TWI530011B - 電化學氫觸媒電力系統 - Google Patents

電化學氫觸媒電力系統 Download PDF

Info

Publication number
TWI530011B
TWI530011B TW100109487A TW100109487A TWI530011B TW I530011 B TWI530011 B TW I530011B TW 100109487 A TW100109487 A TW 100109487A TW 100109487 A TW100109487 A TW 100109487A TW I530011 B TWI530011 B TW I530011B
Authority
TW
Taiwan
Prior art keywords
hydrogen
catalyst
reaction
energy
metal
Prior art date
Application number
TW100109487A
Other languages
English (en)
Other versions
TW201138198A (en
Inventor
雷戴爾L 米爾斯
Original Assignee
黑光能源公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黑光能源公司 filed Critical 黑光能源公司
Publication of TW201138198A publication Critical patent/TW201138198A/zh
Application granted granted Critical
Publication of TWI530011B publication Critical patent/TWI530011B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0094Atomic hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

電化學氫觸媒電力系統 相關申請案之交叉引用
本申請案主張以下美國臨時申請案之優先權的權益:2010年3月18日申請之第61/315,186號;2010年3月24日申請之第61/317,176號;2010年4月30日申請之第61/329.959號;2010年5月7日申請之第61/332,526號;2010年5月21日申請之第61/347,130號;2010年6月18日申請之第61/356,348號;2010年6月25日申請之第61/358,667號;2010年7月9日申請之第61/363,090號;2010年7月16日申請之第61/365,051號;2010年7月30日申請之第61/369,289號;2010年8月6日申請之第61/371,592號;2010年8月13日申請之第61/373,495號;2010年8月27日申請之第61/377,613號;2010年9月17日申請之第61/383,929號;2010年10月1日申請之第61/389,006號;2010年10月15日申請之第61/393,719號;2010年10月29日申請之第61/408,384號;2010年11月12日申請之第61/413,243號;2010年12月3日申請之第61/419,590號;2010年12月20日申請之第61/425,105號;2011年1月7日申請之第61/430,814號;2011年1月28日申請之第61/437,377號;2011年2月11日申請之第61/442,015號;及2011年3月4日申請之第61/449,474號,所有該等文獻均以全文引用的方式併入本文中。
本發明係關於一種電池或燃料電池系統,其由使氫催化反應至較低能量態(低能量氫)而產生電動勢(EMF),從而使自低能量氫反應釋放之能量直接轉換成電,該系統包含:於電池操作期間在各別電子流及離子質量輸送下構成低能量氫反應物之反應物;包含陰極之陰極隔室;包含陽極之陽極隔室;及氫來源。
本發明之其他實施例係關於一種電池或燃料電池系統,其由使氫催化反應至較低能態(低能量氫)而產生電動勢(EMF),從而使自低能量氫反應釋放之能量直接轉換成電,該系統包含至少兩種選自以下之組分:觸媒或觸媒來源;原子氫或原子氫來源;用於形成觸媒或觸媒來源及原子氫或原子氫來源之反應物;一或多種引發原子氫催化之反應物;及使催化可行之載體,其中形成低能量氫之電池或燃料電池系統可進一步包括包含陰極之陰極隔室、包含陽極之陽極隔室、視情況選用之鹽橋、於電池操作期間在各別電子流及離子質量輸送下構成低能量氫反應物之反應物,及氫來源。
在本發明之一個實施例中,用於起始低能量氫反應(諸如本發明之交換反應)之反應混合物及反應為藉由使氫反應形成低能量氫來產生電力的燃料電池之基礎。由於氧化還原電池之半反應(half reaction),因此產生低能量氫之反應混合物係藉由電子經由外部電路遷移及經由各別路徑進行離子質量輸送以形成電路來構成。產生由半電池反應之總和得到的低能量氫之總反應及相應反應混合物可包含本發明之熱功率及低能量氫化學產生之反應類型。
在本發明之一個實施例中,在不同電池隔室中提供處於不同狀態或條件(諸如不同溫度、壓力及濃度中之至少一者)下之不同反應物或相同反應物,該等電池隔室藉由各別導管連接以便電子與離子在該等隔室之間形成電路。由於低能量氫反應對自一個隔室至另一隔室之質量流的依賴性,因此產生個別隔室之電極之間的電位及電力增加或系統之熱增加。該質量流提供以下至少一項:形成可起反應而產生低能量氫之反應混合物及形成允許以實質速率發生低能量氫反應之條件。理想的是,在無電子流及離子質量輸送存在下,低能量氫反應不發生或不以明顯速率發生。
在另一實施例中,相較於經由電極施加之電解功率,電池產生電力及熱功率增加中之至少一者。
在一個實施例中,用於形成低能量氫之反應物為熱再生或電解再生反應物中之至少一者。
本發明之一個實施例係關於一種產生電動勢(EMF)及熱能之電化學電力系統,其包含:陰極;陽極;及於電池操作期間在各別電子流及離子質量輸送下構成低能量氫反應物之反應物,其包含至少兩種選自以下之組分:a)觸媒來源或觸媒,其包含nH、OH、OH-、H2O、H2S或MNH2之群中之至少一者,其中n為整數且M為鹼金屬;b)原子氫來源或原子氫;c)用於形成觸媒來源、觸媒、原子氫來源及原子氫中之至少一者之反應物;一或多種引發原子氫催化之反應物;及載體。至少一個以下條件可出現於該電化學電力系統中:a)藉由該反應混合物之反應形成原子氫及氫觸媒;b)一種藉助於其經歷反應之反應物使得該催化起作用;及c)引起該催化反應之反應包含選自以下之反應:(i)放熱反應;(ii)偶合反應;(iii)自由基反應;(iv)氧化還原反應;(v)交換反應;及(vi)吸氣劑(getter)、載體或基質輔助催化反應。在一個實施例中,在不同電池隔室中提供處於不同狀態或條件下的a)不同反應物或b)相同反應物中之至少一者,該等電池隔室藉由各別導管連接以便電子與離子在該等隔室之間形成電路。內部質量流及外部電子流中之至少一者可使至少一個以下條件出現:a)形成可起反應而產生低能量氫之反應混合物;及b)形成允許以實質速率發生低能量氫反應之條件。在一個實施例中,用於形成低能量氫之反應物為熱再生或電解再生反應物中之至少一者。電能及熱能輸出中之至少一者可能超過自產物再生反應物所需者。
本發明之其他實施例係關於一種產生電動勢(EMF)及熱能之電化學電力系統,其包含:陰極;陽極;及於電池操作期間在各別電子流及離子質量輸送下構成低能量氫反應物之反應物,其包含至少兩種選自以下之組分:a)觸媒來源或觸媒,其包含至少一種選自以下之氧物質:O2、O3、O、O+、H2O、H3O+、OH、OH+、OH-、HOOH、OOH-、O-、O2-,其經歷與H物質之氧化反應而形成OH及H2O中之至少一者,其中該H物質包含以下中之至少一者:H2、H、H+、H2O、H3O+、OH、OH+、OH-、HOOH及OOH-;b)原子氫來源或原子氫;c)用於形成觸媒來源、觸媒、原子氫來源及原子氫中之至少一者之反應物;及一或多種引發原子氫催化之反應物;及載體。O物質來源可包含至少一種化合物或化合物混合物,其包含:O、O2、空氣、氧化物、NiO、CoO、鹼金屬氧化物、Li2O、Na2O、K2O、鹼土金屬氧化物、MgO、CaO、SrO及BaO、以下之群的氧化物:Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W、過氧化物、鹼金屬過氧化物、超氧化物、鹼金屬或鹼土金屬超氧化物、氫氧化物、鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及第III、IV或V族元素之氫氧化物、氧(氫氧)化物(oxyhydroxide)、AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)。H物質來源可包含至少一種化合物或化合物混合物,其包含H、金屬氫化物、LaNi5H6、氫氧化物、氧(氫氧)化物、H2、H2來源、H2及氫可透膜、Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)及Fe(H2)。
在另一實施例中,電化學電力系統包含氫陽極;包含氫氧化物之熔鹽電解質;及O2及H2O陰極中之至少一者。氫陽極可包含以下至少一者:氫可透電極,諸如以下中之至少一者:Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)及Fe(H2);可噴射H2之多孔電極;及氫化物,諸如選自以下之氫化物:R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2;及能夠儲存氫之其他合金:AB5(LaCePrNdNiCoMnAl)或AB2(VTiZrNiCrCoMnAlSn)型(其中「ABx」名稱係指A型元素(LaCePrNd或TiZr)與B型元素(VNiCrCoMnAlSn)之比)、AB5型:MmNi3.2Co1.0Mn0.6Al0.11Mo0.09(Mm=密鈰合金(misch metal):25重量% La、50重量% Ce、7重量% Pr、18重量% Nd)、AB2型:Ti0.51Zr0.49V0.70Ni1.18Cr0.12合金、基於鎂之合金、Mg1.9Al0.1Ni0.8Co0.1Mn0.1合金、Mg0.72Sc0.28(Pd0.012+Rh0.012)及Mg80Ti20、Mg80V20、La0.8Nd0.2Ni2.4Co2.5Si0.1、LaNi5-xMx(M=Mn、Al)、(M=Al、Si、Cu)、(M=Sn)、(M=Al、Mn、Cu)及LaNi4Co、MmNi3.55Mn0.44Al0.3Co0.75、LaNi3.55Mn0.44Al0.3Co0.75、MgCu2、MgZn2、MgNi2、AB化合物、TiFe、TiCo及TiNi、ABn化合物(n=5、2或1)、AB3-4化合物、ABx(A=La、Ce、Mn、Mg;B=Ni、Mn、Co、Al)、ZrFe2、Zr0.5Cs0.5Fe2、Zr0.8Sc0.2Fe2、YNi5、LaNi5、LaNi4.5Co0.5、(Ce、La、Nd、Pr)Ni5、密鈰合金-鎳合金、Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5、La2Co1Ni9及TiMn2。熔鹽可包含與至少一種其他鹽之氫氧化物,該其他鹽諸如選自一或多種其他氫氧化物、鹵化物、硝酸鹽、硫酸鹽、碳酸鹽及磷酸鹽。熔鹽可包含至少一種選自以下之鹽混合物:CsNO3-CsOH、CsOH-KOH、CsOH-LiOH、CsOH-NaOH、CsOH-RbOH、K2CO3-KOH、KBr-KOH、KCl-KOH、KF-KOH、KI-KOH、KNO3-KOH、KOH-K2SO4、KOH-LiOH、KOH-NaOH、KOH-RbOH、Li2CO3-LiOH、LiBr-LiOH、LiCl-LiOH、LiF-LiOH、LiI-LiOH、LiNO3-LiOH、LiOH-NaOH、LiOH-RbOH、Na2CO3-NaOH、NaBr-NaOH、NaCl-NaOH、NaF-NaOH、NaI-NaOH、NaNO3-NaOH、NaOH-Na2SO4、NaOH-RbOH、RbCl-RbOH、RbNO3-RbOH、LiOH-LiX、NaOH-NaX、KOH-KX、RbOH-RbX、CsOH-CsX、Mg(OH)2-MgX2、Ca(OH)2-CaX2、Sr(OH)2-SrX2或Ba(OH)2-BaX2(其中X=F、Cl、Br或I)及LiOH、NaOH、KOH、RbOH、CsOH、Mg(OH)2、Ca(OH)2、Sr(OH)2或Ba(OH)2及以下一或多者:AlX3、VX2、ZrX2、TiX3、MnX2、ZnX2、CrX2、SnX2、InX3、CuX2、NiX2、PbX2、SbX3、BiX3、CoX2、CdX2、GeX3、AuX3、IrX3、FeX3、HgX2、MoX4、OsX4、PdX2、ReX3、RhX3、RuX3、SeX2、AgX2、TcX4、TeX4、TlX及WX4(其中X=F、Cl、Br或I)。熔鹽可包含為鹽混合物電解質之陰離子所共用之陽離子;為陽離子所共用之陰離子,且該氫氧化物對混合物中之其他鹽穩定。
在本發明之另一實施例中,電化學電力系統包含[M"(H2)/MOH-M'鹵離子/M''']及[M"(H2)/M(OH)2-M'鹵離子/M''']中之至少一者,其中M為鹼金屬或鹼土金屬,M'為如下特徵之金屬,其氫氧化物及氧化物為穩定性小於鹼金屬或鹼土金屬之氫氧化物及氧化物中的至少一種,或與水具有低反應性,M"為氫可透金屬,且M'''為導體。在一個實施例中,M'為諸如選自以下之金屬:Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn、W、Al、V、Zr、Ti、Mn、Zn、Cr、In及Pb。或者,M及M'可為金屬,諸如獨立地選自以下之金屬:Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Al、V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W。其他例示性系統包含[M'(H2)/MOH M"X/M'''],其中M、M'、M"及M'''為金屬陽離子或金屬,X為陰離子,諸如選自氫氧根、鹵離子、硝酸根、硫酸根、碳酸根及磷酸根之陰離子,且M'為H2可透。在一個實施例中,氫陽極包含金屬,諸如至少一種選自以下之金屬:V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W,其可在放電期間與電解質反應。在另一實施例中,電化學電力系統包含氫來源;能夠形成OH、OH-及H2O觸媒中之至少一者且提供H之氫陽極;O2及H2O中之至少一者之來源;能夠還原H2O或O2中之至少一者之陰極;鹼性電解質;能夠收集及再循環H2O蒸氣、N2及O2中之至少一者之可選系統,及用於收集及再循環H2之系統。
本發明進一步係關於一種包含陽極之電化學電力系統,其包含以下至少一項:金屬,諸如選自以下之金屬:V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W,及金屬氫化物,諸如選自以下之金屬氫化物:R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2,及能夠儲存氫之其他合金,諸如選自以下之其他合金:AB5(LaCePrNdNiCoMnAl)或AB2(VTiZrNiCrCoMnAlSn)型(其中「AB x 」名稱係指A型元素(LaCePrNd或TiZr)與B型元素(VNiCrCoMnAlSn)之比)、AB5型:MmNi3.2Co1.0Mn0.6Al0.11Mo0.09(Mm=密鈰合金:25重量% La、50重量% Ce、7重量% Pr、18重量% Nd)、AB2型:Ti0.51Zr0.49V0.70Ni1.18Cr0.12合金、基於鎂之合金、Mg1.9Al0.1Ni0.8Co0.1Mn0.1合金、Mg0.72Sc0.28(Pd0.012+Rh0.012)及Mg80Ti20、Mg80V20、La0.8Nd0.2Ni2.4Co2.5Si0.1、LaNi5-xMx(M=Mn、Al)、(M=Al、Si、Cu)、(M=Sn)、(M=Al、Mn、Cu)及LaNi4Co、MmNi3.55Mn0.44Al0.3Co0.75、LaNi3.55Mn0.44Al0.3Co0.75、MgCu2、MgZn2、MgNi2,AB化合物、TiFe、TiCo及TiNi、ABn化合物(n=5、2或1)、AB3-4化合物、ABx(A=La、Ce、Mn、Mg;B=Ni、Mn、Co、Al)、ZrFe2、Zr0.5Cs0.5Fe2、Zr0.8Sc0.2Fe2、YNi5、LaNi5、LaNi4.5Co0.5、(Ce、La、Nd、Pr)Ni5、密鈰合金-鎳合金、Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5、La2Co1Ni9及TiMn2;隔板(separator);鹼性電解質水溶液;O2及H2O還原陰極中之至少一者;及空氣及O2中之至少一者。電化系統可進一步包含電解系統,其間歇地將電池充電及放電,使得淨能平衡增加。或者,電化學電力系統可包含或進一步包含氫化系統,其藉由再氫化(rehydriding)氫化物陽極使電力系統再生。
另一實施例包含產生電動勢(EMF)及熱能之電化學電力系統,其包含熔融鹼金屬陽極;β-氧化鋁固體電解質(BASE),及包含氫氧化物之熔鹽陰極。觸媒或觸媒來源可選自OH、OH-、H2O、NaH、Li、K、Rb+及Cs。熔鹽陰極可包含鹼金屬氫氧化物。系統可進一步包含氫反應器及金屬-氫氧化物分離器,其中鹼金屬陰極及鹼金屬氫氧化物陰極係藉由氫化產物氧化物及分離所得鹼金屬及金屬氫氧化物來再生。
電化學電力系統之另一實施例包含陽極,其包含氫來源,諸如選自以下之氫來源:氫可透膜及H2氣體及氫化物,其進一步包含熔融氫氧化物;β-氧化鋁固體電解質(BASE),及陰極,其包含熔融元素及熔融鹵化物鹽或混合物中之至少一者。適合之陰極包含熔融元素陰極,其包含In、Ga、Te、Pb、Sn、Cd、Hg、P、S、I、Se、Bi及As之一。或者,陰極可為熔鹽陰極,其包含NaX(X為鹵離子)及以下之群中一或多者:NaX、AgX、AlX3、AsX3、AuX、AuX3、BaX2、BeX2、BiX3、CaX2、CdX3、CeX3、CoX2、CrX2、CsX、CuX、CuX2、EuX3、FeX2、FeX3、GaX3、GdX3、GeX4、HfX4、HgX、HgX2、InX、InX2、InX3、IrX、IrX2、KX、KAgX2、KAlX4、K3AlX6、LaX3、LiX、MgX2、MnX2、MoX4、MoX5、MoX6、NaAlX4、Na3AlX6、NbX5、NdX3、NiX2、OsX3、OsX4、PbX2、PdX2、PrX3、PtX2、PtX4、PuX3、RbX、ReX3、RhX、RhX3、RuX3、SbX3、SbX5、ScX3、SiX4、SnX2、SnX4、SrX2、ThX4、TiX2、TiX3、TlX、UX3、UX4、VX4、WX6、YX3、ZnX2及ZrX4
產生電動勢(EMF)及熱能之電化學電力系統之另一實施例包含陽極,其包含Li;電解質,其包含有機溶劑,及無機Li電解質及LiPF6中之至少一者;烯烴隔板,及陰極,其包含以下中之至少一者:氧(氫氧)化物、AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)。
在另一實施例中,電化學電力系統包含陽極,其包含以下中之至少一者:Li、鋰合金、Li3Mg,及Li-N-H系統之物質;熔鹽電解質,及氫陰極,其包含以下中之至少一者:H2氣體及多孔陰極、H2及氫可透膜,及金屬氫化物、鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及稀土金屬氫化物之一。
本發明進一步係關於一種電化學電力系統,其包含電池a)至h)中之至少一者,其包含:
a)(i)陽極,其包含氫可透金屬及氫氣,諸如選自以下者:Ni(H2)、V(H2)、Ti(H2)、Fe(H2)、Nb(H2);或金屬氫化物,諸如選自以下之金屬氫化物:LaNi5H6、TiMn2Hx及La2Ni9CoH6(x為整數);(ii)熔融電解質,諸如選自以下之熔融電解質:MOH或M(OH)2,或MOH或M(OH)2與M'X或M'X2,其中M及M'為金屬,諸如獨立地選自以下之金屬:Li、Na、K、Rb、Cs、Mg、Ca、Sr及Ba,且X為陰離子,諸如選自氫氧根、鹵離子、硫酸根及碳酸根之陰離子,及(iii)陰極,其包含可與陽極相同之金屬,且電池a)進一步包含空氣或O2
b)(i)陽極,其包含至少一種金屬,諸如選自以下之金屬:R-Ni、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn、W、Al、V、Zr、Ti、Mn、Zn、Cr、In及Pb;(ii)電解質,其包含濃度範圍為約10 M至飽和之鹼金屬氫氧化物水溶液;(iii)烯烴隔板,及(iv)碳陰極,且電池b)進一步包含空氣或O2
c)(i)陽極,其包含熔融NaOH及氫可透膜,諸如Ni及氫氣;(ii)電解質,其包含β氧化鋁固體電解質(BASE),及(iii)陰極,其包含熔融共溶鹽,諸如NaCl-MgCl2、NaCl-CaCl2或MX-M'X2'(M為鹼金屬、M'為鹼土金屬,且X及X'為鹵離子);
d)(i)包含熔融Na之陽極;(ii)電解質,其包含β氧化鋁固體電解質(BASE),及(iii)包含熔融NaOH之陰極;
e)(i)陽極,其包含氫化物,諸如LaNi5H6;(ii)電解質,其包含濃度範圍為約10 M至飽和之鹼金屬氫氧化物水溶液;(iii)烯烴隔板,及(iv)碳陰極,且電池e)進一步包含空氣或O2
f)(i)包含Li之陽極;(ii)烯烴隔板;(iii)有機電解質,諸如包含LP30及LiPF6之有機電解質,及(iv)陰極,其包含氧(氫氧)化物,諸如CoO(OH);
g)(i)陽極,其包含鋰合金,諸如Li3Mg;(ii)熔鹽電解質,諸如LiCl-KCl或MX-M'X'(M及M'為鹼金屬,X及X'為鹵離子),及(iii)陰極,其包含金屬氫化物,諸如選自以下之金屬氫化物:CeH2、LaH2、ZrH2及TiH2,且進一步包含碳黑,及
h)(i)包含Li之陽極;(ii)熔鹽電解質,諸如LiCl-KCl或MX-M'X'(M及M'為鹼金屬,X及X'為鹵離子),及(iii)陰極,其包含金屬氫化物,諸如選自以下之金屬氫化物:CeH2、LaH2、ZrH2及TiH2,且進一步包含碳黑。
本發明之其他實施例係關於觸媒系統,諸如電化學電池之觸媒系統,其包含能夠使得原子H呈其n=1狀態以形成較低能態之氫觸媒、原子氫來源,及能夠起始及傳播反應以形成較低能量氫之其他物質。在某些實施例中,本發明係關於反應混合物,其包含至少一種原子氫來源及至少一種觸媒或觸媒來源以支持氫催化以形成低能量氫。本文對於固體及液體燃料所揭示之反應物及反應亦為包含相混合物之異質燃料的反應物及反應。反應混合物包含至少兩種選自以下之組分:氫觸媒或氫觸媒來源及原子氫或原子氫來源,其中原子氫及氫觸媒中之至少一者可藉由反應混合物之反應形成。在其他實施例中,反應混合物進一步包含載體,其在某些實施例中可為導電還原劑及氧化劑,其中至少一種藉助於其經歷反應之反應物使得該催化起作用。反應物可藉由加熱針對任何非低能量氫產物來再生。
本發明亦關於一種電源,其包含:將原子氫催化之反應電池;反應容器;真空泵;與反應容器連通之原子氫來源;氫觸媒來源,其包含與反應容器連通之塊材,原子氫來源及氫觸媒來源中之至少一者之來源,其包含反應混合物,其包含至少一種反應物,其包含形成原子氫及氫觸媒中之至少一者之元素,及至少一種其他元素,藉此原子氫及氫觸媒中之至少一者自該來源形成,引起催化之至少一種其他反應物;及容器加熱器,藉此原子氫催化釋放大於約300千焦/莫耳氫之量的能量。
形成低能量氫之反應可藉由一或多個化學反應活化或起始及傳播。此等反應可選自例如(i)氫化物交換反應、(ii)鹵素-氫交換反應、(iii)放熱反應,其在某些實施例中為低能量氫反應提供活化能、(iv)偶合反應,其在某些實施例中提供觸媒或原子氫來源中之至少一者以支持低能量氫反應、(v)自由基反應,其在某些實施例中充當低能量氫反應期間來自觸媒之電子的受體、(vi)氧化還原反應,其在某些實施例中,充當低能量氫反應期間來自觸媒之電子的受體,(vi)其他交換反應,諸如陰離子交換,包括鹵化物、硫化物、氫化物、碑化物、氧化物、磷化物及氮化物交換,其在一個實施例中,有助於觸媒當自原子氫接受能量以形成低能量氫時變得電離之作用。及(vii)吸氣劑、載體或基質輔助低能量氫反應,其可提供以下中之至少一者:(a)低能量氫反應之化學環境、(b)轉移電子以有助於H觸媒功能之作用、(c)經歷可逆相或其他物理變化或其電子狀態變化、及(d)結合較低能量氫產物以提高低能量氫反應之程度或速率中之至少一者。在某些實施例中,導電載體使活化反應可行。
在另一實施例中,形成低能量氫之反應包含在至少兩種物質(諸如兩種金屬)之間氫化物交換及鹵化物交換中之至少一者。至少一種金屬可為形成低能量氫之觸媒或觸媒來源,諸如鹼金屬或鹼金屬氫化物。氫化物交換可在至少兩種氫化物之間、至少一種金屬與至少一種氫化物之間、至少兩種金屬氫化物之間、至少一種金屬與至少一種金屬氫化物之間,且具有在兩種或兩種以上物質之間或涉及兩種或兩種以上物質之交換的其他此等組合。在一個實施例中,氫化物交換形成混合金屬氫化物,諸如(M1)x(M2)yHz,其中x、y及z為整數且M1且M2為金屬。
本發明之其他實施例係關於反應物,其中活化反應及/或傳播反應中之觸媒包含觸媒或觸媒來源及氫來源與材料或化合物反應形成層夾化合物(intercalation compound),其中反應物係藉由移除層夾物質來再生。在一個實施例中,碳可充當氧化劑且碳可例如藉由加熱、使用置換劑、電解或藉由使用溶劑自鹼金屬層夾碳再生。
在其他實施例中,本發明係關於一種電力系統,其包含:
(i) 化學燃料混合物,其包含至少兩種選自以下之組分:觸媒或觸媒來源;原子氫或原子氫來源;用於形成觸媒或觸媒來源及原子氫或原子氫來源之反應物;一或多種引發原子氫催化之反應物;及使催化可行之載體,
(ii) 至少一個包含複數個反應容器之熱系統,其用於逆轉交換反應以自反應產物熱再生燃料,
其中包含自混合物反應產物形成初始化學燃料混合物之反應的再生反應係在與至少一個經歷電力反應之其他反應容器聯合的複數個反應容器中之至少一者中進行,使至少一個電力產生容器之熱流至至少一個經歷再生之容器以提供熱再生能量,將容器嵌埋於熱轉移介質中以熱流,至少一個容器進一步包含真空泵及氫來源,及可進一步包含在較熱腔室與較冷腔室之間維持溫差使得物質優先累積於較冷腔室中的兩個腔室,其中在較冷腔室中進行氫化物反應以形成至少一種初始反應物,使其返回較熱腔室,
(iii) 穿過熱障壁自產生電力之反應容器接受熱之散熱體,
(iv) 電力轉換系統,其可包含熱機,諸如朗肯(Rankine)或布累登(Brayton)循環引擎、蒸汽機、史特林引擎(Stirling engine),其中電力轉換系統可包含熱電或熱離子轉換器。在某些實施例中,散熱體可將電力轉移至電力轉換系統以產生電。
在某些實施例中,電力轉換系統自散熱體接受熱流,且在某些實施例中,散熱體包含蒸汽產生器且蒸汽流至諸如渦輪機之熱機以產生電。
在其他實施例中,本發明係關於一種電力系統,其包含:
(i) 化學燃料混合物,其包含至少兩種選自以下之組分:觸媒或觸媒來源;原子氫或原子氫來源;用於形成觸媒或觸媒來源及原子氫或原子氫來源之反應物;一或多種引發原子氫催化之反應物;及使催化可行之載體,
(ii) 用於逆轉交換反應以自反應產物熱再生該燃料之熱系統,其包含至少一個反應容器,其中包含自混合物反應產物形成初始化學燃料混合物之反應的再生反應係與電力反應一起在至少一個反應容器中進行,來自產生電力之反應之熱流至再生反應物以為熱再生提供能量,至少一個容器在一個區段上絕緣且在另一區段上與熱傳導介質接觸以達成容器之相應較熱與較冷區段之間的熱梯度,使得物質優先累積於較冷區段中,至少一個容器進一步包含真空泵及氫來源,其中氫化物反應係在較冷區段中進行以形成至少一種初始反應物,使其返回較熱區段,
(iii) 散熱體,其自產生電力之反應接受經轉移通過熱傳導介質且視情況穿過至少一個熱障壁之熱,及
(iv) 電力轉換系統,其可包含熱機,諸如朗肯或布累登循環引擎、蒸汽機、史特林引擎,其中電力轉換系統可包含熱電或熱離子轉換器,其中轉換系統自散熱體接受熱流,
在一個實施例中,散熱體包含蒸汽產生器且蒸汽流至諸如渦輪機之熱機以產生電。
本發明係關於用於自原子氫釋放能量以形成較低能態之觸媒系統,其中電子殼層相對於核處於靠近位置。將釋放之電力用於電力產生且另外新穎氫物質及化合物為所需產物。此等能態係根據經典物理定律預測且需要觸媒自氫接受能量以經歷相應能量釋放躍遷。
經典物理學得到氫原子、氫化物離子、氫分子離子及氫分子之閉型解(closed-form solution)且預測具有分數主量子數(fractional principal quantum number)之相應物質。使用麥克斯韋方程式(Maxwell's equation),根據邊界值問題(boundary-value problem)推導出電子結構,其中電子包含在躍遷期間隨時間變化之電磁場的源電流,其約束為邊界n=1狀態電子不能輻射能量。由H原子之解預測的反應涉及自另外的穩定原子氫轉移諧振、非輻射性能量至能夠接受能量以形成能態低於先前認為可能之能態之氫的觸媒。特定言之,經典物理學預測原子氫會經歷與以下之催化反應:某些原子、準分子、離子及雙原子氫化物,其提供淨焓為原子氫位能E h =27.2 eV之整數倍的反應,其中E h 為一哈崔(Hartree)。基於已知電子能級可鑑別之特定物質(例如He+、Ar+、Sr+、K、Li、HCl,及NaH、OH、SH、she、H2O、nH(n=整數))需要與原子氫一起存在以催化該過程。反應包括非輻射性能量轉移,接著為q‧13.6 eV連續發射或q‧13.6 eV轉移至H以形成極熱的激發態H及氫原子(其能量低於對應於分數主量子數之未反應原子氫)。亦即,在關於氫原子之主能階之式中:
n=1,2,3,... (2)
其中a H 為氫原子之波爾半徑(Bohr radius)(52.947 pm),e為電子電荷量值,且ε o 為真空電容率,分數量子數:
替代氫激發態之芮得伯方程式(Rydberg equation)中的熟知參數n=整數且表示稱為「低能量氫」之較低能態氫原子。接著,類似於具有麥克斯韋方程式之分析解的激發態,低能量氫原子亦包含電子、質子及光子。然而,後者之電場增加對應於能量解吸收之結合而非如在激發態隨著能量吸收而減弱中心場,且由此產生的低能量氫之光子-電子相互作用為穩定的而非輻射性的。
氫之n=1狀態及氫之狀態為非輻射性的,但兩種非輻射狀態之間的躍遷,比如n=1至n=1/2,經由非輻射性能量轉移為可能產生的。氫為由方程式(1)及(3)給出之穩定狀態的特例,其中氫或低能量氫原子之相應半徑係由以下得出:
其中p=1,2,3,...。為使能量守恆,必須自氫原子轉移以下單位之能量至觸媒:
m‧27.2ev,m=1,2,3,4,.... (5)
及使半徑轉變為。觸媒反應包括兩個能量釋放步驟:非輻射性能量轉移至觸媒,接著當半徑減小至相應穩定的最終狀態時之另外的能量釋放。咸信當淨反應焓與m‧27.2eV較為緊密地匹配時催化速率增大。已發現淨反應焓在m‧27.2eV之±10%、較佳為±5%內之觸媒適用於大多數應用。在將低能量氫原子催化至較低能態之情況下,以與低能量氫原子之位能相同的因子對m‧27.2ev(方程式(5))之反應焓作相對論校正。
因此,一般反應係由以下給出:
Cat ( q + r )++re -Cat q ++m‧27.2 eV (8)
且總反應為
qrmp為整數。具有氫原子半徑(對應於分母中之1)及等於質子之(m+p)倍的中心場,且為半徑為H的相應穩定狀態。當電子經歷自氫原子半徑至此距離之半徑的徑向加速時,能量以特徵光發射或第三體動能之形式釋放。發射可呈邊緣在[(p+m)2-p 2-2m]‧13.6 eV及延伸至較長波長之極紫外線連續輻射之形式。除輻射之外,可發生諧振動能轉移以形成快H。隨後此等快H(n=1)原子藉由與背景H2碰撞而激發,接著發射相應H(n=3)快原子可引起巴爾麥α發射(Balmer α emission)變寬。或者,快H為充當觸媒之H或低能量氫的直接產物,其中接受諧振能量轉移係與位能而非電離能有關。能量守恆產生動能對應於前一情況下之位能之一半的質子,及在後一情況下處於基本上靜止之觸媒離子。快質子之H複合輻射引起巴爾麥α發射變寬,此與符合過度動力平衡之熱氫之存量(inventory)不成比例。
在本發明中,諸如低能量氫反應、H催化、H催化反應、當提及氫時之催化、形成低能量氫之氫反應及低能量氫形成反應之術語均指諸如以下的反應:由方程式(5)定義之觸媒的方程式(6-9)之反應,其中原子H所形成之氫態具有由方程式(1)及(3)得出之能階。當提及可將H催化至具有由方程式(1)及(3)得出之能階之H狀態或低能量氫狀態的反應混合物時,諸如低能量氫反應物、低能量氫反應混合物、觸媒混合物、用於低能量氫形成之反應物、產生或形成較低能態氫或低能量氫之反應物的相應術語亦可互換使用。
本發明之催化性較低能量氫躍遷需要可呈具有未經催化的原子氫之位能27.2 ev之整數m倍的吸熱化學反應形式之觸媒,其自原子H接受能量以引起躍遷。吸熱觸媒反應可為自諸如原子或離子之物質電離一或多個電子(例如對於LiLi 2+m=3)且可進一步包含鍵裂與自一或多種初始鍵搭配物電離一或多個電子的協同反應(例如對於NaHNa 2++Hm=2)。He +因為其以54.417 eV(為2‧27.2 eV)電離所以滿足觸媒準則─焓變量等於27.2 eV之整數倍的化學或物理過程。整數數目之氫原子亦可充當27.2 eV焓之整數倍的觸媒。氫原子H(1/p)p=1,2,3,...137可經歷由方程式(1)及(3)給出之朝較低能態之進一步躍遷,其中一個原子之躍遷係由一或多個伴隨位能對換以諧振及非輻射方式接受m‧27.2eV之其他H原子所催化。關於由m‧27.2eV諧振轉移至H(1/p')所誘導的H(1/p)躍遷至H(1/(p+m))的一般總方程係由以下表示:
H(1/p')+H(1/p)→H+H(1/(p+m))+[2pm+m 2-p'2+1]‧13.6eV (10)
氫原子可充當觸媒,其中對於一、二及三個原子分別m=1、m=2及m=3,從而充當另一者之觸媒。當極快H與分子碰撞形成2H時,二原子觸媒2H之速率可能較高,其中兩個原子自碰撞搭配物之第三氫原子諧振式及非輻射式接受54.4ev。藉由同一機制,兩個熱H2之碰撞提供3H以充當第四者之3‧27.2eV之觸媒。與預測一致,觀察到在22.8 nm及10.1 nm下之EUV連續譜、意外的(>100 eV)巴爾麥α線變寬、高度激發之H狀態、產物氣體H 2(1/4),及大能量釋放。
H(1/4)基於其多極性及其形成之選擇規則為較佳低能量氫狀態。因此,在形成H(1/3)之情況下,躍遷至H(1/4)可根據方程式(10)由H催化而快速發生。類似地,H(1/4)為對應於方程式(5)中m=3,大於或等於81.6 eV之觸媒能量的較佳狀態。在此情況下,朝觸媒之能量轉移包含形成方程式(7)之H*(1/4)中間物的81.6 eV以及來自中間物衰變之27.2 eV之整數。舉例而言,焓為108.8 eV之觸媒可藉由自122.4 eV之H*(1/4)衰變能量接受81.6 eV以及27.2 eV來形成H*(1/4)。95.2 eV之剩餘衰變能量釋放至環境中以形成較佳狀態H(1/4),其接著反應形成H2(1/4)。
適合觸媒可因此提供m‧27.2 eV之正的淨反應焓。亦即,觸媒自氫原子諧振式接受非輻射性能量轉移且將能量釋放至環境中以實現朝分數量子能級之電子躍遷。由於非輻射性能量轉移,因此氫原子變得不穩定且發射其他能量直至其達成具有方程式(1)及(3)給出之主能階之較低能量非輻射性狀態為止。因此,催化自氫原子尺寸相稱減小(r n =na H )之氫原子釋放能量,其中n係由方程式(3)給出。舉例而言,H(n=1)至H(n=1/4)之催化釋放204 eV,且氫半徑自a H 減小至
觸媒產物H(1/p)亦可與電子反應形成低能量氫氫化物離子H -(1/p),或兩個H(1/p)可反應形成相應分子低能量氫H 2(1/p)。特定言之,觸媒產物H(1/p)亦可與電子反應形成結合能為E B 之新的氫化物離子H -(1/p):
其中p=>1之整數,s=1/2,為普朗克常數棒(Planck's constant bar),μ o 為真空磁導率(permeability of vacuum),m e 為電子質量,μ e 給出之還原電子質量,其中m p 為質子質量,a o 為波爾半徑,且離子半徑為。自方程式(11),氫化物離子之計算電離能為0.75418 eV,且實驗值為6082.99±0.15 cm -1(0.75418 eV)。低能量氫氫化物離子之結合能係由XPS證實。
高磁場偏移NMR峰為存在相對於普通氫化物離子半徑減小且質子反磁性遮蔽增大之較低能態氫的直接證據。移係由普通氫化物離子H -與較低能態所致之組分之偏移的和得到:
其中對於H -p=0且對於H -(1/p),p=>1之整數,且α為精細結構常數。藉由固體及液體質子NMR觀察到預測峰。
H(1/p)可與質子反應且兩個H(1/p)可反應分別形成H 2(1/p)+H 2(1/p)。氫分子離子及分子電荷及電流密度功能、鍵長及能量係在具有非輻射約束之橢球座標中自拉普拉斯算符(Laplacian)求解。
在長球體分子軌域之各焦點具有+pe之中心場的氫分子離子之總能E T
其中p為整數,c為在真空中光速,且μ為減小之核質量。在長球體分子軌域之各焦點具有+pe之中心場的氫分子之總能為
氫分子H 2(1/p)之鍵解離能E D 為相應氫原子之總能與E T 之間的差
E D =E(2H(1/p))-E T  (16)
其中
E(2H(1/p))=-p 227.20 eV (17)
E D 係藉由方程式(16-17)及(15)得到:
催化產物氣體之NMR提供H 2(1/4)之理論預測化學偏移之確定性測試。一般而言,由於橢圓座標中之分數半徑,其中電子顯著接近核,因此H 2(1/p)之1 H NMR諧振係自H 2者預測為高磁場。H 2(1/p)之預測偏移係藉由H 2偏移之和及視對於H 2(1/p),p=>1之整數而定之條件得到:
其中對於H 2p=0。-28.0 ppm之實驗絕對H 2氣相諧振偏移係與-28.01 ppm(方程式(20))之預測絕對氣相偏移優良地一致。藉由包括於自顯示預測連續輻射及快H之電漿低溫收集之氣體上的固體及液體NMR觀察有利產物H 2(1/4)之預測NMR峰。
氫型分子H 2(1/p)之υ=0至υ=1躍遷的振動能E vib
E vib =p 20.515902 eV (21)
其中p為整數。
氫型分子H 2(1/p)之JJ+1躍遷的旋轉能E rot
其中p為整數且I為慣性矩。對氣體中及捕捉於固體基質中之電子束受激分子觀察H 2(1/4)之旋振發射(Ro-vibrational emission)。
旋轉能之p 2依賴性係由核間距離及對慣性矩I之相應影響的逆p依賴性引起。H 2(1/p)之預測核間距離2c '
觸媒
He+、Ar+、Sr+、Li、K、NaH、nH(n=整數)及H2O因為其滿足觸媒準則-焓變量等於原子氫位能27.2eV之整數倍的化學或物理過程,所以預測充當觸媒。特定言之,如下提供催化系統:將t個電子自原子各自電離至連續能階,使得t個電子之電離能之和為約m‧27.2eV,其中m為整數。一個此催化系統包括鋰原子。鋰之第一及第二電離能分別為5.39172eV及75.64018eVLiLi 2+之雙電離(t=2)反應則具有81.0319eV(等於3‧27.2eV)之淨反應焓。
Li 2++2e -Li(m)+81.0319eV (25)
且總反應為
其中方程式(5)中m=3。在催化期間放出之能量比觸媒損失之能量大得多。釋放之能量大於習知化學反應。舉例而言,當氫氣及氧氣經歷燃燒以形成水時
水之已知生成焓為每個氫原子ΔH f =-286千焦/莫耳或1.48 eV。相比之下,經歷至之催化步驟之各(n=1)普通氫原子淨釋放40.8 eV。此外,可發生其他催化躍遷:等。一旦催化開始,低能量氫即在稱為歧化之過程中進一步自催化,其中H或H(1/p)充當另一H或H(1/p')(p可等於p')之觸媒。
某些分子亦可用以實現H躍遷以形成低能量氫。一般而言,包含氫之化合物(諸如MH,其中M為除氫外之元素)充當氫來源及觸媒來源。如下提供催化反應:使M-H鍵斷裂加上將t個電子自原子M各自電離至連續能階,使得鍵能與t個電子之電離能的和為約m‧27.2 eV,其中m為整數。一個此催化系統包括氫化鈉。NaH之鍵能為1.9245 eV,且Na之第一及第二電離能分別為5.13908 eV及47.2864 eV。因為NaH鍵能加上Na至Na2+之雙電離(t=2)為54.35 eV(2.27.2 eV),所以基於此等能量,NaH分子可充當觸媒及H來源。協同觸媒反應係由以下給出
Na 2++2e -+HNaH+54.35 eV (29)
且總反應為
m=2之情況下,觸媒NaH之產物為H(1/3),使其快速反應以形成H(1/4),接著形成分子低能量氫H 2(1/4)作為較佳狀態。特定言之,在高氫原子濃度之情況下,由H(1/3)(p=3)→H(1/4)(p+m=4)(以H作為觸媒(p'=1;m=1))之方程式(10)給出之進一步躍遷可較快:
因為p=4量子態之多極性大於給予H(1/4)供進一步催化之較長理論壽命的四極,所以相應分子低能量氫H 2(1/4)及低能量氫氫化物離子H -(1/4)為與觀察結果一致之較佳最終產物。
因為氦之第二電離能為等於2.27.2 eV之54.417 eV,所以氦離子可充當觸媒。在此情況下,54.417 eV自原子氫以非輻射方式轉移至He+,其經諧振電離。電子衰變至n=1/3狀態,同時進一步釋放54.417 eV,如方程式(33)中所給出。催化反應為
He 2++e -He ++54.417 eV (34)
且總反應為
其中具有氫原子半徑及等於質子3倍之中心場且為半徑為H之1/3的相應穩定狀態。因為電子經歷自氫原子半徑至1/3此距離之半徑的徑向加速度,所以能量以特徵光發射或第三體動能之形式釋放。如對於當高能低能量氫中間物衰變時之此躍遷反應所預測,觀察到特徵連續發射在22.8 nm(54.4 eV)下起始且持續至較長波長。已藉由在氦與氫脈衝放電時記錄之EUV光譜觀察到發射。或者,與對應於高動能H之非常巴爾麥α線加寬之觀察結果一致地,可發生形成快H之諧振動能轉移。
氫及低能量氫可充當觸媒。氫原子H(1/p)p=1,2,3,...137可經歷由方程式(1)及(3)給出之朝較低能態之躍遷,其中一個原子之躍遷係由伴隨其位能對換以諧振及非輻射方式接受m‧27.2 eV之第二者催化。由m‧27.2 eV諧振轉移至H(1/p')所誘導之H(1/p)躍遷至H(1/(m+p))的總體一般方程係由方程式(10)表示。因此,氫原子可充當觸媒,其中對於一、二及三個原子分別地m=1、m=2及m=3,從而充當另一者之觸媒。僅當H密度較高時,二或三原子觸媒情況之速率為可觀的。但,高H密度並不罕見。容許2H或3H充當第三或第四者之能量受體的高氫原子濃度可在若干情況下達成,該等若干情況諸如為因溫度及重力推動密度而在太陽及星星表面、在承載多個單層之金屬表面,及在高度解離電漿(尤其為捏縮氫電漿)中。另外,當兩個H原子以熱HH 2碰撞而出現時輕易達成三體H相互作用。此事件可通常在具有大量極快H之電漿中發生。此由原子H發射之不尋常強度證實。在此等情況下,可經由多極偶合自氫原子至足夠鄰近(通常幾埃)之兩個其他氫原子發生能量轉移。接著,三個氫原子之間的反應(藉此兩個原子以諧振及非輻射方式自第三氫原子接受54.4 eV,使得2H充當觸媒)係由以下給出:
且總反應為
因為方程式(37)之中間物等效於方程式(33)之中間物,所以預測連續發射係與以He +作為觸媒時之連續發射相同。朝兩個H之能量轉移引起觸媒激發態抽吸,且如方程式(36-39)所給出及藉由諧振動能轉移(如在He +作為觸媒之情況下)直接產生快H。對於氫電漿亦觀察到22.8 nm連續輻射、H激發態抽吸及快H,其中2H充當觸媒。
分別由方程式(32-35)及方程式(36-39)給出之氦離子與2H觸媒反應兩者之預測產物為H(1/3)。在高氫原子濃度之情況下,由方程式(10)給出之H(1/3)(p=3)朝H(1/4)(p+m=4)之進一步躍遷(以H作為觸媒(p'=1;m=1))可較快,如方程式(31)所給出。預測次要連續帶自隨後He +催化產物(方程式(32-35))快速躍遷至狀態而出現,其中原子氫自接受27.2eV。亦觀察此30.4 nm連續譜。類似地,當Ar +充當觸媒時,觀察其預測91.2 nm及45.6 nm連續譜。亦觀察預測之快H。另外,將預測產物H 2(1/4)與He +與2H觸媒反應均分離且在方程式(20)給出之其預測化學偏移下藉由NMR鑑別。
在涉及直接躍遷至狀態之另一H原子觸媒反應中,兩個熱H 2分子碰撞且解離,使得三個H原子充當第四者之3‧27.2eV之觸媒。接著,四個氫原子之間的反應(藉此三個原子以諧振及非輻射方式自第四氫原子接受81.6eV,使得3H充當觸媒)係由以下給出:
且總反應為
預測方程式(40)之中間物造成之極紫外線連續輻射帶在122.4eV(10.1 nm)下具有短波長截斷值且延伸至較長波長。此連續譜帶係以實驗證實。一般而言,藉由接受m‧27.2eVH躍遷至得到連續譜帶,其具有短波長截斷值及以下給出之能量
且延伸至長於相應截斷值之波長。實驗觀察10.1 nm、22.8 nm及91.2 nm連續譜之氫發射系列。
資料
來自大量研究技術之資料強烈及一致地表明氫可以低於先前認為可能之能態存在且支持存在稱為低能量氫(「小氫」)及相應氫化物離子及分子低能量氫之此等狀態。支持新穎原子氫反應(產生能量低於傳統「基礎(ground)」(n=1)狀態之分數量子態氫)之可能性的一些此等先前相關研究包括極紫外(EUV)光譜法、來自觸媒及氫化物離子產物之特徵發射、較低能量氫發射、化學形成電漿、巴爾麥α線加寬、H線之粒子數反轉、提高之電子溫度、反常電漿餘輝持續時間、電力產生及分析新穎化合物及分子低能量氫。
由多種互補方法證實之低能量氫存在證明新能源之電位。氫原子可充當觸媒,其中對於一、二及三個原子分別地m=1、m=2及m=3,從而充當另一者之觸媒。當極快H與分子碰撞形成2H時,其中兩個原子自碰撞搭配物之第三氫原子以諧振及非輻射方式接收54.4 eV,二原子觸媒2H之速率可能較高。藉由同一機制,兩個熱H 2之碰撞提供3H以充當第四者之3‧27.2 eV之觸媒。如所預測,觀察到在91.2 nm、22.8 nm及10.1 nm下之EUV連續譜、非常(>50 eV)巴爾麥α線加寬、高度激發之觸媒狀態及產物氣體H 2(1/4)。
將顯示連續輻射之脈衝電漿電池之氣體收集及溶解於CDCl 3中。藉由溶液NMR(solution NMR)在1.25 ppm之預測化學偏移下對此等以及自多種電漿來源(包括氦-氫、水蒸汽輔助氫、氫及包括鍶、氬及氫之白熾加熱混合物之所謂rt電漿)收集之氣體觀察分子低能量氫H 2(1/4)。此等結果與關於形成包含低能量氫之低能量氫化合物之合成反應的先前結果具有良好一致性。對於固體NaH*F中之H 2(1/4)觀察到的1.13 ppm之1 H MAS NMR值對應於1.2 ppm之解值及來自具有觸媒之電漿電池之氣體的值。自固體化合物在溶液NMR中在-3.86 ppm之預測偏移下觀察相應低能量氫氫化物離子H -(1/4)且在11 eV之預測能量下藉由X射線光電子光譜法證實其電離能。亦證實H 2(1/4)及H -(1/4)作為基於已知化學釋放多種可能之最大能量的低能量氫催化系統之產物;此外,反應物系統經開發且顯示可熱再生,其作為新穎電源具有競爭性。
特定言之,在最近電力產生及產物表徵研究中,原子鋰及分子NaH因為其滿足觸媒準則-焓變量等於原子氫位能27.2 eV之整數倍m(例如對於Lim=3且對於NaHm=2)之化學或物理過程而充當觸媒。基於新穎鹼金屬鹵化物低能量氫氫化物(MX*X;M=Li或Na,X=鹵離子)及分子低能量氫H 2(1/4)之相應低能量氫氫化物離子H -(1/4)之能階的封閉形式等式之特定預測係使用化學產生之催化反應物來測試。
首先,測試Li觸媒。LiLiNH 2用作原子鋰及氫原子之來源。使用水流,批量量熱學,自1 g Li、0.5 g LiNH 2、10 g LiBr及15 g Pd/Al 2 O 3之實測電力為約160 W且能量平衡為ΔH=-19.1 kJ。觀察到之能量平衡為基於已知化學之最大理論值的4.4倍。接著,當將電力反應混合物用於化學合成中時,阮尼鎳(R-Ni)充當解離體,其中LiBr充當形成LiH*X以及將H 2(1/4)捕捉於晶體中之催化產物H(1/4)的吸氣劑。ToF-SIM展示LiH*X峰。1 H MAS NMR LiH*BrLiH*I展示匹配LiX基質中之H -(1/4)的在約-2.5 ppm下之大的獨特高磁場諧振。在1.13 ppm之NMR峰匹配填隙H 2(1/4),且在FTIR光譜中之1989 cm -1處觀察到為一般H 2之42倍的H 2(1/4)轉動頻率。對LiH*Br晶體記錄之XPS光譜展示在約9.5 eV及12.3eV之峰,其基於不存在任何其他主元素峰不可賦予任何已知元素,但匹配兩種化學環境中之H -(1/4)結合能。高能過程之另一特徵(signature)在於以下觀察結果:當原子Li與原子氫一起存在時,在低溫(例如103 K)及約1-2 V/cm之極低場強度下形成稱為諧振轉移或rt電漿之電漿。觀察到對應於極快H(>40 eV)之H巴爾麥α線之時間依賴性線加寬。
因為觸媒反應依賴於固有H之釋放(其同時經歷形成進一步反應形成H(1/4)之H(1/3)的躍遷),所以NaH獨特地達成高動力學。在氦氛圍下在提高分子NaH形成之量的極慢溫度勻變速率(0.1℃/min)下對離子NaH進行高溫差示掃描熱量測定(DSC)。在640℃至825℃之溫度範圍內觀察到-177千焦/莫耳NaH之新放熱效應。為達成高電力,以NaOH表面塗佈表面積為約100 m 2/g之R-Ni且使其與Na金屬反應形成NaH。與自R-Ni起始物質、R-NiAl合金之ΔH 0 kJ相比,當與Na金屬反應時,使用水流、批量量熱學,自15 g R-Ni之實測電力為約0.5 kW,能量平衡為ΔH=-36 kJNaH反應之觀察到之能量平衡為-1.6×10 4 千焦/莫耳H 2 ,為-241.8千焦/莫耳H 2 燃燒焓之66倍以上。隨著NaOH摻雜提高至0.5重量%,R-Ni金屬互化物之Al用以置換Na金屬以作為產生NaH觸媒之還原劑。當加熱至60℃時,15 g複合觸媒材料不需要添加劑以釋放11.7 kJ過量能量且產生0.25 kW電力。能量按比例線性增減且電力非線性提高,其中1 kg 0.5重量% NaOH摻雜R-Ni之反應釋放753.1 kJ能量以產生超過50 kW之電力。對溶解於DMF-d7中之產物氣體的溶液NMR在1.2 ppm展示H 2(1/4)。
ToF-SIM顯示鈉低能量氫氫化物NaH x 峰。NaH*BrNaH*Cl1H MAS NMR光譜顯示分別在-3.6 ppm及-4 ppm之匹配H -(1/4)之大的獨特高磁場諧振,及在1.1 ppm之匹配H 2(1/4)之NMR峰。來自NaCl與作為唯一氫來源之固體酸KHSO 4反應的NaH*Cl包含兩個分數氫狀態。在-3.97 ppm下觀察到H -(1/4) NMR峰,且H-(1/3)峰亦存在於-3.15 ppm。分別在1.15 ppm及1.7 ppm觀察到相應H 2(1/4)及H 2(1/3)峰。溶解於DMF-d7中之NaH*F1H NMR顯示分別在1.2 ppm及-3.86 ppm之分離之H 2(1/4)及H -(1/4),其中不存在任何固體基質作用或替代性指派證實固體NMR指派之可能性。對NaH*Br記錄之XPS光譜顯示在約9.5 eV及12.3 eV之匹配LiH*BrKH*I之結果的H -(1/4)峰;然而,鈉低能量氫氫化物顯示另外具有在6 eV之H -(1/3) XPS峰而無鹵化物峰存在的兩個分數氫狀態。亦自使用12.5 keV電子束激發之H 2(1/4)觀察到能量為一般H 2之42倍的預測轉動躍遷。
已滿足或超過現存效能特徵,針對基於低能量氫之電力資源尋求其他成本有效再生化學。開發固體燃料或異質觸媒系統,其中各自之反應物可使用以來自化學循環之淨能增加進行熔融共溶鹽電解及熱再生之商業化學-工廠系統自產物再生。觸媒系統包含(i)來自LiHKHNaH之群的觸媒或觸媒來源及氫來源,(ii)來自以下之群的氧化劑:NiBr 2MnI 2AgClEuBr 2SF 6SCF 4NF 3LiNO 3M 2 S 2 O 8Ag,及P 2 O 5,(iii)來自Mg粉或MgH 2Al粉或鋁奈米粉末(Al NP)、SrCa之群的還原劑,及(iv)來自AC、TiC及YC2之群的載體。藉由使用表面積為900 m 2/g之諸如活性碳(AC)之載體以分別分散LiK原子及NaH分子,將LiK之典型金屬形式轉化為原子形式且將NaH之離子形式轉化為分子形式。將整數倍27.2 eV自原子氫非輻射性能量轉移至觸媒之反應步驟產生電離觸媒及自由電子,其因電荷累積而引起反應快速停止。載體亦充當自形成低能量氫之觸媒反應釋放之電子的傳導性電子受體。各反應混合物進一步包含充當自傳導性載體之電子的清除劑及最終電子受體反應物以及輔助氧化劑功能之弱還原劑的氧化劑。在一些情況下,協同電子-受體(氧化)反應亦極放熱以加熱反應物及提高產生電力或低能量氫化合物之速率。藉由絕對水流量熱學量測異質觸媒系統之能量平衡,且藉由1 H NMR、ToF-SIM及XPS來表徵低能量氫產物。亦對10倍按比例放大反應記錄熱。自此等異質觸媒系統之實測電力及能量增加分別為至多10 W/cm 3 (反應物體積) 及最大理論值六倍以上之因子。反應按比例線性增大至580 kJ,其產生約30 kW之電力。對自反應產物提取之樣本的DMF-d7中之溶液1 H NMR顯示分別在1.2 ppm及-3.8 ppm之預測H 2(1/4)及H -(1/4)。ToF-SIM顯示鈉低能量氫氫化物峰(諸如NaH x )、NaH觸媒之峰,且藉由XPS觀察到H -(1/4)之預測11 eV結合能。
將關於低能量氫形成之反應機理的發現應用於開發熱可逆性化學作為另一商業可行電源。各燃料系統包含觸媒或觸媒來源與氫來源(KH或NaH)、高表面積傳導性載體(TiC、TiCN、Ti3SiC2、WC、YC2、Pd/C、碳黑(CB),及還原為Li之LiCl)及視情況選用之還原劑(Mg、Ca或Li)的熱可逆反應混合物。另外,兩個系統包含鹼土金屬或鹼金屬鹵化物氧化劑,或碳載體包含氧化劑。傳播低能量氫形成之反應為氧化還原反應,其包括氫離子-鹵離子交換、氫化物交換或物理分散。正向反應在反應條件下為自發,但其藉由使用可藉由動態移除揮發性逆反應產物鹼金屬使平衡主要自產物偏移至反方向之產物化學物質來顯示。分離之逆反應產物可進一步反應形成初始反應物以組合形成初始反應混合物。反應物至產物熱逆轉至反應物之熱循環為能量中性,且置換轉化為低能量氫之氫的熱損耗及能量與形成低能量氫時釋放之大能量相比為較小。相對於再生化學7Wcm -3及300-400千焦/莫耳氧化劑,藉由絕對水流量熱學量測之典型參數為2-5倍能量增加。對應於消耗50兆千焦/莫耳H2所預測的分子低能量氫及低能量氫氫化物產物H 2(1/4)及H -(1/4)分別係由在1.2 ppm下之溶液1 H NMR峰及在11 eV下之XPS峰所證實。550-750℃溫度範圍中之產物再生展示電池操作溫度足以維持正向與反向反應時間相當之電力再生循環的相應階段中之電池再生溫度。結果表明使用並行維持作為熱能平衡之部分之再生的簡單化及有效系統,連續產生藉由形成低能量氫釋放之電力為商業上可行的。除了僅需要置換在形成低能量氫中消耗之氫,封閉該系統。形成低能量氫之氫可最終獲自水電解,同時相對於燃燒具有200倍能量釋放。
在最近光譜法研究中,使用包括氦離子及兩個H原子之原子催化系統。氦之第二電離能為54.4 eV;因此,He +He 2+之電離反應的淨反應焓為54.4 eV,其等於2‧27.2 eV。此外,原子氫之位能為27.2 eV,使得兩個H原子藉由與第三者碰撞自H 2形成,熱H亦可充當此第三H之觸媒以引起與作為觸媒之He +相同的躍遷。預測能量轉移分別抽吸He +離子能階且提高氦-氫及氫電漿中之H電子激發溫度。在能量轉移至觸媒之後,因為電子經歷向半徑為未經催化氫原子半徑之1/3的穩定狀態之徑向加速度,同時進一步釋放54.4 eV能量,所以預測H原子半徑減小。此能量可以截斷值在22.8 nm下且延伸至較長波長之特徵EUV連續譜的形式,或以發生形成快H之諧振動力學能量轉移的第三體動能之形式發射。預測隨後此等快H(n=1)原子藉由與背景物質碰撞之激發,接著發射相應H(n=3)快原子產生加寬之巴爾莫α發射。使產物H(1/3)快速反應以形成H(1/4),接著形成分子低能量氫H 2(1/4)作為較佳狀態。對氦與氫及單獨之氫的微波電漿、輝光放電及脈衝放電記錄極紫外(EUV)光譜及高解析度可見光譜。添加氫來發生He +離子線抽吸,且在特定條件下之氫電漿之激發溫度極高。此外,對於分別提供觸媒He +及2H之兩種電漿,均觀察到EUV連續譜與非常(>50 eV)巴爾麥α線加寬。藉由溶液NMR在1.25 ppm下對自氦-氫及水蒸汽輔助氫電漿收集且溶解於CDCl 3中之氣體觀察H 2(1/4)。達成形成低能量氫之原子氫躍遷的所有四個此等預測之實驗確認。
其他EUV研究藉由使用在短脈衝放電期間維持高壓、光學薄電漿之不同電極材料來顯示純氫放電中之22.8 nm連續譜帶及來自對應於低能量氫狀態H(1/4)之中間物衰變的另一連續譜帶。因為原子氫之位能為27.2eV,所以兩個H原子藉由與第三者碰撞自H 2形成,熱H可藉由自此第三H接受2‧27.2eV來充當其觸媒。藉由同一機制,兩個熱H 2之碰撞提供3H以充當第四者之3‧27.2eV之觸媒。在能量轉移至觸媒之後,形成具有H原子半徑且中心場分別為質子中心場3及4倍(由於各中間物之光子的貢獻)之中間物。因為電子經歷向半徑為未經催化氫原子半徑之1/3(m=2)或1/4(m=3)的穩定狀態之徑向加速度,同時進一步分別釋放54.4eV及122.4eV能量,所以預測半徑減小。自脈衝氫放電觀察到以截斷值分別在22.8 nm及10.1 nm下之特徵EUV連續譜形式發射的此能量。觀察到10.1 nm、22.8 nm及91.2 nm連續譜之氫發射系列。
此等資料(諸如NMR偏移、ToF-SIM質量、XPS結合能、FTIR及發射光譜)為構成本發明態樣之觸媒系統的低能量氫產物所特有及可識別該等產物。連續光譜直接及間接匹配明顯的天體觀察結果。氫自催化及歧化可為在包含原子氫之天體及星際介質中普遍發生之反應。星星為呈星際反應之恆星風形式的原子氫及低能量氫之來源,其中極緻密的恆星原子氫及單獨電離之氦He +充當星星中之觸媒。來自形成低能量氫之躍遷的氫連續譜匹配白矮星(white dwarf)之發射,提供使日冕/色球源之不同個別層之溫度與密度條件相聯繫的可能機制,且除解析漫射性Hα發射在整個銀河系中普遍且需要912 之flux shortward之廣泛來源的觀察結果後之輻射來源一致性外亦提供具有匹配所觀察到之強烈11.0-16.0 nm帶的10.1 nm連續譜的漫射性普遍EUV宇宙背景之來源。此外,產物低能量氫提供對暗物質一致性的解析。
I. 低能量氫
具有由以下給出之結合能的氫原子:
(其中p為大於1,較佳為2至137之整數)為本發明之H催化反應的產物。原子、離子或分子之結合能(亦稱為電離能)為自原子、離子或分子移除一個電子所需之能量。具有方程式(46)中給出之結合能的氫原子在下文係稱作「低能量氫原子」或「低能量氫」。半徑(其中α H 為普通氫原子之半徑且p為整數)之低能量氫的指定為。具有半徑α H 之氫原子在下文中稱作「普通氫原子」或「正常」。一般原子氫之特徵在於其13.6 eV之結合能。
低能量氫係藉由使普通氫原子與適合觸媒反應形成,其淨反應焓為:
m‧27.2 eV (47)
其中m為整數。咸信當淨反應焓較緊密地與m‧27.2 eV匹配時催化速率增大。已發現淨反應焓在m‧27.2 eV之±10%(較佳±5%)內之觸媒適用於大多數應用。
此催化自氫原子尺寸相稱減小(r n =na H )之氫原子釋放能量。舉例而言,H(n=1)至H(n=1/2)之催化釋放40.8 eV,且氫半徑自a H 減小至。如下提供催化系統:將t個電子自原子各自電離至連續能階,使得t個電子之電離能之和為約m‧27.2 eV,其中m為整數。
上文給出(方程式(6-9)之此等催化系統之另一實例包括銫。銫之第一及第二電離能分別為3.89390 eV及23.15745 eVCsCs 2+之雙電離(t=2)反應則具有27.05135 eV之淨反應焓,其等於方程式(47)中之m=1。
Cs 2++2e-Cs(m)+27.05135 eV (49)
且總反應為
另一催化系統包括鉀金屬。鉀之第一、第二及第三電離能分別為4.34066 eV、31.63 eV、45.806 eVKK 3+之三電離(t=3)反應則具有81.7767 eV之淨反應焓,其等於方程式(47)中m=3。
K 3++3e -K(m)+81.7426 eV (52)
且總反應為
作為電源,在催化期間放出之能量比觸媒損失之能量大得多。釋放之能量大於習知化學反應。舉例而言,當氫氣及氧氣經歷燃燒以形成水時
水之已知生成焓為每個氫原子ΔH f =-286千焦/莫耳或1.48 eV。相比之下,各(n=1)普通氫原子經歷40.8 eV之淨催化釋放。此外,可發生其他催化躍遷:等。一旦催化開始,低能量氫即在稱為歧化之過程中進一步自催化。此機制類似於無機離子催化之機制。但由於焓與m‧27.2 eV之較佳匹配,因此低能量氫催化之反應速率應高於無機離子觸媒之反應速率。
表1中給出能夠提供約m‧27.2 eV之淨反應焓的氫觸媒,其中m為產生低能量氫之整數(藉此t個電子自原子或離子電離)。第一行給出之原子或離子係經電離以提供第十行給出之m‧27.2 eV的淨反應焓,其中在第十一行給出m。參與電離之電子係與電離電位(亦稱為電離能或結合能)一起給出。原子或離子之第n個電子之電離電位係由IP n 表示且由CRC給出。亦即例如Li+5.39172eVLi ++e -Li ++75.6402eVLi 2++e -。第一電離電位IP 1=5.39172eV及第二電離電位IP 2=75.6402eV分別在第二及第三行給出。Li雙電離之淨反應焓如第十行給出為81.0319eV,及如第十一行給出之等式(5)中m=3。
本發明之低能量氫氫化物離子可藉由電子來源與低能量氫反應來形成,低能量氫亦即為結合能為約之氫原子,其中p為大於1之整數。低能量氫氫化物離子係由H -(n=1/p)或H -(1/p)表示:
低能量氫氫化物離子不同於包含普通氫原子核及兩個電子之結合能為約0.8 eV之普通氫化物離子。後者在下文稱作「普通氫化物離子」或「正常氫化物離子」。低能量氫氫化物離子包含氫原子核(包括氕、氘或氚),及兩種在根據方程式(57-58)之結合能下不可區分之電子。
低能量氫氫化物離子之結合能可由下式表示:
其中p為大於一之整數,s=1/2,π為pi,為普朗克常數棒,μ o 為真空磁導率,m e 為電子質量,μ e 為由給出之還原電子質量,其中m p 為質子質量,a H 為氫原子半徑,a o 為波爾半徑,且e為基本電荷。半徑係由以下給出:
表2中展示隨p而變之低能量氫氫化物離子H -(n=1/p)之結合能,其中p為整數。
根據本發明,提供一種低能量氫氫化物離子(H-),其根據方程式(57-58)之結合能大於普通氫化物離子對於p=2至多23之結合(約0.75 eV),且小於對於p=24(H-)之結合。對於方程式(57-58)之p=2至p=24,氫化物離子結合能分別為3、6.6、11.2、16.7、22.8、29.3、36.1、42.8、49.4、55.5、61.0、65.6、69.2、71.6、72.4、71.6、68.8、64.0、56.8、47.1、34.7、19.3及0.69 eV。本文亦提供包含新穎氫化物離子之例示性組合物。
亦提供包含一或多種低能量氫氫化物離子及一或多種其他元素之例示性化合物。此化合物稱作「低能量氫氫化物」。
一般氫物質之特徵在於以下結合能(a)氫化物離子,0.754 eV(「普通氫化物離子」);(b)氫原子(「普通氫原子」),13.6 eV;(c)雙原子氫分子,15.3 eV(「一般氫分子」);(d)氫分子離子,16.3 eV(「一般氫分子離子」);及(e),22.6 eV(「一般三氫分子離子」)。在本文中,參考氫形式,「正常」與「一般」為同義詞。
根據本發明之另一實施例,提供一種化合物,其包含至少一種結合能增加的氫物質,諸如(a)結合能為約,諸如在約0.9至1.1倍之範圍內的氫原子,其中p為2至137之整數;(b)結合能為約,諸如在約0.9至1.1倍之範圍內的氫化物離子(H -),其中p為2至24之整數;(c)(1/p);(d)結合能為約,諸如在約0.9至1.1倍之範圍內的三低能量氫分子離子(1/p),其中p為2至137之整數;(e)結合能為約,諸如在約0.9至1.1倍之範圍內的二低能量氫,其中p為2至137之整數;(f)結合能為約,諸如在約0.9至1.1倍之範圍內的二低能量氫分子離子,其中p為整數,較佳為2至137之整數。
根據本發明之另一實施例,提供一種化合物,其包含至少一種結合能增加的氫物質,諸如(a)總能為約
諸如在約0.9至1.1倍之範圍內的二低能量氫分子離子,其中p為整數,為普朗克常數棒,m e 為電子質量,c為真空中光速,且μ為還原核質量,且(b)總能為約
諸如在約0.9至1.1倍之範圍內的二低能量氫分子,其中p為整數且a o 為波爾半徑。
根據本發明之一個實施例,其中化合物包含帶負電之結合能增加的氫物質,化合物進一步包含一或多種陽離子,諸如質子,一般為,或一般為
本文提供一種製備包含至少一個低能量氫氫化物離子之化合物的方法。此等化合物在下文中稱作「低能量氫氫化物」。該方法包含使原子氫與淨反應焓為約‧27 eV之觸媒反應,其中m為大於1之整數,較佳為小於400之整數,以產生結合能為約之結合能增加的氫原子,其中p為整數,較佳為2至137之整數。另一催化產物為能量。可使結合能增加的氫原子與電子來源反應以產生結合能增加的氫化物離子。可使結合能增加的氫化物離子與一或多種陽離子反應以產生包含至少一種結合能增加的氫化物離子之化合物。
新穎目標氫組合物可包含:
(a)至少一種具有以下結合能之中性、正或負氫物質(在下文中為「結合能增加的氫物質」)
(i) 大於相應一般氫物質之結合能,或
(ii)大於相應一般氫物質不穩定或觀察不到(因為在環境條件(標準溫度及壓力,STP)下一般氫物質之結合能小於熱能,或為負)之任何氫物質之結合能;及
(b)至少一種其他元素。本發明之化合物在下文中稱作「結合能增加的氫化合物」。
在本上下文中,「其他元素」意謂除結合能增加的氫物質外之元素。因此,其他元素可為一般氫物質,或除氫外之任何元素。在一群化合物中,其他元素及結合能增加的氫物質為中性。在另一群化合物中,其他元素及結合能增加的氫物質為帶電,使得其他元素提供其餘電荷以形成中性化合物。前一群化合物之特徵在於分子及配位結合;後一群之特徵在於離子鍵結。
亦提供包含以下之新穎化合物及分子離子:
(a) 至少一種具有以下總能之中性、正或負氫物質(在下文中為「結合能增加的氫物質」)
(i) 大於相應一般氫物質之總能,或
(ii) 大於相應一般氫物質不穩定或觀察不到(因為在環境條件下一般氫物質之總能小於熱能,或為負)之任何氫物質之總能;及
(b) 至少一種其他元素。
氫物質總能為自氫物質移除所有電子之能量和。根據本發明之氫物質的總能大於相應一般氫物質之總能。根據本發明具有增大總能之氫物質亦稱作「結合能增加的氫物質」,但具有增大總能之氫物質的一些實施例可能具有小於相應一般氫物質之第一電子結合能的第一電子結合能。舉例而言,p=24之方程式(57-58)之氫化物離子的第一結合能小於普通氫化物離子之第一結合能,而p=24之方程式(57-58)之氫化物離子的總能比相應普通氫化物離子之總能大得多。
本文提供包含以下之新穎化合物及分子離子:
(a) 複數種具有以下結合能之中性、正或負氫物質(在下文中為「結合能增加的氫物質」)
(i) 大於相應一般氫物質之結合能,或
(ii) 大於相應一般氫物質不穩定或觀察不到(因為在環境條件下一般氫物質之結合能小於熱能或為負)之任何氫物質之結合能;及
(b) 視情況選用之一種其他元素。本發明之化合物在下文中稱作「結合能增加的氫化合物」。
結合能增加的氫物質可藉由使一或多種低能量氫原子與電子、低能量氫原子、含有以下之化合物中一或多者反應來形成:至少一種該結合能增加的氫物質,及至少一種除結合能增加的氫物質外之其他原子、分子或離子。
亦提供包含以下之新穎化合物及分子離子:
(a)複數種具有以下總能之中性、正或負氫物質(在下文中為「結合能增加的氫物質」)
(i) 大於一般分子氫之總能,或
(ii)大於相應一般氫物質不穩定或觀察不到(因為在環境條件下一般氫物質之總能小於熱能或為負)之任何氫物質之總能;及
(b)視情況選用之一種其他元素。本發明之化合物在下文中稱作「結合能增加的氫化合物」。
在一個實施例中,提供一種包含至少一種選自以下之結合能增加的氫物質的化合物:(a)根據方程式(57-58)之結合能對於p=2直至23大於且對於p=24小於普通氫化物離子之結合(約0.8 eV)的氫化物離子(「結合能增加的氫化物離子」或「低能量氫氫化物離子」);(b)結合能大於普通氫原子之結合能(約13.6 eV)之氫原子(「結合能增加的氫原子」或「低能量氫」);(c)第一結合能大於約15.3 eV之氫分子(「結合能增加的氫分子」或「二低能量氫」);及(d)結合能大於約16.3 eV之分子氫離子(「結合能增加的分子氫離子」或「二低能量氫分子離子」)。
II. 電力反應器及系統
根據本發明之另一實施例,提供一種用於產生能量及較低能量氫物質之氫觸媒反應器。如圖1中所示,氫觸媒反應器70包含容器72,其包含能量反應混合物74、熱交換器80,及電力轉換器,諸如蒸汽產生器82及渦輪機90。在一個實施例中,催化涉及使來自來源76之原子氫與觸媒78反應而形成較低能量的氫「低能量氫」且產生電力。當包含氫及觸媒之反應混合物起反應而形成較低能量的氫時,熱交換器80吸收由催化反應釋放之熱。熱交換器與自交換器80吸熱且產生蒸汽之蒸汽產生器82交換熱。能量反應器70進一步包含渦輪機90,其自蒸汽產生器82接收蒸汽且對發電器97供應機械動力,發電器97將蒸汽能轉換成電能,其可由負載95接收以產生工作或耗散。在一個實施例中,反應器可由將熱轉移至負載之熱管至少部分圍繞。負載可為產生電之史特林引擎或蒸汽機。史特林引擎或蒸汽機可用於固定動力或原動力。或者,氫化物電力或電氣系統可將熱轉換為固定動力或原動力之電。用於分佈電力及原動應用之適合蒸汽機為Cyclone Power Technologies之Mark V Engine。熟習此項技術者已知其他轉換器。舉例而言,該系統可包含熱電或熱離子轉換器。反應器可為一種多管反應器總成。
在一個實施例中,能量反應混合物74包含能量釋放材料76,諸如經由供應通道62供應之燃料。反應混合物可包含氫同位素原子來源或分子氫同位素來源,及觸媒78之來源,其諧振式移除約m‧27.2 eV以形成較低能量的原子氫,其中m為整數,較佳為小於400之整數,其中藉由使氫與觸媒接觸而發生形成較低能態的氫之反應。觸媒可呈熔融、液體、氣體或固體狀態。催化釋放諸如熱形式之能量且形成較低能量的氫同位素原子、較低能量的氫分子、氫化物離子及較低能量的氫化合物中之至少一者。因此,電力電池亦包含較低能量的氫化學反應器。
氫來源可為氫氣、水解離(包括水之熱解離、電解)、來自氫化物之氫或來自金屬-氫溶液之氫。在另一實施例中,能量釋放材料76之分子氫係藉由混合物74之分子氫解離觸媒而解離成原子氫。此等解離觸媒或解離體(dissociator)亦可吸收氫、氘或氚原子及/或分子且包括例如元素、化合物、合金、或貴金屬(諸如鈀及鉑)混合物、耐火金屬(諸如鉬及鎢)、過渡金屬(諸如鎳及鈦)及內過渡金屬(諸如鈮及鋯)。較佳地,解離體具有高表面積,諸如貴金屬,諸如Pt、Pd、Ru、Ir、Re或Rh,或Ni/Al2O3、SiO2,或其組合。
在一個實施例中,如下提供一種觸媒:自原子或離子電離t個電子至連續能階,使得t個電子之電離能之和為約m‧27.2 eV,其中tm各自為整數。觸媒亦可藉由在參與離子之間轉移t個電子來提供。使t個電子自一個離子轉移至另一離子提供淨反應焓,藉此供電子離子之t電離能之和減去受電子離子之t個電子之電離能等於約m‧27.2 eV,其中tm各自為整數。在另一實施例中,觸媒包含具有原子M鍵結於氫之MH,諸如NaH,且M-H鍵能與t個電子之電離能的和提供m‧27.2 eV之焓。
