繪線LL1~LL5(點光之掃描軌跡)。
Next, the
如圖3所示,複數條描繪線LL1~LL5,夾著中心面p3於 旋轉圓筒DR之周方向配置成2行。於旋轉方向上游側之基板P上,與Y軸平行的配置奇數號之第1描繪線LL1、第3描繪線LL3及第5描繪線LL5於旋轉方向下游側之基板P上,與Y軸平行的配置偶數號之第2描繪線LL2及第4描繪線LL4。 As shown in FIG. 3, a plurality of drawing lines LL1~LL5, sandwiching the central plane p3 at The circumferential direction of the rotating cylinder DR is arranged in two rows. On the substrate P on the upstream side in the rotation direction, an odd numbered first drawing line LL1, third drawing line LL3, and fifth drawing line LL5 are arranged parallel to the Y axis on the substrate P on the downstream side in the rotation direction, parallel to the Y axis The even numbered second drawing line LL2 and fourth drawing line LL4 are arranged.
各描繪線LL1~LL5於基板P之寬度方向(Y方向)、也就是說沿旋轉圓筒DR之旋轉中心線AX2大致平行形成,較基板P於寬度方向之長度短。嚴謹來說,各描繪線LL1~LL5,為在藉由基板搬送機構12以基準速度搬送基板P時,以複數條描繪線LL1~LL5所得之圖案之接合誤差為最小,可相對旋轉圓筒DR之旋轉中心線AX2延伸之方向(軸方向或寬度方向)傾斜既定角度分。
The drawing lines LL1 to LL5 are formed substantially parallel to the width direction (Y direction) of the substrate P, that is, along the rotation center line AX2 of the rotating cylinder DR, and are shorter than the length of the substrate P in the width direction. Strictly speaking, each of the drawing lines LL1 to LL5 is the minimum joint error of the pattern obtained by drawing a plurality of drawing lines LL1 to LL5 when the substrate P is transferred by the
奇數號之第1描繪線LL1、第3描繪線LL3及第5描繪線LL5,於旋轉圓筒DR之中心線AX2方向相距既定間隔配置。又,偶數號之第2描繪線LL2及第4描繪線LL4,於旋轉圓筒DR之中心線AX2方向相距既定間隔配置。,此時,第2描繪線LL2係於中心線AX2方向配置在第1描繪線LL1與第3描繪線LL3之間。同樣的,第3描繪線LL3係於中心線AX2方向配置在第2描繪線LL2與第4描繪線LL4之間。第4描繪線LL4於中心線AX2方向配置在第3描繪線LL3與第5描繪線LL5之間。此外,第1~第5描繪線LL1~LL5係配置成涵蓋描繪於基板P上之曝光區域A7之寬度方向(軸方向)全寬。 The odd-numbered first drawing lines LL1, third drawing lines LL3, and fifth drawing lines LL5 are arranged at predetermined intervals in the direction of the center line AX2 of the rotating cylinder DR. In addition, even-numbered second drawing lines LL2 and fourth drawing lines LL4 are arranged at predetermined intervals in the direction of the center line AX2 of the rotating cylinder DR. At this time, the second drawing line LL2 is arranged between the first drawing line LL1 and the third drawing line LL3 in the direction of the center line AX2. Similarly, the third drawing line LL3 is arranged between the second drawing line LL2 and the fourth drawing line LL4 in the direction of the center line AX2. The fourth drawing line LL4 is arranged between the third drawing line LL3 and the fifth drawing line LL5 in the direction of the center line AX2. In addition, the first to fifth drawing lines LL1 to LL5 are arranged so as to cover the entire width in the width direction (axial direction) of the exposure area A7 drawn on the substrate P.
沿著奇數號之第1描繪線LL1、第3描繪線LL3及第5描繪線LL5掃描之描繪光束LB之點光之掃描方向,為一維方向、相同方向。又,沿偶數號之第2描繪線LL2及第4描繪線LL4掃描之描繪光束LB之 點光之掃描方向,為一維方向、相同方向。此時,沿奇數號描繪線LL1、LL3、LL5掃描之描繪光束LB之點光之掃描方向(+Y方向)與沿偶數號描繪線LL2、LL4掃描之描繪光束LB之點光之掃描方向(-Y方向),如圖3中之箭頭所示,為相反方向。此係因使描繪單元UW1~UW5之各個為相同構成,在使奇數號描繪單元與偶數號描繪單元於XY面內旋轉180°對向配置、且使設於各描繪單元UW1~UW5之作為光束掃描器之旋轉多邊形鏡(polygon mirror)旋轉於同一方向之故。因此,從基板P之搬送方向來看,奇數號描繪線LL3、LL5之描繪開始位置與偶數號描繪線LL2、LL4之描繪開始位置,係於Y方向以點光之徑尺寸以下之誤差相鄰接(或一致),同樣的,奇數號描繪線LL1、LL3之描繪結束位置與偶數號描繪線LL2、LL4之描繪結束位置,係於Y方向以點光之徑尺寸以下之誤差相鄰接(或一致)。 The scanning direction of the spot light of the drawing light beam LB scanned along the odd-numbered first drawing line LL1, third drawing line LL3, and fifth drawing line LL5 is a one-dimensional direction and the same direction. Also, the drawing beam LB scanned along the even-numbered second drawing line LL2 and the fourth drawing line LL4 The scanning direction of the spot light is a one-dimensional direction and the same direction. At this time, the scanning direction of the spot light of the drawing beam LB scanned along the odd-numbered drawing lines LL1, LL3, LL5 and the scanning direction of the spot light of the drawing beam LB scanned along the even-numbered drawing lines LL2, LL4 ( -Y direction), as shown by the arrow in Figure 3, the opposite direction. This is because the drawing units UW1 to UW5 have the same structure, and the odd-numbered drawing units and the even-numbered drawing units are rotated 180° in the XY plane to face each other, and the beams provided in each drawing unit UW1 to UW5 are used as light beams. The polygon mirror of the scanner rotates in the same direction. Therefore, in view of the transport direction of the substrate P, the drawing start positions of the odd-numbered drawing lines LL3 and LL5 and the drawing start positions of the even-numbered drawing lines LL2 and LL4 are adjacent to each other in the Y direction with an error of the diameter of the spot light Connection (or coincidence). Similarly, the drawing end positions of odd-numbered drawing lines LL1, LL3 and the drawing end positions of even-numbered drawing lines LL2, LL4 are adjacent to each other in the Y direction with an error of the diameter of the spot light ( Or consistent).
如以上之說明,奇數號描繪線LL1、LL3、LL5之各個係在基板P上與旋轉圓筒DR之旋轉中心線AX2大致平行之方式,於基板P之寬度方向配置成一行。而偶數號描繪線LL2、LL4之各個係在基板P上與旋轉圓筒DR之旋轉中心線AX2大致平行之方式,於基板P之寬度方向配置成一行。 As described above, the odd-numbered drawing lines LL1, LL3, and LL5 are arranged on the substrate P in a row in the width direction of the substrate P so as to be substantially parallel to the rotation center line AX2 of the rotating cylinder DR. The even-numbered drawing lines LL2 and LL4 are arranged on the substrate P in a row in the width direction of the substrate P so as to be substantially parallel to the rotation center line AX2 of the rotating cylinder DR.
其次,參照圖4至圖7說明描繪裝置11。描繪裝置11,具有上述複數個描繪單元UW1~UW5、將來自光源裝置CNT之描繪光束LB分歧後導向描繪單元UW1~UW5之分歧光學系SL、以及用以進行校準之校準檢測系31。
Next, the
分歧光學系SL將從光源裝置CNT射出之描繪光束LB分歧
為複數條,並將分歧之複數條描繪光束LB分別導向複數個描繪單元UW1~UW5。分歧光學系SL,具有將從光源裝置CNT射出之描繪光束LB分歧為2條之第1光學系41、以第1光學系41分歧之一描繪光束LB射入之第2光學系42、及以第1光學系41分歧之另一描繪光束LB射入之第3光學系43。又,於分歧光學系SL之第1光學系41中設有在與描繪光束LB之進行軸正交之面內使描繪光束LB2維橫移之光束位移機構44,於分歧光學系SL之第3光學系43中設有使描繪光束LB2維橫移之光束位移機構45。分歧光學系SL,其光源裝置CNT側之一部分設置於本體框架21,另一方面,描繪單元UW1~UW5側之另一部分則設置於第2光學平台25。
The divergent optical system SL diverges the drawing beam LB emitted from the light source device CNT
It is plural, and the divergent plural drawing beams LB are respectively directed to plural drawing units UW1~UW5. The divergent optical system SL includes a first
第1光學系41,具有1/2波長板51、偏光鏡(偏光分束器)52、散光器(beam diffuser)53、第1反射鏡54、第1中繼透鏡55、第2中繼透鏡56、光束位移機構44、第2反射鏡57、第3反射鏡58、第4反射鏡59、以及第1分束器60。又,從圖4、圖5中不易理解各構件之配置關係,因此,亦參照圖6之立體圖加以說明。
The first
如圖6所示,從光源裝置CNT往+X方向射出之描繪光束LB射入1/2波長板51。1/2波長板51在描繪光束LB之入射面內可旋轉。射入1/2波長板51之描繪光束LB,其偏光方向為對應1/2波長板51之旋轉位置(角度)的既定偏光方向。通過1/2波長板51之描繪光束LB射入偏光鏡52。偏光鏡52使描繪光束LB中所含之既定偏光方向之光成分穿透,另一方面則將之外之偏光方向之光成分反射向+Y方向。因此,以偏光鏡52反射之描繪光束LB之強度,可藉由1/2波長板51及偏光鏡52之協力動作,視1/2波長板51之旋轉位置加以調整。
As shown in FIG. 6, the drawing light beam LB emitted from the light source device CNT in the +X direction enters the half-
穿透過偏光鏡52之描繪光束LB之一部分(不要的光成分)照射於散光器(捕光)53。散光器53吸收射入之描繪光束LB之部分光成分,以抑制該光成分漏至外部。進一步的,亦用在進行描繪光束LB通過之各種光學系之調整作業時,由於雷射功率在最大狀態下功率過強而有危險,為使散光器53能吸收描繪光束LB之較多光成分,而改變1/2波長板51之旋轉位置(角度),以使朝向描繪單元UW1~UW5之描繪光束LB之功率大幅衰減。
A portion of the drawing light beam LB (unwanted light component) that has passed through the
被偏光鏡52反射向+Y方向之描繪光束LB,因第1反射鏡54而反射向+X方向,透過第1中繼透鏡55及第2中繼透鏡56射入光束位移機構44,到達第2反射鏡57。
The drawing beam LB reflected by the
第1中繼透鏡55使來自光源裝置CNT之描繪光束LB(大致平行之光束)收斂形成光束腰,第2中繼透鏡56使收斂後發散之描繪光束LB再次成為平行光束。
The
光束位移機構44,如圖6所示,包含沿描繪光束LB之行進方向(+X方向)配置之2片平行平面板(石英),該平行平面板之一設置成能繞與Y軸平行之軸傾斜,另一平行平面板則設置成稜繞與Z軸平行之軸傾斜。依據各平行平面板之傾斜角度,描繪光束LB於ZY面內橫移而從光束位移機構44射出。
The
之後,描繪光束LB被第2反射鏡57反射向-Y方向,到達第3反射鏡58,再被第3反射鏡58反射向-Z方向而到達第4反射鏡59。藉由第4反射鏡59,描繪光束LB被反射向+Y方向而射入第1分束器60。第1分束器60將描繪光束LB之部分光量成分反射向-X方向以導向第2
光學系42,並將描繪光束LB之其餘光量成分導向第3光學系43。本實施形態中,被導向第2光學系42之描繪光束LB在之後被分配於3個描繪單元UW1、UW3、UW5,被導向第3光學系43之描繪光束LB在之後被分配於2個描繪單元UW2、UW4。因此,第1分束器60在光分割面之反射率與穿透率之比以3:2(反射率60%、穿透率40%)較佳,但不一定非如此不可,亦可以是1:1。
After that, the drawing light beam LB is reflected by the
此處,第3反射鏡58與第4反射鏡59係在移動機構24之旋轉軸I上相距既定間隔設置。亦即,於第3反射鏡58反射而朝向第4反射鏡59之描繪光束LB(平行光束)之中心線,係設定成與旋轉軸I一致(成同軸)。
Here, the
又,包含第3反射鏡58至光源裝置CNT為止之構成(在圖4之Z方向上方側,以二點鍊線圍繞之部分)係設於本體框架21側,另一方面,包含第4反射鏡59至複數個描繪單元UW1~UW5之構成(在圖4之Z方向下方側,以二點鍊線圍繞之部分)係設於第2光學平台25側。由於第3反射鏡58與第4反射鏡59係設置成即使以移動機構24使第1光學平台23與第2光學平台25相對旋轉,描繪光束LB亦會與旋轉軸I同軸通過,因此從第4反射鏡59至第1分束器60之描繪光束LB之光路不會變更。從而,即使以移動機構24使第2光學平台25相對第1光學平台23旋轉,亦能將從設置在本體框架21側之光源裝置CNT射出之描繪光束LB,適當、安定的引導向設在第2光學平台25側之複數個描繪單元UW1~UW5。
In addition, the structure including the
第2光學系42,將於第1光學系41之第1分束器60分歧之一方之描繪光束LB,分歧導向後述之奇數號描繪單元UW1、UW3、
UW5。第2光學系42,具有第5反射鏡61、第2分束器62、第3分束器63、以及第6反射鏡64。
The second
於第1光學系41之第1分束器60被反射向-X方向之描繪光束LB,被第5反射鏡61往-Y方向反射後,射入第2分束器62。射入第2分束器62之描繪光束LB,其一部分被反射向-Z方向,導向奇數號之1個描繪單元UW5(參照圖5)。穿透過第2分束器62之描繪光束LB射入第3分束器63。射入第3分束器63之描繪光束LB,其一部分被反射向-Z方向,導向奇數號之1個描繪單元UW3(參照圖5)。而穿透過第3分束器63之描繪光束LB之一部分被第6反射鏡64反射向-Z方向,導向奇數號之1個描繪單元UW1(參照圖5)。又,於第2光學系42,照射於奇數號描繪單元UW1、UW3、UW5之描繪光束LB,相對-Z方向略微傾斜。
The
又,為有效利用描繪光束LB之功率,使第2分束器62之反射率與穿透率之比接近1:2、第3分束器63之反射率與穿透率之比接近1:1較佳。
In addition, in order to effectively use the power of the drawing beam LB, the ratio of the reflectance of the
另一方面,第3光學系43將於第1光學系41之第1分束器60分歧之另一方之描繪光束LB,分歧導向後述之偶數號描繪單元UW2、UW4。第3光學系43,具有第7反射鏡71、光束位移機構45、第8反射鏡72、第4分束器73、以及第9反射鏡74。
On the other hand, the third
於第1光學系41之第1分束器60往+Y方向穿透之描繪光束LB,被第7反射鏡71反射向+X方向,穿透光束位移機構45後射入第8反射鏡72。光束位移機構45,係以和光束位移機構44同樣之可傾斜的2片平行平面板(石英)構成,使朝向第8反射鏡72往+X方向前進之描繪
光束LB於ZY面內橫移。
The drawing beam LB penetrating in the +Y direction by the
被第8反射鏡72反射向-Y方向之描繪光束LB,射入第4分束器73。照射於第4分束器73之描繪光束LB,其一部分被反射向-Z方向,導向偶數號之1個描繪單元UW4(參照圖5)。穿透過第4分束器73之描繪光束LB,被第9反射鏡74反射向-Z方向,導向偶數號之1個描繪單元UW2。又,於第3光學系43,照射於偶數號描繪單元UW2、UW4之描繪光束LB,亦係相對-Z方向略微傾斜。
The drawing light beam LB reflected in the −Y direction by the
如以上所述,於分歧光學系SL,朝向複數個描繪單元UW1~UW5,將來自光源裝置CNT之描繪光束LB分歧為複數條。此時,第1分束器60、第2分束器62、第3分束器63及第4分束器73,其反射率(穿透率)係視描繪光束LB之分歧數調整為適當的反射率,以使照射於複數個描繪單元UW1~UW5之描繪光束LB之光束強度為相同強度。
As described above, in the divergent optical system SL, toward the plural drawing units UW1 to UW5, the drawing light beam LB from the light source device CNT is diverged into plural pieces. At this time, the reflectance (transmittance) of the
光束位移機構44配置在第2中繼透鏡56與第2反射鏡57之間。光束位移機構44可將在基板P上形成之描繪線LL1~LL5之所有位置,在基板P之描繪面內以μm級進行微調。
The
又,光束位移機構45,可將基板P上形成之描繪線LL1~LL5中、偶數號之第2描繪線LL2及第4描繪線LL4於基板P之描繪面內以μm級進行微調。
In addition, the
進一步參照圖4、圖5及圖7,說明複數個描繪單元UW1~UW5。如圖4(及圖1)所示,複數個描繪單元UW1~UW5係夾著中心面p3於旋轉圓筒DR之周方向配置成2行。複數個描繪單元UW1~UW5,於夾著中心面p3配置第1、第3、第5描繪線LL1、LL3、LL5之側(圖5 之-X方向側),配置第1描繪單元UW1、第3描繪單元UW3及第5描繪單元UW5。第1描繪單元UW1、第3描繪單元UW3及第5描繪單元UW5,於Y方向相距既定間隔配置。又,複數個描繪單元UW1~UW5,於夾著中心面p3配置第2、第4描繪線LL2、LL4之側(圖5之+X方向側),配置第2描繪單元UW2及第4描繪單元UW4。第2描繪單元UW2及第4描繪單元UW4,於Y方向相距既定間隔配置。此時,如之前之圖2、或圖5所示,第2描繪單元UW2,於Y方向係配置在第1描繪單元UW1與第3描繪單元UW3之間。同樣的,第3描繪單元UW3,於Y方向係配置在第2描繪單元UW2與第4描繪單元UW4之間。第4描繪單元UW4,於Y方向配置在第3描繪單元UW3與第5描繪單元UW5之間。又,如圖4所示,第1描繪單元UW1、第3描繪單元UW3及第5描繪單元UW5與第2描繪單元UW2及第4描繪單元UW4,從Y方向看,係以中心面p3為中心對稱配置。 Further referring to FIGS. 4, 5 and 7, a plurality of drawing units UW1 to UW5 will be described. As shown in FIG. 4 (and FIG. 1 ), a plurality of drawing units UW1 to UW5 are arranged in two rows in the circumferential direction of the rotating cylinder DR with the center plane p3 in between. A plurality of drawing units UW1 to UW5 are arranged on the side sandwiching the center plane p3 between the first, third, and fifth drawing lines LL1, LL3, and LL5 (Figure 5 -X direction side), the first drawing unit UW1, the third drawing unit UW3, and the fifth drawing unit UW5 are arranged. The first drawing unit UW1, the third drawing unit UW3, and the fifth drawing unit UW5 are arranged at a predetermined interval in the Y direction. In addition, a plurality of drawing units UW1 to UW5 are arranged on the side sandwiching the center plane p3 between the second and fourth drawing lines LL2 and LL4 (the +X direction side in FIG. 5), and the second drawing units UW2 and the fourth drawing unit are arranged UW4. The second drawing unit UW2 and the fourth drawing unit UW4 are arranged at a predetermined interval in the Y direction. At this time, as shown in the previous FIG. 2 or FIG. 5, the second drawing unit UW2 is arranged between the first drawing unit UW1 and the third drawing unit UW3 in the Y direction. Similarly, the third drawing unit UW3 is arranged between the second drawing unit UW2 and the fourth drawing unit UW4 in the Y direction. The fourth drawing unit UW4 is arranged between the third drawing unit UW3 and the fifth drawing unit UW5 in the Y direction. Further, as shown in FIG. 4, the first drawing unit UW1, the third drawing unit UW3 and the fifth drawing unit UW5, and the second drawing unit UW2 and the fourth drawing unit UW4 are viewed from the Y direction and centered on the center plane p3 Symmetrical configuration.
其次,參照圖4說明各描繪單元UW1~UW5內之光學系之構成。又,由於各描繪單元UW1~UW5為相同構成,因此以第1描繪單元UW1(以下,僅稱描繪單元UW1)為例加以說明。 Next, the configuration of the optical system in each drawing unit UW1 to UW5 will be described with reference to FIG. 4. In addition, since the drawing units UW1 to UW5 have the same configuration, the first drawing unit UW1 (hereinafter, simply referred to as the drawing unit UW1) will be described as an example.