在一個實施例中,觸媒來源包含催化材料78,其經由觸媒供應通道61供應,此通常提供約‧27.2 eV加或減1 ev之淨焓。觸媒包含自原子氫及低能量氫接受能量之原子、離子、分子及低能量氫。在實施例中,觸媒可包含至少一種選自以下之物質:以下分子:AlH、BiH、ClH、CoH、GeH、InH、NaH、RuH、SbH、SeH、SiH、SnH、C 2N 2O 2CO 2NO 2NO 3;及以下之原子或離子:Li、Be、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Kr、Rb、Sr、Nb、Mo、Pd、Sn、Te、Cs、Ce、Pr、Sm、Gd、Dy、Pb、Pt、Kr、2K +He +Ti 2+Na +Rb +Sr +Fe 3+Mo 2+Mo 4+In 3+He +Ar +Xe +Ar 2+H +,及Ne +H +
在電力系統之一個實施例中,藉由具有熱交換介質之熱交換器移除熱。熱交換器可為水管壁且介質可為水。可直接轉移熱以便空間及製程加熱。或者,諸如水之熱交換器介質經歷諸如轉變為蒸汽之相變。此轉換可在蒸汽產生器中發生。蒸汽可用以在諸如蒸汽渦輪機及發電器之熱機中發電。
根據本發明的用於再循環或再生燃料之氫觸媒能量及低能氫物質產生反應器5之實施例展示於圖2中,且其包含含有燃料反應混合物11(其可為氫來源、觸媒來源及視情況選用之可蒸發之溶劑的混合物)之鍋爐10、氫來源12、蒸汽管及蒸汽產生器13、電力轉換器(諸如渦輪機)14、水冷凝器16、補水來源17、燃料再循環器18及氫-二低能量氫氣體分離器19。在步驟1中,包含觸媒來源及氫來源之燃料(諸如為氣體、液體、固體或包含多相之異質混合物的燃料)反應而形成低能量氫及較低能量的氫產物。在步驟2中,再處理用過的燃料以再供給鍋爐10而維持熱發電。在鍋爐10中產生之熱在管及蒸汽產生器13中形成蒸汽,其經傳遞至渦輪機14,其又藉由對發電器供電來發電。在步驟3中,藉由水冷凝器16冷凝水。任何水損失均可由水源17補充以形成循環而維持熱至電力之轉換。在步驟4中,可移除較低能量的氫產物,諸如低能量氫氫化物及二低能量氫氣體,且可使未反應之氫返回燃料再循環器18中或將氫來源12添加回至用過的燃料中以補充循環燃料。氣體產物與未反應之氫可藉由氫-二低能量氫氣體分離器19分離。任何產物低能量氫氫化物均可使用燃料再循環器18分離及移除。可在鍋爐中或在鍋爐外(燃料返回)進行處理。因此,系統可進一步包含氣體及質量輸送體中之至少一者以移動反應物及產物以達成用過的燃料移除、再生及再供應。在燃料再處理期間自來源12添加在形成低能量氫中所消耗氫之氫補充,且其可包括再循環、未消耗之氫。循環燃料維持熱功率產生以推進發電廠發電。
對於加氫及分離及添加替代物,反應器可以連續方式運作以對抗反應物之最小降解。或者,自產物連續再生經反應之燃料。在後一方案之一個實施例中,反應混合物包含可產生進一步反應形成低能量氫之原子或分子觸媒與原子氫之反應物的物質,且藉由產生觸媒及原子氫形成之產物物質可藉由至少使產物與氫反應之步驟再生。在一個實施例中,反應器包含動態床反應器,其可進一步包含流體化反應器區段,其中連續供應反應物且移除及再生副產物且返回反應器。在一個實施例中,收集較低能量氫產物(諸如低能量氫氫化物或二低能量氫分子)作為再生反應物。此外,在反應物再生期間,低能量氫氫化物離子可形成其他化合物或轉化為二低能量氫分子。
反應器可進一步包含分離器以諸如藉由蒸發溶劑(若其存在)分離產物混合物組分。分離器可例如包含藉由物理特性(諸如尺寸)差異進行機械分離之篩。分離器亦可為利用混合物組分之密度差的分離器,諸如旋風分離器。舉例而言,選自碳、金屬(諸如Eu)及無機產物(諸如KBr)之群的至少兩者可基於密度差在適合介質(諸如受迫惰性氣體(forced inert gas))中以及藉由離心力來分離。組分分離亦可基於介電常數及可充電性差異。舉例而言,可基於以下將碳與金屬分離:將靜電荷施加於前者且藉由電場自混合物移除。在混合物之一或多種組分具有磁性之情況下,分離可使用磁體達成。可在一系列單獨或與一或多個篩組合之強磁體上方攪動混合物以基於以下中之至少一者引起分離:磁性粒子對磁體之較強黏著或吸引及兩類粒子之尺寸差異。在使用篩及施加磁場之一個實施例中,施加磁場朝重力增加額外力以吸引較小磁性粒子穿過篩,而混合物之其他粒子因其較大尺寸而截留於篩上。
反應器可進一步包含基於差異性相變或反應來分離一或多種組分之分離器。在一個實施例中,相變包含使用加熱器來熔融,且藉由此項技術中已知之方法(諸如重力過濾、使用加壓氣體輔助之過濾、離心,及施加真空)將液體與固體分離。反應可包含分解,諸如氫化物分解,或形成氫化物之反應,且分離可分別藉由熔融相應金屬,接著將其分離及藉由機械分離氫化物粉末來達成。後者可藉由篩分達成。在一個實施例中,相變或反應可產生所需反應物或中間物。在某些實施例中,再生包括可在反應器之內或之外發生的任何所需分離步驟。
熟習此項技術者已知之其他方法可藉由應用常規實驗來應用於本發明之分離。一般而言,機械分離可分為四組:沈降、離心分離、過濾及篩分。在一個實施例中,藉由篩分及使用分類器中之至少一者來達成粒子分離。可在起始物質中選擇粒子尺寸及形狀以達成所需產物分離。
電力系統可進一步包含藉由將表面溫度控制在低於反應電池溫度之值的溫度控制來維持觸媒蒸氣壓之觸媒冷凝器。將表面溫度維持在提供所需觸媒蒸氣壓之所需值下。在一個實施例中,觸媒冷凝器為電池中之管柵(tube grid)。在熱交換器之一個實施例中,可將熱轉移介質之流動速率控制在維持冷凝器在所需低於主熱交換器之溫度下的速率下。在一個實施例中,工作介質為水,且在冷凝器之流動速率高於水管壁,使得冷凝器為較低所需溫度。可重組及轉移個別工作介質流以便空間及製程加熱或轉變為蒸汽。
本發明之電池包含本文所揭示之觸媒、反應混合物、方法及系統,其中電池充當反應器及至少一個組件以活化、起始、傳播及/或維持反應及再生反應物。根據本發明,電池包含至少一種觸媒或觸媒來源、至少一種原子氫來源,及容器。本發明之電解電池能量反應器,諸如共溶鹽電解電池、電漿電解反應器、障壁半反應器、RF電漿反應器、加壓氣體能量反應器、氣體放電能量反應器、較佳地脈衝放電及更佳地脈衝捏縮電漿放電、微波電池能量反應器,及輝光放電電池與微波及或RF電漿反應器之組合包含:氫來源;呈任何此等藉由反應物之間反應引起低能量氫反應之狀態的觸媒或反應物之固體、熔融、液體、氣體及異質來源之一;包含反應物或至少含有氫及觸媒之容器,其中形成較低能量氫之反應係藉由使氫與觸媒接觸或藉由觸媒(諸如M或MH(M為鹼金屬)或BaH)反應來發生;及視情況選用之移除較低能量氫產物的組件。在一個實施例中,形成較低能態氫之反應受助於氧化反應。氧化反應可藉由以下中之至少一者提高形成低能量氫之反應速率:自觸媒接受電子及中和藉由自原子氫接受能量形成之高度帶電陽離子。因此,此等電池可以提供此氧化反應之方式操作。在一個實施例中,電解或電漿電池可在陽極提供氧化反應,其中藉由諸如噴射之方法提供之氫與觸媒經由參與氧化反應反應形成低能量氫。在另一實施例中,電池包含亦可處於高溫下之接地導體,諸如長絲。長絲可經供電。相對於電池,諸如長絲之導體可為電浮(electrically floating)。在一個實施例中,諸如長絲之熱導體可煮出(boil off)電子以及充當自觸媒電離者之基礎。煮出電子可中和經電離觸媒。在一個實施例中,電池進一步包含磁體以自經電離觸媒偏轉電離電子以增強低能量氫反應速率。
在水性電解電池之一個實施例中,陰極與陽極間隔較小,使得來自陽極之氧與來自陰極之氫反應而形成OH自由基(表3)及H2O(充當形成低能量氫之觸媒來源或觸媒)中之至少一者。可包含原子之氧與氫可在電解質中反應,或氫與氧可在至少一個電極表面上反應。電極可具有催化性以形成OH自由基及H2O中之至少一者。OH自由基及H2O中之至少一者亦可藉由在陽極處氧化OH-或藉由在陰極處諸如涉及H+及O2之還原反應來形成。選擇電解質,諸如MOH(M=鹼金屬)以最佳化由OH及H2O觸媒中之至少一者形成之低能量氫的產生。在燃料電池實施例中,氧與氫可反應而形成可形成低能量氫之OH自由基及H2O中之至少一者。H+可在O2存在下在陰極處還原而形成可起反應而形成低能量氫之OH自由基及H2O中之至少一者,或可在氫存在下在陽極處氧化而形成OH及H2O中之至少一者。
選擇電解質,諸如MOH(M=鹼金屬)以最佳化藉由諸如OH及H2O中之至少一者之觸媒的低能量氫產生。在一個實施例中,電解質濃度較高,諸如0.5 M至飽和。在一個實施例中,電解質為飽和氫氧化物,諸如飽和LiOH、NaOH、KOH、RbOH或CsOH。陽極及陰極包含在電解期間在鹼中穩定之材料。例示性電解電池可包含鎳或貴金屬陽極,諸如Pt/Ti,及鎳或碳陰極,諸如[Ni/KOH(飽和水溶液)/Ni]及[PtTi/KOH(飽和水溶液)/Ni]。電解脈動亦在陰極暫時產生高OH-濃度,其中適合陰極為形成有利於在脈衝之至少關閉階段期間形成OH及H2O觸媒中之至少一者之氫化物的金屬。在一個實施例中,電解質包含或另外包含碳酸鹽,諸如鹼金屬碳酸鹽,諸如K2CO3。在電解期間,過氧物質可形成諸如過氧碳酸或鹼金屬過碳酸鹽(alkali percarbonate),其可為充當形成低能量氫之觸媒來源或觸媒或可形成充當觸媒之H2O的OOH-或OH來源。
H可與來自觸媒離子(諸如Na2+及K3+)形成之電子反應且使各自穩定。H可藉由H2與解離體反應形成。在一個實施例中,將諸如Pt/Ti之氫解離體添加至低能量氫反應物中,諸如NaH Mg TiC、NaH MgH2 TiC、KH Mg TiC、KH MgH2 TiC、NaH Mg H2及KH Mg H2。另外,H可藉由在電池中使用諸如Pt或W長絲之熱長絲產生。可添加諸如He之稀有氣體以藉由增大H半衰期以便重組來增大H原子群。許多氣體原子具有高電子親和力且可充當自觸媒電離之電子清除劑。在一個實施例中,對反應混合物提供一或多種原子。在一個實施例中,熱長絲提供原子。藉由加熱來蒸發之適合金屬及元素與電子親和力()為:Li(0.62 eV)、Na(0.55 eV)、Al(0.43 eV)、K(0.50 eV)、V(0.53 eV)、Cr(0.67 eV)、Co(0.66 eV)、Ni(1.16 eV)、Cu(1.24 eV)、Ga(0.43 eV)、Ge(1.23 eV)、Se(2.02 eV)、Rb(0.49 eV)、Y(0.30 eV)、Nb(0.89 eV)、Mo(0.75 eV)、Tc(0.55 eV)、Ru(1.05 eV)、Rh(1.14 eV)、Pd(0.56 eV)、Ag(1.30 eV)、In(0.3 eV)、Sn(1.11 eV)、Sb(1.05 eV)、Te(1.97 eV)、Cs(0.47 eV)、La(0.47 eV)、Ce(0.96 eV)、Pr(0.96 eV)、Eu(0.86 eV)、Tm(1.03 eV)、W(0.82 eV)、Os(1.1 eV)、Ir(1.56 eV)、Pt(2.13 eV)、Au(2.31 eV)、Bi(0.94 eV)。雙原子及較高級多原子物質在許多情況下具有類似電子親和力且亦為適合電子受體。適合之電子受體電子受體為Na2(0.43 eV)及K2(0.497 eV),其為氣體Na及K之支配形式。
Mg不形成穩定陰離子(電子親和力EA=0 eV)。因此,其可充當中間電子受體。Mg可充當在包含以下中至少兩者之混合物中形成低能量氫之反應物:觸媒及H來源,諸如KH、NaH或BaH;及還原劑,諸如鹼土金屬;載體,諸如TiC;及氧化劑,諸如鹼金屬或鹼土金屬鹵化物。不形成穩定負離子之其他原子亦可充當自電離觸媒接受電子之中間物。電子可轉移至藉由自H轉移能量形成之離子。電子亦可轉移至氧化劑。電子親和力為0 eV之適合金屬為Zn、Cd及Hg。
在一個實施例中,反應物包含觸媒或觸媒來源及氫來源,諸如NaH、KH或BaH;視情況選用之還原劑,諸如鹼土金屬;或氫化物,諸如Mg及MgH2;載體,諸如碳、碳化物或硼化物;及選用之氧化劑,諸如金屬鹵化物或氫化物。適合之碳、碳化物及硼化物為碳黑、Pd/C、Pt/C、TiC、Ti3SiC2、YC2、TaC、Mo2C、SiC、WC、C、B4C、HfC、Cr3C2、ZrC、CrB2、VC、ZrB2、MgB2、NiB2、NbC及TiB2。在一個實施例中,使反應混合物與傳導自觸媒電離之電子的電極接觸。電極可為電池體。電極可包含大表面積電導體,諸如不鏽鋼(SS)絲絨。電極之傳導可通過導電載體,諸如金屬碳化物,諸如TiC。電極可為正偏壓且可進一步連接至電池中之反電極,諸如中心線電極。反電極可與反應物分隔且可進一步提供返回路徑以便電流傳導通過第一正偏壓電極。返回電流可包含陰離子。陰離子可藉由反電極之還原形成。陰離子可包含原子或雙原子鹼金屬陰離子,諸如Na-、K-。諸如Na2或K2之金屬蒸氣可藉由將電池維持在高溫(諸如在約300℃至1000℃之範圍內)下而自金屬或氫化物(諸如NaH或KH)形成及維持。陰離子可進一步包含自原子氫形成之H-。還原速率可藉由使用具有高表面積之電極來增大。在一個實施例中,電池可包含解離體,諸如化學解離體,諸如Pt/Ti、長絲或氣體放電。電極、解離體或長絲一般包含還原物質,諸如將氣體物質還原為離子之電子發射體。電子發射體可藉由塗佈之製成更有效的電鍍來源。適合之經塗佈發射體為塗釷W或Sr或Ba摻雜金屬電極或長絲。可使用電流限制性外部電源供應器在電極之間維持低功率放電。
在一個實施例中,工作介質之溫度可使用熱泵來提高。因此,空間及製程加熱可使用操作在環境溫度以上之溫度下的電力電池來供應,其中工作介質之溫度係用諸如熱泵之組件來提高。在充分提高溫度的情況下,可發生液體至氣相之轉變,且氣體可用於作壓力容積(PV)功。PV功可包含對發電器提供動力以產生電。接著可冷凝介質,且可使冷凝之工作介質返回反應器電池以在電力迴路中再加熱及再循環。
在反應器之一個實施例中,使包含液體及固體相之異質觸媒混合物流經反應器。可藉由抽吸達成流動。混合物可為漿料。可在熱區加熱混合物以使得氫催化成低能量氫以釋放熱而維持熱區。產物可流出熱區,且反應混合物可自產物再生。在另一實施例中,異質混合物之至少一種固體可藉由重力饋料而流入反應器中。溶劑可各別地或與一或多種固體組合流入反應器中。反應混合物可包含以下之群中之至少一者:解離體、高表面積(HSA)物質、R-Ni、Ni、NaH、Na、NaOH及溶劑。
在一個實施例中,將一或多種反應物(較佳為鹵素來源、鹵素氣體、氧來源或溶劑)注入其他反應物之混合物中。控制注射以最佳化來自低能量氫形成反應之過量能量及電力。可控制注射時之電池溫度及注入速率以達成最優化。可控制其他製程參數及混合以使用熟習製程工程技術者已知之方法進一步最優化。
對於電力轉換,各電池類型可與任何已知之熱能或電漿至機械或電力轉換器接界,該等已知轉換器包括例如熱機、蒸汽或氣渦輪機系統、史特林引擎或熱離子或熱電轉換器。其他電漿轉換器包含磁鏡磁流體動力學電力轉換器、電漿動力學電力轉換器、迴旋管、光子集束微波電力轉換器、電荷漂移電力(charge drift power)或光電轉換器。在一個實施例中,電池包含至少一個內燃機筒。
III. 氫氣電池及固體、液體及異質燃料反應器
根據本發明之一個實施例,用於產生低能量氫及電力之反應器可呈現反應器電池之形式。本發明之反應器展示於圖3中。藉由用觸媒之催化反應提供反應物低能量氫。催化可在氣相或固態或液態中發生。
圖3之反應器包含反應容器261,其具有能夠含有真空或大於大氣壓之壓力的腔室260。與腔室260連通之氫來源262經由氫供應通道264將氫傳遞至該腔室。定位控制器263以控制經由氫供應通道264進入容器之氫的壓力及流量。壓力感測器265監測容器中之壓力。真空泵266係用以經由真空管線267抽空該腔室。
在一個實施例中,催化在氣相中發生。可藉由將電池溫度維持在高溫下,此又決定觸媒蒸氣壓,從而使觸媒變成氣體。亦將原子及/或分子氫反應物維持在可在任何壓力範圍內之所需壓力下。在一個實施例中,該壓力小於大氣壓,較佳在約10毫托至約100托之範圍內。在另一實施例中,藉由將觸媒來源(諸如金屬來源)與相應氫化物(諸如金屬氫化物)之混合物維持在維持在所需操作溫度下之電池中來確定壓力。
可將適用於產生低能量氫原子之觸媒來源268置於觸媒儲集器269中,且氣體觸媒可藉由加熱形成。反應容器261具有觸媒供應通道270以便氣體觸媒自觸媒儲集器269通至反應室260。或者,可將觸媒置於反應容器內之耐化學性敞開容器(諸如舟皿)中。
氫來源可為氫氣及分子氫。氫可藉由分子氫解離觸媒解離成原子氫。此等解離觸媒或解離體包括例如阮尼鎳(Raney nickel;R-Ni)、貴金屬及貴金屬/載體。貴金屬可Pt、Pd、Ru、Ir及Rh,且載體可為Ti、Nb、Al2O3、SiO2中之至少一者及其組合。其他解離體為Pt或Pd於碳上,其可包含氫溢流觸媒、鎳纖維墊、Pd片、Ti海綿、Pt或Pd電鍍於Ti或Ni海綿或墊上、TiH、Pt黑及Pd黑、耐火金屬(諸如鉬及鎢)、過渡金屬(諸如鎳及鈦)、內過渡金屬(諸如鈮及鋯)及熟習此項技術者已知之其他物質。在一個實施例中,氫在Pt或Pd上解離。可將Pt或Pd塗佈於諸如鈦或Al2O3之載體材料上。在另一實施例中,解離體為耐火金屬,諸如鎢或鉬,且解離物質可藉由溫度控制組件271維持在高溫下,溫度控制組件271可呈現如圖3中橫截面中所示之加熱旋管的形式。加熱旋管係由電源供應器272供電。較佳將解離物質維持在電池之操作溫度下。解離體可進一步在電池溫度以上之溫度下操作以較有效地解離,且高溫可防止觸媒在解離體上冷凝。氫解離體亦可由熱長絲提供,熱長絲諸如為由供應器274供電之273。
在一個實施例中,發生氫解離,使得解離氫原子接觸氣體觸媒而產生低能量氫原子。藉由用由電源供應器276供電之觸媒儲集器加熱器275控制觸媒儲集器269之溫度,將觸媒蒸氣壓維持在所需壓力下。當觸媒含於反應器內之舟皿中時,藉由調節舟皿之電源供應器來控制觸媒舟皿之溫度,從而將觸媒蒸氣壓維持在所需值。可藉由由電源供應器272供電之加熱旋管271將電池溫度控制在所需操作溫度下。電池(稱為滲透電池)可進一步包含內部反應室260及外部氫儲集器277,使得藉由氫擴散通過分隔兩個腔室之壁278,可將氫供至電池。可用加熱器控制壁溫以控制擴散速率。擴散速率可進一步藉由控制氫儲集器中之氫壓來控制。
為將觸媒壓力維持在所需程度,可密封具有滲透作為氫來源之電池。或者,電池在各入口或出口進一步包含高溫閥,使得接觸反應氣體混合物之閥維持在所需溫度下。電池可進一步包含吸氣器或捕集器279以選擇性收集較低能量的氫物質及/或結合能增加的氫化合物且可進一步包含選擇閥280以便釋放二低能量氫氣體產物。
在一個實施例中,諸如固體燃料或異質觸媒燃料混合物281之反應物在加熱器271加熱下在容器260中反應。可使所添加之另一較佳具有快速動力學之反應物(諸如至少一種放熱反應物)自容器282經由控制閥283及連接機構284流入電池260。所添加之反應物可為鹵素來源、鹵素、氧來源或溶劑。反應物281可包含與所添加之反應物反應之物質。舉例而言,可添加鹵素以與反應物281形成鹵化物,或可將氧來源添加至反應物281中以形成氧化物。
觸媒可為以下之群中之至少一者:原子鋰、鉀或銫、NaH分子或BaH分子、2H及低能量氫原子,其中催化包含歧化反應。可藉由將電池溫度維持在約500-1000℃範圍內使鋰觸媒變成氣體。較佳將電池維持在約500-750℃範圍內,可將電池壓力維持在小於大氣壓下,較佳維持在約10毫托至約100托之範圍內。最佳藉由將觸媒金屬與相應氫化物(諸如鋰及氫化鋰、鉀及氫化鉀、鈉及氫化鈉,及銫及氫化銫)之混合物維持於維持在所需操作溫度下之電池中來決定觸媒及氫壓力中之至少一者。氣相觸媒可包含來自金屬或鋰金屬來源之鋰原子。較佳將鋰觸媒維持在由以下決定之壓力下:在約500-1000℃之操作溫度範圍的鋰金屬與氫化鋰之混合物及最佳在約500-750℃之操作溫度範圍的電池壓力。在其他實施例中,K、Cs、Na及Ba置換Li,其中觸媒為原子K、原子Cs、分子NaH及分子BaH。
在包含觸媒儲集器或舟皿之氣體電池反應器之一個實施例中,相對於作為電池蒸氣來源之儲集器或舟皿中之蒸氣,將氣體Na、NaH觸媒或氣體觸媒,諸如Li、K及Cs蒸氣維持在電池中之過熱條件中。在一個實施例中,過熱蒸氣減少在氫解離體或下文所揭示之金屬及金屬氫化物分子中之至少一者之解離體上的觸媒冷凝。在包含Li作為儲集器或舟皿之觸媒的實施例中,將儲集器或舟皿維持在Li蒸發溫度下。可將H2維持於低於在儲集器溫度下形成顯著莫耳分數之LiH之壓力的壓力下。達成此條件之壓力及溫度可據此項技術中已知之既定等溫線的H2壓力相對於LiH莫耳分數之資料圖決定。在一個實施例中,在較高溫度下操作含有解離體之電池反應室,使得Li不冷凝於壁或解離體上。H2可自儲集器流至電池以提高觸媒輸送速率。諸如自觸媒儲集器流至電池,接著流出電池之流為移除低能量氫產物以防止低能量氫產物抑制反應之方法。在其他實施例中,K、Cs及Na置換Li,其中觸媒為原子K、原子Cs及分子NaH。
將氫自氫來源供至反應。舉例而言,藉由自氫儲集器滲透來供應氫。氫儲集器之壓力可在10托至10,000托、較佳100托至1000托之範圍內且最佳為約大氣壓。可在約100℃至3000℃之溫度、較佳在約100℃至1500℃之溫度及最佳在約500℃至800℃之溫度中操作電池。
氫來源可來自添加氫化物之分解。藉由滲透供應H2之電池設計為包含內部金屬氫化物置於密封容器中,其中在高溫下滲透出原子H之電池設計。容器可包含Pd、Ni、Ti或Nb。在一個實施例中,將氫化物置於含有氫化物且在兩端以諸如Swagelocks之密封物密封的密封管(諸如Nb管)中。在密封情況中,氫化物可為鹼金屬或鹼土金屬氫化物。或者,在此以及內部氫化物試劑情況中,氫化物可為以下之群中之至少一者:鹽水氫化物(saline hydride)、氫化鈦、釩、鈮及鉭氫化物、鋯及鉿氫化物、稀土金屬氫化物、釔及鈧氫化物、過渡元素氫化物、金屬間氫化物及其合金。
在一個實施例中,氫化物及操作溫度±200℃(基於各氫化物分解溫度)係選自以下清單中之至少一者:
操作溫度為約800℃之稀土金屬氫化物;操作溫度為約700℃之氫化鑭;操作溫度為約750℃之氫化釓;操作溫度為約750℃之氫化釹;操作溫度為約800℃之氫化釔;操作溫度為約800℃之氫化鈧;操作溫度為約850-900℃之氫化鐿;操作溫度為約450℃之氫化鈦;操作溫度為約950℃之氫化鈰;操作溫度為約700℃之氫化鐠;操作溫度為約600℃之氫化鋯-鈦(50%/50%);操作溫度為約450℃之鹼金屬/鹼金屬氫化物混合物,諸如Rb/RbH或K/KH;及操作溫度為約900-1000℃之鹼土金屬/鹼土金屬氫化物混合物,諸如Ba/BaH2
氣態金屬可包含雙原子共價分子。本發明之目標在於提供原子觸媒,諸如Li以及K及Cs。因此,反應器可進一步包含金屬分子(「MM」)及金屬氫化物分子(「MH」)中之至少一者之解離體。較佳地,觸媒來源、H2來源與MM、MH及HH之解離體(其中M為原子觸媒)匹配以在例如溫度及反應物濃度之所需電池條件下操作。在使用H2之氫化物來源的情況下,在一個實施例中,其分解溫度係在產生所需觸媒蒸氣壓之溫度的範圍內。在氫來源自氫儲集器滲透至反應室中之情況下,用於連續操作之較佳觸媒來源為Sr及Li金屬,此係因為在發生滲透之溫度下其各自之蒸氣壓可在0.01至100托之所需範圍內之故。在滲透電池之其他實施例中,在容許滲透之高溫下操作電池,接著將電池溫度降低至將揮發性觸媒之蒸氣壓維持在所需壓力下的溫度。
在氣體電池之一個實施例中,解離體包含自來源產生觸媒及H之組分。表面觸媒,諸如Pt/Ti,或單獨或在基板上之Pd、銥或銠,諸如Ti亦可起到作為觸媒與氫原子之組合的分子之解離體的作用。解離體較佳具有高表面積,諸如Pt/Al2O3或Pd/Al2O3
H2來源亦可為H2氣體。在此實施例中,可監測及控制壓力。分別用觸媒及觸媒來源,諸如K或CS金屬及LiNH2使其可能,此係因為其在容許使用高溫閥之低溫下具有揮發性之故。LiNH2亦降低Li電池之必需操作溫度且腐蝕性較小,在電漿及長絲電池(其中長絲充當氫解離體)之情況下,其容許使用饋通(feed through)進行耐久操作。
具有NaH作為觸媒之氣體電池氫反應器之其他實施例包含具有解離體之長絲於反應器電池中及Na於儲集器中。H2可通過儲集器流至主腔室中。可藉由控制氣體流動速率、H2壓力及Na蒸氣壓來控制電力。後者可藉由控制儲集器溫度來控制。在另一實施例中,低能量氫反應係藉由用外加熱器加熱來起始且由解離體提供原子H。
可藉由此項技術中已知之方法(諸如機械攪動或混合)攪動反應混合物。攪動系統可包含一或多個壓電傳感器。各壓電傳感器可提供超音攪動。反應電池可經振動且進一步含有攪動元件,諸如不鏽鋼或鎢球,其經振動以攪動反應混合物。在另一實施例中,機械攪動包含球磨。反應物亦可使用此等方法,較佳藉由球磨來混合。混合亦可藉由氣動法,諸如噴射來達成。
在一個實施例中,觸媒係藉由機械攪動,諸如以攪動元件振動、超音攪動及球磨中之至少一者形成。聲波之機械衝擊或壓縮,諸如超音可使得反應物反應或出現物理變化,以使得形成觸媒,較佳形成NaH分子。反應混合物可能或可能不包含溶劑。反應物可為固體,諸如固體NaH,其經機械攪動形成NaH分子。或者,反應混合物可包含液體。混合物可具有至少一種Na物質。Na物質可為液體混合物之組分,或其可為在溶液中。在一個實施例中,鈉金屬係藉由高速攪拌金屬於溶劑(諸如醚、烴、氟化烴、芳族或雜環芳族溶劑)中之懸浮液來分散。溶劑溫度可就保持在金屬熔點以上。
IV. 燃料類型
本發明之一個實施例係關於一種燃料,其包含至少氫來源與觸媒來源之反應混合物以支持在氣體、液體及固體相或可能相混合物中之至少一者中氫催化形成低能量氫。本文對於固體及液體燃料既定之反應物及反應亦為包含相混合物之異質燃料的反應物及反應。
在某些實施例中,本發明之目標在於提供原子觸媒,諸如Li以及K及Cs及分子觸媒NaH及BaH。金屬形成雙原子共價分子。因此,在固體燃料、液體燃料及異質燃料實施例中,反應物包含合金、錯合物、錯合物來源、混合物、懸浮液及溶液,其可與金屬觸媒M可逆地形成及離解或反應以提供諸如Li、NaH及BaH之觸媒。在另一實施例中,觸媒來源及原子氫來源中之至少一者進一步包含至少一種反應形成觸媒及原子氫中之至少一者之反應物。在另一實施例中,反應混合物包含NaH觸媒或NaH觸媒來源或其他觸媒,諸如Li或K,其可經由反應混合物之一或多種反應物或物質之反應來形成或可藉由物理轉化來形成。轉化可為用適合溶劑之溶合作用。
反應混合物可進一步包含固體以支持表面上之催化反應。可將觸媒或觸媒來源(諸如NaH)塗佈於表面上。塗佈可藉由諸如球磨之方法混合載體(諸如活性碳、TiC、WC、R-Ni)與NaH來達成。反應混合物可包含異質觸媒或異質觸媒來源。在一個實施例中,藉由微濕法,較佳藉由使用諸如乙醚之非質子性溶劑將諸如NaH之觸媒塗佈於諸如活性碳、TiC、WC或聚合物之載體上。載體亦可包含無機化合物,諸如鹼金屬鹵化物,較佳地NaF及HNaF2中之至少一者,其中NaH充當觸媒且使用氟化溶劑。
在液體燃料之一個實施例中,反應混合物包含以下中之至少一者:觸媒來源、觸媒、氫來源及觸媒溶劑。在其他實施例中,固體燃料及液體燃料之本發明揭示內容進一步包含兩者之組合且進一步亦包含氣相。在多相中諸如觸媒及原子氫及其來源之反應物的催化係稱作異質反應混合物且將燃料稱作異質燃料。因此,燃料包含至少一種氫來源(經歷向低能量氫之躍遷,狀態由方程式(46)給出)與觸媒(在液體、固體及氣體相中之至少一者中引起具有反應物之躍遷)之反應混合物。自反應物在不同相中之觸媒的催化一般在此項技術中稱為異質催化,其為本發明之一個實施例。異質觸媒為發生化學反應提供表面且包含本發明之實施例。本文對於固體及液體燃料既定之反應物及反應亦為異質燃料之反應物及反應。
對於本發明之任何燃料,均可藉由諸如機械混合之方法或藉由球磨將諸如NaH之觸媒或觸媒來源與反應混合物之其他組分(諸如載體,諸如HSA材料)混合。在所有情況下,均可再添加氫以維持形成低能量氫之反應。氫氣可為任何所需壓力,較佳在0.1至200 atm之範圍內。替代性氫來源包含以下之群中之至少一者:NH4X(X為陰離子,較佳為鹵化物)、NaBH4、NaAlH4、硼烷,及金屬氫化物,諸如鹼金屬氫化物、鹼土金屬氫化物,較佳為MgH2,及稀土金屬氫化物,較佳為LaH2及GdH2
A. 載體
在某些實施例中,本發明之固體、液體及異質燃料包含載體。載體包含對於其功能特定之特性。舉例而言,在載體用作電子受體或導管之情況下,載體較佳具有傳導性。另外,在載體分散反應物之情況下,載體較佳具有高表面積。在前一情況下,諸如HSA載體之載體可包含傳導性聚合物,諸如活性碳、石墨烯及雜環多環芳族烴(可為大分子)。碳可較佳包含活性碳(AC),但亦可包含其他形式,諸如中孔碳、玻璃碳、焦炭、石墨碳、具有以下之碳:解離體金屬,諸如Pt或Pd,其中重量%為0.1至5重量%、具有較佳一至十個碳層及更佳三層之過渡金屬粉末,及金屬或合金塗佈碳,較佳為奈米粉末,諸如過渡金屬,較佳為Ni、Co及Mn塗佈碳中之至少一者。金屬可用碳層夾。在層夾金屬為Na且觸媒為NaH之情況下,Na層夾較佳為飽和。載體較佳具有高表面積。可充當載體之有機傳導性聚合物之常見類別為以下之群中之至少一者:聚(乙炔)、聚(吡咯)、聚(噻吩)、聚(苯胺)、聚(茀)、聚(3-烷基噻吩)、聚四硫富瓦烯、聚萘、聚(對伸苯基硫化物)及聚(對伸苯基伸乙烯基)。此等線性主鏈聚合物在此項技術中通常稱作聚乙炔、聚苯胺等,「黑物(black)」或「黑色素(melanin)」。載體可為混合共聚物,諸如聚乙炔、聚吡咯及聚苯胺之一。傳導性聚合物載體較佳為通常聚乙炔、聚苯胺及聚吡咯之衍生物中之至少一者。其他載體包含不同於碳之其他元素,諸如傳導性聚合物聚氮化硫(polythiazyl)((S-N)x)。
在另一實施例中,載體為半導體。載體可為IV行元素,諸如碳、矽、鍺及α-灰錫。除諸如矽及鍺之元素材料外,半導體載體亦包含化合物材料,諸如砷化鎵及磷化銦,或合金,諸如矽鍺或鋁碑化物。在一個實施例中,諸如矽及鍺晶體之材料中之傳導可藉由當晶體生長時添加少量(例如百萬分之1-10)摻雜劑(諸如硼或磷)來增強。可將摻雜半導體研磨成粉末以充當載體。
在某些實施例中,HSA載體為金屬,諸如過渡金屬、貴金屬、金屬互化物、稀土、錒系元素、鑭系元素,較佳為以下之一:La、Pr、Nd及Sm、Al、Ga、In、Tl、Sn、Pb、擬金屬(metalloid)、Si、Ge、As、Sb、Te、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、鹼金屬、鹼土金屬,及包含此群之至少兩種金屬或元素之合金,諸如鑭系元素合金,較佳為LaNi5及Y-Ni。載體可為貴金屬,諸如以下中之至少一者:Pt、Pd、Au、Ir及Rh或承載型貴金屬,諸如鈦上Pt或Pd(Pt或 Pd/Ti)。
在其他實施例中,HSA材料包含以下中之至少一者:立方氮化硼、六方氮化硼、纖鋅礦氮化硼粉末、異質金剛石(heterodiamond)、氮化硼、奈米管、氮化矽、氮化鋁、氮化鈦(TiN)、氮化鈦鋁(TiAlN)、氮化鎢、金屬或合金,較佳為塗有碳之奈米粉末,諸如以下中之至少一者:Co、Ni、Fe、Mn及其他過渡金屬粉末,其具有較佳一至十個碳層及更佳三層,金屬或合金塗佈碳,較佳為奈米粉末,諸如過渡金屬,較佳為以下中之至少一者:Ni、Co及Mn塗佈碳、碳化物,較佳為粉末,氧化銨(BeO)粉末、稀土金屬氧化物粉末,諸如La2O3、Zr2O3、Al2O3、鋁酸鈉,及碳,諸如芙、石墨烯或奈米管,其較佳為單壁。
碳化物可包含一或多種結合類型:鹽狀,諸如碳化鈣(CaC2);共價化合物,諸如碳化矽(SiC)及碳化硼(B4C或BC3);及填隙化合物,諸如碳化鎢。碳化物可為炔化物,諸如Au2C2、ZnC2及CdC2,或甲基化物,諸如Be2C、碳化鋁(Al4C3),及A3MC型碳化物,其中A通常為稀土或過渡金屬,諸如Sc、Y、La-Na、Gd-Lu,且M為金屬或半金屬主族元素,諸如Al、Ge、In、Tl、Sn及Pb。具有離子之碳化物可包含以下中之至少一者:碳化物 C 2,其中陽離子M I 包含鹼金屬或造幣金屬之一,碳化物M II C 2,其中陽離子M II 包含鹼土金屬,且較佳為碳化物(C 2)3,其中陽離子M III 包含Al、La、Pr或Tb。碳化物可包含除外之離子,諸如以下群之離子YC2、TbC2、YbC2、UC2、Ce2C3、Pr2C3及Tb2C3:碳化物可包含倍半碳化物,諸如Mg2C3、Sc3C4及Li4C3。碳化物可包含三元碳化物,諸如含有鑭系元素金屬及過渡金屬之三元碳化物,其可進一步包含C2單元,諸如Ln 3 M(C 2)2,其中M為Fe、Co、Ni、Ru、Rh、Os及Ir、Dy12Mn5C15、Ln3.67FeC6Ln 3 Mn(C 2)2(Ln=Gd及Tb),及ScCrC2。碳化物可進一步為分類「中間物」過渡金屬碳化物,諸如碳化鐵(Fe3C或FeC2:Fe)。碳化物可為以下群之至少一者:鑭系元素(MC2及M2C3),諸如碳化鑭(LaC2或La2C3)、碳化釔、錒系元素碳化物、過渡金屬碳化物,諸如碳化鈧、碳化鈦(TiC)、碳化釩、碳化鉻、碳化錳及碳化鈷、碳化鈮、碳化鉬、碳化鉭、碳化鋯及碳化鉿。其他適合碳化物包含以下中之至少一者:Ln2FeC4、Sc3CoC4、Ln3MC4(M=Fe、Co、Ni、Ru、Rh、Os、Ir)、Ln3Mn2C6、Eu3.16NiC6、ScCrC2、Th2NiC2、Y2ReC2、Ln12M5C15(M=Mn、Re)、YCoC、Y2ReC2,及此項技術中已知之其他碳化物。
在一個實施例中,載體為導電碳化物,諸如TiC、TiCN、Ti3SiC2或WC及HfC、Mo2C、TaC、YC2、ZrC、Al4C3、SiC及B4C。其他適合碳化物包含YC2、TbC2、YbC2、LuC2、Ce2C3、Pr2C3及Tb2C3。其他適合碳化物包含以下群之至少一者:Ti2AlC、V2AlC、Cr2AlC、Nb2AlC、Ta2AlC、Ti2AlN、Ti3AlC2、Ti4AlN3、Ti2GaC、V2GaC、Cr2GaC、Nb2GaC、Mo2GaC、Ta2GaC、Ti2GaN、Cr2GaN、V2GaN、Sc2InC、Ti2InC、Zr2InC、Nb2InC、Hf2InC、Ti2InN、Zr2InN、Ti2TlC、Zr2TlC、Hf2TlC、Zr2TlN、Ti3SiC2、Ti2GeC、Cr2GeC、Ti3GeC2、Ti2SnC、Zr2SnC、Nb2SnC、Hf2SnC、Hf2SnN、Ti2PbC、Zr2PbC、Hf2PbC、V2PC、Nb2PC、V2ASC、Nb2AsC、Ti2SC、Zr2SC0.4及Hf2SC。載體可為金屬硼化物。載體或HSA材料可為硼化物,較佳為可具有傳導性之二維網狀結構硼化物,諸如MB2,其中M為金屬,諸如以下中之至少一者:Cr、Ti、Mg、Zr及Gd(CrB2、TiB2、MgB2、ZrB2、GdB2)。
在碳-HSA材料實施例中,Na不層夾於碳載體中或藉由與碳反應形成炔化物。在一個實施例中,將觸媒或觸媒來源(較佳為NaH)併入HSA材料(諸如芙、碳奈米管及沸石)內。HSA材料可進一步包含石墨、石墨烯、金剛石狀碳(DLC)、氫化金剛石狀碳(HDLC)、金剛石粉、石墨碳、玻璃碳,及含其他金屬(諸如Co、Ni、Mn、Fe、Y、Pd及Pt中之至少一者)之碳,或包含其他元素(諸如氟化碳,較佳為氟化石墨、氟化金剛石或氟化四碳(C4F))之摻雜劑。HSA材料可經氟化物鈍化,諸如氟化物塗佈金屬或碳或包含氟化物,諸如金屬氟化物,較佳為鹼金屬或稀土金屬氟化物。
具有大表面積之適合載體為活性碳。活性碳可藉由物理或化學活化來活化或再活化。前一活化可包含碳化或氧化,且後一活化可包含以化學物質浸漬。
反應混合物可進一步包含載體,諸如聚合物載體。聚合物載體可選自聚(四氟乙烯),諸如TEFLONTM、聚乙烯二茂鐵、聚苯乙烯、聚丙烯、聚乙烯、聚異戊二烯、聚(胺基磷腈)、包含醚單元之聚合物,諸如聚乙二醇或氧化物及聚丙二醇或氧化物,較佳為芳醚、聚醚多元醇,諸如聚(四亞甲基醚)二醇(PT M EG、聚四氫呋喃、「Terathane」、「聚THF」)、聚乙烯甲醛,及來自環氧化物(諸如聚氧化乙烯及聚氧化丙烯)反應之物。在一個實施例中,HSA包含氟。載體可包含以下之群中之至少一者:氟化有機分子、氟化烴、氟化烷氧基化合物及氟化醚。例示性氟化HSA為TEFLONTM、TEFLONTM-PFA、聚氟乙烯、PVF、聚(偏二氟乙烯)、聚(偏二氟乙烯-共六氟丙烯)及全氟烷氧基聚合物。
B. 固體燃料
固體燃料包含形成低能量氫之觸媒或觸媒來源,諸如至少一種觸媒,諸如選自以下之觸媒:LiH、Li、NaH、Na、KH、K、RbH、Rb、CsH及BaH,原子氫來源及以下中之至少一者:HSA載體、吸氣劑、分散劑,及進行該或該等以下功能之其他固體化學反應物:(i)反應物如下形成觸媒或原子氫:經歷反應,諸如反應混合物之一或多種組分之間的反應,或經歷反應混合物之至少一種組分的物理或化學變化,及(ii)反應物起始、傳播及維持形成低能量氫之催化反應。電池壓力可較佳在約1托至100個大氣壓之範圍內。反應溫度較佳在約100℃至900℃之範圍內。本發明中給出之固體燃料之許多實例(包括包含溶劑及不包含溶劑之液體燃料反應混合物)並不意謂詳盡的。基於本發明,向熟習此項技術者教示其他反應混合物。
氫來源可包含氫或氫化物及解離體,諸如Pt/Ti、氫化Pt/Ti、Pd、Pt或Ru/Al2O3、Ni、Ti或Nb粉。HSA載體、吸氣劑及分散劑中之至少一者可包含以下之群中之至少一者:金屬粉,諸如Ni、Ti或Nb粉、R-Ni、ZrO2、Al2O3、NaX(X=F、Cl、Br、I)、Na2O、NaOH及Na2CO3。在一個實施例中,金屬催化自諸如Na物質之來源及H來源形成NaH分子。金屬可為過渡金屬、貴金屬、金屬間金屬、稀土金屬、鑭系元素及錒系元素金屬,以及其他,諸如鋁及錫。
C. 低能量氫反應活化劑
低能量氫反應可藉由一或多個其他化學反應活化或起始及傳播。此等反應可具有若干類別,諸如(i)放熱反應,其為低能量氫反應提供活化能、(ii)偶合反應,其提供觸媒或原子氫來源中之至少一者以支持低能量氫反應、(iii)自由基反應,其在一個實施例中充當低能量氫反應期間來自觸媒之電子的受體、(iv)氧化還原反應,其在一個實施例中充當低能量氫反應期間來自觸媒之電子的受體、(v)其他交換反應,諸如陰離子交換,包括鹵化物、硫化物、氫化物、碑化物、氧化物、磷化物及氮化物交換,其在一個實施例中,有助於觸媒當自原子氫接受能量以形成低能量氫時變得電離之作用。及(vi)吸氣劑、載體或基質輔助低能量氫反應,其可提供以下中之至少一者:低能量氫反應之化學環境、轉移電子以有助於H觸媒功能之作用、經歷可逆相或其他物理變化或其電子狀態變化,及結合較低能量氫產物以提高低能量氫反應程度或速率中之至少一者。在一個實施例中,反應混合物包含載體,較佳包含導電載體,以使活化反應可行。
在一個實施例中,諸如LiKNaH之觸媒用以如下在高速率下形成低能量氫:加速速率限制步驟、當電子經電離時藉由自原子氫接受非輻射性諧振能量轉移以形成低能量氫自觸媒移除電子。藉由使用載體或HSA材料,諸如活性碳(AC)、Pt/C、Pd/C、TiC或WC以分別分散諸如LiK原子及NaH分子之觸媒,LiK之典型金屬形式可轉化為原子形式且NaH之離子形式可轉化為分子形式。考慮到與反應混合物之其他物質反應時的表面改質,載體較佳具有高表面積及傳導性。引起原子氫過渡以形成低能量氫之反應需要觸媒,諸如LiKNaH及原子氫,其中NaH充當協調反應中之觸媒及原子氫來源。將整數倍27.2 eV自原子氫非輻射性能量轉移至觸媒之反應步驟產生電離觸媒及自由電子,其因電荷累積而引起反應快速停止。諸如AC之載體亦可充當傳導性電子受體,且將包含氧化劑、自由基或其來源之最終電子受體反應物添加至反應混合物中以最終清除自形成低能量氫之觸媒反應釋放的電子。另外,可將還原劑添加至反應混合物中以有助於氧化反應。協同電子受體反應較佳為放熱以加熱反應物且提高速率。反應之活化能及傳播可由諸如以下之快速、放熱、氧化或自由基反應提供:O2CF 4MgAl,其中諸如CF x F及O2及O之自由基用以經由諸如AC之載體自觸媒最終接受電子。其他氧化劑或自由基來源單獨或以組合形式可選自以下之群:O2、O3N 2 ONF 3、M2S2O8(M為鹼金屬)、S、CS2及SO2、MnI2、EuBr2、AgCl,及電子受體反應章節中給出之其他者。
氧化劑較佳接受至少兩個電子。相應陰離子可為S 2-(四硫草酸根陰離子(tetrathiooxalate anion))、。可自催化期間變得雙電離之觸媒(諸如NaH及Li(方程式(28-30)及(24-26))接受兩個電子。將電子受體添加至反應混合物或反應器中適用於本發明之所有電池實施例,諸如固體燃料及異質觸媒實施例以及電解電池,及電漿電池,諸如輝光放電、RF、微波及障壁-電極電漿電池及電漿電解電池,其以連續或脈衝模式操作。亦可將電子傳導、較佳無反應性載體,諸如AC添加至各此等電池實施例之反應物中。微波電漿電池之實施例包含氫解離體,諸如電漿室內支持氫原子之金屬表面。
在實施例中,反應混合物之物質、化合物或材料(諸如觸媒來源、高能反應來源,諸如金屬及以下中之至少一者:氧來源、鹵素來源及自由基來源及載體)之混合物可組合使用。反應混合物之化合物或材料之反應性元素亦可組合使用。舉例而言,氟或氯之來源可為NxFy與NxCly之混合物,或鹵素可互混,諸如於化合物NxFyClr中。組合可由熟習此項技術者進行常規實驗來決定。
a.放熱反應
在一個實施例中,反應混合物包含觸媒來源或觸媒,諸如以下中之至少一者:NaH、BaH、K及Li,及氫來源或氫及至少一種經歷反應之物質。反應可極放熱且可具有快速動力學,使得其向低能量氫觸媒反應提供活化能。反應可為氧化反應。適合氧化反應為包含氧之物質(諸如溶劑,較佳為醚溶劑)與金屬(諸如以下中之至少一者:Al、Ti、Be、Si、P、稀土金屬、鹼金屬及鹼土金屬)的反應。放熱反應更佳形成鹼金屬或鹼土金屬鹵化物,較佳形成MgF2,或Al、Si、P及稀土金屬之鹵化物。適合之鹵化物反應為包含鹵化物之物質(諸如溶劑,較佳為氟碳化物溶劑)與以下中之至少一者之反應:金屬及金屬氫化物,諸如Al、稀土金屬、鹼金屬及鹼土金屬中之至少一者。金屬或金屬氫化物可為觸媒或觸媒來源,諸如NaH、BaH、K或Li。反應混合物可包含至少分別具有產物NaCl及NaF之NaH及NaAlCl4或NaAlF4。反應混合物可包含至少NaH,具有產物NaF之氟溶劑。
一般而言,向低能量氫反應提供活化能之放熱反應的產物可為金屬氧化物或金屬鹵化物,較佳為氟化物。適合產物為A12O3、M2O3(M=稀土金屬)、TiO2、Ti2O3、SiO2、PF3或PF5、A1F3、MgF2、MF3(M=稀土金屬)、NaF、NaHF2、KF、KHF2、LiF及LiHF2。在Ti經歷放熱反應之一個實施例中,觸媒為第二電離能為27.2 eV(方程式(5)中m=1)之Ti2+。反應混合物可包含以下中至少兩者:NaH、Na、NaNH2、NaOH、鐵氟龍(Teflon)、氟化碳及Ti源,諸如Pt/Ti或Pd/Ti。在A1經歷放熱反應之一個實施例中,觸媒為如表3中給出之A1H。反應混合物可包含以下中至少兩者:NaH、A1、碳粉、氟碳化物,較佳包含溶劑,諸如六氟苯或全氟庚烷、Na、NaOH、Li、LiH、K、KH及R-Ni。提供活化能之放熱反應的產物較佳再生形成形成低能量氫及釋放相應電力之另一循環的反應物。較佳藉由電解使金屬氟化物產物再生為金屬及氟氣。電解質可包含共溶混合物。金屬可經氫化且碳產物及任何CH 4及烴產物均可分別氟化形成初始金屬氫化物及氟碳化物溶劑。
在活化低能量氫過渡反應之放熱反應的一個實施例中,稀土金屬(M)、A1、Ti及Si之群中之至少一者分別氧化為相應氧化物,諸如M2O3、A12O3、Ti2O3及SiO2。氧化劑可為醚溶劑,諸如1,4-苯并二噁烷(BDO)且可進一步包含氟碳化物,諸如六氟苯(HFB)或全氟庚烷以加速氧化反應。在一個例示性反應中,混合物包含NaH、活性碳、Si及Ti中之至少一者,及BDO及HFB中之至少一者。在Si作為還原劑之情況下,可藉由在高溫下進行H2還原或藉由與碳反應形成Si及CO及CO2使產物SiO2再生為Si。形成低能量氫之反應混合物的某一實施例包含觸媒或觸媒來源,諸如Na、NaH、K、KH、Li及LiH中之至少一者;放熱反應物來源或放熱反應物,其較佳具有快速動力學、活化H之催化反應以形成低能量氫;及載體。放熱反應物可包含氧來源及與氧反應形成氧化物之物質。對於x及y為整數,氧來源較佳為H2O、O2、H2O2、MnO2、氧化物、碳之氧化物,較佳為CO或CO2、氮之氧化物、NxOy,諸如N2O及NO2、硫之氧化物、SxOy,較佳為氧化劑,諸如M2SxOy(M為鹼金屬),其可視情況與氧化觸媒一起使用,氧化觸媒諸如為銀離子、ClxOy,諸如Cl2O,且ClO2較佳形成NaClO2,濃酸及其混合物,諸如HNO2、HNO3、H2SO4、H2SO3、HCl及HF,較佳地為酸形式銷離子()、NaOCl、IxOy,較佳地I2O5、PxOy、SxOy,無機化合物之氧陰離子,諸如亞硝酸根、硝酸根、氯酸根、硫酸根、磷酸根之一,金屬氧化物,諸如氧化鈷,及觸媒之氧化物或氫氧化物,諸如NaOH,及過氯酸鹽,其中陽離子為觸媒來源,諸如Na、K及Li,有機化合物之含氧官能基,諸如醚,較佳為二甲氧乙烷、二噁烷及1,4-苯并二噁烷(BDO)之一,且反應物質可包含稀土金屬(M)、Al、Ti及Si之群中之至少一者,且相應氧化物分別為M2O3、Al2O3、Ti2O3及SiO2。反應物質可包含以下之群中之至少一者之氧化物產物的金屬或元素:Al2O3氧化鋁、La2O3氧化鑭、MgO氧化鎂、Ti2O3氧化鈦、Dy2O3氧化鏑、Er2O3氧化鉺、Eu2O3氧化銪、LiOH氫氧化鋰、Ho2O3氧化鈥、Li2O氧化鋰、Lu2O3氧化鎦、Nb2O5氧化鈮、Nd2O3氧化釹、SiO2氧化矽、Pr2O3氧化鐠、Sc2O3氧化鈧、SrSiO3偏矽酸鍶、Sm2O3氧化釤、Tb2O3氧化鋱、Tm2O3氧化銩、Y2O3氧化釔及Ta2O5氧化鉭、B2O3氧化硼及氧化鋯。載體可包含碳,較佳包含活性碳。金屬或元素可為以下中之至少一者:Al、La、Mg、Ti、Dy、Er、Eu、Li、Ho、Lu、Nb、Nd、Si、Pr、Sc、Sr、Sm、Tb、Tm、Y、Ta、B、Zr、S、P、C,及其氫化物。
在另一實施例中,氧來源可以下中之至少一者:氧化物,諸如M2O其中M為鹼金屬,較佳為Li2O、Na2O及K2O,過氧化物,諸如M2O2其中M為鹼金屬,較佳為Li2O2、Na2O2及K2O2,及超氧化物,諸如MO2其中M為鹼金屬,較佳為Li2O2、Na2O2及K2O2。離子過氧化物可進一步包含Ca、Sr或Ba之離子過氧化物。
在另一實施例中,較佳具有快速動力學之活化H之催化反應以形成低能量氫的氧來源及放熱反應物來源或放熱反應物中之至少一者包含以下群中一或多者:MNO3、MNO、MNO2、M3N、M2NH、MNH2、MX、NH3、MBH4、MAlH4、M3AlH6、MOH、M2S、MHS、MFeSi、M2CO3、MHCO3、M2SO4、MHSO4、M3PO4、M2HPO4、MH2PO4、M2MoO4、MNbO3、M2B4O7(M四硼酸鹽)、MBO2、M2WO4、MAlCl4、MGaCl4、M2CrO4、M2Cr2O7、M2TiO3、MZrO3、MAlO2、MCoO2、MGaO2、M2GeO3、MMn2O4、M4SiO4、M2SiO3、MTaO3、MCuCl4、MPdCl4、MVO3、MIO3、MFeO2、MIO4、MClO4、MScOn、MTiOn、MVOn、MCrOn、MCr2On、MMn2On、MFeOn、MCoOn、MNiOn、MNi2On、MCuOn及MZnOn(其中M為Li、Na或K且n=1、2、3或4)、氧陰離子、強酸之氧陰離子、氧化劑、分子氧化劑(諸如V2O3、I2O5、MnO2、Re2O7、CrO3、RuO2、AgO、PdO、PdO2、PtO、PtO2、I2O4、I2O5、I2O9、SO2、SO3、CO2、N2O、NO、NO2、N2O3、N2O4、N2O5、Cl2O、ClO2、Cl2O3、Cl2O6、Cl2O7、PO2、P2O3及P2O5)、NH4X,其中X為硝酸根或熟習此項技術者已知之其他適合陰離子,諸如包含以下之群中一者:F-、Cl-、Br-、I-、NO3 -、NO2 -、SO4 2-、HSO4 -、CoO2 -、IO3 -、IO4 -、TiO3 -、CrO4 -、FeO2 -、PO4 3-、HPO4 2-、H2PO4 -、VO3 -、ClO4 -及Cr2O7 2-及反應物之其他陰離子。反應混合物可另外包含還原劑。在一個實施例中,N2O5係自反應物混合物之反應形成,反應物諸如為根據2P2O5+12HNO3→4H3PO4+6N2O5反應之HNO3及P2O5
在氧或包含氧之化合物參與放熱反應的一個實施例中,O2可充當觸媒或觸媒來源。氧分子之鍵能為5.165 eV,且氧原子之第一、第二及第三電離能分別為13.61806 eV、35.11730 eV及54.9355 eV。反應O 2O+O 2+O 2O+O 3+及2O→2O +提供分別約2、4及1倍E h 之淨焓,且包含藉由自H接受此等能量以使得形成低能量氫來形成低能量氫之觸媒反應。
另外,活化低能量氫反應之放熱反應的來源可為金屬合金形成反應,較佳為Pd與Al之間藉由將Al熔融起始之金屬合金形成反應。放熱反應較佳產生高能粒子以活化低能量氫形成反應。反應物可為熱原質或煙火組合物。在另一實施例中,可藉由在諸如在約1000-5000℃之範圍內、較佳在約1500-2500℃之範圍內的極高溫度下操作反應物來提供活化能。反應容器可包含高溫不鏽鋼合金、耐火金屬或合金、氧化鋁或碳。提高之反應物溫度可藉由加熱反應器或藉由放熱反應來達成。
放熱反應物可包含鹵素,較佳為氟或氯,及與氟或氯反應分別形成氟化物或氯化物之物質。適合鹵素來源為BxXy,較佳為BF3、B2F4、BCl3或BBr3及SxXy,較佳為SCl2或SxFy(X為鹵素;x及y為整數)。適合之氟來源為氟碳化物,諸如CF4、六氟苯及十六氟庚烷;氟化氙,諸如XeF2、XeF4及XeF6;BxFy,較佳為BF3、B2F4;SFx,諸如氟矽烷、氟化氮;NxFy,較佳為NF3、NF3O、SbFx;BiFx,較佳為BiF5;SxFy(x及y為整數),諸如SF4、SF6或S2F10;氟化磷;M2SiF6其中M為鹼金屬,諸如Na2SiF6及K2SiF6;MSiF6其中M為鹼土金屬,諸如MgSiF6、GaSiF3;PF5;MPF6,其中M為鹼金屬;MHF2,其中M為鹼金屬,諸如NaHF2及KHF2;K2TaF7;KBF4;K2MnF6及K2ZrF6,其中預期其他類似化合物,諸如具有另一鹼金屬或鹼土金屬取代之化合物,諸如Li、Na或K之一作為鹼金屬。適合之氯源為Cl2氣體、SbCl5,及氯碳化物,諸如CCl4、氯仿、BxCly(較佳為BCl3、B2Cl4、BCl3)、NxCly(較佳為NCl3)、SxCly(較佳為SCl2(x及y為整數))。反應物質可包含以下之群中之至少一者:鹼金屬或鹼土金屬或氫化物或氫化物、稀土金屬(M)、Al、Si、Ti及P,其形成相應氟化物或氯化物。反應物鹼金屬較佳對應於觸媒之鹼金屬,鹼土金屬氫化物為MgH2,稀土元素為La,且Al為奈米粉末。載體可包含碳,較佳包含活性碳、中孔碳,及在Li離子電池中使用之碳。反應物可呈任何莫耳比。較佳地,反應物質與氟或氯呈約如氟或氯元素之化學計量比,觸媒過量,較佳呈如與氟或氯反應之元素約相同之莫耳比,且載體過量。
放熱反應物可包含鹵素氣體,較佳為氯氣或溴氣;或鹵素氣體來源,諸如HF、HCl、HBr、HI,較佳為CF4或CCl4;及可與鹵素反應而形成鹵化物之物質。鹵素來源亦可為氧來源,諸如CxOyXr,其中X為鹵素,且x、y及r為整數且為此項技術中已知。反應物質可包含以下之群中之至少一者:鹼金屬或鹼土金屬或氫化物、稀土金屬、Al、Si及P,其形成相應鹵化物。反應物鹼金屬較佳對應於觸媒之鹼金屬,鹼土金屬氫化物為MgH2,稀土元素為La,且Al為奈米粉末。載體可包含碳,較佳為活性碳。反應物可呈任何莫耳比。較佳地,反應物質與鹵素呈約等化學計量比,觸媒過量,較佳呈同與鹵素反應之元素約相同之莫耳比,且載體過量。在一個實施例中,反應物包含觸媒來源或觸媒(諸如Na、NaH、K、KH、Li、LiH及H2)、鹵素氣體(較佳為氯氣或溴氣)、以下中之至少一者:Mg、MgH2、稀土元素(較佳為La、Gd或Pr)、Al及載體(較佳為諸如活性碳之碳)。
b.自由基反應
在一個實施例中,放熱反應為自由基反應,較佳為無鹵化物或氧之自由基反應。鹵化物自由基之來源可為鹵素,較佳為F2或C12,或氟碳化物,較佳為CF4。F自由基之來源為S2F10。包含鹵素氣體之反應混合物可進一步包含自由基起始劑。反應器可包含形成自由基(較佳為鹵素自由基及更佳為氯或氟自由基)之紫外光源。自由基起始劑為此項技術中通常已知者,諸如過氧化物、偶氮化合物及金屬離子來源,諸如金屬鹽,較佳為鈷鹵化物,諸如CoC12,其為Co2+來源,或FeSO4,其為Fe2+來源。後者較佳與氧物質(諸如H2O2或O2)反應。自由基可為中性。
氧來源可包含原子氧。氧可為純態氧(singlet oxygen)。在一個實施例中,純態氧係自NaOC1與H2O2反應形成。在一個實施例中,氧來源包含O2且可進一步包含自由基或自由基起始劑之來源以傳播自由基反應,較佳傳播O原子之自由基反應。自由基來源或氧來源可為臭氧或臭氧化物中之至少一者。在一個實施例中,反應器包含臭氧來源,諸如氧放電以向反應混合物提供臭氧。
自由基來源或氧來源可進一步包含以下中之至少一者:過氧化合物、過氧化物、H2O2、含有偶氮基之化合物、N2O、NaOC1、範湯試劑(Fenton's reagent)或類似試劑、OH自由基或其來源、高氙酸根離子或其來源,諸如鹼或鹼土高氙酸鹽,較佳為高氙酸鈉(Na4XeO6)或高氙酸鉀(K4XeO6)、四氧化氙(XeO4),及高氙酸(H4XeO6),及金屬離子來源,諸如金屬鹽。金屬鹽可為以下中之至少一者:FeSO4、AlCl3、TiCl3及較佳地鈷鹵化物,諸如Co2+來源CoCl2
在一個實施例中,諸如Cl之自由基係自反應混合物(NaH+MgH2+載體(諸如活性碳(AC))+鹵素氣體(諸如Cl2))中之鹵素(諸如Cl2)形成。自由基可藉由Cl2與烴(CH4)之混合物在諸如大於200℃之高溫下反應來形成。相對於烴,鹵素可為莫耳過量。氯碳化物產物及Cl自由基可與還原劑反應以為形成低能量氫提供活化能及路徑。碳產物可使用合成氣體(合成氣)及費-托反應(Fischer-Tropsch reaction)或藉由將碳直接氫還原為甲烷來再生。反應混合物可包含O2與Cl2之混合物,處於諸如大於200℃之高溫下。混合物可反應形成ClxOy(x及y為整數),諸如ClO、Cl2O及ClO2。反應混合物可包含可反應形成HCl之H2與Cl2,處於諸如大於200℃之高溫下。反應混合物可包含可反應形成H2O之H2與O2與複合劑,諸如Pt/Ti、Pt/C或Pd/C,處於諸如大於50℃之稍高溫下。複合劑可在諸如在大於一個大氣壓之範圍內、較佳在約2至100個大氣壓之範圍內的高壓下操作。反應混合物可為非化學計量以有利於自由基及純態氧形成。系統可進一步包含形成自由基之紫外光或電漿來源,諸如RF、微波或輝光放電,較佳高壓脈衝、電漿來源。反應物可進一步包含觸媒以形成以下中之至少一者:原子自由基,諸如Cl、O及H、純態氧,及臭氧。觸媒可為貴金屬,諸如Pt。在形成Cl自由基之一個實施例中,將Pt觸媒維持在大於氯化鉑分解溫度之溫度下,氯化鉑諸如為PtCl2、PtCl3及PtCl4,其分解溫度分別為581℃、435℃及327℃。在一個實施例中,Pt可如下自包含金屬鹵化物之產物混合物中回收:將金屬鹵化物溶解於適合溶劑中,其中Pt、Pd或其鹵化物不可溶,及移除溶液。可加熱可包含碳及Pt或Pd鹵化物之固體以藉由分解相應鹵化物來形成Pt或Pd於碳上。
在一個實施例中,將N2O、NO2或NO氣體添加至反應混合物。N2O及NO2可充當NO自由基來源。在另一實施例中,NO自由基較佳藉由NH3氧化在電池中產生。反應可為在高溫下NH3與O2於鉑或鉑-銠上之反應。NO、NO2及N2O可藉由已知工業方法,諸如藉由哈波法(Haber process)、接著奧士瓦法(Ostwald process)來產生。在一個實施例中,例示性步驟順序為:
特定言之,哈波法可用以在高溫及高壓下使用諸如含α-鐵之一些氧化物的觸媒自N2及H2產生NH3。奧士瓦法可用以在諸如熱鉑或鉑-銠觸媒之觸媒下將氨氧化為NO、NO2及N2O。鹼金屬硝酸鹽可使用同上文所揭示之方法再生。
系統及反應混合物可起始及支持燃燒反應以提供純態氧及自由基中之至少一者。燃燒反應物可為非化學計量以有利於自由基及純態氧形成,其係與其他低能量氫反應反應物反應。在一個實施例中,抑制爆炸反應以有利於長久穩定反應,或爆炸反應係由達成所需低能量氫反應速率之適當反應物及莫耳比引起。在一個實施例中,電池包含至少一個內燃機筒。
c.電子受體反應
在一個實施例中,反應混合物進一步包含電子受體。當在形成低能量氫之催化反應期間能量自原子氫轉移至觸媒時,電子受體可充當自觸媒電離之電子的儲集器(sink)。電子受體可為以下中之至少一者:傳導性聚合物或金屬載體、諸如第VI族元素之氧化劑、分子及化合物、自由基、形成穩定自由基之物質,及具有高電子親和力之物質,諸如鹵素原子、O2、C、CF1、2、3或4、Si、S、PxSy、CS2、SxNy及進一步包含O及H之此等化合物、Au、At、AlxOy(x及y為整數),較佳為AlO2,其在一個實施例中為Al(OH)3與以下之Al之反應的中間物:R-Ni、ClO、Cl2、F2、AlO2、B2N、CrC2、C2H、CuCl2、CuBr2、MnX3(X=鹵離子)、MoX3(X=鹵離子)、NiX3(X=鹵離子)、RuF4、5或6、ScX4(X=鹵離子)、WO3,及如熟習此項技術者已知之具有高電子親和力之其他原子及分子。在一個實施例中,當電子藉由自原子氫接受非輻射性諧振能量轉移而電離時,載體充當自觸媒之電子受體。P載體較佳具有傳導性及形成穩定自由基中之至少一者。適合之此等載體為傳導性聚合物。載體可在宏觀結構上形成負離子,諸如形成C6離子之Li離子電池之碳。在另一實施例中,載體為半導體,較佳經摻雜以提高傳導性。反應混合物進一步包含自由基或其來源,諸如O、OH、O2、O3、H2O2、F、Cl及NO,其可充當在催化期間由載體形成之自由基的清除劑。在一個實施例中,諸如NO之自由基可與觸媒或觸媒來源(諸如鹼金屬)形成錯合物。在另一實施例中,載體具有不成對電子。載體可為順磁的,諸如稀土元素或化合物,諸如Er2O3。在一個實施例中,諸如Li、NaH、BaH、K、Rb或Cs之觸媒或觸媒來源滲透至電子受體(諸如載體)中,且添加反應混合物之其他組分。載體較佳為具有層夾NaH或Na之AC。
d.氧化還原反應
在一個實施例中,低能量氫反應係藉由氧化還原反應活化。在一個例示性實施例中,反應混合物包含以下群之至少兩種物質:觸媒、氫來源、氧化劑、還原劑及載體。反應混合物亦可包含路易斯酸(Lewis acid),諸如第13族三鹵化物,較佳為AlCl3、BF3、BCl3及BBr3中之至少一者。在某些實施例中,各反應混合物包含至少一種選自以下屬組分(i)-(iv)之物質。
(i) 選自以下之觸媒:Li、LiH、K、KHNaH、Rb、RbH、Cs及CsH。
(ii) 選自H2氣體、H2氣體來源或氫化物之氫來源。
(iii) 選自以下之載體:碳、碳化物及硼化物,諸如TiC、YC2、Ti3SiC2、TiCN、MgB2、SiC、B4C或WC。
(iv) 選自金屬化合物之氧化劑,諸如以下之一:鹵化物、磷化物、硼化物、氧化物、氫氧化物、矽化物、氮化物、砷化物、硒化物、碲化物、銻化物、碳化物、硫化物、氫化物、碳酸鹽、氫碳酸鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、磷酸氫鹽、磷酸二氫鹽、硝酸鹽、亞硝酸鹽、高錳酸鹽、氯酸鹽、過氯酸鹽、亞氯酸鹽、過亞氯酸鹽、次氯酸鹽、溴酸鹽、過溴酸鹽、溴銀礦、過亞溴酸鹽、碘酸鹽、過碘酸鹽、亞碘酸鹽、過亞碘酸鹽、鉻酸鹽、重鉻酸鹽、碲酸鹽、硒酸鹽、碑酸鹽、矽酸鹽、硼酸鹽、氧化鈷、氧化碲及其他氧陰離子,諸如以下之氧陰離子:鹵素、P、B、Si、N、As、S、Te、Sb、C、S、P、Mn、Cr、Co及Te,其中金屬較佳包含過渡金屬、Sn、Ga、In、鹼金屬或鹼土金屬;氧化劑進一步包含鉛化合物,諸如鉛鹵化物,鍺化合物,諸如鹵化物、氧化物或硫化物,諸如GeF2、GeCl2、GeBr2、GeI2、GeO、GeP、GeS、GeI4及GeCl4,氟碳化物,諸如CF 4或ClCF3;氯碳化物,諸如CCl4O 2MNO 3MClO 4MO 2NF 3N 2 O、NO、NO2;硼-氮化合物,諸如B3N3H6,硫化合物,諸如SF6SSO 2、SO3、S2O5Cl2、F5SOF、M2S2O8;SxXy,諸如S2Cl2、SCl2、S2Br2或S2F2、CS2;SOxXy,諸如SOCl2、SOF2、SO2F2或SOBr2;XxX'y,諸如ClF5;XxX'yOz,諸如ClO2F、ClO2F2、ClOF3、ClO3F及ClO2F3;硼-氮化合物,諸如B3N3H6、Se、Te、Bi、As、Sb、Bi;TeXx,較佳為TeF4、TeF6;TeOx,較佳為TeO2或TeO3,SeXx,較佳為SeF6;SeOx,較佳為SeO2或SeO3;碲氧化物、鹵化物或其他碲化合物,諸如TeO2,TeO3、Te(OH)6、TeBr2、TeCl2、TeBr4、TeCl4、TeF4、TeI4、TeF6、CoTe或NiTe;硒氧化物、鹵化物、硫化物,或其他硒化合物,諸如SeO2、SeO3、Se2Br2、Se2Cl2、SeBr4、SeCl4、SeF4、SeF6、SeOBr2、SeOCl2、SeOF2、SeO2F2、SeS2、Se2S6、Se4S4或Se6S2;P、P2O5、P2S5;PxXy,諸如PF3、PCl3、PBr3、PI3、PF5、PCl5、PBr4F或PCl4F;POxXy,諸如POBr3、POI3、POCl3或POF3;PSxXy(M為鹼金屬,x、y及z為整數,X及X'為鹵素),諸如PSBr3、PSF3、PSCl3;磷-氮化合物,諸如P3N5、(Cl2PN)3、(Cl2PN)4或(Br2PN)x;碑氧化物、鹵化物、硫化物、硒化物或碲化物或其他碑化合物,諸如AlAs、As2I4、As2Se、As4S4、AsBr3、AsCl3、AsF3、AsI3、As2O3、As2Se3、As2S3、As2Te3、AsCl5、AsF5、As2O5、As2Se5或As2S5;銻氧化物、鹵化物、硫化物、硫酸鹽、硒化物、碑化物,或其他銻化合物,諸如SbAs、SbBr3、SbCl3、SbF3、SbI3、Sb2O3、SbOCl、Sb2Se3、Sb2(SO4)3、Sb2S3、Sb2Te3、Sb2O4、SbCl5、SbF5、SbCl2F3、Sb2O5或Sb2S5;鉍氧化物、鹵化物、硫化物、硒化物,或其他鉍化合物,諸如BiASO4、BiBr3、BiCl3、BiF3、BiF5、Bi(OH)3、BiI3、Bi2O3、BiOBr、BiOCl、BiOI、Bi2Se3、Bi2S3、Bi2Te3或Bi2O4、SiCl4、SiBr4;金屬氧化物、氫氧化物或鹵化物,諸如過渡金屬鹵化物,諸如CrCl3、ZnF2、ZnBr2、ZnI2、MnCl2、MnBr2、MnI2、CoBr2、CoI2、CoCl2、NiCl2、NiBr2、NiF2、FeF2、FeCl2、FeBr2、FeCl3、TiF3、CuBr、CuBr2、VF3及CuCl2;金屬鹵化物,諸如SnF2、SnCl2、SnBr2、SnI2、SnF4、SnCl4、SnBr4、SnI4、InF、InCl、InBr、InI、AgCl、AgI、AlF3、AlBr3、AlI3、YF3、CdCl2、CdBr2CdI2、InCl3、ZrCl4、NbF5、TaCl5、MoCl3、MoCl5、NbCl5、AsCl3、TiBr4、SeCl2、SeCl4、InF3、InCl3、PbF4、TeI4、WCl6、OsCl3、GaCl3、PtCl3、ReCl3、RhCl3、RuCl3;金屬氧化物或氫氧化物,諸如Y2O3、FeO、Fe2O3或NbO、NiO、Ni2O3、SnO、SnO2、Ag2O、AgO、Ga2O、As2O3、SeO2、TeO2、In(OH)3、Sn(OH)2、In(OH)3、Ga(OH)3及Bi(OH)3;CO2、As2Se3、SF6、S、SbF3、CF4、NF3;高錳酸鹽,諸如KMnO4及NaMnO4;P2O5;硝酸鹽,諸如LiNO3、NaNO3及KNO3及硼鹵化物,諸如BBr3及BI3;第l3族鹵化物,較佳為鹵化銦,諸如InBr2、InCl2及InI3;鹵化銀,較佳為AgCl或AgI;鹵化鉛;鹵化鎘;鹵化鋯;較佳地過渡金屬氧化物、硫化物或鹵化物(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu或Zn與F、Cl、Br或I);第二或第三過渡系列鹵化物(較佳為YF3)、氧化物、硫化物(較佳為Y2S3)或氫氧化物,較佳為以下者:Y、Zr、Nb、Mo、Tc、Ag、Cd、Hf、Ta、W、Os,諸如NbX3、NbX5或TaX5(在鹵化物情況下);金屬硫化物,諸如Li2S、ZnS、FeS、NiS、MnS、Cu2S、CuS及SnS;鹼土金屬鹵化物,諸如BaBr2、BaCl2、BaI2、SrBr2、SrI2、CaBr2、CaI2、MgBr2或MgI2;稀土金屬鹵化物,諸如EuBr3、LaF3、LaBr3、CeBr3、GdF3、GdBr3,較佳為呈II狀態,諸如以下中一者:CeI2、EuF2、EuCl2、EuBr2、EuI2、DyI2、NdI2、SmI2、YbI2及TmI2;;金屬硼化物,諸如硼化銪;MB2硼化物,諸如CrB2、TiB2、MgB2、ZrB2及GdB2;鹼金屬鹵化物,諸如LiCl、RbCl或CsI及金屬磷化物、鹼土金屬磷化物,諸如Ca3P2;貴金屬鹵化物、氧化物、硫化物,諸如PtCl2、PtBr2、PtI2、PtCl4、PdCl2、PbBr2及PbI2;稀土金屬硫化物,諸如CeS;其他適合之稀土金屬為La及Gd者;金屬及陰離子,諸如Na2TeO4、Na2TeO3、Co(CN)2、CoSb、CoAs、Co2P、CoO、CoSe、CoTe、NiSb、NiAs、NiSe、Ni2Si、MgSe;稀土金屬碲化物,諸如EuTe;稀土金屬硒化物,諸如EuSe;稀土金屬氮化物,諸如EuN;金屬氮化物,諸如AlN及GdN;及鹼土金屬氮化物,諸如Mg3N2;含有至少兩個來自氧及不同鹵素原子之群之原子的化合物,諸如F2O、Cl2O、ClO2、Cl2O6、Cl2O7、ClF、ClF3、ClOF3、ClF5、ClO2F、ClO2F3、ClO3F、BrF3、BrF5、I2O5、IBr、ICl、ICl3、IF、IF3、IF5、IF7;及第二或第三過渡系列金屬鹵化物,諸如OsF6、PtF6或IrF6;鹼金屬化合物,諸如鹵化物、氧化物或硫化物;及在還原時可形成金屬之化合物,諸如鹼金屬、鹼土金屬、過渡金屬、稀土金屬、第13族(較佳為In)及第14族(較佳為Sn)、金屬氫化物,諸如稀土金屬氫化物、鹼土金屬氫化物或鹼金屬氫化物,其中觸媒或觸媒來源可為金屬,諸如鹼金屬,當氧化劑為氫化物時,較佳為金屬氫化物。適合氧化劑為金屬鹵化物、硫化物、氧化物、氫氧化物、硒化物、氮化物及砷化物,及磷化物,諸如鹼土金屬鹵化物,諸如BaBr2、BaCl2、BaI2、CaBr2、MgBr2或MgI2;;稀土金屬鹵化物,諸如EuBr2、EuBr3、EuF3、LaF3、GdF3 GdBr3、LaF3、LaBr3、CeBr3、CeI2、PrI2、GdI2及LaI2;第二或第三系列過渡金屬鹵化物,諸如YF3;鹼土金屬磷化物、氮化物或砷化物,諸如Ca3P2、Mg3N2及Mg3As2;金屬硼化物,諸如CrB2或TiB2;鹼金屬鹵化物,諸如LiCl、RbCl或CsI;金屬硫化物,諸如Li2S、ZnS、Y2S3、FeS、MnS、Cu2S、CuS及Sb2S5;金屬磷化物,諸如Ca3P2;過渡金屬鹵化物,諸如CrCl3、ZnF2、ZnBr2、ZnI2、MnCl2、MnBr2、MnI2、CoBr2、CoI2、CoCl2、NiBr2、NiF2、FeF2、FeCl2、FeBr2、TiF3、CuBr、VF3及CuCl2;金屬鹵化物,諸如SnBr2、SnI2、InF、InCl、InBr、InI、AgCl、AgI、AlI3、YF3、CdCl2、CdBr2、CdI2、InCl3、ZrCl4、NbF5、TaCl5、MoCl3、MoCl5、NbCl5、AsCl3、TiBr4、SeCl2、SeCl4、InF3、PbF4及TeI4;金屬氧化物或氫氧化物,諸如Y2O3、FeO、NbO、In(OH)3、As2O3、SeO2、TeO2、BI3、CO2、As2Se3;金屬氮化物,諸如Mg3N2或AlN;金屬磷化物,諸如Ca3P2、SF6、S、SbF3、CF4、NF3、KMnO4、NaMnO4、P2O5、LiNO3、NaNO3、KNO3及金屬硼化物,諸如BBr3。適合氧化劑包括以下清單中之至少一者:BaBr2、BaCl2、EuBr2、EuF3、YF3、CrB2、TiB2、LiCl、RbCl、CsI、Li2S、ZnS、Y2S3、Ca3P2、MnI2、CoI2、NiBr2、ZnBr2、FeBr2、SnI2、InCl、AgCl、Y2O3、TeO2、CO2、SF6、S、CF4、NaMnO4、P2O5、LiNO3。適合氧化劑包括以下清單中之至少一者:EuBr2、BaBr2、CrB2、MnI2及AgCl。適合硫化物氧化劑包含以下中之至少一者:Li2S、ZnS及Y2S3。在某些實施例中,氧化物氧化劑為Y2O3
在其他實施例中,各反應混合物包含至少一種選自以下屬之上述組分(i)-(iii)之物質,且進一步包含(iv)至少一種選自以下之還原劑:金屬,諸如鹼金屬、鹼土、過渡、第二及第三系列過渡及稀土金屬及鋁。還原劑較佳為以下群之一:Al、Mg、MgH2、Si、La、B、Zr及Ti粉及H2
在其他實施例中,各反應混合物包含至少一種選自以下屬之上述組分(i)-(iv)之物質,且進一步包含(v)載體,諸如傳導性載體,其選自AC、1%Pt或Pd於碳上(Pt/C、Pd/C),及碳化物,較佳為TiC或WC。
反應物可呈任何莫耳比,但在某些實施例中其呈約等莫耳比。
包含(i)觸媒或觸媒來源、(ii)氫來源、(iii)氧化劑、(iv)還原劑及(v)載體之適合反應系統包含NaH、BaH或KH作為觸媒或觸媒來源及H來源、以下中一者:BaBr2、BaCl2、MgBr2、MgI2、CaBr2、EuBr2、EuF3、YF3、CrB2、TiB2、LiCl、RbCl、CsI、Li2S、ZnS、Y2S3、Ca3P2、MnI2、CoI2、NiBr2、ZnBr2、FeBr2、SnI2、InCl、AgCl、Y2O3、TeO2、CO2、SF6、S、CF4、NaMnO4、P2O5、LiNO3作為氧化劑、Mg或MgH2作為還原劑,其中MgH2亦可充當H及AC、TiC來源,或WC作為載體。在錫鹵化物為氧化劑之情況下,Sn產物可充當催化機制中之還原劑及傳導性載體中之至少一者。
在包含(i)觸媒或觸媒來源、(ii)氫來源、(iii)氧化劑及(iv)載體之另一適合反應系統中,包含NaH、BaH或KH作為觸媒或觸媒來源及H來源、以下中一者:EuBr2、BaBr2、CrB2、MnI2及AgCl作為氧化劑且AC、TiC或WC作為載體。反應物可呈任何莫耳比,但較佳呈約等莫耳比。
觸媒、氫來源、氧化劑、還原劑及載體可呈任何所需莫耳比。在具有反應物、包含KH或NaH之觸媒、包含CrB2、AgCl2中之至少一者之氧化劑,及自鹼土、過渡金屬或稀土金屬鹵化物之群之金屬鹵化物(較佳為溴化物或碘化物,諸如EuBr2、BaBr2及MnI2)、包含Mg或MgH2之還原劑及包含AC、TiC或WC之載體的一個實施例中,莫耳比大約相同。稀土金屬鹵化物可藉由相應鹵素與金屬或鹵化氫(諸如HBr)直接反應來形成。二鹵化物可自三鹵化物藉由H2還原來形成。
其他氧化劑為具有高偶極矩或形成具有偶極矩之中間物的氧化劑。較佳地,具有高偶極矩之物質在催化反應期間輕易自觸媒接受電子。物質可具有高電子親和力。在一個實施例中,電子受體具有半填充或約半填充電子殼層,諸如錫、Mn及Gd或Eu化合物,其分別具有半填充sp3、3d及4f殼層。後一類型之代表性氧化劑為對應於以下之金屬:LaF3、LaBr3、GdF3、GdCl3、GdBr3、EuBr2、EuI2、EuCl2、EuF2、EuBr3、EuI3、EuCl3及EuF3。在一個實施例中,氧化劑包含非金屬化合物,該非金屬諸如為P、S、Si及C中之至少一者,其較佳具有高氧化態且進一步包含具有高負電性之原子,諸如F、Cl或O中之至少一者。在另一實施例中,氧化劑包含金屬化合物,該金屬諸如為Sn及Fe至少一者,其較佳具有低氧化態(諸如II)且進一步包含具有低負電性之原子,諸如Br或I中之至少一者。相較於帶雙負電之離子,諸如,帶單一負電之離子,諸如為有利的。在一個實施例中,氧化劑包含化合物,諸如對應於低熔點金屬之金屬鹵化物,使得其可熔融作為反應產物且自電池移除。低熔點金屬之適合氧化劑為In、Ga、Ag及Sn之鹵化物。反應物可呈任何莫耳比,但較佳呈約等莫耳比。