圖4所示之描繪單元UW1,為沿描繪線LL1(第1描繪線LL1)掃描描繪光束LB之點光,具備光偏向器81、偏光分束器PBS、1/4波長板82、掃描器83、彎折鏡84、f-θ透鏡系85、以及包含柱面透鏡86之Y倍率修正用光學構件(透鏡群)86B。又,與偏向分束器PBS相鄰設有校準檢測系31。
The drawing unit UW1 shown in FIG. 4 scans the spot light of the drawing light beam LB along the drawing line LL1 (first drawing line LL1), and includes an
光偏向器81,係使用例如聲光元件(AOM:AcoustIic Optic
Modulator)。AOM係藉由是否在內部以超音波(高頻訊號)生成繞射光柵,據以在使入射之描繪光束之1次繞射光產生於既定繞射角方向之ON狀態、與不產生一次繞射光之OFF狀態進行切換的光切換元件。
The
圖1所示之控制部16,藉由進行光偏向器81之ON/OFF切換,據以高速進行描繪光束LB對基板P之投射/非投射的切換。具體而言,以分歧光學系SL分配之描繪光束LB之1個透過中繼透鏡91相對-Z方向略微傾斜的照射於光偏向器81。當將光偏向器81切換為OFF時,描繪光束LB即以傾斜狀態直進,而被設在通過光偏向器81之後之遮光板92遮光。另一方面,當將光偏向器81切換為ON時,描繪光束LB(1次繞射光)即往-Z方向偏向,通過光偏向器81而照射於設在光偏向器81之Z方向上的偏光分束器PBS。因此,當將光偏向器81切換為ON時,描繪光束LB之點光即投射於基板P,當將光偏向器81切換為OFF時,描繪光束LB之點光不會投射於基板P。
The
又,由於AOM係配置在藉由中繼透鏡91收斂之描繪光束LB之光腰的位置,因此從光偏向器81射出之描繪光束LB(1次繞射光)會發散。為此,於光偏向器81之後設有使發散之描繪光束LB變回平行光束的中繼透鏡93。
In addition, since the AOM is disposed at the position of the waist of the drawing light beam LB converged by the
偏光分束器PBS反射從光偏向器81透過中繼透鏡93照射之描繪光束LB。從偏光分束器PBS射出之描繪光束LB依1/4波長板82、掃描器83(旋轉多面鏡)、彎折鏡84、f-θ透鏡系85、Y倍率修正用光學構件86B及柱面透鏡86之順序前進,於基板P上聚光成掃描點光。
The polarizing beam splitter PBS reflects the drawing light beam LB irradiated from the
另一方面,偏光分束器PBS與設在偏光分束器PBS與掃描
器83之間之1/4波長板82協力動作,投射在基板P或其下之旋轉圓筒DR外周面之描繪光束LB之反射光,依Y倍率修正用光學構件86B、柱面透鏡86、f-θ透鏡系85、彎折鏡84、掃描器83之順序反向前進,因此可使該反射光穿透。也就是說,從光偏向器81照射於偏光分束器PBS之描繪光束LB係S偏光之直線偏光的雷射光,被偏光分束器PBS反射。又,被偏光分束器PBS反射之描繪光束LB,通過1/4波長板82、掃描器83、彎折鏡84、f-θ透鏡系85、Y倍率修正用光學構件86B、柱面透鏡86照射於基板P,聚光於基板P上之描繪光束LB之點光成為圓偏光。來自基板P(或旋轉圓筒DR外周面)之反射光,藉反向前進於描繪光束LB之送光路,並再次通過1/4波長板82,而成為P偏光之直線偏光的雷射光。因此,從基板P(或旋轉圓筒DR)到達偏光分束器PBS之反射光穿透偏光分束器PBS,透過中繼透鏡94照射於校準檢測系31之光電感測器31Cs。
On the other hand, the polarizing beam splitter PBS and the polarizing beam splitter PBS and scanning
The 1/4
如前所述,偏光向分束器PBS係配置在包含掃描器83之掃描光學系與校準檢測系31之間的光分割器。由於校準檢測系31共用多數將描繪光束LB送往基板P之送光光學系的一部分,因此係一簡易且精巧的光學系。
As described above, the polarization beam splitter PBS is an optical splitter disposed between the scanning optical system including the
如圖4及圖7所示,掃描器83具有反射鏡96、旋轉多面鏡(旋轉多面鏡)97、與原點檢測器98。通過1/4波長板82之描繪光束LB(平行光束),透過柱面透鏡95被反射鏡96在XY面內反射,照射於旋轉多面鏡97。旋轉多面鏡97包含延伸於Z方向之旋轉軸97a、與形成在旋轉軸97a周圍之複數個反射面97b而構成。旋轉多面鏡97,藉由以旋轉軸97a為中心往既定旋轉方向旋轉,據以使照射於反射面97b之描繪光束LB(經
光偏向器81強度調變之光束)之反射角在XY面內連續變化,據此,反射之描繪光束LB即因彎折鏡84、f-θ透鏡系85、第2柱面透鏡86(及Y倍率修正用光學構件86B)而聚光成點光,沿基板P上之描繪線LL1(同樣的,沿LL2~LL5)掃描。原點檢測器98係檢測沿基板P之描繪線LL1(同樣的,沿LL2~LL5)掃描之描繪光束LB之原點。原點檢測器98,夾著於各反射面97b反射之描繪光束LB,配置在反射鏡96之相反側。
As shown in FIGS. 4 and 7, the
圖7中,為簡化說明,原點檢測器98雖僅圖示光電檢測器,但實際上,設有朝向描繪光束LB投射之旋轉多面鏡97之反射面97b投射檢測用光束之LED及半導體雷射等的檢測用光源,原點檢測器98對該檢測用光束於反射面97b之反射光透過細狹縫進行光電檢測。
In FIG. 7, for the sake of simplicity, although the
據此,原點檢測器98被設定為相對點光照射於基板P上之描繪線LL1(LL2~LL5)之描繪開始位置的時間點,恆早一定時間,輸出表示原點之脈衝訊號。
Accordingly, the
從掃描器83照射於彎折鏡84之描繪光束LB被彎折鏡84反射向-Z方向,射入f-θ透鏡系85、柱面透鏡86(及Y倍率修正用光學構件86B)。
The drawing beam LB irradiated from the
當旋轉多面鏡97之各反射面97b相對旋轉軸97a之中心線非嚴謹的平行、而是略微傾斜(面傾斜)時,投射在基板P上之點光形成之描繪線(LL1~LL5),會就每一反射面97b在基板P上於X方向偏移。因此,使用圖8,說明藉由2個柱面透鏡95、86之設置,針對旋轉多面鏡97之各反射面97b之面傾斜,降低或消除描繪線LL1~LL5往X方向之偏移情形。
When each
圖8之左側顯示將柱面透鏡95、掃描器83、f-θ透鏡系85、柱面透鏡86之光路展開於XY平面之狀態,圖8之右側則顯示將該光路於XZ平面內展開的狀態。作為基本的光學配置,旋轉多面鏡97之被描繪光束LB照射之反射面97b係配置成位於f-θ透鏡系85之入射光瞳位置(前側焦點位置)。據此,相對旋轉多面鏡97之旋轉角θp/2,射入f-θ透鏡系85之描繪光束LB之入射角成為θp,與該入射角θp成正比決定投射於基板P(被照射面)上之點光之像高位置。又,藉由將反射面97b配置在f-θ透鏡系85之前側焦點位置,投射於基板P之描繪光束LB在描繪線上之任何位置下皆成為遠心狀態(為點光之描繪光束之主光線恆與f-θ透鏡系85之光軸AXf成平行的狀態)。
The left side of FIG. 8 shows the state in which the optical paths of the
如圖8所示,2個柱面透鏡95、86在與旋轉多面鏡97之旋轉軸97a垂直之面(XY面)內,皆做為折射力(power)為零之平行平板玻璃發揮其功能,於旋轉軸97a延伸之Z方向(XZ面內)則作為具有一定之正折射力的凸透鏡發揮其功能。射入第1柱面透鏡95之描繪光束LB(大致平行光束)之剖面形狀雖為數mm程度之圓形,但當將柱面透鏡95在XZ面內之焦點位置透過反射鏡96設定在旋轉多面鏡97之反射面97b上時,於XY面內即具有數mm之光束寬度,於Z方向則由收斂之狹縫狀點光在反射面97b上延伸於旋轉方向聚光。
As shown in FIG. 8, the two
於旋轉多面鏡97之反射面97b反射之描繪光束LB,在XY面內雖為平行光束,但在XZ面內(旋轉軸97a延伸之方向)則係成為發散光束射入f-θ透鏡系85。因此,從f-θ透鏡系85射出後之描繪光束LB,在XZ面內(旋轉軸97a延伸之方向)雖大致為平行光束,但因第2柱面透
鏡86之作用,在XZ面內、亦即在基板P上在與描繪線LL1~LL5延伸之方向正交之基板P之搬送方向,亦係聚光為點光。其結果,於基板P上之各描繪線上,投射圓形之小點光。
The drawing beam LB reflected on the reflecting
藉由柱面透鏡86之設置,如圖8之右側所示,於XZ面內,可將旋轉多面鏡97之反射面97b與基板P(被照射面)設定成光學上像共軛關係。因此,即使旋轉多面鏡97之各反射面97b相對與描繪光束LB之掃描方向正交之非掃描方向(旋轉軸97a延伸之方向)具有傾斜誤差,基板P上之描繪線(LL1~LL5)之位置,亦不會偏移於點光之非掃描方向(基板P之搬送方向)。如上所述,藉由在旋轉多面鏡97之前與後設置柱面透鏡95、86,即能構成對非掃描方向之多面反射面之面傾斜修正光學系。
By the arrangement of the
此處,如圖7所示,複數個描繪單元UW1~UW5之各掃描器83係相對中心面p3成對稱構成。複數個掃描器83,其與描繪單元UW1、UW3、UW5對應之3個掃描器83係配置在旋轉圓筒DR之旋轉方向上游側(圖7之-X方向側),與描繪單元UW2、UW4對應之2個掃描器83則配置在旋轉圓筒DR之旋轉方向下游側(圖7之+X方向側)。而上游側之3個掃描器83與下游側之2個掃描器83係夾著中心面p3對向配置。如此,上游側之3個掃描器83與下游側之2個掃描器83係以旋轉軸I(Z軸)為中心旋轉180°之配置關係。因此,當上游側之3個旋轉多面鏡97例如一邊向左旋轉、一邊於旋轉多面鏡97照射描繪光束LB時,被旋轉多面鏡97反射之描繪光束LB,即從描繪開始位置朝向描繪結束位置往既定掃描方向(例如圖7之+Y方向)掃描。另一方面,當下游側之2個旋轉多面鏡97一邊往左旋轉、一邊於旋轉多面鏡97照射描繪光束LB時,被旋轉多面鏡
97反射之描繪光束LB,即從描繪開始位置朝向描繪結束位置,往與上游側之3個旋轉多面鏡97’相反之掃描方向(例如圖7之-Y方向)掃描。
Here, as shown in FIG. 7, each
此處,於圖4之XZ面內觀察時,從奇數號描繪單元UW1、UW3、UW5到達基板P之描繪光束LB之軸線,係與設置方位線Le1一致之方向。也就是說,設置方位線Le1,於XZ面內,係連結奇數號描繪線LL1、LL3、LL5與旋轉中心線AX2之線。同樣的,於圖4之XZ面內觀察時,從偶數號描繪單元UW2、UW4到達基板P之描繪光束LB之軸線,係與設置方位線Le2一致之方向。也就是說,設置方位線Le2,於XZ面內,係連結偶數號描繪線LL2、LL4與旋轉中心線AX2之線。因此,於基板P成點光投射之描繪光束LB之各行進方向(主光線),皆係設定成朝向旋轉圓筒DR之旋轉中心線AX2。 Here, when viewed in the XZ plane of FIG. 4, the axis of the drawing light beam LB that reaches the substrate P from the odd-numbered drawing units UW1, UW3, and UW5 is the same direction as the installation direction line Le1. That is to say, the azimuth line Le1 is set, and in the XZ plane, the lines connecting the odd-numbered drawing lines LL1, LL3, LL5 and the rotation center line AX2 are connected. Similarly, when viewed in the XZ plane in FIG. 4, the axis of the drawing light beam LB that reaches the substrate P from the even-numbered drawing units UW2 and UW4 is in a direction consistent with the installation azimuth line Le2. That is, the azimuth line Le2 is set, and in the XZ plane, a line connecting the even-numbered drawing lines LL2 and LL4 and the rotation center line AX2 is connected. Therefore, each traveling direction (primary ray) of the drawing light beam LB projected as spot light on the substrate P is set toward the rotation center line AX2 of the rotating cylinder DR.
Y倍率修正用光學構件86B配置在f-θ透鏡系85與基板P之間。Y倍率修正用光學構件86B,可使以各描繪單元UW1~UW5形成之描繪線LL1~LL5,於Y方向,等方的微幅放大或縮小。
The
具體而言,可使用將涵蓋描繪線LL1~LL5之各個之一定厚度之穿透性平行平面板(石英)於描繪線延伸之方向機械性的加以彎曲(bending)以使描繪線之Y方向倍率(掃描長)可變的機構,或使凸透鏡、凹透鏡、凸透鏡之3群透鏡系之一部分於光軸方向移動以使描繪線之Y方向倍率(掃描長)可變的機構等。 Specifically, a transparent parallel plane plate (quartz) of a certain thickness covering each of the drawing lines LL1 to LL5 can be mechanically bent in the direction in which the drawing line extends to make the drawing line Y-direction magnification (Scanning length) variable mechanism, or a mechanism that moves a part of the three-group lens system of the convex lens, the concave lens, and the convex lens in the optical axis direction to change the magnification (scanning length) in the Y direction of the drawing line.
以此方式構成之描繪裝置11,由控制部16控制各部於基板P上描繪既定圖案。也就是說,控制部16,在投射於基板P之描繪光束LB往掃描方向掃描之期間中,根據待描繪於基板P之圖案之CAD資訊,藉由
對光偏向器81進行ON/OFF調變據以使描繪光束LB偏向,以於基板P之光感應層上描繪出圖案。又,控制部16使沿描繪線LL1掃描之描繪光束LB之掃描方向、與基板P藉由旋轉圓筒DR之旋轉往搬送方向之移動同步,據以在曝光區域A7中對應描繪線LL1之部分描繪既定圖案。
In the
其次,一併參照圖3與圖9,說明對準顯微鏡AM1、AM2。對準顯微鏡AM1、AM2檢測預先形成在基板P上之對準標記、或形成在旋轉圓筒DR上之基準標記及基準圖案等。以下,將基板P之對準標記及旋轉圓筒DR之基準標記及基準圖案,僅簡稱為標記。對準顯微鏡AM1、AM2係用於進行基板P與描繪在基板P上之既定圖案之位置對準、或旋轉圓筒DR與描繪裝置11之校準。
Next, the alignment microscopes AM1 and AM2 will be described with reference to FIGS. 3 and 9 together. The alignment microscopes AM1 and AM2 detect alignment marks formed on the substrate P in advance, or fiducial marks and fiducial patterns formed on the rotating cylinder DR. Hereinafter, the alignment mark of the substrate P and the reference mark and the reference pattern of the rotating cylinder DR are simply referred to as marks. The alignment microscopes AM1 and AM2 are used to align the position of the substrate P with a predetermined pattern drawn on the substrate P, or to calibrate the rotating cylinder DR and the
對準顯微鏡AM1、AM2,較以描繪裝置11形成之描繪線LL1~LL5,設置在旋轉圓筒DR之旋轉方向(基板P之搬送方向)上游側。又,對準顯微鏡AM1較對準顯微鏡AM2配置在旋轉圓筒DR之旋轉方向上游側。
The alignment microscopes AM1 and AM2 are provided upstream of the rotation direction of the rotating cylinder DR (the transport direction of the substrate P) of the drawing lines LL1 to LL5 formed by the
對準顯微鏡AM1、AM2,係由將照明光投射於基板P或旋轉圓筒DR並射入於標記產生之光之作為檢測探針的對物透鏡系GA(圖9中僅代表性的顯示對準顯微鏡AM2之對物透鏡系GA4)、以及將透過對物透鏡系GA受光之標記之像(亮視野像、暗視野像、螢光像等)以2維CCD、CMOS等加以拍攝的攝影系GD(圖9中僅代表性的顯示對準顯微鏡AM2之拍攝GD4)等構。又,對準用之照明光係對基板P上之光感應層幾乎不具有感度之波長帶之光、例如波長500~800nm程度光。 Alignment microscopes AM1 and AM2 are object lenses that are used as detection probes by projecting illumination light onto the substrate P or rotating cylinder DR and incident on the light generated by the mark (only a representative display pair in FIG. 9) Quasi-microscope AM2 (objective lens system GA4), and a photographic system that takes images of the marks (bright-field image, dark-field image, fluorescent image, etc.) received through the object-lens system GA (bright field image, dark field image, fluorescent image, etc.) GD (only representatively shown in FIG. 9 shows the shooting GD4 aligned with the microscope AM2) isotonic. In addition, the illumination light for alignment is light in a wavelength band having little sensitivity to the photosensitive layer on the substrate P, for example, light having a wavelength of about 500 to 800 nm.
對準顯微鏡AM1於Y方向(基板P之寬度方向)排成一行 設有複數個(例如3個)。同樣的,對準顯微鏡AM2於Y方向(基板P之寬度方向)排成一行設有複數個(例如3個)。也就是說,對準顯微鏡AM1、AM2合計設有6個。 Align the microscope AM1 in a line in the Y direction (the width direction of the substrate P) There are plural (for example 3). Similarly, a plurality of alignment microscopes AM2 (for example, three) are arranged in a row in the Y direction (the width direction of the substrate P). In other words, there are six alignment microscopes AM1 and AM2 in total.
圖3中,為易於理解,於6個對準顯微鏡AM1、AM2之各對物透鏡系GA中,顯示3個對準顯微鏡AM1之各對物透鏡系GA1~GA3之配置。3個對準顯微鏡AM1之各對物透鏡系GA1~GA3對基板P(或旋轉圓筒DR之外周面)上之觀察區域(檢測位置)Vw1~Vw3,如圖3所示,係在與旋轉中心線AX2平行之Y方向,以既定間隔配置。如圖9所示,通過各觀察區域Vw1~Vw3中心之各對物透鏡系GA1~GA3之光軸La1~La3,皆與XZ面平行。同樣的,3個對準顯微鏡AM2之各對物透鏡系GA對基板P(或旋轉圓筒DR之外周面)上之觀察區域Vw4~Vw6,如圖3所示,在與旋轉中心線AX2平行之Y方向,以既定間隔配置。如圖9所示,通過各觀察區域Vw4~Vw6中心之各對物透鏡系GA之光軸La4~La6,亦皆與XZ面平行。而觀察區域Vw1~Vw3與觀察區域Vw4~Vw6,係於旋轉圓筒DR之旋轉方向以既定間隔配置。 In FIG. 3, for easy understanding, the arrangement of the three pairs of objective lens systems GA1 to GA3 of the alignment microscope AM1 in the six alignment microscopes AM1 and AM2 is shown. The three pairs of objective lenses of the alignment microscope AM1 are the observation areas (detection positions) Vw1 to Vw3 on the substrate P (or the outer peripheral surface of the rotating cylinder DR) of GA1 to GA3, as shown in FIG. The center line AX2 is parallel to the Y direction and arranged at predetermined intervals. As shown in FIG. 9, the optical axes La1 to La3 of each pair of object lenses GA1 to GA3 passing through the centers of the observation areas Vw1 to Vw3 are all parallel to the XZ plane. Similarly, the observation lenses Vw4 to Vw6 on the substrate P (or outer peripheral surface of the rotating cylinder DR) of the three pairs of objective lenses of the alignment microscope AM2 are parallel to the rotation center line AX2 as shown in FIG. 3 The Y direction is arranged at predetermined intervals. As shown in FIG. 9, the optical axes La4 to La6 of each pair of objective lens systems GA passing through the centers of the observation areas Vw4 to Vw6 are also parallel to the XZ plane. The observation areas Vw1 to Vw3 and the observation areas Vw4 to Vw6 are arranged at predetermined intervals in the rotation direction of the rotating cylinder DR.
此對準顯微鏡AM1、AM2對標記之觀察區域Vw1~Vw6,係於基板P及旋轉圓筒DR上,例如設定在500~200μm對角程度之範圍。此處,對準顯微鏡AM1之光軸La1~La3、亦即對物透鏡系GA之光軸La1~La3,係設定成與從旋轉中心線AX2延伸於旋轉圓筒DR之徑方向之設置方位線Le3相同方向。如此,設置方位線Le3,於圖9之XZ面內觀察時,係連結對準顯微鏡AM1之觀察區域Vw1~Vw3與旋轉中心線AX2之線。同樣的,對準顯微鏡AM2之光軸La4~La6、亦即對物透鏡系GA之光軸 La4~La6,係設定成與從旋轉中心線AX2延伸於旋轉圓筒DR之徑方向之設置方位線Le4相同方向。如此,設置方位線Le4,於圖9之XZ面內觀察時,係連結對準顯微鏡AM2之觀察區域Vw4~Vw6與旋轉中心線AX2之線。此時,對準顯微鏡AM1由於與對準顯微鏡AM2相較係配置在旋轉圓筒DR之旋轉方向上游側,因此中心面p3與設置方位線Le3所成之角度,較中心面p3與設置方位線Le4所成之角度大。 The observation areas Vw1 to Vw6 of the alignment microscope AM1 and AM2 pair marks are attached to the substrate P and the rotating cylinder DR, for example, set in a range of about 500 to 200 μm diagonally. Here, the optical axes La1 to La3 of the alignment microscope AM1, that is, the optical axes La1 to La3 of the objective lens system GA are set to the azimuth line extending from the rotation center line AX2 to the radial direction of the rotating cylinder DR Le3 is in the same direction. In this way, when the azimuth line Le3 is set and observed in the XZ plane in FIG. 9, it is a line connecting the observation area Vw1 to Vw3 aligned with the microscope AM1 and the rotation center line AX2. Similarly, aim at the optical axis La4~La6 of the microscope AM2, that is, the optical axis of the objective lens system GA La4~La6 are set in the same direction as the installation azimuth line Le4 extending from the rotation center line AX2 to the radial direction of the rotating cylinder DR. In this way, when the azimuth line Le4 is set and observed in the XZ plane of FIG. 9, the line connecting the observation area Vw4 to Vw6 aligned with the microscope AM2 and the rotation center line AX2 is connected. At this time, since the alignment microscope AM1 is arranged upstream of the rotation direction of the rotating cylinder DR compared to the alignment microscope AM2, the angle formed by the center plane p3 and the azimuth line Le3 is smaller than the center plane p3 and the azimuth line The angle formed by Le4 is large.
於基板P上,如圖3所示,以5個描繪線LL1~LL5之各個描繪之曝光區域A7,於X方向相距既定間隔配置。於基板P上之曝光區域A7周圍,有用以進行位置對準之複數個對準標記Ks1~Ks3(以下,簡稱標記),例如形成為十字狀。 On the substrate P, as shown in FIG. 3, the exposure areas A7 drawn with each of the five drawing lines LL1 to LL5 are arranged at a predetermined interval in the X direction. Around the exposure area A7 on the substrate P, a plurality of alignment marks Ks1 to Ks3 (hereinafter, referred to as marks) for positioning are formed, for example, in a cross shape.
圖3中,標記Ks1係在曝光區域A7之-Y側周邊區域於X方向以一定間隔設置,標記Ks3在曝光區域A7之+Y側周邊區域於X方向以一定間隔設置。進一步的,標記Ks2,在X方向相鄰之2個曝光區域A7間之空白區域中,設在Y方向之中央。 In FIG. 3, the mark Ks1 is provided at a certain interval in the X direction on the -Y side peripheral area of the exposure area A7, and the mark Ks3 is provided at a certain interval in the X direction in the +Y side peripheral area of the exposure area A7. Further, the mark Ks2 is provided in the center of the Y direction in the blank area between the two exposure areas A7 adjacent in the X direction.
標記Ks1,係以在對準顯微鏡AM1之對物透鏡系GA1之觀察區域Vw1內、及對準顯微鏡AM2之對物透鏡系GA之觀察區域Vw4內,於基板P之搬送期間能被依序捕捉之方式形成。又,標記Ks3,係以在對準顯微鏡AM1之對物透鏡系GA3之觀察區域Vw3內、及對準顯微鏡AM2之對物透鏡系GA之觀察區域Vw6內,於基板P之搬送期間能被依序捕捉之方式形成。進一步的,標記Ks2,係以分別在對準顯微鏡AM1之對物透鏡系GA2之觀察區域Vw2內、及對準顯微鏡AM2之對物透鏡系GA之觀察區域Vw5內,於基板P之搬送期間被依序捕捉之方式形成。 The mark Ks1 is in the observation area Vw1 of the objective lens system GA1 aligned with the microscope AM1 and the observation area Vw4 of the objective lens system GA aligned with the microscope AM2, and can be captured in sequence during the transfer of the substrate P Way to form. In addition, the mark Ks3 is within the observation area Vw3 of the objective lens system GA3 of the alignment microscope AM1 and within the observation area Vw6 of the objective lens system GA of the alignment microscope AM2, and can be Formed in order to capture. Further, the mark Ks2 is respectively in the observation area Vw2 of the objective lens system GA2 of the alignment microscope AM1 and the observation area Vw5 of the objective lens system GA of the alignment microscope AM2 during the conveyance period of the substrate P Formed in order to capture.
因此,3個對準顯微鏡AM1、AM2中之旋轉圓筒DR之Y方向兩側之對準顯微鏡AM1、AM2,可隨時觀察或檢測形成在基板P之寬度方向兩側之標記Ks1、Ks3。此外,3個對準顯微鏡AM1、AM2中之旋轉圓筒DR之Y方向中央之對準顯微鏡AM1、AM2,可隨時觀察或檢測形成在形成在描繪於基板P上之曝光區域A7彼此間之空白部等之標記Ks2。 Therefore, the alignment microscopes AM1 and AM2 on the two sides in the Y direction of the rotating cylinder DR in the alignment microscopes AM1 and AM2 can observe or detect the marks Ks1 and Ks3 formed on both sides in the width direction of the substrate P at any time. In addition, the three alignment microscopes AM1 and AM2 in the Y direction center of the rotating cylinder DR in the alignment microscopes AM1 and AM2 can observe or detect the gaps formed between the exposure areas A7 formed on the substrate P at any time.部等的Mark Ks2.
此處,曝光裝置EX係所謂的多光束型描繪裝置,因此為了將以複數個描繪單元UW1~UW5之各描繪線LL1~LL5於基板P上描繪之複數個圖案彼此於Y方向適當的加以接合,用以將複數個描繪單元UW1~UW5之接合精度抑制在容許範圍內之校準是必須的。此外,對準顯微鏡AM1、AM2對複數個描繪單元UW1~UW5之各描繪線LL1~LL5之觀察區域Vw1~Vw6之相對位置關係,須以基準線管理加以精密的求出。為進行此基準線管理,亦須校準。 Here, the exposure device EX is a so-called multi-beam type drawing device. Therefore, in order to appropriately join the plurality of patterns drawn on the substrate P by the drawing lines LL1 to LL5 of the drawing units UW1 to UW5 in the Y direction, It is necessary to calibrate the joint accuracy of the multiple drawing units UW1~UW5 within the allowable range. In addition, the relative positions of the observation areas Vw1 to Vw6 of the drawing lines LL1 to LL5 of the drawing lines UW1 to UW5 of the plurality of drawing units UW1 to UW5 must be accurately determined by the reference line management. For this baseline management, calibration is also required.
於用以確認複數個描繪單元UW1~UW5之接合精度的校準、用以進行對準顯微鏡AM1、AM2之基準線管理之校準中,須於支承基板P之旋轉圓筒DR外周面之至少一部設置基準標記或基準圖案。因此,如圖10所示,於曝光裝置EX,係使用在外周面設有基準標記或基準圖案之旋轉圓筒DR。 At least a part of the outer peripheral surface of the rotating cylinder DR of the supporting substrate P must be used in the calibration for confirming the joint accuracy of the plurality of drawing units UW1 to UW5, and the calibration for managing the reference lines of the alignment microscopes AM1 and AM2. Set fiducial marks or fiducial patterns. Therefore, as shown in FIG. 10, in the exposure device EX, a rotating cylinder DR provided with a reference mark or a reference pattern on the outer peripheral surface is used.
旋轉圓筒DR於其外周面之兩端側,如圖3、圖9所示同樣形成有構成後述旋轉位置檢測機構14之一部分之標尺部GPa、GPb。又,旋轉圓筒DR,於標尺部GPa、GPb之內側,於全周刻設有由凹狀槽、或凸狀邊緣構成之寬度窄的限制帶CLa、CLb。基板P之Y方向寬度被設定為校該2條限制帶CLa、CLb之Y方向間隔小,基板P係在旋轉圓筒DR之 外周面中、緊貼以限制帶CLa、CLb所夾之內側區域而被支承。 As shown in FIGS. 3 and 9, scale parts GPa and GPb constituting a part of the rotation position detection mechanism 14 described later are formed on both ends of the outer periphery of the rotary cylinder DR. In addition, the rotating cylinder DR is provided on the inner side of the scale portions GPa and GPb with narrow-width restricting bands CLa and CLb composed of concave grooves or convex edges. The width of the substrate P in the Y direction is set so that the distance between the two restriction bands CLa and CLb in the Y direction is small, and the substrate P is located between the rotating cylinder DR In the outer peripheral surface, the inner region sandwiched by the restricting tapes CLa and CLb is closely supported and supported.
旋轉圓筒DR,在以限制帶CLa、CLb所夾之外周面,設有將相對旋轉中心線AX2以+45度傾斜之複數個線圖案RL1(線圖案)、與相對旋轉中心線AX2以-45度傾斜之複數個線圖案RL2(線圖案)以一定間距(週期)Pf1、Pf2重複刻設之網格狀的基準圖案(亦可利用為基準標記)RMP。又,線圖案RL1及線圖案RL2之寬度為LW。 The rotating cylinder DR is provided with a plurality of line patterns RL1 (line pattern) inclined at a relative rotation center line AX2 at +45 degrees on the outer peripheral surface sandwiched by the restriction bands CLa and CLb, and the relative rotation center line AX2 to- A plurality of line patterns RL2 (line patterns) inclined at 45 degrees are grid-shaped reference patterns (which can also be used as reference marks) RMP repeatedly engraved at regular intervals (periods) Pf1 and Pf2. In addition, the width of the line pattern RL1 and the line pattern RL2 is LW.
基準圖案RMP,為避免在基板P與旋轉圓筒DR外周面之接觸部分產生摩擦力或基板P之張力等之變化,係全面均一之斜圖案(斜格子狀圖案)。又,線圖案RL1、RL2並不一定必須是傾斜45度,亦可以是將線圖案RL1作成與Y軸平行、線圖案RL2作成與X軸平行之縱橫的網格狀圖案。此外,不一定須使線圖案RL1、RL2以90度交叉,亦可使相鄰之2條線圖案RL1與相鄰之2條線圖案RL2所圍成之矩形區域,以成為正方形(或長方形)以外之菱形的角度使線圖案RL1、RL2交叉。 The reference pattern RMP is a diagonal pattern (inclined grid pattern) that is uniform throughout the body in order to avoid changes in frictional force or tension in the substrate P at the contact portion between the substrate P and the outer peripheral surface of the rotating cylinder DR. In addition, the line patterns RL1 and RL2 do not necessarily have to be inclined at 45 degrees, and the line pattern RL1 may be formed in a horizontal and vertical grid pattern parallel to the Y axis and the line pattern RL2 may be formed parallel to the X axis. In addition, it is not necessary for the line patterns RL1 and RL2 to cross at 90 degrees, and the rectangular area enclosed by the two adjacent line patterns RL1 and the two adjacent line patterns RL2 can also be a square (or rectangle) The angle of the other rhombus makes the line patterns RL1 and RL2 intersect.
其次,參照圖3、圖4及圖9說明旋轉位置檢測機構14。如圖9所示,旋轉位置檢測機構14係以光學方式檢測旋轉圓筒DR之旋轉位置之物,可適用例如使用旋轉編碼器等之編碼器系統。旋轉位置檢測機構14係具有設在旋轉圓筒DR之兩端部之標尺部GPa、GPb、以及與標尺部GPa、GPb之各個對向之複數個編碼器讀頭EN1、EN2、EN3、EN4的移動測量裝置。圖4及圖9中,雖僅顯示與標尺部GPa對向之4個編碼器讀頭EN1、EN2、EN3、EN4,但在標尺部GPb亦同樣的有對向配置之編碼器讀頭EN1、EN2、EN3、EN4。旋轉位置檢測機構14,可檢測旋轉圓筒DR兩端部之偏移(於旋轉中心線AX2延伸之Y方向的微幅變位)的變位計YN1、 YN2、YN3、YN4。 Next, the rotation position detection mechanism 14 will be described with reference to FIGS. 3, 4 and 9. As shown in FIG. 9, the rotation position detection mechanism 14 optically detects the rotation position of the rotation cylinder DR, and can be applied to an encoder system using, for example, a rotary encoder. The rotation position detection mechanism 14 is provided with a scale part GPa, GPb provided at both ends of the rotary cylinder DR, and a plurality of encoder read heads EN1, EN2, EN3, EN4 facing each of the scale parts GPa, GPb Mobile measuring device. In FIGS. 4 and 9, although only the four encoder read heads EN1, EN2, EN3, and EN4 facing the scale part GPa are shown, the encoder read heads EN1, which are oppositely arranged, are also in the scale part GPb. EN2, EN3, EN4. The rotation position detecting mechanism 14 can detect the displacement of the two ends of the rotating cylinder DR (the slight displacement in the Y direction extending from the rotation center line AX2). YN2, YN3, YN4.
標尺部GPa、GPb之刻度,於旋轉圓筒DR之外周面周方向全體分別形成為環狀。標尺部GPa、GPb係於旋轉圓筒DR之外周面周方向以一定間距(例如20μm)刻設凹狀或凸狀之格子線的繞射光柵,構成為遞增(incremental)型標尺。因此,標尺部GPa、GPb繞著旋轉中心線AX2與旋轉圓筒DR一體旋轉。 The scales of the scale parts GPa and GPb are respectively formed in a ring shape on the entire outer circumferential surface of the rotating cylinder DR in the circumferential direction. The scale parts GPa and GPb are diffraction gratings in which concave or convex grid lines are engraved at a constant pitch (for example, 20 μm) on the outer circumferential surface of the rotating cylinder DR, and constitute an incremental scale. Therefore, the scale parts GPa and GPb rotate integrally with the rotating cylinder DR around the rotation center line AX2.
基板P,係在避開旋轉圓筒DR兩端之標尺部GPa、GPb之內側、也就是說,捲繞在限制帶CLa、CLb之內側。若須有嚴格之配置關係時,係設定標尺部GPa、GPb之外周面、與捲繞在旋轉圓筒DR之基板P之部分之外周面成同一面(距中心線AX2同一半徑)。為達成此,將標尺部GPa、GPb之外周面,相對旋轉圓筒DR之基板捲繞用外周面,作成於徑方向高基板P之厚度分即可。因此,可將形成於旋轉圓筒DR之標尺部GPa、GPb之外周面,設定為與基板P之外周面大致同一半徑。從而,編碼器讀頭EN1、EN2、EN3、EN4,可在與捲繞於旋轉圓筒DR之基板P上之描繪面相同徑方向位置檢測標尺部GPa、GPb,縮小測量位置與處理位置因旋轉系之徑方向相異而產生之阿貝誤差。 The substrate P is wound inside the scale portions GPa and GPb avoiding both ends of the rotating cylinder DR, that is, inside the restriction tapes CLa and CLb. If a strict arrangement relationship is required, the outer peripheral surface of the scale parts GPa and GPb is set to be the same surface (the same radius from the center line AX2) as the outer peripheral surface of the portion of the substrate P wound around the rotating cylinder DR. In order to achieve this, the outer peripheral surfaces of the scale portions GPa and GPb, and the outer peripheral surface of the substrate winding relative to the rotating cylinder DR, may be made higher in the radial direction than the thickness of the substrate P. Therefore, the outer peripheral surfaces of the scale portions GPa and GPb formed on the rotating cylinder DR can be set to substantially the same radius as the outer peripheral surface of the substrate P. Therefore, the encoder heads EN1, EN2, EN3, EN4 can detect the scale parts GPa, GPb at the same radial direction position as the drawing surface wound on the substrate P of the rotating cylinder DR, reducing the measurement position and processing position due to rotation Abbe error caused by different radial directions.
編碼器讀頭EN1、EN2、EN3、EN4,從旋轉中心線AX2觀察係分別配置在標尺部GPa、GPb之周圍,於旋轉圓筒DR之周方向之不同位置。此編碼器讀頭EN1、EN2、EN3、EN4連接於控制部16。編碼器讀頭EN1、EN2、EN3、EN4朝標尺部GPa、GPb投射測量用光束,對其反射光束(繞射光)進行光電檢測,據以將對應標尺部GPa、GPb之周方向位置變化之檢測訊號(例如,具有90度相位差之2相訊號)輸出至控制部
16。控制部16,藉由對該檢測訊號以未圖示之計數回路加以內挿進行數位處理,即能以次微米之分解能力測量旋轉圓筒DR之角度變化、亦即,測量其外周面之周方向位置變化。控制部16,亦可從旋轉圓筒DR之角度變化測量基板P之搬送速度。
The encoder read heads EN1, EN2, EN3, and EN4 are arranged around the scale parts GPa and GPb as viewed from the rotation center line AX2, at different positions in the circumferential direction of the rotating cylinder DR. The encoder heads EN1, EN2, EN3, and EN4 are connected to the
又,如圖4及圖9所示,編碼器讀頭EN1係配置在設置方位線Le1上。設置方位線Le1,係於XZ面內,連結編碼器讀頭EN1之測量用光束對標尺部GPa(GPb)上之投射區域(讀取位置)與旋轉中心線AX2的線。又,如上所述,設置方位線Le1,係於XZ面內,連結描繪線LL1、LL3、LL5與旋轉中心線AX2之線。由以上可知,連結編碼器讀頭EN1之讀取位置與旋轉中心線AX2之線、與連結描繪線LL1、LL3、LL5與旋轉中心線AX2之線係相同方位線。 In addition, as shown in FIGS. 4 and 9, the encoder head EN1 is arranged on the set azimuth line Le1. The azimuth line Le1 is set in the XZ plane, and connects the line of the projection area (reading position) on the scale part GPa (GPb) of the measuring beam EN1 of the encoder read head EN1 and the rotation center line AX2. In addition, as described above, the azimuth line Le1 is provided in the XZ plane, and connects the drawing lines LL1, LL3, LL5 and the rotation center line AX2. As can be seen from the above, the line connecting the reading position of the encoder head EN1 and the rotation center line AX2 and the line connecting the drawing lines LL1, LL3, LL5 and the rotation center line AX2 are the same azimuth lines.
同樣的,如圖4及圖9所示,編碼器讀頭EN2係配置在設置方位線Le2上。設置方位線Le2,係於XZ面內,連結編碼器讀頭EN2之測量用光束對標尺部GPa(GPb)上之投射區域(讀取位置)與旋轉中心線AX2之線。又,如上所述,設置方位線Le2,係於XZ面內,連結描繪線LL2、LL4與旋轉中心線AX2之線。由以上可知,連結編碼器讀頭EN2之讀取位置與旋轉中心線AX2之線、與連結描繪線LL2、LL4與旋轉中心線AX2之線係相同方位線。 Similarly, as shown in FIGS. 4 and 9, the encoder read head EN2 is arranged on the set azimuth line Le2. The azimuth line Le2 is set in the XZ plane, and connects the line of the projection area (reading position) on the scale part GPa (GPb) of the measuring beam EN2 of the encoder read head EN2 and the rotation center line AX2. In addition, as described above, the azimuth line Le2 is provided in the XZ plane, and connects the drawing lines LL2, LL4 and the rotation center line AX2. As can be seen from the above, the line connecting the reading position of the encoder read head EN2 and the rotation center line AX2, and the line connecting the drawing lines LL2, LL4 and the rotation center line AX2 are the same azimuth lines.
又,如圖4及圖9所示,編碼器讀頭EN3係配置在設置方位線Le3上。設置方位線Le3,係於XZ面內,連結編碼器讀頭EN3之測量用光束對標尺部GPa(GPb)上之投射區域(讀取位置)與旋轉中心線AX2之線。又,如上所述,設置方位線Le3,係於XZ面內,連結對準顯微 鏡AM1對基板P之觀察區域Vw1~Vw3與旋轉中心線AX2之線。由以上可知,連結編碼器讀頭EN3之讀取位置與旋轉中心線AX2之線、與連結對準顯微鏡AM1之觀察區域Vw1~Vw3與旋轉中心線AX2之線,在XZ面內觀察時係相同方位線。 In addition, as shown in FIGS. 4 and 9, the encoder read head EN3 is arranged on the set azimuth line Le3. The azimuth line Le3 is set in the XZ plane, and connects the measurement light beam pair of the encoder reading head EN3 with the projection area (reading position) on the scale part GPa (GPb) and the rotation center line AX2. In addition, as described above, the azimuth line Le3 is set, tied in the XZ plane, and connected to the alignment microscope. The line between the observation area Vw1 to Vw3 of the substrate AM1 and the rotation center line AX2 of the mirror AM1. It can be seen from the above that the line connecting the reading position of the encoder read head EN3 and the rotation center line AX2 and the line connecting the observation area Vw1 to Vw3 of the alignment microscope AM1 and the rotation center line AX2 are the same when viewed in the XZ plane Bearing line.
同樣的,如圖4及圖9所示,編碼器讀頭EN4係配置在設置方位線Le4上。設置方位線Le4,係於XZ面內,連結編碼器讀頭EN4之測量用光束對標尺部GPa(GPb)上之投射區域(讀取位置)與旋轉中心線AX2之線。又,如上所述,設置方位線Le4,係於XZ面內,連結對準顯微鏡AM2對基板P之觀察區域Vw4~Vw6與旋轉中心線AX2之線。由以上可知,連結編碼器讀頭EN4之讀取位置與旋轉中心線AX2之線、與連結對準顯微鏡AM2之觀察區域Vw4~Vw6與旋轉中心線AX2之線,於XZ面內觀察時係相同方位線。 Similarly, as shown in FIGS. 4 and 9, the encoder read head EN4 is arranged on the set azimuth line Le4. The azimuth line Le4 is set in the XZ plane, and connects the line of the projection area (reading position) on the scale part GPa (GPb) of the measuring beam EN4 of the encoder read head EN4 and the rotation center line AX2. In addition, as described above, the azimuth line Le4 is provided in the XZ plane, and connects the line aligning the observation area Vw4 to Vw6 of the microscope AM2 to the substrate P and the rotation center line AX2. It can be seen from the above that the line connecting the reading position of the encoder read head EN4 and the rotation center line AX2 and the line connecting the observation area Vw4 to Vw6 of the alignment microscope AM2 and the rotation center line AX2 are the same when viewed in the XZ plane Bearing line.