在一個實施例中,反應混合物包含(i)觸媒或觸媒來源,其包含自第I族元素之金屬或氫化物,(ii)氫來源,諸如H2氣體或H2氣體來源,或氫化物,(iii)氧化劑,其包含原子或離子或化合物,其包含以下中之至少一者:自第13、14、15、16及17族之元素;較佳選自F、Cl、Br、I、B、C、N、O、Al、Si、P、S、Se及Te之群,(iv)還原劑,其包含元素或氫化物,較佳包含一或多種選自Mg、MgH2、Al、Si、B、Zr及稀土金屬(諸如La)之元素或氫化物,及(v)載體,其較佳具有傳導性且較佳不與反應混合物之其他物質反應形成另一化合物。適合之載體較佳包含碳,諸如AC、石墨烯、與金屬(諸如Pt或Pd/C)一起浸漬之碳,及碳化物,其較佳為TiC或WC。
在一個實施例中,反應混合物包含(i)觸媒或觸媒來源,其包含自第I族元素之金屬或氫化物,(ii)氫來源,諸如H2氣體或H2氣體來源,或氫化物,(iii)氧化劑,其包含鹵化物、氧化物或硫化物,較佳包含金屬鹵化物、氧化物或硫化物,更佳包含第IA、IIA、3d、4d、5d、6d、7d、8d、9d、10d、11d、12d族元素及鑭系元素之鹵化物,且最佳包含過渡金屬鹵化物或鑭系元素鹵化物,(iv)還原劑,其包含元素或氫化物,較佳包含一或多種選自Mg、MgH2、Al、Si、B、Zr及稀土金屬(諸如La)之元素或氫化物,及(v)載體,其較佳具有傳導性且較佳不與反應混合物之其他物質反應形成另一化合物。適合之載體較佳包含碳,諸如AC、與金屬(諸如Pt或Pd/C)一起浸漬之碳,及碳化物,其較佳為TiC或WC。
在一個實施例中,反應混合物包含觸媒或觸媒來源及氫或氫來源且可進一步包含其他物質,諸如還原劑、載體及氧化劑,其中混合物包含至少兩種選自以下之物質:BaBr2、BaCl2、TiB2、CrB2、LiCl、RbCl、LiBr、KI、MgI2、Ca3P2、Mg3As2、Mg3N2、AlN、Ni2Si、Co2P、YF3、YCl3、YI3、NiB、CeBr3、MgO、Y2S3、Li2S、GdF3、GdBr3、LaF3、AlI3、Y2O3、EuBr3、EuF3、Cu2S、MnS、ZnS、TeO2、P2O5、SnI2、SnBr2、CoI2、FeBr2、FeCl2、EuBr2、MnI2、InCl、AgCl、AgF、NiBr2、ZnBr2、CuCl2、InF3、鹼金屬、鹼金屬氫化物、鹼金屬鹵化物(諸如LiBr、KI、RbCl)、鹼土金屬、鹼土金屬氫化物、鹼土金屬鹵化物(諸如BaF2、BaBr2、BaCl2、BaI2、CaBr2、SrI2、SrBr2、MgBr2及MgI2)、AC、碳化物、硼化物、過渡金屬、稀土金屬、Ga、In、Sn、Al、Si、Ti、B、Zr及La。
e.交換反應、熱可逆性反應及再生
在一個實施例中,氧化劑,及還原劑、觸媒來源及觸媒中之至少一者可經歷可逆反應。在一個實施例中,氧化劑為鹵化物,較佳為金屬鹵化物,更佳為以下中之至少一者:過渡金屬、錫、銦、鹼金屬、鹼土金屬,及稀土金屬鹵化物,最佳為稀土金屬鹵化物。可逆反應較佳為鹵化物交換反應。較佳地,反應能量較低,使得鹵化物可在氧化劑與還原劑、觸媒來源及觸媒中之至少一者之間在環境與3000℃之間、較佳在環境及1000℃之間的溫度下可逆性交換。可偏移反應平衡以推動低能量氫反應。偏移可藉由溫度變化或反應濃度或比率變化來達成。反應可藉由添加氫來保持。在一個代表性反應中,交換為
其中n1、n2、x及y為整數,X為鹵離子,且Mox為氧化劑之金屬,Mred/cat為還原劑、觸媒來源及觸媒中之至少一者之金屬。在一個實施例中,一或多種反應物為氫化物且除鹵化物交換之外,反應進一步涉及可逆性氫化物交換。除其他反應條件(諸如反應物溫度及濃度)外,亦可藉由控制氫壓來控制可逆反應。例示性反應為
在一個實施例中,一或多種反應物為氫化物且反應涉及可逆性氫化物交換。除其他反應條件(諸如反應物氫壓及濃度)外,亦可藉由控制溫度來控制可逆反應。例示性反應為
其中n1、n2、n3、n4、n5、x、y及z為包括0之整數,Mcat為觸媒來源及觸媒之金屬且Mred為一種還原劑之金屬。反應混合物可包含觸媒或觸媒來源、氫或氫來源、載體及至少一或多種還原劑,諸如鹼土金屬、鹼金屬(諸如Li),及另一氫化物,諸如鹼土金屬氫化物或鹼金屬氫化物。在包含包括至少一種鹼金屬(諸如KH、BaH或NaH)之觸媒或觸媒來源的一個實施例中,藉由蒸發鹼金屬及將其氫化形成初始金屬氫化物來達成再生。在一個實施例中,觸媒或觸媒來源及氫來源包含NaH或KH,且用於氫化物交換之金屬反應物包含Li。接著,產物LiH藉由熱分解來再生。因為Na或K之蒸氣壓比Li蒸氣壓高得多,所以前者可選擇性蒸發及再氫化及往回添加以使反應混合物再生。在另一實施例中,用於氫化物交換之還原劑或金屬可包含兩種鹼土金屬,諸如Mg及Ca。再生反應可進一步包含在真空下熱分解另一金屬氫化物,其中氫化物為反應產物,諸如MgH2或CaH2。在一個實施例中,氫化物為金屬互化物之氫化物或氫化物混合物,諸如包含H,及Na、Ca及Mg中至少兩者之氫化物。混合氫化物之分解溫度可低於最穩定單金屬氫化物。在一個實施例中,氫化物降低H2壓力以防止反應器系統氫脆化。載體可包含碳化物,諸如TiC。反應混合物可包含NaH TiCMg及Ca。鹼土金屬氫化物產物(諸如CaH2)可在真空下在高溫(諸如>700℃)下分解。可蒸發及再氫化諸如Na之鹼金屬。亦可分別蒸發及冷凝諸如鎂之其他鹼土金屬。反應物可經重組形成初始反應混合物。試劑可呈任何莫耳比。在另一實施例中,藉由芯(wick)或毛細結構使諸如Na之蒸發金屬返回。芯可為熱管之芯。或者,可藉由重力使冷凝金屬退至反應物中。可供應氫以形成NaH。在另一實施例中,用於氫化物交換之還原劑或金屬可包含鹼金屬或過渡金屬。反應物可進一步包含諸如鹼金屬鹵化物之鹵化物。在一個實施例中,諸如鹵化物之化合物可充當載體。化合物可為諸如鹵化物之金屬化合物。金屬化合物可還原為相應傳導性金屬以包含載體。適合之反應混合物為NaH TiC Mg Li、NaH TiC MgH2 Li、NaH TiC Li、NaH Li、NaH TiC Mg LiH、NaH TiC MgH2 LiH、NaH TiC LiH、NaH LiH、NaH TiC、NaH TiC Mg LiBr、NaH TiC Mg LiCl、NaH Mg LiBr、NaH Mg LiCl、NaH Mg Li、NaH Mg H2 LiBr、NaH MgH2 LiCl、NaH Mg LiH、KH TiC Mg Li、KH TiC MgH2 Li、KH TiC Li、KH Li、KHTiC Mg LiH、KH TiC MgH2 LiH、KH TiC LiH、KH LiH、KH TiC、KH TiC Mg LiBr、KH TiC Mg LiCl、KH Mg LiBr、KH Mg LiCl、KH Mg Li、KH MgH2 LiBr、KH MgH2 LiCl及KH Mg LiH。其他適合之反應混合物為NaH MgH2 TiC、NaH MgH2 TiC Ca、Na MgH2 TiC、Na MgH2 TiC Ca、KH MgH2 TiC、KH MgH2 TiC Ca、K MgH2 TiC及KMgH2 TiCCa。其他適合之反應混合物包含NaH Mg、NaH Mg TiC及NaH Mg AC。因為Na或Mg均不以任何程度層夾且AC表面積極大,所以AC為NaH+Mg之較佳載體。反應混合物可包含固定反應體積之氫化物混合物以在所選溫度下建立所需氫壓。氫化物混合物可包含鹼土金屬及其氫化物,諸如Mg及MgH2。此外,可添加氫氣。適合之壓力範圍為1 atm至200 atm。適合之反應混合物為以下群中一或多者:KH Mg TiC+H2、KH MgH2 TiC+H2、KH Mg MgH2 TiC+H2、NaH Mg TiC+H2、NaH MgH2 TiC+H2及NaH Mg MgH2 TiC+H2。除TiC之外,其他適合載體為YC2、Ti3SiC2、TiCN、MgB2、SiC、B4C或WC。
在一個實施例中,反應混合物可包含以下中至少兩者:觸媒或觸媒來源及氫來源(諸如鹼金屬氫化物)、還原劑(諸如鹼土金屬、Li或LiH)及吸氣劑或載體(諸如鹼金屬鹵化物)。在反應期間,非傳導性載體可轉化為傳導性載體,諸如金屬。反應混合物可包含NaH Mg及LiCl或LiBr。接著,可在反應期間形成傳導性Li。例示性實驗結果為031010WFCKA2#1626;1.5" LDC;8.0 gNaH#8+8.0 g Mg#6+3.4 g LiCl#2+20.0 g TiC #105;Tmax: 575℃;Ein: 284 kJ;dE: 12 kJ;理論能量:2.9 kJ;能量增加:4.2。
在一個實施例中,反應混合物,諸如MH(M為鹼金屬)、還原劑(諸如Mg)、載體(諸如TiC或WC),及氧化劑(諸如MX(M為鹼金屬,X為鹵離子)或MX2(M為鹼土金屬,X為鹵離子)),產物包含金屬低能量氫氫化物,諸如MH(/p)。可藉由添加化學計量之酸(諸如HCl,其可為純氣體)將低能量氫氫化物轉化為分子低能量氫。可藉由熔融電解,接著將金屬氫化,從而使產物金屬鹵化物再生為金屬氫化物。
在一個實施例中,反應混合物包含作為諸如鹼金屬鹵化物之觸媒之來源的鹵化物,及還原劑(諸如稀土金屬),及氫來源(諸如氫化物或H2)。適合反應為Mg+RbF及H來源及Mg+LiCl及H來源。反應繼續進行分別形成Rb+及Li觸媒。
適合之反應溫度範圍為發生低能量氫反應之反應溫度範圍。溫度可在反應混合物之至少一種組分熔融、經歷相變、經歷化學變化(諸如分解)或混合物之至少兩種組分反應之範圍中。反應溫度可在30℃至1200℃之範圍內。適合溫度範圍為300℃至900℃。包含至少NaH之反應混合物的反應溫度範圍可大於475℃。包含金屬鹵化物或氫化物之反應混合物的反應溫度可處於或高於再生反應溫度。包含鹼金屬、鹼土或稀土金屬鹵化物,及包含鹼金屬或鹼金屬氫化物之觸媒或觸媒來源的反應混合物的適合溫度範圍為650℃至850℃。對於包含形成鹼金屬碳作為產物(諸如MCx(M為鹼金屬))之混合物的反應,溫度範圍可處於或高於鹼金屬碳之形成溫度。反應可在使MCx在減壓下經歷再生為M及C之溫度下運作。
在一個實施例中,揮發性物質為諸如鹼金屬之金屬。適合之金屬包含Na及K。在再生期間,金屬可在系統之冷卻段中冷凝,該冷卻段諸如為豎管,其可包含至反應器之側臂。可將金屬添加至金屬儲集器中。儲集器可在表面下方具有氫供應饋料以形成金屬氫化物,諸如NaH或KH,其中管中之金屬柱維持氫接近於供應器。金屬氫化物可在毛細管系統(諸如熱管之毛細結構)內形成。毛細管可將金屬氫化物選擇性藉由毛細作用帶至具有反應混合物之反應器區段中,使得將金屬氫化物添加至反應混合物中。相較於金屬液體,毛細管可對離子具有選擇性。芯中之氫可處於足夠壓力下以維持金屬氫化物作為液體。
反應混合物可包含以下中至少兩者:觸媒或觸媒來源、氫或氫來源、載體、還原劑及氧化劑。在一個實施例中,金屬互化物可充當溶劑、載體及還原劑中之至少一者。金屬互化物可包含至少兩種鹼土金屬,諸如Mg與Ca之混合物或鹼土金屬(諸如Mg)與過渡金屬(諸如Ni)之混合物。金屬互化物可充當觸媒或觸媒來源及氫或氫來源中之至少一者之溶劑。NaH或KH可藉由溶劑溶解。反應混合物可包含NaH Mg Ca及諸如TiC之載體。載體可為氧化劑,諸如碳或碳化物。在一個實施例中,溶劑(諸如鹼土金屬,諸如Mg)係與觸媒或觸媒來源(諸如鹼金屬氫化物,諸如NaH離子化合物)相互作用以形成NaH分子以容許形成低能量氫之進一步反應。電池可在此溫度下操作,其中定期添加H2以維持熱產量。
在一個實施例中,使氧化劑(諸如鹼金屬鹵化物、鹼土金屬鹵化物或稀土金屬鹵化物,較佳為LiCl、LiBr、RbCl、MgF2、BaCl2、CaBr2、SrCl2、BaBr2、BaI2、EuX2或GdX,其中X為鹵離子或硫離子,最佳為EuBr2)與觸媒或觸媒來源(較佳為NaH或KH)及視情況選用之還原劑(較佳為Mg或MgH2)反應形成Mox或MoxH2,及觸媒之鹵化物或硫化物,諸如NaX或KX。稀土金屬鹵化物可藉由選擇性移除觸媒或觸媒來源及視情況選用之還原劑來再生。在一個實施例中,MoxH2可熱分解且藉由諸如抽吸之方法移除氫氣。鹵化物交換(方程式(62-63))形成觸媒之金屬。金屬可以熔融液體形式或以離開金屬鹵化物(諸如鹼土或稀土金屬鹵化物)之蒸發或昇華氣體形式移除。可例如藉由諸如離心之方法或藉由加壓惰性氣流來移除液體。當適於使與稀土金屬鹵化物及載體重組成最初混合物之原始反應物再生時,可將觸媒或觸媒來源再氫化。在將Mg或MgH2用作還原劑之情況下,可藉由添加H2形成氫化物、熔融該氫化物及移除液體來首先移除Mg。在X=F之一個實施例中,MgF2產物可藉由與稀土(諸如EuH2)交換F來轉化為MgH2,其中連續移除熔融MgH2。反應可在高壓H2下進行以有利於形成及選擇性移除MgH2。還原劑可經再氫化且添加至其他再生反應物中以形成原始反應混合物。在另一實施例中,交換反應係在氧化劑之金屬硫化物或氧化物與還原劑、觸媒來源及觸媒中之至少一者之間。各類型之例示性系統為1.66g KH+1g Mg+2.74g Y2S3+4g AC及1g NaH+1g Mg+2.26g Y2O3+4g AC。
選擇性移除觸媒、觸媒來源或還原劑可為連續的,其中觸媒、觸媒來源或還原劑可至少部分在反應器內再循環或再生。反應器可進一步包含蒸餾器或回流組件,諸如圖4之蒸餾器34,以移除觸媒、觸媒來源或還原劑且使其返回電池。視情況,其可經氫化或進一步發生反應且可使此產物返回。電池可經惰性氣體及H2之混合物填充。氣體混合物可包含重於H2之氣體,使得H2浮至反應器頂部。氣體可為Ne、Ar、Ne、Kr及Xe中之至少一者。或者,氣體可為鹼金屬或氫化物,諸如K、K2、KH或NaH。氣體可藉由在高溫(諸如約金屬沸點)下操作電池來形成。具有高濃度H2之區段可為冷卻器,使得金屬蒸氣在此區域中冷凝。金屬蒸氣可與H2反應形成金屬氫化物,且可使氫化物返回電池。氫化物可藉由不同於引起金屬輸送之路徑的替代性路徑返回。適合金屬為觸媒或觸媒來源。金屬可為鹼金屬且氫化物可為鹼金屬氫化物,諸如分別為Na或K及NaH或KH。LiH直至900℃為穩定的且在688.7℃下熔融;因此,可將其添加回至反應器中,而未在小於LiH分解溫度之相應再生溫度下熱分解。
反應溫度可在兩個極端之間循環以藉由平衡偏移連續再循環反應物。在一個實施例中,系統熱交換器具有在高值與低值之間快速改變電池溫度以來回偏移平衡以傳播低能量氫反應之能力。
在另一實施例中,可藉由機械系統,諸如輸送機或螺機(auger)將反應物輸送至熱反應區。熱可由熱交換器擷取且供至負載,諸如渦輪機及發電器。產物當在循環中移回熱反應區中時可連續再生或分批再生。再生可為熱再生。再生可藉由蒸發金屬,諸如構成觸媒或觸媒來源之金屬來達成。移除之金屬可經氫化且與反應混合物之其餘部分組合,隨後進入熱反應區。組合可進一步包含混合步驟。
再生反應可包含與所添加之物質(諸如氫)的催化反應。在一個實施例中,觸媒及H來源為KH且氧化劑為EuBr2。熱推動再生反應可為
2KBr+Eu→EuBr2+2K (65)
2KBr+EuH2→EuBr2+2KH (66)
或者,H2可分別充當觸媒或觸媒來源及氧化劑(諸如KH及EuBr2)之再生觸媒:
3KBr+1/2H2+EuH2→EuBr3+3KH (67)
接著,藉由H2還原自EuBr3形成EuBr3。可能之途徑為
EuBr3+1/2H2→EuBr2+HBr (68)
HBr可再循環:
HBr+KH→KBr+H2 (69)
總反應為:
2KBr+EuH2→EuBr2+2KH. (70)
熱推動再生反應之速率可藉由使用熟習此項技術者已知之具有較低能量之不同路徑來提高:
2KBr+H2+Eu→EuBr2+2KH (71)
3KBr+3/2H2+Eu→EuBr3+3KH或 (72)
EuBr3+1/2H2→EuBr2+HBr. (73)
因為在H2存在下在金屬與相應氫化物之間存在平衡,方程式(71)給出之反應為可能的,諸如
反應路徑可涉及熟習此項技術者已知之較低能量之中間步驟,諸如
2KBr+Mg+H2→MgBr2+2KH及 (75)
MgBr2+Eu+H2→EuBr2+MgH2. (76)
反應混合物可包含載體,諸如以下載體,諸如TiC、YC2、B4C、NbC及Si奈米粉末。
KH或K金屬可以熔融液體形式或以離開金屬鹵化物(諸如鹼土或稀土金屬鹵化物)之蒸發或昇華氣體形式移除。可例如藉由諸如離心之方法或藉由加壓惰性氣流來移除液體。在其他實施例中,另一觸媒或觸媒來源,諸如NaH、LiH、RbH、CsH、BaH、Na、Li、Rb、Cs可取代KH或K,且氧化劑可包含另一金屬鹵化物,諸如另一稀土金屬鹵化物或鹼土金屬鹵化物,較佳為MgF2、MgCl2、CaBr2、CaF2、SrCl2、SrI2、BaBr2或BaI2
在反應物-產物能隙較小之情況下,反應物可熱再生。舉例而言,熱力學上宜熱學逆轉以下給出之反應:
EuBr 2+2KH→2KBr+EuH 2 ΔH=-136.55 kJ (77)
藉由若干路徑以達成以下:
2KBr+EuEuBr 2+2K (78)
藉由動態移除鉀可將反應更加推動至完成。方程式(78)給出之反應係由使KBrEu(3.6 g(30毫莫耳)KBr與2.3 g(15毫莫耳)Eu)之二比一莫耳混合物在1吋OD石英管中包裝於鎳箔中之氧化鋁舟皿中在1050℃下在氬氛圍下反應4小時來證實。自熱區蒸發鉀金屬,且XRD所鑑別之大部分產物為EuBr 2。在另一實施例中,EuBr 2係根據方程式(78)給出之反應如下形成:使包裝於一端在1吋OD真空密閉石英管中開放之0.75吋OD不鏽鋼管中不鏽鋼箔坩鍋中之KBrEu(4.1 g(34.5毫莫耳)KBr與2.1 g(13.8毫莫耳)Eu)之約二比一莫耳混合物反應。反應係在850℃下在真空下運作一小時。自熱區蒸發鉀金屬,且XRD所鑑別之大部分產物為EuBr 2。在一個實施例中,將諸如鹽混合物之反應混合物用以降低再生反應物之熔點。適合混合物為諸如鹼金屬陽離子之複數種觸媒之複數種陽離子的共溶鹽混合物。在其他實施例中,將金屬、氫化物或其他化合物或元素之混合物用以降低再生反應物之熔點。
此低能量氫觸媒系統之非低能量氫化學的能量平衡基本上為中性能量,其使得各電力及再生循環並行維持以構成連續電源,在實驗量測情況下每循環釋放900千焦/莫耳 EuBr 2 。觀察到之功率密度為約10 W/cm3。溫度限度為由容器材料失敗所設置之溫度限度。低能量氫反應之淨燃料平衡(net fuel balance)為50兆焦/莫耳H2,其經消耗以形成H 2(1/4)。
在一個實施例中,氧化劑為水合EuX2(X為鹵離子),其中水可以少數物質形式存在,使得其化學計量小於一。氧化劑可進一步包含銪、鹵化物,及氧化物,諸如EuOX、較佳為EuOBr或與EuX2之混合物。在另一實施例中,氧化劑為EuX2,諸如EuBr2且載體為碳化物,諸如YC2或TiC。
在一個實施例中,當發生交換反應(諸如鹵化物交換反應)使氧化劑(諸如EuBr2)再生時,自熱區蒸發諸如K或Na之金屬觸媒或觸媒來源。觸媒金屬可在具有閥(諸如閘閥,其當關閉時將腔室與主要反應器腔室分隔)之冷凝室中冷凝。觸媒金屬可藉由添加諸如氫氣之氫來源來氫化。接著,可將氫化物添加回至反應混合物中。在一個實施例中,打開閥且將氫化物加熱至熔點,使得其流回反應室。較佳地,冷凝室在主反應室上方,使得至少部分藉由重力流動。亦可機械式添加回氫化物。熱再生之其他適合反應系統包含至少NaH、BaH或KH,及鹼金屬鹵化物,諸如LiBr、LiCl、Ki及RbCl,或鹼土金屬鹵化物,諸如MgF2、MgCl2、CaBr2、CaF2、SrCl2、SrI2、BaCl2、BaBr2或BaI2
反應混合物可包含金屬互化物,諸如Mg2Ba作為還原劑或作為載體,且可進一步包含氧化劑混合物,諸如單獨之鹼土金屬鹵化物(諸如MgF2+MgCl2)或與鹼金屬鹵化物(諸如KF+MgF2或KMgF3)之混合物。此等反應物可自反應混合物之產物熱再生。在MgF2+MgCl2再生期間,MgCl2可作為Cl交換為F之交換反應的產物來動態移除。在至少後一情況下,移除可藉由自液體混合物蒸發、昇華或沈澱來達成。
在另一實施例中,反應物-產物能隙較大且反應物仍可藉由移除至少一種物質來熱再生。舉例而言,在小於1000℃之溫度下,熱力學上不宜熱學逆轉以下給出之反應:
MnI 2+2KH+Mg→2KI+Mn+MgH 2ΔH=-373.0 kJ (79)
但藉由移除諸如K之物質,存在若干路徑來達成以下:
2KI+MnMnI 2+2K (80)
因此,非平衡熱力學適用,且許多反應系統可再生,其在僅考慮封閉系統之平衡熱力學的情況下在熱力學上為不宜的。
藉由動態地移除鉀可將方程式(80)給出之反應推動至更加完成。如下證實方程式(80)給出之反應:使一端在1吋OD真空密閉石英管中開放之0.75吋OD豎不鏽鋼管中之KIMn的二比一莫耳混合物反應。反應係在850℃下在真空下運作一小時。自熱區蒸發鉀金屬,且藉由XRD鑑別MnI 2產物。
在另一實施例中,可充當氧化劑之金屬鹵化物包含鹼金屬,諸如KI、LiBr、LiCl或RbCl,或鹼土金屬鹵化物。適合之鹼土金屬鹵化物為鹵化鎂。反應混合物可包含觸媒來源及H來源,諸如KH、BaH或NaH;氧化劑,諸如MgF2、MgBr2、MgCl2、MgBr2、MgI2之一;及混合物,諸如MgBr2及MgI2;或混合鹵化物,諸如MgIBr;還原劑,諸如Mg金屬粉;及載體,諸如TiC、YC2、Ti3SiC2、TiCN、MgB2、SiC、B4C或WC。鹵化鎂氧化劑之優勢在於可能不需要移除Mg粉以使反應物氧化劑。可藉由加熱來再生。熱推動再生反應可為
2KX+Mg→MgX2+2K (81)
2KX+MgH2→MgX2+2KH (82)
其中X為F、Cl、Br或I。在其他實施例中,另一鹼金屬或鹼金屬氫化物,諸如NaH或BaH可置換KH。
在另一實施例中,可充當氧化劑之金屬鹵化物包含鹼金屬鹵化物,諸如KI,其中金屬亦為觸媒或觸媒來源之金屬。反應混合物可包含觸媒來源及H來源,諸如KH或NaH;氧化劑,諸如KX或NaX(其中X為F、Cl、Br或I)之一;或氧化劑混合物;還原劑,諸如Mg金屬粉;及載體,諸如TiC、YC2、B4C、NbC及Si奈米粉末。此鹵化物氧化劑之優勢在於簡化系統以便使反應物氧化劑再生。可藉由加熱來再生。熱推動再生反應可為
KX+KH→KX+K(g)+H2 (83)
諸如K之鹼金屬可以蒸氣形式收集、再氫化且添加至反應混合物中以形成初始反應混合物。
LiH至900℃為穩定且在688.7℃下熔融;因此,諸如LiCl及LiBr之鹵化鋰可充當氫離子-鹵離子交換反應之氧化劑或鹵化物,其中在再生期間當LiH反應形成初始鹵化鋰時另一觸媒金屬(諸如K或Na)優先蒸發。反應混合物可包含觸媒或觸媒來源及氫或氫來源,諸如KH或NaH,且可進一步包含以下中一或多者:還原劑,諸如鹼土金屬,諸如Mg粉;載體,諸如YC2、TiC或碳;及氧化劑,諸如鹼金屬鹵化物,諸如LiCl或LiBr。產物可包含觸媒金屬鹵化物及氫化鋰。產生電力之低能量氫反應及再生反應可分別為:
MH+LiX→MX+LiH (84)
MX+LiH→M+LiX+1/2H2 (85)
其中M為觸媒金屬,諸如鹼金屬,諸如K或Na且X為鹵離子,諸如Cl或Br。M因M之高揮發性及MH之相對不穩定性而優先蒸發。金屬M可經分別氫化且返回反應混合物以使其再生。在另一實施例中,Li因為具有比K低得多的蒸氣壓,所以其置換再生反應中之LiH。舉例而言,在722℃下,Li蒸氣壓為100 Pa;而在類似溫度756℃下,K蒸氣壓為100 kPa。接著,K可在方程式(85)中MX與Li或LiH之間的再生反應期間選擇性蒸發。在其他實施例中,另一鹼金屬M,諸如Na取代K。
在另一實施例中,形成低能量氫之反應包含在至少兩種物質(諸如兩種金屬)之間氫化物交換及鹵化物交換中之至少一者。至少一種金屬可為用於形成低能量氫之觸媒或觸媒來源,諸如鹼金屬或鹼金屬氫化物。氫化物交換可介於至少兩種氫化物之間、至少一種金屬與至少一種氫化物之間、至少兩種金屬氫化物之間、至少一種金屬與至少一種金屬氫化物之間,及具有介於兩種或兩種以上物質之間或涉及兩種或兩種以上物質之交換的其他此等組合。在一個實施例中,氫化物交換形成混合金屬氫化物,諸如(M1)x(M2)yHz,其中x、y及z為整數且M1及M2為金屬。在一個實施例中,混合氫化物包含鹼金屬及鹼土金屬,諸如KMgH3、K2MgH4、NaMgH3及Na2MgH4。反應混合物可為NaH及KH中之至少一者、至少一種金屬,諸如鹼土金屬或過渡金屬,及載體,諸如碳或碳化物。反應混合物可包含NaH Mg及TiC或NaH或KH Mg TiC及MX,其中LiX其中X為鹵離子。可在NaH與至少一種其他金屬之間發生氫化物交換。在實施例中,電池可包含或形成氫化物以形成低能量氫。氫化物可包含混合金屬氫化物,諸如Mgx(M2)yHz,其中x、y及z為整數且M2為金屬。在一個實施例中,混合氫化物包含鹼金屬及Mg,諸如KMgH3、K2MgH4、NaMgH3、Na2MgH4及具有可提高H移動率之摻雜的混合氫化物。摻雜可藉由提高H空位濃度來提高H移動率。適合之摻雜係摻雜少量取代基,其可以單價陽離子形式存在以替代鈣鈦礦結構之通常二價B型陽離子。諸如在Na(Mgx-1 Lix)H3-x之情況下,實例為Li摻雜以產生x個空位。例示性電池為[Li/烯烴隔板LP 40/NaMgH3]及[Li/LiCl-KCl/NaMgH3]。
在一個實施例中,觸媒為至少一種塊材之原子或離子,塊材諸如為金屬、金屬互化物化合物之金屬、承載型金屬及化合物,其中原子或離子之至少一個電子自原子氫接受約整數倍之27.2 eV以形成低能量氫。在一個實施例中,Mg2+因為其第三電離能(IP)為80.14 eV所以為形成低能量氫之觸媒。觸媒可在電漿中形成或包含低能量氫反應混合物之反應物化合物。適合之Mg化合物為在環境中提供Mg2+,使得其第三IP更密切匹配由方程式(5)(m=3)得到的81.6 eV之諧振能量的Mg化合物。例示性鎂化合物包括鹵化物、氫化物、氮化物、碳化物及硼化物。在一個實施例中,氫化物為混合金屬氫化物,諸如Mgx(M2)yHz,其中x、y及z為整數且M2為金屬。在一個實施例中,混合氫化物包含鹼金屬及Mg,諸如KMgH3、K2MgH4、NaMgH3及Na2MgH4。觸媒反應為由方程式(6-9)給出,其中Catq+為Mg2+、r=1且m=3。在另一實施例中,Ti2+因為其第三電離能(IP)為27.49 eV所以為形成低能量氫之觸媒。觸媒可在電漿中形成或包含低能量氫反應混合物之反應物化合物。適合之Ti化合物為在環境中提供Ti2+,使得其第三IP更密切匹配由方程式(5)(m=1)得到的27.2 eV之諧振能量的Ti化合物。例示性鈦化合物包括鹵化物、氫化物、氮化物、碳化物及硼化物。在一個實施例中,氫化物為混合金屬氫化物,諸如Tix(M2)yHz,其中x、y及z為整數且M2為金屬。在一個實施例中,混合氫化物包含以下中之至少一者:鹼金屬或鹼土金屬及Ti,諸如KTiH3、K2TiH4、NaTiH3、Na2TiH4及MgTiH4
塊體金屬鎂包含Mg2+離子及平面金屬電子作為金屬晶格中之反電荷。Mg之第三電離能為IP3=80.1437 eV。此能量提高Eb=147.1千焦/莫耳(1.525 eV)之Mg莫耳金屬鍵能,使得IP3與Eb之和為約3×27.2 eV,其與Mg充當觸媒(方程式(5))所必需者匹配。電離之第三電子可由包含電離Mg2+中心之金屬粒子結合或傳導接地。類似地,鈣金屬包含Ca2+離子及平面金屬電子作為金屬晶格中之反電荷。Ca之第三電離能為IP3=50.9131 eV。此能量提高Eb=177.8千焦/莫耳(1.843 eV)之Ca莫耳金屬鍵能,使得IP3與2Eb之和為約2×27.2 eV,其與Ca充當觸媒(方程式(5))所必需者匹配。La之第四電離能為IP4=49.95 eV。此能量提高Eb=431.0千焦/莫耳(4.47 eV)之La莫耳金屬鍵能,使得IP4與Eb之和為約2×27.2eV,其與La充當觸媒(方程式(5))所必需者匹配。具有晶格離子電離能與晶格能之和或其小倍數(等於約m×27.2 eV(方程式(5)),諸如Cs(IP2=23.15 eV)、Sc(IP3=24.75666 eV)、Ti(IP3=27.4917 eV)、Mo(IP3=27.13 eV)、Sb(IP3=25.3 eV)、Eu(IP3=24.92 eV)、Yb(IP3=25.05 eV)及Bi(IP3=25.56 eV))的其他此等金屬可充當觸媒。在一個實施例中,Mg或Ca為本發明所揭示之反應混合物的觸媒來源。可控制反應溫度以控制形成低能量氫之反應速率。溫度可在約25℃至2000℃之範圍內。適合溫度範圍為金屬熔點+/-150℃。Ca亦可充當觸媒,此係因為前四個電離能(IP1=6.11316 eV、IP2=11.87172 eV、IP3=50.9131 eV、IP4=67.27 eV)之和為136.17 eV,為5×27.2 eV(方程式(5))之故。
在一個實施例中,觸媒反應能為物質(諸如原子或離子)電離與H2鍵能(4.478 eV)或H-電離能(IP=0.754 eV)之和。Mg之第三電離能為IP3=80.1437 eV。H-與Mg2+離子(包括金屬晶格中者)之觸媒反應具有對應於IP H-+Mg IP3約3×27.2 eV(方程式(5))之焓。Ca之第三電離能為IP3=50.9131 eV。H-與Ca2+離子(包括金屬晶格中者)之觸媒反應具有對應於IP H-+Ca IP3約2×27.2 eV(方程式(5))之焓。La之第四電離能為IP4=49.95 eV。H-與La3+離子(包括金屬晶格中者)之觸媒反應具有對應於IP H-+La IP4約2×27.2 eV(方程式(5))之焓。
在一個實施例中,金屬晶格之離子的電離能加上小於或等於金屬功函數之能量為27.2 eV之倍數,使得離子電離至金屬帶直至自金屬電離限度之反應具有足夠能量以匹配接受以將H催化至低能量氫狀態所需之能量。金屬可在提高功函數之載體上。適合載體為碳或碳化物。後者之功函數為約5 eV。Mg之第三電離能為IP3=80.1437 eV,Ca之第三電離能為IP3=50.9131 eV,且La之第四電離能為IP4=49.95 eV。因此,碳或碳化物載體上之此等金屬各自可充當淨焓分別為3×27.2 eV、2×27.2 eV及2×27.2 eV之觸媒。Mg之功函數為3.66 eV;因此,單獨之Mg可充當3×27.2 eV之觸媒。
自H至受體(諸如原子或離子)之能量轉移取消中心電荷及受體電子之結合能。當等於27.2 eV之整數時允許能量轉移。在受體電子為金屬或化合物中離子之外層電子的情況下,離子存在於晶格中,使得以大於受體電子之真空電離能接受能量。晶格能提高小於或等於功函數之量,從而限制電子變得自晶格電離之分量能量。在一個實施例中,金屬晶格之離子的電離能加上小於或等於金屬功函數之能量為27.2 eV之倍數,使得離子電離至金屬帶直至自金屬電離限度之反應具有足夠能量以匹配將H催化至低能量氫狀態所需之能量。金屬可在提高功函數之載體上。適合載體為碳或碳化物。後者之功函數為約5 eV。Mg之第三電離能為IP3=80.1437 eV,Ca之第三電離能為IP3=50.9131 eV,且La之第四電離能為IP4=49.95 eV。因此,碳或碳化物載體上之此等金屬各自可充當淨焓分別為3×27.2 eV、2×27.2 eV及2×27.2 eV之觸媒。Mg之功函數為3.66 eV;因此,單獨之Mg可充當3×27.2 eV之觸媒。同一機制適用於離子或化合物。當離子晶格之離子的電離能加上小於或等於化合物功函數之能量為27.2 eV之倍數時,此離子可充當觸媒。
觸媒系統(諸如塊體觸媒,諸如Mg)之適合載體為以下中之至少一者:TiC、Ti3SiC2、WC、TiCN、MgB2、YC2、SiC及B4C。在一個實施例中,塊體觸媒之載體可包含相同或不同金屬之化合物,諸如鹼金屬或鹼土金屬鹵化物。Mg觸媒之適合化合物為MgBr2、MgI2、MgB2、CaBr2、CaI2及SrI2。載體可進一步包含鹵化化合物,諸如氟碳化物,諸如鐵氟龍、氟化碳、六氟苯及CF4。氟化鎂及碳之反應產物可藉由諸如熔融電解之已知方法再生。氟化碳可藉由使用碳陽極直接再生。氫可藉由滲過氫可透膜來供應。適合之反應混合物為Mg及載體,諸如TiC、Ti3SiC2、WC、TiCN、MgB2、YC2、SiC及B4C。反應物可呈任何莫耳比。載體可過量。莫耳比範圍可為1.5至10000。可維持氫壓,使得Mg之氫化程度極低以維持Mg金屬及H2氛圍。舉例而言,氫壓可為在高反應器溫度下經維持之次大氣壓,諸如在400℃以上之溫度下的1至100托。熟習此項技術者可依據氫化鎂組成相對於溫度及氫壓圖來決定適合溫度及氫壓範圍。
低能量氫反應混合物可包含高表面積Mg、載體、氫來源,諸如H2或氫化物,及視情況選用之其他反應物,諸如氧化劑。諸如TiC、Ti3SiC2、WC、TiCN、MgB2、YC2、SiC及B4C中之至少一者之載體可藉由蒸發揮發性金屬來再生。Mg可藉由以蒽‧四氫呋喃(THF)清洗來移除,其中形成Mg錯合物。Mg可藉由熱分解錯合物來回收。
在一個實施例中,如藉由X射線光電子光譜法測定,觸媒包含電離能等於27.2 eV之整數倍的金屬或化合物。在一個實施例中,NaH充當H之觸媒及來源,其中在107.3巴以上之氫壓下將反應溫度維持在638℃之NaH熔點以上。
A1金屬可充當觸媒。第一、第二及第三電離能分別為5.98577 eV、18.82856 eV及28.44765 eV,使得A1至A13+之電離為53.26198 eV。此焓加上在缺陷處之A1鍵能為與2×27.2 eV之匹配。
滿足提供27.2 eV之整數倍之淨焓的觸媒條件之另一類別物質為氫分子與另一物質(諸如原子或離子)之組合,藉此H2鍵能與其他物質之一或多個電子之電離能的和為m×27.2(方程式(5))。舉例而言,H2鍵能為4.478 eV且Mg之第一及第二電離能為IP1=7.64624 eV及IP2=15.03528 eV。因此,Mg及H2可充當淨焓為27.2 eV之觸媒。在另一實施例中,提供27.2 eV之整數倍之淨焓的觸媒條件係藉由氫化物離子與另一物質(諸如原子或離子)之組合滿足,藉此H-與其他物質之一或多個電子的電離能之和為m×27.2(方程式(5))。舉例而言,H-電離能為0.754 eV且Mg之第三電離能為IP3=80.1437 eV。因此,Mg2+及H-可充當淨焓為3×27.2 eV之觸媒。
滿足提供27.2 eV之整數倍之淨焓的觸媒條件之另一類別物質為氫原子與另一物質(諸如原子或離子)之組合,藉此氫原子與其他物質之一或多個電子的電離能之和為m×27.2(方程式(5))。舉例而言,H之電離能為13.59844 eV且Ca之第一、第二及第三電離能為IP1=6.11316 eV、IP2=11.87172 eV及IP3=50.9131 eV。因此,Ca及 H可充當淨焓為3×27.2 eV之觸媒。Ca因為其第一、第二、第三及第四(IP4=67.27 eV)電離能之和為5×27.2 eV所以亦可充當觸媒。在後一情況下,因為H(1/4)依據其穩定性為較佳情況,所以由Ca催化之H原子可躍遷至H(1/4)狀態,其中轉移至Ca以使其電離為Ca4+之能量包含81.6 eV分量形成中間物H*(1/4)及54.56 eV釋放作為H*(1/4)之衰變能量之部分。
在一個實施例中,氫原子可充當觸媒。舉例而言,氫原子可充當觸媒,其中在方程式(5)中分別對於一、二及三個原子m=1、m=2及m=3,從而充當另一者之觸媒。當極快H與分子碰撞形成2H時,其中兩個原子自碰撞搭配物之第三氫原子以諧振及非輻射方式接受54.4 eV,二原子觸媒2H之速率可能較高。藉由同一機制,兩個熱H 2之碰撞提供3H以充當第四者之3.27.2 eV之觸媒。如所預測,自電漿系統觀察到在22.8 nm及10.1 nm下之EUV連續譜、非常(>50 eV)巴爾麥α線加寬、高度激發之H狀態及產物氣體H 2(1/4)。多體相互作用之H原子的高密度亦可在諸如碳化物或硼化物之載體上達成。在一個實施例中,反應混合物包含載體,諸如TiC TiCN、WCnano、碳黑、Ti3SiC2、MgB2、TiB2、Cr3C2、B4C、SiC、YC2,及氫來源,諸如H2氣體及氫化物,諸如MgH2。反應混合物可進一步包含解離體,諸如Pd/Al2O3、Pd/C、R-Ni、Ti粉、Ni粉及MoS2
在一個實施例中,反應混合物包含以下中至少兩者:觸媒或觸媒來源及氫或氫來源,諸如KH、BaH或NaH;載體,諸如金屬碳化物,較佳為TiC、Ti3SiC2、WC、TiCN、MgB2、B4C、SiC或YC2;或金屬,諸如過渡金屬,諸如Fe、Mn或Cr;還原劑,諸如鹼土金屬及鹼土金屬鹵化物,其可充當氧化劑。鹼土金屬鹵化物氧化劑及還原劑較佳包含相同鹼土金屬。例示性反應混合物包含KH Mg TiC或YC2 MgCl2;KH Mg TiC或YC2 MgF2;KH Ca TiC或YC2 CaCl2;KH Ca TiC或YC2 CaF2;KH Sr TiC或YC2 SrCl2;KH Sr TiC或YC2 SrF2;KH Ba TiC或YC2 BaCl2;KH Ba TiC或YC2 BaBr2;及KH Ba TiC或YC2 BaI2.
在一個實施例中,反應混合物包含觸媒或觸媒來源及氫或氫來源,諸如KH、BaH或NaH;及載體,諸如金屬碳化物,較佳為TiC、Ti3SiC2、WC、TiCN、MgB2、B4C、SiC或YC2;或金屬,諸如過渡金屬,諸如Fe、Mn或Cr。適合載體為使得形成觸媒及氫從而使得H形成低能量氫之載體。例示性反應混合物包含KH YC2;KH TiC;NaH YC2及NaH TiC。
在一個實施例中,反應混合物包含觸媒或觸媒來源及氫或氫來源,諸如鹼金屬氫化物。適合之反應物為KH、BaH及NaH。反應混合物可進一步包含還原劑,諸如鹼土金屬,較佳為Mg,且可另外包含載體,其中該載體可為碳,諸如活性碳、金屬或碳化物。反應混合物可進一步包含氧化劑,諸如鹼土金屬鹵化物。在一個實施例中,氧化劑可為載體,諸如碳。碳可包含諸如諸如石墨及活性碳之形式且可進一步包含氫解離體,諸如Pt、Pd、Ru或Ir。適合之諸如碳可包含Pt/C、Pd/C、Ru/C或Ir/C。氧化劑可形成具有一或多種金屬或反應混合物之層夾化合物。金屬可為觸媒或觸媒來源之金屬,諸如鹼金屬。在例示性反應中,層夾化合物可為KCx,其中x可為8、10、24、36、48、60。在一個實施例中,層夾化合物可再生為金屬及碳。再生可藉由加熱達成,其中可動態移除金屬以進一步推動反應至完成。適合之再生溫度係在約500-1000℃之範圍內,較佳在約750-900℃之範圍內。反應可進一步受助於添加另一物質,諸如氣體。氣體可為惰性氣體或氫。氫來源可為氫化物,諸如催化來源,諸如KH,或氧化劑來源,諸如MgH2。適合氣體為稀有氣體及氮氣中一或多者。或者,氣體可為氨,或其他氣體之混合物或與其他氣體之混合物。氣體可移除諸如抽吸之方法移除。其他置換劑包含不為包含觸媒或觸媒來源之層夾劑的層夾劑,諸如不為對應於觸媒或觸媒來源之鹼金屬的另一鹼金屬。交換可為動力學交換或間歇發生,使得再生至少一些觸媒或觸媒來源。亦藉由諸如較容易地分解由置換劑形成之層夾化合物的方法使碳再生。此可藉由加熱或藉由使用氣體置換劑來發生。自碳及氫形成之任何甲烷或烴可在適合觸媒上重組為碳及氫。亦可使甲烷與金屬(諸如鹼金屬)反應形成相應氫化物及碳。適合之鹼金屬為K及Na。
NH3溶液溶解K。在一個實施例中,NH3當層夾於碳中時可處於液體密度。接著,其可充當溶劑以使碳自MCx再生,且NH3以氣體形式自反應室輕易移除。另外,NH3可與M(諸如K)可逆反應形成胺化物,諸如KNH2,其可推動自MCx提取M之反應完成。在一個實施例中,在壓力下且在其他反應條件下將NH3添加至MCx中使得當M移除時碳再生。接著在真空下移除NH3。其可加以回收用於另一再生循環。
在另一實施例中,可藉由使用金屬溶劑來萃取金屬自層夾產物(諸如MCx(M為鹼金屬))移除鹼金屬以形成金屬及碳。溶解鹼金屬之適合溶劑為六甲基磷醯胺(OP(N(CH 3)2)3)、氨、胺、醚、錯合溶劑、冠醚及大環胺醚及溶劑,諸如醚,或醯胺,諸如THF添加冠醚或大環胺醚。可使用音波器提高鹼金屬移除速率。在一個實施例中,使包含觸媒或觸媒來源且進一步包含氫或氫來源(諸如鹼金屬氫化物,諸如KH、BaH或NaH)、還原劑(諸如鹼土金屬)及碳載體(諸如活性碳)之反應混合物流經電力產生區段至產物再生區段。可藉由使用溶劑以萃取任何層夾金屬來再生。可蒸發溶劑以移除鹼金屬。金屬可經氫化且與再生碳及還原劑合併以形成初始反應混合物,接著使其流入電力區段以接通電力產生及再生循環。電力反應區段可維持在高溫下以起始電力反應。維持溫度以及為任何其他循環步驟(諸如溶劑蒸發)提供熱之熱源可來自低能量氫形成反應。
在一個實施例中,維持諸如電池操作溫度之反應條件,使得層夾化合物動態形成及分解,其中同步維持電力及再生反應。在另一實施例中,使溫度循環以偏移層夾形成與分解之間的平衡以交替維持電力及再生反應。在另一實施例中,金屬及碳可以電化學方式自層夾化合物再生。在此情況下,電池進一步包含陰極及陽極且亦可包含陰極及陽極隔室藉由適合鹽橋電接觸。還原之碳可經氧化為碳且氫可還原為氫化物以使諸如KH及AC之反應物自KCx再生。在一個實施例中,電池包含液體鉀Km陽極及層夾石墨陰極。電極可藉由電解液及鹽橋耦接。電極可藉由固體鉀-玻璃電解液耦接,該電解液可提供K+離子自陽極輸送至陰極。陽極反應可為
K++e-→Km (86)
陰極反應可涉及等級變化,諸如n-1至n,其中等級愈高,層夾K之量愈少。在Stage自2變為3之情況下,陰極反應可為
3C24K→2C36K+K++e- (87)
總反應則為
3C24K→2C36K+Km (88)
電池可循環或間歇式操作,其中電力反應係在反應物再生或部分再生之後運作。藉由將電流注入系統中之emf變化可使得低能量氫反應恢復。
在包含觸媒或觸媒來源、氫或氫來源,及氧化劑、載體及還原劑中之至少一者之一個實施例(其中氧化劑可包含一種形式之碳,諸如反應混合物KH Mg AC)中,氧化反應產生可用高溫及真空再生之金屬層夾化合物。或者,碳可藉由使用置換氣體來再生。壓力範圍可為約0.1至500個大氣壓。適合氣體為H2、稀有氣體、N2或CH4或其他揮發性烴。較佳將還原之碳(諸如KCx/AC)再生為碳,諸如AC,而未氧化或另外與K反應為不能熱轉化回至K之化合物。在已藉由諸如蒸發或昇華之方法自碳移除K後,可抽出置換氣體,K可能或可能不經氫化及返回至電池,且可再運作電力反應。
可對層夾碳充電以提高形成低能量氫之催化速率。充電可改變反應物之化學勢。可藉由使用與反應物接觸之電極與不與反應物接觸之反電極來施加高電壓。當反應在進行時,可施加電壓。可調節諸如氫壓之壓力以允許在避免輝光放電之同時對反應物充電之電壓。電壓可為DC或RF或任何所需頻率或波形,包括具有在最大電壓,及任何電壓最大值,及工作循環範圍內之任何偏移的脈動。在一個實施例中,反電極係與反應物電接觸,使得維持電流通過反應物。反電極可經負偏壓且傳導性電池接地。或者,極性可逆轉。可引入第二電極,使得反應物處於電極之間,且使電流通過至少一種反應物在電極之間流動。
在一個實施例中,反應混合物包含KH、Mg及活性碳(AC)。在其他實施例中,反應混合物包含以下中一或多者:LiH Mg AC;NaH Mg AC;KH Mg AC;RbH Mg AC;CsH Mg AC;Li Mg AC;Na Mg AC;K Mg AC;Rb Mg AC;及Cs Mg AC。在其他例示性實施例中,反應混合物包含以下中一或多者:KH Mg AC MgF2;KH Mg AC MgCl2;KH Mg AC MgF2+MgCl2;KH Mg AC SrCl2;及KH Mg AC BaBr2。反應混合物可包含金屬互化物,諸如Mg2Ba作為還原劑或作為載體,且可進一步包含氧化劑混合物,諸如單獨之鹼土金屬鹵化物(諸如MgF2+MgCl2)或與鹼金屬鹵化物(諸如KF+MgF2或KMgF3)之混合物。此等反應物可自反應混合物之產物熱再生。
在高於527℃之溫度下,K應不會層夾於碳中。在一個實施例中,電池係在較大溫度下運作,使得不形成K層夾碳。在一個實施例中,在此溫度下將K添加至反應電池中。電池反應物可進一步包含冗餘,諸如Mg。可將H2壓力維持在將在原位形成KH之程度下,諸如在約5至50 atm之範圍內。
在另一實施例中,AC係以可與觸媒或觸媒來源(諸如K)反應而形成相應離子化合物(如MCx(M為鹼金屬,包含M+))之另一物質置換。該物質可充當氧化劑。該物質可與以下中之至少一者形成層夾化合物:觸媒、觸媒來源及氫來源,諸如K、Na、NaH、BaH及KH。適合層夾物質為六角氮化硼及金屬硫族化物。適合硫族化物為具有層化結構者,諸如MoS2及WS2。層化硫族化物可為來自以下清單之一或多者:TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、VSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、WSe2及MoTe2。其他適合之例示性物質為矽、摻雜矽、矽化物、硼及硼化物。適合硼化物包括形成雙鏈及二維網狀結構(如石墨)之硼化物。可具有傳導性之二維網狀結構硼化物可具有諸如MB2之式,其中M為金屬,諸如以下中之至少一者:Cr、Ti、Mg、Zr及Gd(CrB2、TiB2、MgB2、ZrB2、GdB2)。化合物形成可為熱可逆的。反應物可藉由移除觸媒或觸媒來源來熱再生。
在一個實施例中,包含形成層夾化合物(諸如金屬石墨)之反應物或包含不同於碳之元素作為氧化劑之類似化合物的反應混合物係在最大化低能量氫產率之第一電力循環操作溫度下操作。電池溫度接著可改為在再生循環期間對於再生最佳之第二值或範圍。在再生循環溫度低於電力循環溫度之情況下,可使用熱交換器降低溫度。在再生循環溫度高於電力循環溫度之情況下,可使用加熱器升高溫度。加熱器可為使用由電力循環期間產生之熱功率產生之電的電阻加熱器。系統可包含熱交換器,諸如逆流系統,其中當正冷卻之再生反應物加熱產物以經受再生時最小化熱損失。替代電阻加熱,混合物可使用熱泵加熱以減少所消耗之電。熱損失亦可藉由自較熱目標轉移至較冷目標(諸如使用熱管之電池)來最小化。反應物可連續饋送通過熱區以引起低能量氫反應且可進一步流動或輸送至另一區域、隔室、反應器或系統中,其中再生可分批、間歇或連續發生,其中再生產物可靜止或移動。
在一個實施例中,NaOH為再生循環中之NaH來源。NaOHNaNa 2 ONaH之反應為
NaOH+2NaNa 2 O+NaH(-44.7千焦/莫耳) (89)
放熱反應可推動形成NaH(g)。因此,NaH分解成Na或金屬可充當形成觸媒NaH(g)之還原劑。在一個實施例中,使形成作為產生NaH觸媒之反應(諸如由方程式(89)給出之反應)之產物的Na 2 O與氫來源反應形成NaOH,其可進一步充當NaH觸媒來源。在一個實施例中,在原子氫存在下自方程式(89)之產物的NaOH之再生反應為
Na 2 O+1/2HNaOH+Na ΔH=-11.6 kJ/千焦/莫耳NaOH (90)
NaHNa+H(1/3)ΔH=-10,500千焦/莫耳H (91)
NaHNa+H(1/4)ΔH=-19,700千焦/莫耳H (92)
因此,自諸如Na金屬或NaH之來源與原子氫來源或原子氫的少量NaOHNa充當NaH觸媒之催化來源,該NaH觸媒又經由多個再生反應(諸如由方程式(89-92)給出之反應)循環形成大產率之低能量氫。由方程式(90)給出之反應可藉由使用自H2形成原子H之氫解離體增強。適合解離體包含至少一個自貴金屬、過渡金屬、Pt、Pd、Ir、Ni、Ti,及此等元素/載體之群的成員。反應混合物可包含NaH或NaH來源及NaOH或NaOH來源,且可進一步包含以下中之至少一者:還原劑,諸如鹼土金屬,諸如Mg,及載體,諸如碳或碳化物,諸如TiC、YC2、TiSiC2及WC。反應可在對反應物及產物惰性之容器(諸如Ni、Ag、鍍Ni、鍍Ag或Al2O3容器)中運作。
在一個實施例中,KOH為再生循環中之K及KH來源。KOHKK 2 OKH之反應為
KOH+2KK 2 O+KH(+5.4千焦/莫耳) (93)
在形成KH期間,發生低能量氫反應。在一個實施例中,使K 2 O與氫來源反應形成KOH,其可進一步充當根據方程式(93)之反應物。在一個實施例中,在原子氫存在下自方程式(93)之KOH的再生反應為
K 2 O+1/2H 2KOH+K ΔH=-63.1千焦/莫耳KOH (94)
KHK+H(1/4)ΔH=-19,700千焦/莫耳H (95)
因此,自諸如K金屬或KH之來源與原子氫來源或原子氫的少量KOHK充當觸媒之KH來源的催化來源,該觸媒又經由多個再生反應(諸如由方程式(93-95)給出之反應)循環形成大產率之低能量氫。由方程式(94)給出之反應可藉由使用自H2形成原子H之氫解離體增強。適合解離體包含至少一個自貴金屬、過渡金屬、Pt、Pd、Ir、Ni、Ti,及此等元素/載體之群的成員。反應混合物可包含KH或KH來源及KOH或KOH來源,且可進一步包含以下中之至少一者:還原劑及載體,諸如碳、碳化物或硼化物,諸如TiC、YC2、TiSiC2、MgB2及WC。在一個實施例中,載體為非反應性或與KOH具有低反應性。反應混合物可進一步包含至少一種KOH摻雜載體,諸如R-Ni、KOH及KH。
反應混合物組分可呈任何莫耳比。包含觸媒或觸媒來源及氫來源(諸如NaH或KH)、還原劑、溶劑或氫化物交換反應物(諸如鹼土金屬,諸如Mg)及載體之反應混合物的適合比率為前兩者呈接近等莫耳比且載體過量之比率。NaH或KH+Mg與載體(諸如AC)之例示性適合比率分別為5%、5%及90%,其中各莫耳%可改變10倍以合計達100%。在載體為TiC之情況下,例示性適合比率分別為20%、20%及60%,其中各莫耳%可改變10倍以合計達100%。包含觸媒或觸媒來源及氫來源(諸如NaH或KH)、還原劑、溶劑或氫化物交換反應物(諸如鹼土金屬,諸如Mg)、包含氧化劑或鹵化物交換反應物之金屬鹵化物(諸如鹼金屬、鹼土金屬、過渡金屬、Ag、In或稀土金屬鹵化物)及載體之反應混合物的適合比率為前兩者呈接近等莫耳比、金屬鹵化物為等莫耳或較小豐度,且載體過量之比率。NaH或KH+Mg+MX或MX2(M為金屬且X為鹵離子)與載體(諸如AC)之例示性適合比率分別為10%、10%、2%及78%,其中各莫耳%可改變10倍以合計達100%。在載體為TiC之情況下,例示性適合比率分別為25%、25%、6%及44%,其中各莫耳%可改變10倍以合計達100%。
在一個實施例中,圖2中所示之發電廠包含多管反應器,其中低能量氫反應(形成低能量氫之H的電力產生催化)且在反應器之間暫時控制再生反應以隨時間維持所需電力輸出。可加熱電池以起始反應,且可將來自低能量氫形成反應之能量儲存於熱質(包括電池熱質)中且在控制條件下由熱轉移介質及控制系統轉移以隨時間達成對電力之所需貢獻。再生反應可與電力反應一起在多個電池中進行以維持連續操作。再生可熱進行,其中熱可至少部分或完全自形成低能量氫時釋放之能量提供。再生可在與多管反應器之各管(反應器)相關之所含單元中進行。在一個實施例中,來自電力產生電池之熱可流至因熱梯度而經歷再生之電池。該流可通過熱傳導介質,包括冷卻劑,其中藉由閥及至少一個流量控制器及泵控制該流。
在圖5中所示之一個實施例中,反應器包含用於藉由將氫催化為低能量氫來產生電力的反應物之主反應器101及與主反應器連通之第二腔室102。雙室反應器110包含包含多管反應器100之多單元總成的一單元。各單元進一步包含熱交換器103。各電池可具有用於控制熱轉移之熱障壁,諸如絕緣物或氣隙。可配置熱交換器,使得最冷部分處於第二腔室距主反應腔室最遠之區域。隨著熱交換器接近主反應腔室之底部,溫度可能逐漸提高。熱交換器可包含纏繞腔室以沿熱交換器維持溫度梯度之管道。熱交換器可具有自交換器之最熱部分至熱負載(諸如蒸汽產生器104、蒸汽渦輪機105及發電器106)之管線107。該管線可接近於如圖5中所示之主反應器的底部且可進一步為閉合主循環迴路115之部分。可將來自多管反應器系統之熱經由熱交換器111轉移至熱負載,該熱交換器111將電力系統(主迴路)之熱轉移介質與熱負載(諸如發電器系統104、105及106)隔離。電力轉換系統中諸如高溫蒸汽之工作流體可藉由循環管線113及冷凝器112(其可進一步包含排熱熱交換器)以低溫蒸汽形式自渦輪機接收。此電力循環系統可包含諸如蒸汽及水之工作介質的次迴路116。在包含單迴路熱轉移系統之替代性實施例中,管線115與蒸汽產生器104直接連接,且返回管線108與冷凝器112直接連接,其中呈任一配置之循環均可由循環泵129提供。
在一個實施例中,腔室為垂直的。具有冷輸入管線108之熱交換器之最冷部分可在具有逆流熱交換之第二腔室頂部,其中諸如流體或氣體之熱轉移介質自第二腔室頂部朝著主腔室(其中在約主腔室中間以管線107將移至熱負載)變熱。腔室可藉由打開及關閉腔室之間的腔室隔離閥(諸如閘閥)來連通或隔離。反應器110可進一步包排氣機構(gas exhaust)121,其可包含真空泵127。排氣機構可藉由低能量氫氣體分離器122來分離,且低能量氫氣體可用於系統124中之化學製造。氫氣可由氫氣再循環器123收集,再循環器123可使循環氫經由管線120返回,視情況自供應器125添加氣體氫。
在使用KH及SrBr2之例示性反應物的一個實施例中,可運作低能量氫電力反應,接著打開閘閥,當在主腔室中形成SrBr2時使K移至第二腔室之冷頂,關閉閥,將K氫化,打開閥,使KH退至主腔室中,關閉閥,接著反應低能量氫形成電力繼續用於再生SrBr2及KH。Mg金屬亦可收集於第二腔室中。由於其較低揮發性,因此其可分別自K冷凝及分別返回第一腔室中。在其他實施例中,KH可經另一鹼金屬或鹼金屬氫化物置換且氧化劑SrBr2可經另一者置換。反應器較佳為能夠高溫操作且涵蓋操作溫度範圍不與Sr形成金屬互化物之金屬。適合之反應器材料為不鏽鋼及鎳。反應器可包含Ta或Ta塗層且可進一步包含金屬互化物,其阻止進一步金屬互化物形成,諸如Sr與不鏽鋼或鎳之金屬互化物。
反應可藉由控制可通過氫氣入口120引入且藉由排氣機構121移除之惰性氣體壓力來控制。可打開閘閥以使諸如K之觸媒自反應室101蒸發至腔室102。使用排氣機構121可抽空氫。必要時可能不再供應觸媒或氫來源(諸如KH),或可控制量以終止或減小電力。可藉由添加H2通過供應器120及閘閥或藉由直接添加H2通過個別管線將諸如Mg之還原劑氫化以降低速率。反應器110之熱質可為使得溫度可不超過反應物完全反應之故障等級,其中可維持停止再生循環。
在反應器溫度大於氫化物分解溫度之情況下,可在實質上小於其熱分解時間之持續時間內將諸如KH之氫化物添加回至熱反應混合物中。LiH至900℃為穩定且在688.7℃下熔融;因此,可將其添加回至反應器中,而未在小於LiH分解溫度之相應再生溫度下熱分解。包含LiH之適合反應混合物為LiH Mg TiC SrCl2、LiH Mg TiC SrBr2及LiH Mg TiC BaBr2。包含LiH之適合反應混合物為LiH Mg TiC SrCl2、LiH Mg TiC SrBr2、LiH Mg TiC BaBr2及LiH Mg TiC BaCl2
可藉由產生電力之其他電池加熱正經歷再生之熱電池。在電力及再生循環期間電池之間的熱轉移可藉由控制流動冷卻劑之閥來達成。在一個實施例中,電池可包含諸如1至4吋直徑管之筒。可將電池嵌埋於諸如固體、液體或氣體介質之熱傳導介質中。介質可為可藉由諸如在電池壁核狀沸騰之模式經歷沸騰之水。或者,介質可為熔融金屬或鹽或固體,諸如銅珠(copper shot)。電池可為正方形或矩形以在其之間較有效地轉移熱。在一個實施例中,在電力產生循環中藉由自電池熱轉移將正再生之電池維持在再生溫度以上。熱轉移可經由傳導性介質達成。產生電力之電池可產生高於再生所需之溫度以維持對此等電池之一些熱轉移。諸如熱交換器或蒸汽產生器之熱負載可自傳導性介質接收熱。適合位置係在周邊。系統可包含將傳導性介質維持在高於熱負載之溫度下的熱障壁。障壁可包含絕緣物或氣隙。產生電力之電池以使得當電池數增加時在統計學上使電力輸出接近恆定程度之方式加熱正經歷再生者。因此,電力為統計學上恆定的。在一個實施例中,控制各電池之循環以選擇產生電力之電池以為所選再生電池提供熱。可藉由控制反應條件來控制循環。可控制打開及關閉構件以允許金屬蒸氣遠離反應混合物之冷凝而控制各電池循環。
在另一實施例中,熱流可為被動且亦可為主動。將多個電池嵌埋於熱傳導介質中。介質可為高度熱傳導。適合介質可為固體,諸如金屬,包括銅、鋁及不鏽鋼;液體,諸如熔鹽;或氣體,諸如稀有氣體,諸如氦或氬。
多管反應器可包含經水平定向而沿縱軸具有死空間(其使諸如鹼金屬之金屬蒸氣在再生期間逸出)之電池。金屬可在與電池內部在溫度可維持低於電池溫度之位置接觸的冷卻區域中冷凝。適合位置處於電池末端。可藉由具有可變熱接受速率之熱交換器將冷卻區域維持在所需溫度下。冷凝區域可包含具有可關閉之閥(諸如閘閥)的腔室。可將諸如K之冷凝金屬氫化,且可藉由諸如機械或氣動之方法使氫化物返回反應器。可藉由此項技術中已知之方法(諸如機械混合或機械攪動,包括在低頻率或超音波下振動)攪動反應混合物。混合亦可藉由氣動方法,諸如以諸如氫或稀有氣體之氣體噴射來達成。
在包含經水平定向而沿縱軸具有死空間(其使諸如鹼金屬之金屬蒸氣在再生期間逸出)之電池的多管反應器之另一實施例中,將沿電池長度之區域維持在低於反應混合物之溫度下。金屬可沿此冷卻區域冷凝。可藉由熱交換器以可變及經控制之熱接受速率將冷卻區域維持在所需溫度下。熱交換器可包含具有流動冷卻劑之導管,或熱管。可依據導管中之流動速率或熱管之熱轉移速率(由諸如其壓力、溫度及熱接受表面積之參數控制),將冷卻區域及電池之溫度控制為所需值。由於電池中存在氫,因此可將冷凝之金屬(諸如K或Na)氫化。可使氫化物返回反應器中且藉由使電池圍繞其縱軸旋轉而與其他反應物混合。旋轉可由電動馬達驅動,其中可使用齒輪裝置(gearing)使電池同步。為混合反應物,旋轉可交替地為順時針及逆時針方向。電池可間歇旋轉360°。旋轉可處於高角速度,使得熱收集器發生最小熱轉移變化。可按緩慢恆定旋轉速率重疊快速旋轉以達成諸如金屬氫化物之可能殘餘的反應物之進一步混合。氫可藉由氫管線或藉由滲過電池壁或氫可透膜而供至各電池,其中將氫供至含有電池之腔室中。氫亦可藉由水電解來供應。電解電池可包含電池之旋轉組件,諸如沿反應器電池中心線之圓筒形旋轉軸。
或者,一或多個內部刮板或攪拌器可在內表面上吹掃以混合所形成之氫化物與其他反應物。各刮板或攪拌器可圍繞平行於縱向電池軸之軸旋轉。刮板可使用具有外部旋轉磁場來源之內部刮板的磁耦合來驅動。諸如不鏽鋼壁之容器壁對磁通量可透。在一個實施例中,當金屬蒸氣反應形成金屬氫化物且與反應混合物混合時,控制電池或刮板或攪拌器之旋轉速率以最大化電力輸出。反應電池可為具有圓形、橢圓、正方形、矩形、三角形或多面橫截面之管狀。熱交換器可包含攜帶冷卻劑之管或導管,其可具有正方形或矩形以及圓形、橢圓、三角形或多面橫截面以達成所需表面積。正方形或矩形管之陣列可包含用於熱交換之連續表面。各管或導管之表面可經翼片或其他表面積提高材料修飾。
在另一實施例中,反應器包含具有不同溫度之多個區以選擇性冷凝產物混合物之多個所選組分或來自產物混合物之多個所選組分。此等組分可再生為初始反應物。在一個實施例中,最冷區冷凝鹼金屬,諸如觸媒或觸媒來源之鹼金屬,諸如Na及K中之至少一者。另一區冷凝第二組分,諸如鹼土金屬,諸如鎂。第一區之溫度可在0℃至500℃之範圍內且第二區之溫度可在10℃至490℃之範圍內,小於第一區之溫度。各區之溫度可藉由具有可變及可控效率之熱交換器或收集器控制。
在另一實施例中,反應器包含能夠達成真空或大於大氣壓之壓力、呈氣體、液體或固體狀態中之至少一者之材料的一或多個入口,及至少一個材料出口的反應室。一個出口可包含用於抽吸諸如氫氣之氣體的真空管線。反應室進一步包含形成低能量氫之反應物。反應器進一步包含在反應室內之熱交換器。熱交換器可包含冷卻劑導管。導管可分佈於整個反應室中以自反應中反應混合物接收熱。各導管可在反應混合物與導管壁之間具有絕緣障壁。或者,該壁之熱導率可為使得在操作期間在反應物與冷卻劑之間存在溫度梯度。絕緣物可為真空間隙或氣隙。導管可為滲透反應混合物且在滲透時以室壁密封以維持反應室壓力完整性之管。可控制諸如水之冷卻劑之流動速率以維持反應室及反應物之所需溫度。在另一實施例中,導管係經熱管置換,該等熱管自反應混合物移除熱且將其轉移至諸如熱交換器或鍋爐之散熱體。
在一個實施例中,以分批模式,使用以束形式配置的熱耦接多電池,其中循環之電力產生階段之電池加熱再生階段之電池,從而使低能量氫反應維持及再生。在此間歇式電池電力設計中,當電池數變大時,熱功率為統計學恆定,或控制電池循環以達成穩定電力。將熱功率轉換為電力可使用利用循環(諸如朗肯、布累登、斯特林或蒸汽機循環)之熱機達成。
各電池循環可藉由控制低能量氫化學之反應物及產物來控制。在一個實施例中,推動形成低能量氫之化學包括鹼金屬氫化物觸媒與氫來源與金屬鹵化物氧化劑(諸如鹼土金屬或鹼金屬鹵化物)之間的鹵素-氫交換反應。在封閉系統中,反應為自發的。然而,當系統為開放式使得初始氫化物之鹼金屬蒸發且自其他反應物移除時,形成初始鹼金屬氫化物及鹼土金屬鹵化物之逆反應為熱可逆性反應。將隨後冷凝之鹼金屬再氫且使其返回系統。圖6在展示包含反應室130及金屬冷凝及再氫化腔室131藉由閘閥132(其藉由控制蒸發金屬蒸氣、再氫化金屬及再供應再生鹼金屬氫化物之流來控制電力及再生反應)分隔之電池。可藉由熱交換器139(諸如具有可變熱接受速率之水冷線圈)在冷凝室中維持處於所需溫度之冷卻區。因此,圖6中所示之電池包含兩個腔室,藉由閘閥132隔開。反應室130關閉時,運作正向反應以形成低能量氫及鹼金屬鹵化物及鹼土金屬氫化物產物。接著,打開閥,且當揮發性鹼金屬蒸發且在藉由冷卻劑迴路139冷卻之其他觸媒室131中冷凝時,來自其他電池之熱引起產物金屬互換鹵化物。關閉該閥,使冷凝金屬與氫反應形成鹼金屬氫化物,且再次打開閥以向反應物再供應再生之初始鹼金屬氫化物。添加補充以置換所消耗者使氫再循環以形成低能量氫。藉由泵134通過排氣管線133自反應室抽吸氫。在管線135排出低能量氫氣體。使剩餘氫與藉由管線137自氫來源添加之補充氫一起再循環通過管線136且通過管線138供至觸媒室中。水平定向電池為使觸媒之較大表面積蒸發之另一設計。在此情況下,藉由機械混合而非僅重力饋料來再供應氫化物。在另一實施例中,電池可垂直傾斜以使得氫化物落入反應室中且於彼處混合。
在一個實施例中,圖6中所示之腔室131進一步包含分餾塔或熱分離機,其將至少一種反應產物混合物或再生反應產物混合物(諸如以下之混合物:鹼金屬,諸如Li、Na或K中至少兩者;鹼土金屬,諸如Mg;及金屬鹵化物,諸如LiCl或SrBr2,其可藉由諸如金屬鹵化物-金屬氫化物交換或可在蒸餾期間發生之其他反應的交換反應形成)之化學物質分離。諸如TiC之載體可保留於反應室130中。可將鹼金屬再氫化。使分離之物質及反應產物物質,諸如LiH、NaH或KH,鹼土金屬,及金屬鹵化物,諸如LiCl或SrBr2返回反應室130中以復原形成低能量氫之原始反應混合物。
在一個實施例中,分解包含H之化合物以釋放原子H,其經歷形成低能量氫之催化,其中至少一種H充當至少另一H之觸媒。H化合物可為層夾於基質中之H,諸如H於碳中或H於金屬(諸如R-Ni)中。化合物可為氫化物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬氫化物、LiAlH4、LiBH4,及其他,諸如氫化物。分解可藉由加熱化合物達成。可藉由諸如控制反應器溫度及氫壓之方法使化合物再生。可在包含H之化合物再生期間發生催化。分解及重組可循環發生以維持電力輸出。在一個實施例中,氫化物係藉由添加至熔鹽,諸如熔融共溶鹽,諸如鹼金屬鹵化物之混合物中來分解。共溶鹽可為氫化物離子導體,諸如LiCl-KCl或LiCl-LiF。金屬可藉由物理分離技術,諸如本發明之技術來回收,經去氫化及添加回至熔鹽中以再次產生電力。重複循環。在電力再生循環中具有控制相位差之多個熱耦接電池可產生連續電力。
在實施例中,熱反應及再生系統包含鹼金屬氫硫族化物、氫氧陰離子、H鹵素系統及金屬氫氧化物及氧(氫氧)化物(CIHT電池區段中得到)。典型反應係由MXH+2MM 2 X+MH(s)(方程式(217-233))給出。適合之例示性氫硫族化物為MOH、MHS、MHSe及MHTe(M=Li、Na、K、Rb、Cs)。可藉由添加氫使系統再生。MH產物可藉由蒸發或物理分離來移除。MH可分解為M且添加回至反應混合物中。反應混合物可進一步包含載體,諸如碳、碳化物、氮化物或硼化物。
產生電力之電池提高其溫度至高於再生所需溫度。接著,圖7之多個電池141及圖8之多個電池148係以束147形式配置,配置於圖8之鍋爐149中,使得藉由自電力產生循環中之電池熱轉移將再生中電池維持在再生溫度(諸如約700℃)以上。該等束可配置於鍋爐箱中。參考圖7,熱梯度推動電力再生循環之不同段中各束之電池141之間的熱轉移。為達成溫度型態,諸如在梯度之最高溫度電力產生側750℃至較低溫度再生側約700℃之範圍內的溫度型態,將電池嵌埋於高度熱傳導介質中。高傳導性材料142(諸如銅珠)有效地在電池之間轉移熱且轉移至周邊,同時在達成再生且維持核心溫度在材料限度所需之核心溫度以下之核心溫度的束中維持溫度型態。最終將熱轉移至在包含鍋爐管143之各束之周邊煮沸的冷卻劑(諸如水)中。適合之沸水溫度係在250℃-370℃範圍之溫度範圍中。此等溫度足夠高以達成核沸騰,即熱轉移至水介質之最有效方法;但在此範圍以上之溫度下之過度蒸汽壓力所設置之頂值以下。在一個實施例中,由於各電池束中所需之高得多之溫度,因此在各束與熱負載、沸水與隨後系統之間維持溫度梯度。在一個實施例中,周邊之熱障壁維持此梯度。將各多管反應器電池束裝入內部圓筒形環或束限制管144中,且在內環與外環之間存在絕緣物或真空間隙145以維持溫度梯度。可藉由在此間隙中改變氣壓或使用具有所需熱導率之氣體來發生熱轉移控制。使外環143之外壁與水接觸,其中在此表面上發生核沸騰以在鍋爐(諸如圖10中所示者)中產生蒸汽。蒸汽渦輪機可自沸水接收蒸汽,且可用圖11如中所示之發電器發電。
圖9中所示之鍋爐150包含多電池束151、電池反應室152、用於接收及氫化金屬蒸氣之觸媒室153、含有氫氣排出及供應管線及觸媒室冷卻劑管之導管154、冷卻劑155(諸如水)及蒸汽歧管156。圖10中所示之發電系統包含鍋爐158、高壓渦輪機159、低壓渦輪機160、發電器161、濕氣分離器162、冷凝器163、冷卻塔164、冷卻水泵165、冷凝泵166、鍋爐給水純化系統167、第一段給水加熱器168、脫氣給水箱(dearating feedwater tank)169、給水泵170、增壓泵171、產物儲存及處理器172、反應物儲存及處理器173、真空系統174、起動加熱器175、電解器176、氫供應器177、冷卻劑管線178、冷卻劑閥179、反應物及產物管線180及反應物及產物管線閥181。在本發明中可預期其他組件及修改,其為熟習此項技術者所已知。
選擇電池尺寸、各束中之電池數及真空間隙寬度以維持各束中所需的溫度型態、電池電力流周邊之沸水的所需溫度及足夠的沸騰面熱通量。可對各種可能之可形成具有明顯的動力學及能量增加之低能量氫以及包含可如本文所揭示而熱再生之反應的氫離子-鹵離子交換反應及其他反應物以實驗方式獲得供設計分析用之反應參數。用於設計工程目的之例示性操作參數為5-10 W/cc、300-400千焦/莫耳氧化劑、150千焦/莫耳所輸送之K、相對於再生化學之3至1的能量增加、50兆千焦/莫耳H2、650℃至750℃之再生溫度、足以在電力再生循環之相應階段維持電池再生溫度的電池操作溫度、10分鐘之再生時間及1分鐘之反應時間。
在例示性1 MW熱系統中,該束係由33根長2公尺之緊密堆積管(各自具有5 cm ID)嵌埋於高導熱率銅珠中組成。因此,各管之工作體積稍小於四公升。因為電力及再生階段持續時間分別為1及10分鐘,所以選擇33根管(循環週期11分鐘之倍數)自該束引起瞬時電力(時間恆定)。束限制管之內徑為34 cm且壁厚6.4 mm。鍋爐管內徑及壁厚分別為37.2 cm及1.27 cm。使用典型反應參數,束中之各管產生約1.6 kW熱功率之時間平均功率,且各束產生約55 kW熱功率。束內溫度介於中心約782℃至向著間隙之表面的664℃之間的範圍內。鍋爐管表面之熱通量為約22 kW/m2,其維持鍋爐管外表面溫度在250℃下且或多或少地足夠高以在表面引起核沸騰。提高反應之電力密度超過7 W/cc或減少再生時間會增大沸騰通量,從而產生較大沸騰效率。約18根此等束應產生1 MW熱之輸出。
將圖9中所示之鍋爐的替代性系統設計展示於圖11中。該系統包含至少一個熱耦接多電池束及周邊水管壁作為穿過間隙轉移之熱的熱負載。形成低能量氫之反應混合物包含高表面積導電載體及諸如鹼土金屬之還原劑。此等材料亦可為高度熱傳導,使得其可至少部分取代圖9之束的高傳導性材料。化學物質有助於在電池之間轉移熱且轉移至周邊,同時在陣列中維持適當熱型態及梯度。可使水管壁管中產生之蒸汽流至渦輪機及發電器以直接產生電,或水管壁可將蒸汽饋入主蒸汽迴路中,其通過熱交換器將熱轉移至次蒸汽迴路。次迴路可向渦輪機及發電器供電以產生電。
系統包含各自具有熱收集器之多個反應器電池陣列或電池束。如圖11中所示,反應器電池186可為正方形或矩形以達成緊密接觸。電池可在束185中分組,其中發生自該束向負載188之熱轉移,其中將束溫維持於至少再生所需之溫度下。可在束與諸如熱收集器或交換器188之熱負載之間維持溫度梯度。熱交換器可包含水管壁或具有流動冷卻劑之圓周管組,其中該流可藉由至少一次抽吸來維持且可裝入絕緣物189中。反應器系統可在熱收集器或交換器188與多管反應器電池之各多管反應器電池或束185之間包含氣隙187。熱轉移控制可如下發生:在束壁185與熱收集器或交換器188之間的氣隙187中改變氣壓或使用具有所需熱導率之氣體。
控制各電池之循環以選擇產生電力之電池以為所選再生電池提供熱。或者,產生電力之電池以使得當電池數增大時在統計學上使電力輸出接近恆定程度之隨機方式加熱正經歷再生者。因此,電力為統計學上恆定。
在另一實施例中,系統包含自中心向外提高之電力密度梯度以在整個束中維持所需溫度型態。在另一實施例中,經由熱管將熱自電池轉移至鍋爐。熱管可與熱交換器接界或可直接與冷卻劑接觸。
在一個實施例中,在各電池中連續維持及再生低能量氫反應,其中來自熱可逆循環之電力產生階段之熱為自產物再生初始反應物提供能量。因為反應物在各電池中同時經歷兩種模式,所以自各電池之熱功率輸出為恆定的。將熱功率轉換為電力可使用利用循環(諸如朗肯、布累登、斯特林或蒸汽機循環)之熱機達成。
圖12中所示之連續產生電力之多管反應器系統包含複數個重複絕緣平面層192、反應器電池193、熱傳導介質194及熱交換器或收集器195。在一個實施例中,各電池為圓管,且熱交換器平行於電池且恆定接受熱。圖13展示包含化學物質197之多管反應器系統之單一單元,其包含以下中之至少一者:反應物及產物、絕緣材料198、反應器199,及具有嵌埋水管201(包含熱交換器或收集器)之導熱材料200。
各電池連續產生電力以提高其反應物溫度至高於再生所需溫度。在一個實施例中,形成低能量氫之反應為鹼金屬氫化物觸媒與氫來源與鹼土金屬或鋰金屬之間的氫化物交換。本文揭示反應物、交換反應、產物及再生反應及參數。包含交替絕緣層、反應器電池及熱交換器之圖12的多管反應系統經由電池熱梯度維持連續電力。藉由在藉由冷卻器頂區(由熱收集器維持)中反應與冷凝及再氫化維持之高溫底區中之產物分解及鹼金屬蒸發來連續再生反應物鹼金屬氫化物。旋轉刮板再接合再生之鹼金屬氫化物與反應混合物。
在諸如K或Na之冷凝金屬因電池中存在氫(包括消耗以產生低能量氫之氫的補充氫)而氫化後,使氫化物返回反應器底部且與其他反應物混合。一或多個內部旋轉刮板或攪拌器可沿內部電池壁吹掃以混合所形成之氫化物與其他反應物。視情況,再接合鹼金屬氫化物與其他反應物及化學混合係藉由使電池圍繞其縱軸旋轉來達成。此旋轉在旋轉之後亦將熱自電池底部位置轉移至新的頂部位置;因此,其提供控制鹼金屬輸送之內部電池溫度梯度的另一方法。然而,相應熱轉移速率較高,從而需要極低旋轉速率以維持熱梯度。刮板或電池之混合旋轉可由電動馬達驅動,其中可使用齒輪裝置使電池同步。混合亦可藉由通過具有低滲透性(諸如不鏽鋼之滲透性)之電池壁的磁感應達成。
在一個實施例中,初始鹼金屬氫化物係藉由在400-550℃下蒸發且在低約100℃之溫度下在反應形成鹼金屬氫化物之氫存在下冷凝來再生。因此,在推動熱再生之各電池中,在處於高溫之反應物與冷卻區之間存在熱梯度。電池係經水平定向而沿縱軸具有死空間(其使鹼金屬蒸氣在連續再生期間自反應物沿電池底部逸出)。金屬在冷卻區中沿電池頂部冷凝。藉由在各電池頂部包含具有可變熱接受速率之鍋爐管的熱收集器將冷卻器區域維持在所需冷凝溫度下。熱交換器包含具有加熱至蒸汽之流水的鍋爐管水管壁。特定言之,飽和水流經水管,自反應器吸收能量,且蒸發形成蒸汽。在另一例示性實施例中,熱反應器區係在750℃±200℃之範圍內,且較冷區維持在溫度比熱反應器區低50℃至300℃之範圍內。反應混合物及熱再生反應可包含本發明之反應混合物及熱再生反應。舉例而言,適合之反應混合物包含以下中至少兩者:鹼金屬或其氫化物、氫來源、還原劑(諸如鹼土金屬,諸如Mg或Ca)及載體,諸如TiC、Ti3SiC2、WC、TiCN、MgB2、B4C、SiC及YC2。反應物可經歷氫離子-鹵離子交換反應,且再生反應可為熱推動之逆交換反應。