將編碼器讀頭EN1、EN2、EN3、EN4之設置方位(以旋轉中心線AX2為之中心之在XZ面內的角度方向)以設置方位線Le1、Le2、Le3、Le4表示之情形時,如圖4所示,係將複數個描繪單元UW1~UW5及編碼器讀頭EN1、EN2配置成設置方位線Le1、Le2相對中心面p3成角度±θ°。設置方位線Le1與設置方位線Le2,係設置成編碼器讀頭EN1與編碼器讀頭EN2在標尺部GPa(GPb)之刻度周圍,空間上非干涉的狀態。 When the encoder heads EN1, EN2, EN3, and EN4 are set to the orientation (the angular direction in the XZ plane centered on the rotation center line AX2) to the situation indicated by setting the orientation lines Le1, Le2, Le3, and Le4, such as As shown in FIG. 4, a plurality of drawing units UW1 to UW5 and encoder read heads EN1 and EN2 are arranged to set the azimuth lines Le1 and Le2 at an angle ±θ° with respect to the central plane p3. The azimuth line Le1 and the azimuth line Le2 are set so that the encoder read head EN1 and the encoder read head EN2 are in a state of non-interference in space around the scale of the scale part GPa (GPb).
變位計YN1、YN2、YN3、YN4,從旋轉中心線AX2觀察時分別配置在標尺部GPa或GPb之周圍,於旋轉圓筒DR周方向之不同位置。此變位計YN1、YN2、YN3、YN4連接於控制部16。
The displacement gauges YN1, YN2, YN3, and YN4 are respectively arranged around the scale part GPa or GPb when viewed from the rotation center line AX2, at different positions in the circumferential direction of the rotating cylinder DR. The displacement meters YN1, YN2, YN3, and YN4 are connected to the
變位計YN1、YN2、YN3、YN4,可藉由在與捲繞在旋轉圓
筒DR之基板P上之描繪面盡可能於徑方向接近之位置進行變位檢測,縮小阿貝誤差。變位計YN1、YN2、YN3、YN4,藉由朝旋轉圓筒DR兩端部之一方投射測量用光束,並對其反射光束(或繞射光)進行光電檢測,據以將對應旋轉圓筒DR兩端部之Y方向(基板P之寬度方向)之位置變化的檢測訊號輸出至控制部16。控制部16,藉由對該檢測訊號以未圖示之測量電路(計數電路或內挿電路等)進行數位處理,能以次微米之分解能力測量旋轉圓筒DR(及基板P)之Y方向之變位變化。控制部16,亦可從旋轉圓筒DR兩端部之一方之變化,測量旋轉圓筒DR之偏移旋轉。
Displacement gauges YN1, YN2, YN3, YN4 can be wound by
The drawing surface on the substrate P of the barrel DR performs displacement detection as close to the radial direction as possible to reduce the Abbe error. The displacement meters YN1, YN2, YN3, and YN4 project the measuring beam toward one of the two ends of the rotating cylinder DR, and photoelectrically detect the reflected beam (or diffracted light), according to which the corresponding rotating cylinder DR The detection signal of the position change in the Y direction (the width direction of the substrate P) of both ends is output to the
變位計YN1、YN2、YN3、YN4,雖然4個中只要有1個即夠,但為了測量旋轉圓筒DR之偏移旋轉等,只要4個中有3個以上的話,即能掌握旋轉圓筒DR兩端部之一方之面移動(動態傾斜變化等)。又,若可由控制部16以對準顯微鏡AM1、AM2固定的測量基板P上之標記或圖案(或旋轉圓筒DR上之標記等)的話,亦可省略變位計YN1、YN2、YN3、YN4。
The displacement meters YN1, YN2, YN3, YN4, although only one of the four is sufficient, but in order to measure the offset rotation of the rotating cylinder DR, etc., as long as there are more than three of the four, you can grasp the rotation circle One of the two ends of the barrel DR moves (dynamic tilt change, etc.). Furthermore, if the mark or pattern on the measurement substrate P (or the mark on the rotating cylinder DR, etc.) fixed by the
此處,控制部16,係以編碼器讀頭EN1、EN2檢測標尺部(旋轉圓筒DR)GPa、GPb之旋轉角度位置,根據所檢測之旋轉角度位置,進行使用奇數號及偶數號描繪單元UW1~UW5之描繪。也就是說,控制部16,在投射於基板P之描繪光束LB往掃描方向掃描之期間中,根據待描繪於基板P之圖案之CAD資訊進行光偏向器81之ON/OFF調變,但亦可將使用光偏向器81之ON/OFF調變之時序,根據所檢測之旋轉角度位置來進行,即能於基板P之光感應層上以良好精度描繪圖案。
Here, the
又,控制部16,可藉由儲存以對準顯微鏡AM1、AM2檢測
基板P上之對準標記Ks1~Ks3時,以編碼器讀頭EN3、EN4檢測之標尺部GPa、GPb(旋轉圓筒DR)之旋轉角度位置,能求出基板P上之對準標記Ks1~Ks3之位置與旋轉圓筒DR之旋轉角度位置的對應關係。同樣的,控制部16,藉由儲存以對準顯微鏡AM1、AM2檢測旋轉圓筒DR上之基準圖案RMP時,以編碼器讀頭EN3、EN4檢測之標尺部GPa、GPb(旋轉圓筒DR)之旋轉角度位置,能求出旋轉圓筒DR上之基準圖案RMP之位置與旋轉圓筒DR之旋轉角度位置的對應關係。如以上所述,對準顯微鏡AM1、AM2,可精密的測量於觀察區域Vw1~Vw6內,對標記進行取樣(sampling)之瞬間之旋轉圓筒DR之旋轉角度位置(或周方向位置)。於曝光裝置EX,即根據此測量結果,進行基板P與描繪於基板P上之既定圖案的對位(對準)、或旋轉圓筒DR與描繪裝置11之校準。
In addition, the
又,實際之取樣,係在以編碼器讀頭EN3、EN4測量之旋轉圓筒DR之旋轉角度位置,成為與預先大略獲知之基板P上之標記或旋轉圓筒DR上之基準圖案RMP之位置對應的角度位置時,即將從對準顯微鏡AM1、AM2之各攝影系GD輸出之影像資訊高速的寫入影像記憶體等據以進行。亦即,係以編碼器讀頭EN3、EN4測量之旋轉圓筒DR之旋轉角度位置為觸發(trigger),對從各攝影系GD輸出之影像資訊進行取樣。又,與此不同的,亦有回應一定頻率之時脈訊號之各脈衝,對以編碼器讀頭EN3、EN4測量之旋轉圓筒DR之旋轉角度位置(計數測量值)與從各攝影系GD輸出之影像資訊同時進行取樣的方法。 In addition, the actual sampling is at the rotation angle position of the rotary cylinder DR measured with the encoder heads EN3 and EN4, and becomes the position roughly the mark on the substrate P or the reference pattern RMP on the rotary cylinder DR that is roughly known in advance. At the corresponding angular position, the image information output from each of the photographing systems GD of the alignment microscopes AM1 and AM2 is written into the image memory at high speed. That is, the image angle information output from each photography system GD is sampled using the rotation angle position of the rotating cylinder DR measured by the encoder read heads EN3 and EN4 as a trigger. In addition, unlike this, there are also pulses in response to clock signals of a certain frequency. The rotational angle position (counted measured value) of the rotating cylinder DR measured with the encoder read heads EN3 and EN4 and the GD from each photography department The method of sampling the output image information at the same time.
又,基板P上之標記及旋轉圓筒DR上之基準圖案RMP,由於係相對觀察區域Vw1~Vw6移動於一方向,於從各攝影系GD輸出之 影像資訊之取樣時,作為CCD或CMOS之攝影元件以使用快門速度快者較佳。隨此,亦須提升照明觀察區域Vw1~Vw6之照明光之輝度,作為對準顯微鏡AM1、AM2之照明光源,亦可考慮使用閃光燈或高輝度LED等。 In addition, the mark on the substrate P and the reference pattern RMP on the rotating cylinder DR are moved in one direction relative to the observation areas Vw1 to Vw6, and are output from each imaging system GD When sampling image information, it is better to use a CCD or CMOS photography element with a faster shutter speed. Following this, the brightness of the illumination light in the illumination observation areas Vw1~Vw6 must also be improved. As the illumination light source for the microscopes AM1 and AM2, flash lamps or high-brightness LEDs can also be considered.
圖11係顯示在基板上之描繪線與描繪圖案之位置關係的說明圖。描繪單元UW1~UW5,藉由沿著描繪線LL1~LL5掃描描繪光束LB之點光,據以描繪圖案PT1~PT5。描繪線LL1~LL5之描繪開始位置OC1~OC5為圖案PT1~PT5之描繪始端PTa。描繪線LL1~LL5之描繪結束位置EC1~EC5為圖案PT1~PT5之描繪終端PTb。 FIG. 11 is an explanatory diagram showing the positional relationship between drawing lines and drawing patterns on a substrate. The drawing units UW1 to UW5 scan the spot light of the drawing light beam LB along the drawing lines LL1 to LL5, thereby drawing the patterns PT1 to PT5. The drawing start positions OC1 to OC5 of the drawing lines LL1 to LL5 are the drawing start ends PTa of the patterns PT1 to PT5. The drawing end positions EC1 to EC5 of the drawing lines LL1 to LL5 are drawing terminals PTb of the patterns PT1 to PT5.
圖案PT1之描繪始端PTa、描繪終端PTb中之描繪終端PTb與圖案PT2之描繪終端PTb接合。同樣的,圖案PT2之描繪始端PTa與圖案PT3之描繪始端PTa接合、圖案PT3之描繪終端PTb與圖案PT4之描繪終端PTb接合、圖案PT4之描繪始端PTa與圖案PT5之描繪始端PTa接合。如此,描繪於基板P上之圖案PT1~PT5彼此即隨著基板P往長條方向之移動而於基板P之寬度方向接合,於大的曝光區域A7全體描繪出元件圖案。 The drawing start point PTa of the pattern PT1, the drawing terminal PTb of the drawing terminal PTb, and the drawing terminal PTb of the pattern PT2 are joined. Similarly, the drawing start point PTa of the pattern PT2 is joined to the drawing start point PTa of the pattern PT3, the drawing end PTb of the pattern PT3 is joined to the drawing end PTb of the pattern PT4, and the drawing start PTA of the pattern PT4 is joined to the drawing start PTA of the pattern PT5. In this way, the patterns PT1 to PT5 drawn on the substrate P are bonded to each other in the width direction of the substrate P as the substrate P moves in the longitudinal direction, and an element pattern is drawn on the entire exposure area A7.
圖12係顯示描繪光束之點光與描繪線之關係的說明圖。描繪單元UW1~UW5中,代表性的說明描繪單元UW1及UW2之描繪線LL1及LL2。由於描繪單元UW3~UW5之描繪線LL3~LL5亦相同,因此省略其說明。旋藉由轉多面鏡97之等速旋轉,描繪光束LB之光束點光SP即沿著基板P上之描繪線LL1及LL2,掃描從描繪開始位置OC1、OC2至描繪結束位置EC1、EC2之描繪線之長度LBL。
FIG. 12 is an explanatory diagram showing the relationship between the spot light of the drawing beam and the drawing line. Among the drawing units UW1 to UW5, the drawing lines LL1 and LL2 of the drawing units UW1 and UW2 are representatively described. Since the drawing lines LL3 to LL5 of the drawing units UW3 to UW5 are also the same, their description is omitted. By rotating the
一般來說,於直接描曝光方式,即使是裝置在描繪可曝光之最小尺寸之圖案時,亦係以複數個點光SP之多重曝光(多重寫入)來實現 高精度且安定之圖案描繪。如圖12所示,設於描繪線LL1及LL2上,點光SP之實效直徑為Xs時,由於描繪光束LB為脈衝光,因此以1個脈衝光(微微秒級之發光時間)生成之點光SP與下1個脈衝光生成之點光SP,係以直徑Xs之約1/2距離CXs於Y方向(主掃描方向)重疊之方式進行掃描。 In general, in the direct drawing exposure method, even when the device is drawing the smallest size pattern that can be exposed, multiple exposures (multiple writing) of multiple spot lights SP are used to achieve High precision and stable pattern depiction. As shown in FIG. 12, on the drawing lines LL1 and LL2, when the effective diameter of the spot light SP is Xs, since the drawing beam LB is pulsed light, a point generated by one pulsed light (picosecond luminescence time) The light SP and the spot light SP generated by the next pulse light are scanned in such a manner that the distance CXs of the diameter Xs overlaps in the Y direction (main scanning direction) by about 1/2.
又,與沿各描繪線LL1、LL2之點光SP之主掃描同時,基板P以一定速度被搬送向+X方向,因此各描繪線LL1、LL2於基板P上往X方向以一定間距移動(副掃描)。該間距,此處亦係設定為點光SP之直徑Xs之約1/2距離CXs,但不限於此。據此,於副掃描方向(X方向)亦係以直徑Xs之1/2(或除此以外之重疊距離亦可)距離CXs於X方向相鄰之點光SP彼此重疊曝光。進一步的,以在描繪線LL1之描繪結束位置EC1撃發之光束點光SP與在描繪線LL2之描繪結束位置EC2撃發之光束點光SP,隨著基板P往長條方向之移動(即副掃描)於基板P之寬度方向(Y方向)以重疊距離CXs接合之方式,設定描繪線LL1之描繪開始位置OC1與描繪結束位置EC1、及描繪線LL2之描繪開始位置OC2與描繪結束位置EC2。 At the same time as the main scanning of the spot light SP along the drawing lines LL1 and LL2, the substrate P is transported in the +X direction at a certain speed, so the drawing lines LL1 and LL2 move on the substrate P in the X direction at a certain pitch ( Subscanning). The distance here is also set to about 1/2 the distance CXs of the diameter Xs of the spot light SP, but it is not limited thereto. According to this, in the sub-scanning direction (X direction), the spot lights SP adjacent in the X direction with a distance CXs of 1/2 of the diameter Xs (or an overlapping distance other than that is also possible) are overlapped and exposed to each other. Further, the beam spot light SP emitted at the drawing end position EC1 of the drawing line LL1 and the beam spot light SP emitted at the drawing end position EC2 of the drawing line LL2 move with the substrate P in the long direction (ie (Sub-scanning) Set the drawing start position OC1 and the drawing end position EC1 of the drawing line LL1 and the drawing start position OC2 and the drawing end position EC2 of the drawing line LL1 in the width direction (Y direction) of the substrate P with the overlapping distance CXs .
例如,當設光束點光SP之實效直徑Xs為4μm時,能良好的曝光出以點光SP之2列×2行(於主掃描與副掃描之兩方向重疊排排列之合計4個點光)占有之面積、或以3列×3行(於主掃描與副掃描之兩方向重疊排列之合計9個點光)占有之面積為最小尺寸的圖案,亦即最小尺寸為6μm~8μm程度之線寬度的圖案。又,當使旋轉多面鏡97之反射面97b為10面、繞旋轉軸97a之旋轉多面鏡97之旋轉速度為1萬rpm以上時,
可使藉由旋轉多面鏡97在描繪線(LL1~LL5)上之點光SP(描繪光束LB)之掃描次數(設係掃描頻率Fms)為1666.66...Hz以上。此係代表可在基板P上於每1秒之搬送方向(X方向)描繪1666條以上之描繪線分之圖案。因此,若基板P每一秒之搬送距離(搬送速度)變慢,則點光彼此在副掃描方向(X方向)之重疊距離CXs可設定在點光之直徑Xs之1/2以下之值,例如1/3、1/4、1/5、...,此情形,藉由點光沿著描繪線之複數次掃描使相同描繪圖案曝光,能使賦予基板P之感光層之曝光量增加。
For example, when the effective diameter Xs of the beam spot light SP is 4 μm, a total of 4 spot lights arranged in two columns × 2 rows of spot light SP (overlaid in two directions of main scanning and sub-scanning) can be well exposed ) The area occupied, or the pattern with the smallest area of 3 columns × 3 rows (a total of 9 spot lights arranged overlapping in both directions of the main scan and the sub-scan), that is, the minimum size is about 6μm~8μm Line width pattern. In addition, when the reflecting
又,藉由旋轉圓筒DR之旋轉驅動之基板P之搬送速度為5mm/s程度時,可將圖12所示之描繪線LL1(LL2~LL5亦相同)之X方向(基板P之搬送方向)之間距(距離CXs)作成約3μm程度。 In addition, when the transport speed of the substrate P driven by the rotation of the rotating cylinder DR is about 5 mm/s, the X direction (the transport direction of the substrate P) of the drawing line LL1 (the same is true for LL2 to LL5) shown in FIG. 12 ) The distance (distance CXs) is about 3 μm.
本實施形態之場合,於主掃描方向(Y方向)之圖案描繪之分解能力R,係由點光SP之實效直徑Xs與掃描頻率Fms,與構成光偏向器81之聲光元件(AOM)之ON/OFF最小切換時間來決定。作為聲光元件(AOM),使用最高回應頻率Fss=50MHz者時,可使ON狀態與OFF狀態之各時間為20nS程度。再者,由於藉由旋轉多面鏡97之1個反射面97b之描繪光束LB之實效掃描期間(描繪線之長度LBL分之點光掃描),係1個反射面97b之旋轉角度分之1/3程度,因此當將描繪線之長度LBL設為30mm時,依存於光偏向器81之切換時間之決定之分解能力R,即為R=LBL/(1/3)/(1/Fms)×(1/Fss)≒3μm。
In the case of this embodiment, the resolution R of the pattern drawing in the main scanning direction (Y direction) is composed of the effective diameter Xs of the spot light SP and the scanning frequency Fms, and the acousto-optical element (AOM) constituting the
從此關係式,為提升圖案描繪之分解能力R,例如作為光偏向器81之聲光元件(AOM)使用最高回應頻率Fss為100MHz者,並將ON/OFF之切換時間設定為10nsec。據此,分解能力R即成為一半之
1.5μm。此場合,係使基板P藉由旋轉圓筒DR之旋轉之搬送速度為一半。作為提升分解能力R之其他方法,例如亦可提高旋轉多面鏡97之旋轉速度。
From this relationship, in order to improve the resolution ability R of pattern drawing, for example, as the acousto-optic element (AOM) of the
一般來說,於微影製程中使用之光阻劑,係使用光阻感度Sr約為30mj/cm2程度之物。設光學系之穿透率△Ts為0.5(50%)、在旋轉多面鏡97之1個反射面97b中之實效掃描期間為1/3程度、描繪線之長度LBL為30mm、描繪單元UW1~UW5之數Nuw為5、旋轉圓筒DR之基板P之搬送速度Vp為5mm/s(300mm/min)的話,光源裝置CNT所需之雷射功率Pw,可由次式加以預估。
In general, the photoresist used in the lithography process uses a photoresist sensitivity Sr of about 30mj/cm 2 . Let the transmittance △Ts of the optical system be 0.5 (50%), the effective scanning period in one
Pw=30/60×3×30×5/0.5/(1/3)=1350mW Pw=30/60×3×30×5/0.5/(1/3)=1350mW
假設,描繪單元為7個時,光源裝置CNT所需之雷射功率Pw,如次式。 It is assumed that when there are seven drawing units, the laser power Pw required by the light source device CNT is as follows.
Pw=30/60×3×30×7/0.5/(1/3)=1890mW Pw=30/60×3×30×7/0.5/(1/3)=1890mW
例如,若光阻感度為80mj/cm2程度的話,為以相同速度進行曝光,作為光束輸出需有3~5W程度之光源裝置CNT。取代此種高功率光源之使用,若使基板P藉由旋轉圓筒DR之旋轉之搬送速度Vp相對初期值之5mm/s降低至30/80的話,作為光束輸出亦可使用1.4~1.9W程度之光源裝置進行曝光。 For example, if the photoresist sensitivity is about 80 mj/cm 2 , in order to perform exposure at the same speed, a light source device CNT of about 3 to 5 W is required as the beam output. Instead of using such a high-power light source, if the transport speed Vp of the substrate P by the rotation of the rotating cylinder DR is reduced to 30/80 relative to the initial value of 5 mm/s, it can also be used as a beam output of 1.4~1.9W The light source device for exposure.
又,若設描繪線之長度LBL為30mm,並假設光束點光SP之點直徑Xs、與光偏向器81之聲光元件(AOM)之光切換所決定之分解能力(指定光束位置之最小格(grid),相當於1像素)Xg相等,皆為3μm時,設10面旋轉多面鏡97之旋轉速度為1萬rpm時之旋轉多面鏡97之1旋轉之時間為3/500秒、旋轉多面鏡97之1個反射面97b之實效掃描期
間為1個反射面97b之旋轉角度分之1/3時,1個反射面97b之實效掃描時間Ts(秒)即可以(3/500)×(1/10)×(1/3)求出,約為Ts=1/5000(秒)。據此,光源裝置CNT為脈衝雷射時之脈衝發光頻率Fz,即可以Fz=LBL/(Ts‧Xs)求出,Fz=50MHz為最低頻率。從而,於實施形態,即需要輸出頻率50MHz以上之脈衝雷射的光源裝置CNT。有鑑於此,光源裝置CNT之衝發光頻率Fz,最好是光偏向器81之聲光元件(AOM)之最高回應頻率Fss(例如50MHz)的2倍以上(例如100MHz)。
Furthermore, if the length LBL of the drawing line is 30 mm, and it is assumed that the spot diameter SP of the beam spot light Xs and the resolution capability determined by the light switching of the acousto-optic element (AOM) of the optical deflector 81 (the minimum grid for specifying the beam position) (grid), equivalent to 1 pixel) Xg is equal, when both are 3 μm, the rotation speed of the
進一步的,將光偏向器81之聲光元件(AOM)切換為ON狀態/OFF狀態之驅動訊號,為避免聲光元件(AOM)從ON狀態遷移至OFF狀態之期間、或從OFF狀態遷移至ON狀態之期間產生脈衝發光,最好是進行使光源裝置CNT與以脈衝發光頻率Fz振盪之時脈訊號同步的控制。
Further, the driving signal for switching the acousto-optic element (AOM) of the
其次,將光束點光SP之點直徑Xs與光源裝置CNT之脈衝發光頻率Fz之關係,從光束形狀(重疊的2個點光SP之強度分布)之觀點,使用圖13之圖表加以說明。圖13之橫軸係代表點光SP在沿描繪線之Y方向、或沿基板P之搬送方向之X方向的描繪位置、或點光SP之尺寸,縱軸係代表將單獨點光SP之峰值強度規格化為1.0之相對強度值。又,此處,係設單獨點光SP之強度分布為J1,假定為高斯分布來加以說明。 Next, the relationship between the spot diameter Xs of the beam spot light SP and the pulse emission frequency Fz of the light source device CNT will be described using the graph of FIG. 13 from the viewpoint of the beam shape (intensity distribution of two overlapping spot lights SP). The horizontal axis of FIG. 13 represents the drawing position of the spot light SP in the Y direction along the drawing line, or the X direction along the transport direction of the substrate P, or the size of the spot light SP, and the vertical axis represents the peak value of the individual spot light SP The intensity is normalized to a relative intensity value of 1.0. In addition, here, it is assumed that the intensity distribution of the individual spot light SP is J1, and the Gaussian distribution is assumed.
圖13中,單獨點光SP之強度分布J1,係設相對峰值強度以1/e2之強度具有3μm之直徑。強度分布J2~J6,係顯示將此種點光SP之2脈衝分,於主掃描方向或副掃描方向錯開位置照射時於基板P上所得之積算的強度分布(輪廓)之模擬結果,分別係使位置之錯開量(間隔距 離)不同者。 In FIG. 13, the intensity distribution J1 of the single spot light SP is assumed to have a diameter of 3 μm relative to the peak intensity at an intensity of 1/e 2 . The intensity distributions J2~J6 show the simulation results of the integrated intensity distribution (contour) obtained on the substrate P when the two pulses of this spot light SP are irradiated at different positions in the main scanning direction or the sub-scanning direction. The difference in position (separation distance) is different.
圖13之圖表中,強度分布J5係顯示2脈衝分之點光SP錯開與直徑3μm相同之間隔距離之情形,強度分布J4為2脈衝分之點光SP之間隔距離為2.25μm之情形、強度分布J3為2脈衝分之點光SP之間隔距離為1.5μm之情形。由此強度分布J3~J5之變化明顯可知,於強度分布J5,直徑3μm之點光SP以3μm間隔照射之條件之情形時,積算之輪廓,為2個點光各個之中心位置最高的瘤狀,於2個點光之中點位置,規格化強度僅能獲得0.3程度。相對於此,直徑3μm之點光SP以1.5μm間隔照射之條件時積算之輪廓,於輪廓中明顯之瘤狀分布,夾著2個點光之中點位置大致平坦。 In the graph of FIG. 13, the intensity distribution J5 shows the case where the two-pulse point light SP is staggered by the same spacing distance as the diameter of 3 μm, and the intensity distribution J4 is the case where the two-pulse point light SP has a spacing distance of 2.25 μm. The distribution J3 is a case where the separation distance of the spot light SP of 2 pulses is 1.5 μm. From the change of the intensity distribution J3~J5, it can be clearly seen that when the intensity distribution J5, the spot light SP with a diameter of 3 μm is irradiated at an interval of 3 μm, the accumulated contour is the highest tumor shape at the center of each of the two spot lights At the midpoint of the two spot lights, the normalized intensity can only be obtained at about 0.3. On the other hand, the contour accumulated when spot light SP with a diameter of 3 μm is irradiated at an interval of 1.5 μm is clearly distributed in the contour, and the position of the point between the two spot lights is substantially flat.
又,圖13中,強度分布J2係顯示將2脈衝分之點光SP之間隔距離設為0.75μm時之積算輪廓,強度分布J6係將間隔距離設定為單獨點光SP之強度分布J1之半值全寬度(FWHM)1.78μm時之積算輪廓。 In addition, in FIG. 13, the intensity distribution J2 shows the integrated profile when the separation distance of the two-pulse point light SP is set to 0.75 μm, and the intensity distribution J6 sets the separation distance to half of the intensity distribution J1 of the single point light SP The value of full width (FWHM) is 1.78 μm.
如以上所述,在以較點光SP之直徑Xs相同間隔短之間隔距離CXs照射2個點光之脈衝振盪之條件時,由於易顯著出現2個瘤狀分布,因此,最好是設定為曝光時不會產生強度不均(描繪精度之劣化)的最佳間隔距離。如圖13之強度分布J3或J6般,以單一點光SP之直徑Xs之一半程度(例如40~60%)之間隔距離CXs重疊較佳。此種最佳間隔距離CXs,於主掃描方向,可藉由調整光源裝置CNT之脈衝發光頻率Fz、與沿描繪線之點光SP之掃描速度或掃描時間Ts(旋轉多面鏡97之旋轉速度)至少一方來加以設定,於副掃描方向,可藉由調整描繪線之掃描頻率Fms(旋轉多面鏡97之旋轉速度)與基板P之X方向移動速度中之至少一方來 加以設定。 As described above, when the pulse oscillation of two spot lights is irradiated at a shorter interval distance CXs than the diameter Xs of the spot light SP, the two nodules are likely to appear prominently, so it is best to set it to The optimal separation distance without uneven intensity (deterioration of drawing accuracy) during exposure. As shown in the intensity distribution J3 or J6 of FIG. 13, it is better to overlap the separation distance CXs at a half degree (for example, 40 to 60%) of the diameter Xs of the single spot light SP. This optimal separation distance CXs can be adjusted in the main scanning direction by adjusting the pulse emission frequency Fz of the light source device CNT and the scanning speed or scanning time Ts (rotation speed of the rotating polygon mirror 97) of the spot light SP along the drawing line It can be set by at least one. In the sub-scanning direction, it can be adjusted by at least one of the scanning frequency Fms (rotation speed of the rotating polygon mirror 97) of the drawing line and the moving speed of the substrate P in the X direction Be set.
例如,在無法高精度調整旋轉多面鏡97之旋轉速度絶對值(點光之掃描時間Ts)之情形時,藉由微調整光源裝置CNT之脈衝發光頻率Fz,可將於主掃描方向之點光SP之間隔距離CXs與點光之直徑Xs(尺寸)之比率,調整至最佳範圍。 For example, when the absolute value of the rotation speed of the rotating polygonal mirror 97 (scanning time Ts of the spot light) cannot be adjusted with high accuracy, the spot light in the main scanning direction can be adjusted by finely adjusting the pulse emission frequency Fz of the light source device CNT The ratio of the spacing distance CXs of SP to the diameter Xs (size) of spot light is adjusted to the optimal range.
如以上所述,在使2個點光SP於掃描方向重疊時,亦即,Xs>CXs時,光源裝置CNT係將脈衝發光頻率Fz設定為Fz>LBL/(Ts‧Xs)之關係,滿足Fz=LBL/(Ts‧CXs)之關係。例如,光源裝置CNT之脈衝發光頻率Fz為100MHz時,設旋轉多面鏡97為10面而以1萬rpm旋轉時,以1/e2、或半值全寬度(FWHM)規定之點光之實效直徑Xs為3μm,可將來自各描繪單元UW1~UW5之脈衝雷射光束(點光),於各描繪線LL1~LL5上以直徑Xs之約一半之1.5μm間隔(CXs)照射。據此,圖案描繪時之曝光量均勻性獲得提升,即便是微細圖案亦能獲得基於描繪資料之忠實的曝光像(光阻像),達成高精度的描繪。
As described above, when two spot lights SP are superimposed in the scanning direction, that is, when Xs>CXs, the light source device CNT sets the pulse emission frequency Fz to the relationship of Fz>LBL/(Ts‧Xs), which satisfies Fz=LBL/(Ts‧CXs) relationship. For example, when the pulsed light emission frequency Fz of the light source device CNT is 100 MHz, when the
進一步的,以聲光元件(AOM)之光切換速度決定之分解能力(最高回應頻率Fss)與光源裝置CNT之脈衝振盪頻率Fz,若設h為任意整數時,必須是換算為位置或時間後整數倍之關係,亦即必須是Fz=h‧Fss之關係。此係由於為避免聲光元件(AOM)之光切換時序,在從光源裝置CNT發出脈衝光束之中進行ON/OFF。 Furthermore, the resolution (the highest response frequency Fss) determined by the light switching speed of the acousto-optic device (AOM) and the pulse oscillation frequency Fz of the light source device CNT, if h is set to any integer, it must be converted to position or time The integer multiple relationship must be Fz=h‧Fss relationship. This is because in order to avoid the timing of the light switching of the acousto-optic element (AOM), ON/OFF is performed while the pulsed light beam is emitted from the light source device CNT.
第1實施形態之曝光裝置EX,由於係使用將光纖增幅器FB1、FB2與波長轉換部CU2之波長轉換元件加以組合之脈衝雷射光源之光源裝置CNT,因此於紫外波長帶(400~300nm),容易地得到此種具有 高振盪頻率之脈衝光。 The exposure apparatus EX of the first embodiment is a light source device CNT using a pulsed laser light source that combines the optical fiber amplifiers FB1, FB2 and the wavelength conversion element of the wavelength conversion unit CU2, so it is in the ultraviolet wavelength band (400-300 nm) , Easily get this kind of Pulsed light with high oscillation frequency.
此外,聲光元件(AOM)之光切換,係根據將待描繪圖案分割成例如3μm×3μm之像素單位、以「0」、「1」表示是否對各像素單位照射脈衝束之點光之位元列(描繪資料)進行。描繪線之長度LBL為30mm之情形,點光之一次掃描中之像素數成為一萬像素,聲光元件(AOM)具備在掃描時間Ts之期間切換一萬像素量之位元列之回應性(回應頻率Fss)。另一方面,主掃描方向之相鄰點光彼此,例如以重疊直徑Xs之1/2程度之方式設定脈衝振盪頻率Fz。因此,在上述關係式Fz=h‧Fss,以整數h為2以上、亦即Fz>Fss之方式設定脈衝振盪頻率Fz與聲光元件(AOM)之光切換之回應頻率Fss之關係較佳。 In addition, the light switching of the acousto-optical element (AOM) is based on dividing the pattern to be drawn into pixel units of, for example, 3 μm×3 μm, with “0” and “1” indicating whether each pixel unit is irradiated with the spot light of the pulse beam Meta-row (depicting data). When the length of the drawn line LBL is 30mm, the number of pixels in one scan of spot light becomes 10,000 pixels, and the acousto-optical element (AOM) has the responsiveness of switching the bit row of 10,000 pixels during the scanning time Ts ( Response frequency Fss). On the other hand, the adjacent spot lights in the main scanning direction set the pulse oscillation frequency Fz so as to overlap about 1/2 of the diameter Xs, for example. Therefore, in the above relational formula Fz=h‧Fss, the relationship between the pulse oscillation frequency Fz and the response frequency Fss of the optical switching of the acousto-optic device (AOM) is preferably set with the integer h being 2 or more, that is, Fz>Fss.
其次,說明曝光裝置EX之描繪裝置11之調整方法。圖14係關於第1實施形態之曝光裝置之調整方法的流程圖。圖15係以示意方式顯示旋轉圓筒之基準圖案與描繪線之關係的說明圖。圖16係以示意方式顯示從將來自旋轉圓筒之基準圖案之反射光於亮視野受光之光電感測器輸出之訊號的說明圖。控制部16,為進行掌握複數個描繪單元UW1~UW5之位置關係的校準,如圖15所示,使旋轉圓筒DR旋轉。旋轉圓筒DR,可搬送描繪光束LB可穿透程度之具透光性的基板P。
Next, the adjustment method of the
如上所述,基準圖案RMP與旋轉圓筒DR之外周面成一體。如圖15所示,基準圖案RMP中、任意之基準圖案RMP1隨著旋轉圓筒DR外周面之移動而移動。因此,基準圖案RMP1在通過描繪線LL1、LL3、LL5後,通過描繪線LL2、LL4。例如,控制部16在相同基準圖案RMP1通過描繪線LL1、LL3、LL5後時,使描繪單元UW1、UW3、UW5之描繪
光束LB掃描。控制部16,在相同基準圖案RMP1通過描繪線LL2、LL4後時,使描繪單元UW2、UW4之描繪光束LB掃描(步驟S1)。因此、基準圖案RMP1即成為用以掌握描繪單元UW1~UW5之位置關係的基準。
As described above, the reference pattern RMP is integrated with the outer peripheral surface of the rotating cylinder DR. As shown in FIG. 15, among the reference patterns RMP, an arbitrary reference pattern RMP1 moves as the outer peripheral surface of the rotating cylinder DR moves. Therefore, the reference pattern RMP1 passes through the drawing lines LL2, LL4 after passing through the drawing lines LL1, LL3, LL5. For example, when the same reference pattern RMP1 passes through the drawing lines LL1, LL3, and LL5, the
上述校準檢測系31之光電感測器31Cs(圖4),透過包含f-θ透鏡系85與掃描器83之掃描光學系,檢測來自基準圖案RMP1之反射光。光電感測器31Cs連接於控制部16,控制部16檢測光電感測器31Cs之檢測訊號(步驟S2)。例如,描繪單元UW1~UW5就描繪線LL1~LL5毎一個,將複數個描繪光束LB之各個於既定掃描方向掃描複數行。
The photoelectric sensor 31Cs (FIG. 4) of the
例如,如圖16所示,描繪單元UW1~UW5,將描繪光束LB從描繪開始位置OC1起沿著上述旋轉圓筒DR之旋轉中心線AX2之方向(Y方向)進行描繪線之長度LBL(參照圖12)的第1行掃描SC1。其次,描繪單元UW1~UW5,將描繪光束LB從描繪開始位置OC1起沿著上述旋轉圓筒DR之旋轉中心線AX2之方向(Y方向)進行描繪線之長度LBL(參照圖12)的第2行掃描SC2。其次,描繪單元UW1~UW5,將描繪光束LB從描繪開始位置OC1起沿著上述旋轉圓筒DR之旋轉中心線AX2之方向(Y方向)進行描繪線之長度LBL(參照圖12)的第3行掃描SC3。 For example, as shown in FIG. 16, the drawing units UW1 to UW5 perform the drawing line length LBL from the drawing start position OC1 along the direction (Y direction) of the rotation center line AX2 of the rotating cylinder DR (see The first line of Fig. 12) scans SC1. Next, the drawing units UW1 to UW5 perform the second drawing of the drawing line length LBL (see FIG. 12) from the drawing start position OC1 along the direction (Y direction) of the rotation center line AX2 of the rotating cylinder DR. Line scan SC2. Next, the drawing units UW1 to UW5 perform the third step of the drawing line length LBL (see FIG. 12) from the drawing start position OC1 along the direction (Y direction) of the rotation center line AX2 of the rotating cylinder DR. Line scan SC3.
旋轉圓筒DR,由於係繞旋轉中心線AX2旋轉,因此第1行掃描SC1,第2行掃描SC2及第3行掃描SC3在基準圖案RMP1上之X方向位置,有△P1、△P2之差異。又,控制部16,亦可以是進行在使旋轉圓筒DR靜止之狀態下進行沿第1行掃描SC1之描繪光束LB之掃描,之後,在使旋轉圓筒DR旋轉△P1分後靜止,進行沿第2行掃描SC2之描繪光束LB之掃描,後再次使旋轉圓筒DR旋轉△P2後靜止,進行沿第3行掃描
SC3之描繪光束LB之掃描、以此順序使各部動作的程序。
The rotating cylinder DR rotates around the rotation center line AX2, so the first row scan SC1, the second row scan SC2, and the third row scan SC3 have a difference of △P1 and △P2 in the X direction on the reference pattern RMP1 . In addition, the
如上所述,基準圖案RMP,係設定成形成在旋轉圓筒DR外周面之彼此交叉之2條線圖案RL1、RL2之交點部Cr1、Cr2,較上述描繪線之長度LBL小。因此、當投射第1行掃描SC1,第2行掃描SC2及第3行掃描SC3之描繪光束LB時,描繪光束LB至少照射於交點部Cr1、Cr2。線圖案RL1、RL2係於旋轉圓筒DR之表面以凹凸形成。當將旋轉圓筒DR表面之凹凸之段差量作成特定條件時,描繪光束LB投射於線圖案RL1、RL2而產生之反射光,會部分的產生反射強度之差。例如,如圖16所示,線圖案RL1、RL2係旋轉圓筒DR表面之凹部時,當描繪光束LB投射於線圖案RL1、RL2時,於線圖案RL1、RL2反射之反射光即被光電感測器31Cs於亮視野受光。 As described above, the reference pattern RMP is set such that the intersections Cr1 and Cr2 of the two line patterns RL1 and RL2 formed on the outer circumferential surface of the rotating cylinder DR intersect each other, which is smaller than the length LBL of the drawing line. Therefore, when the drawing beam LB of the first line scan SC1, the second line scan SC2, and the third line scan SC3 is projected, the drawing beam LB is irradiated to at least the intersections Cr1 and Cr2. The line patterns RL1 and RL2 are formed on the surface of the rotating cylinder DR with irregularities. When the amount of unevenness on the surface of the rotating cylinder DR is set as a specific condition, the reflected light generated when the drawing light beam LB is projected on the line patterns RL1 and RL2 may partially cause a difference in reflection intensity. For example, as shown in FIG. 16, when the line patterns RL1 and RL2 rotate the concave portion on the surface of the cylinder DR, when the drawing beam LB is projected on the line patterns RL1 and RL2, the reflected light reflected on the line patterns RL1 and RL2 is affected by the photoinductor The detector 31Cs receives light in a bright field.