最終將熱轉移至在各反應器電池周邊在管中煮沸之水中,其中鍋爐管形成水管壁。適合之沸水溫度係在250℃-370℃範圍之溫度範圍中。此等溫度足夠高以達成核沸騰,即熱轉移至水介質之最有效方法;但在此範圍以上之溫度下之過度蒸汽壓力所設置之頂值以下。在圖13之各鍋爐管201之內表面發生水之核沸騰,其中由於該等管嵌埋於高度傳導性熱介質200(諸如銅)中且另外再循環不蒸發為蒸汽之水,因此水管壁中之均勻溫度分佈得以維持。熱自頂部電池壁通過介質流至鍋爐管。由於在各電池中,甚至在其梯度下端所需之高得多之溫度,因此在各電池頂部與熱負載、沸水與隨後系統之間維持第二溫度梯度。因為鍋爐管比不得不產生熱之電池具有更高之移除熱的能力,所以藉由在電池壁及水管壁之頂部-一半之間添加一或多個熱障壁來維持第二外部熱梯度。所需之高內部電池溫度以及梯度係藉由將電池之頂部-一半及各鍋爐管之外壁中之至少一者與傳導性介質隔離來達成。藉由調節在電池之頂部-一半及鍋爐管之熱障壁、鍋爐管所穿透之介質的熱導率及熱交換器容量及管中蒸汽流動速率,經由可變熱轉移將電池溫度及梯度控制為最佳值。在前一情況下,熱障壁可各自包含氣體或真空間隙,其可基於氣體組成及壓力而變。
將多管反應系統組裝於圖14中所示之鍋爐系統中以輸出蒸汽。鍋爐系統包含圖12中所示之多管反應系統及冷卻劑(飽和水)流量調節系統。包含反應器204之反應系統加熱飽和水且產生蒸汽。流量調節系統(i)收集蒸汽收集管線205及入口再循環管206中之飽和水流且將該流輸入分離蒸汽與水之蒸汽-水分離器207中,(ii)使用循環泵209、出口再循環管210及配水管線211使分離之水再循環通過鍋爐管208,及(iii)輸出及在通道引導蒸汽進入主蒸汽管線212至渦輪機或負載及熱交換器。可隔離管與管線以防止熱損耗。將輸入冷卻劑(諸如自渦輪機之冷凝水或自熱負載及熱交換器之還歸水)輸入通過入口返水管213,且藉由入口增壓泵214提高壓力。
可使水管壁管中產生之蒸汽流至渦輪機及發電器以直接產生電,或水管壁可將蒸汽饋入主蒸汽迴路中,其通過熱交換器將熱轉移至次蒸汽迴路。次迴路可向渦輪機及發電器供電以產生電。在圖15中所示之實施例中,蒸汽係在鍋爐系統中產生且自蒸汽-水分離器輸出至主蒸汽管線。蒸汽渦輪機自沸水接收蒸汽,且用發電器發電。將蒸汽冷凝且抽回鍋爐系統中。圖15中所示之發電系統包含鍋爐217、熱交換器218、高壓渦輪機219、低壓渦輪機220、發電器221、濕氣分離器222、冷凝器223、冷卻塔224、冷卻水泵225、冷凝泵226、鍋爐給水純化系統227、第一段給水加熱器228、脫氣給水箱229、給水泵230、增壓泵(圖14之214)、產物儲存及處理器232、反應物儲存及處理器233、真空系統234、起動加熱器235、電解器236、氫供應器237、冷卻劑管線238、冷卻劑閥239、反應物及產物管線240,及反應物及產物管線閥241。在本發明中預期其他組件及修改,其為熟習此項技術者所已知。
考慮例示性1 MW熱系統。為達成在梯度之較高溫度電力產生側之400-550℃與在頂部之再生側低約100℃之溫度的範圍內之電池底部溫度,如圖12中所示,電池僅在頂部具有熱收集器,電力產生反應物位於底部,且隔離電池底部。所選系統設計參數為(1)電池尺寸、(2)系統中之電池數、(3)包圍電池下半部之材料的熱阻、(4)在電池外牆之頂部-一半的熱障壁、(5)由鍋爐管所滲透之包圍電池之頂部-一半的介質之熱導率、(6)在外部鍋爐管壁之熱障壁、(7)鍋爐管數目、尺寸及間隔,(8)蒸汽壓,及(9)蒸汽流量及再循環速率。選擇系統設計參數以達成或維持以下所需操作參數:(1)各電池之溫度及內部及外部溫度梯度、(2)電池電力流周邊之沸水溫度,及(3)足夠的沸騰面熱通量。可對各種可能之氫離子-鹵離子交換反應(其引起形成具有顯著動力學及能量增加之低能量氫,以及包含可熱再生之反應)以實驗方式獲得供設計分析用之反應參數。本文揭示電力及再生化學及其參數。用於設計工程目的之典型操作參數為0.25 W/cc恆定電力、0.67 W/g反應物、0.38 g/cc反應物密度、50兆千焦/莫耳H2、相對於氫化物再生化學之2至1的能量增加、維持恆定電力輸出之相等反應及再生時間,及分別用於電力及再生之550℃及400-450℃之溫度,其中反應溫度足以在電池底部蒸發鹼金屬,且內部熱梯度維持在電池頂部之再生溫度。使用反應物及電力密度,產生1 MW連續熱功率之反應物體積及反應物總質量分別為3940公升及1500 kg。使用0.25%反應物填充因數,反應器總容積為15.8 m3
在樣本設計中,鍋爐包含140個不鏽鋼反應電池,其具有176 cm長度、30.5 cm OD、0.635 cm圓柱形壁厚度,及3.81 cm厚之端板。由於例示性壓力決定反應物NaH之平衡分解壓力,因此壁厚滿足在550℃下330 PSI內壓之設計要求。各電池重120 kg且輸出7.14 kW熱功率。各管之下半部嵌埋於絕緣物中。銅珠或鋁珠(高度熱傳導介質,其以水管穿透)包圍各電池之頂部-一半。電池內溫度介於底壁之約550℃至向著珠之壁表面之400℃之間的範圍內。如圖13中所示,各反應器之30.5 cm OD橫截面範圍係由六根2.54 cm OD與0.32 cm厚之在5.08 cm中心均勻間隔之鍋爐(水)管覆蓋。各鍋爐管之內表面的熱通量為約11.8 kW/m2,其維持各鍋爐管外表面之溫度在約367℃下。
在一個例示性實施例中,將自反應物產生之熱功率用以產生在360℃下之飽和蒸汽。圖16展示蒸汽產生流程圖。使在室溫(約25℃)下之水流入熱交換器中,其中其與飽和蒸汽混合且藉由蒸汽冷凝經加熱至360℃之飽和溫度。增壓泵251將水壓提高至在蒸汽-水分離器252之入口處在360℃下18.66 MPa之飽和壓力。使飽和水流經鍋爐系統253之水管壁的鍋爐管以產生在相同溫度及壓力下之蒸汽。使蒸汽之部分流回熱交換器中以預熱來自渦輪機之進入還歸水,而其部分來到渦輪機中以產生電力。另外,使水管壁中之非蒸發水再循環以沿各鍋爐管維持均勻溫度。為達成此舉,蒸汽收集管線接收蒸汽及非蒸發水且將其傳遞至蒸汽-水分離器252。自分離器底部抽吸水以通過配水管線返回鍋爐管。蒸汽自分離器252頂部流至渦輪機,其中一部分分流至熱交換器以預熱來自渦輪機之還歸水。在鍋爐管中,自140個反應器系統之飽和水的流動速率為2.78 kg/s,且總蒸汽輸出流動速率為1.39 kg/s。
在一個實施例中,反應物包含以下中至少兩者:觸媒或觸媒來源及氫來源(諸如KH)、載體(諸如碳)及還原劑(諸如Mg)。產物可為金屬-碳產物,諸如層夾產物、MHyCx及MCx(y可為分數或整數,x為整數),諸如KCx。反應器可包含一或多個反應物供應器、維持在高溫下使得流動反應物於其中經歷反應以形成低能量氫之反應室、自反應室移除熱之熱交換器,及接收產物(諸如KCx)及再生至少一種反應物之複數個容器。自MHyCx及MCx中之至少一者再生碳及M或MH可藉由施加熱及真空,其中所收集之蒸發金屬M可經氫化來達成。在還原劑為金屬之情況下,其亦可藉由蒸發來回收。各金屬或氫化物可收集於一個反應物供應器中。一個反應物供應器可包含用以使碳再生且含有碳及視情況選用之還原劑的各容器。
用於再生之熱可由來自低能量氫之電力來供應。可使用熱交換器來轉移熱。熱交換器可包含至少一根熱管。來自經加熱再生容器之熱可傳遞至電力負載,諸如熱交換器或鍋爐。反應物或產物(諸如包含碳之反應物或產物)之流動可機械式進行或至少部分使用重力來達成。輸送體可為螺機或傳送帶。在低能量氫反應比再生時間短得多之情況下,再生容器之容積可超過熱反應區之容積。容積可呈維持恆定流量通過反應區之比例。
在一個實施例中,諸如鹼金屬或鹼土金屬之揮發性金屬的蒸發、昇華或揮發速率受限於相對於其上方真空空間之反應物表面積。可藉由旋轉電池或藉由混合以使新鮮表面暴露於真空空間之其他方法來提高速率。在一個實施例中,反應物(諸如還原劑,諸如鹼土金屬,諸如Mg)將載體粒子結合在一起以減小其表面積。舉例而言,Mg在650℃下熔融且可將TiC粒子結合在一起以減小表面積;此可藉由將金屬氫化,諸如將Mg氫化為MgH2,接著藉由研磨或粉碎形成粉末來改正。適合方法為球磨。或者,氫化物可熔融且以液體形式移除或維持液體形式(在此改善載體粒子聚集之情況下)。適合之氫化物為MgH2,此係因為因為熔點低(327℃)之故。
在一個實施例中,反應器包含流體化床,該等液體反應物可在載體上包含塗層。固體可在反應物反應得包括低能量氫之產物後的段中分離。分離可用旋風分離器。分離使金屬蒸氣冷凝以迫使一些產物逆反應回至至少一種原始反應物。使原始反應混合物再生,較佳熱再生。
在一個實施例中,例示性熔融混合物材料K/KH Mg MgX2(X為鹵離子)在TiC載體上包含塗層而非以各別相形式存在。K進一步包含蒸氣,且在電力段(power stage)中壓力較佳較高。反應器之電力段中之溫度較佳高於再生所需之溫度,諸如約600-800℃。在藉由在再生溫度或再生溫度以上進行鹵化物交換反應使反應物再生期間,使K冷凝且形成KH。冷凝可處於約100-400℃之溫度下,其中可存在H2以形成KH。為容許在低溫下之K冷凝及在高溫下之鹵化物交換反應,反應系統進一步包含自蒸氣移除粒子之分離器。此容許在一個區段或腔室中加熱粒子且在另一者中冷凝蒸氣。
在其他實施例中,熱可逆性反應包含其他交換反應,較佳在各自包含至少一種金屬原子之兩種物質之間的交換反應。交換可在觸媒之金屬(諸如鹼金屬)與交換搭配物(諸如氧化劑)之金屬之間。交換亦可在氧化劑與還原劑之間。交換物質可為陰離子,諸如鹵離子、氫離子、氧離子、硫離子、氮離子、硼離子、碳離子、矽離子、碑離子、硒離子、碲離子、磷離子、硝酸根、硫化氫、碳酸根、硫酸根、硫酸氫根、磷酸根、磷酸氫根、磷酸二氫根、過氯酸根、鉻酸根、重鉻酸根、氧化鈷,及熟習此項技術者已知之其他氧陰離子及陰離子。至少一種交換搭配物可包含包含鹼金屬、鹼土金屬、過渡金屬、第二系列過渡金屬、第三系列過渡金屬、貴金屬、稀土金屬、Al、Ga、In、Sn、As、Se及Te。適合之交換陰離子為鹵離子、氧離子、硫離子、氮離子、磷離子及硼離子。適用於交換之金屬為鹼金屬,較佳為Na或K;鹼土金屬,較佳為Mg或Ba;及稀土金屬,較佳為Eu或Dy,各自呈金屬或氫化物形式。下文給出例示性觸媒反應物及例示性交換反應。此等反應不意謂詳盡的且其他實例將為熟習此項技術者已知。
‧4 g AC3-3+1 g Mg+1.66 g KH+2.5 g DyI2,Ein:135.0 kJ,dE: 6.1 kJ,TSC:無,Tmax: 403℃,理論上為1.89 kJ,增加為3.22倍,
■4 g AC3-3+1 g Mg+1 g NaH+2.09 g EuF3,Ein:185.1 kJ,dE: 8.0 kJ,TSC:無,Tmax: 463℃,理論上為1.69 kJ,增加為4.73倍,
■KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CrB2 3.7 gm,Ein:317 kJ,dE: 19 kJ,無Tmax約340℃之TSC,理論能量為吸熱0.05 kJ,增加為無限,
■0.70 g TiB2、1.66 g KH、1 g Mg粉及4 g CA-III 300活性碳粉(AC3-4)用完。能量增加為5.1 kJ,但未觀察到電池溫度爆增(temperature burst)。最大電池溫度為431℃,理論上為0。
■0.42 g LiCl、1.66 g KH、1 g Mg粉及4 g AC3-4用完。能量增加為5.4 kJ,但未觀察到電池溫度爆增。最大電池溫度為412℃,理論上為0,增加為無限。
■1.21 g RbCl、1.66 g KH、1 g Mg粉及4 g AC3-4,能量增加為6.0 kJ,但未觀察到電池溫度爆增。最大電池溫度為442℃,理論上為0。
■ 4 g AC3-5+1 g Mg+1.66 g KH+0.87 g LiBr;Ein: 146.0 kJ;dE: 6.24 kJ;TSC:未觀察到;Tmax: 439℃,理論上為吸熱,
■ KH 8.3 gm+ Mg_5.0 gm+CAII-300 20.0 gm+YF3 7.3 gm;Ein:320 kJ;dE: 17 kJ;無Tmax約340℃之TSC;能量增加約4.5X(X為約0.74 kJ*5=3.7 kJ),
■ NaH 5.0 gm+ Mg 5.0 gm+CAII-300 20.0 gm+BaBr2 14.85 gm(乾燥);Ein: 328kJ;dE: 16 kJ;無Tmax約320℃之TSC;能量增加160X(X為約0.02 kJ*5=0.1 kJ),
■ KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaCl2 10.4 gm;Ein:331 kJ;dE: 18 kJ無Tmax約320℃之TSC。能量增加約6.9X(X為約0.52×5=2.6 kJ)
■ NaH 5.0 gm+ Mg 5.0 gm+CAII-300 20.0 gm+MgI2 13.9 gm;Ein: 315 kJ;dE: 16 kJ無Tmax約340℃之TSC。能量增加約1.8X(X為約1.75×5=8.75 kJ),
■ 4 g AC3-2+1 g Mg+1 g NaH+0.97 g ZnS;Ein:132.1 kJ;dE: 7.5kJ;TSC:無;Tmax: 370℃,理論上為1.4 kJ,增加為5.33倍,
■ 2.74 g Y2S3、1.66 g KH、1 g Mg粉及4 g CA-III 300活性碳粉(在300℃下乾燥),能量增加為5.2 kJ,但未觀察到電池溫度爆增。最大電池溫度為444℃,理論上為0.41 kJ,增加為12.64倍,
■ 4 g AC3-5+1 g Mg+1.66 g KH+1.82 g Ca3P2;Ein:133.0 kJ;dE: 5.8 kJ;TSC:無;Tmax: 407℃,理論上為吸熱,增加為無限。
■ 20 g AC3-5+5 g Mg+8.3 g KH+9.1 g Ca3P2,Ein:282.1 kJ,dE:18.1kJ,TSC:無,Tmax: 320℃,理論上為吸熱,增加為無限。
在一個實施例中,熱再生反應系統包含:
(i) 至少一個選自NaH、BaH及KH之觸媒或觸媒來源;
(ii) 至少一個選自NaH、KH、BaH及MgH2之氫來源;
(iii) 至少一種選自以下之氧化劑:鹼土金屬鹵化物,諸如BaBr2、BaCl2、BaI2、CaBr2、MgBr2或MgI2;稀土金屬鹵化物,諸如EuBr2、EuBr3、EuF3、DyI2、LaF3或GdF3;第二或第三系列過渡金屬鹵化物,諸如YF3;金屬硼化物,諸如CrB2或TiB2;鹼金屬鹵化物,諸如LiCl、RbCl或CsI;金屬硫化物,諸如Li2S、ZnS或Y2S3;金屬氧化物,諸如Y2O3;及金屬磷化物、氮化物或碑化物,諸如鹼土金屬磷化物、氮化物或碑化物,諸如Ca3P2、Mg3N2及Mg3As2
(iv)至少一種選自Mg及MgH2之還原劑;及
(v)選自AC、TiC及WC之載體。
在能夠熱再生之另一例示性系統中,交換係在觸媒或觸媒來源(諸如NaH、BaH或KH)與可充當氧化劑之鹼土金屬鹵化物(諸如BaBr2或BaCl2)之間。鹼金屬與鹼土金屬在任何部分中均不可混溶。Ba及Mg之熔點分別為727℃及1090℃;因此,再生期間之分離可輕易達成。此外,在Ba之原子%小於約32%且溫度維持在約600℃以下之情況下,Mg與 Ba不形成金屬互化物。形成BaCl2、MgCl2、BaBr2及MgBr2之熱分別為-855.0千焦/莫耳、-641.3千焦/莫耳、-757.3千焦/莫耳及-524.3千焦/莫耳;因此,鹵化鋇比鹵化鎂更有利。因此,熱再生可自適合反應混合物(諸如形成鹼金屬鹵化物及鹼土金屬氫化物之KH或NaH Mg TiC及BaCl2或BaBr2)達成。再生可藉由加熱產物及蒸發鹼金屬使得其藉由諸如冷凝之方法收集來達成。可將觸媒再氫化。在一個實施例中,移除鹼金屬推動鹼土金屬鹵化物之重整反應。在其他實施例中,必要時,氫化物可藉由在真空下加熱來分解。因為MgH2在327℃下熔融,所以必要時可藉由熔融及選擇性移除液體將其與其他產物優先分離。
f.吸氣劑、載體或基質輔助低能量氫反應
在另一實施例中,交換反應為吸熱。在此實施例中,金屬化合物可充當至少一種用於低能量氫反應之有利載體或基質或提高低能量氫反應速率之產物吸氣劑。下文給出例示性觸媒反應物及例示性載體、基質或吸氣劑。此等反應不意謂詳盡的且其他實例將為熟習此項技術者已知。
■4 g AC3-5+1 g Mg+1.66 g KH+2.23 g Mg3As2,Ein:139.0 kJ,dE: 6.5 kJ,TSC:無,Tmax: 393℃,理論上為吸熱,增加為無限。
■20 g AC3-5+5 g Mg+8.3 g KH+11.2 g Mg3As2,Ein:298.6 kJ,dE:21.8 kJ,TSC:無,Tmax: 315℃,理論上為吸熱,增加為無限。
■1.01 g Mg3N2、1.66 g KH,1 g Mg粉及4 g AC3-4於1"重載電池中,能量增加為5.2 kJ,但未觀察到電池溫度爆增。最大電池溫度為401℃,理論上為0,增加為無限。
■0.41 g AlN、1.66 g KH、1 g Mg粉及4 g AC3-5於1"重載電池中,能量增加為4.9 kJ,但未觀察到電池溫度爆增。最大電池溫度為407℃,理論上為吸熱。
在一個實施例中,熱再生反應系統包含至少兩種選自(i)-(v)之組分:
(i) 至少一個選自NaH、BaH、KH及MgH2之觸媒或觸媒來源;
(ii) 至少一個選自NaH、BaH及KH之氫來源;
(iii) 至少一種氧化劑、基質、第二載體或吸氣劑,其係選自金屬砷化物,諸如Mg3As2,及金屬氮化物,諸如Mg3N2或AlN;
(iv) 至少一種選自Mg及MgH2之還原劑;及
(v) 至少一種選自AC、TiC或WC之載體。
D. 液體燃料:有機及熔融溶劑系統
其他實施例包含熔融固體,諸如熔鹽或液體溶劑含於腔室200中。液體溶劑可藉由在溶劑沸點以上之溫度下操作電池來蒸發。可將諸如觸媒之反應物溶解或懸浮於溶劑中或可將形成觸媒及H之反應物懸浮或溶解於溶劑中。蒸發之溶劑可充當氣體與觸媒以提高形成低能量氫之氫觸媒反應的速率。熔融固體或蒸發溶劑可藉由以加熱器230施加熱來維持。反應混合物可進一步包含固體載體,諸如HSA材料。由於熔融固體、液體或氣體溶劑與觸媒及氫(諸如K或Li加H或NaH)之相互作用,因此反應可在表面發生。在使用異質觸媒之一個實施例中,混合物之溶劑可提高觸媒反應速率。
在包含氫氣之實施例中,可將H2鼓泡通過溶液。在另一實施例中,對電池加壓以提高溶解H2之濃度。在另一實施例中,較佳在高速及約為有機溶劑沸點及約為無機溶劑熔點之溫度下攪拌反應物。
可較佳在約26℃至400℃之溫度範圍內、更佳在約100℃至300℃之範圍內加熱有機溶劑反應混合物。可將無機溶劑混合物加熱至在溶劑為液體之溫度以上及在引起NaH分子全分解之溫度以下的溫度。
溶劑可包含熔融金屬。適合金屬具有低熔點,諸如Ga、In及Sn。在另一實施例中,熔融金屬可充當載體,諸如傳導性載體。反應混合物可包含以下中至少三者:觸媒或觸媒來源、氫或氫來源、金屬、還原劑及氧化劑。可操作電池使得金屬熔融。在一個實施例中,觸媒係選自亦充當氫來源之NaH或KH,還原劑為Mg,且氧化劑為以下中一者:EuBr2、BaCl2、BaBr2、AlN、Ca3P2、Mg3N2、Mg3As2、MgI2、CrB2、TiB2、鹼金屬鹵化物、YF3、MgO、Ni2Si、Y2S3、Li2S、NiB、GdF3及Y2O3。在另一實施例中,氧化劑為以下中一者:MnI2、SnI2、FeBr2、CoI2、NiBr2、AgCl及InCl。
a.有機溶劑
有機溶劑可包含可藉由添加官能基經修飾為其他溶劑之一或多個部分。該等部分可包含以下中之至少一者:烴,諸如烷烴、環狀烷烴、烯烴、環狀烯烴、炔烴、芳族、雜環及其組合、醚、鹵化烴(氟、氯、溴、碘烴)(較佳經氟化)、胺、硫化物、腈、磷醯胺(例如OP(N(CH3)2)3)及胺基磷腈。基團可包含以下中之至少一者:烷基、環烷基、烷氧羰基、氰基、胺甲醯基、含有C、O、N、S之雜環、磺基、胺磺醯基、烷氧基磺醯基、膦酸基、羥基、鹵素、烷氧基、烷基硫醇、醯氧基、芳基、烯基、脂族基、醯基、羧基、胺基、氰基烷氧基、重氮、羧烷基甲醯胺基、烯硫基、氰基烷氧基羰基、胺甲醯基烷氧羰基、烷氧羰基胺基、氰基烷基胺基、烷氧羰基烷基胺基、磺酸基烷基胺基、烷基胺磺醯基烷胺基、氧離子基、羥基烷基、羧基烷基羰氧基、氰基烷基、羧基烷硫基、芳基胺基、雜芳基胺基、烷氧羰基、烷基羰氧基、氰基烷氧基、烷氧羰基烷氧基、胺甲醯基烷氧基、胺甲醯基烷基羰氧基、磺基烷氧基、硝基、烷氧基芳基、鹵香葉基(halogenaryl)、胺基芳基、烷基胺基芳基、甲苯基、烯基芳基、烯丙基芳基、烯氧基芳基、烯丙氧基芳基、氰基芳基、胺甲醯基芳基、羧基芳基、烷氧羰基芳基、烷基羰氧基芳基、磺基芳基、烷氧基磺基芳基、胺磺醯基芳基及硝基芳基。基團較佳包含以下中之至少一者:烷基、環烷基、烷氧基、氰基、含有C、O、N、S之雜環、磺基、膦酸基、鹵素、烷氧基、烷基硫醇、芳基、烯基、脂族基、醯基、烷胺基、烯硫基、芳基胺基、雜芳基胺基、鹵香葉基、胺基芳基、烷基胺基芳基、烯基芳基、烯丙基芳基、烯氧基芳基、烯丙氧基芳基及氰基芳基。
在包含液體溶劑之一個實施例中,觸媒NaH為反應混合物之至少一種組分且自反應混合物形成。反應混合物可進一步包含以下之群中之至少一者:NaH、Na、NH3、NaNH2、Na2NH、Na3N、H2O、NaOH、NaX(X為陰離子,較佳為鹵離子)、NaBH4、NaAlH4、Ni、Pt黑、Pd黑、R-Ni、R-Ni以Na物質(諸如Na、NaOH及NaH中之至少一者)摻雜、HSA載體、吸氣劑、分散劑、氫來源(諸如H2)及氫解離體。在其他實施例中、Li、K、Rb或Cs置換Na。在一個實施例中,溶劑具有鹵素官能基,較佳具有氟。適合之反應混合物包含六氟苯及八氟萘中之至少一者添加至諸如NaH之觸媒中,且與諸如活性碳、氟聚合物或R-Ni之載體混合。在一個實施例中,反應混合物包含一或多種來自以下之群的物質:Na、NaH、溶劑、較佳地氟化溶劑及HSA材料。適用於再生之氟化溶劑為CF4。適用於氟化溶劑與NaH觸媒之載體或HSA材料為NaF。在一個實施例中,反應混合物包含至少NaH、CF4及NaF。其他基於氟之載體或吸氣劑包含M 2 SiF 6,其中M為鹼金屬,諸如Na 2 SiF 6K 2 SiF 6MSiF 6,其中M為鹼土金屬,諸如MgSiF 6GaF 3PF 5MPF 6,其中M為鹼金屬;MHF 2,其中M為鹼金屬,諸如NaHF 2KHF 2K 2 TaF 7KBF 4K 2 MnF 6K 2 ZrF 6,其中預期其他類似化合物,諸如具有另一鹼金屬或鹼土金屬取代之化合物,諸如Li、Na或K之一作為鹼金屬。
b.無機溶劑
在另一實施例中,反應混合物包含至少一種無機溶劑。溶劑可另外包含熔融無機化合物,諸如熔鹽。無機溶劑可為熔融NaOH。在一個實施例中,反應混合物包含觸媒、氫來源及觸媒之無機溶劑。觸媒可NaH分子、Li及K中之至少一者。溶劑可為以下中之至少一者:熔鹽(molten salt;fused salt)或共溶物,諸如鹼金屬鹵化物及鹼土金屬鹵化物之群的至少一種熔鹽。NaH觸媒反應混合物之無機溶劑可包含鹼金屬鹵化物混合物(諸如NaCl與KCl)之低熔點共溶物。溶劑可為低熔點鹽,較佳為Na鹽,諸如以下中之至少一者:NaI(660℃)、NaAlCl4(160℃)、NaAlF4及與NaMX4(其中M為金屬且X為鹵離子)相同類別之具有比NaX更穩定之金屬鹵化物的化合物。反應混合物可進一步包含載體,諸如R-Ni。
Li觸媒反應混合物之無機溶劑可包含鹼金屬鹵化物混合物(諸如LiCl與KCl)之低熔點共溶物。熔鹽溶劑可包含基於氟之對NaH穩定之溶劑。LaF3熔點為1493℃且NaF熔點為996℃。具有視情況選用之其他氟化物的呈適當比率之球磨混合物包含對NaH穩定且較佳在600℃-700℃之範圍內熔融的氟化物鹽溶劑。在熔鹽實施例中,反應混合物包含NaH+鹽混合物,諸如NaF-KF-LiF(11.5-42.0-46.5)MP=454℃或NaH+鹽混合物,諸如LiF-KF(52%-48%)MP=492℃。
V. 再生系統及反應
根據本發明之用於再循環或再生燃料的系統之示意圖展示於圖4中。在一個實施例中,低能量氫反應之副產物包含金屬鹵化物MX,較佳為NaX或KX。接著,燃料再循環器18(圖4)包含將無機化合物(諸如NaX)與載體分離之分離器21。在一個實施例中,分離器或其組件包含移相器(shifter)或旋風分離器22,其基於物質密度差進行分離。另一分離器或其組件包含磁力分離器23,其中藉由磁體吸出諸如鎳或鐵之磁性粒子,而使諸如MX之非磁性材料流經分離器。在另一實施例中,分離器或其組件包含差異性產物增溶或懸浮系統24,其包含組分溶劑洗滌液25,該組分溶劑洗滌液25以大於另一者之程度溶解或懸浮至少一種組分以容許分離,且可進一步包含化合物回收系統26,諸如溶劑蒸發器27及化合物收集器28。或者,回收系統包含沈澱器29及化合物乾燥器及收集器30。在一個實施例中,將來自圖4中所示之渦輪機14及水冷凝器16之廢熱用以加熱蒸發器27及乾燥器30中之至少一者(圖4)。再循環器18(圖4)之任何其他段之熱均可包含廢熱。
燃料再循環器18(圖4)進一步包含電解器31,其將所回收之MX電解為金屬及鹵素氣體或其他鹵化或鹵化物產物。在一個實施例中,較佳自熔融物,諸如共溶熔融物,在電力反應器36內發生電解。分別而言,將電解氣體及金屬產物各別地收集於高揮發性氣體收集器32及金屬收集器33,後者在金屬混合物之情況下可進一步包含金屬蒸餾器(metal still)或分離器34。若初始反應物為氫化物,則藉由包含以下之氫化反應器35將金屬氫化:能夠有小於、大於及等於大氣壓之壓力的電池36、金屬及氫化物之入口及出口37、氫氣入口38及其閥39、氫氣供應器40、氣體出口41及其閥42、泵43、加熱器44及壓力及溫度計45。在一個實施例中,氫供應器40包含具有氫氣及氧氣分離器之水性電解器。所分離之金屬產物係在包含以下之鹵化反應器46中至少部分鹵化:能夠有小於、大於及等於大氣壓之壓力的電池47、碳入口及鹵化產物出口48、氟氣入口49及其閥50、鹵素氣體供應器51、氣體出口52及其閥53、泵54、加熱器55及壓力及溫度計56。較佳地,反應器亦含有觸媒及其他反應物以使得金屬57變成所需氧化態及化學計量之鹵化物作為產物。使金屬或金屬氫化物、金屬鹵化物、載體及其他初始反應物中之至少兩者在混合器58中混合之後再循環至鍋爐10以進行另一發電循環。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、Mg、MnI2及載體、活性碳、WC或TiC。在一個實施例中,放熱反應之來源為金屬氫化物藉由MnI2之氧化反應,諸如
2KH+MnI 2→2KI+Mn+H 2 (114)
Mg+MnI 2MgI 2+Mn. (115)
KI及MgI2可自熔鹽電解為I2、K及Mg。熔融物電解可使用唐氏電池(Downs cell)或經修飾之唐氏電池進行。可使用機械分離器及視情況選用之篩分離Mn。未反應之Mg或MgH2可藉由熔融及藉由分離固相與液相來分離。用於電解之碘化物可來自以諸如去氧水之適合溶劑沖洗反應產物。可過濾溶液以移除載體,諸如AC及視情況選用之過渡金屬。固體可經離心及乾燥(較佳使用來自電力系統之廢熱)。或者,鹵化物可藉由使其熔融、接著分離液相與固相來分離。在另一實施例中,最初可藉由諸如旋風分離之方法將較輕AC與其他反應產物分離。K與Mg不可混溶,且分離之金屬(諸如K)可用較佳來自H2O電解之H2氣體氫化。金屬碘化物可藉由與自AC分離之金屬或與未自AC分離之金屬的已知反應形成。在一個實施例中,使Mn與HI反應形成MnI2,且使H2再循環且與I2反應形成HI。在其他實施例中,其他金屬(較佳為過渡金屬)置換Mn。另一還原劑(諸如A1)可置換Mg。另一鹵化物(較佳為氯化物)可置換碘化物。LiH、KH、RbH或CsH可置換NaH。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、Mg、AgCl及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由AgCl之氧化反應,諸如
KH+AgClKCl+Ag+1/2H 2 (116)
Mg+2AgClMgCl 2+2Ag. (117)
KCl及MgCl2可自熔鹽電解為Cl2、K及Mg。熔融物電解可使用唐氏電池或經修飾之唐氏電池進行。可使用機械分離器及視情況選用之篩分離Ag。未反應之Mg或MgH2可藉由熔融及藉由分離固相與液相來分離。用於電解之氯化物可來自以諸如去氧水之適合溶劑沖洗反應產物。可過濾溶液以移除載體,諸如AC及視情況選用之Ag金屬。固體可經離心及乾燥(較佳使用來自電力系統之廢熱)。或者,鹵化物可藉由使其熔融、接著分離液相與固相來分離。在另一實施例中,最初可藉由諸如旋風分離之方法將較輕AC與其他反應產物分離。K與Mg不可混溶,且分離之金屬(諸如K)可用較佳來自H2O電解之H2氣體氫化。金屬氯化物可藉由與自AC分離之金屬或與未自AC分離之金屬的已知反應形成。在一個實施例中,使Ag與Cl2反應形成AgCl,且使H2再循環且與I2反應形成HI。在其他實施例中,其他金屬(較佳為過渡金屬或In)置換Ag。另一還原劑(諸如Al)可置換Mg。另一鹵化物(較佳為氯化物)可置換碘化物。LiH、KH、RbH或CsH可置換NaH。
在一個實施例中,反應混合物係自低能量氫反應產物再生。在例示性低能量氫及再生反應中,固體燃料反應混合物包含KH或NaH觸媒、Mg或MgH2,及鹼土金屬鹵化物,諸如BaBr2,及載體、活性碳、WC,或較佳為TiC。在一個實施例中,放熱反應之來源為金屬氫化物或金屬藉由BaBr2之氧化反應,諸如
2KH+Mg+BaBr 2→2KBr+Ba+MgH 2 (118)
2NaH+Mg+BaBr 2→2NaBr+Ba+MgH 2. (119)
Ba、鎂、MgH2、NaBr及KBr之熔點分別為727℃、650℃、327℃、747℃及734℃。因此,可如下將MgH2與鋇及任何Ba-Mg金屬互化物分離:維持MgH2與可選添加之H2、優先熔融MgH2,及自反應-產物混合物分離液體。視情況,其可熱分解為Mg。接著,可將剩餘反應產物添加至電解熔融物中。固體載體及Ba沈澱以較佳形成可分離層。或者,Ba可藉由熔融以液體形式分離。接著,可使NaBr或KBr電解以形成鹼金屬及Br2。使後者與Ba反應形成BaBr2。或者,Ba為陽極,且BaBr2在陽極隔室中直接形成。鹼金屬可在電解後氫化或在陰極隔室中在電解期間藉由將H2鼓泡於此隔室中來形成。接著,使MgH2或Mg、NaH或KH、BaBr2及載體返回反應混合物。在其他實施例中,另一鹼土金屬鹵化物,諸如BaI2、MgF2、SrCl2、CaCl2或CaBr2置換BaBr2
在另一實施例中,由於反應物與產物之間的較小能差,因此再生反應可在未電解之情況下發生。方程式(118-119)給出之反應可藉由改變反應條件(諸如溫度或氫壓)來逆轉。或者,可選擇性移除熔融或揮發性物質(諸如K或Na)以向後推動反應以再生反應物或物質,使其可進一步反應及添加回至電池中以形成原始反應混合物。在另一實施例中,可連續回流揮發性物質以維持觸媒或觸媒來源(諸如NaH、BaH、KH、Na或K)與初始氧化劑(諸如鹼土金屬鹵化物或稀土金屬鹵化物)之間的可逆反應。在一個實施例中,使用蒸餾器(諸如圖4中所示之蒸餾器34)達成回流。蒸餾器可包含芯或毛細管系統,其形成諸如K或其他鹼金屬之揮發性物質的微滴。微滴可藉由重力落入反應室中。芯或毛細管可類似於熔融金屬熱管之芯或毛細管,或蒸餾器可包含熔融金屬熱管。熱管可使揮發性物質(諸如金屬,諸如K)經由芯返回反應混合物。在另一實施例中,氫化物可自收集表面或結構機械形成及擦去。氫化物可藉由重力落回反應混合物中。返回供應可為連續或間歇的。在此實施例中,電池可與沿電池水平軸之蒸氣空間水平,且冷凝器區段可在電池末端。一定量之揮發性物質(諸如K)可以約等於或小於氧化劑之金屬的化學計量存在於電池中,使得其具有限制性以使得當揮發性物質輸送於電池中時在逆反應中形成氧化劑。可以控制之最佳壓力將氫供至電池。可將氫氣鼓泡通過反應混合物以提高其壓力。可使氫氣流經該物質以維持所需氫壓。可藉由熱交換器針對冷凝段移除熱。熱轉移可藉由諸如水之冷卻劑的沸騰來達成。沸騰可為提高熱轉移速率之核沸騰。
在包含一種以上揮發性物質(諸如金屬)之反應混合物的另一實施例中,各物質可蒸發或昇華至氣態且冷凝。基於物質之間蒸氣壓與溫度關係之差異,各物質可冷凝於各別區域。各物質可進一步與其他反應物(諸如氫)反應或直接返回反應混合物。經合併之反應混合物可包含形成低能量氫之再生初始反應混合物。反應混合物可包含以下群之至少兩種物質:觸媒、氫來源、氧化劑、還原劑及載體。載體亦可包含氧化劑。碳或碳化物為此等適合載體。氧化劑可包含諸如Mg之鹼土金屬,且觸媒及H來源可包含KH。K及Mg可熱揮發及冷凝為各別帶。K可藉由以H2處理氫化為KH,且可使KH返回反應混合物。或者,可使K返回,接著與氫反應形成KH。Mg可直接返回反應混合物。當藉由形成低能量氫產生電力時,產物可連續或間歇式再生回至初始反應物。消耗之相應H係經置換以維持電力輸出。
在另一實施例中,可改變諸如溫度或氫壓之反應條件以逆轉反應。在此情況下,反應最初正向運作以形成低能量氫及反應混合物產物。接著,將不為較低能量氫之產物轉化為初始反應物。此可藉由改變反應條件及可能添加或移除與最初使用或形成者至少部分相同或其他產物或反應物來進行。因此,正向及再生反應將在交替循環中進行。可添加氫以置換形成低能量氫時消耗者。在另一實施例中,維持反應條件,諸如高溫,其中將可逆反應最佳化,使得正向與反向反應均以達成所需、較佳最大低能量氫形成速率之方式發生。
在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH觸媒、Mg、FeBr2及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由FeBr2之氧化反應,諸如
2NaH+FeBr 2→2NaBr+Fe+H 2 (120)
Mg+FeBr 2MgBr 2+Fe. (121)
NaBr及MgBr2可自熔鹽電解為Br2、Na及Mg。熔融物電解可使用唐氏電池或經修飾之唐氏電池進行。Fe為鐵磁性且可使用機械分離器及視情況選用之篩磁力分離。在另一實施例中,鐵磁性Ni可置換Fe。未反應之Mg或MgH2可藉由熔融及藉由分離固相與液相來分離。用於電解之溴化物可來自以諸如去氧水之適合溶劑沖洗反應產物。可過濾溶液以移除載體,諸如AC及視情況選用之過渡金屬。固體可經離心及乾燥(較佳使用來自電力系統之廢熱)。或者,鹵化物可藉由使其熔融、接著分離液相與固相來分離。在另一實施例中,最初可藉由諸如旋風分離之方法將較輕AC與其他反應產物分離。Na與Mg不可混溶,且分離之金屬(諸如Na)可用較佳來自H2O電解之H2氣體氫化。金屬溴化物可藉由與自AC分離之金屬或與未自AC分離之金屬的已知反應形成。在一個實施例中,使Fe與HBr反應形成FeBr2,且使H2再循環且與Br2反應形成HBr。在其他實施例中,其他金屬(較佳為過渡金屬)置換Fe。另一還原劑(諸如Al)可置換Mg。另一鹵化物(較佳為氯化物)可代替溴化物。LiH、KH、RbH或CsH可置換NaH。
在例示性低能量氫及再生反應中,固體燃料反應混合物包含KH或NaH觸媒、Mg或MgH2、SnBr2,及載體、活性碳、WC或TiC。在一個實施例中,放熱反應之來源為金屬氫化物或金屬藉由SnBr2之氧化反應,諸如
2KH+SnBr 2→2KBr+Sn+H 2 (122)
2NaH+SnBr 2→2NaBr+Sn+H 2 (123)
Mg+SnBr 2MgBr 2+Sn. (124)
錫、鎂、MgH2、NaBr及KBr之熔點分別為119℃、650℃、327℃、747℃及734℃。對於如其合金相圖中給出之約5重量% Mg,錫-鎂合金將在諸如400℃之溫度以上熔融。在一個實施例中,藉由熔融金屬及合金及分離液相與固相將錫及鎂金屬及合金與載體及鹵化物分離。可使合金與H2在形成MgH2固體及錫金屬之溫度下反應。可分離固相與液相以得到MgH2及錫。MgH2可熱分解為Mg及H2。或者,可在選擇以將任何未反應之Mg及任何Sn-Mg合金均轉化為固體MgH2及液體錫之溫度下將H2就地添加至反應產物中。可選擇性移除錫。接著,可加熱MgH2且以液體形式移除。接著,可藉由諸如以下之方法自載體移除鹵化物:(1)將其熔融及分離各相,(2)基於密度差之旋風分離,其中諸如WC之緻密載體為較佳,或(3)基於尺寸差之篩分。或者可將鹵化物溶解於適合溶劑中,且藉由諸如過濾之方法分離液相與固相。可蒸發液體,接著可使鹵化物自熔融物電解為不可混溶之Na或K及可能Mg金屬且分離各者。在另一實施例中,藉由使用藉由鹵化鈉(較佳與低能量氫反應器中所形成相同之鹵化物)電解再生之Na金屬還原鹵化物來形成K。另外,諸如Br2之鹵素氣體係自電解熔融物收集且與分離之Sn反應形成SnBr2,將其再循環以用於低能量氫反應以及NaH或KH及Mg或MgH2之另一循環,其中氫化物藉由以H2氣體氫化形成。在一個實施例中,形成HBr且使其與Sn反應形成SnBr2。HBr可藉由使Br2與H2反應或在電解期間藉由在陽極鼓泡H2(其具有降低電解能之優勢)來形成。在其他實施例中,另一金屬置換Sn,較佳為過渡金屬,且另一鹵化物可置換Br,諸如I。
在另一實施例中,在初始步驟,使所有反應產物均與HBr水溶液反應,且濃縮溶液以使SnBr2自MgBr2及KBr溶液沈澱。其他適合溶劑及分離方法可用以分離鹽。MgBr2及KBr接著電解為Mg及K。或者,使用機械或藉由選擇性溶劑法首先移除Mg或MgH2,使得僅KBr需要電解。在一個實施例中,Sn係以熔融物形式自固體MgH2移除,該固體MgH2可藉由在低能量氫反應期間或之後添加H2形成。接著將MgH2或Mg、KBr及載體添加至電解熔融物中。載體因其大粒度而沈降於沈積區中。MgH2及KBr形成熔融物之部分且基於密度來分離。Mg與K不可混溶,且K亦形成各別相,使得Mg及K分別收集。陽極可為Sn,使得K、Mg及SnBr2為電解產物。陽極可為液體錫或可將液體錫噴射於陽極以與溴反應且形成SnBr2。在此情況下,用於再生之能隙為化合物間隙相對於較高元素間隙(對應於在兩個電極之元素產物)。在另一實施例中,反應物包含KH、載體及SnI2或SnBr2。Sn可以液體形式移除,且可將諸如KX及載體之剩餘產物添加至電解熔融物中,其中載體基於密度來分離。在此情況下,諸如WC之緻密載體為較佳。
反應物可包含形成氧化物產物之氧化合物,氧化物產物諸如為觸媒或觸媒來源之氧化物,諸如NaH、Li或K之氧化物,及還原劑之氧化物,諸如Mg、MgH2、Al、Ti、B、Zr或La之氧化物。在一個實施例中,反應物係藉由使氧化物與酸(諸如鹵化氫酸,較佳為HCl)反應形成相應鹵化物(諸如氯化物)來再生。在一個實施例中,氧化碳物質,諸如碳酸鹽、碳酸氫鹽,羧酸物質,諸如乙二酸或乙二酸鹽可藉由金屬或金屬氫化物還原。較佳地,使Li、K、Na、LiH、KH、NaH、Al、Mg及MgH2中之至少一者與包含碳及氧之物質反應且形成相應金屬氧化物或氫氧化物及碳。各相應金屬可藉由電解來再生。可使用熔鹽,諸如共溶混合物之熔鹽來進行電解。鹵素氣體電解產物(諸如氯氣)可用以形成相應酸,諸如HCl,以作為再生循環之部分。鹵化氫酸HX可藉由使鹵素氣體與氫氣反應及藉由視情況將鹵化氫氣體溶解於水中來形成。氫氣較佳藉由水電解形成。氧可為低能量氫反應混合物之反應物或可反應而形成低能量氫反應混合物之氧來源。使氧化物低能量氫反應產物與酸反應之步驟可包含以酸沖洗產物以形成包含金屬鹽之溶液。在一個實施例中,低能量氫反應混合物及該相應產物混合物包含載體,諸如碳,較佳包含活性碳。可藉由溶解於酸水溶液中將金屬氧化物與載體分離。因此,可以酸沖洗產物且可進一步過濾以分離反應混合物之組分。水可藉由使用熱,較佳來自電力系統之廢熱來蒸發移除,且可將諸如金屬氯化物之鹽添加至電解混合物中以形成金屬及鹵素氣體。在一個實施例中,任何甲烷或烴產物均可重組為氫及視情況選用之碳或二氧化碳。或者,將甲烷與氣體產物混合物分離且以商品形式出售。在另一實施例中,可藉由此項技術中已知之方法,諸如費-托反應使甲烷形成為其他烴產物。可藉由添加干擾氣體,諸如惰性氣體,及藉由維持不利條件,諸如降低之氫壓或溫度,從而抑制甲烷形成。
在另一實施例中,金屬氧化物係自共溶混合物直接電解。諸如MgO之氧化物可與水反應形成氫氧化物,諸如Mg(OH)2。在一個實施例中,還原氫氧化物。還原劑可為鹼金屬或氫化物,諸如Na或NaH。產物氫氧化物可以熔鹽形式直接電解。低能量氫反應產物,諸如鹼金屬氫氧化物亦可以商品及所得相應鹵化物形式使用。鹵化物接著可電解為鹵素氣體及金屬。可將鹵素氣體用作商業工業用氣體。金屬可以氫氣氫化,較佳用於電解水,且供至反應器中作為低能量氫反應混合物之一部分。
諸如鹼金屬之還原劑可使用熟習此項技術者已知之方法及系統自包含相應化合物(較佳為NaOH或Na2O)之產物再生。一種方法包含在諸如共溶混合物之混合物中電解。在另一實施例中,還原劑產物可包含至少一些氧化物,諸如還原劑金屬氧化物(例如MgO)。可將氫氧化物或氧化物溶解於弱酸(諸如鹽酸)中以形成相應鹽,諸如NaCl或MgCl2。以酸處理亦可為無水反應。氣體可在低壓下流動(streaming)。鹽可用產物還原劑,諸如鹼金屬或鹼土金屬處理以形成原始還原劑。在一個實施例中,第二還原劑為鹼土金屬,較佳為Ca,其中將NaCl或MgCl2還原為Na或Mg金屬。亦回收及再循環CaCl3之其他產物。在替代性實施例中,在高溫下以H2還原氧化物。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、MgH2、O2及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由O2之氧化反應,諸如
MgH 2+O 2Mg(OH)2 (125)
MgH 2+1.5O 2+CMgCO 3+H 2 (126)
NaH+3/2O 2+CNaHCO 3 (127)
2NaH+O 2→2NaOH. (128)
任何MgO產物均可藉由與水反應轉化為氫氧化物
MgO+H 2 OMg(OH)2. (129)
鈉或鎂碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或NaH還原:
NaH+Na 2 CO 3→3NaOH+C+1/H 2 (130)
NaH+1/3MgCO 3NaOH+1/3C+1/3Mg (131)
Mg(OH)2可使用Na或NaH還原為Mg:
2Na+Mg(OH)2→2NaOH+Mg. (132)
接著,NaOH可直接自熔融物電解為Na金屬及NaH及O 2。可使用卡士納法(Castner process)。鹼性溶液之適合陰極及陽極為鎳。陽極亦可為碳、貴金屬(諸如Pt)、載體(諸如塗有諸如Pt之貴金屬的Ti)或尺寸穩定型陽極。在另一實施例中,NaOH藉由與HCl反應轉化為NaCl,其中可使NaCl電解氣體Cl2與來自水電解之H2反應形成HCl。熔融NaCl電解可使用唐氏電池或經修飾之唐氏電池進行。或者,HCl可藉由氯鹼電解(chloralkali electrolysis)產生。此電解之NaCl水溶液可來自用HCl水溶液沖洗反應產物。可過濾溶液以移除諸如AC之載體,其可較佳使用來自電力系統之廢熱來離心及乾燥。
在一個實施例中,反應步驟包含(1)以HCl水溶液沖洗產物以自諸如氫氧化物、氧化物及碳酸鹽之物質形成金屬氯化物,(2)使用水煤氣轉換反應及費托反應藉由H2還原將任何釋出CO2轉化為水及C,其中在步驟10再循環C作為載體且可在步驟1、4或5使用水,(3)過濾及乾燥載體,諸如AC,其中乾燥可包括離心步驟,(4)將水電解為H2及O2以供應步驟8至10,(5)視情況自NaCl水溶液電解形成H2及HCl以供應步驟1及9,(6)分離及乾燥金屬氯化物,(7)將金屬氯化物熔融物電解為金屬及氯,(8)藉由Cl2與H2反應形成HCl以供應步驟1,(9)藉由與氫反應將任何金屬均氫化以形成相應起始反應物,及(10)添加來自步驟4之O2或者使用自大氣分離之O2形成初始反應混合物。
在另一實施例中,將氧化鎂及氫氧化鎂中之至少一者自熔融物電解為Mg及O2。熔融物可為NaOH熔融物,其中亦可電解Na。在一個實施例中,可將諸如碳酸鹽及碳酸氫鹽之碳氧化物分解為CO及CO2中之至少一者,其可作為氧來源添加至反應混合物中。或者,諸如CO2及CO之碳氧化物物質可藉由氫還原為碳及水。CO2及CO可藉由水煤氣轉換反應及費托反應還原。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、MgH2、CF4及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由CF4之氧化反應,諸如
2MgH 2+CF 4C+2MgF 2+2H 2 (133)
2MgH 2+CF 4CH 4+2MgF 2 (134)
4NaH+CF 4C+4NaF+2H 2 (135)
4NaH+CF 4CH 4+4NaF. (136)
NaF及MgF2可自可另外包含HF之熔鹽電解為F2、Na及Mg。Na與Mg不可混溶,且分離之金屬可用較佳來自H2O電解之H2氣體氫化。可使F2氣體與碳及任何CH4反應產物反應以再生CF4。或者及較佳地,電解電池之陽極包含碳,且維持電流及電解條件,使得CF4為陽極電解產物。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、MgH2、P2O5(P4O10)及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由P2O5之氧化反應,諸如
5MgH 2+P 2 O 5→5MgO+2P+5H 2 (137)
5NaH+P 2 O 5→5NaOH+2P. (138)
磷可藉由在O2中燃燒轉化為P2O5
2P+2.5O 2P 2 O 5. (139)
MgO產物可藉由與水反應轉化為氫氧化物
MgO+H 2 OMg(OH)2 (140)
Mg(OH)2可使用Na或NaH還原為Mg:
2Na+Mg(OH)2→2NaOH+Mg. (141)
接著,NaOH可直接自熔融物電解為Na金屬及NaH及O 2,或其可藉由與HCl反應轉化為NaC1,其中可使NaC1電解氣體Cl2與來自水電解之H2反應形成HC1。在實施例中,諸如Na及Mg之金屬可藉由與較佳來自水電解之H2反應轉化為相應氫化物。
在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH觸媒、MgH2、NaNO3及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由NaNO3之氧化反應,諸如
NaNO 3+NaH+CNa 2 CO 3+1/2N 2+1/2H 2 (142)
NaNO 3+1/2H 2+2NaH→3NaOH+1/2N 2 (143)
NaNO 3+3MgH 2→3MgO+NaH+1/2N 2+5/2H 2 (144)
鈉或鎂碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或NaH還原:
NaH+Na 2 CO 3→3NaOH+C+1/H 2 (145)
NaH+1/3MgCO 3NaOH+1/3C+1/3Mg. (146)
碳酸鹽亦可自水性介質分解為氫氧化物及CO2
Na 2 CO 3+H 2 O→2NaOH+CO 2. (147)
可藉由H2還原,使用水煤氣轉換反應及費托反應使釋出CO2與水及C反應
CO 2+H 2CO+H 2 O (148)
CO+H 2C+H 2 O. (149)
MgO產物可藉由與水反應轉化為氫氧化物
MgO+H 2 OMg(OH)2. (150)
Mg(OH)2可使用Na或NaH還原為Mg:
2Na+Mg(OH)2→2NaOH+Mg. (151)
鹼金屬硝酸鹽可使用熟習此項技術者已知之方法再生。在一個實施例中,NO2可藉由已知工業方法,諸如藉由哈波法、接著奧士瓦法產生。在一個實施例中,例示性步驟順序為:
特定言之,哈波法可用以在高溫及高壓下使用諸如含α-鐵之一些氧化物的觸媒自N2及H2產生NH3。奧士瓦法可用以在諸如熱鉑或鉑-銠觸媒之觸媒下將氨氧化為NO2。熱可為來自電力系統之廢熱。可將NO2溶解於水中以形成硝酸,使硝酸與NaOH、Na2CO3或NaHCO3反應形成硝酸鈉。接著,剩餘NaOH可直接自熔融物電解為Na金屬及NaH及O 2,或其可藉由與HCl反應轉化為NaCl,其中可使NaCl電解氣體Cl2與來自水電解之H2反應形成HCl。在實施例中,諸如Na及Mg之金屬可藉由與較佳來自水電解之H2反應轉化為相應氫化物。在其他實施例中,Li及K置換Na。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、MgH2、SF6及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由SF6之氧化反應,諸如
4MgH 2+SF 6→3MgF 2+4H 2+MgS (153)
7NaH+SF 6→6NaF+3H 2+NaHS. (154)
NaF及MgF2及硫化物可自可另外包含HF之熔鹽電解為Na及Mg。可使氟電解氣體與硫化物反應形成SF6氣體,其可動態移除。將SF6與F2分離可藉由此項技術中已知之方法,諸如冷蒸餾、膜分離或使用諸如分子篩之介質的層析來達成。NaHS在350℃下熔融且可為熔融電解混合物之部分。任何MgS產物均可與Na反應形成NaHS,其中反應可在電解期間就地發生。S及金屬可為電解期間形成之產物。或者,金屬可呈少數,使得形成較穩定氟化物,或可添加F2以形成氟化物。
3MgH 2+SF 6→3MgF 2+3H 2+S (155)
6NaH+SF 6→6NaF+3H 2+S (156)
NaF及MgF2可自可另外包含HF之熔鹽電解為F2、Na及Mg。Na與Mg不可混溶,且分離之金屬可用H2氣體氫化,該H2氣體較佳為來自H2O電解之補充。可使F2氣體與硫反應以使SF6再生。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、MgH2、NF3,及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由NF3之氧化反應,諸如
3MgH 2+2NF 3→3MgF 2+3H 2+N 2 (157)
6MgH 2+2NF 3→3MgF 2+Mg 3 N 2+6H 2 (158)
3NaH+NF 3→3NaF+1/2N 2+1.5H 2. (159)
NaF及MgF2可自可另外包含HF之熔鹽電解為F2、Na及Mg。Mg 3 N 2轉化為MgF2可在熔融物中發生。Na與Mg不可混溶,且分離之金屬可用較佳來自H2O電解之H2氣體氫化。可使F2氣體與NH3較佳在銅堆積反應器中反應形成NF3。氨可自哈波法產生。或者,NF3可藉由在無水HF中電解NH4F形成。
在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH觸媒、MgH2、Na2S2O8及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由Na2S2O8之氧化反應,諸如
8MgH 2+Na 2 S 2 O 8→2MgS+2NaOH+6MgO+6H 2 (160)
7MgH 2+Na 2 S 2 O 8+C→2MgS+Na 2 CO 3+5MgO+7H 2 (161)
10NaH+Na 2 S 2 O 8→2Na 2 S+8NaOH+H 2 (162)
9NaH+Na 2 S 2 O 8+C→2Na 2 S+Na 2 CO 3+5NaOH+2H 2. (163)
任何MgO產物均可藉由與水反應轉化為氫氧化物
MgO+H 2 OMg(OH)2 (164)
鈉或鎂碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或NaH還原:
NaH+Na 2 CO 3→3NaOH+C+1/H 2 (165)
NaH+1/3MgCO 3NaOH+1/3C+1/3Mg. (166)
MgS可在氧中燃燒、水解,與Na交換以形成硫酸鈉,且電解為Na 2 S 2 O 8
2MgS+10H 2 O+2NaOHNa 2 S 2 O 8+2Mg(OH)2+9H 2 (167)
Na2S可在氧中燃燒、水解為硫酸鈉,及電解形成Na 2 S 2 O 8
2Na 2 S+10H 2 ONa 2 S 2 O 8+2NaOH+9H 2 (168)
Mg(OH)2可使用Na或NaH還原為Mg:
2Na+Mg(OH)2→2NaOH+Mg. (169)
接著,NaOH可直接自熔融物電解為Na金屬及NaH及O 2,或其可藉由與HCl反應轉化為NaCl,其中可使NaCl電解氣體Cl2與來自水電解之H2反應形成HCl。
在例示性低能量氫及再生反應中,固體燃料反應混合物包含NaH觸媒、MgH2、S及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由S之氧化反應,諸如
MgH 2+SMgS+H 2 (170)
2NaH+SNa 2 S+H 2 (171)
硫化鎂可藉由與水反應轉化為氫氧化物
MgS+2H 2 OMg(OH)2+H 2 S (172)
H2S可在高溫下分解或用以將SO2轉化為S。可藉由燃燒及水解將硫化鈉轉化為氫氧化物
Mg(OH)2可使用Na或NaH還原為Mg:
2Na+Mg(OH)2→2NaOH+Mg (174)
接著,NaOH可直接自熔融物電解為Na金屬及NaH及O 2,或其可藉由與HCl反應轉化為NaCl,其中可使NaCl電解氣體Cl2與來自水電解之H2反應形成HCl。SO2可在高溫下使用H2來還原
SO 2+2H 2 S→3S+2H 2 O (175)
在實施例中,諸如Na及Mg之金屬可藉由與較佳來自水電解之H2反應轉化為相應氫化物。在其他實施例中,S及金屬可藉由自熔融物電解來再生。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、MgH2、N2O、及載體、活性碳。在一個實施例中,放熱反應之來源為金屬氫化物藉由N2O之氧化反應,諸如
4MgH 2+N 2O→MgO+Mg 3 N 2+4H 2 (176)
NaH+3N 2 O+CNaHCO 3+3N 2+1/2H 2 (177)
MgO產物可藉由與水反應轉化為氫氧化物
MgO+H 2 OMg(OH)2 (178)
氮化鎂亦可水解為氫氧化鎂:
Mg 3 N 2+6H 2 O→3Mg(OH)2+3H 2+N 2 (179)
碳酸鈉、碳酸氫鈉及包含碳及氧之其他物質可用Na或NaH還原:
NaH+Na 2 CO 3→3NaOH+C+1/H 2 (180)
Mg(OH)2可使用Na或NaH還原為Mg:
2Na+Mg(OH)2→2NaOH+Mg (181)
接著,NaOH可直接自熔融物電解為Na金屬及NaH及O 2,或其可藉由與HCl反應轉化為NaCl,其中可使NaCl電解氣體Cl2與來自水電解之H2反應形成HCl。將自哈波法產生之氨氧化(方程式(152))且控制溫度以有利於產生N2O,將該N2O與穩態反應產物混合物之其他氣體分離。
在例示性低能量氫及再生反應中,反應混合物包含NaH觸媒、MgH2、Cl2及載體,諸如活性碳、WC或TiC。反應器可進一步包含高能光(較佳為紫外光)源以解離Cl2以起始低能量氫反應。在一個實施例中,放熱反應之來源為金屬氫化物藉由Cl2之氧化反應,諸如
2NaH+Cl 2→2NaCl+H 2 (182)
MgH 2+Cl 2MgCl 2+H 2 (183)
NaCl及MgCl2可自熔鹽電解為Cl2、Na及Mg。熔融NaCl電解可使用唐氏電池或經修飾之唐氏電池進行。此電解之NaCl水溶液可來自用水溶液沖洗反應產物。可過濾溶液以移除諸如AC之載體,其可較佳使用來自電力系統之廢熱來離心及乾燥。Na與Mg不可混溶,且分離之金屬可用較佳來自H2O電解之H2氣體氫化。以下為例示性結果:
■4 g WC+1 g MgH2+1 g NaH+0.01 mol Cl2,以將Cl2解離為Cl之UV燈起始,Ein: 162.9 kJ,dE: 16.0 kJ,TSC: 23-42℃,Tmax: 85℃,理論上為7.10 kJ,增加為2.25倍。
包含觸媒或觸媒來源(諸如NaH、K或Li或其氫化物)、還原劑(諸如鹼金屬或氫化物,較佳為Mg、MgH2或Al)及氧化劑(諸如NF3)之反應物可藉由電解再生。金屬氟化物產物較佳藉由電解再生為金屬及氟氣。電解質可包含共溶混合物。混合物可進一步包含HF。NF3可藉由在無水HF中電解NH4F再生。在另一實施例中,使NH3與F2在諸如銅堆積反應器之反應器中反應。F2可藉由使用尺寸穩定型陽極或碳陽極,使用有利於F2產生之條件進行電解來產生。SF6可藉由使S與F2反應來再生。可在低能量氫反應中形成之任何金屬氮化物均可藉由以下中之至少一者來再生:熱分解、H2還原、氧化為氧化物或氫氧化物及反應得鹵化物,接著電解,及在金屬鹵化物之熔融物電解期間與鹵素氣體反應。NCl3可藉由氨與氯氣反應或藉由諸如NH4Cl之銨鹽與氯氣反應來形成。氯氣可來自諸如來自反應混合物產物者之氯化物鹽之電解。NH3可使用哈波法形成,其中氫可來自電解,較佳來自水電解。在一個實施例中,NCl3係藉由至少一種NH3與銨鹽(諸如NH4Cl與Cl2氣體)反應在反應器中就地形成。在一個實施例中,BiF5可藉由使BiF3與自金屬氟化物電解形成之F2反應來再生。
在氧或鹵素來源視情況充當放熱活化反應之反應物的一個實施例中,氧化物或鹵化物產物較佳藉由電解再生。電解質可包含共溶混合物,諸如以下之混合物:Al2O3與Na3AlF6;MgF2、NaF及HF;Na3AlF6;NaF、SiF4及HF;及AlF3、NaF及HF。SiF4電解為Si及F2可來自鹼金屬氟化物共溶混合物。因為Mg與Na具有低可溶混性,所以其可在熔融物相中分離。因為Al與Na具有低可溶混性,所以其可在熔融物相中分離。在另一實施例中,電解產物可藉由蒸餾分離。在其他實施例中,Ti2O3係藉由與C及Cl2反應形成CO及TiCl4來再生,使TiCl4進一步與Mg反應形成Ti及MgCl2。Mg及Cl2可藉由電解再生。在MgO為產物之情況下,Mg可藉由皮金法(Pidgeon process)再生。在一個實施例中,使MgO與Si反應形成SiO2及Mg氣體,使該Mg氣體冷凝。產物SiO2可藉由在高溫下H2還原或藉由與碳反應形成Si及CO及CO2再生為Si。在另一實施例中,Si係藉由電解,使用諸如在熔融氯化鈣中電解固體氧化物之方法再生。在一個實施例中,氯酸鹽或過氯酸鹽,諸如鹼金屬氯酸鹽或過氯酸鹽係藉由電解氧化來再生。鹽水可電解氧化為氯酸鹽及過氯酸鹽。
為使反應物再生,可形成之金屬載體上之任何氧化物塗層可在與反應物或產物混合物分離之後藉由稀酸移除。在另一實施例中,碳化物係自氧化物藉由與碳反應,同時釋放一氧化碳或二氧化物來產生。
在反應混合物包含溶劑之情況下,可將溶劑與其他反應物或產物分離以如下再生:使用蒸發來移除溶劑或過濾或離心以截留固體。在存在其他揮發性組分(諸如鹼金屬)之情況下,其可藉由加熱至適當高溫以使其蒸發來選擇性移除。舉例而言,藉由蒸餾及剩餘諸如碳之載體來收集諸如Na金屬之金屬。Na可經再氫化為NaH且返回碳,添加溶劑以使反應混合物再生。諸如R-Ni之分離之固體亦可分別再生。分離之R-Ni可藉由暴露於壓力在0.1至300 atm之範圍內的氫氣來氫化。
在溶劑在形成低能量氫之觸媒反應期間分解之情況下,可使溶劑再生。舉例而言,DMF之分解產物可係二甲胺、一氧化碳、甲酸、甲酸鈉及甲醛。在一個實施例中,二甲基甲醯胺係用二甲胺與一氧化碳於甲醇中之催化反應或甲酸甲酯與二甲胺之反應產生。其亦可藉由使二甲胺與甲酸反應來製備。
在一個實施例中,例示性醚溶劑可自反應混合物之產物再生。較佳地,選擇反應混合物及條件使得相對於形成低能量氫之速率,醚反應速率最小化,使得任何醚降解相對於自低能量氫反應產生之能量均可忽略。因此,隨著醚降解產物移除,需要時可將醚添加回。或者,可選擇醚及反應條件使得醚反應產物可分離且醚再生。
一個實施例包含以下中之至少一者:HSA為氟化物,HSA為金屬,且溶劑經氟化。金屬氟化物可為反應產物。金屬及氟氣可藉由電解產生。電解質可包含氟化物,諸如NaF、MgF2、AlF3或LaF3且可另外包含至少一種降低氟化物熔點之其他物質,諸如HF及其他鹽,諸如美國專利第5,427,657號中所揭示者。過量HF可溶解LaF3。電極可為碳,諸如石墨,且亦可形成氟碳化物作為所需降解產物。在一個實施例中,以下中之至少一者包含磁性粒子:金屬或合金,較佳為塗有碳之奈米粉末,諸如碳塗佈之Co、Ni、Fe、其他過渡金屬粉或合金,及金屬塗佈之碳,較佳為奈米粉末,諸如塗有過渡金屬或合金之碳,較佳地Ni、Co、Fe及Mn塗佈碳中之至少一者。可使用磁體將磁性粒子與混合物(諸如氟化物(諸如NaF)與碳之混合物)分離。所收集之粒子可作為形成低能量氫之反應混合物之部分再循環。
在溶劑、載體或吸氣劑中之至少一者包含氟之一個實施例中,產物可能包含碳,在溶劑或載體為氟化有機物之情況下,亦包含諸如NaHF2及NaF之觸媒金屬之氟化物。此外加於可排出或收集之較低能量氫產物,諸如分子低能量氫氣體。使用F2,碳可經侵蝕以CF4氣體形式離開,其可用作產生電力之反應之另一循環中的反應物。NaF及NaHF2之剩餘產物可電解為Na及F2。可使Na與氫反應形成NaH且F2可用以侵蝕碳產物。可將NaH、剩餘NaF及CF4合併以運作形成低能量氫之電力產生反應之另一循環。在其他實施例中,Li、K、Rb或Cs可置換Na。
VI.其他液體及異質燃料實施例
在本發明中,「液體-溶劑實施例」包含任何反應混合物及相應燃料,其包含液體溶劑,諸如液體燃料及異質燃料。
在包含液體溶劑之另一實施例中,原子鈉及分子NaH中一者係由金屬、離子或分子形式Na及至少一種其他化合物或元素之間的反應提供。Na或NaH來源可為以下中之至少一者:金屬Na、包含Na之無機化合物(諸如NaOH)及其他適合之Na化合物,諸如NaNH2、Na2CO3及Na2O、NaX(X為鹵離子)及NaH(s)。其他元素可為H、置換劑或還原劑。反應混合物可包含以下中之至少一者:(1)溶劑,(2)鈉來源,諸如以下中之至少一者:Na(m)、NaH、NaNH2、Na2CO3、Na2O、NaOH、NaOH摻雜R-Ni、NaX(X為鹵離子)且NaX摻雜R-Ni,(3)氫來源(諸如H2氣體)及解離體及氫化物,(4)置換劑,諸如鹼金屬或鹼土金屬,較佳為Li,及(5)還原劑,諸如以下中之至少一者:金屬,諸如鹼金屬、鹼土金屬、鑭系元素、過渡金屬,諸如Ti、鋁、B,金屬合金,諸如AlHg、NaPb、NaAl、LiAl,及單獨或與還原劑(諸如鹼土金屬鹵化物、過渡金屬鹵化物、鑭系元素鹵化物及鹵化鋁)組合之金屬的來源。鹼金屬還原劑較佳為Na。其他適合之還原劑包含金屬氫化物,諸如LiBH4、NaBH4、LiAlH4、NaAlH4、RbBH4、CsBH4、Mg(BH4)2或Ca(BH4)2。較佳使還原劑與NaOH反應形成NaH分子及Na產物,諸如Na、NaH(s)及Na2O。NaH來源可為R-Ni,其包含NaOH及反應物,諸如形成NaH觸媒之還原劑,諸如鹼金屬或鹼土金屬或R-Ni之Al金屬互化物。其他例示性試劑為鹼金屬或鹼土金屬及氧化劑,諸如AlX3、MgX2、LaX3、CeX3及TiXn,其中X為鹵離子,較佳為Br或I。另外,反應混合物可包含另一化合物,其包含吸氣劑或分散劑,諸如Na2CO3、Na3SO4及Na3PO4中之至少一者,其可摻雜於解離體(諸如R-Ni)中。反應混合物可進一步包含載體,其中該載體可用混合物之至少一種反應物摻雜。載體可較佳具有大表面積,其有利於自反應混合物產生NaH觸媒。載體可包含以下之群中之至少一者:R-Ni、Al、Sn、Al2O3(諸如γ、β或a氧化鋁)、鋁酸鈉(β-氧化鋁具有其他離子存在,諸如Na+,且具有理想化組成Na 2 O‧11Al 2 O 3)、鑭系元素氧化物(諸如M2O3,較佳地M=La、Sm、Dy、Pr、Tb、Gd及Er)、Si、二氧化矽、矽酸鹽、沸石、鑭系元素、過渡金屬、金屬合金(諸如與Na之鹼金屬及鹼土合金)、稀土金屬、SiO2-Al2O3或SiO2承載Ni,及其他承載金屬,諸如氧化鋁承載鉑、鈀或釕中之至少一者。載體可具有高表面積且包含高表面積(HSA)材料,諸如R-Ni、沸石、矽酸鹽、鋁酸鹽、氧化鋁、氧化鋁奈米粒子、多孔Al2O3、Pt、Ru或Pd/Al2O3、碳、Pt或Pd/C、無機化合物,諸如Na2CO3、二氧化矽及沸石材料,較佳為Y沸石粉,及碳,諸如芙或奈米管。在一個實施例中,使諸如Al2O3之載體(及解離體之Al2O3載體(若存在))與諸如鑭系元素之還原劑反應形成表面改質載體。在一個實施例中,表面Al與鑭系元素交換以形成鑭系元素取代之載體。此載體可用諸如NaOH之NaH分子來源摻雜且與諸如鑭系元素之還原劑反應。鑭系元素取代之載體與鑭系元素之隨後反應將不會將其顯著改變,且表面上之摻雜NaOH可藉由與還原劑鑭系元素反應還原為NaH觸媒。在本文給出之其他實施例中,Li、K、Rb或Cs可置換Na。
在包含液體溶劑、其中反應混合物包含NaH觸媒來源之一個實施例中,NaH來源可為Na合金及氫來源。合金可包含至少一種此項技術中已知之合金:諸如鈉金屬與一或多種其他鹼金屬或鹼土金屬、過渡金屬、Al、Sn、Bi、Ag、In、Pb、Hg、Si、Zr、B、Pt、Pd或其他金屬之合金,且H來源可為H2或氫化物。
諸如NaH分子來源、鈉來源、NaH來源、氫來源、置換劑及還原劑之試劑呈任何所需莫耳比。各自呈大於0且小於100%之莫耳比。莫耳比較佳為類似的。
在液體-溶劑實施例中,反應混合物包含以下群之至少一種物質:該群包含溶劑、Na或Na來源、NaH或NaH來源、金屬氫化物或金屬氫化物來源、形成金屬氫化物之反應物或反應物來源、氫解離體及氫來源。反應混合物可進一步包含載體。形成金屬氫化物之反應物可包含鑭系元素,較佳包含La或Gd。在一個實施例中,可使La與NaH可逆反應以形成LaHn(n=1、2、3)。在一個實施例中,氫化物交換反應形成NaH觸媒。可逆性一般反應可由以下給出:
方程式(184)給出之反應適用於表3中給出之其他MH型觸媒。反應可繼續進行形成可解離形成與Na反應形成NaH觸媒之原子氫的氫。解離體較佳為以下中之至少一者:Pt、Pd或Ru/Al2O3粉、Pt/Ti及R-Ni。較佳地,諸如Al2O3之解離體載體包含至少表面La取代Al或包含Pt、Pd或Ru/M2O3粉,其中M為鑭系元素。可將解離體與反應混合物之其餘部分分離,其中分離器傳遞原子H。
適合之液體-溶劑實施例包含溶劑、NaH、La及Pd/Al2O3粉之反應混合物,其中在一個實施例中反應混合物可如下再生:移除溶劑、添加H2、藉由篩分分離NaH與氫化鑭、加熱氫化鑭以形成La,及混合La與NaH。或者,再生包括以下步驟:藉由熔融Na及移除液體來分離Na與氫化鑭、加熱氫化鑭以形成La、將Na氫化為NaH、混合La與NaH,及添加溶劑。混合La與NaH可藉由球磨達成。
在液體-溶劑實施例中,諸如R-Ni之高表面積材料係以NaX(X=F、Cl、Br、I)摻雜。使經摻雜R-Ni與將置換鹵離子之試劑反應形成Na及NaH中之至少一者。在一個實施例中,反應物為至少一種鹼金屬或鹼土金屬,較佳為K、Rb、Cs中之至少一者。在另一實施例中,反應物為鹼金屬或鹼土金屬氫化物,較佳為以下中之至少一者:KH、RbH、CsH、MgH2及CaH2。反應物可為鹼金屬與鹼土金屬氫化物。可逆性一般反應可由以下給出:
D. 其他MH型觸媒及反應
一般而言,表3A中給出如下提供之產生低能量氫的MH型氫觸媒:M-H鍵斷裂加上t個電子自原子M各自電離至連續能階,使得t個電子之鍵能與電離能之和為約m‧27.2 eV,其中m為整數。各MH觸媒係在第一行給出且相應M-H鍵能係在第二行給出。第一行給出之MH物質的原子M係經電離以提供m‧27.2 eV之淨反應焓,在第二行添加鍵能。觸媒之焓在第八行給出,其中m在第九行給出。參與電離之電子係與電離電位(亦稱為電離能或結合能)一起給出。舉例而言,NaH之鍵能1.9245 eV係在第二行給出。原子或離子之第n個電子之電離電位係由IP n 表示且由CRC給出。亦即例如Na+5.13908 eVNa ++e -Na ++47.2864 eVNa 2++e -。第一電離電位IP 1=5.13908 eV,及第二電離電位IP 2=47.2864 eV分別在第二及第三行給出。NaH鍵斷裂及Na雙電離之淨反應焓如第八行給出為54.35 eV,及如第九行中給出之方程式(47)中m=2。BaH鍵能為1.98991 eV且IP1、IP2及IP3分別為5.2117 eV、10.00390 eV及37.3 eV。BaH鍵斷裂及Ba三電離之淨反應焓如第八行給出為54.5 eV,及如第九行中給出之方程式(47)中m=2。SrH鍵能為1.70 eV且IP1、IP2、IP3、IP4及IP5分別為5.69484 eV、11.03013 eV、42.89 eV、57 eV及71.6 eV。SrH鍵斷裂及Sr電離為Sr5+之淨反應焓如第八行給出為190 eV,及如第九行中給出之方程式(47)中m=7。另外,可使H與表3A中給出之MH觸媒之各H(1/p)產物反應以形成具有相對於例示性方程式(31)給出之單獨MH之觸媒反應產物增大一(方程式(10))的量子數p之低能量氫。
在其他實施例中,表3B中給出如下提供之產生低能量氫之MH-型氫觸媒:將電子轉移至受體A、M-H鍵斷裂加上t個電子自原子M各自電離至連續能階,使得包含MH與A之電子親和力(EA)差異之電子轉移能量、M-H鍵能及t個電子自M之電離能的和為約m‧27.2 eV,其中m為整數。各MH-觸媒、受體A、MH之電子親和力、A之電子親和力及M-H鍵能分別在第一、第二、第三及第四行中給出。參與電離的MH之相應原子M之電子係與電離電位(亦稱為電離能或結合能)一起在隨後行中給出且觸媒之焓及相應整數m係在最後行給出。舉例而言,OH及H之電子親和力分別為1.82765 eV及0.7542 eV,使得電子轉移能量為1.07345 eV,如第五行給出。OH鍵能為4.4556 eV,如第六行給出。原子或離子之第n個電子之電離電位係由IP n 指定。亦即例如O+13.61806 eVO ++e -O ++35.11730 eVO 2++e -。第一電離電位IP 1=13.61806 eV及第二電離電位IP 2=35.11730 eV分別在第七及第八行給出。電子轉移反應、OH斷裂及O雙電離之淨焓如第十一行給出為54.27 eV,且如第十二行給出之方程式(47)中m=2。另外,可使H與表3B中給出之MH觸媒之各H(1/p)產物反應以形成具有相對於例示性方程式(31)給出之單獨MH之觸媒反應產物增大一(方程式(10))的量子數p之低能量氫。在其他實施例中,如下提供形成低能量氫之H的觸媒:使負離子電離,使得其EA加上一或多個電子之電離能的和為約m‧27.2 eV,其中m為整數。或者,可將負離子之第一電子轉移至受體,接著再電離至少一個電子,使得電子轉移能量加上一或多個電子之電離能的和為約m‧27.2 eV,其中m為整數。電子受體可為H。
在其他實施例中,如下提供產生低能量氫之MH+型氫觸媒:自可帶負電之供體A轉移電子、M-H鍵斷裂及t個電子自原子M各自電離至連續能階,使得包含MH與A之電離能差異之電子轉移能量、M-H鍵能及t個電子自M之電離能的和為約m‧27.2 eV,其中m為整數。
在一個實施例中,諸如原子、離子或分子之物質充當觸媒至使得分子氫經歷向分子低能量氫H2(1/p)(p為整數)之過渡。與H之情況類似地,觸媒自H2接受能量,其在此情況下可為約m48.6 eV,其中m為如Mills GUTCP中給出之整數。藉由直接催化H2形成H2(1/p)之適合例示性觸媒為O、V及Cd,其在對應於m=1、m=2及m=4之催化反應期間分別形成O2+、V4+及Cd5+。能量可以熱或光或電形式釋放,其中反應包含半電池反應。
VIII. 氫氣放電電力及電漿電池及反應器
將本發明之氫氣放電電力及電漿電池及反應器展示於圖17中。圖17之氫氣放電電力及電漿電池及反應器包括氣體放電電池307,其包含具有腔室300之氫氣填充輝光放電真空容器315。氫來源322將氫通過控制閥325經由氫供應通道342供至腔室300中。電池腔室300中含有觸媒。電壓及電流來源330使得電流在陰極305與陽極320之間通過,電流可為可逆。
在一個實施例中,陰極305之材料可為諸如Fe、Dy、Be或Pd之觸媒來源。在氫氣放電電力及電漿電池及反應器之另一實施例中,容器313之壁具有傳導性且充當陰極以替代電極305,且陽極320可為中空,諸如不鏽鋼中空陽極。放電可將觸媒來源蒸發為觸媒。分子氫可藉由放電解離以形成氫原子以便產生低能量氫及能量。其他解離可由腔室中之氫解離體提供。