控制部16根據來自光電感測器31Cs之輸出訊號,檢測基準圖案RMP之邊緣位置psc1。例如,控制部16根據第1行掃描SC1時從光電感測器31Cs所得之輸出訊號,儲存第1行掃描位置資料Dsc1、與基準圖案RMP之邊緣位置psc1之中間值mpsc1。
The
其次,控制部16根據第2行掃描SC2時從光電感測器31Cs所得之輸出訊號,儲存第2行掃描位置資料Dsc2、與基準圖案RMP之邊緣位置psc1之中間值mpsc1。此外,控制部16根據第3行掃描SC3時從光電感測器31Cs所得之輸出訊號,儲存第3行掃描位置資料Dsc3、與基準圖案RMP之邊緣位置psc1之中間值mpsc1。
Next, the
控制部16從第1行掃描位置資料Dsc1,第2行掃描位置資料Dsc2及第3行掃描位置資料Dsc3、與複數個基準圖案RMP之邊緣位置
psc1之中間值mpsc1,透過運算求出彼此交叉之2條線圖案RL1、RL2之交點部Cr1、Cr2之座標位置。其結果,控制部16亦可運算出彼此交叉之2條線圖案RL1、RL2之交點部Cr1、Cr2與描繪開始位置OC1之關係。針對其他描繪單元UW2~5亦同樣的,控制部16可運算出彼此交叉之2條線圖案RL1、RL2之交點部Cr1、Cr2與描繪開始位置OC2~OC5(參照圖11)之關係。又,上述中間值mpsc1亦可從從光電感測器31Cs輸出之訊號之峰值求出。
The
以上,針對於線圖案RL1、RL2反射之反射光由光電感測器31Cs在亮視野受光之情形作了說明,但光電感測器31Cs亦可將於線圖案RL1、RL2反射之反射光在暗視野受光。圖17係以示意方式顯示將來自旋轉圓筒之基準圖案之反射光於暗視野受光之光電感測器的說明圖。圖18係以示意方式顯示從將來自旋轉圓筒之基準圖案之反射光於暗視野受光之光電感測器輸出之訊號的說明圖。如圖17所示,校準檢測系31,在中繼透鏡94與光電感測器31Cs之間配置具有環帶狀光穿透部之遮光構件31f。因此、光電感測器31Cs,係受光於線圖案RL1、RL2反射之反射光中之邊緣散射光或繞射光。例如,如圖18所示,線圖案RL1、RL2係旋轉圓筒DR表面之凹部時,當描繪光束LB投射於線圖案RL1、RL2時,光電感測器31Cs即將於線圖案RL1、RL2反射之反射光於暗視野加以受光。
In the above, the case where the reflected light reflected by the line patterns RL1 and RL2 is received by the photoelectric sensor 31Cs in a bright field of view has been described, but the photoelectric sensor 31Cs may also reflect the reflected light reflected by the line patterns RL1 and RL2 in the dark The field of vision is exposed to light. FIG. 17 is an explanatory diagram schematically showing a photoelectric sensor that receives reflected light from a reference pattern of a rotating cylinder in a dark field. 18 is an explanatory diagram schematically showing a signal output from a photoelectric sensor that receives reflected light from a reference pattern of a rotating cylinder in a dark field. As shown in FIG. 17, in the calibration and
控制部16根據從光電感測器31Cs輸出之訊號,檢測基準圖案RMP之邊緣位置pscd1。例如,控制部16根據第1行掃描SC1時從光電感測器31Cs所得之輸出訊號,儲存第1行掃描位置資料Dsc1、與基準圖案RMP之邊緣位置pscd1之中間值mpscd1。其次,控制部16根據第2
行掃描SC2時從光電感測器31Cs所得之輸出訊號,儲存第2行掃描位置資料Dsc2、與基準圖案RMP之邊緣位置pscd1之中間值mpscd1。控制部16根據第3行掃描SC3時從光電感測器31Cs所得之輸出訊號,儲存第3行掃描位置資料Dsc3、與基準圖案RMP之邊緣位置pscd1之中間值mpscd1。
The
控制部16,從第1行掃描位置資料Dsc1,第2行掃描位置資料Dsc2及第3行掃描位置資料Dsc3、與複數個基準圖案RMP之邊緣位置pscd1之中間值mpscd1,透過運算求出彼此交叉之2條線圖案RL1、RL2之交點部Cr1、Cr2。其結果,控制部16,透過運算求出彼此交叉之2條線圖案RL1、RL2之交點部Cr1、Cr2之座標位置與描繪開始位置OC1之關係。
The
針對其他描繪單元UW2~5亦同樣的,控制部16可運算出彼此交叉之2條線圖案RL1、RL2之交點部Cr1、Cr2與描繪開始位置OC2~OC5之關係。如以上所述,於線圖案RL1、RL2反射之反射光由光電感測器31Cs於暗視野受光之情形時,可提高複數個基準圖案RMP之邊緣位置pscd1之精度。
The same is true for the other drawing units UW2 to 5, the
如圖14所示,控制部16,從於步驟S2檢測之檢測訊號求出對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)(步驟S3)。圖19係以示意方式顯示旋轉圓筒之基準圖案彼此之位置關係的說明圖。圖20係以示意方式顯示複數個描繪線之相對位置關係的說明圖。如上所述,配置奇數號第1描繪線LL1,第3描繪線LL3及第5描繪線LL5,如圖19所示,就第1描繪線LL1,第3描繪線LL3及第5描繪線LL5之各個,所檢測之交點部Cr1間之基準距離PL預先儲存於控
制部16。同樣的,就第2描繪線LL2及第4描繪線LL4之各個,所檢測之交點部Cr1間之基準距離PL亦預先儲存於控制部16。又,就第2描繪線LL2及第3描繪線LL3之各個,所檢測之交點部Cr1間之基準距離△PL亦預先儲存於控制部16。進一步的,就第4描繪線LL4及第5描繪線LL5之各個,所檢測之交點部Cr1間之基準距離△PL亦預先儲存於控制部16。
As shown in FIG. 14, the
例如,如圖20所示,控制部16,就第1描繪線LL1之描繪開始位置OC1已根據來自原點檢測器98(參照圖7)之訊號掌握了位置關係,因此能求出交點部Cr1與描繪開始位置OC1之距離BL1。又,控制部16,就第3描繪線LL3之描繪開始位置OC3已由原點檢測器98檢測了位置,因此能求出交點部Cr1與描繪開始位置OC3之距離BL3。從而、控制部16可根據距離BL1,距離BL3及基準距離PL求出描繪開始位置OC1與描繪開始位置OC3之位置關係,儲存沿描繪線LL1、LL3掃描之描繪光束LB之原點間之原點間距離△OC13。同樣的,控制部16,就第5描繪線LL5之描繪開始位置OC5已由原點檢測器98檢測了位置,因此能求出交點部Cr1與描繪開始位置OC5之距離BL5。從而、控制部16可根據距離BL3、距離BL5及基準距離PL求出描繪開始位置OC3與描繪開始位置OC5之位置關係,儲存沿描繪線LL3、LL5掃描之描繪光束LB之原點間之原點間距離△OC35。
For example, as shown in FIG. 20, the
控制部16,就第2描繪線LL2之描繪開始位置OC2已由原點檢測器98檢測了位置,因此能求出交點部Cr1與描繪開始位置OC2之距離BL2。又,控制部16,就第4描繪線LL4之描繪開始位置OC4已由原點檢測器98檢測了位置,因此能求出交點部Cr1與描繪開始位置OC4之距離
BL4。從而、控制部16可根據距離BL2,距離BL4及基準距離PL求出描繪開始位置OC2與描繪開始位置OC4之位置關係,儲存沿描繪線LL2、LL4掃描之描繪光束LB之原點間之原點間距離△OC24。
Since the
又,控制部16,由於描繪開始位置OC1與描繪開始位置OC2係透過上述相同基準圖案RMP1求出之位置,因此能容易的儲存沿描繪線LL1、LL2掃描之描繪光束LB之原點間之原點間距離△OC12。如以上之說明,曝光裝置EX能求出複數個描繪單元UW1~UW5各個之原點(描繪開始點)之彼此的位置關係。
In addition, the
又,控制部16,可從在第2描繪線LL2及第3描繪線LL3檢測之交點部Cr1間之基準距離△PL,檢測描繪開始位置OC2與描繪開始位置OC3之接合誤差。進一步的,可從在第4描繪線LL4及第5描繪線LL5檢測之交點部Cr1間之基準距離△PL,檢測描繪開始位置OC4與描繪開始位置OC5之接合誤差。
Furthermore, the
在從各描繪線LL1~LL5之描繪開始位置OC1~OC5到描繪結束位置EC1~EC5為止之期間檢測2個交點部Cr1、Cr2。據此,即能檢測從描繪開始位置OC1~OC5到描繪結束位置EC1~EC5為止之掃描方向。其結果,控制部16可檢測各描繪線LL1~LL5相對沿中心線AX2之方向(Y方向)之角度誤差。
Two intersections Cr1 and Cr2 are detected during the period from the drawing start position OC1 to OC5 of each drawing line LL1 to LL5 to the drawing end position EC1 to EC5. According to this, it is possible to detect the scanning direction from the drawing start position OC1 to OC5 to the drawing end position EC1 to EC5. As a result, the
控制部16,針對上述基準圖案RMP1,求出對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)。包含基準圖案RMP1之基準圖案RMP,係以一定間距(週期)Pf1、Pf2重複刻設之網格狀基準圖案。因此、控制部16針對以各間距Pf1、Pf2重複之基
準圖案RMP,求出對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊),運算與複數個描繪線LL1~LL5之相對位置關係之偏差相關之資訊。其結果,控制部16能更進一步提高對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)之精度。
The
其次,如圖14所示,控制部16進行調整描繪狀態之處理(步驟S4)。控制部16,根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)及以編碼器讀頭EN1、EN2檢測之標尺部(旋轉圓筒DR)GPa、GPb之旋轉角度位置,調整奇數號及偶數號之描繪單元UW1~UW5之描繪位置。編碼器讀頭EN1、EN2可根據上述標尺部(旋轉圓筒DR)GPa、GPb檢測基板P之搬送量。
Next, as shown in FIG. 14, the
圖21,與先前之圖12同樣的,係以示意方式顯示基板之每單位時間之移動距離與移動距離內所含之描繪線數之關係的說明圖。如圖21所示,編碼器讀頭EN1、EN2可檢測並儲存基板P之每單位時間之移動距離△X。又,亦可藉由上述對準顯微鏡AM1、AM2逐次檢測複數個對準標記Ks1~Ks3,以求出並儲存移動距離△X。 FIG. 21 is an explanatory diagram schematically showing the relationship between the moving distance per unit time of the substrate and the number of drawing lines included in the moving distance, as in the previous FIG. 12. As shown in FIG. 21, the encoder read heads EN1 and EN2 can detect and store the moving distance ΔX of the substrate P per unit time. In addition, a plurality of alignment marks Ks1 to Ks3 may be sequentially detected by the alignment microscopes AM1 and AM2 to obtain and store the moving distance ΔX.
於基板P之每單位時間之移動距離△X,以描繪單元UW1描繪之複數個描繪線LL1係以光束點光SP之光束線SPL1、SPL2及SPL3描繪,以各個光束點光SP之點直徑Xs之約1/2於X方向(及Y方向)重疊之方式掃描。同樣的,描繪線LL1之描繪終端PTb側之光束點光SP與描繪線LL2之描繪終端PTb側之光束點光SP,係隨著基板P往長條方向之移動於基板P之寬度方向以重疊距離CXs接合。 The moving distance ΔX per unit time of the substrate P is drawn by the drawing unit UW1. The drawing lines LL1 are drawn by the beam lines SPL1, SPL2, and SPL3 of the beam spot light SP, and the spot diameter Xs of each beam spot light SP Scan about 1/2 of the X direction (and Y direction) overlapping. Similarly, the beam spot light SP on the drawing terminal PTb side of the drawing line LL1 and the beam spot light SP on the drawing terminal PTb side of the drawing line LL2 are superimposed in the width direction of the substrate P as the substrate P moves in the longitudinal direction to overlap Distance CXs are engaged.
例如,當旋轉圓筒DR上下動時,奇數號及偶數號描繪單元UW1~UW5之X方向描繪位置即產生偏移,有可能產生例如X方向之倍率差。控制部16,使旋轉圓筒DR搬送之基板P之搬送速度(移動速度)慢時,光束線SPL1、SPL2及SPL3之X方向間隔距離CXs變小,可調整X方向之描繪倍率變小。相反的,當加快旋轉圓筒DR搬送之基板P之搬送速度(移動速度)時,光束線SPL1、SPL2及SPL3之X方向間隔距離CXs即變大,可調整X方向之描繪倍率變大。以上,針對描繪線LL1參照圖21作了說明,針對其他之描繪線LL2~LL5亦同。控制部16,根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)及以編碼器讀頭EN1、EN2檢測之標尺部(旋轉圓筒DR)GPa、GPb之旋轉角度位置,變更在基板P之長條方向之基板P每單位時間之移動距離△X、與該移動距離內所含之光束線SPL1、SPL2及SPL3之數量的關係。因此,控制部16可調整奇數號及偶數號描繪單元UW1~UW5於X方向之描繪位置。
For example, when the rotating cylinder DR moves up and down, the X-direction drawing positions of the odd-numbered and even-numbered drawing units UW1 to UW5 are shifted, which may cause a magnification difference in the X direction, for example. The
圖22係以示意方式說明與脈衝光源之系統時脈同步發光之脈衝光的說明圖。以下,針對描繪線LL2亦參照圖21加以說明,針對描繪線LL1、LL3~LL5亦同。光源裝置CNT可與作為系統時脈SQ之脈衝訊號wp同步擊出光束點光SP。藉由改變系統時脈SQ之頻率Fz,脈衝訊號wp之脈衝間隔△wp(=1/Fz)亦改變。該時間性的脈衝間隔△wp,於描繪線LL2上,係對應每一脈衝之點光SP之主掃描方向之間隔距離CXs。控制部16,係使描繪光束LB之光束點光SP沿基板P上之描繪線LL2掃描描繪線之長度LBL。
FIG. 22 is an explanatory diagram schematically illustrating pulse light that emits light in synchronization with the system clock of the pulse light source. Hereinafter, the drawing line LL2 will also be described with reference to FIG. 21, and the same applies to the drawing lines LL1, LL3 to LL5. The light source device CNT can strike the beam spot light SP in synchronization with the pulse signal wp as the system clock SQ. By changing the frequency Fz of the system clock SQ, the pulse interval △wp (=1/Fz) of the pulse signal wp also changes. This temporal pulse interval Δwp corresponds to the interval CXs in the main scanning direction of the spot light SP of each pulse on the drawing line LL2. The
控制部16,具備在描繪光束LB沿描繪線LL2進行掃描之期間,部分的變更系統時脈SQ之週期,以使脈衝間隔△wp在描繪線LL2中之任意位置増減的功能。例如,原本之系統時脈SQ為100MHz之場合,控制部16,在掃描描繪線之長度LBL之期間以一定時間間隔(週期)部分的將系統時脈SQ變更為例如101MHz(或99MHz)。其結果,光束點光SP在描繪線之長度LBL之數量即増減。換言之,控制部16,在掃描描繪線之長度LBL之期間,以既定次(1以上)之週期間隔部分的増減系統時脈SQ之工作比。據此,光源CNT產生之光束點光SP之間隔即變化脈衝間隔△wp之變化分,光束點光SP彼此之重疊距離CXs變化。而Y方向之描繪始端PTa與描繪終端PTb之距離,看起來即伸縮。
The
舉一例而言,描繪線之長度LBL為30mm時,將其11等分而就每一約3mm之描繪長(週期間隔)僅使1處之系統時脈SQ之脈衝間隔△wp増減。脈衝間隔△wp之増減量,如圖13之說明,若將不會招致隨著相鄰2個點光SP之間隔距離CXs之變化的積算輪廓(強度分布)之大幅悪化之範圍、例如將基準之間隔距離CSx設為點光之直徑Xs(3μm)之50%的話,相對其設為約±15%左右。若設脈衝間隔△wp之増減為+10%(間隔距離CSx為點光之直徑Xs之60%)的話,在長度LBL之描繪線中之離散的10處之各處,1脈衝分之點光會產生往主掃描方向延伸直徑Xs之10%分的位置偏移。其結果,描繪後之描繪線之長度LBL,會相對30mm延長3μm。此係代表描繪於基板P上之圖案往Y方向擴大0.01%(100ppm)之意。據此,即使是在基板P於Y方向伸縮之情形時,亦能因應使描繪圖案於Y方向伸縮進行曝光。 As an example, when the length LBL of the drawing line is 30 mm, it is divided into 11 equal parts, and the drawing interval (cycle interval) of about 3 mm each decreases the pulse interval Δwp of the system clock SQ at only one location. The amount of decrease in the pulse interval △wp, as illustrated in FIG. 13, if it will not incur a large range of the cumulative profile (intensity distribution) with the change of the distance CXs between the two adjacent spot lights SP, for example, the reference When the separation distance CSx is set to 50% of the diameter Xs (3 μm) of the spot light, it is about ±15% relative to it. If the increase of the pulse interval △wp is reduced to +10% (the separation distance CSx is 60% of the diameter Xs of the spot light), at each of the 10 discrete points in the trace line of the length LBL, 1 pulse of spot light A position shift of 10% of the diameter Xs extending in the main scanning direction will occur. As a result, the length LBL of the drawn line after drawing becomes 3 μm longer than 30 mm. This means that the pattern drawn on the substrate P expands by 0.01% (100 ppm) in the Y direction. According to this, even when the substrate P expands and contracts in the Y direction, exposure can be performed in response to the drawing pattern being expanded and contracted in the Y direction.
將增減脈衝間隔△wp之位置,例如,設成能於描繪線LL1~LL5之1次掃描,例如預設於系統時脈SQ之每100脈衝、每200脈衝、‧‧‧之任意值的構成。如此一來,即能將描繪圖案之主掃描方向(Y方向)之伸縮量在比較大範圍內進行變更,因應基板P之伸縮及變形,動態的進行倍率修正。因此,於本實施形態之曝光裝置EX之控制部16中包含系統時脈SQ之產生電路,該產生電路具有脈衝間隔△wp以一定之原時脈訊號為系統時脈SQ產生之時脈振盪部、與輸入該原時脈訊號計數(count)預先設定之脈衝數分後將系統時脈SQ之次一時脈脈衝產生為止之時間相對脈衝間隔△wp使之増減之時間遷移部。又,描繪線(長度LBL)中,使系統時脈SQ之脈衝間隔△wp増減之部分之數量,雖係視待描繪之圖案之Y方向之倍率修正比(ppm)大致決定,最少時,可以是對應長度LBL之點光SP之掃描時間Ts中之至少1處。
Set the position of the increasing and decreasing pulse interval △wp, for example, to be able to scan once in the drawing line LL1~LL5, for example, preset to any value of every 100 pulses, every 200 pulses, ‧‧‧ of the system clock SQ constitute. In this way, the amount of expansion and contraction in the main scanning direction (Y direction) of the drawn pattern can be changed within a relatively large range, and the magnification correction can be dynamically performed in response to the expansion and contraction of the substrate P. Therefore, the
圖23係顯示使系統時脈SQ之脈衝間隔△wp部分地可變之時脈產生電路之一例。圖23中,從時脈振盪部200輸出與系統時脈SQ相同頻率之基本時脈訊號CKL。基本時脈訊號CKL係施加於藉由對基本時脈訊號CKL之各脈衝附加既定延遲時間Td產生系統時脈SQ之延遲電路202、及輸出將基本時脈訊號CKL之頻率例如增加20倍之增倍時脈訊號CKs之增倍電路204。
FIG. 23 shows an example of a clock generation circuit that partially changes the pulse interval Δwp of the system clock SQ. In FIG. 23, a basic clock signal CKL having the same frequency as the system clock SQ is output from the
延遲電路202在內部具有將增倍時脈訊號CKs之脈衝數計數至既定值△Ns為止之計數器。該計數器對既定值△Ns進行計數之期間相當於延遲時間Td。既定值△Ns係藉由預設定電路206設定。預設定電路206在內部具備作為既定值△Ns之初始值之標準值Ns0,從外部(主CPU等)傳
送來預設定值Dsb(與延遲時間Td之變化量△Td對應之值)後,將新的既定值△Ns覆寫成前一刻之既定值△Ns+Dsb。
The
該覆寫係回應來自對從延遲電路202輸出之系統時脈SQ之脈衝進行計數之計數器電路208之完成脈衝訊號b進行。計數器電路208具備下述構成,即對系統時脈SQ之脈衝數進行計數至預設定值Dsa而輸出完成脈衝訊號b後,將計數值重置成零後再次反覆對系統時脈SQ之脈衝數進行計數。預設定值Dsa雖為對應描繪線之長度LBL被N等分時之一個長度LBL/N之點光之脈衝數Nck,但不一定要對應長度LBL/N,亦可為任意值。此外,由上述延遲電路202、預設定電路206、計數器電路208構成時間偏移部。
This overwriting is performed in response to the completion pulse signal b from the
圖24係顯示圖23之電路構成中各部之訊號之時間遷移之時序圖。在預設定電路206設定作為初始值之標準值Ns0,設施加於延遲電路202之既定值△Ns為標準值Ns0。在計數器電路208計數至設定之脈衝數Nck之前,亦即在完成脈衝訊號b產生前之狀態,來自預設定電路206之既定值△Ns為Ns0,延遲電路202,如圖24所示,從基本時脈訊號CKL之各脈衝之上升對增倍時脈訊號CKs之脈衝數進行計數至既定值△Ns,與該計數完成同時地作為系統時脈SQ輸出一個脈衝wp。是以,從基本時脈訊號CKL之脈衝之上升至系統時脈SQ之對應脈衝wp之上升為止之延遲時間Td1相當於對增倍時脈訊號CKs之脈衝進行計數至既定值△Ns之時間。
FIG. 24 is a timing diagram showing the time transition of the signals of each part in the circuit configuration of FIG. In the
圖24中,藉由對應基本時脈訊號CKL之脈衝CKn在延遲時間Td1後產生之系統時脈SQ之脈衝wp,計數器電路208進行計數至預設定值Dsa(脈衝數Nck)後,計數器電路208輸出完成脈衝訊號b,與此回
應地,預設定電路206將新的既定值△Ns覆寫成前一刻之既定值△Ns+Dsb。預設定值Dsb為對應圖22所示之脈衝間隔△wp之變化量(△Td)之數值,圖24中,雖設定成負值,但正值亦相同。是以,在基本時脈訊號CKL之脈衝CKn之下一個脈衝CKn+1產生前,在延遲電路202設定對應較以標準值Ns0設定之延遲時間Td1短△Td之延遲時間Td2之既定值△Ns。
In FIG. 24, by the pulse wp of the system clock SQ generated after the pulse CKn corresponding to the basic clock signal CKL after the delay time Td 1 , the
藉此,回應基本時脈訊號CKL之脈衝CKn+1產生之系統時脈SQ之脈衝wp’與前一刻之脈衝wp之脈衝間隔△wp’較之前之脈衝間隔△wp短。在脈衝wp’產生後,計數器電路208計數至脈衝數Nck次之系統時脈SQ為止前,不會產生完成脈衝訊號b,因此設定在延遲電路202之既定值△Ns維持為對應延遲時間Td2之值,在完成脈衝訊號b接著產生為止,系統時脈SQ以相對於基本時脈訊號CKL一律地延遲延遲時間Td2之狀態輸出。是以,以基本時脈訊號CKL之頻率Fz決定之脈衝間隔△wp與時間偏移所修正之脈衝間隔△wp’之比β成為β=△wp’/△wp=1±(△Td/△wp)(其中,△Td<△wp)
Thereby, the pulse interval wp' of the system clock SQ generated in response to the pulse CKn+1 of the basic clock signal CKL and the pulse interval wp' of the previous pulse wp are shorter than the previous pulse interval ?wp. After the pulse wp' is generated, the
沿著描繪線描繪之圖案之寬度方向之尺寸,在β>1時較以描繪資料規定之設計值放大,在β<1時(圖24之情形)較設計值縮小。 The dimension of the width of the pattern drawn along the drawing line is larger than the design value specified by the drawing data when β>1, and smaller than the design value when β<1 (in the case of FIG. 24).
在上述圖23之電路構成,就系統時脈SQ之脈衝數Nck次之計數分別反覆執行使在完成脈衝訊號b產生後一刻所作之系統時脈SQ之一個脈衝wp之脈衝間隔△wp變化時間△Td動作。此外,圖23之電路構成之情形,若設預設定電路206在內部儲存之標準值Ns0為20、從外部設定之預設定值Dsb為零,則不論有無產生完成脈衝訊號b,既定值△Ns維持20(Y方向之描繪倍率未修正之狀態)。又,由於設增倍時脈訊號CKs之頻
率為基本時脈訊號CKL之頻率之20倍,因此設既定值△Ns為20之情形,將預設定值Dsb設定成+1(或-1),則既定值△Ns,每當產生完成脈衝訊號b時,被覆寫成20,21,22,‧‧‧(或20,19,18‧‧‧)般地增加(或減少)。再者,增倍時脈訊號CKs之一個脈衝相當於標準之脈衝間隔△wp(脈衝間隔距離CXs)之1/20(5%),因此若預設定值Dsb改變±1,則二個連續之點光之重疊之比例以5%單位改變。
In the circuit configuration of FIG. 23 described above, the counting of the number of pulses of the system clock SQ Nck times is repeatedly performed so that the pulse interval △wp change time △wp of one pulse wp of the system clock SQ made immediately after the completion of the generation of the pulse signal b Td action. In addition, in the case of the circuit configuration in FIG. 23, if the standard value Ns 0 stored internally by the
如上述,回應此種脈衝間隔△wp部分増減之系統時脈SQ而從脈衝雷射之光源裝置CNT輸出之脈衝光束,係對描繪單元UW1~UW5之各個共通的供應,因此,以描繪線LL1~LL5之各個描繪之圖案會於Y方向以相同比率伸縮。因此,如圖12(或圖11)所說明般,為維持於Y方向相鄰之描繪線間之接合精度,係修正描繪時序,以使描繪線LL1~LL5各個之描繪開始位置OC1~OC5(或描繪結束位置EC1~EC5)往Y方向移動。 As described above, the pulse beam output from the light source device CNT of the pulsed laser in response to the system clock SQ with a partial decrease in the pulse interval Δwp is a common supply to each of the drawing units UW1 to UW5. Therefore, the drawing line LL1 The patterns drawn in ~LL5 will expand and contract at the same rate in the Y direction. Therefore, as explained in FIG. 12 (or FIG. 11), in order to maintain the joining accuracy between adjacent drawing lines in the Y direction, the drawing timing is corrected so that the drawing start positions OC1 to OC5 of the drawing lines LL1 to LL5 ( Or drawing end positions EC1~EC5) move in Y direction.
使系統時脈SQ之脈衝間隔△wp部分地可變之電路構成之例,除了圖23、圖24所示般使延遲時間Td1,Td2數位地可變之方式外,亦可為類比地可變之構成。又,亦可為每當計數器電路208在對系統時脈SQ進行計數至預設定值Dsb(脈衝數Nck)為止時修正之一處之脈衝間隔△wp’相對於標準之脈衝間隔△wp增減例如1%之些微值之構成。此情形,在沿著掃描線之長度LBL之點光之一次掃描中,只要依據必要之倍率修正量改變將標準之脈衝間隔△wp修正成脈衝間隔△wp’之部位之數即可。例如,若設修正之部位之數為100,則在點光之一次掃描描繪之圖案在Y方向之尺寸增減相當於脈衝間隔△wp之量。
An example of a circuit configuration in which the pulse interval △wp of the system clock SQ is partially variable, in addition to the way in which the delay times Td 1 and Td 2 are digitally variable as shown in FIGS. 23 and 24, can also be analog ground Variable composition. In addition, the pulse interval △wp′ at one of the corrections may be increased relative to the standard pulse interval △wp each time the
再者,圖4中所示之光偏向器(AOM)81之ON/OFF切換,雖係回應作為描繪資料送出之串列位元列(位元值「0」或「1」之排列)進行,該位元值之送出,可與脈衝間隔△wp部分増減之系統時脈SQ之脈衝訊號wp(圖22)同步。具體而言,在產生1個脈衝訊號wp致產生下1個脈衝訊號wp為止之期間,將1個位元值送出至光偏向器(AOM)81之驅動電路,甘味元值為「1」、而前1個位元值為「0」時,將光偏向器(AOM)81從OFF狀態切換為ON狀態即可。 Furthermore, the ON/OFF switching of the optical deflector (AOM) 81 shown in FIG. 4 is performed in response to the serial bit row (arrangement of bit values "0" or "1") sent as drawing data The sending of this bit value can be synchronized with the pulse signal wp of the system clock SQ (Fig. 22) where the pulse interval △wp partly decreases. Specifically, during the period until one pulse signal wp is generated until the next pulse signal wp is generated, one bit value is sent to the drive circuit of the optical deflector (AOM) 81, and the sweet element value is "1", When the value of the first bit is "0", it is sufficient to switch the optical deflector (AOM) 81 from the OFF state to the ON state.
控制部16,可根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)及可檢測旋轉圓筒DR兩端部之偏移之變位計YN1、YN2、YN3、YN4所檢測之資訊,調整以奇數號及偶數號描繪單元UW1~UW5進行之Y方向之描繪位置,以抵銷因旋轉圓筒DR之旋轉偏移所產生之Y方向誤差。又,控制部16,可根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)及可檢測旋轉圓筒DR兩端部之偏移之變位計YN1、YN2、YN3、YN4所檢測之資訊,變更以奇數號及偶數號描繪單元UW1~UW5進行之Y方向之長度(描繪線之長度LBL),以抵銷因旋轉圓筒DR之旋轉偏移所產生之Y方向之誤差。
The
又,控制部16,可根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)及以對準顯微鏡AM1、AM2檢測之資訊,調整以奇數號及偶數號描繪單元UW1~UW5進行之X方向或Y方向之描繪位置,以抵銷基板P之X方向或Y方向之誤差。
In addition, the
第1實施形態之曝光裝置EX,如上述般包含以來自複數個
描繪單元UW1~UW5各個之描繪光束LB,以包含形成在基板P上之複數個描繪線LL1~LL5之描繪面內之既定點旋轉軸I為中心,於前述描繪面內相對第1光學平台23使第2光學平台25位移之作為位移修正機構之移動機構24。藉由對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊),複數個描繪線LL1~LL5之全體對X方向及Y方向中之至少1者有誤差時,控制部16,可對移動機構24之驅動部進行驅動控制,使第2光學平台25往X方向及Y方向之至少一方位移抵消誤差之位移量。
The exposure device EX of the first embodiment includes a plurality of
Each of the drawing beams LB of the drawing units UW1 to UW5 is centered on a predetermined point rotation axis I in a drawing plane including a plurality of drawing lines LL1 to LL5 formed on the substrate P, and faces the first optical table 23 in the drawing plane The
當使第2光學平台25往X方向及Y方向之至少一方位移時,圖6所示之第4反射鏡59即往X方向或Y方向變位該位移量。特別是第4反射鏡59之Y方向變位,在使來自第3反射鏡58之描繪光束LB反射向+Y方向時,使之往Z方向位移。因此,藉由第1光學系41中之光束位移機構44,修正該往Z方向之位移。據此,對第4反射鏡59之後之第2光學系42及第3光學系43,即能維持光束LB通過正確的光路。
When the second optical table 25 is displaced in at least one of the X direction and the Y direction, the
又,於第1實施形態之曝光裝置EX中,因對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊),而使複數個描繪線LL1~LL5對X方向及Y方向之至少1個有誤差時,控制部16,可對移動機構24之驅動部進行驅動控制,使形成在基板P上之描繪線LL1~LL5往X方向或Y方向微幅移動抵消誤差之位移量。
In addition, in the exposure apparatus EX of the first embodiment, due to the adjustment information (calibration information) corresponding to the arrangement state of the plurality of drawing lines LL1 to LL5 or the configuration errors of each other, the plurality of drawing lines LL1 to LL5 are oriented in the X direction When there is an error in at least one of the Y directions, the
再者,第1實施形態之曝光裝置EX中,因對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊),使複數個描繪線LL1~LL5中之奇數號或偶數號描繪線對X方向及Y方向之至
少1個有誤差時,控制部16,可以抵消誤差之位移量之方式,對光束位移機構45進行驅動控制,以使形成在基板P上之偶數號描繪線LL2、LL4往X方向或Y方向微幅移動,以微調與形成在基板P上之奇數號描繪線LL1、LL3、LL5之相對位置關係。
Furthermore, in the exposure apparatus EX of the first embodiment, the odd number of the plurality of drawing lines LL1 to LL5 is adjusted due to the adjustment information (calibration information) corresponding to the arrangement state of the plurality of drawing lines LL1 to LL5 or the configuration error of each other Or even number to draw the line to the X direction and Y direction to
When there is at least one error, the
又,控制部16,亦可根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)及以變位計YN1、YN2、YN3、YN4或對準顯微鏡AM1、AM2檢測之資訊,調整描繪單元UW1~UW5之Y倍率。例如,f-θ透鏡系85所含之遠心f-θ透鏡之像高與入射角成正比。因此,僅調整描繪單元UW1之Y倍率時,控制部16,可根據調整資訊(校準資訊)及以變位計YN1、YN2、YN3、YN4或對準顯微鏡AM1、AM2檢測之資訊,個別調整f-θ透鏡系85之焦點距離f,據以調整Y倍率。此整調整機構中,可組合例如用以進行倍率修正之彎板(bending plate)、遠心f-θ透鏡之倍率修正機構、用以進行位移調整之halving(可傾斜之平行平板玻璃)中之任一以上。此外,將以一定旋轉速度旋轉之旋轉多面鏡97之旋轉速度作成可略為改變,即可使與系統時脈SQ同步描繪之各點光SP(脈衝光)之間隔距離CXs略為改變(將相鄰點光彼此之重疊量略微錯開),結果亦能調整Y倍率。
In addition, the
第1實施形態之曝光裝置EX,如上述般包含以來自複數個描繪單元UW1~UW5各個之描繪光束LB,以包含形成在基板P上之複數個描繪線LL1~LL5之描繪面內之既定點旋轉軸I為中心,於前述描繪面內相對第1光學平台23使第2光學平台25位移之作為位移修正機構之移動機構24。因對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之
調整資訊(校準資訊),使複數個描繪線LL1~LL5相對Y方向有角度誤差,控制部16,可以對移動機構24之驅動部進行驅動控制,以使第2光學平台25旋轉抵銷角度誤差之旋轉量。
The exposure apparatus EX of the first embodiment includes the drawing beam LB from each of the plurality of drawing units UW1 to UW5 as described above, and includes a predetermined point in the drawing plane of the plurality of drawing lines LL1 to LL5 formed on the substrate
又,當產生需對各描繪單元UW1~UW5個別的進行旋轉修正時,可藉由使圖8所示之f-θ透鏡系85與第2柱面透鏡86繞光軸AXf微幅旋轉,據以使各描繪線LL1~LL5於基板P上個別的微幅旋轉(傾斜)。以旋轉多面鏡97掃描之光束LB,於非掃描方向係沿柱面透鏡86之母線成像(聚光),因此藉由柱面透鏡86繞光軸AXf之旋轉,可使各描繪線LL1~LL5旋轉(傾斜)。
In addition, when it is necessary to perform rotation correction on each of the drawing units UW1 to UW5 individually, the f-
第1實施形態之曝光裝置EX,只要處理上述步驟S4之控制裝置進行之描繪位置調整之處理之至少1種即可。又,第1實施形態之曝光裝置EX,亦可組合上述步驟S4之控制裝置進行之描繪位置調整之處理以進行處理。 The exposure apparatus EX of the first embodiment only needs to process at least one kind of processing for adjusting the drawing position by the control device in step S4. In addition, the exposure apparatus EX of the first embodiment may be combined with the processing of the drawing position adjustment performed by the control device of step S4 described above.
藉由以上說明之基板處理裝置之調整方法,於第1實施形態之曝光裝置EX,可省去(無需)用以抑制於基板P之寬度方向(Y方向)相鄰之圖案PT1~PT5彼此之接合誤差的測試曝光,或大幅減少其次數。因此,第1實施形態之曝光裝置EX,可縮短測試曝光、乾燥及顯影製程、曝光結果之確認作業等需耗費時間之校準作業。此外,第1實施形態之曝光裝置EX,可抑制因測試曝光而反饋之次數分之基板P的浪費。第1實施形態之曝光裝置EX,可更早的取得對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)。第1實施形態之曝光裝置EX,可根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整 資訊(校準資訊),預先進行修正,據以容易的修正在X方向或Y方向之位移、旋轉、倍率等之各成分。又,第1實施形態之曝光裝置EX,可提高在基板P上重疊曝光之精度。 By the adjustment method of the substrate processing apparatus described above, in the exposure apparatus EX of the first embodiment, the pattern PT1 to PT5 adjacent to each other in the width direction (Y direction) of the substrate P can be omitted (not necessary) Test exposure of joint error, or significantly reduce its frequency. Therefore, the exposure apparatus EX of the first embodiment can shorten the time-consuming calibration operations such as test exposure, drying and development processes, and confirmation of exposure results. In addition, the exposure apparatus EX of the first embodiment can suppress the waste of the substrate P by the number of times of feedback due to the test exposure. The exposure device EX of the first embodiment can obtain adjustment information (calibration information) corresponding to the arrangement state of a plurality of drawing lines LL1 to LL5 or the arrangement errors of each other earlier. The exposure apparatus EX of the first embodiment can be adjusted according to the arrangement state of the corresponding plural drawing lines LL1 to LL5 or the arrangement error of each other The information (calibration information) is corrected in advance, and the components of displacement, rotation, magnification, etc. in the X direction or Y direction are easily corrected accordingly. In addition, the exposure apparatus EX of the first embodiment can improve the accuracy of superimposed exposure on the substrate P.
又,第1實施形態之曝光裝置EX,雖係以光偏向器81包含聲光元件,以旋轉多面鏡97進行描繪光束LB之點掃描為例作了說明,但除點掃描之外,亦可以是使用DMD(Digital Micro mirror Device)或SLM(Spatial light modulator:空間光調變器)描繪圖案之方式。
In addition, although the exposure apparatus EX of the first embodiment is described by taking the case where the
其次,說明第2實施形態之曝光裝置EX。又,於第2實施形態,為扁免與第1實施形態重複之記載,僅針對與第1實施形態相異之部分進行說明,針對與第1實施形態相同之構成要素係賦予與第1實施形態相同符號加以說明。 Next, the exposure apparatus EX of the second embodiment will be described. In addition, in the second embodiment, in order to avoid duplication of the description of the first embodiment, only the parts that are different from the first embodiment will be described, and the same constituent elements as the first embodiment are given to the first embodiment. The same symbols are used for explanation.
第2實施形態之曝光裝置EX中,校準檢測系31之光電感測器31Cs並非檢測基準圖案(亦可作為基準標記加以利用)RMP而是檢測基板P上之對準標記Ks1~Ks3之反射光(散射光)。對準標記Ks1~Ks3係配置在通過複數個描繪單元UW1~UW5之各描繪線LL1~LL5之任一者之Y方向之基板P上之位置。當描繪光束LB之點光SP掃描到對準標記Ks1~Ks3時,於對準標記Ks1~Ks3反射之散射光即被光電感測器31Cs於亮視野或暗視野受光。
In the exposure apparatus EX of the second embodiment, the photodetector 31Cs of the
控制部16根據從光電感測器31Cs輸出之訊號,檢測對準標記Ks1~Ks3之邊緣位置。並與第1實施形態同樣的,控制部16可從以光電感測器31Cs檢測之檢測訊號,求出對應複數個描繪線LL1~LL5之配
置狀態或彼此之配置誤差之調整資訊(校準資訊)。
The
又,控制部16,可根據對應複數個描繪線LL1~LL5之配置狀態或彼此之配置誤差之調整資訊(校準資訊)及以對準顯微鏡AM1、AM2檢測之資訊,調整奇數號及偶數號描繪單元UW1~UW5之X方向或Y方向之描繪位置,以抵銷基板P之X方向或Y方向之誤差。當描繪光束LB之點光SP投射於對準標記Ks1~Ks3時,對準標記Ks1~Ks3上之感光層即感光,有可能於之後之製程中對準標記Ks1~Ks3潰散。因此,最好是能設置複數行對準標記Ks1~Ks3,對準顯微鏡AM1、AM2則讀取未因曝光潰散之對準標記Ks1~Ks3。
In addition, the
因此,第2實施形態之曝光裝置EX,可於圖案描繪用資料中包含,可因曝光潰散之對準標記Ks1~Ks3之近旁以描繪光束LB之點光SP掃描,而在不希望因曝光潰散之對準標記Ks1~Ks3之近旁則以點光SP不會照射之方式,進行光偏向器(AOM)81之ON/OFF的資料。據此,可在以描繪光束LB進行曝光之同時、大致即時取得校準資訊,且亦能讀取對準標記Ks1~Ks3(基板P之位置)。 Therefore, the exposure device EX of the second embodiment can be included in the data for pattern drawing, and the spot light SP of the drawing beam LB can be scanned near the alignment marks Ks1 to Ks3 of the exposure collapse, which is undesirable due to exposure collapse Near the alignment marks Ks1 to Ks3, the ON/OFF data of the optical deflector (AOM) 81 is performed in such a way that the spot light SP will not be irradiated. According to this, the calibration information can be obtained in real time while being exposed by the drawing beam LB, and the alignment marks Ks1 to Ks3 (the position of the substrate P) can also be read.
第2實施形態之曝光裝置EX,與第1實施形態之曝光裝置EX同樣的,可省去用以抑制接合誤差之測試曝光、或大幅減少其次數。除此之外,於第2實施形態之曝光裝置EX,可在基板P曝光圖案之同時,測量對應複數個描繪線LL1~LL5之配置狀態或彼此之配置關係等之誤差資訊,及早(大致即時)取得與之對應之調整資訊(校準資訊)。因此,第2實施形態之曝光裝置EX,可根據提早測量之誤差資訊、或調整資訊(校準資訊),一邊進行元件圖案之曝光、一邊逐次進行為保持既定精度之修正及 調整,而能容易的抑制於多描繪頭方式中成問題之於X方向或Y方向之位移誤差、旋轉誤差、倍率誤差等各誤差成分之描繪單元間接合精度之降低。據此,第2實施形態之曝光裝置EX,能將基板P上重疊曝光時之重疊精度維持於高狀態。 The exposure apparatus EX of the second embodiment is the same as the exposure apparatus EX of the first embodiment, and the test exposure for suppressing the joining error can be omitted or the number of times can be greatly reduced. In addition, in the exposure apparatus EX of the second embodiment, the exposure information of the substrate P can be measured at the same time as the error information corresponding to the arrangement status of the plurality of drawing lines LL1~LL5 or the arrangement relationship between each other, as early as ) Obtain corresponding adjustment information (calibration information). Therefore, according to the exposure device EX of the second embodiment, based on the error information measured earlier or the adjustment information (calibration information), while performing the exposure of the device pattern, the correction and the predetermined accuracy can be sequentially performed while maintaining Adjustment can easily suppress the decrease in the joining accuracy between the drawing units of each error component such as displacement error, rotation error, magnification error, etc. in the X-direction or Y-direction, which is a problem in the multi-drawer system. According to this, the exposure apparatus EX of the second embodiment can maintain the overlay accuracy at a high state during the overlay exposure on the substrate P.
<元件製造方法> <Component manufacturing method>
其次,參照圖25,說明元件製造方法。圖25係顯示各實施形態之元件製造方法的流程圖。 Next, referring to Fig. 25, a method of manufacturing a device will be described. FIG. 25 is a flowchart showing the device manufacturing method of each embodiment.