氫氣放電電力及電漿電池及反應器之另一實施例(其中在氣相中發生催化)利用可控氣體觸媒。分子氫氣放電提供氣體氫原子向低能量氫之轉化。氣體放電電池307具有觸媒供應通道341以便氣體觸媒350自觸媒儲集器395傳至反應室300。藉由具有電源供應器372之觸媒儲集器加熱器392加熱觸媒儲集器395以向反應室300提供氣體觸媒。如下控制觸媒蒸氣壓:藉由調節加熱器392(經由其電源供應器372)來控制觸媒儲集器395之溫度。反應器進一步包含選擇性排放閥301。位於氣體放電電池內之耐化學性敞開容器(諸如不鏽鋼、鎢或陶瓷舟皿)可含有觸媒。觸媒舟皿中之觸媒可用舟皿加熱器、使用相關電源供應器來加熱以向反應室提供氣體觸媒。或者,在高溫下操作輝光氣體放電電池,使得舟皿中之觸媒昇華、沸騰或揮發成氣相。如下控制觸媒蒸氣壓:藉由調節加熱器(以其電源供應器)來控制舟皿或放電電池之溫度。為防止觸媒在電池中冷凝,將溫度維持在觸媒來源、觸媒儲集器395或觸媒舟皿之溫度以上。
在一個實施例中,在氣相中發生催化,鋰為觸媒,且原子鋰來源(諸如鋰金屬或鋰化合物,諸如LiNH2)係藉由將電池溫度維持在約300-1000℃之範圍內而變成氣體。最佳將電池維持在約500-750℃範圍內。原子及/或分子氫反應物可維持在小於大氣壓,較佳在約10毫托至約100托之範圍內的壓力下。最佳藉由將鋰金屬與氫化鋰之混合物維持於維持在所需操作溫度下之電池中來決定壓力。操作溫度範圍較佳在約300-1000℃之範圍內且壓力最佳為以在約300-750℃之操作溫度範圍下之電池達成的壓力。可藉由由電源供應器385供電之加熱旋管(諸如圖17之380)將電池控制在所需操作溫度下。電池可進一步包含內部反應室300及外部氫儲集器390,使得藉由氫擴散通過分隔兩個腔室之壁313,可將氫供至電池。可用加熱器控制壁溫以控制擴散速率。擴散速率可進一步藉由控制氫儲集器中之氫壓來控制。
在具有包含以下之群之物質的反應混合物之系統的另一實施例中:Li、LiNH2、Li2NH、Li3N、LiNO3、LiX、NH4X(X為鹵離子)、NH3、LiBH4、LiAlH4及H2,至少一種反應物係藉由添加一或多種試劑及藉由電漿再生來再生。電漿可為諸如NH3及H2之氣體之一。電漿可維持於原位(於反應電池中)或於與反應電池連通之外部電池中。在其他實施例中,K、Cs及Na置換Li,其中觸媒為原子K、原子Cs及分子NaH。
在一個實施例中,SrH可充當如下提供之產生低能量氫之MH型氫觸媒:Sr-H鍵斷裂加上6個電子自原子Sr各自電離至連續能階,使得鍵能與6個電子之電離能的和為約m‧27.2 eV,其中m為7,如表3A中所給出。SrH可在電漿或氣體電池中形成。
在另一實施例中,OH可充當如下提供之產生低能量氫之MH型氫觸媒:O-H鍵斷裂加上2或3個電子自原子O各自電離至連續能階,使得鍵能與2或3個電子之電離能的和為約m‧27.2 eV,其中m分別為2或4,如表3A中所給出。在另一實施例中,H2O係在電漿反應中藉由使諸如OH-與H、OH-與H+或OH+與H-之電漿物質反應使得H2O充當觸媒來形成。OH及H2O中之至少一者可藉由在水蒸氣中放電形成,或電漿可包含OH及H2O來源,諸如包含H及O之氣體的輝光放電、微波或RF電漿。電漿電力可間歇施加,諸如以脈衝電力形式施加(如Mills先前公開案中所揭示)。
為將觸媒壓力維持在所需程度,可密封具有滲透作為氫來源之電池。或者,電池在各入口或出口進一步包含高溫閥,使得接觸反應氣體混合物之閥維持在所需溫度下。
可藉由隔離電池及藉由以加熱器380應用輔助加熱器電力,將電漿電池溫度獨立地控制在寬範圍。因此,可與電漿電力無關地控制觸媒蒸氣壓。
放電電壓可在約100至10,000伏特之範圍內。在所需電壓下,電流可在任何所需範圍內。此外,電漿可在任何所需頻率範圍、補償電壓、峰值電壓、峰值功率及波形下脈動。
在另一實施例中,電漿可在液體介質中發生,液體介質諸如為觸媒溶劑或作為觸媒來源之物質之反應物的溶劑。
IX. 燃料電池
圖18中展示燃料電池400之實施例。包含固體燃料或異質觸媒之低能量氫反應物包含用於相應電池半反應之反應物。催化低能量氫躍遷之獨特屬性使觸媒誘導低能量氫過渡(CIHT)電池可行。本發明之CIHT電池為氫燃料電池,其自氫催化反應產生電動勢(EMF)以降低能量(低能量氫)狀態。因此,其充當將自低能量氫反應釋放之能量直接轉化為電的燃料電池。
由於氧化還原電池半反應,因此產生低能量氫之反應混合物係以通過外部電路之電子遷移及通過各別路徑之離子質量輸送以形成電路來構成。產生藉由半電池反應之和得到的低能量氫之總反應及相應反應混合物可包含考慮用於本發明中給出之熱功率產生的反應類型。來自低能量氫反應之自由能ΔG產生電位,其視構成產生低能量氫之反應混合物的氧化還原化學而定可為氧化電位或還原電位。電位可用以在燃料電池中產生電壓。電位V可以自由能ΔG之術語表述:
其中F為法拉第常數(Faraday constant)。假定對於躍遷至H(1/4),自由能為約-20兆千焦/莫耳H,則視其他電池組分(諸如化學物質、電解質及電極)而定,電壓可能較高。在電壓受限於此等或其他組分之氧化還原電位的一個實施例中,能量可表現為來自低能量氫形成之較高電流及相應電力貢獻。如方程式(6-9)所示,低能量氫躍遷之能量可以連續輻射之形式釋放。特定言之,能量係以非輻射方式轉移至觸媒以形成介穩態中間物,當電子自初始半徑移至最終半徑時其在電漿系統中發射連續輻射來衰變。在凝聚態物質(諸如CIHT電池)中,此能量可內部轉化為高能電子,其表現為在電位(類似於電池反應物之化學勢)之電池電流及電力貢獻。因此,電力可表現為在較低電壓下高於方程式(186)給出者之電流。電壓亦將受限於反應動力學;因此,形成低能量氫之較高動力學有利於藉由提高電流及電壓中之至少一者來提高電力。因為電池反應可由H之大放熱反應(用形成低能量氫之觸媒)推動,所以在一個實施例中,形成該等形成低能量氫之反應物的習知氧化還原電池反應之自由能可為任何可能值。適合範圍為約+1000千焦/莫耳至-1000千焦/莫耳、約+1000千焦/莫耳至-100千焦/莫耳、約+1000千焦/莫耳至-10千焦/莫耳,及約+1000千焦/莫耳至0千焦/莫耳。由於形成低能量氫之負自由能,因此電池電流、電壓及電力中之至少一者高於可有助於電流、電壓及電力之非低能量氫反應之自由能所致者。此適用於開路電壓及具有負載者。因此,在一個實施例中,CIHT電池與任何先前技術之區分處在於以下中之至少一者:電壓高於藉由非低能量氫相關化學之能斯特方程式(Nernst equation)預測(由於當加載電池時之任何極化電壓,因此包括電壓校正)之電壓、電流高於由習知化學推動之電流,及電力高於由習知化學推動之電力。
關於圖18,燃料或CIHT電池400包含具有陰極405之陰極隔室401、具有陽極410之陽極隔室402、鹽橋420、於電池操作期間在各別電子流及離子質量輸送下構成低能量氫反應物之反應物,及氫來源。在一般實施例中,CIHT電池為氫燃料電池,其自氫催化反應產生電動勢(EMF)以降低能量(低能量氫)狀態。因此,其充當將自低能量氫反應釋放之能量直接轉化為電的燃料電池。在另一實施例中,較之通過電極405及410之施加電解功率,CIHT電池產生電力及熱功率增加中之至少一者。在形成低能量氫時,電池消耗氫,且需要加氫;另外,在一個實施例中,形成低能量氫之反應物為熱再生或電解再生中之至少一者。在藉由各別導管連接以便電子與離子在隔室之間形成電路的不同電池隔室中提供在不同狀態或條件(諸如不同溫度、壓力及濃度中之至少一者)下之不同反應物或相同反應物。由於低能量氫反應對一個隔室至另一隔室之質量流的依賴性,因此產生各別隔室之電極之間的電位及電力增加或系統之熱增加。質量流提供至少一個以下形成:反應產生低能量氫之反應混合物及使在實質速率下發生低能量氫反應之條件。質量流進一步需要電子及離子在連接隔室之各別導管中輸送。電子可自以下中之至少一者產生:在原子氫與觸媒反應期間之觸媒電離,及諸如原子、分子、化合物或金屬之反應物質的氧化或還原反應。隔室(諸如陽極隔室402)中之物質電離可因以下中之至少一者而所致:(1)自以下之有利自由能變化:各別隔室(諸如陰極401)中反應物質之其氧化、還原,及將隔室中電荷平衡至電中性之遷移離子反應,及(2)以下所致之自由能變化;物質氧化造成之低能量氫、各別隔室中之物質還原及引起形成低能量氫之反應的遷移離子反應。離子遷移可通過鹽橋420。在另一實施例中,各別隔室中之物質氧化、物質還原,及遷移離子反應可能不為自發或可能以低速率發生。施加電解電位以推動反應,其中質量流提供至少一個以下形成:反應產生低能量氫之反應混合物及使在實質速率下發生低能量氫反應之條件。電解電位可經由外部電路425施加。各半電池之反應物可經歷以下中之至少一者:供應、維持及再生(藉由通過通道460及461至用於產物儲存及再生之反應物來源或儲集器430及431添加反應物或移除產物)。
在一個實施例中,原子氫及氫觸媒中之至少一者可藉由反應混合物之反應形成,且藉助於其經歷反應之一種反應物使得催化起作用。起始低能量氫反應之反應可為以下中之至少一者:放熱反應、偶合反應、自由基反應、氧化還原反應、交換反應,及吸氣劑、載體或基質輔助催化反應。在一個實施例中,形成低能量氫之反應提供電化學電力。起始低能量氫反應(諸如本發明之交換反應)之反應混合物及反應為藉由氫反應形成低能量氫來產生電力的燃料電池之基礎。由於氧化還原電池半反應,因此產生低能量氫之反應混合物係以通過外部電路之電子遷移及通過各別路徑之離子質量輸送以形成電路來構成。產生藉由半電池反應之和得到的低能量氫之總反應及相應反應混合物可包含本發明之熱功率及低能量氫化學產生之反應類型。因此,理想地,在無電子流及離子質量輸送存在下,低能量氫反應不發生或不以可觀速率發生。
電池包含至少觸媒來源或觸媒及氫來源或氫。適合之觸媒或觸媒來源及氫來源為選自以下之群者:Li、LiH、Na、NaH、K、KH、Rb、RbH、Cs、CsH、Ba、BaH、Ca、CaH、Mg、MgH2、MgX2(X為鹵離子)及H2。表3中給出其他適合觸媒。在一個實施例中,正離子可在陰極經歷還原。離子可為藉由在陰極之還原及反應中之至少一者的觸媒來源。在一個實施例中,氧化劑經歷形成低能量氫反應物之反應,接著使低能量氫反應物反應形成低能量氫。或者,最終電子-受體反應物包含氧化劑。氧化劑或陰極-電池反應混合物可位於具有陰極405之陰極隔室401。或者,陰極-電池反應混合物係在陰極隔室中自離子及電子遷移構成。在燃料電池之一個實施例中,將陰極隔室401用作陰極。在操作期間,正離子可自陽極遷移至陰極隔室。在某些實施例中,此遷移通過鹽橋420發生。或者,負離子可自陰極通過鹽橋420遷移至陽極隔室。遷移離子可為以下中之至少一者:觸媒或觸媒來源之離子、氫離子(諸如H+、H-H -(1/p))及藉由觸媒或觸媒來源與氧化劑或氧化劑陰離子反應形成的化合物之相對離子。各電池反應可經歷以下中之至少一者:供應、維持及再生(藉由通過通道460及461至用於產物儲存及視情況再生之反應物來源或儲集器430及431添加反應物或移除產物)。一般而言,適合之氧化劑為揭示作為低能量氫反應物(諸如氫化物、鹵化物、硫化物及氧化物)者。適合之氧化劑為金屬氫化物,諸如鹼金屬及鹼土金屬氫化物,及金屬鹵化物,諸如鹼金屬、鹼土、過渡、稀土、銀及銦金屬鹵化物,以及氧或氧來源、鹵素(較佳為F2或Cl2)或鹵素來源,CF4、SF6及NF3。其他適合之氧化劑包含自由基或其來源,及帶正電相對離子來源,其為陰極-電池反應混合物之組分,其最終清除自形成低能量氫之觸媒反應釋放之電子。
在一個實施例中,化學在燃料電池之陰極隔室產生活性低能量氫反應物,其中還原電位可包括來自H催化為低能量氫之大貢獻。觸媒或觸媒來源可包含中性原子或分子,諸如鹼金屬原子或氫化物,其可藉由還原正電物質(positive species)(諸如相應鹼金屬離子)來形成。觸媒離子還原為觸媒及H電子躍遷至較低電子狀態之電位對方程式(186)給出之電位基於反應ΔG產生貢獻。在一個實施例中,陰極半電池還原反應及任何其他反應均包含形成觸媒及原子氫及H向低能量氫之催化反應。陽極半電池反應可包含電離諸如觸媒金屬之金屬。離子可遷移至陰極且經還原,或電解質之離子可經還原形成觸媒。觸媒可在H存在下形成。例示性反應為
陰極半電池反應:
其中E R Cat q +之還原能。
陽極半電池反應:
Cat+E R Cat q ++qe -
(188)
其他適合之還原劑為金屬,諸如過渡金屬。
電池反應:
在觸媒陽離子遷移通過適合之鹽橋或電解質之情況下,觸媒可在陰極隔室中再生且在陽極經置換。接著,可藉由置換反應形成低能量氫之陰極隔室氫來維持燃料電池反應。氫可來自水電解。來自電池之產物可為藉由低能量氫原子反應形成之分子低能量氫。在H(1/4)為產物之情況下,此等反應之能量為
2H(1/4)→H 2(1/4)+87.31 eV (190)
H 2 O+2.962 eVH 2+0.5O 2 (191)
單位為千焦/莫耳之方程式(187-191)給出之LiH的平衡燃料電池反應為
Li ++e -+HLi+H(1/4)+19,683千焦/莫耳+E R  (192)
Li+E R Li ++e - (193)
0.5(2H(1/4)→H 2(1/4)+8424千焦/莫耳) (194)
0.5(H 2 O+285.8千焦/莫耳H 2+0.5O 2) (195)
0.5H 2 O→0.5O+0.5H 2(1/4)+23,752千焦/莫耳 (196)
在其他實施例中,Li、K、Rb或Cs取代Li。
在操作期間,使觸媒與原子氫反應,自原子氫至觸媒之整數倍27.2 eV的非輻射性能量轉移引起觸媒電離,同時短暫釋放自由電子,且因能量大釋放而形成低能量氫原子。在一個實施例中,此反應可在陽極隔室402中發生使得陽極410最終接受電離電子流。電流亦可來自陽極隔室中之還原劑氧化。在燃料電池之一個實施例中,陽極隔室402用作陽極。LiKNaH中之至少一者可充當形成低能量氫之觸媒。載體,諸如碳粉、碳化物,諸如TiC、WC、YC2或Cr3C2,或硼化物可充當與電極(諸如可充當集電體之陽極)電接觸之電子的導體。所傳導之電子可來自觸媒電離或還原劑氧化。或者,載體可包含陽極及陰極中之至少一者用導線與負載電連接。與負載連接之陽極導線以及陰極引出線可為任何導體,諸如金屬。
在化學在燃料電池之陽極隔室產生活性低能量氫反應物之情況下,氧化電位及電子可具有來自觸媒機制之貢獻。如方程式(6-9)所示,觸媒可包含自原子氫(藉由變得電離)接受能量之物質。觸媒變得電離及H電子躍遷至較低電子狀態之電位對方程式(186)給出之電位基於反應ΔG產生貢獻。因為NaH為形成低能量氫同時將Na電離為Na2+(如方程式(28-30)給出)之協同內反應,所以在此情況下方程式(186)應尤其有效。在一個實施例中,陽極半電池氧化反應包含催化電離反應。陰極半電池反應可涉及H還原為氫化物。例示性反應為
陽極半電池反應:
陰極半電池反應:
其中E R 為金屬氫化物MH2之還原能。適合之氧化劑為氫化物,諸如稀土金屬氫化物、氫化鈦、氫化鋯、氫化釔、LiH、NaH、KH及BaH、硫族化物,及M-N-H系統(諸如Li-N-H系統)之化合物。在觸媒陽離子或氫化物離子遷移通過適合之鹽橋或電解質之情況下,觸媒及氫可在陽極隔室中再生。在觸媒之穩定氧化態為Cat之情況下,鹽橋或電解質反應為
鹽橋或電解質反應:
其中0.754 eV為氫化物電離能且4.478 eV H2鍵能。觸媒或觸媒來源可為亦可充當H來源之氫化物。接著,鹽橋反應為
鹽橋或電解質反應:
其中E L CatH之晶格能。接著,燃料電池反應可藉由將氫置換於陰極隔室中來維持,或可使電解質中之CatH與M反應形成MH2。M=La之例示性反應係由以下給出:
La+H 2LaH 2+2.09 eV (201)
在前一情況下,氫可來自以下:將自在Cat r +還原中形成之陽極隔室的過量氫再循環。消耗以形成H(1/4)、接著H2(1/4)之氫置換可來自水電解。
作為觸媒來源之適合反應物為LiH、NaH、KH及BaH。單位為千焦/莫耳之方程式(197-201)及(190-191)給出之KH的平衡燃料電池反應(以LaH2作為H來源)為
7873千焦/莫耳+KHK 3++3e -+H(1/4)+19,683千焦/莫耳 (202)
1.5(LaH 2+2e -+E R La+2H -) (203)
K 3++3H -KH+H 2+7873千焦/莫耳+213.8千焦/莫耳+E L  (204)
1.5(La+H 2LaH 2+201.25千焦/莫耳) (205)
0.5(2H(1/4)→H 2(1/4)+8424千焦/莫耳) (206)
0.5( H 2 O +285.8 千焦 / 莫耳 H 2 +0.5 O 2 ) (207)
0.5H 2 O→0.5O+0.5H 2(1/4)-1.5E R +E L +24,268千焦/莫耳 (208)
為達良好近似,總反應係由以下給出:
0.5H 2 O→0.5O+0.5H 2(1/4)+24,000千焦/莫耳 (209)
方程式(197-201)及(190-191)給出之NaH的平衡燃料電池反應為
5248千焦/莫耳+NaHNa 2++2e -+H(1/3)+10,497千焦/莫耳 (210)
1(LaH 2+2e -+E R La+2H -) (211)
Na 2++2H -NaH+0.5H 2+5248千焦/莫耳+70.5千焦/莫耳 (212)
1(La+H 2LaH 2+201.25千焦/莫耳) (213)
0.5( H 2 O +285.8 千焦 / 莫耳 H 2 +0.5 O 2 ) (214)
0.5H 2 O→0.5O+H(1/3)-E R +10,626千焦/莫耳 (215)
其中方程式(212)之術語5248千焦/莫耳包括E L 。為達良好近似,總反應係由以下給出:
0.5H 2 O→0.5O+H(1/3)+10,626千焦/莫耳 (216)
H(1/3)躍遷至H(1/4)(方程式(31)),接著形成H2(1/4)作為最終產物放出其他能量。
在包含金屬陽極半電池反應物(諸如鹼金屬M)之一個實施例中,使陽極反應與陰極反應匹配以使由M遷移造成之能量變化基本上為零。接著,M可充當在陰極之H的低能量氫觸媒,此係因為觸媒焓與m27.2 eV充分匹配之故。在M來源為諸如在陽極之合金的一個實施例中,在陰極之M+還原形成與M與H形成低能量氫之其他反應相同之M合金。或者,陽極合金具有與M基本上相同之氧化電位。在一個實施例中,因為低能量氫中間物自初始躍遷至最終狀態及半徑為連續躍遷,所以電子親和力決定對CIHT電池電壓之低能量氫反應貢獻。基於材料之限制性電子親和力選擇諸如電極材料及半電池反應物之電池材料以達成所需電壓。
CIHT電池堆疊之高能釋放及可規模化使微分配、分配及中心電力中之電力應用可行。另外,轉換性原動力來源藉由CIHT電池技術,尤其因系統為與基於熱之系統相比為具有顯著成本及系統複雜性降低之直流電系統而變得可能。圖19中所示之利用CIHT電池堆疊之汽車架構包含CIHT電池堆疊500、氫來源(諸如電解電池及水槽或氫氣貯槽501)、至少一個電動馬達502、電子控制系統503及齒輪系或齒輪傳動504。一般而言,應用包括熱應用,諸如電阻加熱應用、電應用、發動應用及航空應用及熟習此項技術者已知之其他應用。在後一情況下,電動馬達驅動外部渦輪機可替代噴射引擎,且電動馬達驅動推進器可替代相應內燃機。
在一個實施例中,主電池操作之原理包括離子輸送氫通過氫化物離子(H-)傳導性熔融電解質,及與諸如鹼金屬之觸媒反應形成氫化物及低能量氫中之至少一者。例示性電解質為溶解於共溶熔鹽LiCl-KCl中之LiH。在電池中,熔融H-傳導性電解質可限於在兩個可氫透之固體金屬箔電極之間形成的腔室中,該等電極諸如為以下之一:V、Nb、Fe、Fe-Mo合金、W、Rh、Ni、Zr、Be、Ta、Rh、Ti及Th箔,其亦充當集電體。箔可進一步包含表面與塗有鐵(諸如濺射鐵)之電解質接觸的合金及塗層,諸如銀-鈀合金。H2氣體首先擴散通過陰極電極且藉由在陰極-電解質界面之反應H+e-→H-形成氫化物離子。H-離子隨後在化學勢梯度下遷移通過電解質。梯度可藉由在陽極隔室中存在諸如鹼金屬之觸媒來產生。H-離子藉由在陽極-電解質界面之反應H-→H+e-釋放電子以形成氫原子。氫原子擴散通過陽極電極且與諸如鹼金屬之觸媒反應以形成金屬氫化物、金屬-H分子及低能量氫中之至少一者。觸媒電離亦可有助於陽極電流。其他反應物可存在於陽極隔室中以引起低能量氫反應或提高低能量氫反應速率,諸如載體,諸如TiC,及還原劑、觸媒,及氫化物交換反應物,諸如Mg或Ca。釋放之電子流經外部電路以完成電荷平衡。在另一實施例中,陽極並不顯著可透H,使得H2氣體較佳在陽極釋放,確切言之在H滲過陽極金屬之後形成金屬氫化物。
反應物可經熱再生或電解再生。產物可在陰極或陽極隔室中再生。或其可使用例如泵送至再生器,其中本發明或熟習此項技術者已知之任何再生化學均可用以使初始反應物再生。經歷低能量氫反應之電池可向經歷反應物再生者提供熱。在達成再生之溫度下產生產物的情況下,可使CIHT電池產物及再生反應物穿過復熱器,同時分別送至再生器及自再生器送出,以回收熱及提高電池效率及系統能量平衡。
在以離子遷移形成金屬氫化物之一個實施例中,將諸如鹼金屬氫化物之金屬氫化物熱分解。可藉由H2可透固體金屬膜將H2氣體與鹼金屬分離且將其移入電池陰極隔室。可將氫消除鹼金屬移至電池陽極隔室,使得可維持涉及輸送H-之反應。
遷移離子可為觸媒之離子,諸如鹼金屬離子,諸如Na+。離子可經還原且可視情況與氫反應形成觸媒或觸媒來源及氫來源,諸如LiH、NaH、KH及BaH之一,藉此觸媒及氫反應形成低能量氫。形成低能量氫時釋放之能量產生EMF及熱。因此,在其他實施例中,低能量氫反應可在陰極隔室中發生以向電池EMF提供貢獻。例示性電池為[Na/BASE/Na熔融物或共溶鹽R-Ni],其中BASE為β氧化鋁固體電解質。在一個實施例中,電池可包含[M/BASE/質子導體電解質],其中M為鹼金屬,諸如Na。質子導體電解質可為熔鹽。熔鹽可在陰極以與M形成化合物之相對離子還原為氫。例示性質子導體電解質為本發明之質子導體電解質,諸如質子化陽離子,諸如銨。電解質可包含離子液體。電解質可具有諸如在100-200℃之範圍內的低熔點。例示性電解質為硝酸乙銨、以磷酸二氫鹽摻雜之硝酸乙銨(諸如約1%摻雜)、硝酸、NH4PO3-TiP2O7,及LiNO3-NH4NO3之共溶鹽。其他適合之電解質可包含以下之群的至少一種鹽:LiNO3、三氟甲磺酸銨(Tf=CF3SO3 -)、三氟乙酸銨(TFAc=CF3COO-)、四氟硼酸銨(BF4 -)、甲烷磺酸銨(CH3SO3 -)、硝酸銨(NO3 -)、硫氰酸銨(SCN-)、胺基磺酸銨(SO3NH2 -)、氟氫化銨(HF2 -)、硫酸氫銨(HSO4 -)、雙(三氟甲烷磺醯基)亞胺化銨(TFSI=CF3SO2)2N-)雙(全氟乙烷磺醯基)亞胺化銨(BETI=CF3CF2SO2)2N-)、硝酸且可進一步包含混合物,諸如進一步包含NH4NO3、NH4Tf及NH4TFAc中之至少一者之共溶混合物。其他適合溶劑包含酸,諸如磷酸。
在一個實施例中,電池包含陽極,其為遷移離子M+(可為金屬離子,諸如鹼金屬離子)之來源。電池可進一步包含對M+具有選擇性之鹽橋。離子選擇性鹽橋可為BASE。陰極半電池反應物可包含陽離子交換劑,諸如陽離子交換樹脂。陰極半可包含電解質,諸如離子液體或電解質水溶液,諸如鹼金屬鹵化物、硝酸鹽、硫酸鹽、過氯酸鹽、磷酸鹽、碳酸鹽、氫氧化物,或其他類似電解質。陽離子交換膜可以氧化狀態質子化。在放電期間,M+可置換H+,H+經還原為H。形成H引起形成低能量氫。例示性電池為[Na、Na合金或Na硫族化物/BASE、離子液體、共晶鹽、電解質水溶液/陽離子交換樹脂]。電池可電解再生或藉由與陽離子交換劑酸交換來再生。
在一個實施例中,兩個半電池隔室之間的壓力或溫度梯度實現形成低能量氫反應物或低能量氫反應速率。在一個實施例中,陽極隔室包含溫度或壓力高於陰極隔室中之相同鹼金屬的鹼金屬。壓力或溫度差提供EMF,使得諸如鈉之金屬在陽極處氧化。
將離子輸送通過離子選擇膜,諸如β氧化鋁或Na+玻璃,其對Na+離子具有選擇性。遷移離子係在陰極處還原。舉例而言,Na+係經還原以形成Na。陰極隔室進一步包含氫,其可藉由滲過膜或提供作為形成低能量氫之反應物的氫來源供應。其他反應物可存在於陰極隔室中,諸如載體,諸如TiC,及還原劑、觸媒,及氫化物交換反應物,諸如Mg或Ca或其氫化物。可使H來源與鹼金屬反應以形成氫化物。在一個實施例中,形成NaH。適合之NaH形式為進一步反應形成低能量氫之分子形式。自形成金屬氫化物及低能量氫釋放之能量為離子(諸如Na+)電離及遷移提供另一推動力以提高自電池之電力輸出。不自H反應形成低能量氫之任何金屬氫化物(諸如NaH)均可熱分解,使得氫及金屬(諸如Na)再循環。諸如Na之金屬可在陽極電池隔室藉由電磁泵增大壓力。例示性電池為[Na/β氧化鋁/MgH2及視情況選用之載體,諸如TiC或WC]。Na係在陽極處氧化為Na+、遷移通過鹽橋β氧化鋁、在陰極處還原為Na,且與陰極隔室中之MgH2反應以形成NaH,其進一步反應以形成低能量氫。氫化物或一或多種其他陰極反應物或物質可在電池操作溫度下熔融。電池可包含電解質。例示性電解質經熔融電解質,諸如NaH-NaOH、NaOH(MP=323℃)、NaH-NaI(MP=220℃)、NaH-NaAlEt4、NaOH-NaBr-NaI、NaCN-NaI-NaF及NaF-NaCl-NaI。
NaOH可包含陰極反應物,其中電池可藉由產生H或氫化物之反應形成低能量氫。自形成熱計算之NaoHNaNa 2 ONaH(s)之反應釋放ΔH=-44.7千焦/莫耳NaoH
NaOH+2NaNa 2 O+NaH(sH=-44.7千焦/莫耳NaOH. (217)
此放熱反應可推動形成NaH(g)且用以推動方程式(28-31)給出之極放熱反應。
NaHNa+H(1/3)ΔH=-10,500千焦/莫耳H (218)
NaHNa+H(1/4)ΔH=-19,700千焦/莫耳H (219)
在原子氫存在下之再生反應為
Na 2 O+HNaOH+Na ΔH=-11.6千焦/莫耳NaOH (220)
例示性電池為[M/BASE/M'OH](M及M'為鹼金屬,其可相同)、[Na/BASE/NaOH]、[Na/BASE/NaOH NaI]、[Na/BASE/NaOH NaBr]、[Na/BASE/NaOH NaBr NaI]、[Na/BASE/NaBH4NaOH]、[K/K BASE/RbOH]、[K/K BASE/CsOH]、[Na/Na BASE/RbOH]及[Na/Na BASE/CsOH]。另一鹼金屬可置換Na。例示性電池為[K/K BASE/KOH與MNH2(M=鹼金屬)之混合物]及[Na/Na BASE/NaOH CsI(低能量氫吸氣劑)]。電池可進一步包含傳導性基質材料,諸如碳、碳化物或硼化物以提高諸如鹼金屬氫氧化物之半電池反應物的傳導性。陰極MOH可包含諸如NaOH及KOH之鹼金屬氫氧化物的共溶混合物,其具有170℃之共熔點及41重量% NaOH。陽極可包含K及Na或兩者。
在一個實施例中,陰極包含鹼金屬氫氧化物,諸如NaOH,且進一步包含原子H來源,諸如解離體及氫,諸如R-Ni、PdC(H2)、PtC(H2)、IrC(H2)。原子氫來源可為氫化物,諸如金屬互化物氫化物,諸如LaNi5H6;稀土金屬氫化物,諸如CeH2或LaH2;過渡金屬氫化物,諸如TiH2或NiH2;或內過渡金屬氫化物,諸如ZrH2。原子氫來源可與鹼金屬氫氧化物混合。例示性電池為[Na/BASE/NaOH及R-Ni、PdC(H2)、PtC(H2)、IrC(H2)、LaNi5H6、CeH2、LaH2、TiH2、NiH2或ZrH2]。H可充當形成低能量氫之反應物及觸媒中之至少一者。根據表3之反應,H亦可用以自OH-接受電子以形成H-及OH,其中OH之H躍遷形成H(1/p)。
在一個實施例中,離子及電子分別內部地在半電池之間及通過外部電路遷移,且在陰極合併。還原反應及可能至少另一隨後之半電池反應引起H來源之H的局部電荷改變,以相對於中性自不足逆轉至過量。在自來源形成H之此改變期間,發生藉由H之一部分形成低能量氫。或者,離子及電子分別內部地在半電池之間及通過外部電路遷移,且在陽極,電子自離子(諸如H-)電離。氧化反應及可能至少另一隨後之半電池反應引起H來源(諸如H-)之H的局部電荷改變,以相對於中性自過量逆轉至不足。在自來源形成H之此改變期間,發生藉由H之一部分形成低能量氫。作為實例,考慮電池[Na/BASE/NaOH]之NaOH之各OH官能基的H及在操作電池[Li3N/LiCl-KCl/CeH2]期間形成之NH基團上的局部正電荷。在前一情況下,Na+係在陰極處還原為Na,使Na與NaOH反應形成NaH,其中H可至少部分帶負電。在後一情況下,H-係在陽極處氧化且與Li3N反應形成Li2NH及LiNH2,藉此H上之電荷經歷自過量至不足之改變。在此等改變期間,形成低能量氫。可在前一及後一情況中促進形成低能量氫之反應的例示性狀態分別為。在一個實施例中,在本發明之改質碳中形成諸如以下之狀態:
在其他實施例中,NaOH係經具有形成氫化物或H之Na的另一反應物置換,該另一反應物諸如為其他氫氧化物、酸式鹽或銨鹽,諸如以下中之至少一者:鹼金屬氫氧化物、鹼土氫氧化物、過渡金屬氫氧化物及氧(氫氧)化物,及鹵化銨,諸如NH4Cl、NH4Br、NiO(OH)、Ni(OH)2、CoO(OH)、HCoO2、HCrO2、GaO(OH)、InOOH、Co(OH)2、Al(OH)3、AlO(OH)、NaHCO3、NaHSO4、NaH2PO4、Na2HPO4。其他例示性適合之氧(氫氧)化物為以下之群中之至少一者:羥鉻礦(CrO(OH))、水鋁石(AlO(OH))、ScO(OH)、YO(OH)、VO(OH)、針鐵礦(α-Fe3+O(OH))、錳榍石(Mn3+O(OH))、圭羥鉻礦(CrO(OH))、黑釩礦((V,Fe)O(OH))、CoO(OH)、NiO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)、RhO(OH)、InO(OH)、鎵礦(GaO(OH))、水錳礦(Mn3+O(OH))、釔鎢華-(Y)(YW2O6(OH)3)、釔鎢華-(Ce)((Ce,Nd,Y)W2O6(OH)3)、未命名(釔鎢華-(Ce)之Nd類似物)((Nd,Ce,La)W2O6(OH)3)、銅碲礦(Cu2[(OH)2[TeO4]])、碲鉛銅石(Pb2+Cu(TeO6)(OH)2)及副碲鉛銅石(Pb2+CuTeO6(OH)2)。涉及Al(OH)3之例示性反應為
3Na+Al(OH)3NaOH+NaAlO 2+NaH+1/2H 2 (221)
例示性相應電池為[Na/BASE/Al(OH)3Na共晶鹽]。其他適合之電池為[Na/BASE/以下中之至少一者:鹼金屬氫氧化物、鹼土氫氧化物、過渡金屬氫氧化物或氧(氫氧)化物,諸如CoO(OH)、HCoO2、HCrO2、GaO(OH)、InOOH、Co(OH)2、NiO(OH)、Ni(OH)2、Al(OH)3、AlO(OH)、NaHCO3、NaHSO4、NaH2PO4、Na2HPO4電解質,諸如共晶鹽]。在其他實施例中,另一鹼金屬取代既定者。陰極半電池之氧化劑,諸如氫氧化物、氧(氫氧)化物、銨化合物及氫酸陰離子化合物可層夾於諸如碳之基質中。
在H鍵結至另一元素(其中H為酸性H)之一個實施例中,遷移離子M+可與酸性H交換,以H+形式釋放,且H+可隨後還原為H2。可藉由添加諸如高壓H2氣體之氫氣抑制此反應以有利於形成MH,其中形成MH有利於形成低能量氫。
包含H來源之陰極或陽極半電池反應物可包含酸。舉例而言,反應物之H可鍵結於氧或鹵化物。適合酸為此項技術中已知之酸,諸如HF、HBr、HI、H2S、硝酸、亞硝酸、硫酸、亞硫酸、磷酸、碳酸、乙酸、乙二酸、過氯酸、氯酸、亞氯酸、次氯酸、酸、偏酸、硼酸(諸如H3BO3或HBO2)、矽酸、偏矽酸、正矽酸、碑酸、亞碑酸、硒酸、亞硒酸、亞碲酸及碲酸。例示性電池為[M或M合金/BASE或隔板及電解質,其包含有機溶劑及鹽/酸,諸如HF、HBr、HI、H2S、硝酸、亞硝酸、硫酸、亞硫酸、磷酸、碳酸、乙酸、乙二酸、過氯酸、氯酸、亞氯酸、次氯酸、酸、偏酸、硼酸(諸如H3BO3或HBO2)、矽酸、偏矽酸、正矽酸、碑酸、亞碑酸、硒酸、亞硒酸、亞碲酸及碲酸]。
在實施例中,電解質及隔板可為Li離子電池之電解質及隔板,其中當相應離子為遷移離子時Li可經另一鹼金屬(諸如Na)置換。電解質可為Na固體電解質或鹽橋,諸如NASICON。H來源,諸如氫氧化物(諸如NaOH)、H酸式鹽(諸如NaHSO4)或氧(氫氧)化物(諸如CoO(OH)或HCoO2)可層夾於碳中。例示性電池為[Na/烯烴隔板LP 40 NaPF6/NaOH或NaOH層夾C]、[Na/Na固體電解質或鹽橋,諸如NASICON/NaOH或NaOH層夾C]及[Li、LiC、Li或Li合金,諸如Li3Mg/諸如烯烴膜之隔板,及有機電解質,諸如LiPF6電解質之DEC溶液或LiBF4之四氫呋喃(THF)溶液或共溶鹽/鹼金屬氫氧化物、鹼土氫氧化物、過渡金屬氫氧化物或氧(氫氧)化物、酸式鹽或銨鹽,諸如CoO(OH)、HCoO2、HCrO2、GaO(OH)、InOOH、Co(OH)2、NiO(OH)、Ni(OH)2、Al(OH)3、AlO(OH)、NH4Cl、NH4Br、NaHCO3、NaHSO4、NaH2PO4、Na2HPO4或此等化合物層夾於C中]。可添加傳導性基質或載體,諸如碳、碳化物或硼化物。基本電解質之適合導線為Ni。
電池可藉由本發明之化學及物理方法再生。舉例而言,包含[Na/BASE/NaOH NaI]、[Na/BASE/NaOH]或[Na/BASE/NaOH R-Ni混合]之電池可藉由將H2添加至產物Na2O以形成NaOH,及Na及NaH中之至少一者來再生。在一個實施例中,在對形成氧化物具有抗性之惰性容器(諸如Ni、Ag、Co或氧化鋁容器)中進行Na2O再生。諸如Na2O之放電產物可藉由此項技術中已知之方法來熔融、研磨(ground;milled)或處理以在氫化之前增大表面積。可控制氫氣之量以化學計量方式形成Na與NaOH之混合物。亦可控制溫度,使得Na及NaOH為較佳。Na及NaH中之至少一者可藉由蒸餾或藉由基於密度之分離來移除。在一個實施例中,在約330℃下且溫度並不顯著較高來操作電池。在此溫度以下NaOH將固化,且在此溫度以上,Na將溶解於熔融NaOH中。必要時,低密度Na在熔融NaOH上形成各別層,且在一個實施例中藉由諸如抽吸之方法進行物理分離。使Na返回陽極。NaH可熱分解為Na且使其返回陽極。在一個實施例中,在熱反應器中,產物可以相同方式再生。在一個例示性系統中,將H2添加至包含電池[Na/BASE/氫-硫族化物,諸如NaOH]之封閉系統中。在此情況下,Na與NaH之混合物充當陽極且Na2O可連續再生。
再生反應
Na2O+H2→NaOH+NaH (222)
可在壓力容器(可為半電池)中進行。適合溫度係在約25℃至450℃及約150℃至250℃之範圍內。在較高溫(諸如約250℃)下,反應速率較高。氫化可在諸如約25℃之較低溫度下以球磨及約0.4 MPa之氫壓發生。在低至60℃之溫度下、在10 MPa下48小時可達成反應(方程式(222))50%完成,且藉由將溫度升高至100℃使反應完成。適合壓力係在大於零至約50 MPa之範圍內。在例示性實施例中,在溫度各自維持在175、200、225及250℃下之情況下,在1.8 MPa下發生至3重量%之氫吸收(理論氫容量為3.1重量%)。在此等溫度下之吸收等溫線極類似;然而,在150℃下者顯示在1.8 MPa下2.85重量%之稍小氫吸收。Na2O氫化反應能夠達成快速動力學。舉例而言,在0.12 MPa之壓力下,可在150℃下在20分鐘內吸收1.5重量%氫,且可在175-250℃下在5分鐘內吸收大於2重量%氫。藉由此項技術中已知之物理及蒸發方法將NaH與NaOH分離。在後一情況下,系統包含蒸發或昇華系統且收集蒸發或昇華之Na及NaH中之至少一者且使Na或NaH返回陽極半電池。蒸發或昇華分離可處於氫氣氛圍下。分離之NaH可使用加熱及應用減壓中之至少一者來分別分解。諸如TiCl3及SiO2之某些觸媒可用以在所需溫度下氫化Na2O,其在類似系統技術中為已知。
在基於Na、NaOH、NaH Na2O相圖之另一實施例中,再生可藉由控制電池溫度及氫壓以偏移反應平衡來達成
其在約412+2℃及182+10托之範圍發生。液體形成可分離層,其中Na層經移除。可使溶液冷卻以形成熔融Na及固體NaOH,其使其他Na移除。
來自M與MOH(M為鹼金屬)之反應的氫可儲存於氫儲存材料中,其可在再生期間藉由諸如電熱器之加熱器加熱以供應氫。M(例如Na)層係藉由諸如電磁泵之泵抽吸至陽極或可流至陽極。
參考圖18,在例示性電池[Na/BASE/NaOH]之一個實施例中,包含產物與反應物之混合物的熔鹽係在陰極隔室420中藉由使用氫來源及泵430在控制壓力下供應氫通過入口460來再生。藉由加熱器411維持熔鹽溫度,使得在上方形成Na層,且藉由泵440抽吸至陽極隔室402。在圖18中亦展示之另一實施例中,使包含產物與反應物之混合物的熔鹽自陰極隔室401通過通道419及通過416及418(各自包含閥及泵中之至少一者)流入再生電池412中。供應氫且壓力係藉由藉由管線415連接至再生電池412之氫來源及泵413控制,其中流量由控制閥414控制。用加熱器411維持熔鹽溫度。氫化使得Na形成各別層,將其自再生電池412頂部通過通道421通過422及423(各自包含閥及泵中之至少一者)抽至陰極隔室402。在一個實施例中,諸如包含連續陰極鹽流動模式之實施例中,通道419在Na層下方延伸以將流動鹽自陰極隔室供至包含至少Na2O及NaOH之下層。任何陰極或陽極隔室,或再生電池均可進一步包含攪拌器以在電力或再生反應中所需時刻混合內容物。
在一個實施例中,電池具有至少陰極反應產物Li2O,其轉化為至少LiOH,其中LiOH為陰極反應物。LiOH再生可為添加H2。亦可形成LiH。LiH及LiOH因密度差異而可形成兩個各別層。可調節溫度及氫壓條件以達成分離。可將LiH以物理方式移至陽極半電池。LiH可熱分解為Li或直接用作陽極反應物。陽極可進一步包含與氫反應且儲存氫之另一化合物或元素,諸如氫儲存材料,諸如Mg。在電池操作期間,發生至少一種反應以形成Li+,諸如LiH可與電離之Li平衡,LiH可電離直接為Li+,且LiH可經歷與H儲存材料(諸如Mg)之氫化物交換反應且Li電離。電池可具有電解質,諸如固體電解質,其可為BASE。在另一實施例中,將Li2O轉化為LiOH及LiH,且藉由電解使得LiOH作為陰極反應物保留而使Li返回陽極。在包含另一鹼金屬作為陽極(諸如Na或K)之一個實施例中,陰極半電池反應產物混合物可包含一些Li2O及MOH及視情況選用之M2O(M=鹼金屬)。Li2O及M2O還原為LiOH及LiH及視情況MH及MOH係藉由與H2反應,接著LiH與MOH至LiOH與MH之自發反應來發生。可動態移除M以不平衡模式推動反應。移除可藉由蒸餾使得M在反應器之各別腔室或不同部分中冷凝來達成。MH或M係經分離及返回陽極。
可將反應物連續饋送通過半電池以引起低能量氫反應且可進一步流動或輸送至另一區域、隔室、反應器或系統,其中再生可分批、間歇或連續地發生,其中再生產物產物可靜止或移動。
在一個實施例中,金屬氫化物金屬硫族化物反應之逆反應為形成低能量氫之半電池反應的基礎。半電池反應物可為去氫硫族化物,諸如Na2O、Na2S、Na2Se、Na2Te及其他此等硫族化物。在遷移離子為H+之情況下,金屬硫族化物反應物係在陰極半電池中。例示性反應為
陽極
H2→2H++2e- (224)
陰極
Na2O+2H++2e-→NaOH+NaH
總反應
Na2O+H2→NaOH+NaH (225)
在類似電池中,H+置換NaY中之Na。例示性電池為[質子來源,諸如PtC(H2)/質子導體,諸如納菲薄膜(Nafion)、離子液體或電解質水溶液/NaY(與H+反應形成HY之鈉沸石(質子化沸石))CB]及[質子來源,諸如PtC(H2)/質子導體,諸如HCl-LiCl-KCl/NaY(與H+反應形成HY之鈉沸石(質子化沸石))CB]。如在例示性電池[質子來源,諸如PtC(H2)/質子導體,諸如HCl-LiCl-KCl/HY(與H+反應形成氫氣之氫沸石)CB]之情況下,H+亦可置換H+。在其他實施例中,電池反應物包含金屬塗佈之沸石,諸如鎳塗佈之沸石,其以H+或Na+摻雜。
在遷移離子為H-之情況下,金屬硫族化物反應物係在陽極半電池中。例示性反應為
陰極
CeH2+2e-→Ce+2H- (226)
陽極
Na2O+2H-→NaOH+NaH+2e-
總反應
Na2O+CeH2→NaOH+NaH+Ce (227)
例示性電池為[質子來源,諸如PtC(H2)/質子導體,諸如納菲薄膜/硫族化物,諸如Na2O]及[硫族化物,諸如Na2O/氫化物離子導體,諸如共溶鹽,諸如混合物或鹼金屬鹵化物,諸如LiCl-KCl/氫化物來源,諸如金屬氫化物,諸如過渡、內過渡、稀土、鹼金屬或鹼土金屬氫化物,諸如TiH2、ZrH2或CeH2]。
在另一實施例中,半電池反應物可為以下中之至少一者:氧化物,諸如M2O,其中M為鹼金屬,較佳為Li2O、Na2O及K2O;過氧化物,諸如M2O2,其中M為鹼金屬,較佳為Li2O2、Na2O2及K2O2;及超氧化物,諸如MO2,其中M為鹼金屬,較佳為Li2O2、Na2O2及K2O2。離子過氧化物可進一步包含Ca、Sr或Ba之離子過氧化物。適合溶劑為共溶鹽、固體電解質或有機或離子溶劑。
在一個一般實施例中,使金屬硫族化物與藉由在陰極處還原相應陽離子形成之金屬原子反應。金屬M與氫硫族化物XH之反應係由以下給出:
MXH+2MM 2 X+MH(s) (228)
此放熱反應可推動形成MH(g)以推動方程式(28-31)給出之極放熱反應。硫族化物可為O、S、Se及Te中之至少一者。金屬M可為Li、Na、K、Rb及Cs中之至少一者。除O之外,另一例示性硫族化物反應涉及S。自形成熱計算之NaSHNaNa 2 SNaH(s)之反應釋放ΔH=-91.2千焦/莫耳Na
NaSH+2Na→Na2 S+NaH(sH=-91.2千焦/莫耳Na. (229)
此放熱反應可推動形成NaH(g)以推動方程式(28-31)給出之極放熱反應。例示性電池為[Na/BASE/NaHS(MP=350℃)]、[Na/BASE/NaHSe]及[Na/BASE/NaHTe]。在其他實施例中,另一鹼金屬取代既定者。
其他適合之氫硫族化物為具有不存在的H之層化結構者,諸如氫化鹼土硫族化物及氫化MoS2及WS2、TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、VSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、WSe2、MoTe2及LiTiS2。一般而言,陰極半電池反應物可包含包括金屬、氫及硫族化物之化合物。
一般而言,陰極半電池反應物可包含酸性H,其經歷以遷移離子,諸如M+平衡電荷之還原。金屬M與HX'(X'為酸之相應陰離子)之反應係由以下給出:
MX'H+2MM 2 x'+MH(s) (230)
其中M可為鹼金屬。此放熱反應可推動形成MH(g)以推動方程式(6-9)及(28-31)給出之極例示性放熱反應。例示性酸反應包括包含金屬鹵化物(諸如鹼金屬或鹼土金屬鹵化物)及酸(諸如鹵化氫)之化合物。自形成熱計算之KHF2與K至2KF與KH之反應釋放ΔH=-132.3 kJ/mole K
KHF 2+2K→2KF+KH ΔH=-132.3 kJ/mole K. (231)
例示性電池為[K/BASE/KHF2(MP=238.9℃)]。在Na置換K之情況下,焓變量為ΔH=-144.6千焦/莫耳Na。例示性電池為[Na/烯烴隔板NaPF6 LP40/NaHF2(MP=>160 dec℃)]。酸性H可為多質子酸之鹽,諸如NaHSO4、NaHSO3、NaHCO3、NaH2PO4、Na2HPO4、NaHCrO4、NaHCr2O7、NaHC2O4、NaHSeO3、NaHSeO4、Na2HAsO4、NaHMoO4、NaHB4O7、NaHWO4、NaHTiO3、NaHGeO3、Na3HSiO4、Na2H2SiO4、NaH3SiO4、NaHSiO3,及金屬,諸如鹼金屬,及氫氧陰離子、強酸之氫氧陰離子,及銨化合物,諸如NH4X,其中X為陰離子,諸如鹵離子或硝酸根。例示性電池為[Na/BASE/NaHSO4(MP=350℃)或NaHSO3(MP=315℃)]及[Na/烯烴隔板NaPF6 LP40/NaHCO3、NaH2PO4、Na2HPO4、NaHCrO4、NaHCr2O7、NaHC2O4、NaHSeO3、NaHSeO4、Na2HAsO4、NaHMoO4、NaHB4O7NaHWO4、NaHTiO3、NaHGeO3、Na3HSiO4、Na2H2SiO4、NaH3SiO4、NaHSiO3及及金屬,諸如鹼金屬,及氫氧陰離子、強酸之氫氧陰離子,及銨化合物,諸如NH4X,其中X為陰離子,諸如鹵離子或硝酸根]。其他鹼金屬可取代Na。在實施例中,電解質可為遷移離子之鹽水溶液。
其他適合氧化劑為可藉由此項技術中已知之方法(諸如在鹼性溶液中氧化金屬氧化物)合成者,其為WO2(OH)、WO2(OH)2、VO(OH)、VO(OH)2、VO(OH)3、V2O2(OH)2、V2O2(OH)4、V2O2(OH)6、V2O3(OH)2、V2O3(OH)4,V2O4(OH)2、FeO(OH)、MnO(OH)、MnO(OH)2、Mn2O3(OH)、Mn2O2(OH)3、Mn2O(OH)5、MnO3(OH)、MnO2(OH)3、MnO(OH)5、Mn2O2(OH)2、Mn2O6(OH)2、Mn2O4(OH)6、NiO(OH)、TiO(OH)、TiO(OH)2、Ti2O3(OH)、Ti2O3(OH)2、Ti2O2(OH)3、Ti2O2(OH)4及NiO(OH)。一般而言,氧化劑可為MxOyHz,其中x、y及z為整數且M為金屬,諸如過渡、內過渡或稀土金屬,諸如金屬氧(氫氧)化物。在電池之遷移離子為Li+(在陰極處還原)之情況下,形成低能量氫之反應可為
CoO(OH)或HCoO2+2Li→LiH+LiCoO2 (232)
LiH→H(1/p)+Li (233)
在一個實施例中,將CoO(OH)或HCoO2之H層夾於CoO2平面之間。與鋰之反應引起至少一個Li置換結構中之H,LiH為層夾產物(在本發明中,亦可使用插入以代替層夾),LiH為各別產物。得到至少一個以下結果,在反應期間一些H反應形成低能量氫或自產物形成低能量氫。例示性電池為[Li、Na、K、Li合金,諸如Li3Mg、LiC或改質碳,諸如CxKHy,諸如C8KH0.6/BASE或烯烴隔板Li、Na或KPF6 LP40/CoO(OH)、HCoO2、HCrO2、GaO(OH)、InOOH、WO2(OH)、WO2(OH)2、VO(OH)、VO(OH)2、VO(OH)3、V2O2(OH)2、V2O2(OH)4、V2O2(OH)6、V2O3(OH)2、V2O3(OH)4、V2O4(OH)2、FeO(OH)、MnO(OH)、MnO(OH)2、Mn2O3(OH)、Mn2O2(OH)3、Mn2O(OH)5、MnO3(OH)、MnO2(OH)3、MnO(OH)5、Mn2O2(OH)2、Mn2O6(OH)2、Mn2O4(OH)6、NiO(OH)、TiO(OH)、TiO(OH)2、Ti2O3(OH)、Ti2O3(OH)2、Ti2O2(OH)3、Ti2O2(OH)4、NiO(OH)及MxOyHz,其中x、y及z為整數且M為金屬,諸如過渡、內過渡或稀土金屬)]。在其他實施例中,鹼金屬可經另一者取代。
在一個實施例中,反應物(諸如氧(氫氧)化物或鹼,諸如NaOH)之H係經氫鍵結。在一個實施例中,O-HH距離可在約2至3 之範圍內且較佳在約2.2至2.7 之範圍內。使包含還原之遷移離子的諸如鹼金屬之金屬與氫鍵結之H反應形成低能量氫。H鍵結可包括H鍵結於諸如O及N之原子,其中H鍵可與諸如以下之另一官能基一起:羰基(C=O)、C-O、S=O、S-O、N=O、N-O及此項技術中已知之其他此等基團。例示性陰極反應物可為氫氧化物或氧(氫氧)化物混合以具有羰基之化合物,諸如酮,或碳酸鹽,諸如鹼金屬碳酸鹽,DEC、EC或DMC或其他H鍵結基團,諸如C-O、S=O、S-O、N=O或N-O。例示性適合化合物為醚、硫化物、二硫化物、亞碸、碸、亞硫酸鹽、硫酸鹽、磺酸鹽、硝酸鹽、亞硝酸鹽,及硝基及亞硝基化合物。在一個實施例中,H鍵結陰極反應物進一步包含一些水,其參與H鍵結且提高形成低能量氫之速率。水可層夾於碳中以形成本發明之另一改質碳。碳可用可氫鍵結於所添加之H的負電性基團(諸如C-O、C=O及羧酸酯基)活化。碳可用空氣、O2或HNO3處理來氧化活化,或藉由以水及/或CO2在800-1000℃下處理來活化。碳可包含解離體,諸如活化之Pt/C或Pd/C。原子H係藉由H鍵結於碳基質中之解離體形成。活化可藉由諸如蒸汽處理或活化之方法達成。在另一實施例中,諸如R-Ni之氫化物材料係經水或蒸汽活化。活化可藉由加熱至約25℃至200℃之範圍內的溫度,同時使蒸汽或水蒸氣與惰性氣體(諸如氬)之混合物流動來達成。其他適合活化材料包含層夾材料,諸如hBN、硫族化物、碳、碳化物及硼化物,諸如TiB2,其以H鍵結負電性基團來官能化。H鍵結反應物亦可包含質子化沸石(HY)。氫鍵結為溫度敏感的;因此,在一個實施例中,控制H鍵結反應物之溫度以控制低能量氫反應速率且因此控制CIHT電池之電壓、電流及電力之一。可對氧(氫氧)化物及其他類似陰極材料記錄FTIR以研究H鍵結物質,諸如O-H及H鍵結於O之氫。
在包含鹼金屬氫氧化物陰極半電池反應物之電池的實施例中,可將溶劑添加至至少陰極半電池中以至少部分溶解鹼金屬氫氧化物。溶劑可能夠H鍵結諸如水或醇,諸如甲醇或乙醇。電池可包含包括有機溶劑之電解質。例示性電池為[Na/Celgard LP 30/NaOH+H鍵結基質或溶劑,諸如醇]、[Li/Celgard LP 30/LiOH+H鍵結基質或溶劑,諸如醇]及[K/Celgard LP 30/KOH+H鍵結基質或溶劑,諸如醇]及[Na/Celgard LP 30/NaOH+甲醇或乙醇]、[Li/Celgard LP 30/LiOH+甲醇或乙醇]及[K/Celgard LP 30/KOH+甲醇或乙醇]。具有有機溶劑作為電解質之部分之電池的溶劑可選擇為部分溶解鹼金屬氫氧化物。電池可包含鹽橋以將一個半電池之溶解鹼金屬氫氧化物與另一者隔開。添加以至少部分溶解鹼金屬氫氧化物之溶劑可為水。或者,鹼金屬氫氧化物可在放電期間自水形成或自諸如碳酸鹽之溶質形成。例示性電池為[Li LP 30/Li+玻璃/水]、[Li LP 30/Li+玻璃/鹼水溶液,諸如LiOH或Li2CO3]、[Li LP 30/Whatman GF/D玻璃纖維片/水]、[Li LP 30/Whatman GF/D玻璃纖維片/鹼水溶液,諸如LiOH或Li2CO3]、[Na LP 30/Na+玻璃/水]、[Na LP 30/Na+玻璃/鹼水溶液,諸如NaOH或Na2CO3]、[K LP 30/K+玻璃/水]、[K LP 30/K+玻璃/鹼水溶液,諸如KOH或K2CO3]。例示性類型[Na/CG2400+Na- LP40/NaOH]之鹼金屬氫氧化物陰極電池之效能亦可藉由加熱來增強,其中使用熱穩定溶劑。
在一個實施例中,至少一種半電池反應物,諸如陰極半電池反應物可包含酸水溶液。例示性電池為[Li LP 30/Whatman GF/D g玻璃纖維片/酸水溶液,諸如HCl]、[Na LP 30/Na+玻璃/酸水溶液,諸如HCl]及[K LP 30/K+玻璃/酸水溶液,諸如HCl]。中性、鹼性及酸性電解質或溶劑之pH值可藉由添加酸或鹼來調節以最佳化低能量氫形成速率。
在另一實施例中,在不具有電解質之情況下,高表面積載體/氫化物用以藉由毛細作用帶走在表面上形成之來自Na+還原之Na金屬。適合載體為諸如R-Ni及TiC。視情況,陰極反應物包含熔融氫化物,諸如MgH2(MP 327℃),其中可供應氫氣氛圍以維持氫化物。在其他實施例中,M(鹼金屬,諸如Li或K)置換Na,其中例示性電池為[K/K-BASE/KI KOH][K/K-BASE/KOH](K-BASE為鉀β氧化鋁)、[LiLi-BASE或Al2O3/LiI LiOH][Li/Li-BASE或Al2O3/LiOH](Li-BASE為鋰β氧化鋁)。構成混合物之適合例示性熔融氫化物為以下之共熔混合物:熔融溫度為約503℃之約43+57 mol%之NaH-KBH4、熔融溫度為約390℃之約66+34 mol%之KH-KBH4、熔融溫度為約395℃之約21+79 mol%之NaH-NaBH4、熔融溫度為約103℃之約53+47 mol%之KBH4-LiBH4、熔融溫度為約213℃之約41.3+58.7 mol%之NaBH4-LiBH4、及熔融溫度為約453℃之約31.8+68.2 mol%之KBH4-NaBH4,其中混合物可進一步包含鹼金屬或鹼土金屬氫化物,諸如LiH、NaH或KH。其他例示性氫化物為Mg(BH4)2(MP 260℃)及Ca(BH4)2(367℃)。
在一個一般實施例中,形成H及形成觸媒(諸如Li、NaH、K或H作為藉此形成低能量氫之觸媒)之反應包含包括H之反應物的反應。反應物之H可鍵結於任何元素。H之適合來源包含H鍵結於另一元素,其中該鍵具有大偶極矩。鍵結可為共價、離子、金屬、配位、三心(three-centered)、凡得瓦爾力(van der Waals)、物理吸附、化學吸附、靜電、親水性、疏水性鍵結或此項技術中已知之其他形式鍵結。適合元素為第III、IV、V、VI及VII族原子,諸如硼、碳、氮氣、氧、鹵素、鋁、矽、磷、硫、硒及碲。反應可包含H之交換或提取反應。反應可包含包括H之反應物的還原反應。反應可包括直接陰極還原或藉由首先在陰極處還原之中間物的還原。舉例而言,鍵結於無機或有機化合物之原子,諸如B、C、N、O或X(X=鹵素)的H可經歷與鹼金屬原子M之反應以形成H、H2及MH中之至少一者,其中該反應進一步引起形成低能量氫。M可在陰極半電池中自M+遷移形成。含有H之反應物的鍵結可為任何形式,諸如凡得瓦爾力、物理吸附及化學吸附。包含H鍵結於另一原子之例示性化合物為BxHy(x及y為整數)、H層夾碳、炔烴(諸如乙炔、1-壬炔或苯乙炔)、具有BN-H基團之化合物(諸如NH3BH3)、NH3、一級胺或二級胺、醯胺、鄰苯二甲醯亞胺、鄰苯二甲醯肼、聚醯胺(諸如蛋白質、脲或類似化合物或鹽)、醯亞胺、縮醛胺或胺基縮醛(aminoacetal)、半縮醛胺、胍或類似化合物(諸如精胺酸衍生物或其鹽,諸如氯化胍)、三氮雜雙環癸烯、MNH2、M2NH、MNH2BH3、MNHR(M為金屬,諸如鹼金屬)(R為有機基團)、磺酸二苯基聯苯胺、M(OH)x或MO(OH)(M為金屬,諸如鹼金屬、鹼土、過渡或內過渡金屬)、H2O、H2O2及ROH(R為醇之有機基團),諸如乙醇、赤藻糖醇(C4H10O4)、半乳糖醇(galactitol;Dulcitol)、(2R,3S,4R,5S)-己烷-1,2,3,4,5,6-六醇,或聚乙烯醇(PVA),或類似化合物,諸如包含以下之群中之至少一者:具有SiOH基團者,諸如矽烷醇及矽酸,及具有BOH基團者,諸如酸、烷基酸,及硼酸,諸如H3BO3或HBO2。包含H之其他例示性反應物為RMH,其中M為第III、IV、V或VI族元素且R為有機的,諸如烷基,RSH,諸如硫醇、H2S、H2S2、H2Se、H2Te、HX(X為鹵素),MSH、MHSe、MHTe、MxHyXz(X為酸陰離子,M為金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬,且x、y、z為整數)、AlH3、SiH4、SixHy、SixHyXz(X為鹵素)、PH3、P2H4、GeH4、GexHy、GexHyXz(X為鹵素)、AsH3、As2H4、SnH4、SbH3及BiH3。例示性電池為[M、M合金,或M層夾化合物/BASE,或烯烴隔板、有機溶劑,及鹽,或鹽電解質水溶液/BxHy(x及y為整數),H層夾碳、炔烴(諸如乙炔、1-壬炔或苯乙炔)、NH3BH3、NH3、一級胺或二級胺、醯胺、聚醯胺(諸如蛋白質、脲)、醯亞胺、縮醛胺或胺基縮醛、半縮醛胺、胍或類似化合物(諸如精胺酸衍生物或其鹽,諸如氯化胍)、三氮雜雙環癸烯、MNH2、M2NH、MNH2BH3、MNHR(M為金屬,諸如鹼金屬)(R為有機基團)、磺酸二苯基聯苯胺、M(OH)x或MO(OH)(M為金屬,諸如鹼金屬、鹼土、過渡或內過渡金屬)、H2O、H2O2及ROH(R為醇之有機基團),諸如乙醇或聚乙烯醇,或類似化合物,諸如包含以下之群中之至少一者:具有SiOH基團者,諸如矽烷醇及矽酸,及具有BOH基團者,諸如酸、烷基酸,及硼酸,諸如H3BO3或HBO2、H2S、H2S2、H2Se、H2Te、HX(X為鹵素)、MSH、MHSe、MHTe、MxHyXz(X為酸陰離子,M為金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬,且x、y、z為整數)、AlH3、SiH4、SixHy、SixHyXz(X為鹵素)、PH3、P2H4、GeH4、GexHy、GexHyXz(X為鹵素)、AsH3、As2H4、SnH4、SbH3及BiH3]、[Na/BASE/聚乙烯醇]、[Na或K/烯烴隔板及有機溶劑及鹽/苯乙炔]、[Li/Celgard LP 30/鄰苯二甲醯亞胺]及[Li/Celgard LP 30/鄰苯二甲醯肼]。
在一個實施例中,OH基團可大約為鹼性無機基團,諸如氫氧離子(OH-),不同於有機OH基團,諸如醇或酸基之有機OH基團。則鍵結於O之中心原子較為金屬。
在一個實施例中,半電池反應物包含具有內部H鍵結,諸如阿司匹靈(aspirin)或鄰甲氧基酚之化合物。例示性電池為[Li/Celgard LP 30/鄰甲氧基酚]。在一個實施例中,至少一種半電池反應物為週期性H鍵結化合物,諸如具有H+之矽酸鹽及可能包含正離子之一些鹼金屬離子,諸如HY。其他週期性H鍵結化合物包含蛋白質,諸如包含以下之蛋白質:絲胺酸、蘇胺酸及精胺酸、DNA、多磷酸鹽,及冰。在一個實施例中,在水熔點以下操作電池使得冰包含質子導體。例示性電池為[Pt/C(H2)/納菲薄膜/冰亞甲基藍]、[Pt/C(H2)/納菲薄膜/冰蒽醌]及[Pt/C(H2)/納菲薄膜/冰聚噻吩或聚吡咯]。(符號「/」係用以指定電池隔室且適當時亦用以指定「在...上」,諸如Pt/C為Pt在碳上。因此,在本發明中,此「在...上」指定亦可無符號/,其中其對熟習此項技術者本來已知,PtC例如意謂Pt在碳上。)
反應物之H可鍵結於金屬,諸如稀土金屬、過渡金屬、內過渡金屬、鹼金屬或鹼土金屬。H反應物可包含氫化物。氫化物可為金屬氫化物。在一個例示性反應中,自氫化物(諸如金屬氫化物)提取H以形成M+H-,其中M+為相對離子,諸如電解質之相對離子,且H-遷移至陽極、氧化為H且與受體(諸如本發明之受體)反應。
H反應物之H可經歷與包含離子金屬化合物(諸如金屬鹽,諸如金屬鹵化物)之另一反應物的交換。反應可包含氫離子-鹵離子交換反應。例示性氫離子-鹵離子交換反應係在本發明中給出。電池可包含在陰極半電池中之鹵化物來源,諸如鹵素氣體、液體或固體,鹵化物鹽橋,及氫化物,諸如金屬鹵化物於陽極半電池中。鹵化物可在陰極半電池中形成、遷移通過鹽橋且在陽極半電池中變得氧化且與金屬氫化物反應形成之金屬鹵化物及H原子及H2氣體,其中在鹵離子-氫離子交換期間形成低能量氫。例示性電池為[鹵素,諸如I2(s)/鹵化物鹽橋,諸如AgI/金屬氫化物,諸如MnH2]、[Br2(1)/AgBr/金屬氫化物,諸如EuH2]及[Cl2(g)/AgCl/SrH2]。
在一個實施例中,電池包含Na+離子來源、選擇性輸送Na+離子之介質,及Na+離子之儲集體及形成NaH觸媒及低能量氫之H的來源。H來源可為氫化物,諸如金屬氫化物。適合之金屬氫化物為稀土金屬、過渡金屬、內過渡金屬、鹼金屬及鹼土金屬氫化物,及諸如B及Al之元素的其他氫化物。電池可包含Na來源陽極,諸如Na層夾化合物、氮化物或硫族化物,以下中之至少一者:電解質、隔板及鹽橋,及包含以下中之至少一者之陰極:金屬氫化物,諸如稀土金屬氫化物、過渡金屬氫化物(諸如R-Ni或TiH2),或內過渡金屬氫化物(諸如ZrH2),氫化基質材料(諸如氫化碳,諸如活性碳),Na層夾化合物,諸如金屬氧化物或金屬氧陰離子,諸如NaCoO2或NaFePO4,或其他硫族化物。例示性鈉陰極材料為包含氧化物之Na儲集體,氧化物諸如為NaxW O3、NaxV2O5、NaCoO2、NaFePO4、NaMn2O4、NaNiO2、Na2FePO4F、NaV2O5、Na2Fe1-x MnxPO4F、Nax[Na0.33Ti1.67O4]或Na4Ti5O12、層化過渡金屬氧化物,諸如Ni-M n-Co氧化物,諸如NaNi1/3Co1/3Mn1/3O2及Na(NaaNixCoyMnz)O2,及NaTi2O4,例示性鈉陽極材料為Na來源,諸如石墨(NaC6)、硬碳(NaC6)、鈦酸鹽(Na4Ti5O12)、Si(Na4.4Si)及Ge(Na4.4Ge)。例示性電池為[NaC/浸透1 M NaPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的聚丙烯膜/NaCoO2R-Ni]。電解質可為低熔點鹽,較佳為Na鹽,諸如以下中之至少一者:NaI(660℃)、NaAlCl4(160℃)、NaAlF4,及與NaMX4(其中M為金屬且X為鹵離子)相同類別之具有金屬鹵化物(諸如比NaX更穩定之金屬鹵化物)的化合物。至少一種半電池反應混合物可進一步包含載體,諸如R-Ni或碳化物,諸如TiC。例示性電池為[Na/鈉β氧化鋁/NaAlCl4 TiC MH2,諸如TiH2、ZrH2或LaH2]。在其他實施例中,K置換Na。在一個實施例中,鹼金屬M(諸如Na)係藉由在多孔材料(諸如多孔金屬氫化物)中還原M+,使得防止M接觸任何反應性電解質(諸如MAlCl4)來形成。
在本發明之其他實施例中,鹼金屬可置換另一者。舉例而言,包含鹼金屬之陽極可為合金,諸如Li3Mg、K3Mg及Na3Mg之一,其中不同鹼金屬為適合之半電池反應物。
在另一實施例中,基於Na之CIHT電池包含陰極、陽極及電解質,其中至少一個組分包含氫或氫來源。在一個實施例中,陰極含有基於電化學活性鈉之材料,諸如可逆性層夾去層夾材料。材料亦可包含在充電及放電期間充當電容器材料之物質。適合之Na可逆性層夾去層夾材料包含過渡氧化物、硫化物、磷酸鹽及氟化物。材料可含有鹼金屬,諸如Na或Li,其可在充電期間去層夾且可藉由諸如電解之方法進一步交換。美國專利第US 7,759,008 B2號(2010年7月20日)的基於電化學活性鈉之材料係以引用的方式併入本文中。基於鈉之活性物質主要為選自以下通式之化合物的鈉金屬磷酸鹽:
A a M b (XY4) c Z d ,其中
i A係選自由鈉及鈉與其他鹼金屬之混合物組成之群,且0<a≦9;
ii M包含一或多種金屬,其包含至少一種能夠經歷氧化為較高價態之金屬,且1≦b≦3;
iii XY4係選自由以下組成之群:X'O4- x Y' x 、X'O4- y Y'2 y 、X"S4及其混合物,其中X'為P、As、Sb、Si、Ge、S及其混合物;X"為P、As、Sb、Si、Ge及其混合物;Y為鹵素;0≦x<3;且0<y<4;且0<c≦3;
iv Z為OH、鹵素或其混合物,且0≦d≦6;且其中選擇M、X、Y、Z、a、b、c、d、x及y以便維持化合物電中性。
較佳之含鈉活性物質的非限制性實例包括NaVPO4F、Na1+ y VPO4F1+ y 、NaVOPO4、Na3V2(PO4)2F3、Na3V2(PO4)3、NaFePO4、NaFe x Mg1- x PO4、Na2FePO4F及其組合,其中0<x<1且-0.2≦y≦0.5。另一較佳活性物質具有通式Li1- z Na z VPO4F,其中0<z<1。除釩(V)外,各種過渡金屬及非過渡金屬元素可各別或組合使用以製備基於鈉之活性物質。在實施例中,H部分取代基於電化學活性鈉之材料的Na或Li。陰極、陽極或電解質中之至少一者進一步包含H或H來源。電池設計可為具有基於電化學活性鋰之材料(Na置換Li)的CIHT電池之設計,且可進一步包含此等基於電化學活性鈉之材料置換基於鋰之電池的相應者。在其他實施例中,諸如Li或K之另一鹼金屬可取代Na。
陽極可包含Na/碳,其中電解質可包含無機Na化合物,諸如NaClO4,及有機溶劑,諸如EC:DEC、PC:DMC或PC:VC。電解質可包含固體電解質NASICON(Na3Zr2Si2PO12)。鈉CIHT電池可包含[Na或NaC/Na3Zr2Si2PO12/Na3V2(PO4)3]及[Na3V2(PO4)3/Na3Zr2Si2PO12/Na3V2(PO4)3]。
在一個實施例中,Na可充當陽極反應物及充當陰極半電池之電解質,其中Na濃度梯度可因含陰極半電池之另一熔融元素或化合物之混合物而存在。電池進一步包含H來源,諸如氫化物陰極反應物且可進一步包含載體。具有可通過鹽橋(諸如β氧化鋁固體電解質(BASE))之Na+作為遷移離子之例示性濃差電池為[Na/BASE/Na,其濃度因以下而低於陽極半電池:其他熔融元素或化合物,諸如以下中之至少一者:In、Ga、Te、Pb、Sn、Cd、Hg、P、S、I、Se、Bi及As,H來源(諸如氫化物)及視情況選用之載體]。
在其他實施例中,陰極材料為層夾化合物,其層夾物質諸如為鹼金屬或離子,諸如Na或Na+經H或H+置換。化合物可包含層夾H。化合物可包含層化氧化物,諸如NaCoO2,其中一些Na經 H置換,諸如亦表示HCoO2之CoO(OH)。陰極半電池化合物可為層化化合物,諸如層化硫族化物,諸如層化氧化物,諸如NaCoO2或NaNiO2,其中至少一些層夾鹼金屬,諸如Na經層夾H置換。在一個實施例中,至少一些H及可能一些Na為帶電陰極材料之層夾物質且在放電期間層夾Na。H置換至少一些Na之適合層夾化合物為構成Li或Na離子電池(諸如本發明之Li或Na離子電池)之陽極或陰極的層夾化合物。包含HxNay或H取代Na之適合例示性層夾化合物為Na石墨、NaxWO3、NaxV2O5、NaCoO2、NaFePO4、NaMn2O4、NaNiO2、Na2FePO4F、NaMnPO4、VOPO4系統、NaV2O5、NaMgSO4F、NaMSO4F(M=Fe、Co、Ni、過渡金屬)、NaMPO4F(M=Fe、Ti)、Nax[Na0.33Ti1.67O4]或Na4Ti5O12、層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如NaNi1/3Co1/3Mn1/3O2,及Na(NaaNixCoyMnz)O2及NaTi2O4,及本發明之其他Na層化硫族化物及層夾材料,諸如Na可逆性層夾去層夾材料,其包含過渡氧化物、硫化物、磷酸鹽及氟化物。其他適合之層夾化合物包含氧(氫氧)化物,諸如來自以下之群的氧(氫氧)化物:AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)。例示性電池為[Na來源,諸如Na、Na合金,諸如NaC或Na3Mg/共溶鹽、有機電解質(諸如含NaPF6之LP 40)、離子液體或固體鈉電解質,諸如BASE或NASICON/層夾化合物,其包含HxNay或H取代於以下之群中:Na石墨、NaxWO3、NaxV2O5、NaCoO2、NaFePO4、NaMn2O4、NaNiO2、Na2FePO4F、NaMnPO4、VOPO4系統、NaV2O5、NaMgSO4F、NaMSO4F(M=Fe、Co、Ni、過渡金屬)、NaMPO4F(M=Fe、Ti)、Nax[Na0.33Ti1.67O4]或Na4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如NaNi1/3Co1/3Mn1/3O2及Na(NaaNixCoyMnz)O2及NaTi2O4,及本發明之其他Na層化硫族化物及層夾材料,諸如Na可逆性層夾去層夾材料,其包含過渡氧化物、硫化物、磷酸鹽及氟化物]及[Na來源,諸如Na、Na合金,諸如NaC或Na3Mg/共溶鹽、有機電解質(諸如含NaPF6之LP 40)、離子液體或固體鈉電解質,諸如BASE或NASICON/以下之群中之至少一者:AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)]。其他鹼金屬可取代Na,諸如K。
在一個實施例中,自還原遷移離子及與陰極反應物任何可能之進一步反應形成的陰極產物可藉由非電解以及電解技術再生。產物可藉由反應混合物之本發明之方法再生為陽極起始物質。舉例而言,包含遷移離子之元素的產物可經物理或熱分離及再生且返回陽極。分離可藉由熱分解氫化物及蒸發作為還原遷移離子之金屬來達成。遷移離子之陰極產物亦可經分離及與陽極產物反應形成起始反應物。陰極反應物之氫化物可藉由添加氫來再生,或可在分離形成起始氫化物必需的相應陰極反應產物之後在各別反應室中形成氫化物。類似地,任何其他陰極起始反應物均可藉由在原位或在形成反應物之各別容器中的分離及化學合成步驟來再生。
在CIHT電池之一個實施例中,另一陽離子置換Na+作為行動離子。行動離子可在陰極處還原以形成觸媒或觸媒來源,諸如NaH、K、Li、Sr+或BaH。電解質可包含β"-氧化鋁(β撇號-撇號氧化鋁)或β氧化鋁亦與相應行動離子錯合。因此,固體電解質可包含Al2O3與Na+、K+、Li+、Sr2+及Ba2+中之至少一者錯合,且亦可與H+、Ag+或Pb2+中之至少一者錯合。電解質或鹽橋可為離子浸漬玻璃,諸如K+玻璃。在H+作為行動離子之一個實施例中,H+在陰極處還原為H以充當催化為低能量氫之原子氫來源。在一個一般實施例中,陽極隔室包含鹼金屬,固體電解質包含相應遷移金屬離子與β氧化鋁複合,且陰極隔室包含氫來源,諸如氫化物或H2。遷移金屬離子可在陰極處還原為金屬。金屬或自金屬形成之氫化物可為觸媒或觸媒來源。低能量氫係藉由觸媒與氫之反應形成。電池可在提供有利傳導性之溫度範圍內操作。適合之操作溫度範圍為250℃至300℃。其他例示性鈉離子傳導性鹽橋為NASICON(Na3Zr2Si2PO12)及NaxWO3。在其他實施例中,另一金屬,諸如Li或K可置換Na。在一個實施例中,至少一種電池組分,諸如鹽橋及陰極及陽極反應物包含對既定物質選擇性可透之塗層。實例為對OH-選擇性可透之氧化鋯塗層。反應物可包含微粒囊封於此塗層中使得其與選擇性可透物質選擇性反應。鋰固體電解質或鹽橋可為鹵化物穩定化LiBH4,諸如LiBH4-LiX(X=鹵離子)、Li+浸漬Al2O3(Li-β-氧化鋁)、基於Li2S之玻璃、Li0.29+dLa0.57TiO3(d=0至0.14、La0.51Li0.34TiO2.94、Li9AlSiO8、Li14ZnGe4O16(LISICON)、LixM1-yM'yS4(M=Si、Ge且M'=P、Al、Zn、Ga、Sb)(硫基-LISICON)、Li2.68PO3.73N0.14(LIPON)、Li5La3Ta2O12、Li1.3Al0.3Ti1.7(PO4)3、LiM2(PO4)3、MIV=Ge、Ti、Hf及Zr、Li1+xTi2(PO4)3(0 x 2)LiNbO3、矽酸鋰、鋁酸鋰、鋁矽酸鋰、固體聚合物或凝膠、二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鋰(Li2O)、Li3N、Li3P、氧化鎵(Ga2O3)、氧化磷(P2O5)、氧化矽鋁,及其固溶體及此項技術中已知之其他者。例示性電池為[Li/Li固體電解質/R-Ni]。
在一種類型之氫化物交換反應中,氫化物交換反應可包含還原氫化物,該氫化物不為觸媒或觸媒來源之氫化物,諸如鹼金屬氫化物,諸如LiH、KH或NaH或BaH。氫化物離子穩定化躍遷狀態之高度電離觸媒陽離子。不同氫化物之目的在於推動反應以在形成躍遷狀態及低能量氫之正向中進行至較大程度。適合之不同氫化物為鹼土金屬氫化物,諸如BaH及MgH2;不同鹼金屬氫化物,諸如LiH與KH或NaH;過渡金屬氫化物,諸如TiH2;及稀土金屬氫化物,諸如EuH2、GdH2及LaH2
在一個實施例中,電子與觸媒離子係以躍遷狀態重組使得將不會發生催化反應。向電離觸媒外部提供相對離子(諸如氫化物離子)有助於催化及形成電離觸媒,諸如Na2+或K3+。此進一步受助於傳導性載體(諸如TiC)及視情況選用之還原劑(諸如鹼土金屬或其氫化物,諸如MgH2或其他氫化物離子來源)的反應混合物之組分。因此,CIHT電池可作為電池來進行且向可變負載即需提供電力,其中該負載形成來自陽極隔室之電子流與來自陰極隔室之相對離子流的電路。此外,在一個實施例中,電子及相對離子中之至少一者之此電路提高低能量氫反應速率。
關於圖18,燃料電池400包含具有陰極405之陰極隔室401、具有陽極410之陽極隔室402、鹽橋420、低能量氫反應物及氫來源。陽極隔室反應物可包含觸媒或觸媒來源及氫或氫來源,諸如LiH、NaH、BaH或KH,且可進一步包含以下中一或多者:載體,諸如TiC及還原劑,諸如以下中之至少一者:鹼土金屬及其氫化物,諸如Mg及MgH2及鹼金屬及其氫化物,諸如Li及LiH。陰極隔室反應物可包含可交換物質(諸如陰離子)之來源,諸如鹵化物或氫化物。適合之反應物為金屬氫化物,諸如鹼土或鹼金屬氫化物,諸如MgH2、BaH及LiH。相應金屬,諸如Mg及Li可存在於陰極隔室中。