圖25所示之元件製造方法,首先,係進行例如使用有機EL等自發光元件形成之顯示面板之功能、性能設計,以CAD等設計所需之電路圖案及配線圖案(步驟S201)。並準備捲繞有作為顯示面板之基材之可撓性基板P(樹脂薄膜、金屬箔膜、塑膠等)之供應用捲筒(步驟S202)。又,於此步驟S202中準備之捲筒狀基板P,可以是視需要將其表面改質者、或事前已形成底層(例如透過印記(imprint)方式之微小凹凸)者、或預先積層有光感應性之功能膜或透明膜(絶緣材料)者 The device manufacturing method shown in FIG. 25 first performs function and performance design of a display panel formed using self-luminous elements such as organic EL, and designs circuit patterns and wiring patterns required by CAD or the like (step S201). And prepare a roll for supplying the flexible substrate P (resin film, metal foil film, plastic, etc.) as the base material of the display panel (step S202). In addition, the roll-shaped substrate P prepared in this step S202 may be one whose surface has been modified as necessary, or an underlayer has been formed in advance (for example, micro unevenness by imprint), or light has been deposited in advance Inductive functional film or transparent film (insulating material)
接著,於基板P上形成構成顯示面板元件以電極或配線、絶緣膜、TFT(薄膜半導體)等構成之底板層,並以積層於該底板之方式形成以有機EL等自發光元件構成之發光層(顯示像素部)(步驟S203)。於此步驟S203中,亦包含使用於先前各實施形態說明之曝光裝置EX,對光阻劑層進行曝光使之顯影的習知微影製程、對取代光阻劑而塗有感光性矽烷耦合劑之基板P進行圖案曝光以將表面改質為親撥水性以形成圖案的曝光製程、對光感應性之觸媒層進行圖案曝光以賦予選擇性之鍍敷還元性並以無電解鍍敷法形成金屬膜圖案(配線、電極等)的濕式製程、或以含有 銀奈米粒子之導電性墨水等描繪圖案的印刷製程等之處理。 Next, a substrate layer composed of electrodes or wiring, an insulating film, a TFT (thin film semiconductor), etc. constituting a display panel element is formed on the substrate P, and a light-emitting layer composed of a self-luminous element such as an organic EL is formed by being laminated on the substrate (Display pixel section) (step S203). In this step S203, the conventional photolithography process for exposing and developing the photoresist layer using the exposure device EX described in the previous embodiments is also included, and a photosensitive silane coupling agent is applied to replace the photoresist The substrate P is subjected to pattern exposure to modify the surface to hydrophilizing water to form a pattern exposure process, and the pattern exposure is applied to the photo-sensitive catalyst layer to impart selective plating reduction and formed by electroless plating Wet process of metal film patterns (wiring, electrodes, etc.), or containing The printing process of drawing patterns such as conductive ink of silver nanoparticles, etc.
接著,針對以捲筒方式於長條基板P上連續製造之每一顯示面板元件切割基板P、或於各顯示面板元件表面貼合保護膜(耐環境障壁層)或彩色濾光片膜等,組裝元件(步驟S204)。接著,進行顯示面板元件是否可正常作動、或是否滿足所欲性能及特性之檢查步驟(步驟S205)。經由以上方式,即能製造顯示面板(可撓性顯示器)。又,作成可撓性長條片狀基板之電子元件不限於顯示面板,亦可以是做為用以連接搭載於汽車或電車等之各種電子零件間之導線(配線帶)之可撓性配線網。 Next, for each display panel element that is continuously manufactured on the long substrate P in a roll, the substrate P is cut, or a protective film (environmental barrier layer) or color filter film is attached to the surface of each display panel element. Assemble the component (step S204). Next, a check step is performed whether the display panel element can operate normally, or whether it satisfies the desired performance and characteristics (step S205). Through the above method, a display panel (flexible display) can be manufactured. In addition, the electronic components made into a flexible long sheet substrate are not limited to display panels, but may also be used as flexible wiring networks for connecting wires (wiring tape) between various electronic components mounted in automobiles, trams, etc. .
31‧‧‧校準檢測系 31‧‧‧ Calibration and Inspection Department
31Cs‧‧‧光電感測器 31Cs‧‧‧Photoelectric sensor
41‧‧‧第1光學系 41‧‧‧First Optical Department
42‧‧‧第2光學系 42‧‧‧Second Optical Department
43‧‧‧第3光學系 43‧‧‧ Third Optical Department
44‧‧‧光束位移機構 44‧‧‧beam displacement mechanism
45‧‧‧光束位移機構 45‧‧‧beam displacement mechanism
51‧‧‧1/2波長板 51‧‧‧1/2 wave plate
52‧‧‧偏光鏡(偏光分束器) 52‧‧‧ Polarizer (polarizing beam splitter)
53‧‧‧散光器 53‧‧‧ Diffuser
54‧‧‧第1反射鏡 54‧‧‧First reflector
55‧‧‧第1中繼透鏡 55‧‧‧First relay lens
56‧‧‧第2中繼透鏡 56‧‧‧2nd relay lens
57‧‧‧第2反射鏡 57‧‧‧ 2nd reflector
58‧‧‧第3反射鏡 58‧‧‧ Third reflector
59‧‧‧第4反射鏡 59‧‧‧4th reflector
60‧‧‧第1分束器 60‧‧‧First beam splitter
61‧‧‧第5反射鏡 61‧‧‧ 5th reflector
62‧‧‧第2分束器 62‧‧‧Second beam splitter
63‧‧‧第3分束器 63‧‧‧3rd beam splitter
64‧‧‧第6反射鏡 64‧‧‧The 6th reflector
71‧‧‧第7反射鏡 71‧‧‧7th reflector
72‧‧‧第8反射鏡 72‧‧‧The 8th reflector
73‧‧‧第4分束器 73‧‧‧ 4th beam splitter
74‧‧‧第9反射鏡 74‧‧‧9th reflector
81‧‧‧光偏向器 81‧‧‧Optical deflector
82‧‧‧1/4波長板 82‧‧‧1/4 wavelength plate
84‧‧‧彎折鏡 84‧‧‧Bending mirror
85‧‧‧f-θ透鏡系 85‧‧‧f-θ lens system
86‧‧‧柱面透鏡 86‧‧‧Cylinder lens
86B‧‧‧Y倍率修正用光學構件(透鏡群) 86B‧‧‧Y magnification correction optical component (lens group)
91‧‧‧中繼透鏡 91‧‧‧Relay lens
92‧‧‧遮光板 92‧‧‧ Shading board
93‧‧‧中繼透鏡 93‧‧‧Relay lens
94‧‧‧中繼透鏡 94‧‧‧Relay lens
95‧‧‧柱面透鏡 95‧‧‧Cylinder lens
97‧‧‧旋轉多面鏡 97‧‧‧rotating polygon mirror
97a‧‧‧旋轉軸 97a‧‧‧rotation axis
97b‧‧‧反射面 97b‧‧‧Reflecting surface
AX2‧‧‧旋轉中心線 AX2‧‧‧Rotation centerline
CNT‧‧‧光源裝置 CNT‧‧‧Light source device
DR‧‧‧旋轉圓筒 DR‧‧‧rotating cylinder
EN1、EN2、EN3、EN4‧‧‧編碼器讀頭 EN1, EN2, EN3, EN4 ‧‧‧ Encoder read head
GPa、GPb‧‧‧標尺部 GPa, GPb‧‧‧ Ruler Department
I‧‧‧旋轉軸 I‧‧‧rotation axis
LB‧‧‧光束 LB‧‧‧beam
Le1~Le4‧‧‧設置方位線 Le1~Le4‧‧‧Set bearing line
P‧‧‧基板 P‧‧‧Substrate
PBS‧‧‧偏向分束器 PBS‧‧‧Beam splitter
Sf2‧‧‧軸部 Sf2‧‧‧Shaft
SL‧‧‧分歧光學系 SL‧‧‧Divisional optics
UW1~UW5‧‧‧描繪單元 UW1~UW5‧‧‧Drawing unit
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2014-075841 | 2014-04-01 | ||
JP2014075841 | 2014-04-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201932996A TW201932996A (en) | 2019-08-16 |
TWI684836B true TWI684836B (en) | 2020-02-11 |
Family
ID=54240539
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108135217A TWI695235B (en) | 2014-04-01 | 2015-03-27 | Pattern drawing device and element manufacturing method |
TW108114726A TWI684836B (en) | 2014-04-01 | 2015-03-27 | Pattern drawing device |
TW109101148A TWI709006B (en) | 2014-04-01 | 2015-03-27 | Pattern drawing device and pattern drawing method |
TW107127840A TWI661280B (en) | 2014-04-01 | 2015-03-27 | Substrate processing method and substrate processing device |
TW107127841A TWI674484B (en) | 2014-04-01 | 2015-03-27 | Substrate processing method |
TW104109884A TWI639064B (en) | 2014-04-01 | 2015-03-27 | Substrate processing device and element manufacturing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108135217A TWI695235B (en) | 2014-04-01 | 2015-03-27 | Pattern drawing device and element manufacturing method |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109101148A TWI709006B (en) | 2014-04-01 | 2015-03-27 | Pattern drawing device and pattern drawing method |
TW107127840A TWI661280B (en) | 2014-04-01 | 2015-03-27 | Substrate processing method and substrate processing device |
TW107127841A TWI674484B (en) | 2014-04-01 | 2015-03-27 | Substrate processing method |
TW104109884A TWI639064B (en) | 2014-04-01 | 2015-03-27 | Substrate processing device and element manufacturing method |
Country Status (6)
Country | Link |
---|---|
JP (3) | JP6597602B2 (en) |
KR (2) | KR102377752B1 (en) |
CN (4) | CN106133610B (en) |
HK (3) | HK1247996A1 (en) |
TW (6) | TWI695235B (en) |
WO (1) | WO2015152218A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6597601B2 (en) * | 2014-04-01 | 2019-10-30 | 株式会社ニコン | Substrate processing apparatus and device manufacturing method |
JP6741018B2 (en) * | 2015-10-30 | 2020-08-19 | 株式会社ニコン | Substrate processing equipment |
JP6607002B2 (en) * | 2015-11-30 | 2019-11-20 | 株式会社ニコン | Pattern drawing device |
JP6690214B2 (en) * | 2015-12-09 | 2020-04-28 | 株式会社ニコン | Pattern drawing device |
CN110221527A (en) * | 2015-12-17 | 2019-09-10 | 株式会社尼康 | Pattern plotter device |
CN108885408B (en) | 2016-03-30 | 2021-02-05 | 株式会社尼康 | Pattern drawing device |
CN109804314B (en) * | 2016-09-29 | 2022-04-01 | 株式会社尼康 | Light beam scanning device |
TWI736621B (en) * | 2016-10-04 | 2021-08-21 | 日商尼康股份有限公司 | Pattern drawing device and pattern drawing method |
WO2018164087A1 (en) * | 2017-03-10 | 2018-09-13 | 株式会社ニコン | Pattern drawing device and pattern exposure device |
CN111065972A (en) * | 2017-09-26 | 2020-04-24 | 株式会社尼康 | Pattern drawing device |
JP7136601B2 (en) * | 2018-06-25 | 2022-09-13 | 川崎重工業株式会社 | Light guide device and laser processing device |
JP2020021079A (en) * | 2019-09-04 | 2020-02-06 | 株式会社ニコン | Pattern drawing apparatus |
JP2020024443A (en) * | 2019-10-17 | 2020-02-13 | 株式会社ニコン | Pattern drawing apparatus |
JP7435748B2 (en) * | 2020-04-06 | 2024-02-21 | 株式会社ニコン | Pattern forming device and pattern forming method |
JP7521988B2 (en) * | 2020-09-23 | 2024-07-24 | 株式会社Screenホールディングス | Substrate position detection method, drawing method, substrate position detection device, and drawing device |
JP7334708B2 (en) * | 2020-10-20 | 2023-08-29 | 株式会社豊田自動織機 | Autonomous mobile |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007298603A (en) * | 2006-04-28 | 2007-11-15 | Shinko Electric Ind Co Ltd | Drawing device and drawing method |
JP2010191990A (en) * | 2002-01-08 | 2010-09-02 | Tivo Inc | Electronic content distribution and exchange system |
WO2011099563A1 (en) * | 2010-02-12 | 2011-08-18 | 株式会社ニコン | Substrate processing device |
JP2014035412A (en) * | 2012-08-08 | 2014-02-24 | Nikon Corp | Exposure device and device manufacturing method |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2653782B2 (en) * | 1986-05-20 | 1997-09-17 | 東芝機械株式会社 | Laser drawing equipment |
JP3140185B2 (en) * | 1992-07-13 | 2001-03-05 | 富士通株式会社 | Image forming device |
JPH08110488A (en) * | 1994-10-11 | 1996-04-30 | Canon Inc | Optical scanning device |
JPH10142538A (en) * | 1996-11-12 | 1998-05-29 | Asahi Optical Co Ltd | Laser plotting device having multihead scanning optical system |
US6037967A (en) * | 1996-12-18 | 2000-03-14 | Etec Systems, Inc. | Short wavelength pulsed laser scanner |
JP4232130B2 (en) * | 1998-03-11 | 2009-03-04 | 株式会社ニコン | Laser apparatus and light irradiation apparatus and exposure method using this laser apparatus |
JP3945951B2 (en) * | 1999-01-14 | 2007-07-18 | 日立ビアメカニクス株式会社 | Laser processing method and laser processing machine |
JP4375846B2 (en) * | 1999-09-10 | 2009-12-02 | 古河電気工業株式会社 | Laser equipment |
JP2001133710A (en) * | 1999-11-05 | 2001-05-18 | Asahi Optical Co Ltd | Laser plotting device having multi-head scanning optical system |
JP3749083B2 (en) * | 2000-04-25 | 2006-02-22 | 株式会社ルネサステクノロジ | Manufacturing method of electronic device |
JP3945966B2 (en) * | 2000-07-27 | 2007-07-18 | 株式会社リコー | Image forming apparatus |
JP2002029094A (en) * | 2000-07-18 | 2002-01-29 | Konica Corp | Imaging apparatus |
JP3656959B2 (en) * | 2001-05-11 | 2005-06-08 | 大日本スクリーン製造株式会社 | Cylindrical outer surface scanning device and plate size checking method |
JP2004086193A (en) * | 2002-07-05 | 2004-03-18 | Nikon Corp | Light source device and light irradiation apparatus |
JP2004146681A (en) * | 2002-10-25 | 2004-05-20 | Sumitomo Electric Ind Ltd | Fiber for light amplification, light amplifier, light source device, optical treatment device, and exposure device |
JP4351509B2 (en) * | 2003-09-19 | 2009-10-28 | 株式会社リコー | Rotating Body Position Control Method, Rotating Body Position Control Device, Image Forming Device, Image Reading Device, Recording Medium |
JP2007506136A (en) * | 2003-09-22 | 2007-03-15 | オーボテック リミテッド | Color filter direct drawing system and direct drawing method |
US20050200929A1 (en) * | 2004-03-15 | 2005-09-15 | Michael Plotkin | Out of plane start of scan |
KR101433496B1 (en) * | 2004-06-09 | 2014-08-22 | 가부시키가이샤 니콘 | Exposure system and device production method |
JP2006098719A (en) * | 2004-09-29 | 2006-04-13 | Fuji Photo Film Co Ltd | Exposure apparatus |
JP4853388B2 (en) * | 2007-06-05 | 2012-01-11 | コニカミノルタビジネステクノロジーズ株式会社 | Multi-beam scanning apparatus and image forming apparatus provided with the apparatus |
FR2922330A1 (en) * | 2007-10-15 | 2009-04-17 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING A MASK FOR HIGH RESOLUTION LITHOGRAPHY |
JP5448240B2 (en) * | 2008-10-10 | 2014-03-19 | 株式会社ニコン | Display element manufacturing equipment |
JP5094678B2 (en) * | 2008-10-20 | 2012-12-12 | キヤノン株式会社 | Scanning optical unit and color image forming apparatus using the same |
US8541163B2 (en) * | 2009-06-05 | 2013-09-24 | Nikon Corporation | Transporting method, transporting apparatus, exposure method, and exposure apparatus |
CN102081307B (en) * | 2009-11-26 | 2013-06-19 | 上海微电子装备有限公司 | Method for controlling exposure dose of photoetching machine |
CN102770810B (en) * | 2010-02-23 | 2016-01-06 | Asml荷兰有限公司 | Lithographic equipment and device making method |
CN201820072U (en) * | 2010-08-12 | 2011-05-04 | 志圣科技(广州)有限公司 | Double-sided exposure device |
WO2013146184A1 (en) * | 2012-03-26 | 2013-10-03 | 株式会社ニコン | Substrate processing device, processing device, and method for manufacturing device |
JP6074898B2 (en) * | 2012-03-26 | 2017-02-08 | 株式会社ニコン | Substrate processing equipment |
CN104380204B (en) * | 2012-06-21 | 2016-10-19 | 株式会社尼康 | Illuminator, processing means and manufacturing method |
JP6091792B2 (en) * | 2012-07-26 | 2017-03-08 | 株式会社ミクニ | Electric pump |
KR101907365B1 (en) * | 2012-08-28 | 2018-10-11 | 가부시키가이샤 니콘 | Substrate processing device |
JP2014048575A (en) * | 2012-09-03 | 2014-03-17 | Opcell Co Ltd | Method for generating many micropore in thin film at high speed and device using the same |
CN106933065B (en) * | 2012-09-14 | 2019-03-05 | 株式会社尼康 | Substrate board treatment |
-
2015
- 2015-03-27 TW TW108135217A patent/TWI695235B/en active
- 2015-03-27 TW TW108114726A patent/TWI684836B/en active
- 2015-03-27 TW TW109101148A patent/TWI709006B/en active
- 2015-03-27 TW TW107127840A patent/TWI661280B/en active
- 2015-03-27 TW TW107127841A patent/TWI674484B/en active
- 2015-03-27 TW TW104109884A patent/TWI639064B/en active
- 2015-03-31 WO PCT/JP2015/060079 patent/WO2015152218A1/en active Application Filing
- 2015-03-31 KR KR1020167027089A patent/KR102377752B1/en active IP Right Grant
- 2015-03-31 CN CN201580017855.8A patent/CN106133610B/en active Active
- 2015-03-31 JP JP2016511920A patent/JP6597602B2/en active Active
- 2015-03-31 CN CN201710536605.6A patent/CN107255913B/en active Active
- 2015-03-31 CN CN201710536857.9A patent/CN107272353B/en active Active
- 2015-03-31 KR KR1020227009101A patent/KR102430139B1/en active IP Right Grant
- 2015-03-31 CN CN201711205151.0A patent/CN107957660B/en active Active
-
2017
- 2017-04-06 HK HK18107244.9A patent/HK1247996A1/en unknown
- 2017-04-06 HK HK18104876.1A patent/HK1245420A1/en not_active IP Right Cessation
- 2017-04-06 HK HK18104840.4A patent/HK1245417B/en not_active IP Right Cessation
-
2018
- 2018-11-21 JP JP2018218661A patent/JP2019023764A/en active Pending
-
2019
- 2019-10-01 JP JP2019181541A patent/JP2019215588A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010191990A (en) * | 2002-01-08 | 2010-09-02 | Tivo Inc | Electronic content distribution and exchange system |
JP2007298603A (en) * | 2006-04-28 | 2007-11-15 | Shinko Electric Ind Co Ltd | Drawing device and drawing method |
WO2011099563A1 (en) * | 2010-02-12 | 2011-08-18 | 株式会社ニコン | Substrate processing device |
JP2014035412A (en) * | 2012-08-08 | 2014-02-24 | Nikon Corp | Exposure device and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
HK1245417B (en) | 2020-03-27 |
CN107957660B (en) | 2020-10-23 |
CN107272353B (en) | 2019-06-14 |
TW201600941A (en) | 2016-01-01 |
CN107255913B (en) | 2019-10-11 |
KR20170002375A (en) | 2017-01-06 |
HK1247996A1 (en) | 2018-10-05 |
KR102377752B1 (en) | 2022-03-24 |
TWI709006B (en) | 2020-11-01 |
JP2019215588A (en) | 2019-12-19 |
CN107255913A (en) | 2017-10-17 |
TWI674484B (en) | 2019-10-11 |
JP6597602B2 (en) | 2019-10-30 |
KR20220038545A (en) | 2022-03-28 |
TW201842420A (en) | 2018-12-01 |
CN106133610A (en) | 2016-11-16 |
TW201932996A (en) | 2019-08-16 |
TW202004368A (en) | 2020-01-16 |
CN107272353A (en) | 2017-10-20 |
TW201842419A (en) | 2018-12-01 |
CN106133610B (en) | 2017-12-29 |
KR102430139B1 (en) | 2022-08-08 |
JP2019023764A (en) | 2019-02-14 |
TWI695235B (en) | 2020-06-01 |
CN107957660A (en) | 2018-04-24 |
WO2015152218A1 (en) | 2015-10-08 |
TWI661280B (en) | 2019-06-01 |
TW202018436A (en) | 2020-05-16 |
HK1245420A1 (en) | 2018-08-24 |
JPWO2015152218A1 (en) | 2017-04-13 |
TWI639064B (en) | 2018-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI684836B (en) | Pattern drawing device | |
JP6677287B2 (en) | Adjustment method for substrate processing equipment | |
JPWO2017094770A1 (en) | Exposure apparatus, exposure system, substrate processing method, and device manufacturing apparatus | |
TWI699624B (en) | Substrate processing device and component manufacturing method | |
TWI689025B (en) | Substrate processing device |