鹽橋可包含陰離子傳導性膜及/或陰離子導體。鹽橋可傳導陽離子。鹽橋可由沸石或氧化鋁形成,沸石或氧化鋁,諸如飽和含有觸媒之陽離子者,諸如鋁酸鈉、鑭系元素硼化物(諸如MB 6,其中M為鑭系元素),或鹼土金屬硼化物(諸如MB 6,其中M為鹼土金屬)。反應物或電池組分可為氧化物。氧化物中之電化學物質可為氧化物離子或質子。鹽橋可傳導氧化物離子。氧化物導體之典型實例為氧化釔-穩定化氧化鋯(YSZ)、氧化釓摻雜之二氧化鈰(CGO)、鎵酸鑭(lanthanum gallate)及鉍銅釩氧化物,諸如BiCuVOx。一些鈣鈦礦材料,諸如La1-xSrxCoyO3-d亦顯示混合氧化物及電子傳導性。鹽橋可傳導質子。摻雜鋇鈰酸鹽及鋯酸鹽為良好質子導體或質子化氧化物離子之導體。H+導體可為SrCeO3型質子導體,諸如鍶鈰釔鈮氧化物。HxWO3為另一適合之質子導體。納菲薄膜、類似膜及相關化合物亦為適合之質子導體,且可進一步充當陽離子導體,諸如Na+或Li+導體。質子導體可包含HCl-LiCl-KCl熔鹽電解質之固體膜於金屬網(諸如SS)上,其可充當具有有機電解質之電池的質子導體鹽橋。陽離子電解質可經歷與納菲薄膜之交換以形成相應離子導體。質子導體可為無水聚合物,諸如基於離子液體之複合膜,諸如納菲薄膜及離子液體,諸如1-乙基-3-三氟甲烷磺酸甲基咪唑鎓及四氟硼酸1-乙基-3-甲基咪唑鎓,或包含以下之聚合物:質子供體及受體基團,諸如具有苯并咪唑部分之基團,諸如聚[(1-(4,4'-二苯醚)-5-氧基苯并咪唑)-苯并咪唑],其亦可與納菲薄膜一起摻合且進一步與諸如無機電子缺陷型化合物(諸如BN奈米粒子)一起摻雜。
在其他實施例中,熟習此項技術者已知之許多其他離子中一或多者可在固體內行動,諸如Li+、Na+、Ag+、F-、Cl-及N3-。使用任何此等離子之相應良好電解質材料為Li3N、Na-β-Al2O3、AgI、PbF2及SrCl2。鹼金屬鹽摻雜聚氧化乙烯或類似聚合物可充當電解質/隔板以便遷移鹼金屬離子,諸如Li+。在一個實施例中,鹽橋包含藉由在特定位置(諸如在分離平面)冷卻形成的電池之固化熔融電解質。冷卻可藉由使用散熱體(諸如導熱體,諸如多孔金屬板)達成。另外,鹼金屬及鹼土金屬氫化物、鹵化物及混合物為氫化物離子H-之良導體。適合混合物包含共溶熔鹽。鹽橋可包含氫化物且可選擇性傳導氫化物離子。氫化物可能極熱穩定。由於其高熔點及熱分解溫度,因此適合氫化物為鹽水氫化物,諸如鋰、鈣、鍶及鋇之鹽水氫化物,及金屬氫化物,諸如稀土金屬(諸如Eu、Gd及La)之氫化物。在後一情況下,H或質子可擴散通過金屬,同時在表面自H-轉化或轉化為H-。鹽橋可為氫化物離子傳導性固體-電解質,諸如CaCl2-CaH2。適合之氫化物離子傳導性固體電解質為CaCl2-CaH2(5至7.5 mol%)及CaCl2-LiCl-CaH2。包含H-傳導性鹽橋之例示性電池為[Li/共晶鹽,諸如LiC-KCl LiH/CaCl2-CaH2/共晶鹽,諸如LiC-KCl LiH/Fe(H2)]及[Li或Li合金/CaCl2-CaH2/共晶鹽,諸如LiCl-KCl LiH/Fe(H2)]。
陰極及陽極可為電導體。導體可為載體且進一步包含導線以便陰極及陽極中每一者各自連接至負載。導線亦為導體。適合導體為金屬、碳、碳化物或硼化物。適合金屬為過渡金屬、不鏽鋼、貴金屬、內過渡金屬(諸如Ag)、鹼金屬、鹼土金屬、Al、Ga、In、Sn、Pb及Te。
電池可包含固體、熔融或液體電池。後者可包含溶劑。可控制操作條件以達成至少一種反應物或電池組分之所需狀態或特性,諸如陰極電池反應物、陽極電池反應物、鹽橋及電池隔室之所需狀態或特性。適合狀態為固體、液體及氣體,且適合特性為離子及電子傳導性、物理特性、可溶混性、擴散速率及反應性。在一或多種反應物維持在熔融狀態下之情況下,隔室溫度可控制在反應物熔點以上。Mg、MgH2、K、KH、Na、NaH、Li及LiH之例示性熔點分別為650℃、327℃、63.5℃、619℃、97.8℃、425℃(dec)、180.5℃及688.7℃。熱可來自氫向低能量氫之催化。或者,用燃料電池之內電阻或外加熱器450所供之熱,氧化劑及/或還原劑反應物熔融。在一個實施例中,CIHT電池係由絕緣物包圍,該絕緣物包含雙壁抽空夾套,諸如薄片金屬夾套以絕緣物填充以用於傳導性及放射性熱損失,其為熟習此項技術者已知。在一個實施例中,配置為熱力學有效的保熱體,諸如正確圓筒堆疊,其提供最佳容積與表面積之比以保熱。在一個實施例中,陰極及陽極隔室中之至少一者之反應物係經溶劑至少部分溶劑化。溶劑可溶解觸媒或觸媒來源,諸如鹼金屬及氫化物,諸如LiH、Li、NaH、Na、KH、K、BaH及Ba。適合溶劑為有機溶劑章節及無機溶劑章節中所揭示者。溶解鹼金屬之適合溶劑為六甲基磷醯胺(OP(N(CH 3)2)3)、氨、胺、醚、錯合溶劑、冠醚及大環胺醚及溶劑,諸如醚,或醯胺,諸如THF添加冠醚或大環胺醚。
燃料電池可進一步包含至少一個氫系統460、461、430及431以便量測、傳遞及控制氫於至少一個隔室。氫系統可包含泵、至少一個閥、一個壓力計及讀取器及控制系統以便將氫供至陰極及陽極隔室之至少一者中。氫系統可將氫自一個隔室循環至另一隔室。在一個實施例中,氫系統將H2氣體自陽極隔室再循環至陰極隔室。再循環可為主動或被動的。在前一情況下,可在操作期間將H2自陽極抽至陰極隔室,且在後一情況下,由於在操作期間根據反應(諸如等式(199-200)之反應)在陽極隔室中建立壓力,因此H2可自陽極擴散或流至陰極隔室。
產物可在陰極或陽極隔室中再生。可將產物送至再生器,其中本發明之任何再生化學均可用以使初始反應物再生。經歷低能量氫反應之電池可向經歷反應物再生者提供熱。
在一個實施例中,燃料電池包含陽極及陰極隔室,其各自含有陽極及陰極、相應反應混合物及隔室之間的鹽橋。隔室可包含惰性非傳導性電池壁。適合之容器材料為碳化物及氮化物,諸如SiC、B4C、BC3或TiN,或內塗碳化物及氮化物(諸如SiC、B4C或BC3或TiN)之不鏽鋼管。或者,電池可襯有惰性絕緣體,諸如MgO、SiC、B4C、BC3或TiN。電池可由導電材料與絕緣隔板製成。適合電池材料為不鏽鋼、過渡金屬、貴金屬、耐火金屬、稀土金屬、Al及Ag。電池可各自具有惰性絕緣饋通。用於電饋通之適合絕緣隔板及材料為MgO及碳化物及氮化物,諸如SiC、B4C、BC3或TiN。可使用熟習此項技術者已知之其他電池、隔板及饋通。例示性陰極及陽極各自包含不鏽鋼絲絨,其具有不鏽鋼導線以銀焊料連接至電池饋通。例示性陽極反應混合物包含(i)來自以下群之觸媒或觸媒來源及氫來源:Li、LiH、Na、NaH、K、KH、Rb、RbH、Cs、CsH、Ba、BaH、Ca、CaH、Mg、MgH2、MgX2(X為鹵離子)及H2,視情況選用之(ii)以下群之還原劑:Mg、Ca、Sr、Ba及Li,及(iii)以下群之載體:C、Pd/C、Pt/C、TiC及YC2。例示性陰極反應混合物包含(i)以下群之氧化劑:MX2(M=Mg、Ca、Sr、Ba;X=H、F、Cl、Br、I)及LiX(X=H、Cl、Br),視情況選用之(ii)Mg、Ca、Sr、Ba及Li之群的還原劑,及視情況選用之(iii)C、Pd/C、Pt/C、TiC及YC2之群的載體。例示性鹽橋包含具有高溫穩定性之擠壓或成形為板坯之金屬氫化物。鹽橋可來自以下之金屬氫化物之群:LiH、CaH2、SrH2、BaH2、LaH2、GdH2及EuH2。可將氫或氫化物添加至可進一步包含氫解離體(諸如Pd或Pt/C)之任一電池隔室中。在Mg2+為觸媒之一個實施例中,觸媒來源可為混合金屬氫化物,諸如Mgx(M2)yHz,其中x、y及Z為整數且M2為金屬。在一個實施例中,混合氫化物包含鹼金屬及Mg,諸如KMgH3、K2MgH4、NaMgH3、Na2MgH4,及具有可提高H移動率之摻雜的混合氫化物。摻雜可藉由提高H空位濃度來提高H移動率。適合之摻雜係摻雜少量取代基,其可以單價陽離子形式存在以代替鈣鈦礦結構之通常二價B型陽離子。諸如在Na(Mgx-1Lix)H3-x之情況下,實例為Li摻雜以產生x個空位。
在一個實施例中,混合氫化物係在放電期間自合金形成,諸如包含鹼金屬及鹼土金屬之混合氫化物,諸如M3Mg(M=鹼金屬)。陽極可為合金且陰極可包含H來源,諸如氫化物或來自以下之H:H可透陰極及H2氣體,諸如Fe(H2)或H2氣體及解離體,諸如PtC(H2)。電池可包含電解質,諸如氫化物導體,諸如熔融共溶鹽,諸如鹼金屬鹵化物混合物,諸如LiCl-KCl。例示性電池為[Li3Mg、Na3Mg或K3Mg/LiCl-KCl LiH/TiH2、CeH2、LaH2或ZrH2]。
在一個實施例中,陽極及陰極反應包含形成低能量氫之不同反應物或相同反應物,其以不同濃度、不同量或不同條件中之至少一者維持,使得在兩個半電池之間產生電壓,其可通過陽極及陰極導線向外部負載供電。在一個實施例中,陽極反應混合物包含(i)觸媒或觸媒來源及氫來源,諸如以下群之至少一者:Li、LiH、Na、NaH、K、KH、Rb、RbH、Cs、CsH、Ba、BaH、Ca、CaH、Mg、MgH2、MgX2(X為鹵離子)及H2,視情況選用之(ii)還原劑,諸如Mg、Ca、Sr、Ba及Li之群的至少一者,及(iii)載體,諸如C、Pd/C、Pt/C、TiC及YC2之群的至少一者。陰極反應混合物包含(i)觸媒或觸媒來源及氫來源,諸如以下群之至少一者:Li、LiH、Na、NaH、K、KH、Rb、RbH、Cs、CsH、Ba、BaH、Ca、CaH、Mg、MgH2、MgX2(X為鹵離子)及H2,視情況選用之(ii)還原劑,諸如Mg、Ca、Sr、Ba、Li及H2之群的至少一者,及(ii)載體,諸如C、Pd/C、Pt/C、TiC及YC2之群的至少一者。視情況,各半電池反應混合物可包含氧化劑,諸如諸如以下群之至少一者:MX2(M=Mg、Ca、Sr、Ba;X=H、F、Cl、Br、I)及LiX(X=H、Cl、Br)。在一個例示性實施例中,陽極反應混合物包含KH Mg TiC且陰極反應混合物包含NaH Mg TiC。在其他例示性實施例中,電池包含Mg MgH2 TiC//NaH H2、KH TiC Mg//NaH TiC、KH TiC Li//NaH TiC、Mg TiC H2//NaH TiC、KH MgH2TiC Li//KH Mg TiC LiBr、KH Mg TiC//KH Mg TiC MX2(MX2為鹼土金屬鹵化物)、NaH Mg TiC//KH Mg TiC MX2,其中//表示可為氫化物之鹽橋。可將氫或氫化物添加至可進一步包含氫解離體(諸如Pd或Pt/C)之任一電池隔室中。
至少一種半電池之反應物可包含氫儲存材料,諸如金屬氫化物、M-N-H系統之物質(諸如LiNH2、Li2NH或Li3N),及進一步包含硼之鹼金屬氫化物,諸如硼氫化物或鋁,諸如鋁氫化物。其他適合之氫儲存材料為金屬氫化物,諸如鹼土金屬氫化物,諸如MgH2、金屬合金氫化物,諸如BaReH9、LaNi5H6、FeTiH1.7及MgNiH4,金屬硼氫化物,諸如Be(BH4)2、Mg(BH4)2、Ca(BH4)2、Zn(BH4)2、Sc(BH4)3、Ti(BH4)3、Mn(BH4)2、Zr(BH4)4、NaBH4、LiBH4、KBH4及Al(BH4)3、AlH3、NaAlH4、Na3AlH6、LiAlH4、Li3AlH6、LiH、LaNi5H6、La2Co1Ni9H6及TiFeH2、NH3BH3、聚胺基硼烷、胺硼烷錯合物,諸如胺硼烷、硼烷氨合物、肼-硼烷錯合物、二硼烷二氨合物、硼氮炔,及八氫三硼酸銨或四氫硼酸銨、咪唑鎓離子液體,諸如烷基(芳基)-3-甲基咪唑鎓N-雙(三氟甲烷磺醯基)醯亞胺鹽、硼酸鏻及硝酸鉀(carbonite)物質。其他例示性化合物為氨硼烷、鹼金屬氨硼烷,諸如鋰氨硼烷,及硼烷烷基胺錯合物,諸如硼烷二甲胺錯合物、硼烷三甲胺錯合物,及胺基硼烷及硼烷胺,諸如胺基二硼烷、n-二甲胺基二硼烷、參(二甲胺基)硼烷、二正丁基硼胺、二甲胺基硼烷、三甲胺基硼烷、氨-三甲基硼烷,及三乙胺基硼烷。其他適合氫儲存材料為含吸收氫之有機液體,諸如咔唑及衍生物,諸如9-(2-乙基己基)咔唑、9-乙基咔唑、9-苯基咔唑、9-甲基咔唑及4,4'-雙(N-咔唑基)-1,1'-聯苯。
在一個實施例中,至少一種電池另外包含電解質。電解質可包含熔融氫化物。熔融氫化物可包含金屬氫化物,諸如鹼金屬氫化物或鹼土金屬氫化物。熔融氫化物可溶解於鹽中。鹽可具有低熔點,諸如一種陽離子可與金屬氫化物之陽離子相同的共溶鹽。鹽可包含LiH溶解於LiCl/KCl混合物或諸如LiF/MgF2之混合物中。鹽可包含與觸媒之陽離子相同之陽離子的一或多種鹵化物,或為比可自觸媒與鹽(諸如LiH與LiCl/KCl之混合物)之鹵化物的反應形成之鹵化物更穩定之化合物。共溶鹽可包含鹼土金屬氟化物,諸如MgF2,及觸媒金屬之氟化物,諸如鹼金屬氟化物。觸媒或觸媒來源及氫來源可包含鹼金屬氫化物,諸如LiH、NaH或KH或BaH。或者,鹽混合物包含與觸媒金屬相同之鹼金屬的混合鹵化物,此係因為用觸媒氫化物之鹵離子-氫離子交換反應將不產生淨反應之故。混合鹵化物與觸媒氫化物之適合混合物為以下中至少兩者:KF、KCl、KBr,及KI與KH及以Li或Na置換K。鹽較佳為氫化物離子導體。除鹵化物之外,可傳導氫化物離子之其他適合熔鹽電解質為氫氧化物,諸如含KH之KOH或含NaH之NaOH,及有機金屬系統,諸如含NaH之NaAl(Et)4。電池可由金屬(諸如Al、不鏽鋼、Fe、Ni、Ta)製成,或包含石墨、氮化硼、MgO、氧化鋁或石英坩堝。
電解質可包含兩種或兩種以上氟化物之共溶鹽,氟化物諸如為鹼金屬鹵化物及鹼土金屬鹵化物之群的至少兩種化合物。例示性鹽混合物包括LiF-MgF2、NaF-MgF2、KF-MgF2及NaF-CaF2。例示性反應混合物包含NaH NaF MgF2 TiC、NaH NaF MgF2 Mg TiC、KH KF MgF2 TiC、KH KF MgF2 Mg TiC、NaH NaF CaF2 TiC、NaH NaF CaF2 Mg TiC、KH NaF CaF2 TiC及KH NaF CaF2 Mg TiC。其他適合溶劑為有機氯鋁酸鹽熔鹽及基於金屬硼氫化物及金屬鋁氫化物之系統。可為熔融混合物(諸如熔融共熔混合物)之其他適合電解質係在表4中給出。
諸如表4中給出之例示性鹽混合物的熔鹽電解質為H-離子導體。在實施例中,在本發明中暗示,將諸如鹼金屬氫化物(諸如LiH、NaH或KH)之H-來源添加至熔鹽電解質中以改良H-離子傳導性。在其他實施例中,熔融電解質可為鹼金屬離子導體或質子導體。
在一個實施例中,反應混合物包含支持作為遷移相對離子之氫化物離子H-的電解質,其中該相對離子平衡在低能量氫反應期間由觸媒電離產生之正離子。KCl及LiCl之形成熱分別為-436.50千焦/莫耳及-408.60千焦/莫耳。在一個實施例中,反應混合物包含熔鹽電解質,諸如鹼金屬鹵化物鹽(諸如KCl及LiCl)之混合物。混合物可為共溶混合物。將電池溫度維持在鹽熔點以上。反應混合物進一步包含氫化物離子來源,諸如鹼金屬氫化物,諸如LiH、KH或NaH。反應混合物可進一步包含以下中之至少一者:載體,諸如TiC或C,及還原劑,諸如鹼土金屬或其氫化物,諸如Mg或MgH2
反應混合物可包含(1)觸媒或觸媒來源及氫來源,諸如LiH、NaH、KH、RbH、CsH、BaH之一,及至少一種H,(2)可充當電解質之共溶鹽混合物,其可具有高離子傳導性且可選擇性使氫化物離子通過,其包含Li、Na、K、Rb、Cs、Mg、Ca、Sr及Ba之群的至少兩種陽離子及F、Cl、Br及I之群的至少一種鹵化物,(3)可導電之載體,諸如碳化物,諸如TiC,及(4)視情況選用之還原劑及氫化物交換反應物,諸如鹼土金屬或鹼土金屬氫化物。
例示性CIHT電池包含(i)還原劑或還原劑來源,諸如元素或化合物,其包含自以下清單之元素:鋁、銻、鋇、鉍、硼、鎘、鈣、碳(石墨)、鈰、銫、鉻、鈷、銅、鏑、鉺、銪、釓、鎵、鍺、金、鉿、鈥、銦、銥、鐵、鑭、鉛、鋰、鎦、鎂、錳、汞、鉬、釹、鎳、鈮、鋨、鈀、磷、鉑、鉀、鐠、鉕、鏷、錸、銠、銣、釕、釤、鈧、硒、矽、銀、鈉、鍶、硫、鉭、鎝、碲、鋱、銩、錫、鈦、鎢、釩、鐿、釔、鋅及鋯;(ii)電解質,諸如表4中給出者之一,(iii)氧化劑,諸如表4中給出之化合物,(iv)傳導性電極,諸如金屬、金屬碳化物(諸如TiC)、金屬硼化物(諸如TiB2及MgB2)、金屬氮化物(諸如氮化鈦)及包含以下清單之元素的彼等元素或材料:鋁、銻、鋇、鉍、硼、鎘、鈣、碳(石墨)、鈰、銫、鉻、鈷、銅、鏑、鉺、銪、釓、鎵、鍺、金、鉿、鈥、銦、銥、鐵、鑭、鉛、鋰、鎦、鎂、錳、汞、鉬、釹、鎳、鈮、鋨、鈀、磷、鉑、鉀、鐠、鉕、鏷、錸、銠、銣、釕、釤、鈧、硒、矽、銀、鈉、鍶、硫、鉭、鎝、碲、鋱、銩、錫、鈦、鎢、釩、鐿、釔、鋅及鋯。金屬可來自以下清單:鋁、銻、鋇、鉍、鎘、鈣、鈰、銫、鉻、鈷、銅、鏑、鉺、銪、釓、鎵、鍺、金、鉿、鈥、銦、銥、鐵、鑭、鉛、鋰、鎦、鎂、錳、汞、鉬、釹、鎳、鈮、鋨、鈀、鉑、鉀、鐠、、鏷、錸、銠、銣、釕、釤、鈧、硒、矽、銀、鈉、鍶、鉭、鎝、碲、鋱、銩、錫、鈦、鎢、釩、鐿、釔、鋅及鋯,及(v)氫或氫來源,諸如氫化物,諸如鹼金屬或鹼土金屬氫化物,及觸媒來源或觸媒來源,諸如Li、NaH、K、Rb+、Cs,及至少一種H。在一個實施例中,電池進一步包含將反應物或電池化學物質再生為使電池恢復以下狀態之物質及濃度的系統:形成低能量氫反應物之反應及接著低能量氫係以快於再生前之速率出現。在一個實施例中,再生系統包含電解系統。在一個實施例中,t在再生期間,電極不遭受顯著腐蝕。舉例而言,電解陽極不遭受實質氧化。在一個實施例中,電解質含有氫化物,諸如MH(M為鹼金屬)或MH2(M為鹼土金屬),其中氫化物在電解期間氧化。在一個實施例中,電解電壓係在將電解陽極氧化之電壓以下。相對於Li+/Li參考電極,Cu、Fe或Ni電解陽極之適合電壓係在1.5 V以下。在另一實施例中,電池包含電池組分、反應物及系統以維持形成低能量氫反應物,接著形成低能量氫之條件。在一個實施例中,電解諸如LiH之金屬氫化物以使諸如Li之相應金屬及氫氣再生。再生金屬可在包含鹽橋以將諸如Li之金屬限於半電池的半電池隔室中形成。或者,電解陰極(CIHT電池陽極)可包含與電解金屬形成合金之金屬。舉例而言,在電解再生期間,Li可形成合金,諸如Li3Mg、LiAl、LiSi、LiSn、LiBi、LiTe、LiSe、LiCd、LiZn、LiSb及LiPb。
各電池包含形成以下之反應物:藉由輸送電子通過外部電路及輸送離子通過電解質或鹽橋形成低能量氫之反應物。低能量氫反應物包含至少原子氫或原子氫來源及觸媒或觸媒來源,諸如Li、NaH、K、Rb+、Cs,及至少一種H。特定例示性電池為[LiAl/LiCl-LiCl LiH/Ni(H2)]、[LiAl/LiF-LiCl-LiBr LiH/Ni(H2)]、[Li/LiOH Li2SO4/Nb(H2)]、[Na/LiCl-KCl LiH/Nb(H2)]、[Na/LiCl-LiF/Nb(H2)]、[Na/NaCl-KCl/Nb(H2)]、[Na/NaCl-NaF/Nb(H2)]、[Na/NaBr-NaI/Nb(H2)]、[Na/NaBr-NaI/Fe(H2)]、[Na/NaI-NaNO3/Nb(H2)]、[K/LiCl-KCl/Nb(H2)]、[K/LiCl-LiF/Nb(H2)]、[K/NaCl-KCl/Nb(H2)]及[K/KCl-KF/Nb(H2)]。其他例示性電池為[Pt/C(H2)/HCl-LiCl-KCl/CB]、[Pt/C(H2)/HCl-LiCl-KCl/Pt/Ti]、[R-Ni/Celgard LP 30/CoO(OH)]、[Mg/Celgard LP 30/CoO(OH)]、[PdLi合金/Celgard LP 30/氫化物,諸如ZrH2]、[PdLi合金/LiCl-KCl/氫化物,諸如ZrH2]及[PtC(H2)/LiNO3/HNO3層夾碳石墨(CG)水溶液]。
其他例示性電池包含氫來源,諸如H2或氫化物及以下之群的組分:[LiAl/LiCl-KCl/Al]、[LiAl/LiF-LiCl/Al]、[LiAl/LiF-LiCl-LiBr/Al]、[LiSi/LiCl-KCl/LiAl]、[LiSi/LiCl-KCl/Al]、[LiSi/LiF-LiCl/LiAl]、[LiSi/LiF-LiCl/Al]、[LiSi/LiF-LiCl-LiBr/LiAl]、[LiSi/LiF-LiCl-LiBr/Al]、[LiPb/LiCl-KCl/LiAl]、[LiPb/LiCl-KCl/Al]、[LiPb/LiF-LiCl/LiAl]、[LiPb/LiF-LiCl/Al]、[LiPb/LiF-LiCl-LiBr/LiAl]、[LiPb/LiF-LiCl-LiBr/Al]、[LiPb/LiCl-KCl/LiSi]、[LiPb/LiF-LiCl/LiSi]、[LiPb/LiF-LiCl-LiBr/LiSi]、[LiC/LiCl-KCl/LiAl]、[LiC/LiCl-KCl/Al]、[LiC/LiF-LiCl/LiAl]、[LiC/LiF-LiCl/Al]、[LiC/LiF-LiCl-LiBr/LiAl]、[LiC/LiF-LiCl-LiBr/Al]、[LiC/LiCl-KCl/LiSi]、[LiC/LiF-LiCl/LiSi]、[LiC/LiF-LiCl-LiBr/LiSi]、[BiNa/NaCl-NaF/Bi]、[Na/NaF-NaCl-NaI/NaBi]、[BiK/KCl-KF/Bi]、[BiNa/NaCl-NaFNaH(0.02 mol%)/Bi]、[Na/NaF-NaCl-NaI NaH(0.02 mol%)/NaBi]、[BiK/KCl-KFKH(0.02 mol%)/Bi]、[LiAl/LiCl-KCl LiH(0.02 mol%)/Al]、[LiAl/LiF-LiClLiH(0.02 mol%)/Al]、[LiAl/LiF-LiCl-LiBrLiH(0.02 mol%)/Al]、[LiSi/LiCl-KCl LiH(0.02 mol%)/LiAl]、[LiSi/LiCl-KCl LiH(0.02 mol%)/Al]、[LiSi/LiF-LiCl LiH(0.02 mol%)/LiAl]、[LiSi/LiF-LiCl LiH(0.02 mol%)/Al]、[LiSi/LiF-LiCl-LiBr LiH(0.02 mol%)/LiAl]、[LiSi/LiF-LiCl-LiBr LiH(0.02 mol%)/Al]、[LiPb/LiCl-KCl LiH(0.02 mol%)/LiAl]、[LiPb/LiCl-KCl LiH(0.02 mol%)/Al]、[LiPb/LiF-LiCl LiH(0.02 mol%)/LiAl]、[LiPb/LiF-LiCl LiH(0.02 mol%)/Al]、[LiPb/LiF-LiCl-LiBr LiH(0.02 mol%)/LiAl]、[LiPb/LiF-LiCl-LiBr LiH(0.02 mol%)/Al]、[LiPb/LiCl-KCl LiH(0.02 mol%)/LiSi]、[LiPb/LiF-LiCl LiH(0.02 mol%)/LiSi]、[LiPb/LiF-LiCl-LiBr LiH(0.02 mol%)/LiSi]、[LiC/LiCl-KCl LiH(0.02 mol%)/LiAl]、[LiC/LiCl-KCl LiH(0.02 mol%)/Al]、[LiC/LiF-LiCl LiH(0.02 mol%)/LiAl]、[LiC/LiF-LiCl LiH(0.02 mol%)/Al]、[LiC/LiF-LiCl-LiBr LiH(0.02 mol%)/LiAl]、[LiC/LiF-LiCl-LiBr LiH(0.02 mol%)/Al]、[LiC/LiCl-KCl LiH(0.02 mol%)/LiSi]、[LiC/LiF-LiCl LiH(0.02 mol%)/LiSi]、[LiC/LiF-LiCl-LiBr LiH(0.02 mol%)/LiSi]及[K/KH KOH/含K之石墨]、[K/K-β氧化鋁/KH之石墨溶劑(諸如共溶鹽)溶液]、[K/K-玻璃/KH之石墨溶劑(諸如共溶鹽)溶液]、[Na/NaH NaOH/Na於石墨中]、[Na/Na-β氧化鋁/NaH之石墨溶劑(諸如共溶鹽)溶液]、[Na/Na-玻璃/NaH之石墨溶劑(諸如共溶鹽)溶液]、[Na/NaH NaAlEt4/Na於石墨中]、[Li/LiH LiOH/Li於石墨中]、[Li/Li-β氧化鋁/LiH之石墨溶劑(諸如共溶鹽)溶液]、[Li/Li-玻璃/LiH之石墨溶劑(諸如共溶鹽)溶液]、[Na/NaHNaAlEt4/NaNH2]、[Na/NaH NaOH/NaNH2]、[Na/Na-β氧化鋁/NaNH2]、[Na/Na-玻璃/NaNH2]、[K/KH KOH/KNH2]、[K/K-β氧化鋁/KNH2]及[K/K-玻璃/KNH2]。其他電池包含(i)至少一種以下之組的電極:Li3Mg、LiAl、Al、LiSi、Si、LiC、C、LiPb、Pb、LiTe、Te、LiCd、Cd、LiBi、Bi、LiPd、Pd、LiSn、Sn、Sb、LiSb、LiZn、Zn、Ni、Ti及Fe,(ii)包含LiF、LiCl、LiBr、LiI及KCl中至少兩者之混合物的共溶電解質,及(iii)氫來源,諸如H2氣體或氫化物,諸如LiH,其中適合之LiH濃度為約0.001至0.1莫耳%。在具有金屬胺化物(諸如NaNH2或LiNH2或金屬亞胺化物,諸如Li2NH)之實施例中,系統可用應用於半電池之NH3氣體封閉以維持與相應金屬及胺化物之平衡。
其他例示性電池可包含可支持原子H之載體,其中消耗之原子H係藉由向諸如以下之電池中添加H來置換:[LiAl/LiCl-LiF LiH(0.2 mol%)/NbC];[Li/LiCl-LiF LiH(0.2 mol%)/NbC]、[Li/LiCl-LiF/NbC]、[LiAl/LiCl-KCl LiH(0.2 mol%)/NbC];[Li/LiCl-KCl LiH(0.2 mol%)/NbC]、[Li/LiCl-KCl/NbC]、[LiAl/LiCl-LiF LiH(0.2 mol%)/TiC];[Li/LiCl-LiF LiH(0.2 mol%)/TiC]、[Li/LiCl-LiF/TiC]、[LiAl/LiCl-KCl LiH(0.2 mol%)/TiC];[Li/LiCl-KCl LiH(0.2 mol%)/TiC]及[Li/LiCl-KCl/NbC]。
電池進一步包含陽極及陰極之集電體,其中集電體可包含固體箔或網孔材料。陽極半電池之適合之未經塗佈集電體材料可選自以下之群:不鏽鋼、Ni、Ni-Cr合金、Al、Ti、Cu、Pb及Pb合金、耐火金屬及貴金屬。陰極半電池之適合之未經塗佈集電體材料可選自以下之群:不鏽鋼、Ni、Ni-Cr合金、Ti、Pb氧化物(PbOx)及貴金屬。或者,集電體可包含適合金屬箔,諸如Al,其具有將不會侵蝕且將保護上方所沈積之箔的薄鈍化層。可用於任一半電池中之例示性抗侵蝕層為TiN、CrN、C、CN、NiZr、NiCr、Mo、Ti、Ta、Pt、Pd、Zr、W、FeN及CoN。在一個實施例中,陰極集電體包含以TiN、FeN、C、CN塗佈之Al箔。塗層可任何此項技術中已知之任何方法實現。例示性方法為物理氣相沈積(諸如濺射)、化學氣相沈積、電沈積、噴霧沈積及層壓。
諸如觸媒、觸媒來源或H來源(諸如Li+、Li、LiH、H+或H-)之物質的化學勢或活性可藉由改變電極或電解質、添加氫化物或H2以引起氫化及添加與物質相互作用之其他化學物質來改變。舉例而言,陰極可為金屬或金屬氫化物,諸如氫化鈦或氫化鈮,其可對過量Li或LiH活性所致之失活具有抗性。在電解質中之LiH減小電壓的另一實施例中,陰極為比LiH更穩定之金屬氫化物。電解質中存在之LiH可與相應金屬反應以重整氫化物及Li。例示性氫化物為氫化鑭。例示性電池為[Li/LiCl-KCl/LaH2或LaH2-x]。其他適合之氫化物為稀土金屬氫化物,諸如La、Ce、Eu及Gd之氫化物、氫化釔及氫化鋯。顯示高電導率之其他適合之例示性氫化物為以下群中一或多者:CeH2、DyH2、ErH2、GdH2、HoH2、LaH2、LuH2、NdH2、PrH2、ScH2、TbH2、TmH2及YH2。在一個實施例中,增大氫化物及相應金屬中之至少一者之表面積以在電池操作期間引起較快反應速率。可將氫添加至陰極或陽極隔室之一或多者中。添加可呈氫氣形式,或氫可藉由滲過膜來傳遞。膜可包含氫化物之金屬。舉例而言,稀土金屬管,諸如鑭管可構成陰極,其中密封該管使得H2僅能藉由滲過該管來供應。在與電解質接觸之表面上形成氫化鑭。
包含陰極反應物及陽極反應物中之至少一者之金屬氫化物較佳為電導體。例示性導電氫化物為氫化鈦及氫化鑭。其他適合之導電氫化物為TiH2、VH、VH1.6、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、CrH、CrH2、NiH、CuH、YH2、YH3、ZrH2、NbH、NbH2、PdH0.7、LaH2、LaH3、TaH、鑭系氫化物:MH2(氟石)M=Ce、Pr、Nb、Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu;MH3(立方體)M=Ce、Pr、Nd、Yb;MH3(六方)M=Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu;錒系元素氫化物:MH2(氟石)M=Th、Np、Pu、Am;MH3(六方)M=Np、Pu、Am及MH3(立方體,複雜結構)M=Pa、U。在一個實施例中,電池陽極反應物包含Li來源且陰極反應物包含導電氫化物,其約如LiH一樣熱穩定或比其更穩定。半電池反應物可進一步包含任何種類載體或導電載體,諸如碳化物(諸如TiC)、硼化物(諸如TiB2或MgB2)、碳或其他載體(諸如TiCN)。適合之例示性鋰來源為Li金屬、鋰合金或鋰化合物。
例示性電池為[Li/LiCl-K Cl/LaH2]、[Li/LiCl-KCl/CeH2]、[Li/LiCl-KCl/EuH2]、[Li/LiCl-KCl/GdH2]、[Li/LiCl-KCl/YH2]、[Li/LiCl-KCl/YH3]、[Li/LiCl-KCl/ZrH2]、[Li/LiCl-KCl/LaH2 TiC]、[Li/LiCl-KCl/CeH2 TiC]、[Li/LiCl-KCl/EuH2 TiC]、[Li/LiCl-KCl/GdH2 TiC]、[Li/LiCl-KCl/YH2TiC]、[Li/LiCl-KCl/Y H3TiC]、[Li/LiCl-KCl/ZrH2 TiC]、[Li/熔融鹼金屬碳酸鹽電解質/氫化物,諸如ZrH2、TiH2、CeH2或LaH2]、[MLi/LiCl-KCl/LaH2]、[MLi/LiCl-KCl/CeH2]、[MLi/LiCl-KCl/EuH2]、[MLi/LiCl-KC1/GdH2]、[MLi/LiC1-KC1/YH2]、[MLi/LiC1-KC1/YH3]、[MLi/LiC1-KC1/ZrH2]、[MLi/LiC1-KC1/LaH2 TiC]、[MLi/LiC1-KC1/CeH2 TiC]、[MLi/LiC1-KC1/EuH2 TiC]、[MLi/LiC1-KC1/GdH2 TiC]及[MLi/LiC1-KC1/YH2 TiC]、[MLi/LiC1-KC1/YH3 TiC]、[MLi/LiC1-KC1/ZrH2 TiC](M為一或多種元素,諸如金屬,其與Li形成合金或化合物且充當Li來源)。適合之例示性合金MLi為Li3Mg、LiA1、LiSi、LiB、LiC、LiPb、LiTe、LiSe(諸如Li2Se)、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金,諸如氧化物、氮化物、硼化物及矽化物,及混合金屬-Li合金。適合之例示性化合物MLi為LiNH2、Li2NH、Li3N、Li2S、Li2Te、Li2Se、鋰層夾碳及鋰層夾硫族化物。
電解質可為觸媒或觸媒來源(諸如Li或LiH)提供有利活性,其防止低能量氫反應失活,其中失活可由觸媒或觸媒來源(諸如Li或LiH)之過量活性造成。在一個實施例中,可改變混合物之兩種或兩種以上鹽之比率以降低諸如LiH之第一氫化物之活性。或者,可添加另一金屬或另一金屬之化合物,其形成第二氫化物以降低第一氫化物之活性。舉例而言,諸如K之鹼金屬或其鹽(諸如鹼金屬鹵化物,諸如KC1,其具有熱分解溫度較低之相應第二氫化物,諸如KH)可添加以將平衡自第一氫化物偏移至第二氫化物。第二氫化物可熱分解以釋放氫。氫可藉由抽吸來再循環。在另一實施例中,可添加相同或另一金屬之氫氧化物,諸如LiOH或KOH,其可催化消除第一氫化物,諸如LiH。例示性反應為
LiH+K→Li+KH→K+1/2H2 (234)
LiH+KOH→LiOH+KH(-30.1千焦/莫耳)→K+1/2H2 (235)
K+LiOH→KOH+Li(+62.9千焦/莫耳) (236)
在另一實施例中,可改變電池溫度以改變諸如觸媒或觸媒來源(諸如Li或LiH)之物質的活性以控制低能量氫反應及電池電力。可控制溫度使得在電極之溫度高於其他。舉例而言,陰極可經選擇性加熱以相對於陽極提高其溫度以有利地影響諸如Li或LiH之物質的活性以在高速率下傳播低能量氫反應。
在一個實施例中,諸如Li或LiH之觸媒或觸媒來源的活性可藉由使用與觸媒或觸媒來源形成合金或化合物之陰極來控制。舉例而言,陰極可包含與Li形成合金之Sn或Sb。陽極可為Li來源,諸如Li或不同合金,其氧化電位高於陰極,諸如LiAl。例示性電池為Li/LiCl-KCl LiH/LiSn。
在一個實施例中,待限制之物質(諸如LiH)的活性隨溫度減小,且其活性藉由電解質降溫而降低。較低活性可由共溶鹽中物質之溶解度隨溫度降低造成。可將鹽維持在約其熔點下。在一個實施例中,活性待控制之物質為諸如Li之金屬,且其活性藉由使其與氫反應形成具有有限溶解度且自電解質沈澱出之諸如LiH之氫化物來降低。因此,諸如Li之金屬可藉由氫噴射來部分移除。反應可藉由電解逆轉以使諸如Li及氫之金屬再生。諸如Li之金屬的活性可藉由選擇具有較低Li溶解度(諸如共溶電解質LiF-LiCl較之LiCl-KCl)之電解質來降低。在一個實施例中,較佳陰極為釩及鐵,陽極可為開放式Li金屬陽極。氫壓可較高以降低Li濃度。陰極可具有施加H2或經氫化,隨後接觸溶解於電解質中之Li。過量Li可藉由與供至電池之氫反應來轉化為LiH。
在一個實施例中,諸如金屬或氫化物之物質的活性係藉由使用金屬或氫化物緩衝系統來控制。在金屬為Li之一個實施例中,氫化物為LiH,且金屬或氫化物活性中之至少一者係藉由包含胺化物、亞胺化物或氮化物中之至少一者之緩衝液來控制。反應混合物可包含控制活性之Li、LiH、LiNH2、Li2NH、Li3N、H2及NH3之群中一或多者。系統可包含以下之混合物:金屬,諸如鹼金屬,及鹼土金屬,諸如Li、Na及K,與Li反應或形成化合物之元素或化合物,諸如硼、Mg、Ca、鋁、Bi、Sn、Sb、Si、S、Pb、Pd、Cd、Pd、Zn、Ga、In、Se及Te、LiBH4及LiAlH4,氫化物,諸如鹼金屬及鹼土金屬氫化物,諸如LiH、NaH、KH及MgH2,及胺化物、亞胺化物及氮化物或包含以下中之至少一者:另一金屬之胺化物、亞胺化物或氮化物,諸如NaNH2、KNH2、Mg(NH2)2、Mg3N2,及與Li反應形成Li金屬-擬金屬合金(諸如氧化物、氮化物、硼化物及矽化物或混合金屬-Li合金)之元素。系統可進一步包含LiAlH4及Li3AlH6或類似氫化物,諸如Na及K鋁氫化物及鹼金屬硼氫化物。例示性適合之氫化物為LiAlH4、LiBH4、Al(BH4)3、LiAlH2(BH4)2、Mg(AlH4)2、Mg(BH4)2、Ca(AlH4)2、Ca(BH4)2、NaAlH4、NaBH4、Ti(BH4)3、Ti(AlH4)4、Zr(BH4)3及Fe(BH4)3。反應混合物可包含氫化物混合物以控制活性。例示性混合物為LiH與另一鹼金屬氫化物,諸如NaH或KH。混合物可包含鹼土金屬或氫化物。例示性混合氫化物為LiMgH3、NaMgH3及KMgH3。反應可包含反應物與物質,諸如形成氫化物(諸如LiBH4)之反應物,其中反應物可為硼。活性可藉由控制電池溫度及壓力中之至少一者來控制。在一個實施例中,在藉由控制氫化物相對於金屬之莫耳百分比來控制活性之溫度及壓力下操作電池。氫化物之分解溫度及壓力可藉由使用混合氫化物來改變。活性可藉由控制氫壓來控制。可控制電解質、任何半電池隔室及任何可透膜來源或其他電池組分中之氫壓。例示性電池為[LiAl/LiCl-KCl LiH LiNH2/Ti]、[LiAl/LiCl-KCl LiH LiNH2/Nb]、[LiAl/LiCl-KCl LiH LiNH2/Fe]、[LiAl/LiCl-KCl LiH Li2NH/Ti]、[LiAl/LiCl-KCl LiH Li2NH/Nb]、[LiAl/LiCl-KCl LiH Li2NH/Fe]、[LiAl/LiCl-KCl LiH Li3N/Ti]、[LiAl/LiCl-KCl LiH Li3N/Nb]、[LiAl/LiCl-KCl LiH Li3N/Fe]、[LiAl/LiCl-KCl LiH LiNH2 Li2NH/Ti]、[LiAl/LiCl-KCl LiH LiNH2 Li2NH/Nb]、[LiAl/LiCl-KCl LiH LiNH2 Li2NH/Fe]、[LiAl/LiCl-KCl MgH2 LiH LiNH2/Ti]、[LiAl/LiCl-KCl MgH2 LiH LiNH2/Nb]及[LiAl/LiCl-KCl MgH2 LiH LiNH2/Fe]。陰極可包含與Li形成合金之金屬、元素、合金或化合物。陰極可為藉由滲透之氫來源。陰極反應物可包含與Li形成合金之金屬、元素、合金或化合物。反應物可包含粉末。例示性陰極反應物為可與Li形成合金之Al、Pb、Si、Bi、Sb、Sn、C及B粉。在一個實施例中,至少一種H來源可為金屬氫化物,其可溶解於電解質中且可為需要控制其活性之物質。氫化物可為LiH,其可與陰極或陰極反應物反應形成合金且亦可在陰極或陰極反應物處釋放H。
除將胺化物、亞胺化物及氮化物添加至電解質中外,反應物或物質之活性亦可如下改變:添加磷化物、硼化物、氧化物、氫氧化物、矽化物、氮化物、砷化物、硒化物、碲化物、銻化物、碳化物、硫化物及氫化物之群的至少一種化合物。在一個實施例中,諸如Li或LiH或其他觸媒來源或觸媒(諸如K、KH、Na及NaH)之物質的活性係藉由使用包括可鍵結於物質之陰離子的緩衝液來控制。緩衝液可包含相對離子。相對離子可為以下之群中之至少一者:鹵離子、氧離子、磷離子、硼離子、氫氧根、矽離子、氮離子、碑離子、硒離子、碲離子、銻離子、碳離子、硫離子、氫離子、碳酸根、碳酸氫根、硫酸根、硫酸氫根、磷酸根、磷酸氫根、磷酸二氫根、硝酸根、亞硝酸根、高錳酸根、氯酸根、過氯酸根、亞氯酸根、過亞氯酸根、次氯酸根、溴酸根、過溴酸根、亞溴酸根、過亞溴酸根、碘酸根、過碘酸根、亞碘酸根、過亞碘酸根、鉻酸根、重鉻酸根、碲酸根、硒酸根、碑酸根、矽酸根、硼酸根、氧化鈷、氧化碲及其他氧陰離子,諸如以下之氧陰離子:鹵素、P、B、Si、N、As、S、Te、Sb、C、S、P、Mn、Cr、Co及Te。至少一個CIHT半電池隔室可含有相對離子之化合物,電池可包含鹽橋,且鹽橋可對相對離子具有選擇性。
在諸如LiH之物質抑制低能量氫反應之情況下,其活性可藉由使用反應混合物之降低其活性之組分(諸如載體)來降低。活性可藉由多種作用中一或多者來降低。其可藉由消耗物質之反應來移除。舉例而言,碳載體可層夾Li以消耗形成層夾化合物之Li或LiH中一或多者。可將物質自低能量氫反應物物理或熱力學排除。舉例而言,由於在電解質中比吸附、層夾或存在於載體中更有利之溶解度,因此Li或LiH可分配於載體(諸如碳或碳化物)上方之電解質中。在一個例示性實施例中,LiH可能不會輕易層夾或吸附於碳上,使得其不會存在以抑制低能量氫反應。
或者,鹽橋可對相對離子之陽離子具有選擇性,其中陽離子可為諸如觸媒之物質的來源。Li+、Na+及K+、觸媒Li、NaH及K來源之適合鹽橋分別為β氧化鋁分別與Li+、Na+及K+錯合。Li+鹽橋或固體電解質可為鹵化物穩定化LiBH4,諸如LiBH4-LiX(X=鹵離子)、Li+浸漬Al2O3(Li-β-氧化鋁)、基於Li2S之玻璃、Li0.29+dLa0.57TiO3(d=0至0.14)、La0.51Li0.34TiO2.94、Li9AlSiO8、Li14ZnGe4O16(LISICON)、LixM1-yM'yS4(M=Si、Ge且M'=P、Al、Zn、Ga、Sb)(硫基-LISICON)、Li2.68PO3.73N0.14(LIPON)、Li5La3Ta2O12、Li1.3Al0.3Ti1.7(PO4)3、LiM2(PO4)3、MIV=Ge、Ti、Hf及Zr、Li1+xTi2(PO4)3(0 x 2)LiNbO3、矽酸鋰、鋁酸鋰、鋁矽酸鋰、固體聚合物或凝膠、二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鋰(Li2O)、Li3N、Li3P、氧化鎵(Ga2O3)、磷氧化物(P2O5)、氧化矽鋁,及其固溶體及此項技術中已知之其他者。例示性電池為[Li/Li固體電解質/R-Ni]。傳導性可用諸如Li3PO4或Li3BO3.之Li鹽增強。Li玻璃亦可充當Li+鹽橋。舉例而言,浸透1 M LiPF6電解質之1:1碳酸二甲酯(DMC)/碳酸伸乙酯(EC)溶液(亦稱為LP 30)或1 M LiPF6之1:1碳酸二乙酯(DEC)/碳酸伸乙酯(EC)溶液(亦稱為LP 40)的Whatman GF/D硼矽玻璃-纖維薄片可充當隔板/電解質。鹵化物穩定化LiBH4甚至在室溫下亦可充當快Li+離子導體。鹵化物可為LiF、LiCl、LiBr或LiI。隔板可為膜,諸如單層或多層聚烯烴或芳族聚醯胺。該膜可在陽極與陰極之間提供障壁且可進一步使鋰離子自電池一側交換至另一側可行。適合之膜隔板為聚丙烯(PP)、聚乙烯(PE)或三層(PP/PE/PP)電解膜。特定例示性膜為厚度為25 μm且孔隙率為0.37之Celgard 2400聚丙烯膜(Charlotte,NC)。電解質可為1 M LiPF6電解質之1:1碳酸二甲酯(DMC)/碳酸伸乙酯(EC)溶液。另一適合之隔板/電解質為Celgard 2300及1 M LiPF6電解質之30:5:35:30 v/v EC-PC-EMC-DEC溶劑溶液。其他適合溶劑及電解質為鋰螯合硼酸根陰離子電解質,諸如鋰[雙(乙二酸酯基)硼酸鹽]、二氧雜環戊烷、四氫呋喃衍生物、六甲磷醯胺(HMPA)、二甲氧乙烷(DME)、1,4-苯并二噁烷(BDO)、四氫呋喃(THF)及過氯酸鋰之二氧雜環戊烷(諸如1,3-二氧雜環戊烷)溶液。熟習此項技術者已知之適於操作基於Li之陽極的其他溶劑為適合的。此等溶劑介於有機物(諸如碳酸伸丙酯)至無機物(諸如亞硫醯氯及二氧化硫)之範圍內且通常具有極性基,諸如羰基、腈基、磺醯基及醚基中之至少一者。溶劑可進一步包含添加劑以提高溶劑穩定性或提高低能量氫反應程度及速率中之至少一者。
在實施例中,有機碳酸鹽及酯可包含電解質溶劑。適合溶劑為碳酸伸乙酯(EC)、碳酸伸丙酯(PC)、碳酸伸丁酯(BC)、γ-丁內酯(γBL)、δ-戊內酯(δVL)、N-甲基嗎啉-N-氧化物(NMO)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二乙二甲酯(EMC)、乙酸乙酯(EA)、丁酸甲酯(MB)及丁酸乙酯(EB)。在實施例中,有機醚可包含電解質溶劑。適合溶劑為二甲氧甲烷(DMM)、1,2-二甲氧乙烷(DME)1,2-二乙氧乙烷(DEE)、四氫呋喃(THF)、2-甲基-四氫呋喃(2-Me-THF)、1,3-二氧雜環戊烷(1,3-DL)、4-甲基-1,3-二氧雜環戊烷(4-Me-1,3-DL)、2-甲基-1,3-二氧雜環戊烷(2-Me-1,3-DL)。鋰鹽可構成電解質溶質。適合之溶質為四氟硼酸鋰(LiBF4)、六氟磷酸鋰(LiPF6)、六氟砷酸鋰(LiAsF6)、過氯酸鋰(LiClO4)、三氟甲磺酸鋰(Li+CF3SO3 -)、亞胺化鋰(Li+[N(SO2CF3)2]-),及雙全氟乙烷磺醯亞胺化鋰(lithium beti)(Li+[N(SO2CF2CF3)2]-)。在實施例中,對於整體特性,添加效能提高添加劑,諸如12-冠-4、15-冠-5、氮雜醚、硼酸鹽、硼烷及酸鹽。在實施例中,電解質可進一步包含陽極固體電解質界面(SEI)添加劑,諸如CO2、SO2、12-冠-4、18-冠-6、兒茶酚碳酸酯(CC)、碳酸伸乙烯酯(VC)、亞硫酸伸乙酯(ES)、α-溴-γ-丁內酯、氯甲酸甲酯、2-乙醯氧基-4,4-二甲基-4-丁內酯、丁二醯亞胺、N-苯甲氧基羰氧基丁二醯亞胺及肉桂酸甲酯。在實施例中,電解質可進一步包含陰極表面層添加劑,諸如I-/I2、正丁基二茂鐵、1,1'-二甲基二茂鐵、二茂鐵衍生物,諸如1,2,4-三唑之Na鹽、諸如咪唑之Na鹽、1,2,5-三氰基苯(TCB)、四氰基對醌二甲烷(TCNQ)、取代苯、焦碳酸酯及苯基環己烷。在實施例中,電解質可進一步包含新穎非水溶劑,諸如環狀碳酸酯、γBL、直鏈酯、氟化酯、氟化碳酸酯、氟化胺基甲酸酯、氟化醚、二醇硼酸酯(BEG)、碸及磺醯胺。在實施例中,電解質可進一步包含新穎鋰鹽,諸如芳族硼酸鋰、非芳族硼酸鋰、螯合磷酸鋰、LiFAP、偶氮化鋰(Li azolate)及咪唑化鋰(Li imidazolide)。在一個實施例中,諸如分子低能量氫之低能量氫產物可溶於諸如DMF之溶劑中。例示性電池為[Li/包含至少一些以下之溶劑:DMF LiPF6/CoO(OH)]。
可調節諸如觸媒、觸媒來源或H來源(諸如Li+、Li、LiH、H+或H-)之物質的化學勢或活性以有助於形成低能量氫反應物及低能量氫之電化學反應、電子輸送及離子輸送中之至少一者。調節可為由在與至少一個半電池之外部反應物接觸的導電腔室內存在至少一種內部反應物或物質引起之外部電位變化。導電腔室可為電池之電極,諸如陰極或陽極。內部反應物或物質可為氫化物,諸如鹼金屬氫化物,諸如KH;鹼土金屬氫化物,諸如MgH2;過渡金屬氫化物,諸如TiH2;內過渡元素氫化物,諸如NbH2;或貴金屬氫化物,諸如Pd或Pt氫化物。包含陰極或陽極之傳導室可含有金屬氫化物。內部反應物或物質可為金屬,諸如鹼金屬,諸如K;鹼土金屬,諸如Mg或Ca;過渡金屬,諸如Ti或V;內過渡元素金屬,諸如Nb;貴金屬,諸如Pt或Pd、Ag;化合物或擬金屬。例示性化合物為金屬鹵化物、氧化物、磷化物、硼化物、氫氧化物、矽化物、氮化物、砷化物、硒化物、碲化物、銻化物、碳化物、硫化物、氫化物、碳酸鹽、碳酸氫鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、磷酸氫鹽、磷酸二氫鹽、硝酸鹽、亞硝酸鹽、高錳酸鹽、氯酸鹽、過氯酸鹽、亞氯酸鹽、過亞氯酸鹽、次氯酸鹽、溴酸鹽、過溴酸鹽、亞溴酸鹽、過亞溴酸鹽、碘酸鹽、過碘酸鹽、亞碘酸鹽、過亞碘酸鹽、鉻酸鹽、重鉻酸鹽、碲酸鹽、硒酸鹽、碑酸鹽、矽酸鹽、硼酸酯、氧化鈷、氧化碲,且具有其他氧陰離子,諸如以下之氧陰離子;鹵素、P、B、Si、N、As、S、Sb、C、S、P、Mn、Cr、Co及Te。內部反應物或物質可為以下中之至少一者:金屬,諸如In、Ga、Te、Pb、Sn、Cd或Hg;化合物,諸如氫氧化物或硝酸鹽;元素,諸如P、S及I;及擬金屬,諸如Se、Bi及As,其在電池溫度下可為液體。熔融金屬可提供與腔室之電接觸。其他導體可與諸如以下中之至少一者之內部反應物或物質混合:金屬粉或基質、熔融金屬、碳化物(諸如TiC)、硼化物(諸如MgB2)或碳(諸如碳黑)。例示性電池為[Li鐘/LiF-LiC1/Fe(Pd)(H2)]、[LiA1/LiF-LiC1/Fe(Pd)(H2)]、[Li鐘/LiF-LiC1/Ni(Pd)(H2)]、[LiA1/LiF-LiC1/Ni(Pd)(H2)]、[Li鐘/LiF-LiC1/Ni(Cd)(H2)]、[LiA1/LiF-LiC1/Ni(Cd)(H2)]、[Li鐘/LiF-LiC1/Ni(Se)(H2)]、[LiA1/LiF-LiC1/Ni(Se)(H2)]、[Li鐘/LiF-LiC1/Ti(Pd)(H2)]、[LiA1/LiF-LiC1/Ti(Pd)(H2)]、[Li鐘/LiF-LiC1/Ti(Cd)(H2)]、[LiA1/LiF-LiC1/Ti(Cd)(H2)]、[Li鐘/LiF-LiC1/Ti(Se)(H2)]、[LiA1/LiF-LiC1/Ti(Se)(H2)]、[Li鐘/LiF-LiC1/Ti(TiCBi)(H2)]及[LiA1/LiF-LiC1/Ti(TiCBi)(H2)],其中()表示在管或腔室內。
包含陽極之傳導室可含有金屬。在一個實施例中,陰極內諸如KH、TiH及NbH中之至少一者之內部氫化物的電位係與在8 mol%飽和下之LiH的Li活性匹配以容許低能量氫反應。內部氫化物之電位可藉由控制氫化程度來控制。後者可藉由控制所施加氫氣之壓力來控制。另外,可藉由選擇金屬或含有內部反應物或物質之其他導電材料將外部物質之化學勢或活性調節至所需值。所需電位或活性達成低能量氫反應之高速率。在一個實施例中,基於不包括低能量氫形成之化學,所需電位對應於約零之理論電池電壓。約零之範圍可在1 V內。金屬或導電材料可選自以下之群:金屬、金屬碳化物(諸如TiC)、金屬硼化物(諸如TiB2及MgB2)、金屬氮化物(諸如氮化鈦)及包含以下之清單之元素的彼等元素或材料:鋁、銻、鋇、鉍、硼、鎘、鈣、碳(石墨)、鈰、銫、鉻、鈷、銅、鏑、鉺、銪、釓、鎵、鍺、金、鉿、鈥、銦、銥、鐵、鑭、鉛、鋰、鎦、鎂、錳、汞、鉬、釹、鎳、鈮、鋨、鈀、磷、鉑、鉀、鐠、鉕、鏷、錸、銠、銣、釕、釤、鈧、硒、矽、銀、鈉、鍶、硫、鉭、鎝、碲、鋱、銩、錫、鈦、鎢、釩、鐿、釔、鋅及鋯。金屬可來自以下之清單:鋁、銻、鋇、鉍、鎘、鈣、鈰、銫、鉻、鈷、銅、鏑、鉺、銪、釓、鎵、鍺、金、鉿、鈥、銦、銥、鐵、鑭、鉛、鋰、鎦、鎂、錳、汞、鉬、釹、鎳、鈮、鋨、鈀、鉑、鉀、鐠、鉕、鏷、錸、銠、銣、釕、釤、鈧、硒、矽、銀、鈉、鍶、鉭、鎝、碲、鋱、銩、錫、鈦、鎢、釩、鐿、釔、鋅及鋯。在一個實施例中,傳導隔室(諸如中空H-可透陰極或陽極)中之氫化物擴散通過壁進入半電池或電解質中。氫化物可藉由將未反應之氫氣抽入隔室中再生。或者,腔室可經冷卻或使其冷卻使得自發形成氫化物。可使氫通過氣體管線流至內部反應物或物質,諸如相應金屬,自至少一個半電池隔室通過閥流至傳導室內,其中使其反應以使氫化物再生。
電解質可另外包含金屬或氫化物,諸如鹼金屬或鹼土金屬或氫化物。適合之鹼土金屬及氫化物分別為Mg及MgH2。至少一個電極可包含載體,諸如TiC、YC2、Ti3SiC2及WC,且半電池可進一步包含觸媒(諸如K、NaH),或可為來自Li+遷移之Li,還原劑(諸如Mg或Ca),載體(諸如TiC、YC2、Ti3SiC2或WC),氧化劑(諸如LiCl、SrBr2、SrCl2或BaCl2),及H來源(諸如氫化物,諸如R-Ni、TiH2、MgH2、NaH、KH或LiH)。氫可滲入半電池隔室之壁中以形成觸媒或充當H來源。滲透H之來源可來自H-氧化。
在一個實施例中,Mg2+充當表1中給出之反應的觸媒。Mg2+來源可為陰極或陽極反應物或電解質。電解質可為熔鹽,諸如氫化物離子導體,諸如包含至少一種鎂鹽(諸如鹵化物,諸如碘化物)之共溶混合物。電解質可為水溶液,諸如鹵化鎂或其他可溶鎂鹽水溶液。例示性電池為[Li3Mg/MgI2或MgX2-MX'或MX'2(X、X'=鹵離子,M=鹼金屬或鹼土金屬)/CeH2、TiH2或LaH2]及[R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2/至少一種鎂鹽,諸如MgI2、MgSO4及Mg(NO3)2及MOH(M=鹼金屬)/碳,諸如CB、PtC、PdC]。
在CIHT電池、諸如Mg、Ca或Mg之塊體觸媒加載體,或Ca加載體之一個實施例中,其中適合之載體選自TiC、Ti3SiC2、WC、TiCN、MgB2、B4C、SiC及YC2,包含陽極隔室之還原劑。電解質可包含傳導氫化物離子之諸如共溶混合物之鹽。陰極及視情況選用之陽極隔室可包含氫可透膜。可將氫供至陰極隔室,使得其滲過膜且形成氫化物離子,該等氫化物離子遷移通過電解質至陽極隔室中,其中其可氧化為H。H可擴散通過陽極膜且與塊體觸媒反應形成低能量氫。在CIHT電池之另一實施例中,鹼金屬或鹼金屬氫化物包含觸媒或觸媒來源,且陽極反應混合物可進一步包含以下中之至少一者:還原劑,諸如鹼土金屬,諸如Mg或Ca,及載體,其中適合之載體係選自TiC、Ti3SiC2、WC、TiCN、MgB2、B4C、SiC及YC2。此反應混合物可包含陽極隔室之還原劑。電解質可包含傳導氫化物離子之諸如共溶混合物之鹽。在一個實施例中,電解質包含可傳導氫化物離子之熔融鹼金屬氫氧化物,諸如KOH。陰極及視情況選用之陽極隔室可包含氫可透膜。可將氫供至陰極隔室,使得其滲過膜且形成氫化物離子,該等氫化物離子遷移通過電解質至陽極隔室中,其中其可氧化為H。H可擴散通過陽極膜且與觸媒反應形成低能量氫。或者,可使H與在陰極或陽極膜或在電解質中形成或存在之觸媒反應。
在一個實施例中,鹽橋包含高傳導氫化物離子之固體。鹽橋亦可充當電解質。鹽橋及電解質中之至少一者可包含以下之混合物:氫化物,諸如鹼金屬或鹼土金屬氫化物,諸如MgH2或CaH2,鹵化物,諸如鹼金屬或鹼土金屬鹵化物,諸如LiF,及基質材料,諸如Al2O3粉。可燒結混合物,其中燒結可在H2氛圍中。或者,鹽橋及視情況選用之電解質為液體,諸如熔鹽,其中陰極及陽極半電池反應物中之至少一者不溶於鹽橋或電解質中。熔融氫化物導體鹽橋之實例為含LiH之LiCl/KCl共溶熔鹽。例示性低能量氫反應物為觸媒來源及氫來源(諸如NaH或KH)、載體(諸如TiC、C、Pd/C及Pt/C),及鹼土金屬氫化物(諸如MgH2)或其他熱再生氫化物,諸如LiH、MBH4及MAlH4(M=Li、Na、K、Rb、Cs)中之至少一者。半電池隔室可藉由電絕緣隔板分隔及連接。隔板亦可充當鹽橋之載體。鹽橋可包含熔鹽由隔板支撐。隔板可為MgO或BN纖維。後者可作為編織或非編織氈。在一個實施例中,觸媒或觸媒來源及氫來源(諸如NaH或KH)實質上不溶性於鹽橋中。可將各半電池反應混合物擠壓成斑塊(plaque)且連接至陽極及陰極之集電體。斑塊可用至少一個穿孔薄片(諸如金屬板)固定。或者,隔板可對H可透,其中H-在陰極半電池界面反應形成H,H穿過隔板且在陽極半電池界面形成H-。藉由形成H輸送H-之適合隔板為耐火鹼金屬,諸如V、Nb、Fe、Fe-Mo合金、W、Rh、Ni、Zr、Be、Ta、Rh、Ti、Th及稀土金屬以及貴金屬及合金,諸如Pd及Pd/Ag合金。構成H膜之金屬可經偏壓以提高在界面之H-/H轉化活性。活性亦可藉由使用濃度梯度提高。
在一個實施例中,CIHT電池包含陰極隔室及陽極隔室,其中兩個隔室均可含有至少一種相同反應物,但陽極隔室僅含有一或多種將低能量氫反應維持在有利速率下以在電池之間產生電壓所需的選擇性反應物。陽極與陰極隔室係藉由鹽橋接觸,該鹽橋為離子導體,但實質上為電子絕緣體。在一個實施例中,鹽橋對氫化物離子傳導性具有選擇性。在一個實施例中,鹽橋可使反應物材料(除選擇性反應物外)在隔室中遷移或交換。在一個實施例中,陽極隔室含有觸媒或觸媒來源及氫來源,諸如NaH、KH或至少一種H;視情況選用之還原劑,諸如鹼土金屬或氫化物,諸如Mg及MgH2;及一或多種選擇性反應物,諸如至少一種載體,其亦可充當氫解離體。載體可包含碳、碳化物或硼化物。適合之碳、碳化物及硼化物為碳黑、TiC、Ti3SiC2、TiCN、SiC、YC2、TaC、Mo2C、WC、C、HfC、Cr3C2、ZrC、VC、NbC、B4C、CrB2、ZrB2、GdB2、MgB2及TiB2。亦可充當氫解離體之適合載體為Pd/C、Pt/C、Pd/MgO、Pd/Al2O3、Pt/MgO及Pt/Al2O3。半電池隔室可藉由亦可充當鹽橋載體之電絕緣隔板分隔及連接。鹽橋可包含熔鹽由隔板支撐。熔鹽可為電解質、包含氫化物之電解質及溶解於電解質中之氫化物中之至少一者。或者,鹽橋係經對選擇性反應物不可透之隔板替代。隔板可對陽極隔室或陰極隔室反應混合物中任一者之一或多種離子或化合物可透,而對選擇性反應物不可透。在一個實施例中,隔板對載體不可透。隔板可為MgO或BN纖維。後者可作為編織或非編織氈。由於僅包含選擇性反應物之陽極隔室反應物及隔板或鹽橋對選擇性反應物之不透性,因此形成電離觸媒之低能量氫反應係在陽極隔室中選擇性形成。
在一個實施例中,離子及電子輸送使得低能量氫反應物在不為陰極或陽極隔室中之至少一者之區域中形成。低能量氫反應物可在電解質中形成,使得低能量氫反應出現於電解質、鹽橋、電解質與鹽橋之界面、電解質-陰極界面及陽極-電解質界面中至少一個位置。陰極可包含氫可透膜,諸如鎳箔或鎳管或多孔鎳電極,且電解質可包含輸送氫化物離子(諸如溶解於LiCl-KCl中之LiH)之共溶鹽。氫可滲過膜,且諸如Li+或K+之觸媒離子可在電解質界面還原為諸如Li或K之觸媒,使得在界面形成Li或K及H且其進一步反應形成低能量氫。在此情況下,還原電位提高。在一個實施例中,LiCl-KCl濃度為約58.5+41.2 mol%,熔融溫度為約450℃,且LiH濃度為約0.1 mol%或0.1 mol%以下。在其他實施例中,LiH濃度可為至約8.5%之飽和極限的任何所需莫耳百分比。在另一例示性實施例中,電解質可包含LiH+LiF+KF或NaF及視情況選用之載體,諸如TiC。其他適合電解質為鹼金屬氫化物及鹼金屬及鹼土金屬硼氫化物之混合物,其中電池反應可為金屬交換。適合混合物為以下之共熔混合物:熔融溫度為約503℃之約43+57 mol%之NaH-KBH4、熔融溫度為約390℃之約66+34 mol%之KH-KBH4、熔融溫度為約395℃之約21+79 mol%之NaH-NaBH4、熔融溫度為約103℃之約53+47 mol%之KBH4-LiBH4、熔融溫度為約213℃之約41.3+58.7 mol%之NaBH4-LiBH4,及熔融溫度為約453℃之約31.8+68.2 mol%之KBH4-NaBH4,其中混合物可進一步包含鹼金屬或鹼土金屬氫化物,諸如LiH、NaH或KH。適合之氫化物濃度為0.001至10 mol%。例示性電池為[K/KH KBH4-NaBH4/Ni]、[Na/NaH NaBH4-LiBH4/Ni]、[LiAl/LiH KBH4-LiBH4/Ni]、[K/KBH4-NaBH4/Ni]、[Na/NaBH4-LiBH4/Ni]及[LiAl/KBH4-LiBH4/Ni]。氫化鋁可置換硼氫化物。
電解質可包含不為LiH之觸媒或觸媒來源,及其他適合電解質,諸如KH或NaH,與以下之一:NaBr+NaI、KOH+KBr、KOH+KI、NaH+NaAlEt4、NaH+NaAlCl4、NaH+NaAlCl4+NaCl、NaH+NaCl+NaAlEt4及其他鹽,諸如鹵化物。至少一種鹽之陽離子可為觸媒或觸媒來源之陽離子。在一個實施例中,觸媒及H來源可為藉由Cl-或H氧化所形成之HCl。Cl-可來自電解質。
熱電池之一個實施例包含引起催化反應局部定位以局部產生離子及電子之反應混合物分配。分配反應物使得電池中之第一區域僅含有一或多種將低能量氫反應維持在有利速率下以在電池之此至少一個第一區與至少一個第二區之間產生電壓所需的選擇性反應物。電池在一個實施例中包含傳導壁或可包含傳導電路。電子流可因電壓而流經電池壁或電路。電子減少第二區中之反應物,諸如氫化物,以產生陰離子,諸如氫化物離子。陰離子可自第二區遷移至第一區以形成電路。遷移可通過溶劑或熔鹽。熔鹽可為電解質、包含氫化物之電解質及溶解於電解質中之氫化物中之至少一者。隔板或鹽橋可維持第一區中之選擇性反應物。隔板或鹽橋亦可維持需要分隔之其他反應物的分隔。隔板或鹽橋可對氫化物離子具有選擇性。
在一個例示性實施例中,陽極與陰極反應物相同,但陽極隔室或區域僅含有載體。不需要鹽橋且實體隔板及離子導體可視情況將載體限於陰極隔室或區域中。舉例而言,陽極及陰極反應混合物包含NaH或KH及Mg,且陽極反應混合物進一步包含TiC。在其他例示性實施例中,兩種電池之反應混合物均包含以下中一或多者:觸媒、觸媒來源及氫來源,諸如以下中之至少一者:Li、LiH、Na、NaH、K、KH、Rb、RbH、Cs、CsH、Mg、MgH2,及至少一種H,及以下中之至少一者:還原劑或氫化物交換反應物,諸如鹼土金屬或氫化物,諸如Mg、LiH、MBH4、MAlH4(M=Li、Na、K、Rb、Cs)及M2(BH4)2(M=Mg、Ca、Sr、Ba)。載體僅定位於陽極隔室或區域。亦可充當氫解離體之適合載體包括碳、碳化物或硼化物。適合碳、碳化物及硼化物包括碳黑、TiC、Ti3SiC2、YC2、TiCN、MgB2、SiC、TaC、Mo2C、WC、C、B4C、HfC、Cr3C2、ZrC、CrB2、VC、ZrB2、NbC及TiB2。亦可充當氫解離體之適合載體包括Pd/C、Pt/C、Pd/MgO、Pd/Al2O3、Pt/MgO及Pt/Al2O3。適合之陽極反應混合物包括NaHPd/Al2O3 TiC+H2、NaH NaBH4 TiC、NaH KBH4 TiC、NaH NaBH4 Mg TiC、NaH KBH4 Mg TiC、KH NaBH4 TiC、KH KBH4 TiC、KH NaBH4 Mg TiC、KH KBH4 Mg TiC、NaH RbBH4 Mg TiC、NaH CsBH4 Mg TiC、KH RbBH4 Mg TiC、KH CSBH4 Mg TiC、NaH Mg TiC Mg(BH4)2、NaH Mg TiC Ca(BH4)2、KH Mg TiC Mg(BH4)2、KH Mg TiC Ca(BH4)2、NaH Mg TiC、KH Mg TiC、LiH Mg TiC、NaH Mg Pd/C、KH Mg Pd/C、LiH Mg Pd/C、NaH Mg Pt/C、KH Mg Pt/C、NaH Mg LiCl、KH Mg LiCl、KH KOH TiC及LiH Mg Pt/C。在一個實施例中,陰極反應物可相同,不存在載體。或者,在一個實施例中,陽極反應物可相同,不存在載體。
低能量氫化學可定位於包含不同金屬之兩個電極之一。在一者處形成低能量氫之選擇性可由產生低能量氫反應物(諸如觸媒或原子氫)之特定較佳化學反應造成。舉例而言,一個電極可將H2解離為H,使得可出現低能量氫反應。反應混合物可包含鹼金屬氫化物,諸如LiH於氫化物傳導性共溶鹽中,該氫化物傳導性共溶鹽諸如為包含不同鹼金屬及鹵化物中之至少一者之化合物的混合物,諸如LiCl與KCl之混合物。對於相對於較小解離活性電極,諸如Cu或Fe,包含H2解離體(諸如Ni、Ti或Nb)之一個電極,半電池反應可為
陰極反應(H2解離體)
M++e-+H→M+H(1/p) (237)
陽極反應
H-→1/2H2+e- (238)
淨反應
MH→M+H(1/p) (239)
其中M為觸媒金屬,諸如Li、Na或K。
在一個實施例中,形成低能量氫之氧化還原反應包括方程式(237)之陰極反應,其中M為鹼金屬,諸如Li。適合之陰極解離體金屬為Nb、Fe、Ni、V、Fe-Mo合金、W、Rh、Zr、Be、Ta、Rh、Ti及Th箔。例示性反應為
陰極反應(例如Nb箔)
Li++e-+H→Li+H(1/4) (240)
陽極反應
Li→Li++e- (241)
淨反應
H→H(1/4)+19.7MJ (242)
Li金屬陽極可包含倒置鐘或杯於電解質中,其中Li藉由其於腔室(諸如金屬管,諸如Ni管)中電解質、多孔電極、Li合金(諸如LiAl合金)或Li金屬中之浮力而維持於該杯中。鹽可為共溶鹽,諸如79-21重量%LiCl-LiF或51.9-47.6重量%LiCl-KCl。操作溫度可在鹽電解質之熔點以上,諸如在LiF/LiCl共溶物之約485℃以上或在LiCl/KCl共溶物之約350℃以上。其他適合之共溶物及熔點為LiCl-CsCl(59.3+40.7 mol%,mp=200℃)及LiCl-KCl-CsCl(57.5+13.3+29.2 mol%,mp=150℃)。在一個實施例中,由於藉由方程式(240-241)給出之反應消耗及形成的Li及Li+之逆向擴散,因此Li及Li+濃度隨時間保持實質上恆定。氫可藉由自腔室擴散通過振動膜或通過包含電極(諸如陰極)之管來供應。在包含金屬陽極(諸如進一步包含倒置鐘或杯於電解質中以固持金屬之Li金屬陽極)之電池中,氫可由位於杯下之振動膜供應,且該振動膜可相對於電解質表面及杯水平定向。氫來源可為氫氣或氫化物,諸如金屬氫化物,諸如鹼金屬氫化物,或至少一個電極可包含金屬氫化物。適合金屬氫化物為MH,其中M為鹼金屬。適合濃度為0.001至1重量%。Li或LiH中之至少一者之濃度可維持在降低形成低能量氫之觸媒反應的濃度以下。舉例而言,LiCl-KCl共溶電解質中之濃度可維持在1重量%以下,較佳在0.1重量%以下,且最佳在0.05重量%以下。Li及LiH濃度可用偵測器或感測器監測。感測器可為光學感測器,諸如光學吸收感測器。LiH之感測器可為紅外吸收感測器。分析可包含報導物質或指標物質,諸如結合物質。感測器可為選擇性電極。感測器可包含根據能斯特方程式反應於Li或LiH濃度之電極,其中濃度係自電壓測定。適合電極將不會顯著支持H催化至低能量氫。感測器可為伏安法(諸如循環伏安法)、極譜法或電流分析法之經校準裝置。可提高或降低濃度以維持最佳濃度以容許低能量氫反應。添加或消除Li或LiH可藉由對電池應用電解來達成。Li或LiH濃度可藉由使用吸附Li或LiH之電極來控制。適合之例示性金屬為銅。
在一個實施例中,電池包含包括兩種金屬之電極。適合金屬為選自過渡金屬、內過渡金屬、A1、Sn、In及稀土金屬之金屬。電池可進一步包含共溶鹽電解質,諸如至少兩種金屬鹵化物,諸如LiC1-KC1或LiC1-LiF且可另外包含氫化物來源,諸如0.01重量%LiH。
在另一實施例中,一個電極(陽極)可包含較正電性金屬,其提供電子以減少在陰極的觸媒之離子來源或形成觸媒之H+或觸媒混合物之H。在例示性反應中,Ma為陽極金屬,其比陰極具有更有利還原偶合電位,且M為觸媒金屬,諸如Li、Na或K:
陰極反應
M++e-+H→M+H(1/p) (243)
陽極反應
Ma→Ma ++e- (244)
且在溶液中
Ma ++M→Ma+M+ (245)
淨反應
H→H(1/p)+至少部分呈電形式之能量 (246)
在一個實施例中,形成低能量氫之氧化還原反應包括方程式(244)之陽極反應,其中Ma為比陰極具有更有利還原偶合電位之陽極金屬。適合之陽極及陰極及觸媒金屬為V、Zr、Ti或Fe及Li。例示性反應為
陰極反應
Li++e-+H→Li+H(1/4) (247)
陽極反應
V→V++e- (248)
且在溶液中
V++Li→Li++V (249)
淨反應
H→H(1/4)+19.7 MJ (250)
在一個實施例中,可將諸如V之金屬Ma與鹽混合物分離且添加至陽極以使其復原。復原陽極之適合方法為使用順磁或鐵磁性陽極金屬及藉由磁場收集金屬粒子。在一個實施例中,將陽極磁化使得在陽極收集到還原之物質。適合之鐵磁性陽極金屬為Ni及Fe。在另一實施例中,陽極位於電池底部且可包含緻密金屬,使得在電解質中形成之任何還原金屬均可沈澱及再沈積於陽極表面上以使其復原。陽極之適合正電性金屬為以下在群中一或多者:鹼金屬或鹼土金屬、Al、V、Zr、Ti、Mn、Se、Zn、Cr、Fe、Cd、Co、Ni、Sn及Pb。陽極材料可為分解之氫化物,使得金屬無氧化物塗層且對於氧化具有活性。例示性正電性陽極電池為[Ti/LiF-LiCl/LiAl-Hx]、[V/LiF-LiCl/LiAl-Hx]、[Zr/LiF-LiCl/LiAl-Hx]、[V/LiF-LiCl/Nb(H2)]、[Zr/LiF-LiCl/Zr(H2)]、[Ti/LiF-LiCl/Ti(H2)]、[V/LiF-LiCl-LiH(0.02 mol%)/Nb(H2)]、[Zr/LiF-LiCl-LiH(0.02 mol%)/Zr(H2)]、[Ti/LiF-LiCl-LiH(0.02 mol%)/Ti(H2)]及[V/LiCl-KCl/Fe(H2)]。電力可如下最佳化:改變溫度、對電解質進行H2噴射、電純化電解質、添加H2、藉由添加陽極金屬氫化物(諸如TiH2、VH2或ZrH2)、陰極金屬氫化物(諸如LiH)或添加H2氣體將任一半電池之氫化物氫化或改變其量、。
在一個實施例中,適合金屬係選自以下清單:鋁、銻、鋇、碳(石墨)、鈰、鉻、鈷、銅、鏑、鉺、銪、釓、鍺、鉿、鈥、鐵、鑭、鎦、鎂、錳、鉬、釹、鎳、鈮、鐠、鉕、鏷、釤、鈧、銀、鍶、鉭、鎝、碲、鋱、銩、鈦、鎢、釩、鐿、釔及鋯。電池可進一步包含共溶鹽且可進一步包含以下中之至少一者:氫化物,諸如鹼金屬氫化物,及氫。至少一種金屬電極可經氫化物,或可使氫自氫供應器滲過金屬。在一個實施例中,金屬可包含鹼金屬或鹼土金屬。金屬可為觸媒來源。諸如陽極之電極可包含開放或多孔電極或封閉電極。在前一情況下,諸如鹼金屬或鹼土金屬之金屬係與電解質接觸,且在後一情況下,將其封裝於與電解質接觸之導電腔室中。適合腔室包含鋁、銻、鋇、碳(石墨)、鈰、鉻、鈷、銅、鏑、鉺、銪、釓、鍺、鉿、鈥、鐵、鑭、鎦、鎂、錳、鉬、釹、鎳、鈮、鐠、、鏷、釤、鈧、銀、鍶、鉭、鎝、碲、鋱、銩、鈦、鎢、釩、鐿、釔及鋯。當電極為開放時,諸如Li、Na或K之金屬可進入溶液中。金屬可以離子之形式進入。在一個實施例中,電池可包含陽極及陰極及電解質。適合電解質包含金屬氫化物及金屬鹵化物中之至少一者之混合物,及金屬鹵化物混合物,諸如MH、M'X、M"X"之組合,其中M、M'及M"為鹼金屬且X及X'為鹵離子。例示性電解質為NaH LiCl KCl、LiCl NaCl及LiH LiCl NaCl之混合物。在一個實施例中,CIHT陰極金屬在開放或多孔陽極之金屬接觸其之前可經氫化或具有氫存在。適合之例示性陰極氫化物為鈮及鈦氫化物。在一個實施例中,陽極金屬可鍵結於陰極表面且可藉由電解移除。可使氫與陽極之金屬(諸如Li)反應且可沈澱出電解質。諸如LiH之沈澱物可藉由諸如電解及熱再生之方法再生為陽極金屬。
在一個實施例中,形成低能量氫之氧化還原反應包括H-作為遷移離子。陰極反應可涉及將氫化物還原以形成H-,且陽極反應可涉及將H-氧化為H。視存在含H觸媒而定,可在任一電極形成低能量氫。例示性反應為
陰極反應
MH2+e-→M+H-+H(1/p) (251)
陽極反應
H-→H+e- (252)
在H於電解質中擴散之後
M+2H→MH2 (253)
淨反應
MH2→M+2H(1/p)+至少部分呈電形式之能量 (254)
MH2可藉由將H2添加至M來重整。金屬氫化物可在陽極以及在方程式(252)給出之步驟形成。在電池操作溫度下,氫化物可至少部分熱分解。
在一個實施例中,形成低能量氫之氧化還原反應包括H+作為遷移離子。陰極反應可涉及將H+還原以形成H,且陽極反應可涉及將H氧化為H+。視存在含H觸媒而定,可在任一電極形成低能量氫。例示性反應為
陰極反應
MH→M+H++e- (255)
陽極反應
H++e-→H→H(1/p) (256)
淨反應
MH→M+H(1/p)+至少部分呈電形式之能量 (257)
MH可藉由將H2添加至M來重整。在另一例示性實施例中,反應為
陰極反應
MH2→M+e-+H++H(1/p) (258)
陽極反應
H++e-→H (259)
在H於電解質中擴散之後
M+2H→MH2 (260)
淨反應
MH2→M+2H(1/p)+至少部分呈電形式之能量 (261)
MH2可藉由將H2添加至M來重整。金屬氫化物可在陽極以及在方程式(259)給出之步驟形成。在電池操作溫度下,氫化物可至少部分熱分解。
在另一實施例中,陽極半電池包含H+來源,諸如氫化物,諸如以下中之至少一者:鹼金屬或鹼土金屬氫化物、過渡金屬氫化物(諸如Ti氫化物)、內過渡金屬氫化物(諸如Nb、Zr或Ta氫化物)、鈀或鉑氫化物及稀土金屬氫化物。或者,H+來源可來自氫及觸媒。觸媒可為金屬,諸如貴金屬。觸媒可為合金,諸如包含至少一種貴金屬及另一金屬之合金,諸如Pt3Ni。觸媒可包含載體,諸如碳,一個實例為Pt/C。觸媒可包含質子交換膜(PEM)燃料電池、磷酸燃料電池或包含藉由觸媒形成之遷移質子之類似燃料電池(諸如熟習此項技術者已知之燃料電池)的觸媒。H+來源可來自氫可透陽極及氫來源,諸如Pt(H2)、Pd(H2)、Ir(H2)、Rh(H2)、Ru(H2)、貴金屬(H2)、Ti(H2)、Nb(H2)或V(H2)陽極((H2)表示氫來源,諸如滲過陽極之氫氣)。H+來源可來自與陽極半電池反應物(諸如Pd/C、Pt/C、Ir/C、Rh/C及Ru/C)接觸之氫。形成H+之H2來源可為氫化物,諸如鹼金屬氫化物、鹼土金屬氫化物(諸如MgH2)、過渡金屬氫化物、內過渡金屬氫化物及稀土金屬氫化物,其可接觸陽極半電池反應物,諸如Pd/C、Pt/C、Ir/C、Rh/C及Ru/C。觸媒金屬可藉由諸如碳、碳化物或硼化物之物質承載。H+遷移至陰極半電池隔室。遷移可通過鹽橋,該鹽橋為質子導體,諸如β氧化鋁或非水性質子交換膜。電池可進一步包含電解質。在另一實施例中,鹽橋可經諸如熔融共溶鹽電解質之電解質置換。在陰極半電池隔室中,H+還原為H。H可充當以觸媒以形成低能量氫之反應物。至少一些H亦可與觸媒來源反應形成觸媒。觸媒來源可為氮化物或亞胺化物,諸如鹼金屬氮化物或亞胺化物,諸如Li3N或Li2NH。亞胺化物或胺化物陰極半電池產物可分解且可使氫返回陽極半電池隔室之金屬以重整相應氫化物。觸媒來源可為原子H。可補充反應形成低能量氫之氫。氫可藉由抽吸或電解來轉移。在例示性反應中,MaH為陽極金屬氫化物且M為觸媒金屬,諸如Li、Na或K:
陰極反應
2H++2e-+Li3N或Li2NH→Li+H(1/p)+Li2NH或LiNH2 (262)
陽極反應
MaH→Ma+H++e- (263)
再生
Li+Li2NH或LiNH2+Ma→MaH+Li3N或Li2NH (264)
淨反應
H→H(1/p)+至少部分呈電形式之能量 (265)
電池可進一步包含陽極或陰極載體材料,諸如硼化物,諸如GdB2、B4C、MgB2、TiB2、ZrB2及CrB2,碳化物,諸如TiC、YC2、或WC或TiCN。適合例示性電池為[LiH/β氧化鋁/Li3N]、[NaH/β氧化鋁/Li3N]、[KH/β氧化鋁/Li3N]、[MgH2/β氧化鋁/Li3N]、[CaH2/β氧化鋁/Li3N]、[SrH2/β氧化鋁/Li3N]、[BaH2/β氧化鋁/Li3N]、[NbH2/β氧化鋁/Li3N]、[MgH2/β氧化鋁/Li3N]、[ZrH2/β氧化鋁/Li3N]、[LaH2/β氧化鋁/Li3N]、[LiH/β氧化鋁/Li2NH]、[NaH/β氧化鋁/Li2NH]、[KH/β氧化鋁/Li2NH]、[MgH2/β氧化鋁/Li2NH]、[CaH2/β氧化鋁/Li2NH]、[SrH2/β氧化鋁/Li2NH]、[BaH2/β氧化鋁/Li2NH]、[NbH2/β氧化鋁/Li2NH]、[MgH2/β氧化鋁/Li2NH]、[ZrH2/β氧化鋁/Li2NH]、[LaH2/β氧化鋁/Li2NH]、[LiH/β氧化鋁/Li3N TiC]、[NaH/β氧化鋁/Li3N TiC]、[KH/β氧化鋁/Li3N TiC]、[MgH2/β氧化鋁/Li3N TiC]、[CaH2/β氧化鋁/Li3N TiC]、[SrH2/β氧化鋁/Li3N TiC]、[BaH2/β氧化鋁/Li3N TiC]、[NbH2/β氧化鋁/Li3N TiC]、[MgH2/β氧化鋁/Li3N TiC]、[ZrH2/β氧化鋁/Li3N TiC]、[LaH2/β氧化鋁/Li3N TiC]、[LiH/β氧化鋁/Li2NH TiC]、[NaH/β氧化鋁/Li2NH TiC]、[KH/β氧化鋁/Li2NH TiC]、[MgH2/β氧化鋁/Li2NH TiC]、[CaH2/β氧化鋁/Li2NH TiC]、[SrH2/β氧化鋁/Li2NH TiC]、[BaH2/β氧化鋁/Li2NH TiC]、[NbH2/β氧化鋁/Li2NH TiC]、[MgH2/β氧化鋁/Li2NH TiC]、[ZrH2/β氧化鋁/Li2NH TiC]、[LaH2/β氧化鋁/Li2NH TiC]、[Ti(H2)/β氧化鋁/Li3N]、[Nb(H2)/β氧化鋁/Li3N]、[V(H2)/β氧化鋁/Li3N]、[Ti(H2)/β氧化鋁/Li2NH]、[Nb(H2)/β氧化鋁/Li2NH]、[V(H2)/β氧化鋁/Li2NH]、[Ti(H2)/β氧化鋁/Li3N TiC]、[Nb(H2)/β氧化鋁/Li3N TiC]、[V(H2)/β氧化鋁/Li3N TiC]、[Ti(H2)/β氧化鋁/Li2NH TiC]、[Nb(H2)/β氧化鋁/Li2NH TiC]、[V(H2)/β氧化鋁/Li2NH TiC]及[PtC(H2)或PdC(H2)/H+導體,諸如固體質子導體,諸如H+Al2O3/Li3N]。
在實施例中,H+來源為有機或無機化合物,其包含質子,諸如鹼金屬或鹼土金屬氫氧陰離子,諸如磷酸根或硫酸根。酸,諸如矽酸;烷基鋁化合物或含H硼烷,諸如含橋聯H鍵者;銨或烷基銨化合物。其他適合之H來源為胺硼烷錯合物,諸如胺硼烷、硼烷氨合物、肼-硼烷錯合物、二硼烷二氨合物、硼氮炔,及八氫三硼酸銨或四氫硼酸銨、咪唑鎓離子液體,諸如烷基(芳基)-3-甲基咪唑鎓N-雙(三氟甲烷磺醯基)醯亞胺鹽、硼酸鏻及硝酸鉀物質。其他例示性化合物為氨硼烷、鹼金屬氨硼烷,諸如鋰氨硼烷,及硼烷烷基胺錯合物,諸如硼烷二甲胺錯合物、硼烷三甲胺錯合物,及胺基硼烷及硼烷胺,諸如胺基二硼烷、n-二甲胺基二硼烷、參(二甲胺基)硼烷、二正丁基硼胺、二甲胺基硼烷、三甲胺基硼烷、氨-三甲基硼烷,及三乙胺基硼烷。適合之銨化合物為銨或烷基銨鹵化物,及芳族化合物,諸如咪唑、吡啶、嘧啶、吡嗪、過氯酸鹽、,及本發明的與電池之任何組分相容之與彼等組分接觸之其他陰離子,彼等組分至少包含電解質、鹽橋、各半電池之反應物及電極。電解質或鹽橋亦可包含此等化合物。例示性環境溫度H+傳導性熔鹽電解質為基於氯化1-乙基-3-甲基咪唑鎓-AlCl3及吡咯錠之質子離子液體。在一個實施例中,H+來源為質子化沸石,諸如HY。H+來源亦可包含有機金屬化合物,諸如芳族過渡金屬化合物,諸如包含二茂鐵之化合物,諸如聚乙烯二茂鐵、二茂鎳、二茂鈷,及在一個實施例中經質子化之其他類似化合物。
在實施例中,H+來源為具有金屬-H鍵(M-H)之化合物,諸如過渡金屬、釕、錸、鉑或鋨與其他配位體(諸如CO、鹵素、環戊二烯基及三苯膦)錯合。其他適合來源包含金屬與氫橋,諸如W、Lu、Ru、Mo、Co、Mn及Y,其進一步包含配位體,諸如CO、NO及環戊二烯基。來源可包含金屬多氫化物,諸如Ir、W、Re、Pt、Os及Rh與配位體,諸如第三膦及環戊二烯基。在另一實施例中,H+來源為化合物,其包含H鍵結於第V、VI或VII族元素。
具有H+作為遷移離子之電池可包含適合H+傳導性電解質。含質子化陽離子之例示性電解質無機鹽,諸如銨。電解質可包含離子液體。電解質可具有諸如在100-200℃之範圍內的低熔點。例示性電解質為硝酸乙銨、以磷酸二氫鹽摻雜之硝酸乙銨,(諸如約1%摻雜)、硝酸、NH4PO3-TiP2O7,及LiNO3-NH4NO3之共溶鹽。其他適合之電解質可包含以下之群的至少一種鹽:LiNO3、三氟甲磺酸銨(Tf=CF3SO3 -)、三氟乙酸銨(TFAc=CF3COO-)、四氟硼酸銨(BF4 -)、甲烷磺酸銨(CH3SO3 -)、硝酸銨(NO3 -)、硫氰酸銨(SCN-)、胺基磺酸銨(SO3NH2 -)、氟氫化銨(HF2 -)、硫酸氫銨(HSO4 -)、雙(三氟甲烷磺醯基)亞胺化銨(TFSI=CF3SO2)2N-)、雙(全氟乙烷磺醯基)亞胺化銨(BETI=CF3CF2SO2)2N-)、硝酸且可進一步包含混合物,諸如進一步包含NH4NO3、NH4Tf及NH4TFAc中之至少一者之共溶混合物。其他適合溶劑包含酸,諸如磷酸。在一個實施例中,H+係在陽極產生且在陰極處還原為H,陰極諸如為非反應性導體,諸如金屬,諸如不鏽鋼(SS)。非基於低能量氫之化學的理論電池電壓可基本上為零,但由於在形成H期間形成低能量氫,因此產生實際電壓。例示性電池為[Pt(H2)、Pt/C(H2)、硼烷、胺基硼烷及硼烷胺、AlH3或H-X化合物(X=第V、VI或VII族元素)/包含諸如硝酸銨-三氟乙酸銨之液體電解質之無機鹽混合物/Li3N、Li2NH或M(M=金屬,諸如SS、過渡、內過渡或稀土金屬)]、[R-Ni/H+導體電解質/Ni、Pd、Nb中之至少一者]、[氫化Pt/C/H+導體電解質,諸如銨鹽或納菲薄膜/Ni、Pd、Nb中之至少一者]、[氫化Pt/C/H+導體電解質,諸如銨鹽或納菲薄膜/Pd-Ag(Li3N、鹼金屬(諸如Li)、鹼土金屬、稀土金屬、Ti、Zr之一)]、[H2及包含Pt/C之氣體燃料電池陽極/H+導體電解質,諸如銨鹽或納菲薄膜/Li、Pd、Nb、Pd-Ag中之至少一者(Li3N、鹼金屬(諸如Li)、鹼土金屬、稀土金屬、Ti、Zr之一)],其中()表示在H可透腔室(諸如管)內,及[H2及包含Pt/C、R-Ni、Pt或Pd/R-Ni、氫化Pt/C之氣體燃料電池陽極/H+導體電解質,諸如銨鹽/Al2O3/鹼金屬(諸如Li)、鹼土金屬、Li3N、稀土金屬、Ti、Zr]。
在一個實施例中,陰極可包含氫可透膜,諸如金屬管。在陰極處還原為H之H+可擴散通過膜,諸如圖20中所示之膜473。膜可將內室474與電解質470隔開。腔室可含有與擴散於腔室內之H反應的反應物,諸如元素、合金、化合物或其他材料。內部反應物可為形成氫化物之金屬,諸如以下中之至少一者:鹼金屬,諸如Li;鹼土金屬,諸如Ca、Sr及Ba;過渡金屬,諸如Ti;內過渡金屬,諸如Zr;及稀土金屬,諸如La。反應物亦可為化合物,諸如Li3N及Li2NH中之至少一者。例示性電池為[Pt(H2)、Pt/C(H2)、硼烷、胺基硼烷及硼烷胺、AlH3,或H-X化合物(X=第V、VI或VII族元素)/包含諸如硝酸銨-三氟乙酸銨之液體電解質之無機鹽混合物/SS、Nd、Ni、Ta、Ti、V、Mo(Li3N,Li2NH或M;M=金屬,諸如SS、過渡、內過渡或稀土金屬)],其中()表示在腔室內。
在一個實施例中,陽極包含質子來源,且陰極包含質子儲集體。陰極可包含藉由與電子及質子之反應可逆性還原的有機分子。適合之例示性有機分子為亞甲基藍(methylene blue;methylthioninium chloride)、磺酸二苯基聯苯胺、磺酸二苯胺、二氯酚靛酚(dichlorophenolindophenol)、靛酚、N-苯基鄰胺基苯甲酸、N-乙氧基柯衣定(4-(4-乙氧基苯偶氮基)-1,3-苯二胺單鹽酸鹽)、聯茴香胺(4-(4-胺基-3-甲氧基苯基)-2-甲氧基苯胺)、磺酸二苯胺、二苯胺、紫精(viologen)(4,4'聯吡啶基之聯吡錠衍生物)、硫堇、靛藍四磺酸、靛藍三磺酸、靛紅(5,5'-靛藍二磺酸)、靛藍單磺酸、酚藏花紅(phenosafranin)、番紅T(safranin T)、化合物2,8-二甲基-3,7-二胺基-吩嗪、中性紅(優瑞定(eurhodin)染料)、蒽醌及此項技術中已知之類似化合物。在一個實施例中,電池進一步包含化合物或材料,其包含氫,諸如氫化物或氫層夾於諸如碳之載體中。電池包含本發明之其他電池之具有遷移H+的組分。例示性電池為[Pt/C(H2)或Pd/C(H2)/隔板質子導體,諸如納菲薄膜、鹽電解質水溶液,或離子液體/有機分子質子受體,諸如亞甲基藍、磺酸二苯基聯苯胺、磺酸二苯胺、二氯酚靛酚、靛酚、N-苯基鄰胺基苯甲酸、N-乙氧基柯衣定(4-(4-乙氧基苯偶氮基)-1,3-苯二胺單鹽酸鹽)、聯茴香胺(4-(4-胺基-3-甲氧基苯基)-2-甲氧基苯胺)、磺酸二苯胺、二苯胺、紫精(4,4'聯吡啶基之聯吡錠衍生物)、硫堇、靛藍四磺酸、靛藍三磺酸、靛紅(5,5'-靛藍二磺酸)、靛藍單磺酸、酚藏花紅、番紅T、化合物2,8-二甲基-3,7-二胺基-吩嗪、中性紅(eurhodin染料)或蒽醌,金屬氫化物,諸如稀土金屬、過渡金屬、內過渡金屬、鹼金屬、鹼土金屬氫化物,或C(H2)]。
在另一實施例中,陰極半電池包含H-來源,諸如氫可透陰極,及氫來源,諸如Ti(H2)、Nb(H2)或V(H2)陰極((H2)表示滲過陰極以接觸電解質之氫來源,諸如氫氣)或氫化物,諸如以下中之至少一者:鹼金屬或鹼土金屬氫化物、過渡金屬氫化物(諸如Ti氫化物)、內過渡金屬氫化物(諸如Nb、Zr或Ta氫化物)、鈀或鉑氫化物及稀土金屬氫化物。H-遷移至陽極半電池隔室。遷移可通過作為氫化物導體之鹽橋。電池可進一步包含電解質。在另一實施例中,鹽橋可經諸如熔融共溶鹽電解質(諸如LiCl-KCl或LiF-LiCl)之電解質置換。在陽極半電池隔室中,H-氧化為H。H可充當以觸媒形成低能量氫之反應物。至少一些H亦可與觸媒來源反應形成觸媒或至少一種H可構成觸媒。觸媒來源可為氮化物或亞胺化物,諸如鹼金屬氮化物或亞胺化物,諸如Li3N或Li2NH。在一個實施例中,諸如氮化物及亞胺化物(諸如Li3N及Li2NH)中之至少一者之陽極反應物可含於腔室,諸如H可透腔室,諸如管中,或該腔室可包含H可透膜與電解質接觸。電解質中之氫化物離子可在室壁或膜壁氧化且擴散通過該壁或膜以與腔室中之反應物反應,其中低能量氫反應可在所形成之觸媒(諸如Li及H)之間出現。亞胺化物或胺化物陰極半電池產物可分解且可使氫返回陰極半電池隔室之金屬以重整相應氫化物。可補充反應形成低能量氫之氫。氫可藉由抽吸或電解來轉移。在例示性反應中,MaH為陰極金屬氫化物且M為觸媒金屬,諸如Li、Na或K:
陰極反應
MaH+e-→Ma+H- (266)
陽極反應
2H-+Li3N或Li2NH→Li+H(1/p)+Li2NH或LiNH2+2e- (267)
再生
Li+Li2NH或LiNH2+Ma→MaH+Li3N或Li2NH (268)
淨反應
H→H(1/p)+至少部分呈電形式之能量 (269)
電池可進一步包含陽極或陰極載體材料,諸如硼化物,諸如GdB2、B4C、MgB2、TiB2、ZrB2及CrB2,碳化物,諸如TiC、YC2或WC或TiCN。適合例示性電池為[Li3N/LiCl-KCl/Ti(H2)]、[Li3N/LiCl-KCl/Nb(H2)]、[Li3N/LiCl-KCl/V(H2)]、[Li2NH/LiCl-KCl/Ti(H2)]、[Li2NH/LiCl-KCl/Nb(H2)]、[Li2NH/LiCl-KCl/V(H2)]、[Li3N TiC/LiCl-KCl/Ti(H2)]、[Li3N TiC/LiCl-KCl/Nb(H2)]、[Li3N TiC/LiCl-KCl/V(H2)]、[Li2NH TiC/LiCl-KCl/Ti(H2)]、[Li2NH TiC/LiCl-KCl/Nb(H2)]、[Li2NH TiC/LiCl-KCl/V(H2)]、[Li3N/LiCl-KCl/LiH]、[Li3N/LiCl-KCl/NaH]、[Li3N/LiCl-KCl/KH]、[Li3N/LiCl-KCl/MgH2]、[Li3N/LiCl-KCl/CaH2]、[Li3N/LiCl-KCl/SrH2]、[Li3N/LiCl-KCl/BaH2]、[Li3N/LiCl-KCl/NbH2]、[Li3N/LiCl-KCl/ZrH2]、[Li3N/LiCl-KCl/LaH2]、[Li2NH/LiCl-KCl/LiH]、[Li2NH/LiCl-KCl/NaH]、[Li2NH/LiCl-KCl/KH]、[Li2NH/LiCl-KCl/MgH2]、[Li2NH/LiCl-KCl/CaH2]、[Li2NH/LiCl-KCl/SrH2]、[Li2NH/LiCl-KCl/BaH2]、[Li2NH/LiCl-KCl/NbH2]、[Li2NH/LiCl-KCl/ZrH2]、[Li2NH/LiCl-KCl/LaH2]、[Li3N TiC/LiCl-KCl/LiH]、[Li3N TiC/LiCl-KCl/NaH]、[Li3N TiC/LiCl-KCl/KH]、[Li3N TiC/LiCl-KCl/MgH2]、[Li3N TiC/LiCl-KCl/CaH2]、[Li3N TiC/LiCl-KCl/SrH2]、[Li3N TiC/LiCl-KCl/BaH2]、[Li3N TiC/LiCl-KCl/NbH2]、[Li3N TiC/LiCl-KCl/ZrH2]、[Li3N TiC/LiCl-KCl/LaH2]、[Li2NH TiC/LiCl-KCl/LiH]、[Li2NH TiC/LiCl-KCl/NaH]、[Li2NH TiC/LiCl-KCl/KH]、[Li2NH TiC/LiCl-KCl/MgH2]、[Li2NH TiC/LiCl-KCl/CaH2]、[Li2NH TiC/LiCl-KCl/SrH2]、[Li2NH TiC/LiCl-KCl/BaH2]、[Li2NH TiC/LiCl-KCl/NbH2]、[Li2NH TiC/LiCl-KCl/ZrH2]、[Li2NH TiC/LiCl-KCl/LaH2]、[Ni(Li3N)/LiCl-KCl/CeH2 CB]、[Ni(Li3N TiC)/LiCl-KCl/CeH2CB]及[Ni(LiLiCl-KCl)/LiCl-KCl LiH/Fe(H2)],其中()表示在H可透腔室(諸如管)內。
在包含M-N-H系統(諸如具有至少一種包含MNH2、M2NH及M3N中之至少一者之半電池反應物或產物的電池)之一個實施例中,至少一種H充當另一者之觸媒。觸媒機制係由對應於分別在2.2、1.65及1.2 ppm下之H2(1/2)、H2(1/3)及H2(1/4)的NMR峰支持。
在其他實施例中,觸媒來源可為在與藉由H-在陽極處氧化形成之H反應時釋放觸媒的另一化合物。舉例而言,適合化合物為形成氫酸陰離子或酸之鹽,諸如Li2SO4,其可形成可形成Li2HPO4之LiHSO4或Li3PO4。例示性反應為
陰極反應
MaH+e-→Ma+H- (270)
陽極反應
2H-+Li2SO4→Li+H(1/p)+LiHSO4+2e- (271)
再生
LiHSO4+Ma→MaH+Li2SO4 (272)
淨反應
H→H(1/p)+至少部分呈電形式之能量 (273)
包括此等系統之H轉移反應可為觸媒來源以及本發明中之細節。
在另一實施例中,陽極半電池包含金屬陽離子(諸如鹼金屬陽離子,諸如Li+)來源。來源可為相應金屬,諸如Li或金屬合金,諸如以下中之至少一者:Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe(諸如Li2Se)、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金,諸如氧化物、氮化物、硼化物及矽化物,及混合金屬-Li合金。諸如Li+之陽離子遷移至陰極半電池隔室。電池可具有電解質。諸如Li+之陽離子可遷移通過熔鹽電解質,諸如共溶熔鹽混合物,諸如鹼金屬鹵化物之混合物,諸如LiF-LiCl或LiCl-KCl。例示性電池為[LiSb/LiCl-KCl/Se TiH2]、[LiSb/LiCl-KCl/Se ZrH2]、[LiSn/LiCl-KCl/Se TiH2]、[LiSn/LiCl-KCl/Se ZrH2]、[LiH+,以下中之至少一者:LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn及Li金屬-擬金屬合金/LiCl-KCl/LiH]、[LiH+以下中之至少一者:LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn及Li金屬-擬金屬合金+載體/LiCl-KCl/LiH]、[LiH+以下中之至少一者:LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn及Li金屬-擬金屬合金/LiCl-KCl/LiH+載體]及[LiH+以下中之至少一者:LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn及Li金屬-擬金屬合金+載體/LiCl-KCl/LiH+載體],其中適合之例示性載體為碳化物、硼化物或碳。
或者,遷移可通過作為陽離子導體、諸如β氧化鋁之鹽橋。例示性Li+鹽橋/電解質包含浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片。在陰極半電池隔室中,諸如Li+之陽離子經還原。諸如原子(諸如Li)之還原產物可充當觸媒且亦可保留作為自來源形成氫之反應物,在該來源中觸媒與H可反應而形成低能量氫。氫來源可為胺化物或亞胺化物,諸如鹼金屬胺化物或亞胺化物,諸如LiNH2或Li2NH。氫來源可為氫儲存材料。亞胺化物或氮化物陰極半電池產物可藉由添加氫來氫化,且諸如Li之陽離子來源可以電解方式或藉由物理或化學方法返回陽極隔室。在例示性反應中,Li為陽極金屬且Li為觸媒。在其他實施例中,Na或K可置換Li。
陰極反應
2Li++2e-+LiNH2或Li2NH→Li+H(1/p)+Li2NH或Li3N (274)
陽極反應
Li→Li++e-
 (275)
Li再生至陽極隔室
Li2NH或Li3N+H→LiNH2或Li2NH+Li (276)
淨反應
H→H(1/p)+至少部分呈電形式之能量 (277)
電池可進一步包含陽極或陰極載體材料,諸如硼化物,諸如GdB2、B4C、MgB2、TiB2、ZrB2及CrB2,碳化物,諸如TiC、YC2或WC或TiCN。適合例示性電池為[Li/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/LiNH2]、[Li或Li合金,諸如Li3Mg或LiC/烯烴隔板LiBF4之四氫呋喃(THF)溶液/LiNH2]、[Li/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Li2NH]、[LiAl/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/LiNH2]、[LiAl/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Li2NH]、[Li/Li-β氧化鋁/LiNH2]、[Li/Li-β氧化鋁/LiNH2]、[LiAl/Li-β氧化鋁/LiNH2]、[LiAl/Li-β氧化鋁/Li2NH]、[Li/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/LiNH2TiC]、[Li/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Li2NH TiC]、[LiAl/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/LiNH2 TiC]、[LiAl/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Li2NH TiC]、[Li/Li-β氧化鋁/LiNH2 TiC]、[Li/Li-β氧化鋁/LiNH2 TiC]、[LiAl/Li-β氧化鋁/LiNH2 TiC]、[LiAl/Li-β氧化鋁/Li2NH TiC]、[Li/LiCl-KCl/LiNH2]、[Li/LiCl-KCl/Li2NH]、[LiAl/LiCl-KCl/LiNH2]、[LiAl/LiCl-KCl/Li2NH]、[Li/LiF-LiCl/LiNH2]、[Li/LiF-LiCl/LiNH2]、[LiAl/LiF-LiCl/LiNH2]、[LiAl/LiF-LiCl/Li2NH]、[Li/LiCl-KCl/LiNH2 TiC]、[Li/LiCl-KCl/Li2NH TiC]、[LiAl/LiCl-KCl/LiNH2 TiC]、[LiAl/LiCl-KCl/Li2NH TiC]、[Li/LiF-LiCl/LiNH2 TiC]、[Li/LiF-LiCl/LiNH2 TiC]、[LiAl/LiF-LiCl/LiNH2 TiC]、[LiAl/LiF-LiCl/Li2NH TiC]、[Li2Se/LiCl-KCl/LiNH2]、[Li2Se/LiCl-KCl/Li2NH]、[Li2Se/LiCl-KCl/LiNH2 TiC]、[Li2Se/LiCl-KCl/Li2NH TiC]。另一鹼金屬可置換Li,且反應物混合物可用於陰極或陽極中之至少一者。其他例示性電池為[M(M=鹼金屬)或M合金,諸如如本發明中給出之Li合金/BASE/MNH2及視情況選用之金屬氫化物,諸如CaH2、SrH2、BaH2、TiH2、ZrH2、LaH2、CeH2或其他稀土金屬氫化物]。
或者,陽極可包含Li來源,其在陰極形成諸如硒化物或碲化物之化合物。例示性電池為[LiNH2/LiCl-KCl/Te]、[LiNH2/LiCl-KCl/Se]、[LiNH2/LiCl-KCl/Te TiH2]、[LiNH2/LiCl-KCl/Se TiH2]及[LiNH2/LiCl-KCl/Te ZrH2]、[LiNH2/LiCl-KCl/Se ZrH2]及[LiBH4 Mg/Celgard LP 30/Se]。
在類似於Li-N-H系統之其他實施例中,另一觸媒或觸媒來源(諸如Na、K或Ca)置換Li,其分別對應於Na-N-H、K-N-H及Ca-N-H系統。
在另一實施例中,陽極半電池包含金屬陽離子(諸如鹼金屬陽離子,諸如Li+)來源。來源可為以下中之至少一者:諸如Li之金屬、諸如LiH、LiBH4及LiAlH4之氫化物,及諸如碳、六方氮化硼及金屬硫族化物之一的層夾化合物。適合之鋰化硫族化物為具有諸如MoS2及WS2之層化結構者。層化硫族化物可為以下之群的一或多者:TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、VSe2、WSe2及MoTe2。金屬陽離子來源可進一步包含至少一種鋰過渡金屬氮化物,諸如Li2.6M0.4N(M=Co、Cu、Ni)、Li2.6Co0.4N、Li2.6Co0.2Cu0.2N、Li2.6Co0.2Ni0.2N、Li2.6Cu0.2Ni0.2N、Li2.6Co0.25Cu0.15N、Li2.6Co0.2Cu0.1Ni0.1N、Li2.6Co0.25Cu0.1Ni0.05N及Li2.6Co0.2Cu0.15Ni0.05N,複合物,諸如化合物,諸如Li2.6M0.4N及以下中之至少一者:SiC、氧化矽,及金屬氧化物,諸如Co3O4及LiTi2O4,及諸如SnSb之合金、諸如LiTi2O4、氧化鋰錫之鋰過渡金屬氧化物、金屬合金,諸如以下中之至少一者:鋰合金,諸如Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe(諸如Li2Se)、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金,諸如氧化物、氮化物、硼化物及矽化物,及混合金屬-Li合金、Li-N-H系統之化合物,諸如LiNH2、Li2NH及Li3N,及鋰化合物,諸如硫族化物,諸如Li2Se、Li2Te及Li2S。諸如Li+之陽離子遷移至陰極半電池隔室。電池可具有電解質或溶劑。諸如Li+之陽離子可遷移通過熔鹽電解質,諸如共溶熔鹽混合物,諸如鹼金屬鹵化物之混合物,諸如LiF-LiCl或LiCl-KCl。電池可具有遷移離子(諸如Li+)之鹽橋。接著,鹽橋可為浸透Li+電解質之玻璃(諸如硼矽玻璃),或陶瓷(諸如Li+浸漬β氧化鋁)。至少一個半電池可進一步包含包括氧化物之Li來源,氧化物諸如為LiWO2、Li6Fe2WO3、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2及LiTi2O4。至少一個半電池可進一步包含Li儲集體,其包含鋰缺陷型式之此等化合物,諸如此等氧化物。一般而言,氧化物離子可具有面心立方堆積,包括具有尖晶石結構(例如LiMn2O4及含有一個以上氧化還原離子之變體)者及具有有序陽離子分佈者。後者經分類為具有層化結構。LiCoO2及LiNiO2為例示性化合物。其他適合材料具有六方緊密堆積之氧化物填料,包括一些具有橄欖石相關結構,諸如LiFePO4。然而,其他者具有可稱作構架或骨架結構之較開放晶體結構。其經進一步視作含有聚陰離子。例示性材料為一些硫酸鹽、鎢酸鹽、磷酸鹽、Nasicon及Nasicon相關材料,諸如Li3V2(PO4)3及LiFe2(SO4)3、混合物,及聚陰離子混合物。鋰離子可比一個類型之填隙位置佔據更多。
可充當遷移離子(諸如Li+或Na+)來源或儲集體之電極材料的適合之例示性基於磷酸鹽之CIHT化合物可為觸媒來源。其可在實施例中用以置換H以使得形成低能量氫,藉此一或多種H原子可充當觸媒,其為LiFePO4、LiFe1-xMxPO4、Li3V2(PO4)3、LiVPO4F、LiVPO4OH、LiVP2O7、Li2MPO4F、Na2MPO4F、Li4V2(SiO4)(PO4)2、Li3V1.5A10.5(PO4)3、β-LiVOPO4、NaVPO4F、Na3V2(PO4)2F3、Novel Phase A、Novel Phase B、Novel Phase C、及鹼金屬經另一者置換,諸如Li經Na置換或反之亦然之此等化合物。一般而言,CIHT電池材料可包含通式A2FePO4F,其中A可為Li或Na或混合物,OH可取代此等化合物中之F。在實施例中,此等材料可為以下中之至少一者:消除鹼金屬及以H至少部分取代鹼金屬。
電池可包含熟習此項技術者已知之鋰離子電池之陽極、電解質、鹽橋、隔板及陰極中之至少一者且進一步包含氫來源及有助於形成低能量氫之其他反應物,諸如一或多種載體。觸媒Li可在相應含Li半電池中形成或存在之H存在下形成。電池可包含Li來源陽極,諸如Li層夾化合物、氮化物或硫族化物,以下中之至少一者:電解質、隔板及鹽橋,及包含以下中之至少一者之陰極:金屬氫化物,諸如稀土金屬氫化物、過渡金屬氫化物(諸如R-Ni或TiH2),或內過渡金屬氫化物(諸如ZrH2),氫化基質材料(諸如氫化碳,諸如活性碳)、Li層夾化合物,諸如過渡金屬氧化物、氧化鎢、氧化鉬、氧化鈮、氧化釩、金屬氧化物或金屬氧陰離子,諸如LiCoO2或LiFePO4,或其他硫族化物。例示性鋰化陰極材料為包含氧化物之Li儲集體,氧化物諸如為LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2及LiTi2O4。例示性鋰化陽極材料為Li來源,諸如石墨(LiC6)、硬碳(LiC6)、鈦酸鹽(Li4Ti5O12)、Si(Li4.4Si)及Ge(Li4.4Ge)。陰極可包含與還原之遷移離子反應的胺基硼烷及硼烷胺。例示性電池為[LiC/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的聚丙烯膜/CoO2R-Ni]、[Li3N/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的聚丙烯膜/CoO2R-Ni]、[Li/聚烯烴隔板LP 40/MHx],其中MHx為氫化物,諸如以下中一者之氫化物:鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、稀土金屬、R-Ni、氫化碳、碳MH(M=鹼金屬)]、[Li來源,諸如Li金屬或合金/鋰固體電解質或熔鹽電解質,諸如共溶鹽/H來源,諸如氫化物(MHx)或M(H2),其中M為H2可透金屬或H2擴散陰極]及[Li來源,諸如Li金屬或合金/聚烯烴隔板LP 40/H來源,諸如氫化物或M(H2),其中M為H2可透金屬或H2擴散陰極]。在一個實施例中,H2可透金屬或H2擴散陰極係嵌埋於諸如以下中之至少一者之氫解離體及載體中:碳、Pt/C、Pd/C、Ru/C、Ir/C、碳化物、硼化物及金屬粉,諸如Ni、Ti及Nb。適合之氫可透金屬為Pd、Pt、Nb、V、Ta及Pd-Ag合金。在電解質為熔鹽之情況下,鹽可包含諸如鹼金屬碳酸鹽之碳酸鹽。
遷移陽離子可經歷在陰極之還原且與陰極隔室之反應物形成合金或化合物。還原之陽離子可形成諸如Li之金屬、諸如LiH、LiBH4及LiAlH4之氫化物,及諸如碳、六方氮化硼及金屬硫族化物之一的層夾化合物。適合硫族化物為具有諸如MoS2及WS2之層化結構者。層化硫族化物可為以下清單之一或多者:TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、VSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、WSe2及MoTe2。例示性Li陰極為LiTiS2。陰極半電池反應物可包含鋰離子電池之陰極半電池反應物,諸如過渡金屬氧化物、氧化鎢、氧化鉬、氧化鈮、氧化釩、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2及LiTi2O4。在一個實施例中,帶電負電極為諸如Li+之遷移M+及至包含鹼金屬(例如鋰)層夾硫族化物之電路之電子的來源。所形成之合金或化合物可為鋰合金或化合物,諸如以下中之至少一者:Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe(諸如Li2Se)、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金,諸如氧化物、氮化物、硼化物及矽化物,及混合金屬-Li合金、Li-N-H系統之化合物,諸如LiNH2、Li2NH及Li3N,及鋰化合物,諸如硫族化物,諸如Li2Se、Li2Te及Li2S。陽極或陰極隔室反應物中之至少一者包含氫來源,氫諸如為氫氣或來自金屬滲透之氫、氫化物,或Li-N-H或類似系統之化合物。氫滲透來源可為與還原之遷移離子(諸如Li)形成合金之金屬管。管可以氫氣內部加壓。該管可包含例示性金屬,諸如Sb、Pb、Al、Sn及Bi。陰極及陽極反應物中之至少一者可進一步包含載體,諸如碳化物、硼化物或碳。在其他實施例中,諸如Na、K、Rb或Cs之其他觸媒或觸媒來源取代Li。
電池可在陰極及陽極、電解質或鹽橋及陰極或陽極中之至少一者之氫來源中至少一處包含層夾或夾心化合物。陰極及陽極半電池反應物中之至少一者可包含鋰離子電池之反應物。氫來源可為氫化物、滲透通過膜之氫及氫化載體。遷移離子可為適合電解質之Li+、Na+或K+,該適合電解質可包含有機電解質,諸如MPF6(M為相應鹼金屬)之碳酸鹽溶劑或熔融共溶鹽(諸如混合物或鹼金屬鹵化物,諸如相同鹼金屬M之混合物或鹼金屬鹵化物)溶液。
在一個實施例中,電化學在陰極或陽極或其隔室中至少一處產生觸媒及H之低能量氫反應物。金屬M為觸媒或觸媒來源且Ma及Mb為金屬之與M形成合金或化合物的例示性反應為
陰極反應
M++e-+H+Ma→MMa+H(1/p)或M++e-+H→M+H(1/p) (278)
陽極反應
M→M++e-或MMb→M++e- (279)
淨反應
M+H→M+H(1/p)+至少部分呈電形式之能量
M+Ma+H→MMa+H(1/p)+至少部分呈電形式之能量
MMb+H→Mb+M+H(1/p)+至少部分呈電形式之能量
MMb+Ma+H→Mb+MMa+H(1/p)+至少部分呈電形式之能量
 (280)
例示性電池為[Li/LiCl-KCl/Sb或LiSb TiH2]、[Li/LiCl-KCl/Sb或LiSb LiH]、[Li/LiCl-KCl/Sb或LiSb ZrH2]、[Li/LiCl-KCl/Sb或LiSb MgH2]、[LiSn/LiCl-KCl/Sb或LiSb MgH2]、[LiSn/LiCl-KCl/Sb或LiSb LiH]、[LiH/LiCl-KCl/Sb或LiSb TiH2]、[LiH/LiCl-KCl/Sb或LiSb ZrH2]、[LiH/LiCl-KCl/Sb或LiSb TiH2]、[LiH/LiCl-KCl/Sb或LiSb LiH]、[LiH/LiCl-KCl/Sb或LiSb MgH2]、[LiSn/LiCl-KCl/Sb或LiSb MgH2]、[LiSn/LiCl-KCl/Sb或LiSb LiH]、[LiSn/LiCl-KCl/Sb或LiSb TiH2]、[LiSn/LiCl-KCl/Sb或LiSb ZrH2]、[LiPb/LiCl-KCl/Sb或LiSb MgH2]、[LiPb/LiCl-KCl/Sb或LiSb LiH]、[LiPb/LiCl-KCl/Sb或LiSb TiH2]、[LiPb/LiCl-KCl/Sb或LiSb ZrH2]、[LiH Li3N/LiCl-KCl/Se]、[Li3N/LiCl-KCl/Se TiH2]、[Li2NH/LiCl-KCl/Se]、[Li2NH/LiCl-KCl/Se TiH2]、[LiH Li3N/LiCl-KCl/MgSe]、[Li3N/LiCl-KCl/MgSe TiH2]、[Li2NH/LiCl-KCl/MgSe]、[Li2NH/LiCl-KCl/MgSe TiH2]、[LiH Li3N/LiCl-KCl/Te]、[Li3N/LiCl-KCl/Te TiH2]、[Li2NH/LiCl-KCl/Te]、[Li2NH/LiCl-KCl/Te TiH2]、[LiH Li3N/LiCl-KCl/MgTe]、[Li3N/LiCl-KCl/MgTe TiH2]、[Li2NH/LiCl-KCl/MgTe]、[Li2NH/LiCl-KCl/MgTe TiH2]、[LiH Li3N/LiCl-KCl/LiNH2]、[Li3N/LiCl-KCl/LiNH2]、[LiH Li2NH/LiCl-KCl/Li2NH]、[Li2NH/LiCl-KCl/Li2NH]、[LiH Li3N/LiCl-KCl/LiNH2 TiH2]、[Li3N/LiCl-KCl/LiNH2 TiH2]、[LiH Li2NH/LiCl-KCl/Li2NH TiH2]、[Li2NH/LiCl-KCl/Li2NH TiH2]、[Li3N TiH2/LiCl-KCl/LiNH2]、[Li2NH TiH2/LiCl-KCl/Li2NH]、[以下中之至少一者:Li、LiH、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixInl-ySb(0<x<3、0<y<l)、LiSb、LiZn、Li金屬-擬金屬合金、Li3N、Li2N H、LiNH2,及載體/LiCl-KCl/至少一個H來源,諸如LiH、MgH2、TiH2、ZrH2、載體,及與Li(諸如至少以下合金或化合物群)或無Li之物質形成合金或化合物之材料:Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金、S、Se、Te、MgSe、MgTe、Li3N、Li2NH、LiNH2]及[以下中之至少一者:Li、LiH、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金、Li3N、Li2NH、LiNH2,及載體/鹽橋,諸如硼矽玻璃或Li浸漬β氧化鋁/至少一個H來源,諸如LiH、MgH2、TiH2、ZrH2,載體,及與Li(諸如至少以下合金或化合物群)或無Li之物質形成合金或化合物之材料:Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiSe、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3、0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金、S、Se、Te、MgSe、MgTe、Li3N、Li2NH、LiNH2]。包含諸如Li-N-H系統之系統之陽極及陰極隔室反應物的電池可包含搖椅設計。一組反應物向其他者供應之H或Li中之至少一者可在相反隔室反應以釋放H或Li中之至少一者以在兩組反應物之間建立反應循環。舉例而言,陽極反應物可包含Li3N且陰極反應物可包含LiNH2。可使來自陽極之Li與陰極LiNH2反應形成Li2NH+H。可使H與Li3N在陽極隔室反應形成Li及Li2NH,其繼續循環。形成原始反應物之逆反應可藉由適當添加及移除H及Li中之至少一者或藉由電解來達成。
在具有固體電解質之電池且Li+為遷移離子的一個實施例中,Li+來源為鋰化合物,諸如鋰層夾化合物或氫化鋰,諸如LiH或LiBH4。例示性電池為[LiH/BASE/LiOH]、[LiBH4/BASE/LiOH]、[LiV2O5/BASE/LiOH]及[LiC溶劑,諸如LiI LiBr/BASE/LiOH]。包含M+(M=鹼金屬)作為遷移離子之其他例示性電池為[Na/Na-BASE/LiOH]、[Na/Na-BASE/NaBH4]、[Li/Celgard LP 30/PtC(H2)]、[Li3Mg/Celgard LP 30/PtC(H2)]、[Li3Mg/Celgard LP 30/R-Ni]、[Li1.6Ga/Celgard LP 30/R-Ni]、[Na/BASE/PtC(H2)NaI NaBr]、[Na/BASE/PtAl2O3(H2) NaI NaBr]、[Na/BASE/PdAl2O3(H2) NaI NaBr]、[Na/BASE/PtTi(H2) NaI NaBr]、[Na/BASE/NaSH NaBr NaI]、[Na/BASE/NaSH NaOH]、[LiBH4/LiI CsI/Te]、[LiBH4/LiI CsI/Se]、[LiBH4/LiI CsI/MgTe]及[LiBH4/LiI CsI/MgSe]。
在一個實施例中,化學為藉由諸如電解之方法或以自發方式再生。在後一情況下,根據方程式(278-280)之適合實例為在陰極形成M、M擴散至包含Ma之陽極,及M自發反應形成合金MMa。進一步關於方程式(274)之另一例示性實施例為在陰極形成M、M與MNH2或M2NH反應以分別形成H及M2NH或M3N、所供應之H與M2NH或M3N反應以形成MNH2或M2NH及M、M擴散至包含Ma之陽極,M自發反應以形成合金MMa
在一個實施例中,電池在陰極及陽極半電池中之至少一者中包含金屬及氨,其中金屬藉由與氨氣反應形成相應胺化物。在具有與氮氣反應形成與氫進一步反應形成胺化物之相應金屬氮化物之金屬的一個實施例中,相應半電池含有氮氣及視情況選用之氫氣。在無氫氣存在下,胺化物可藉由半電池中之H或自另一半電池遷移之氫形成。氫來源可為諸如金屬氫化物之氫化物。遷移氫物質可為H+或H-。電池可進一步包含本發明之其他電池組分,諸如電解質、鹽橋或隔板、載體、氫來源及其他半電池反應物。例示性電池為[M+NH3/隔板LP 40或LiBF4之四氫呋喃(THF)、離子液體電解質、固體電解質(諸如LiAlO2或BASE)、共溶鹽電解質溶液/M'+NH3],其中M及M'各自為藉由與NH3反應形成胺化物之金屬,諸如鹼金屬或鹼土金屬。M及M'較佳為不同金屬。其他例示性電池為[M+NH3或N2及H2,視情況選用之Pt/C(H2)/隔板LP40或LiBF4之四氫呋喃(THF)、離子液體電解質、固體電解質(諸如LiAlO2或BASE)、共溶鹽電解質溶液/M'+NH3或N2及H2,視情況選用之金屬氫化物,諸如TiH2、ZrH2或稀土金屬氫化物],其中M及M'各自為藉由與NH3反應形成胺化物之金屬,諸如鹼金屬或鹼土金屬,或與N2及H2反應形成相應胺化物之金屬。M及M'較佳為不同金屬。電池亦可包含具有傳導性基質。在一個實施例中,傳導性基質為金屬,諸如鹼金屬。例示性電池為[Li/隔板LP 40或LiBF4之四氫呋喃(THF)、離子液體電解質、固體電解質(諸如LiAlO2或BASE)、共溶鹽電解質溶液/NaNH2 Na]及[LiC/Celgard LP 40/N2及H2氣體混合物及傳導性基質,諸如TiC、金屬粉,諸如Al、R-Ni或還原之Ni或CB或PtC]。
在一個實施例中,胺化鋰係藉由Li與氨反應形成。陽極為Li來源,且陰極為NH3來源。適合之Li來源為Li金屬或Li合金,諸如Li3Mg。適合之氨來源為NH3層夾於碳(諸如碳黑)、沸石、碳沸石混合物及吸附NH3之其他材料中。例示性電池為[Li或Li3Mg/烯烴隔板LP40/NH3層夾碳或NH3吸附於沸石上]。在其他實施例中,諸如Na或K之另一鹼金屬置換Li。
在一個實施例中,遷移離子可為一種金屬離子,諸如鹼金屬離子,諸如Li+或H+或H-。陰極及陽極半電池反應物中之至少一者包含與正經歷還原之遷移離子反應的胺基硼烷及硼烷胺。反應產生H空位或H添加,其使得形成低能量氫,其中一或多種H原子充當另一者之觸媒。在另一實施例中,反應使得在反應形成低能量氫之諸如Li、K或NaH之觸媒存在下形成H。例示性電池為[Li或Li合金,諸如LiC或Li3Mg/烯烴隔板LP 40/胺基硼烷及硼烷胺]、[Pt/C(H2)/質子導體,諸如納菲薄膜或離子液體/胺基硼烷及硼烷胺]、[胺基硼烷及硼烷胺/共溶鹽H-導體,諸如LiCl-KCl/氫化物,諸如稀土金屬、過渡金屬、內過渡金屬、鹼金屬及鹼土金屬]。電池可進一步包含傳導性載體、基質及黏合劑中之至少一者。
在一個實施例中,陽離子交換可在半電池反應物與共溶鹽之間出現。在一個實例中,使Li2NH與電解質之陽離子反應,且其經來自陽極半電池之陽離子置換。來源可為金屬或氫化物,諸如由MH指定者。
陰極反應
Li++Li2NH+e-→Li3N+H(1/p) (281)
陽極反應
MH→M++e-+H (282)
再生
Li3N+H→Li+Li2NH (283)
Li+M+→Li++M (284)
淨反應
H→H(1/p)+至少部分呈電形式之能量 (285)
在一個實施例中,諸如Li+之離子可藉由相應亞胺化物在陽極處氧化來形成。遷移離子在陰極之反應亦可包括形成包含還原之遷移離子的化合物或合金。例示性反應為
陽極反應
2Li2NH→Li3N+2H+1/2N2+Li++e-(Li與H反應得低能量氫) 286)
陰極反應
Li++e-→Li (287)
淨反應
2Li2NH→Li3N+2H+1/2N2+Li (288)
陽極反應
Li2NH→H+1/2N2+2Li++2e-(Li與H反應得低能量氫H(1/4)) (289)
陰極反應
2Li++2e-+Se→Li2Se (290)
淨反應
Li2NH+Se→1/2N2+Li2Se+H(1/4) (291)
例示性電池為[Li2NH/LiCl-KCl/Se]、[Li2NH/LiCl-KCl/Se+H2]、[LiNH2/LiCl-KCl/Se]、[LiNH2/LiCl-KCl/Se+H2]、[Li2NH/LiCl-KCl/Te]、[Li2NH/LiCl-KCl/Te+H2]、[LiNH2/LiCl-KCl/Te]及[LiNH2/LiCl-KCl/Te+H2]。
在一個實施例中,LiH可充當Li-N-H系統之觸媒。在一個例示性系統中,可逆反應為
陰極反應
LiH+LiNH2+2e-→Li2NH+2H- (292)
LiH+Li2NH+2e-→Li3N+2H- (293)
陽極反應
4H-+Li3N→LiNH2+2LiH+4e- (294)
當使H還原且使H-氧化時,形成低能量氫H(l/p)。實際上,LiNH2自陰極移至陽極且化學具有可逆性以使得形成低能量氫同時產生電力。H載劑可為自陰極遷移至陽極之H-
在一個實施例中,藉由M-N-H系統之物質之間的反應產生的至少一種H原子充當藉由此等反應形成之另一者的觸媒。例示性可逆反應為LiH+LiNH2→Li2NH+H2、LiH+Li2NH→Li3N+H2、Li+LiNH2→Li2NH+1/2H2、Li+Li2NH→Li3N+1/2H2。Na或K可置換Li。在3.94 ppm下之H2NMR峰及電池[Li3N/LiCl-KCl/CeH2]在2.2 ppm、1.63 ppm及1.00 ppm下之反應產物峰(最初最大者為1.63 ppm峰)符合充當形成具有相應分子NMR峰H2(1/2)、H2(1/3)及H2(1/4)之H(1/2)、H(1/3)及接著H(1/4)之觸媒的H。Li亦可充當觸媒。基於NaNH2中H2(1/4)峰之強度,NaH亦可充當此材料中之觸媒。
在一個實施例中,陽極包含Li來源,其亦可包含氫來源,諸如以下中之至少一者:Li金屬、LiH、Li2Se、Li2Te、Li2S、LiNH2、Li2NH及Li3N。陰極包含碘且可進一步包含碘與諸如聚2-乙烯基吡啶(P2VP)之基質的複合物。適合複合物包含約10% P2VP。電池進一步包含氫來源,其可來自陽極反應物或可為陰極隔室反應物。適合之氫來源為直接添加或滲透通過膜(諸如氫可透金屬膜)之H2氣體。例示性電池為[在操作期間形成之Li/LiI/I2 P2VP H2]、[在操作期間形成之Li/LiI/I2 P2VP SS(H2)]、[在操作期間形成之LiH/LiI/I2 P2VP]、[在操作期間形成之LiNH2/LiI/I2 P2VP]、[在操作期間形成之Li2NH/LiI/I2 P2VP]、[在操作期間形成之Li3N/LiI/I2 P2VP]、[在操作期間形成之Li2Se/LiI/I2 P2VP SS(H2)]、[在操作期間形成之Li2Te/LiI/I2 P2VP SS(H2)]及[在操作期間形成之Li2S/LiI/I2 P2VP SS(H2)]。
在一個實施例中,電化學產生本發明之鹵離子-氫離子交換反應之低能量氫反應物。在一個實施例中,形成低能量氫之氧化還原反應包括方程式(243)之陰極反應,其中M++H還原為MH,其為因交換反應而形成低能量氫之鹵化物氫化物交換反應之反應物。例示性反應為
陰極反應
Li++e-+H→LiH (295)
陽極反應
Li→Li++e- (296)
且在溶液中
nLiH+MX或MXn→nLiX+M及MHn及H(1/4) (297)
淨低能量氫反應
H→H(1/4)+19.7 MJ (298)
包含電解質之共溶混合物可為鹵離子-氫離子交換反應之低能量氫反應物之來源。適合共溶混合物可包含至少一種第一鹽,諸如鹵化物鹽,及為氫化物來源之鹽。氫化物來源可為觸媒來源。鹼金屬鹵化物可充當觸媒來源。舉例而言,LiX、NaX或KX(X為鹵離子)可充當分別包含LiH、NaH及KH之觸媒的來源。或者,至少一種H可充當催化。第一鹽可包含稀土金屬、過渡金屬、鹼土金屬、鹼金屬及其他金屬,諸如Ag及鹼金屬鹽之金屬。例示性鹵化物-鹽混合物為EuBr2-LiX(X=F、Cl、Br)、LaF3-LiX、CeBr3-LiX、AgCl-LiX。表4中給出其他者。在另一實施例中,至少一個電極可為鹵離子-氫離子交換反應之反應物或產物。舉例而言,陰極可為Eu或EuH2,其為諸如EuBr2之鹵化銪與諸如LiH之鹼金屬氫化物的鹵化物交換反應之產物。其他稀土金屬或過渡金屬或其氫化物(諸如La、LaH2、Ce、CeH2、Ni、NiH及Mn)可構成陰極。其為本發明之鹵離子-氫離子交換反應之產物,該等交換反應諸如分別為鹼金屬氫化物MH(諸如LiH、NaH)與金屬鹵化物(諸如LaF3、CeBr3、NiBr2及MnI2)之間的鹵離子-氫離子交換反應。在一個實施例中,鹵化物氫化物交換反應物可藉由電解再生或熱再生。在一個實施例中,電池可在高溫下操作使得在電池中發生熱再生。鹵離子-氫離子交換之逆反應可熱發生,其中熱能至少部分來自形成低能量氫之反應。
在一個實施例中,來自多孔或開放電極之諸如Li金屬之傳導性物質可累積於電池中,諸如於電解質中。傳導性物質可使得陰極與陽極之間產生的電壓短路。短路可藉由打斷電極之間傳導性電路之連續性來消除。可攪拌電解質以打斷電路。可控制傳導性物質之濃度以防止短路。在一個實施例中,藉由控制電解質中物質之溶解度來控制物質釋放。在一個實施例中,控制諸如溫度、電解質組成及氫壓及氫化物濃度之反應條件。舉例而言,諸如Li濃度之金屬濃度可藉由將其溶解度改變LiH存在之量來控制,且反之亦然。或者,可移除諸如Li之傳導性物質。移除可藉由使用電解進行電鍍(electroplating)來達成。在一個實施例中,諸如鹼金屬或鹼土金屬(諸如Li)之過量金屬可藉由電鍍、藉由首先形成氫化物來移除。接著可移除離子。M+(諸如Li+)可以金屬形式(諸如Li)析出(plate out),且H-以H2氣體形式移除。可電鍍於反電極上。反電極可形成諸如LiAl之Li合金。電解可自CIHT陰極移除Li。在電解期間,沈積於CIHT陰極上之Li金屬可經陽極化(氧化)為Li+,其遷移至電解陰極(CIHT陽極),其中其經電鍍。或Li+可在電解陽極溶解,且可在電解陰極形成陰離子。在一個實施例中,H可在電解陰極還原為H-。在另一實施例中,Li可沈積於電解陰極且H可在電解陽極形成。H可藉由H-氧化形成。可使H與Li在電解陽極表面上反應以形成LiH。LiH可溶解於電解質中,使得Li自電解陽極(CIHT陰極)移除,以使CIHT電池電壓及電力因當以CIHT電池模式操作時形成低能量氫之H的催化恢復而再生。在操作CIHT電池期間,諸如LiH之氫化物可自電解質沈澱且基於其、電解質及視情況選用之Li金屬之間的浮力差異而分離。其亦可選擇性沈澱於材料上。可將氫化物層抽吸或以其他方式機械轉移至電解中,其中Li金屬及H2經產生且返回CIHT電池。電解電力可由另一CIHT電池提供。在其他實施例中,其他金屬可取代Li。
在一個實施例中,自形成接著反應形成低能量氫之低能量氫反應物之反應產生電壓,且藉由施加外部電源以使形成低能量氫之條件再生來定期逆轉極性。再生可包含以下中之至少一者:部分再生原始反應物或其濃度,及移除反應物或中間物或其他物質,諸如污染物或一或多種產物。移除一或多種產物可至少部分消除產物抑制。電解可藉由施加電壓以移除低能量氫及其他抑制性產物來進行。在一個實施例中,諸如Li、Na或K之過量鹼金屬可自溶液中電鍍出來。在一個實施例中,使用外部電源使諸如Li+、Na+或K+之離子在陰極電解為金屬,該外部電源可為在形成低能量氫之方向工作以至少部分供應電解電力之另一CIHT電池。電解可在陰極上以形成合金,諸如Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiTe、LiCd、LiBi、LiPd、LiSn、LiSb、LiZn、LiGa、LiIn、Li金屬-擬金屬合金,諸如氧化物、氮化物、硼化物及矽化物、混合金屬-Li合金,諸如Cu(5.4重量%)Li(1.3重量%)Ag(0.4重量%)Mg(0.4重量%)Zr(0.14重量%)Al(其餘)、Cu(2.7重量%)Li(2.2重量%)Zr(0.12重量%)Al(其餘)、Cu(2.1重量%)Li(2.0重量%)Zr(0.10重量%)Al(其餘)及Cu(0.95重量%)Li(2.45重量%)Zr(0.12重量%)Al(其餘)、NaSn、NaZn、NaBi、KSn、KZn或KBi合金。可如陰極藉由電解再生之其他CIHT電池陽極為鋰浸漬(鋰化)硼化物陽極,諸如LiB合金及鋰化TiB2、MgB2、GdB2、CrB2、ZrB2。其他適合之合金,諸如鹼土金屬之合金為MgNi及MgCu合金。在陽極之電解可形成氫或陽極金屬之金屬氫化物,諸如鎳、鈦、鈮或釩氫化物。電解陰極及陽極可為CIHT電池陽極及陰極,其中在以下操作時作用逆轉:自CIHT切換至電解電池且在電池再生之後復原。反向電壓可以脈衝形式施加。脈衝反極性及波形可在任何頻率範圍、峰值電壓、峰值電力、峰值電流、工作循環及補償電壓中。脈衝逆轉可為DC,或施加電壓可已交替或具有波形。該施加可在所需頻率下脈動且波形可具有所需頻率。適合之脈衝頻率係在約1至約1000 Hz之範圍內且工作循環可為約0.001%至約95%,但可在此範圍內兩個增量之因子的較窄範圍內。峰值電壓可在約0.1 V至10 V中之至少一者之範圍內,但可在此範圍內兩個增量之因子的較窄範圍內。在另一實施例中,施加可在約10 V至100 kV之範圍內,但可在此範圍內量級增量之較窄範圍內的高壓脈衝。波形頻率可在約0.1 Hz至約100 MHz、約100 MHz至10 GHz及約10 GHz至100 GHz中之至少一者之範圍內,但可在此範圍內量級增量之較窄範圍內。工作循環可為約0.001%至約95%及約0.1%至約10%之範圍中之至少一者,但可在此範圍內量級增量之較窄範圍內。脈衝之峰值電力密度可在約0.001 W/cm2至1000 W/cm2之範圍內,但可在此範圍內量級增量之較窄範圍內。脈衝之平均功率密度可在約0.0001 W/cm2至100 W/cm2之範圍內,但可在此範圍內量級增量之較窄範圍內。
在一個實施例中,在電解期間產生可能短暫存在之反應物,其使得在充電與放電之重複週期之CIHT電池放電階段期間形成低能量氫及相應電力。可施加電解電力以最佳化相對於輸入能形成低能量氫之能量。可調節電壓、波形、工作電池、頻率及其他此等參數之電解條件以提高來自電池之電能增加。
例示性脈衝電解電池為[Li/烯烴隔板LP40/氫化C]、[LiC/烯烴隔板LP40/氫化C]、[Li/烯烴隔板LP40/金屬氫化物]、[LiC/烯烴隔板LP40/金屬氫化物]。
在另一實施例中,抑制劑移除或低能量氫反應再生係藉由諸如攪拌之機械攪動來進行。在另一實施例中,抑制劑移除或低能量氫反應再生係藉由將電池熱循環來進行。或者,可添加反應物以移除抑制來源。在抑制物質為諸如低能量氫氫化物之氫化物的情況下可添加質子來源。來源可為HCl。產物可為可藉由電解進一步再生之諸如鹼金屬鹵化物之金屬鹵化物。電解可在諸如共溶物之熔融電解質中。在抑制劑為氫化物之鹼金屬(諸如Li)之情況下,可添加與其選擇性反應以改變其活性之反應物。舉例而言,Li之適合反應物為氮氣,其有利於與Li形成氮化物。
在一個實施例中,Li可再生及收集於諸如倒置電解質浸漬鈴之容器中,由於金屬相對於電解質之較低密度,因此該容器將金屬彙集於鈴內電解質頂部。在一個實施例中,電解質中之金屬濃度可由諸如熱或電控制釋放系統(諸如努特生池(Knudsen cell)或壓電釋放系統)之致動系統來控制。在另一實施例中,諸如Li之金屬係藉由控制諸如電池溫度、至少一種反應物之濃度或氫壓的反應條件來控制。舉例而言,形成LiAl或LiSi合金係自LiH、用金屬反電極(諸如形成諸如TiH之金屬氫化物的Ti)為自發。藉由高LiH濃度形成反應。接著,當LiH濃度降低時,可以具有鋰合金作為陽極及諸如TiH之金屬氫化物作為陰極之CIHT模式運作電池。
在實施例中,將半電池反應物再生。再生可為分批模式,藉由諸如將產物電解為反應物之方法或藉由使產物熱反應成反應物來達成。或者,系統可以分批模式或連續地自發再生。形成低能量氫反應物之反應係藉由包括在陽極半電池中經歷氧化且在陰極半電池中經歷還原之相應反應物的電子及離子流來發生。在一個實施例中,形成低能量氫反應物之總反應並不熱力學有利。舉例而言,其具有正自由能,且反方向中之反應為自發或可藉由改變反應條件變得自發。接著,由形成低能量氫中釋放之大能量以可為協同反應之方式推動反應之正向。因為形成低能量氫之反應為不可逆的,所以在已形成低能量氫之後產物可自發轉化為反應物。或改變一或多種反應條件,諸如溫度、氫壓或一或多種反應物或產物之濃度,以使電池之初始反應物再生。在例示性電池中,陽極包含觸媒來源之合金或化合物,諸如Li,諸如LiPb或LiSb及Li2Se、Li2Te、胺化物、亞胺化物或氮化物(諸如Li之分別胺化物、亞胺化物或氮化物),且陰極包含氫來源及與亦可為氫來源之觸媒來源反應之反應物。氫來源及亦可為氫來源之反應物可呈以下中之至少一者:氫化物、化合物、元素(諸如金屬)、胺化物、亞胺化物或氮化物。在具有諸如Li合金之鹼金屬合金的其他實施例中,合金可經氫化(亦即相應合金氫化物)。任何陰極半電池反應物之金屬均可用觸媒來源形成合金或其他化合物,諸如硒化物、碲化物或氫化物。自陽極輸送觸媒來源,同時在陰極形成合金或化合物並不熱力學有利,但由低能量氫反應推動。接著,可發生僅包括不為低能量氫之產物的自發逆反應以使反應物再生。例示性電池為[LiSb/LiCl-KCl/Ti(KH)]、[LiSb/LiCl+KCl LiH/Ti(KH)]、[LiSi/LiCl-KCl LiH/LiN H2]、[LiSi/LiCl-KCl/LiNH2]、[LiPb/LiCl-KCl/Ti(KH)]、[LiPb/LiCl-KCl LiH/Ti(KH)]、[Li2Se/LiCl-KCl/LiNH2或Li2NH]、[Li2Se/LiCl-KCl/LiNH2或Li2NH+諸如TiC之載體]、[Li2Te/LiCl-KCl/LiNH2或Li2NH]、[Li2Te/LiCl-KCl/LiNH2或Li2NH+諸如TiC之載體]、[LiSi/LiCl-KCl LiH/Ti(H2)]、[LiPb/LiCl-KCl/Ti(H2)]、[Li2Se/LiCl-KCl/Ti(H2)]、[Li2Te/LiCl-KCl/Ti(H2)]、[LiSi/LiCl-KCl LiH/Fe(H2)]、[LiPb/LiCl-KCl/Fe(H2)]、[Li2Se/LiCl-KCl/Fe(H2)]及[Li2Te/LiCl-KCl/Ni(H2)]。包括反應物胺化物與產物亞胺化物或氮化物之例示性再生反應為添加分別與亞胺化物或氮化物反應形成氫化亞胺化物或胺化物之氫。
在一個實施例中,低能量氫氫化物抑制反應,且再生係藉由使氫化物反應形成可自電池排出之分子低能量氫來達成。氫化物可存在於陰極及陽極中之至少一者上及電解質中。氫化物反應成分子低能量氫可藉由電解達成。電解可具有與CIHT電池操作相反之極性。電解可形成質子或H,其與低能量氫氫化物反應形成分子低能量氫。反應可在電解陽極處發生。在一個實施例中,低能量氫氫化物離子具有高移動率,使得其遷移至陽極且與H+或H反應形成分子低能量氫。
在一個實施例中,選擇半電池反應物,使得氧化還原反應中之能量較佳地匹配H原子與觸媒之間約27.2 eV能量轉移之整數倍以提高形成低能量氫之反應速率。氧化還原反應中之能量可提供活化能以提高形成低能量氫之反應速率。在一個實施例中,調節對電池之電負載以使通過電及離子流偶合之氧化還原反應與H原子與觸媒之間約27.2 eV能量轉移之整數倍匹配以提高形成低能量氫之反應速率。
在一個實施例中,將正偏電壓施加於至少陽極以自電離觸媒收集電子。在一個實施例中,在陽極之電子收集器以比在無收集器存在時提高之速率收集電離電子。適合速率為快於電子將與周圍反應物(諸如金屬氫化物)局部反應形成諸如氫化物離子之陰離子之速率的速率。因此,收集器推動電子通過外部電路,其中因形成低能量氫之能量釋放而提高電壓。因此,諸如施加正電位之電子收集器充當向CIHT電池供電之低能量氫反應之活化能的來源。在一個實施例中,偏壓器(bias)充當電流放大器,諸如電晶體,其中注射小電流引起由低能量氫反應供電之大電流之流。可控制施加電壓以及其他條件,諸如溫度及氫壓,以控制電池之電力輸出。
在一個實施例中,電池包含含有無H或H限制之低能量氫觸媒反應混合物的陽極隔室,包含氫來源(諸如氫氣或氫化物)、藉由離子傳導連接隔室之鹽橋,其中傳導性離子可為氫化物離子的陰極隔室,及陽極與陰極藉由外部電路電連接。可將電力傳遞至與外部電路連接之負載,或可將電力傳遞至具有與外部電路串聯或平行之施加電源的電池。施加電源可提供低能量氫反應之活化能,使得放大之電力因施加電力而自電池輸出。在其他實施例中,施加之電解電力引起另一離子(諸如鹵離子或氧離子)遷移,其中質量輸送誘導在隔室中發生低能量氫反應。
在CIHT電池之一個實施例中,產物藉由電解再生。熔鹽可包含電解質。產物可為觸媒金屬之鹼金屬鹵化物及至少一種第二金屬之氫化物,諸如鹼金屬或鹼土金屬氫化物。產物可藉由施加電壓以減少在電解陰極之金屬之鹵化物及在電解陽極之金屬之鹵化物來氧化,其中極性係與CIHT電池相反。可使觸媒金屬與氫反應形成鹼金屬氫化物。可使鹵素與金屬氫化物(諸如鹼金屬氫化物或鹼土金屬氫化物)反應形成相應鹵化物。在一個實施例中,鹽橋對鹵離子具有選擇性且觸媒金屬係在CIHT陽極隔室中且第二金屬係在CIHT陰極隔室中。因為釋放以形成低能量氫之電能比再生所需電能大得多,所以第二CIHT電池可使第一CIHT電池再生,且反之亦然,以使恆定電力可自電力循環中之複數個電池輸出且再生。例示性CIHT電池為NaH或KH Mg及諸如TiC之載體//MX,其中MX為金屬鹵化物,諸如LiCl,且由//表示之鹽橋為鹵離子導體。適合之鹵離子導體為鹵化物鹽,諸如熔融電解質,其包含鹼金屬鹵化物、鹼土金屬鹵化物,及混合物、固體稀土金屬氯氧化物,及在電池操作參數下為固體之鹼金屬鹵化物或鹼土金屬鹵化物。在一個實施例中,Cl-固體電解質可包含金屬氯化物、金屬鹵化物及其他鹵化物,諸如PdCl2(其可以KCl摻雜),以及PbF2、BiCl3,及離子交換聚合物(矽酸鹽、磷鎢酸鈉及聚磷酸鈉)。固體電解質可包含浸漬載體。例示性固體電解質為以摻雜PbCl2浸漬之編織玻璃布。在另一實施例中,相對離子為除鹵離子外之離子,諸如以下之群中之至少一者:氧離子、磷離子、硼離子、氫氧根、矽離子、氮離子、碑離子、硒離子、碲離子、銻離子、碳離子、硫離子、氫離子、碳酸根、碳酸氫根、硫酸根、硫酸氫根、磷酸根、磷酸氫根、磷酸二氫根、硝酸根、亞硝酸根、高錳酸根、氯酸根、過氯酸根、亞氯酸根、過亞氯酸根、次氯酸根、溴酸根、過溴酸根、亞溴酸根、過亞溴酸根、碘酸根、過碘酸根、亞碘酸根、過亞碘酸根、鉻酸根、重鉻酸根、碲酸根、硒酸根、碑酸根、矽酸根、硼酸根、氧化鈷、氧化碲及其他氧陰離子,諸如以下之氧陰離子:鹵素、P、B、Si、N、As、S、Te、Sb、C、S、P、Mn、Cr、Co及Te,CIHT陰極隔室含有相對離子之化合物,且鹽橋對相對離子具有選擇性。可藉由電解再生之例示性CIHT電池在陽極包含鹼金屬氫化物且在陰極包含金屬鹵化物,諸如鹼金屬或鹼土金屬鹵化物及金屬鹵化物電解質,諸如熔融共溶鹽。陽極及陰極可進一步分別氫化物及鹵化物包含之金屬。
基於能斯特方程式,H-增加使得電位較正。較負電位有利於觸媒離子躍遷狀態之穩定化。在一個實施例中,反應混合物包含氫化物可交換金屬以使得能斯特電位較負。適合金屬為Li及鹼土金屬,諸如Mg。反應混合物亦可包含氧化劑,諸如鹼金屬、鹼土金屬或過渡金屬鹵化物以降低電位。當形成觸媒離子時氧化劑可接受電子。
載體可充當電容器且在自H能量轉移期間自電離觸媒接受電子之同時充電。載體之電容可藉由添加可與載體混合之高電容率介電質來提高,或介電材料在電池操作溫度下為氣體。在另一實施例中,施加磁場以偏轉來自觸媒之電離電子以推動低能量氫反應向前。
在另一實施例中,觸媒變得電離且在陽極半電池反應中還原。還原可藉由形成H+之氫。H+可藉由適合鹽橋遷移至陰極隔室。鹽橋可為質子傳導膜、質子交換膜及/或質子導體,諸如基於SrCeO 3之固體狀態鈣鈦礦型質子導體,諸如SrCe 0.9 Y 0.08 Nb 0.02 O 2.97SrCeO 0.95 Yb 0.05 O 3-α。H+可在陰極隔室中反應形成H2。舉例而言,H+可在陰極處還原或與諸如MgH2之氫化物反應形成H2。在另一實施例中,觸媒之陽離子遷移。在遷移離子為諸如Na+之陽離子的情況下,鹽橋可為β-氧化鋁固體電解質。諸如NaAlCl4之液體電解質亦可用以輸送諸如Na+之離子。
在圖20中所示之雙膜三隔室電池中,鹽橋可在陽極472與陰極473之間的隔室470中包含離子傳導性電解質471。電極保持分開且可密封於內部容器壁以使容器壁及電極形成電解質471之腔室470。將電極與容器電絕緣以使其彼此隔開。可能使電極電短路之任何其他導體均必須亦與容器電絕緣以避免短路。陽極及陰極可包含對氫具有高滲透性之金屬。電極可包含提供較高表面積之幾何形狀,諸如管電極,或其可包含多孔電極。來自陰極隔室474之氫可擴散通過陰極且在陰極與鹽橋電解質471之界面處經歷向H-之還原。H-遷移通過電解質且在電解質-陽極界面處氧化為H。H擴散通過陽極且與觸媒在陽極隔室475中反應形成低能量氫。H-及觸媒電離在陰極提供還原電流,其攜帶於外部電路476中。H可透電極可包含V、Nb、Fe、Fe-Mo合金、W、Mo、Rh、Ni、Zr、Be、Ta、Rh、Ti、Th、Pd、Pd塗佈之Ag、Pd塗佈之V、Pd塗佈之Ti、稀土金屬、其他耐火金屬,及熟習此項技術者已知之其他此等金屬。電極可為金屬箔。化學物質可藉由加熱在陽極隔室中形成之任何氫化物以將其熱分解來熱再生。可使氫流至或將其抽至陰極隔室中以使初始陰極反應物再生。再生反應可在陽極及陰極隔室中發生,或可將一或兩個隔室中之化學物質輸送至一或多個反應容器中以進行再生。
在另一實施例中,觸媒在陰極隔室中經歷H催化且變得電離且亦在陰極隔室中變得中和,使得無因催化反應直接造成之淨電流。產生EMF之自由能係來自需要質量輸送離子及電子之低能量氫的形成。舉例而言,遷移離子可為藉由在陽極隔室中諸如H2之物質氧化所形成之H+。H+通過電解質及鹽橋(諸如質子交換膜)中之至少一者遷移至陰極隔室且在陰極隔室中還原為H或氫化物以使低能量氫反應發生。或者,H2或氫化物可在陰極隔室中還原形成H-。還原進一步形成容許發生低能量氫反應之觸媒、觸媒來源及原子H中之至少一者。H-遷移至陽極隔室,其中其或另一物質係經電離以對外部電路提供電子而形成循環。氧化之H可來自H2,其可使用泵再循環至陰極隔室中。
在另一實施例中,金屬係在陽極處氧化。金屬離子遷移通過諸如熔鹽或固體電解質之電解質。適合之熔融電解質為遷移金屬離子之鹵化物。金屬離子係在陰極處還原,其中金屬經歷改變其活性之反應。在適合反應中,金屬溶解於另一金屬中,與至少一種其他金屬形成金屬互化物、化學吸附或物理吸附於表面上或層夾於諸如碳之材料中,且形成金屬氫化物。金屬可充當觸媒或觸媒來源。陰極反應物亦包含氫且可包含其他反應物以使低能量氫反應發生。其他反應物可包含諸如TiC之載體,及還原劑、觸媒及氫化物交換反應物。適合之例示性Mg金屬互化物包括Mg-Ca、Mg-Ag、Mg-Ba、Mg-Li、Mg-Bi、Mg-Cd、Mg-Ga、Mg-In、Mg-Cu及Mg-Ni及其氫化物。適合之例示性Ca金屬互化物包括Ca-Cu、Ca-In、Ca-Li、Ca-Ni、Ca-Sn、Ca-Zn及其氫化物。例示性Na及K合金或汞齊包括Hg、Pb及Bi之彼等者。其他包括Na-Sn及Li-Sn。氫化物可熱分解。金屬互化物可藉由蒸餾再生。再生金屬可再循環。
在另一實施例中,陽極隔室中之觸媒或觸媒來源係經歷電離,且相應陽離子遷移通過對陽離子具有選擇性之鹽橋。適合陽離子為Na+,且Na+選擇性膜為β氧化鋁。陽離子係在含有氫或氫來源及視情況選用之低能量氫反應混合物之其他反應物(諸如載體、還原劑、氧化劑及氫化物交換劑中一或多者)的陰極隔室中還原。電池可以CIHT電池、電解電池或組合形式操作,其中所施加之電解電力係藉由低能量氫反應放大。
在另一實施例中,陰極隔室包含觸媒來源及H來源。觸媒及H係自該等來源與自陽極隔室遷移之還原陽離子反應形成。觸媒及H進一步經歷形成低能量氫之反應。
在一個實施例中,共溶鹽LiCl/KCl及視情況選用之LiH的電解質之正離子(諸如Li+)自陽極隔室通過鹽橋遷移至陰極隔室且還原為諸如Li及LiH之金屬或氫化物。另一例示性電解質包含LiPF6之碳酸二甲酯/碳酸伸乙酯溶液。硼矽玻璃可為隔板。在其他實施例中,一或多種鹼金屬取代Li及K中之至少一者。在K+置換Li+作為遷移離子之情況下,可使用固體鉀-玻璃電解質。在一個實施例中,由於諸如Li+之離子的遷移,因此在陰極隔室中發生其還原及任何隨後之反應,諸如氫化物形成,及H催化至低能量氫狀態以對電池EMF提供貢獻。形成氫化物之氫來源及低能量氫反應之H可為比遷移離子之氫化物具有更小負形成熱之氫化物。在Li+作為遷移離子之情況下適合氫化物包括MgH2、TiH2、LiH、NaH、KH、RbH、CsH、BaH、LaNixMnyH2及Mg2NiHx,其中x、y及z為有理數。置換Li之K或Na的適合氫化物為MgH2
在一個實施例中,陽極半電池反應物包含至少一種可氧化的金屬,且陰極半電池反應物包含至少一種可與陽極之金屬反應之氫化物。陰極及陽極半電池反應物中之至少一者可進一步包含傳導性基質或載體材料,諸如碳,諸如碳黑;碳化物,諸如TiC、YC2或WC;或硼化物,諸如MgB2或TiB2,且兩個半電池均包含傳導電極。反應物可呈任何莫耳比,但適合比率為供氫交換之金屬之約化學計量混合物及至多50莫耳%載體。陽極金屬係在陽極半電池隔室中氧化,諸如Li+之陽離子遷移至陰極半電池隔室且還原,且諸如Li之金屬原子與氫化物在陰極隔室中反應。在一個實施例中,反應為氫化物交換反應。陰極半電池隔室之氫含量亦充當形成低能量氫之H來源。以下中之至少一者:遷移陽離子、還原陽離子、遷移陽離子之反應產物、至少一種H,及陰極半電池隔室之一或多種反應物或其與遷移陽離子或還原陽離子之反應產物充當形成低能量氫之觸媒或觸媒來源。因為電池反應可由H與觸媒形成低能量氫之大放熱反應推動,所以在一個實施例中,與來自陽極隔室之經還原遷移陽離子經歷H交換之陰極隔室氫化物具有與經還原遷移陽離子之氫化物類似或比其更負之形成自由能。接著,由諸如Li之經還原遷移陽離子與陰極金屬氫化物之反應造成之自由能可為微負、零或正。排除低能量氫反應,在實施例中,氫化物交換反應之自由能可為任何可能值。適合範圍為約+1000千焦/莫耳至-1000千焦/莫耳、約+1000千焦/莫耳至-100千焦/莫耳、約+1000千焦/莫耳至-10千焦/莫耳,及約+1000千焦/莫耳至0千焦/莫耳。進一步充當形成低能量氫之H來源的用於氫化物交換之適合氫化物為金屬、半金屬或合金氫化物中之至少一者。在遷移離子為觸媒或觸媒來源(諸如Li+、Na+或K+)之情況下,氫化物可包含不同於對應於遷移離子者之任何金屬、半金屬或合金。適合之例示性氫化物為鹼金屬或鹼土金屬氫化物、過渡金屬氫化物(諸如Ti氫化物)、內過渡金屬氫化物(諸如Nb、Zr或Ta氫化物)、鈀或鉑氫化物及稀土金屬氫化物。由於形成低能量氫之負自由能,因此電池電壓高於由可有助於電壓之任何氫化物交換反應之自由能造成的電壓。此適用於開路電壓且具有負載者。因此,CIHT電池與任何先前技術之區分處在於:電壓高於藉由非低能量氫相關化學(諸如氫化物交換反應)之能斯特方程式預測(由於當加載電池時之任何極化電壓,因此包括電壓校正)之電壓。
在一個實施例中,陽極半電池反應物包含觸媒來源,諸如鹼金屬或化合物,其中鹼金屬離子遷移至陰極隔室且可與陰極隔室之氫化物經歷氫化物交換反應。陽極反應物包含Li來源之例示性習知電池總反應可由以下表示:
其中M表示選自能夠形成氫化物之金屬或半金屬之單一元素或若干元素(呈混合物,金屬互化物或合金形式)。此等氫化物亦可經指定為「M氫化物」(其意謂吸附(例如化學組合)氫原子之元素M)之化合物置換。M氫化物可表示下文MHm,其中m為由M吸附或組合之H原子數。在一個實施例中,氫化物MnHm或MHm之每個H的自由生成焓高於、等於或小於諸如LiH之觸媒之氫化物的自由生成焓。或者,至少一種H可充當催化。例示性金屬或半包含鹼金屬(Na、K、Rb、Cs)、鹼土金屬(Mg、Ca、Ba、Sr)、第IIIA族元素(諸如B、Al、Ga、Sb)、第IVA族元素(諸如C、Si、Ge、Sn)及第VA族元素(諸如N、P、As)。其他實例為過渡金屬合金及金屬間化合物ABn,其中A表示一或多種能夠形成穩定氫化物之元素且B為形成不穩定氫化物之元素。在表5中給出金屬間化合物之實例。
其他實例為金屬間化合物,其中位點A及/或位點B之部分係經另一元素取代。舉例而言,若M表示LaNi5,則金屬間合金可由LaNi5- x A x 表示,其中A為例如Al、Cu、Fe、Mn及/或Co,且La可經以下取代:密鈰合金、含有30%至70%鈰、釹及極少量來自相同系列之元素的稀土金屬混合物,剩餘物為鑭。在其他實施例中,鋰可經其他觸媒或觸媒來源(諸如Na、K、Rb、Cs、Ca)及至少一種H置換。在實施例中,陽極可包含合金,諸如Li3Mg、K3Mg、Na3Mg,其形成諸如MMgH3(M=鹼金屬)之混合氫化物。例示性電池為[Li3Mg、K3Mg、Na3Mg/LiCl-KCl/氫化物,諸如CeH2、LaH2、TiH2、ZrH2或M(H2),其中M為H2可透金屬或H2擴散陰極]。
在例示性反應中,Li為陽極金屬且MnHm為陰極半電池隔室之氫化物反應物:
陰極反應
mLi++me-+MnHm→(m-1)LiH+Li+H(1/p)+nM (300)
陽極反應
Li→Li++e- (301)
在其他實施例中,Li可經諸如Na或K之另一觸媒或觸媒來源置換。M亦可為觸媒或觸媒來源。消耗形成低能量氫之H可經置換。Li及MmHn可藉由電解或其他物理或化學反應再生。由於形成低能量氫,因此放出淨電能及熱能:
淨反應
H→H(1/p)+至少部分呈電形式之能量 (302)
電池可包含適用於遷移離子或對遷移離子具有選擇性之鹽橋且可進一步包含適用於遷移離子之電解質。電解質可包含遷移離子之離子(諸如Li+電解質,諸如鋰鹽,諸如六氟磷酸鋰)之有機溶劑(對於遷移離子為Li+之情況,諸如為碳酸二甲酯或碳酸二乙酯及碳酸伸乙酯)溶液。接著,鹽橋可為玻璃,諸如浸透Li+電解質之硼矽玻璃,或陶瓷,諸如Li+浸漬β氧化鋁。電解質亦可包含至少一或多種陶瓷、聚合物及凝膠。例示性電池包含(1)1 cm2、75 μm厚的含有7-10 mg金屬氫化物之複合正電極圓盤(諸如R-Ni、Mg與TiC混合而成,或NaH與15%碳SP(MM之炭黑)混合而成),(2)作為負電極之1 cm2 Li金屬盤,及(3)作為隔板之Whatman GF/D浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/電解質。其他適合電解質為六氟磷酸鋰(LiPF6)、單水合六氟碑酸鋰(LiAsF6)、過氯酸鋰(LiClO4)、四氟硼酸鋰(LiBF4)及三氟甲磺酸鋰(LiCF3SO3)之有機溶劑(諸如碳酸伸乙酯)溶液。另外,可將H2氣體添加至電池中,諸如至陰極隔室中。在另一電池中,電解質及觸媒來源可包含自由基陰離子,諸如萘-鋰或萘化鋰(lithium naphthalenide)之萘或其他適合有機溶劑溶液。例示性電池包含[Li或萘離子(naphthalide ion)來源,諸如萘化鋰/萘/Li或H來源,諸如LiH]。電池可進一步包含陽極或陰極反應物之黏合劑。適合之聚合黏合劑包括例如聚(偏二氟乙烯)、共聚(偏二氟乙烯-六氟丙烯)、聚(四氟乙烯)、聚(氯乙烯)或聚(乙烯-丙烯-二烯單體)、EPDM。電極可為與半電池反應物接觸之適合導體,諸如鎳。
在一個實施例中,陽極半電池反應物可包含鹼金屬,諸如Li層夾於可充當觸媒或觸媒來源之基質(諸如碳)中。在一個例示性實施例中,陽極包含之鋰離子電池之Li-碳(LiC)陽極,諸如Li-石墨。電池可進一步包含諸如熔鹽電解質之電解質,及包含H來源之陰極。例示性電池為[LiC/LiCl-KCl/Ni(H2)]、[LiC/LiF-LiCl/Ni(H2)]、[LiC/LiCl-KCl/Ti(H2)]、[LiC/LiF-LiCl/Ti(H2)]、[LiC/LiCl-KCl/Fe(H2)]、[LiC/LiF-LiCl/Fe(H2)]、[LiC/LiCl-KCl LiH(0.02 mol%)/Ni(H2)]、[LiC/LiF-LiCl LiH(0.02 mol%)/Ni(H2)]、[LiC/LiCl-KCl LiH(0.02 mol%)/Ti(H2)]、[LiC/LiF-LiCl LiH(0.02 mol%)/Ti(H2)]及[LiC/LiCl-KCl LiH(0.02 mol%)/Fe(H2)]、[LiC/LiF-LiCl LiH(0.02 mol%)/Fe(H2)]。
在另一實施例中,碳係以可與觸媒或觸媒來源(諸如Li、Na或K)反應而形成相應離子化合物(如MCx(M為包含M+之鹼金屬))之另一物質置換。該物質可與觸媒、觸媒來源及氫來源(諸如K、Na、Li、NaH、LiH、BaH及KH以及單獨之H)中之至少一者形成層夾化合物。適合之層夾物質為六方氮化硼及金屬硫族化物。適合硫族化物為具有諸如MoS2及WS2之層化結構者。層化硫族化物可為以下清單之一或多者:TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、VSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、WSe2及MoTe2。其他適合之例示性物質為矽、摻雜矽、矽化物、硼及硼化物。適合硼化物包括形成雙鏈及二維網狀結構(如石墨)者。可具有傳導性之二維網狀結構硼化物可具有諸如MB2之式,其中M為諸如Cr、Ti、Mg、Zr及Gd(CrB2、TiB2、MgB2、ZrB2、GdB2)中之至少一者之金屬。化合物形成可為熱可逆或電解可逆。反應物可藉由移除觸媒來源之觸媒來熱再生。在一個實施例中,帶電負電極為諸如Li+之遷移M+及至包含鹼金屬(例如鋰)層夾硫族化物之電路之電子的來源。
在另一實施例中,負電極之金屬-碳(諸如鋰碳)係經包含至少一種包含金屬及一或多種除僅碳外之元素的化合物之金屬離子(諸如Li+)來源置換。含金屬之化合物可包含金屬氧化物(諸如Co、Ni、Cu、Fe、Mn或Ti之氧化物、過渡金屬氧化物、氧化鎢、氧化鉬、氧化鈮、氧化釩)、硫化物(諸如鐵、鎳、鈷及錳之硫化物)、氮化物、磷化物、氟化物,及金屬互化物或合金之另一金屬或多種金屬之化合物。CIHT電池之負電極可包含鋰離子電池之已知負電極。離子釋放反應可為轉化反應或層夾反應。在此情況下,觸媒可為Li。觸媒可在陰極形成。反應可為Li+還原。陰極半電池反應物可進一步包含諸如氫化物或H2氣體(藉由H滲透通過膜來供應)之來源的H。觸媒與H反應形成低能量氫以對CIHT電池電力提供貢獻。
在一個實施例中,電池可進一步包含遷移層夾離子(諸如Li+)之鹽橋。適合鹽橋為浸透遷移離子之鹽及溶劑之玻璃及以遷移離子浸漬之諸如β氧化鋁之陶瓷。例示性電池為[LiC/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Ni(H2)]、[LiC/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Ni(H2)]、[LiC/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Ti(H2)]、[LiC/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Ti(H2)]、[LiC/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Fe(H2)]及[LiC/浸透1 M LiPF6電解質之1:1碳酸二甲酯/碳酸伸乙酯溶液的硼矽玻璃-纖維薄片/Fe(H2)]。
陰極或陽極反應混合物中之至少一者可包含提高低能量氫反應速率之其他反應物,諸如以下中之至少一者:諸如碳化物(諸如TiC)之載體、諸如鹼金屬或鹼土金屬鹵化物(諸如LiCl或SrBr2)之氧化劑,及諸如鹼土金屬(諸如Mg)之還原劑。陰極隔室可包含諸如K、NaH之觸媒(或可為來自Li+遷移之Li)、諸如Mg或Ca之還原劑、諸如TiC、YC2、Ti3SiC2或WC之載體、諸如LiCl、SrBr2、SrCl2或BaCl2之氧化劑,及諸如氫化物(諸如R-Ni、TiH2、MgH2、NaH、KH或LiH)之H來源。
在一個實施例中,一或多種H原子充當形成低能量氫之電力或CIHT電池之觸媒。機制可包含以下中之至少一者:在材料中產生H空位(電洞)或H,使得多個H原子相互作用以形成低能量氫。在本發明中,暗示不同實施例之負電極及正電極可由熟習此項技術者以不同組合使用。或者,還原之遷移離子或其氫化物可充當觸媒或觸媒來源。對於分子低能量氫及低能量氫氫化物離子,低能量氫產物可藉由展示分別由等式(12)及(20)給出之峰的固體或液體NMR來鑑別。特定言之,在dDMF中在分別對應於H2(1/2)、H2(1/3)、H2(1/4)及H-(1/2)之2.2 ppm、1.69 ppm、1 ppm及-1.4 ppm下溶劑萃取陽極反應產物之後,例示性電池[Li3N TiC/LiCl-KCl/CeH2碳黑(CB)]之H觸媒反應產物展示液體HNMR峰。在一個實施例中,將諸如鹼金屬鹵化物(諸如KI)之吸氣劑添加至半電池中以充當分子低能量氫及低能量氫氫化物之吸氣劑。
舉例而言,諸如金屬離子(諸如Li+)之遷移離子可自CIHT電池之陽極遷移至陰極,在陰極經歷還原,且例示性Li可置換H(諸如晶格中之H)以產生一或多個游離H原子且視情況產生引起形成游離H之H空位,其中游離H反應形成低能量氫。或者,還原之遷移離子或其氫化物可充當觸媒或觸媒來源。舉例而言,含H晶格可為氫化碳、氫化物(諸如金屬氫化物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬氫化物)、LiAlH4、LiBH4,及其他此等氫化物或R-Ni。在其他實施例中,H晶格可為氫解離體及H來源,諸如以下中之至少一者:Pd/C、Pt/C、Pt/Al2O3、Pd/Al2O3、Pt/Ti、Ni粉、Nb粉、Ti粉、Ni/SiO2、Ni/SiO2-Al2O3與H2氣體,或氫化物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬氫化物,LiAlH4、LiBH4及其他此等氫化物。在其他實施例中,含H晶格為含層夾物質(諸如鹼金屬或離子,諸如經H或H+置換之Li或Li+)之層夾化合物。化合物可包含層夾H。化合物可包含層化氧化物,諸如LiCoO2,其中一些Li經H置換,諸如亦表示HCoO2之CoO(OH)。陰極半電池化合物可為層化化合物,諸如層化硫族化物,諸如層化氧化物,諸如LiCoO2或LiNiO2,其中至少一些層夾鹼金屬,諸如Li經層夾H置換。在一個實施例中,至少一些H及可能一些Li為帶電陰極材料之層夾物質且在放電期間層夾Li。其他鹼金屬可取代Li。H置換至少一些Li之適合層夾化合物為構成Li離子電池(諸如本發明之Li離子電池)之陽極或陰極的層夾化合物。適合之例示性層夾化合物為Li石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2及LiTi2O4及其他Li層化硫族化物。電池可包含鹽橋、諸如烯烴膜之隔板及電解質中之至少一者。電解質可為含Li鹽之有機溶劑、共溶鹽、鋰固體電解質或電解質水溶液。例示性電池為[Li或Li合金,諸如Li3Mg或Li石墨/諸如烯烴膜之隔板,及有機電解質,諸如LiPF6電解質之DEC溶液、LiBF4之四氫呋喃(THF)溶液,低熔點共溶鹽,諸如鹼金屬氫化物之混合物、LiAlCl4、鹼金屬鋁或硼氫化物與H2氛圍之混合物,或鋰固體電解質,諸如LiPON、矽酸鋰、鋁酸鋰、鋁矽酸鋰、固體聚合物或凝膠、二氧化矽(SiO2)、氧化鋁(Al2O3)、氧化鋰(Li2O)、氧化鎵(Ga2O3)、氧化磷(P2O5)、氧化矽鋁及其固溶體或電解質水溶液/MNH2、M2NH(M=鹼金屬),及M-N-H化合物與以下之混合物:視情況選用之混合金屬、MOH、MHS、MHSe、MHTe、氫氧化物、氧(氫氧)化物、包含金屬及氫酸陰離子之化合物(諸如NaHCO3或KHSO4)、氫化物,諸如NaH、TiH2、ZrH2、CeH2、LaH2、MgH2、SrH2、CaH2、BaH2、LiAlH4、LiBH4、R-Ni,包含HxLiy或H取代以下之群中之至少一者中之Li的化合物:Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2及LiTi2O4,其他Li層化硫族化物,及層夾化合物與氫化載體,諸如氫化碳,及Pd/C、Pt/C、Pt/Al2O3、Pd/Al2O3、Pt/Ti、Ni粉、Nb粉、Ti粉、Ni/SiO2、Ni/SiO2-Al2O3與H2氣體,或氫化物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬氫化物,LiAlH4、LiBH4及其他此等氫化物。H來源可為HY(質子化沸石),其中例示性電池為[Na或Li/Celgard有機電解質,諸如LP 30/HY CB]。為改良效能,可將導電材料及黏合劑添加至本發明之電池之陰極及陽極半電池反應物中之至少一者中。例示性導電材料及黏合劑為碳黑(其可為約10重量%)及乙烯丙烯二烯單體黏合劑(其可為約3重量%);但如此項技術中已知可使用其他比例。導電材料可進一步充當氫解離體及氫載體中之至少一者。亦為解離體之適合導體為Pd/C、Pt/C、Ir/C、Rh/C及Ru/C、Pt/Al2O3、Pd/Al2O3、Pt/Ti、Ni粉、Nb粉、Ti粉、Ni/SiO2及Ni/SiO2-Al2O3
在一個實施例中,CoH可充當如下提供之產生低能量氫之MH型氫觸媒:Co-H鍵斷裂加上2個電子自原子Co各自電離至連續能階,使得鍵能與2個電子之電離能的和為約m‧27.2eV,其中m為1,如表3中所給出。CoH可藉由金屬M(諸如鹼金屬)與氧(氫氧)化鈷之反應,諸如4M與2CoOOH形成CoH、MCoO2、MOH及M2O之反應或4M與CoOOH形成CoH及2M2O之反應來形成。CoH亦可藉由M與氫氧化鈷之反應,諸如5M與2Co(OH)2形成CoH、MCoO2、2M2O及1.5H2之反應或3M與Co(OH)2形成CoH、MOH及M2O之反應來形成。
在一個實施例中,陰極反應物包含至少兩種以下之群之不同化合物的混合物:有利於M層夾而非MOH(M鹼金屬)形成之氧(氫氧)化物、氫氧化物及氧化物。自CoOOH形成諸如LiCoO2之層夾產物為可再充電的。
氫層夾硫族化物(諸如包含O、S、Se及Te之氫層夾硫族化物)可藉由氫處理金屬硫族化物來形成。處理可在高溫及高壓下。A諸如Pt/C或Pd/C之解離體可用以產生原子氫,該原子氫在諸如碳之載體上溢出以層夾至硫族化物中。適合之硫族化物為以下之群中之至少一者:TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、VSe2、WSe2及MoTe2
在其他實施例中,諸如Li層夾化合物之鹼金屬(M)層夾化合物為缺陷型M,其中缺陷可藉由充電來達成。M儲集體可為與M反應之元素或化合物,諸如S、Se、Te、Li2NH或LiNH2。諸如Li之M來源可為鹼金屬鋁或硼氫化物,諸如LiAlH4、LiBH4。例示性電池為[LiAlH4或LiBH4/諸如烯烴膜之隔板,及有機電解質,諸如LiPF6電解質之DEC溶液或LiBF4之四氫呋喃(THF)溶液/NaH、TiH2、ZrH2、CeH2、LaH2、MgH2、SrH2、CaH2、BaH2、S、Se、Te、Li2NH、LiNH2、R-Ni、以下之群中之至少一者中之Li缺陷:Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2及LiTi2O4,其他Li層化硫族化物,及層夾化合物與視情況選用之氫化載體,諸如氫化碳,及Pd/C、Pt/C、Pt/Al2O3、Pd/Al2O3、Pt/Ti、Ni粉、Nb粉、Ti粉、Ni/SiO2、Ni/SiO2-Al2O3與H2氣體,或氫化物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬氫化物,LiAlH4、LiBH4及其他此等氫化物]及[MBH4(M=Li、Na、K)/BASE/S、Se、Te,氫硫族化物,諸如NaOH、NaHS、NaHSe及NaHTe,氫氧化物、氧(氫氧)化物,諸如CoO(OH)或HCoO2及NiO(OH),氫化物,諸如NaH、TiH2、ZrH2、CeH2、LaH2、MgH2、SrH2、CaH2及BaH2、Li2NH、LiNH2、R-Ni、以下之群中之至少一者中之Li缺陷:Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12,層化過渡金屬氧化物,諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2及LiTi2O4,其他Li層化硫族化物,及層夾化合物與視情況選用之氫化載體,諸如氫化碳,及Pd/C、Pt/C、Pt/Al2O3、Pd/Al2O3、Pt/Ti、Ni粉、Nb粉、Ti粉、Ni/SiO2、Ni/SiO2-Al2O3與H2氣體,或氫化物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬氫化物,LiAlH4、LiBH4及其他此等氫化物]。其他例示性適合之氧(氫氧)化物為以下之群中之至少一者:羥鉻礦(CrO(OH))、水鋁石(AlO(OH))、ScO(OH)、YO(OH)、VO(OH)、針鐵礦(α-Fe3+O(OH))、錳榍石(Mn3+O(OH))、圭羥鉻礦(CrO(OH))、黑釩礦((V,Fe)O(OH))、CoO(OH)、NiO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)、RhO(OH)、InO(OH)、鎵礦(GaO(OH))、水錳礦(Mn3+O(OH))、釔鎢華-(Y)(YW2O6(OH)3)、釔鎢華-(Ce)((Ce,Nd,Y)W2O6(OH)3)、未命名(釔鎢華-(Ce)之Nd類似物)((Nd,Ce,La)W2O6(OH)3)、銅碲礦(Cu2[(OH)2[TeO4]])、碲鉛銅石(Pb2+ (TeO6)(OH)2)及副碲鉛銅石(Pb2+ TeO6(OH)2)。
在包含R-Ni及諸如Li+之遷移鹼金屬離子的一個實施例中,可藉由首先用氫還原將併入材料中之任何Li-R-Ni產物氫化,形成LiH,接著電解,由LiH氧化形成Li+及R-Ni氫化物,使R-Ni氫化物再生。接著在電解陰極(CIHT電池陽極)處還原Li+
在包含R-Ni之一個實施例中,R-Ni可摻雜另一種用於形成氫或氫化物之化合物。適合之摻雜劑為MOH(M=鹼金屬)。與包含鹼金屬之經還原之遷移離子的反應為2M+MOH→M2O+MH;MH起反應而形成低能量氫且MOH可藉由添加氫而再生(例如方程式(217)及(220))。例示性電池為[Li/浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚丙烯膜/R-Ni]、[Li/浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚丙烯膜/LiOH摻雜之R-Ni]、[Na/浸透1 M NaPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚丙烯膜/NaOH摻雜之R-Ni]及[K/浸透1 M KPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚丙烯膜/KOH摻雜之R-Ni]。
在一個實施例中,可藉由電解將H併入諸如層夾化合物之材料中。包含H及視情況存在之諸如Li之金屬的層夾化合物可藉由電解包含質子或質子來源之電解質或氧化氫化物離子或氫化物離子來源而形成。質子或質子來源或氫化物離子或氫化物離子來源可為電化學電池(諸如本發明之電化學電池)之反半電池及電解質。舉例而言,前者可由半電池及電解質[Pt(H2)、Pt/C(H2)、硼烷、胺基硼烷及硼烷胺、AlH3或H-X化合物(X=第V、VI或VII族元素)/包含諸如硝酸銨-三氟乙酸銨之液體電解質的無機鹽混合物]提供。後者可由電解質及半電池/H-傳導電解質(諸如熔融共熔鹽,諸如LiCl-KCl)/H可透陰極與H2(諸如Ni(H2)及Fe(H2))、氫化物(諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬氫化物,後者為例如CeH2、DyH2、ErH2、GdH2、HoH2、LaH2、LuH2、NdH2、PrH2、ScH2、TbH2、TmH2及YH2)及M-N-H化合物(諸如Li2NH或LiNH2)]提供。在一個實施例中,諸如HxLiy或H取代Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4、其他Li層狀硫族化物中之Li的化合物可藉由使Li硫族化物與質子來源(諸如銨鹽,諸如硝酸銨)反應,接著分解,諸如分解釋放NH3,或與酸反應,形成陰離子的Li化合物來合成。合成可在水溶液中或在離子液體中進行。一例示性反應為
LixCoO2+yHCl→Lix-yCoO2+yLiCl (303)
LiCoO2+HCl→LiCl+CoO(OH)或HCoO2 (304)
所需產物為CoO(OH)、水鈷礦或HCoO2。在電池之遷移離子為Li+(在陰極處還原)的情況下,形成低能量氫之反應可為
CoO(OH)或HCoO2+2Li→LiH+LiCoO2 (305)
LiH→H(1/p)+Li (306)
其中Li可充當觸媒。其他產物為Co(OH)2及Co3O4。LiCl可藉由過濾固體產物來移除。在其他實施例中,另一酸可取代HCl,伴隨形成相應Li酸陰離子化合物。適合之酸為此項技術中已知之酸,諸如HF、HBr、HI、H2S、硝酸、亞硝酸、硫酸、亞硫酸、磷酸、碳酸、乙酸、草酸、過氯酸、氯酸、亞氯酸及次氯酸。在一個實施例中,可藉由使LiH與MSO4在離子液體中於高溫下反應而用H置換諸如LiMSO4F(M=Fe、Co、Ni、過渡金屬)之層夾化合物中之F。在電池放電期間,H可反應而形成低能量氫。放電期間諸如Li+之遷移離子之併入可產生游離或反應性H,以形成低能量氫。在其他實施例中,鹼金屬可經另一鹼金屬取代。
在其他實施例中,陰極反應物包含可藉由熟習此項技術者已知之方法合成的氫氧化物或氧(氫氧)化物中之至少一者。該等反應可由方程式(303-304)給出。涉及NiO(OH)之另一例示性氧(氫氧)化物低能量氫反應由以下給出。
NiO(OH)+2Li→LiH+LiNiO2 (307)
LiH→H(1/p)+Li (308)
其他例示性適合之氧(氫氧)化物為以下之群中之至少一者:羥鉻礦(CrO(OH))、水鋁石(AlO(OH))、ScO(OH)、YO(OH)、VO(OH)、針鐵礦(α-Fe3+O(OH))、錳榍石(Mn3+O(OH))、圭羥鉻礦(CrO(OH))、黑鐵釩礦((V,Fe)O(OH))、CoO(OH)、NiO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)、RhO(OH)、InO(OH)、鎵礦(GaO(OH))、水錳礦(Mn3+O(OH))、釔鎢華-(Y)(YW2O6(OH)3)、釔鎢華-(Ce)((Ce,Nd,Y)W2O6(OH)3)、未命名(釔鎢華-(Ce)之Nd類似物)((Nd,Ce,La)W2O6(OH)3)、銅碲礦(Cu2[(OH)2[TeO4]])、碲鉛銅石(Pb2+ (TeO6)(OH)2)及副碲鉛銅石(Pb2+ TeO6(OH)2)。反應物可藉由電解由產物再生。或者,可使用此項技術中已知之化學處理步驟,將產物轉化為初始反應物,且可使用本發明之方法,諸如由方程式(304)給出之步驟。在一個實施例中,可使用電解與化學步驟之組合。舉例而言,產物可藉由電解去鋰化,且所得CoO2可轉化為CoO(OH)或HCoO2
在一個實施例中,氧(氫氧)化物係藉由電解與化學再生中之至少一者而再生。經消耗而形成低能量氫的氫可藉由添加氫氣或氫來源(諸如氫化物,諸如LiH)來置換。Li可藉由加熱及蒸發或昇華來提取,其中使用所施加氫來置換H。舉例而言,LiCoO2可藉由用諸如HCl之酸處理而至少部分地轉化為CoO(OH)或HCoO2(方程式(303-304))。或者,氧(氫氧)化物可藉由在水溶液中電解而再生,其中所移除之Li形成氧化鋰。在另一實施例中,藉由用氣體酸(諸如氫鹵酸,諸如HBr或HI)處理產物來置換H。層夾之Li可與酸反應,形成相應鹵化物,諸如LBr或LiI。鹵化鋰可藉由昇華或蒸發來移除。
在一個實施例中,使用包含如圖21中所示之三個半電池的CIHT電池實現再生。一次陽極600及陰極601半電池包含主電池,其包含標準反應物,諸如Li來源及CoO(OH),分別由隔板602及有機電解質隔開。各自分別具有其相應電極603及604。在閉合開關606後,放電主電池之電力耗散在負載605中。另外,第三或再生半電池607與一次陰極半電池601交界,且包含質子來源。一次陰極及再生半電池由質子導體608隔開。再生半電池具有其電極609。在主電池再充電期間,電力由電源610,在開關611閉合及開關606打開下提供。再生半電池607充當二次陽極,且一次陽極600充當二次陰極。質子係藉由氧化H來形成且自再生電池607遷移至一次陰極601。當Li+離子遷移至二次陰極600時,由H+離子將Li+離子自LiCoO2中置換出,形成CoO(OH)或HCoO2,且還原成Li。在一個三腔室電池實施例中,再充電陽極可包含質子來源(諸如Pt/C(H2))及質子導體。接著,再充電電池可為[Pt/C(H2)加上質子導體界面/LiCoO2/Li]。例示性電池為[Li來源(諸如Li或Li合金(諸如Li3Mg)或LiC)/烯烴隔板及有機電解質(諸如Celgard及LP 40)/CoO(OH)或HCoO2/質子導體/H+來源(諸如Pt(H2)、Pt/C(H2))]。在另一實施例中,將氫供應給腔室607,腔室607包含氫解離觸媒(諸如Pt/C)及隔膜隔板608(其可為納菲薄膜),在於電極604與603之間施加電解電壓時,H原子藉由此隔膜隔板擴散至腔室601中之陰極產物材料中。在電解期間將H併入陰極材料中時,施加於電極604上之正電壓引起Li遷移至腔室600中,以在電極603處還原。在另一實施例中,隔板608與電池體電隔離,且包含電極609。腔室607包含H來源,諸如氫化物。電極609可氧化諸如氫化物之來源的H-。電導率可藉由腔室607中之熔融共熔鹽H-導體來增強。電解引起H遷移至腔室601中而層夾於氧(氫氧)化物中。
在一個實施例中,遷移離子可在電解期間還原,使得經還原之物質形成還原形式之化合物且另外包含任何形式之氫,諸如氫、質子、氫化物離子、及氫、質子及氫化物離子之來源中的至少一者。舉例而言,Li+可在包含碳作為半電池反應物之電極處還原。Li可層夾於碳中。層夾可置換一些H原子。材料中H之產生會使多個H原子相互作用,形成低能量氫。此外,在放電期間,離子(諸如金屬離子,諸如Li+)遷移在包含遷移離子來源(諸如呈不同氧化態之遷移離子)及氫、質子、氫化物離子、或氫、質子、氫化物離子來源之複合材料中產生空位。由遷移離子運動產生之空位具有在材料中產生H空位(電洞)或H的作用,使得多個H原子相互作用而形成低能量氫。或者,經還原的遷移離子或其氫化物可充當觸媒或觸媒來源。遷移離子的陰極可為與經還原之遷移離子形成化合物的反應物,諸如與經還原之遷移離子形成層夾化合物的反應物。適用於例示性Li的層夾化合物為包含Li離子電池之陽極或陰極的層夾化合物,諸如本發明之層夾化合物。適合之例示性層夾化合物為Li石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及其他Li層狀硫族化物。適合之陽極形成遷移離子之化合物且進一步包含氫。陽極可為材料或化合物之混合物。舉例而言,氫可呈氫化物(諸如LiH)形式,且遷移離子之化合物可包含諸如碳或Li離子電池之其他負電極的層夾化合物。或者,遷移離子之化合物可包含合金,諸如Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiGa、LiTe、LiSe(諸如Li2Se)、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3,0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金(諸如氧化物、氮化物、硼化物及矽化物)及混合金屬-Li合金或作為Li來源之化合物(諸如在與氫化物反應後釋放Li的化合物)中之至少一者。後一類型之例示性化合物為Li3N及Li2NH,其可與例如LiH反應,得到Li離子、電子及Li2NH或LiNH2。例示性電池為[可藉由電解形成之H與Li石墨之複合物、氫化物與作為Li來源且承載H之物質(諸如鋰化碳、碳化物、硼化物或矽)之混合物、氫化物(諸如LiH)與合金(諸如Li3Mg、LiAl、LiSi、LiB、LiC、LiPb、LiGa、LiTe、LiSe(諸如Li2Se)、LiCd、LiBi、LiPd、LiSn、Li2CuSn、LixIn1-ySb(0<x<3,0<y<1)、LiSb、LiZn、Li金屬-擬金屬合金(諸如氧化物、氮化物、硼化物及矽化物)及混合金屬-Li合金中之至少一者)之混合物、及氫化物(諸如LiH)與Li3N或Li2NH之混合物中的至少一者/隔板(諸如烯烴膜)及有機電解質(諸如LiPF6電解質於DEC或共熔鹽中之溶液)/石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、其他Li層狀硫族化物]。
在一個實施例中,經消耗而形成電極材料(諸如包含H及遷移離子產物或來源之複合物)之低能量氫的H可經氫氣置換。氫氣之施加可置換分子低能量氫。
在實施例中,陰極可包含氫可透膜,諸如塗有經還原之遷移離子(諸如金屬離子,諸如經還原之Li+離子)之金屬管。經還原之遷移離子(諸如Li金屬)可藉由電解電鍍於膜上。遷移離子之來源可為Li離子電池電極材料,諸如本發明之電極材料。適合之Li來源為Li石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及其他Li層狀硫族化物中之至少一者。電鍍可在不存在氫下發生。接著,氫可在無電解電壓下施加於管內部,其中電極因而充當CIHT電池陰極。其他適合之Li來源為Li金屬、Li合金及Li化合物,諸如Li-N-H化合物。
在一個實施例中,包含H之化合物釋放原子H,原子H經受催化,形成低能量氫,其中至少一個H充當至少另一H之觸媒。H化合物可為層夾於基質中之H,諸如碳中之H或金屬(R-Ni)中之H。化合物可為氫化物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬氫化物、LiAlH4、LiBH4及其他該等氫化物。可藉由將電池遷移離子(諸如鹼金屬離子,諸如Li+)併入化合物中來釋放。或者,經還原的遷移離子或其氫化物可充當觸媒或觸媒來源。陰極可包含碳、碳塗佈之導體,諸如金屬或能夠吸收H且層夾置換H或改變晶格中之其化學勢或氧化態之金屬的其他材料。舉例而言,碳基質中之K及H以碳、K離子與氫化物離子、及碳(C/...K+ H- K+ H-.../C)之三層形式存在,且Li及H以LiH形式存在於碳層中。一般而言,金屬-碳化合物(諸如稱為氫-鹼金屬-石墨三元層夾化合物之化合物)可包含MCx(M為金屬,諸如包含M+之鹼金屬)。在操作期間,H及至少一種除H物質以外之原子或離子(諸如K、K+、Li或Li+)可併入碳晶格中,以便產生H原子,其可經歷催化而形成低能量氫,其中至少一個H可充當至少一個其他H原子之觸媒,或除H物質以外之原子或離子可充當觸媒或觸媒來源。在其他實施例中,其他層夾化合物可取代碳,諸如六方氮化硼(hBN)、硫族化物、碳化物、矽及硼化物(諸如TiB2及MgB2)。例示性電池為[氫-鹼金屬-石墨三元層夾化合物、Li、K、Li合金/隔板(諸如烯烴膜)及有機電解質(諸如LiPF6電解質於DEC或共熔鹽中之溶液)/氫-鹼金屬-石墨三元層夾化合物或併入hBN、LihBN、石墨、Li石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4、其他Li層狀硫族化物之群中之至少一者中的H]及[Li/Celgard LP 30/氫化PtC或PdC],其中氫在被消耗而形成低能量氫時可經置換。
在實施例中,陰極及陽極半電池反應物中之至少一者包含經改質之碳。經改質之碳可包含物理吸收或化學吸收之氫。經改質之碳可包含M. S. Dresselhaus及G. Dresselhaus,「Intercalation compounds of graphite」,Advances in Physics,(2002),第51卷,第1期,第1-186頁(以引用的方式併入本文中)中給出之石墨層夾化合物。經改質之碳可包含或進一步包含諸如以下中之至少一者的層夾物質:K、Rb、Cs、Li、Na、KH、RbH、CsH、LiH、NaH、Sr、Ba、Co、Eu、Yb、Sm、Tm、Ca、Ag、Cu、AlBr3、AlCl3、AsF3、AsF5、AsF6 -、Br2、Cl2、Cl2O7、Cl3Fe2Cl3、CoCl2、CrCl3、CuCl2、FeCl2、FeCl3、H2SO4、HClO4、HgCl2、HNO3、I2、ICl、IBr、KBr、MoCl5、N2O5、NiCl2、PdCl2、SbCl5、SbF5、SO3、SOCl2、SO2Cl2、TlBr3、UCl4、WCl6、MOH、M(NH3)2,其中該化合物可為C12M(NH3)2(M=鹼金屬)、硫族化物、金屬、與鹼金屬形成合金之金屬、及金屬氫化物、鋰離子電池陽極或陰極反應物、及M-N-H化合物(其中M為諸如Li、Na或K之金屬)、MAlH4(M=鹼金屬)、MBH4(M=鹼金屬)及本發明之其他反應物。鋰離子電池反應物可為以下之群中之至少一者:LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及其他Li層狀硫族化物。適合之硫族化物為以下之群中之至少一者:TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、VSe2、WSe2及MoTe2
經改質之碳可包含結合H+之負性中心。負性中心可包含層夾物質,諸如陰離子。經改質之碳可包含由氧化或層夾形成之氧化物中心。經改質之碳可包含層夾之HNO3或H2SO4。例示性電池為[Li或Li合金(諸如Li3Mg)或LiC/Celgard有機電解質(諸如LP 30或共熔鹽)/HNO3層夾碳]、[Li/Celgard LP 30/H2SO4層夾碳]、[LiTi2(PO4)3、LixVO2、LiV3O8、Li2Mn4O9或Li4Mn5O12/LiNO3水溶液/HNO3層夾碳]及[Li/Celgard LP 30/碳奈米管(H2)]。經改質之碳之其他實例可包含N2O、SF6、CF4、NF3PCl3、PCl5、CS2、SO2、CO2、P2O5吸收或層夾於碳中。例示性電池為Li/Celgard LP 30或共熔鹽/經改質之碳(諸如吸收於碳中之N2O、SF6CF4、NF3PCl3、PCl5、CS2、SO2、CO2及P2O5之群中的至少一者)]。
在一個實施例中,經改質之碳為氧化石墨。呈原子及分子形式之氫可層夾於氧化石墨中。H層夾之氧化石墨可包含陰極半電池反應物。H可經鹼金屬置換,形成低能量氫。一例示性電池為[Li/Celgard LP 30/H層夾之氧化石墨]。
經改質之碳亦可包含層夾物質(諸如鹼金屬,諸如K、Rb或Cs,或鹼土金屬)與受體(諸如芳族受體)之錯合物。在一個實施例中,受體與供體形成電荷轉移複合物,且藉由諸如物理吸附或化學吸附之方式進一步吸收或結合氫。適合之例示性受體為四氰基芘、四硝基芘、四氰基乙烯、鄰苯二甲腈、對苯二甲腈、蒽烯紫B、石墨及類似分子或材料。經改質之碳可為石墨烯,或至少鍵結有H的經改質之石墨烯及視情況存在的經改質之碳之其他物質。陽極可包含充當遷移離子之鹼金屬離子M+(諸如Li+、Na+或K+)之來源。來源可為鹼金屬、氫-鹼金屬-石墨三元層夾化合物、鹼金屬合金或本發明之其他該等來源。電池可包含電解質(諸如有機或水性電解質)及鹽,且可進一步包含鹽橋或隔板。在其他實施例中,陽極可包含鹼金屬或鹼土金屬或該等金屬中之至少一者之來源且經改質之碳可包含此等金屬之一。例示性電池為[經改質之碳(諸如氫-鹼金屬-石墨三元層夾化合物)及鹼金屬或鹼土金屬M或合金中之至少一者/隔板(諸如烯烴膜)及有機電解質(諸如MPF6電解質於DEC或共熔鹽中之溶液)/經改質之碳]。
在一個實施例中,陰極及陽極可包含碳、氫化碳及經改質之碳中之至少一者。在兩個半電池上包含碳形式之一個實施例中,遷移離子可為H+或H-,其中陽極及陰極半電池反應物分別包含氫。舉例而言,陰極可包含還原成氫化物離子之氫-鹼金屬-石墨三元層夾化合物,該氫化物離子遷移穿過H-傳導電解質,諸如熔融共熔鹽,諸如鹼金屬鹵化物混合物,諸如LiCl-KCl。氫化物離子可在陽極處氧化,自碳形成氫化碳,或自鹼金屬-石墨三元層夾化合物形成氫-鹼金屬-石墨三元層夾化合物。或者,氫化碳或氫-鹼金屬-石墨三元層夾化合物可在陽極處氧化成H+,遷移穿過H+傳導電解質,諸如納菲薄膜、離子液體、固體質子導體或水性電解質,達到陰極半電池,在陰極半電池中H+還原成H。H可反應,形成氫化碳,或自鹼金屬-石墨三元層夾化合物形成氫-鹼金屬-石墨三元層夾化合物。例示性電池為[碳(諸如碳黑或石墨)/共熔鹽(諸如LiCl-KCl)/氫-鹼金屬-石墨三元層夾化合物或氫化碳]、[鹼金屬-石墨-三元層夾化合物/共熔鹽(諸如LiCl-KCl)/氫-鹼金屬-石墨三元層夾化合物或氫化碳]及[氫化碳/質子傳導電解質(諸如納菲薄膜或離子液體)/碳(諸如碳黑或石墨)]。
在一個實施例中,石墨中之鹼金屬氫化物(諸如KH)具有一些可用作CIHT電池之陰極或陽極的相關性質,其中H-遷移至包含諸如C8KHx之化合物之陽極或K+遷移至包含諸如C8KHx之化合物之陰極會導致電荷轉移及H置換或併入,引起形成低能量氫之反應。例示性電池為[K/隔板(諸如烯烴膜)及有機電解質(諸如KPF6電解質於DEC中之溶液)/碳(H2)與C8KHx中之至少一者]、[Na/隔板(諸如烯烴膜)及有機電解質(諸如NaPF6電解質於DEC中之溶液)/碳(H2)與CyNaHx中之至少一者]、[碳(H2)與C8KHx中之至少一者/共熔鹽/氫化物(諸如金屬氫化物)或穿過可透膜之H2]、[碳(H2)與CyNaHx中之至少一者/共熔鹽/氫化物(諸如金屬氫化物)或穿過可透膜之H2中之至少一者]及[碳(H2)、CyLiHx及CyLi中之至少一者/共熔鹽/氫化物(諸如金屬氫化物)或穿過可透膜之H2中之至少一者]。
在一個實施例中,陽極可包含聚噻吩-衍生物((PthioP),且陰極可包含聚吡咯(PPy)。電解質可為LiClO4,諸如0.1 M於有機溶劑(諸如乙腈)中。推動氫化碳中空位產生及H添加,形成低能量氫之一例示性可逆反應為
其中-Py-為吡咯單體且-Th-為噻吩單體,且A為參與半電池之間陰離子往復運動的陰離子。或者,陽極可包含聚吡咯,且陰極可包含石墨。電解質可為鹼金屬鹽,諸如於電解質(諸如碳酸伸丙酯(PC))中之Li鹽。至少一個電極可包含氫化碳,其中電子及離子轉移反應引起原子H反應形成低能量氫。例示性電池為[PthioP CB(H2)/0.1M LiClO4之乙腈溶液/PPy CB(H2)]及[PPy CB(H2)/Li鹽之PC溶液/石墨(H2)],其中CB為碳黑。
在另一實施例中,陽極及陰極可為經氫化之碳,分別諸如氫化碳黑及氫化石墨。電解質可為酸,諸如H2SO4。濃度可為高的,諸如12 M。推動氫化碳中空位產生及H添加,形成低能量氫之一例示性可逆反應為
一例示性電池為[CB(H2)/12 MH2SO4/石墨(H2)]。
在一個實施例中,電池包含水性電解質。電解質可為呈溶液形式之鹼金屬鹽,諸如鹼金屬硫酸鹽、硫酸氫鹽、硝酸鹽、亞硝酸鹽、磷酸鹽、磷酸氫鹽、磷酸二氫鹽、碳酸鹽、碳酸氫鹽、鹵化物、氫氧化物、過錳酸鹽、氯酸鹽、過氯酸鹽、亞氯酸鹽、過亞氯酸鹽、次氯酸鹽、溴酸鹽、過溴酸鹽、亞溴酸鹽、過亞溴酸鹽、碘酸鹽、過碘酸鹽、亞碘酸鹽、過亞碘酸鹽、鉻酸鹽、重鉻酸鹽、碲酸鹽、硒酸鹽、砷酸鹽、矽酸鹽、硼酸鹽及其他氧陰離子。另一適合之電解質為鹼金屬硼氫化物,諸如於濃鹼中之硼氫化鈉,諸如於約14 M NaOH中之約4.4 M NaBH4。負電極可為碳,諸如石墨或活性碳。在充電期間,諸如Na之鹼金屬併入碳中。正電極可包含含有H之化合物或材料,其中遷移離子置換H,解除H,H進一步進行形成低能量氫之反應。正電極可包含氫取代之Na4Mn9O18、類似該等氧化錳化合物、類似氧化釕化合物、類似氧化鎳化合物、及於氫化基質(諸如氫化碳)中之至少一種該化合物。包含H之化合物或材料可為至少一種H沸石(HY,其中Y=包含NaY之沸石,其中一些Na經H置換)。HY可由NaY與NH4Cl反應,形成HY、NaCl及NH3(移除)而形成。導電性差之半電池反應物可與導電基質(諸如碳、碳化物或硼化物)混合。陰極可為矽酸衍生物。在另一實施例中,陰極可為R-Ni,其中Na可在陰極形成氫氧化鈉或鋁酸鈉且釋放H。陰極及陽極可包含具有不同階段鹼金屬層夾及氫化之碳,使得H+或鹼金屬離子中之至少一者自一電極輸送至另一電極,引起H置換或併入,進一步引起形成低能量氫之反應。在一個實施例中,歸因於電極或半電池之材料的不同活性,水可在一電極氧化且在另一電極還原。在一個實施例中,H+可在負電極形成且在正電極還原,其中H流引起低能量氫在一或兩個電極上形成。例示性電池為[CNa與CyNaHx中之至少一者、視情況存在之R-Ni/Na鹽水溶液/CNa、Cy'NaHx'、HY、R-Ni及Na4Mn9O18中之至少一者+碳(H2)或R-Ni]。在其他實施例中,Na可經諸如K或Li之另一鹼金屬置換。在其他實施例中,諸如K或Li之另一鹼金屬置換Na。於水性電解質(諸如KCl(水溶液))中之例示性K層夾化合物為KxMnOy(x=0.33且y為約2)。晶體類型可針對所選陽離子而選擇,諸如針對K,選擇水鈉錳礦。H+可交換鹼金屬離子。H+還原成H可引起低能量氫形成。
在具有水性電解質之實施例中,陰極對O2放出穩定,且陽極對H2放出穩定。例示性適合之陰極材料為LiMn0.05Ni0.05Fe0.9PO4、LiMn2O4、LiNi1/3Co1/3Mn1/3O2、LiCoO2。在其他實施例中,含有H之晶格(諸如陰極材料)為層夾物質(諸如鹼金屬或離子,諸如Li或Li+)經H或H+置換之層夾化合物。化合物可包含層夾之H。化合物可包含諸如LiCoO2之層狀氧化物,其中至少一些Li經H置換,諸如CoO(OH),亦稱為HCoO2。陰極半電池化合物可為層狀化合物,諸如層狀硫族化物,諸如層狀氧化物,諸如LiCoO2或LiNiO2,其中至少一些層夾鹼金屬(諸如Li)經層夾H置換。在一個實施例中,至少一些H及可能一些Li為充電陰極材料之層夾物質及放電期間之Li層夾物。其他鹼金屬可取代Li。其中氫置換至少一些Li之適合層夾化合物為包含Li離子電池之陽極或陰極的層夾化合物,諸如本發明之層夾化合物。包含HxLiy或H取代Li之適合例示性層夾化合物為Li石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及其他Li層狀硫族化物。
例示性適合陽極材料為LiTi2(PO4)3、LixVO2、LiV3O8、Li2Mn4O9、Li4Mn5O12。適合之例示性電解質為鹼金屬或銨之鹵化物、硝酸鹽、過氯酸鹽及硫酸鹽,諸如LiNO3、LiCl及NH4X(X=鹵離子、硝酸根、過氯酸根及硫酸根)。水溶液可為鹼性的,以促進Li經形成LiOH而層夾。pH值可藉由添加LiOH(諸如0.0015 M LiOH)來增加。在其他實施例中,藉由調整pH值,促進H2放出,其中H放出有助於低能量氫之形成。在其他實施例中,發生氧(氫氧)化物、氫氧化物、鹼金屬氧化物及鹼金屬氫化物之形成,其中根據諸如方程式(305-306)之反應的反應,鹼金屬氫化物之形成引起低能量氫之形成。
鋰離子型電池可具有含有鹽(諸如LiNO3)之水性電解質。此藉由使用典型正性陰極(諸如LiMn2O4)成為可能,該陰極具有正電位遠高於LiC6之層夾化合物,諸如氧化釩,使得電池電壓小於考慮電極上氧或氫放出之任何過電位的水電解電壓。其他適合之電解質為鹼金屬鹵化物、硝酸鹽、硫酸鹽、過氯酸鹽、磷酸鹽、碳酸鹽、氫氧化物或其他類似電解質。以產生低能量氫,電池進一步包含氫化物質。電池反應引起H添加或空位形成,導致低能量氫形成。氫化物質可為諸如R-Ni之氫化物或諸如CB(H2)之氫化物質。適合氫化物之其他例示性金屬或半金屬包含鹼金屬(Na、K、Rb、Cs)、鹼土金屬(Mg、Ca、Ba、Sr)、來自第IIIA族之元素(諸如B、Al、Ga、Sb)、來自第IVA族之元素(諸如C、Si、Ge、Sn)、來自第VA族之元素(諸如N、P、As)及過渡金屬及合金。其他實例為金屬間化合物ABn,其中A表示能夠形成穩定氫化物之一或多種元素且B為形成不穩定氫化物之元素。表5中給出金屬間化合物之實例。例示性電池為[LiV2O5CB(H2)或R-Ni/LiNO3水溶液以及視情況存在之LiOH/CB(H2)或R-NiLiMn2O4]、[LiV2O5/LiOH水溶液/R-Ni]、[LiV2O5/LiNO3水溶液以及視情況存在之LiOH/R-Ni]、[LiTi2(PO4)3、LixVO2、LiV3O8、Li2Mn4O9或Li4Mn5O12/LiNO3或LiClO4水溶液以及視情況存在之LiOH或KOH(飽和水溶液)/Li層狀硫族化物及一些H置換Li或缺乏Li之此等化合物、包含HxLiy或H取代Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4、其他Li層狀硫族化物之群中之至少一者中的Li之化合物中之至少一者]及[LiTi2(PO4)3、LixVO2、LiV3O8、Li2Mn4O9或Li4Mn5O12/LiNO3或LiClO4水溶液以及視情況存在之LiOH或KOH(飽和水溶液)/HCoO2或CoO(OH)]。諸如K之另一鹼金屬可取代Li。
在一個實施例中,電解質為氫化物,諸如MBH4(M為金屬,諸如鹼金屬)。一適合之電解質為鹼金屬硼氫化物,諸如於濃鹼中之硼氫化鈉,諸如於約14 M NaOH中之約4.4 M NaBH4。陽極包含離子M+之來源,該等離子M+在陰極處還原成金屬M,諸如Li、Na或K。在一個實施例中,M與氫化物(諸如MBH4)反應,使得低能量氫在該過程中形成。M、MH或至少一個H可充當另一者之觸媒。H來源為氫化物且可進一步包括另一來源,諸如另一氫化物、H化合物或H2氣體與視情況存在之解離體。例示性電池為[R-Ni/14 M NaOH 4.4 M NaBH4/碳(H2)]、[NaV2O5 CB(H2)/14 M NaOH 4.4 M NaBH4/碳(H2)]及[R-Ni/於約14 M NaOH中之4.4 M NaBH4/氧(氫氧)化物(諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))或氫氧化物(諸如Co(OH)2、Ni(OH)2、La(OH)3、Ho(OH)3、Tb(OH)3、Yb(OH)3、Lu(OH)3、Er(OH)3)]。
在包含水性電解質之另一實施例中,電池包含金屬氫化物電極,諸如本發明之金屬氫化物電極。適合之例示性氫化物為R-Ni、阮尼鈷(R-Co)、阮尼銅(R-Cu)、過渡金屬氫化物(諸如CoH、CrH、TiH2、FeH、MnH、NiH、ScH、VH、CuH及ZnH)、金屬間氫化物(諸如LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2)及AgH、CdH2、PdH、PtH、NbH、TaH、ZrH2、HfH2、YH2、LaH2、CeH2及其他稀土金屬氫化物。適合氫化物之其他例示性金屬或半金屬包含鹼金屬(Na、K、Rb、Cs)、鹼土金屬(Mg、Ca、Ba、Sr)、來自第IIIA族之元素(諸如B、Al、Ga、Sb)、來自第IVA族之元素(諸如C、Si、Ge、Sn)及來自第VA族之元素(諸如N、P、As)及過渡金屬及合金。氫化物可為金屬間化合物。其他實例為金屬間化合物ABn,其中A表示能夠形成穩定氫化物之一或多種元素且B為形成不穩定氫化物之元素。表5及本發明之相應章節中給出金屬間化合物之實例。氫化物可為AB5型(其中A為鑭、鈰、釹、鐠之稀土元素混合物,且B為鎳、鈷、錳及/或鋁)及AB2型(其中A為鈦及/或釩且B為鋯或鎳,經鉻、鈷、鐵及/或錳改質)中之至少一者。在一個實施例中,陽極材料起到可逆地形成金屬氫化物化合物之混合物的作用。例示性化合物為LaNi5及LaNi3.6Mn0.4Al0.3Co0.7。金屬氫化物R-Ni之一例示性陽極反應為
R-NiHx+OH-→R-NiHx-1+H2O+e- (311)
在一個實施例中,鎳氫化物可充當諸如陽極之半電池反應物。其可藉由使用經氫化之鎳陰極進行水性電解來形成。電解質可為鹼性的,諸如KOH或K2CO3,且陽極亦可為鎳。陰極可包含可與水反應之氧化劑,諸如金屬氧化物,諸如氧(氫氧)化鎳(NiOOH)。一例示性陰極反應為
NiO(OH)+H2O+e-→Ni(OH)2+OH- (312)
電池操作期間(諸如放電期間)形成的H空位或添加會引起低能量氫反應,釋放除來自非基於低能量氫之反應之任何電力外的電力。電池可包含諸如鹼金屬氫氧化物(諸如KOH)之電解質,且可進一步包含隔板,諸如親水性聚烯烴。一例示性電池為[R-Ni、阮尼鈷(R-Co)、阮尼銅(R-Cu)、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、CoH、CrH、FeH、MnH、NiH、ScH、VH、CuH、ZnH、AgH/聚烯烴KOH(水溶液)、NaOH(水溶液)或LiOH(水溶液)/NiO(OH)]。其他適合之氧化劑為WO2(OH)、WO2(OH)2、VO(OH)、VO(OH)2、VO(OH)3、V2O2(OH)2、V2O2(OH)4、V2O2(OH)6、V2O3(OH)2、V2O3(OH)4、V2O4(OH)2、FeO(OH)、MnO(OH)、MnO(OH)2、Mn2O3(OH)、Mn2O2(OH)3、Mn2O(OH)5、MnO3(OH)、MnO2(OH)3、MnO(OH)5、Mn2O2(OH)2、Mn2O6(OH)2、Mn2O4(OH)6、NiO(OH)、TiO(OH)、TiO(OH)2、Ti2O3(OH)、Ti2O3(OH)2、Ti2O2(OH)3、Ti2O2(OH)4及NiO(OH)。其他例示性適合之氧(氫氧)化物為以下之群中之至少一者:羥鉻礦(CrO(OH))、水鋁石(AlO(OH))、ScO(OH)、YO(OH)、VO(OH)、針鐵礦(α-Fe3+O(OH))、錳榍石(Mn3+O(OH))、圭羥鉻礦(CrO(OH))、黑鐵釩礦((V,Fe)O(OH))、CoO(OH)、NiO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)、RhO(OH)、InO(OH)、鎵礦(GaO(OH))、水錳礦(Mn3+O(OH))、釔鎢華-(Y)(YW2O6(OH)3)、釔鎢華-(Ce)((Ce,Nd,Y)W2O6(OH)3)、未命名(釔鎢華-(Ce)之Nd類似物)((Nd,Ce,La)W2O6(OH)3)、銅碲礦(Cu2[(OH)2[TeO4]])、碲鉛銅石(Pb2+ (TeO6)(OH)2)及副碲鉛銅石(Pb2+ TeO6(OH)2)。一般而言,氧化劑可為MxOyHz,其中x、y及z為整數且M為金屬,諸如過渡金屬、內過渡金屬或稀土金屬,諸如金屬氧(氫氧)化物。在其他實施例中,其他氫化硫族化物或硫族化物可置換氧(氫氧)化物。S、Se或Te可置換O且其他該等硫族化物可置換包含O之硫族化物。混合物亦為適合的。例示性電池為[氫化物(諸如NiH、R-Ni、ZrH2、TiH2、LaH2、CeH2、PdH、PtxH、表5之氫化物、LaNi5及LaNi3.6Mn0.4Al0.3Co0.7)/MOH水溶液/M'xOyHz](M=鹼金屬且M'=過渡金屬)、[未經處理之市售R-Ni/KOH水溶液/充電形成NiO(OH)之未經處理之市售R-N]及[金屬氫化物/KOH水溶液/充電形成NiO(OH)之未經處理之市售R-Ni]。電池可藉由充電或藉由化學處理,諸如將金屬氫化物(諸如R-Ni)再氫化而再生。在鹼性電池中,陰極反應物可包含Fe(VI)鐵酸鹽,諸如K2FeO4或BaFeO4
在一個實施例中,mH(m=整數)、H2O或OH充當觸媒(表3)。OH可由OH-在陽極處氧化而形成。電解質可包含濃鹼,諸如濃度在約6.5 M至飽和之範圍內的MOH(M=鹼金屬)。正電極中之活性材料可包含氫氧化鎳,其經充電形成氧(氫氧)化鎳。或者,其可為另一氧(氫氧)化物、氧化物、氫氧化物或碳(諸如CB、PtC或PdC)或碳化物(諸如TiC)、硼化物(諸如TiB2)或碳氮化物(諸如TiCN)。諸如氫氧化鎳之陰極可具有由氧化鈷及集電器(諸如鎳泡沫骨架)構成之導電性網狀物,但或者可為鎳纖維基質或可藉由燒結單纖維鎳纖維產生。負電極中之活性材料可為能夠儲存氫之合金,諸如AB5(LaCePrNdNiCoMnAl)或AB2(VTiZrNiCrCoMnAlSn)型之一,其中「ABx」名稱係指A型元素(LaCePrNd或TiZr)與B型元素(VNiCrCoMnAlSn)之比率。適合之氫化物陽極為用於金屬氫化物電池(諸如熟習此項技術者已知之鎳金屬氫化物電池)中之氫化物陽極。例示性適合之氫化物陽極包含R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2之群之氫化物,及能夠儲存氫之其他合金,諸如AB5(LaCePrNdNiCoMnAl)或AB2(VTiZrNiCrCoMnAlSn)型之一,其中「ABx」名稱係指A型元素(LaCePrNd或TiZr)與B型元素(VNiCrCoMnAlSn)之比率。在其他實施例中,氫化物陽極包含以下中之至少一者:MmNi5(Mm=密鈰合金),諸如MmNi3.5Co0.7Al0.8,AB5型:MmNi3.2Co1.0Mn0.6Al0.11Mo0.09(Mm=密鈰合金:25 wt% La、50 wt% Ce、7 wt% Pr、18 wt% Nd)、La1-yRyNi5-xMx;AB2型:Ti0.51Zr0.49V0.70Ni1.18Cr0.12合金;基於鎂之合金,諸如Mg1.9Al0.1Ni0.8Co0.1Mn0.1合金、Mg0.72Sc0.28(Pd0.012+Rh0.012)及Mg80Ti20、Mg80V20;La0.8Nd0.2Ni2.4Co2.5Si0.1、LaNi5-xMx((M=Mn、Al)、(M=Al、Si、Cu)、(M=Sn)、(M=Al、Mn、Cu))及LaNi4Co、MmNi3.55Mn0.44Al0.3Co0.75、LaNi3.55Mn0.44Al0.3Co0.75、MgCu2、MgZn2、MgNi2;AB化合物,諸如TiFe、TiCo及TiNi;ABn化合物(n=5、2或1)、AB3-4化合物及ABx(A=La、Ce、Mn、Mg;B=Ni、Mn、Co、Al)。其他適合之氫化物為ZrFe2、Zr0.5Cs0.5Fe2、Zr0.8Sc0.2Fe2、YNi5、LaNi5、LaNi4.5Co0.5、(Ce、La、Nd、Pr)Ni5、密鈰合金-鎳合金、Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5、La2Co1Ni9及TiMn2。在任一種情況下,該等材料均可具有複雜微結構,該等微結構允許氫儲存合金在電池內腐蝕性環境下操作,其中大部分金屬呈氧化物時在熱力學上更穩定。適合之金屬氫化物材料具有傳導性,且可應用於集電器,諸如由穿孔或展開鎳或鎳泡沫基板製成之集電器或由銅製成之集電器。
在實施例中,水性溶劑可包含H2O、D2O、T2O或水混合物及同位素混合物。在一個實施例中,控制溫度,以控制低能量氫之反應速率,因此控制CIHT電池之電力。一適合之溫度範圍為約環境溫度至100℃。藉由密封電池,可將溫度維持在約100℃以上,以便產生壓力且抑制沸騰。
在一個實施例中,在陽極,在H或H來源存在下由OH-氧化形成OH與H2O觸媒中之至少一者。一適合之陽極半電池反應物為氫化物。在一個實施例中,陽極可包含氫儲存材料,諸如金屬氫化物,諸如金屬合金氫化物,諸如BaReH9、La2Co1Ni9H6、LaNi5H6或LaNi5H(本發明中,LaNi5H定義為LaNi5之氫化物且可包含LaNi5H6及其他氫化物化學計量,且上述情況亦適用於本發明之其他氫化物,其中除所呈現以外之其他化學計量亦在本發明之範疇內)、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、FeTiH1.7、TiFeH2及MgNiH4。在包含LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75或ZrMn0.5Cr0.2V0.1Ni1.2陽極或類似陽極及KOH或NaOH電解質之一個實施例中,LiOH添加至電解質中,以鈍化任何氧化物塗層,從而促進H2之吸收以氫化或再氫化LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75或ZrMn0.5Cr0.2V0.1Ni1.2。例示性電池為[BaReH9、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、FeTiH1.7、TiFeH2及MgNiH4/MOH(飽和水溶液)(M=鹼金屬)/碳、PdC、PtC、氧(氫氧)化物、碳化物或硼化物]及[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al03Co0.75或ZrMn0.5Cr0.2V0.1Ni1.2/KOH(飽和水溶液)EuBr2或EuBr3/CB]。
作為反應物經還原反應形成OH-之中間物所形成的OH可充當形成低能量氫的觸媒或觸媒來源(諸如OH或H2O)。在一個實施例中,包含鹼性電解液(諸如MOH或M2CO3水溶液電解質,M=鹼金屬)之電池之氧化劑包含諸如以下中之至少一者的氧來源:包含氧之化合物、含氧之導電聚合物、添加至導電基質(諸如碳)中之含氧化合物或聚合物、O2、空氣及氧化碳(諸如蒸汽處理碳)。氧之還原反應可形成經還原之含氧化合物及可包含至少O及可能H之自由基,諸如過氧化氫離子、超氧離子、氫過氧自由基、 、HOOH、HOO-、OH及OH-。在一個實施例中,電池進一步包含防止或阻礙氧自陰極遷移至陽極且遷移離子(諸如OH-)可透過之隔板。隔板亦可阻礙或防止在陽極半電池隔室中形成之氧化物或氫氧化物(諸如 )遷移至陰極隔室。在一個實施例中,陽極包含H來源,諸如氫化物(諸如R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75或ZrM n0.5Cr0.2V0.1Ni1.2)或H2氣體與解離體(諸如Pt/C)。在包含R-Ni之本發明之此實施例及其他實施例中,另一阮尼金屬(諸如阮尼鈷(R-Co)、阮尼銅(R-Cu)及包含可含有其他金屬、金屬氧化物、合金或化合物之活化劑的R-Ni之其他形式)可取代R-Ni,以包含其他實施例。一例示性電池包含金屬氫化物M'Hx(M'=金屬或合金,諸如R-Ni或LaNi5)及氧陰極,諸如陰極(諸如碳陰極)上O2氣體或空氣,或吸附於碳C(O2)x中之氧,碳C(O2)x釋放O2,得到C(O2)x-1。在類似於方程式(315)之一個實施例中,水與氧中之至少一者在陰極處還原成OH-、H及H2中之至少一者。相應例示性反應為
陽極
M'Hx+OH-→M'Hx-1+H2O+e- (313)
其中OH可作為中間物形成且充當形成低能量氫之觸媒。
陰極
1/2O2+H2O+2e-→2OH- (314)
或者,陰極反應可在正電極處僅僅涉及水:
H2O+e-→1/2H2+OH- (315)
進行反應方程式(315)之陰極可為水還原觸媒,及視情況存在之O2還原(方程式(314))觸媒,諸如承載型金屬、沸石及可具有導電性之聚合物(諸如聚苯胺、聚噻吩或聚乙炔),其可與導電性基質(諸如碳)混合。適合之H2O還原觸媒在諸如鹼性溶液之溶液中有效地將H2O還原成H2。例示性觸媒為以下之群之觸媒:Ni、多孔Ni、燒結Ni粉、Ni-Ni(OH)2、R-Ni、Fe、過渡金屬之金屬間化合物、Hf2Fe、Zr-Pt、Nb-Pd(I)、Pd-Ta、Nb-Pd(II)、Ti-Pt、奈米晶NixMo1-x(x=0.6、0.85原子百分比)、Ni-Mo、Mm合金(諸如MmNi3.6Co0.75Mn0.42Al0.27、Ni-Fe-Mo合金(64:24:12)(wt%)、Ni-S合金及Ni-S-Mn合金)。電解質可進一步包含活化劑,諸如離子活化劑,諸如氯化參(乙二胺)鈷(III)錯合物及Na2MoO4或EDTA(乙二胺四乙酸)每一者或其與鐵之組合。例示性電池為[M/KOH(飽和水溶液)/水還原觸媒及可能O2還原觸媒];M=合金或金屬,諸如Zn、Sn、Co、Sb、Te、W、Mo、Pb、Ge之合金或金屬;水還原觸媒及可能O2還原觸媒=Pt/Ti、Pt/Al2O3、蒸汽碳、鈣鈦礦、Ni、多孔Ni、燒結Ni粉、Ni-Ni(OH)2、R-Ni、Fe、過渡金屬之金屬間化合物、Hf2Fe、Zr-Pt、Nb-Pd(I)、Pd-Ta、Nb-Pd(II)、Ti-Pt、奈米晶NixMo1-x(x=0.6、0.85原子百分比)、Ni-Mo、Mm合金(諸如MmNi3.6Co0.75Mn0.42Al0.2、Ni-Fe-Mo合金(64:24:12)(wt%)、Ni-S合金及Ni-S-Mn合金)中之至少一者。
在一個實施例中,陰極包含諸如氧化物、氧(氫氧)化物、氧氣或空氣之氧來源。來自此來源之氧在陰極於水溶液中還原,形成包含O且可能包含H之陰離子。氧之還原反應可形成經還原之含氧化合物及可包含至少O及可能H之自由基,諸如過氧化氫離子、超氧離子、氫過氧自由基、、HOOH、HOO-、OH及OH-。在一個實施例中,此等物質或在陽極形成之產物物質中的至少一者可包含觸媒。觸媒反應可涉及OOH-氧化成OH及金屬氧化物,其中OOH-充當觸媒來源。金屬M之例示性反應為
陰極
O2+H2O+2e-→OOH-+OH- (316)
陽極:
M+OOH-→MO+OH+e- (317)
MH或MOH+OOH-→M或MO+HOOH+e- (318)
其中OOH-及可能HOOH充當觸媒來源。OOH-亦可充當包含形成氧化物之氫氧化物陰極或陽極反應物且可能進一步包含固體電解質(諸如BASE)之電池中的觸媒來源。一例示性電池為[Na/BASE/NaOH]且包含超氧化物、過氧化物及氧化物之一例示性反應為
Na+2NaOH→NaO2+2NaH→NaOOH+2Na→Na2O+NaOH+1/2H2 (319)
2Na+2NaOH→Na2O2+2NaH→NaOOH+2Na+NaH (320)
2NaOH→NaOOH+NaH→Na2O+H2O (321)
在後一反應中,H2O可與Na反應。形成中間物MOOH(M=鹼金屬)(諸如NaOOH,其可反應形成Na2O及OH)之反應可包含供應之氫。例示性電池為[Ni(H2,諸如在約1至1.5 atm之範圍內)NaOH/BASE/NaCl-NiCl2或NaCl-MnCl2或LiCl-BaCl2]及[Ni(H2)Na2O與NaOH中之至少一者/BASE/NaCl-NiCl2或NaCl-MnCl2或LiCl-BaCl2],其可經由諸如以下之反應形成低能量氫來產生電力:
陰極:
2Na++2e-+M'X2→2NaCl+M' (322)
陽極:
1/2H2+3NaOH→NaOOH+NaH+H2O+Na++e- (323)
NaOOH+NaH→Na2O+H2O (324)
Na2O+NaOH→NaOOH+2Na++2e- (325)
其中M'為金屬,X為鹵化物,其他鹼金屬可取代Na,且NaH或OOH-可充當觸媒來源,或OH可作為中間物形成且充當觸媒。
在一個實施例中,電解質包含或另外包含碳酸鹽,諸如鹼金屬碳酸鹽。電解期間,過氧物質可形成諸如過氧碳酸或鹼金屬過碳酸鹽,其可為充當形成低能量氫之觸媒來源或觸媒之OOH-或OH的來源。例示性電池為[Zn、Sn、Co、Sb、Te、W、Mo、Pb、Ge/KOH(飽和水溶液)+K2CO3/碳+空氣]及[Zn、Sn、Co、Sb、Te、W、Mo、Pb、Ge/KOH(飽和水溶液)+K2CO3/Ni粉+碳(50/50 wt%)+空氣]。
在一個實施例中,諸如蒸汽活性碳之基質包含氧來源(諸如羧酸酯基),其與諸如氫氧化物(諸如KOH)之電解質反應,形成相應羧酸鹽(諸如K2CO3)。舉例而言,來自羧酸酯基之CO2可如下反應:
2KOH+CO2→K2CO3+H2O (326)
其中OH-氧化且CO2還原。此過程可包含形成低能量氫之機制。活性碳及包含活性碳之PtC可以此方式反應,形成低能量氫。類似地,R-Ni與OH-反應,形成H2O及Al2O3,此包含OH-之氧化且提供直接形成低能量氫之機制。因此,可在碳陰極或R-Ni陽極藉由直接反應形成低能量氫。此由在dDMF中萃取後,產物之大1.25 ppm NMR峰證明。
一個實施例包含具有氫來源(諸如H2氣體)及氧來源(諸如O2氣體或空氣)之燃料電池。H2與O2中至少一者可藉由水電解產生。用於電解之電力可由CIHT電池供應,該CIHT電池可由直接自電解電池供應給其之氣體驅動。電解可進一步包含H2與O2之氣體隔板,以提供純化之氣體至陰極與陽極每一者。氫可供應給陽極半電池,且氧可供應給陰極半電池。陽極可包含H2氧化觸媒且可包含H2解離體,諸如Pt/C、Ir/C、Ru/C、Pd/C及本發明之其他解離體。陰極可包含O2還原觸媒,諸如本發明之還原觸媒。電池產生可形成可充當形成低能量氫之觸媒之OH的物質,且產生之能量(諸如電能)超過由氫與氧反應形成水所產生之能量。
在一個實施例中,在陰極包含O2或空氣還原反應之電池包含對H2放出有抗性之陽極,諸如Pb、In、Hg、Zn、Fe、Cd或氫化物,諸如LaNi5H6陽極。陽極金屬M可形成複合物或離子,諸如,其至少部分可溶於電解質中,使得陽極反應在不受塗層(諸如氧化物塗層)阻礙下進行。陽極亦可包含其他更具活性之金屬,諸如Li、Mg或Al,其中可使用抑制劑來防止直接與水性電解質反應,或可使用非水性電解質,諸如有機電解質或離子液體。適用於諸如Li之陽極之離子液體電解質為雙(三氟甲基磺醯基)胺化1-甲基-3-辛基咪唑鎓、雙(五氟乙基磺醯基)胺化1-乙基-3-甲基咪唑鎓及雙(三氟甲基磺醯基)胺化1-乙基-3-甲基咪唑鎓。陽極可藉由電解在水溶液中再生,其中可添加Pb、Hg或Cd以抑制H2放出。具有高負電極電位之金屬(諸如Al、Mg及Li)可用作使用非質子性有機電解質之陽極。
在一個實施例中,O2還原經由涉及兩個電子之過氧化物途徑進行。有利於此過氧化物途徑之適合陰極為石墨及大部分其他碳、金、氧化物覆蓋之金屬(諸如鎳或鈷)、一些過渡金屬大環化合物及過渡金屬氧化物。諸如MnO2之氧化錳可充當O2還原觸媒。或者,氧可藉由4個電子直接還原成OH-或H2O。此途徑主要在貴金屬(諸如鉑及鉑族金屬)、具有鈣鈦礦或燒綠石型結構之一些過渡金屬氧化物、一些過渡金屬大環化合物(諸如鐵酞菁及銀)上。
電極可包含用於氧還原及放出之化合物電極。後者可用於再生。電極可具有能夠還原及放出氧之雙功能,其中藉由相應各別觸媒層提供活性,或電觸媒可具有雙功能。電極及電池設計可為此項技術中已知用於金屬-空氣電池(Fe 或Zn-空氣電池或熟習此項技術者已知之其適當修改)之電極及電池設計。適合之電極結構包含集電器、可包含碳及黏合劑之氣體擴散層、及可為雙功能觸媒之活性層。或者,電極可在集電器一側包含O2還原層,且在另一側包含O2放出層。前者可包含與氧來源接觸之外部氣體擴散層及與集電器接觸之多孔疏水性觸媒層;而後者可在該層一側包含與電解質接觸之多孔親水性觸媒層且在另一側包含集電器。
可充當還原來自來源之氧之觸媒的適合鈣鈦礦型氧化物可具有通式ABO3,且該等經取代之鈣鈦礦可具有通式A1-xA'xB1-yB'yO3。A可為La、Nd;A'可為鍶、鋇、鈣;且B可為鎳、鈷、錳、釕。用於在陰極處還原氧之其他適合觸媒為鈣鈦礦型觸媒,諸如摻雜金屬氧化物之La0.6Ca0.4CoO3、La1-xCaxCoO3、La1-xSrxCoO3(0 x 0.5)或La0.8Sr0.2Co1-yByO3(B=Ni、Fe、Cu或Cr;0 y 0.3)、La0.5Sr0.5CoO3、LaNiO3、LaFexNi1-xO3、經取代之LaCoO3、La1-xCaxMO3、La0.8Ca0.2MnO3、La1-xA'xCo1-yB'yO3(A'=Ca;B'=Mn、Fe、Co、Ni、Cu)、La0.6Ca0.4Co0.8Fe0.2O3、La1-xA'xFe1-yB'yO3(A'=Sr、Ca、Ba、La;B'=Mn)、La0.8Sr0.2Fe1-yMnyO3及基於Mn及一些過渡金屬或類鑭系元素之鈣鈦礦型氧化物;或尖晶石,諸如Co3O4或NiCo2O4;燒綠石,諸如Pb2Ru2Pb1-xO1-y或Pb2Ru2O6.5;其他氧化物,諸如Na0.8Pt3O4;有機金屬化合物,諸如鈷卟啉;或具有Co添加劑之熱解大環化合物。適合之燒綠石型氧化物具有通式A2B2O7或A2B2-xAxO7-y(A=Pb/Bi,B=Ru/Ir),諸如Pb2Ir2O7-y、PbBiRu2O7-y、Pb2(PbxIr2-x)O7-δ及Nd3IrO7。適合之尖晶石為鎳鈷氧化物、純或摻鋰氧化鈷(Co3O4)、MxCO3-xO4型輝鈷礦尖晶石((M=Co、Ni、Mn氧還原)及(M=Co、Li、Ni、Cu、Mn氧放出))。氧放出觸媒可為鎳、銀、貴金屬(諸如Pt、Au、Ir、Rh或Ru)、鎳鈷氧化物(諸如NiCo2O4)及氧化銅鈷(諸如CuCo2O4)。氧還原或放出觸媒可進一步包含導電載體,諸如碳,諸如碳黑、石墨碳、科琴黑(Ketjen black)或石墨化Vulcan XC 72。例示性電池為[Zn、Sn、Co、Sb、Te、W、Mo、Pb、Ge/KOH(飽和水溶液)/空氣+碳+O2還原觸媒(諸如鈣鈦礦型觸媒,諸如摻雜金屬氧化物之La0.6Ca0.4CoO3、La1-xCaxCoO3、La1-xSrxCoO3(0 x 0.5)或La0.8Sr0.2Co1-yByO3(B=Ni、Fe、Cu或Cr;0 y 0.3);或尖晶石,諸如Co3O4或NiCo2O4;燒綠石,諸如Pb2Ru2Pb1-xO1-y或Pb2Ru2O6.5;其他氧化物,諸如Na0.8Pt3O4或具有Co添加劑之熱解大環化合物)]。在另一實施例中,陰極包含水還原觸媒。
陰極能夠支持H2O與O2中至少一者還原。陰極可包含高表面積導體,諸如碳,諸如碳黑、活性碳及蒸汽活性碳。陰極可包含針對O2或H2O中至少一者還原或H2放出具有低過電位的導體,諸如Pt、Pd、Ir、Ru、Rh、Au或於導電載體(諸如碳或鈦)上之此等金屬,作為以H2O作為陰極半電池反應物之陰極。電解質可為諸如在約6.1 M至飽和範圍內之濃鹼。例示性電池為[解離體與氫(諸如PtCB、PdC或Pt(20%)Ru(10%)(H2,約1000托))或金屬氫化物(諸如各種組成之R-Ni、R-Co、R-Cu、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2或表5之氫化物)/鹼之水溶液(諸如KOH(水溶液))電解質(>6.5 M至飽和或>11 M至飽和)/碳、氧電極(諸如碳上之O2或空氣、C(O2)x或氧化碳(諸如蒸汽活性碳)或CB、PtC、PdC、CB(H2)、PtC(H2)、PdC(H2)、針對O2或H2O中至少一者之還原或H2放出具有低過電位之導體(諸如Pt、Pd、Ir、Ru、Rh、Au或於導電載體(諸如碳或鈦)上之此等金屬,作為以H2O及O2作為陰極半電池反應物之陰極))]。
在一個實施例中,陰離子可充當陰極之氧來源。適合之陰離子為氧陰離子,諸如。諸如之陰離子可形成鹼性溶液。一例示性陰極反應為
陰極
反應可包含可逆半電池氧化還原反應,諸如
H2O還原成OH-+H可引起形成低能量氫之陰極反應,其中H2O充當觸媒。對應於自具有KOH-K2CO3電解質之電池(諸如[Zn、Sn、Pb、Sb/KOH(飽和水溶液)+K2CO3/CB-SA])之陰極產物分離的H2(1/4)之大1.23 ppm NMR峰證明此機制。在一個實施例中,CO2、SO2、PO2及其他類似反應物可作為氧來源添加至電池中。
陽極可包含能夠與氧物質(諸如OOH-或OH-)反應之金屬。適合之金屬為可為粉末之Al、V、Zr、Ti、Mn、Se、Zn、Cr、Fe、Cd、Co、Ni、Sn、In、Pb、Cu、Sb、Bi、Au、Ir、Hg、Mo、Os、Pd、Re、Rh、Ru、Ag、Tc、Te、Tl及W。陽極可包含短的親水性纖維,諸如纖維素纖維,以防止再充電期間稠化。陽極可在放電狀態形成且藉由充電活化。一例示性鋅陽極可包含以下各物之混合物:氧化鋅粉末、纖維素纖維、聚四氟乙烯黏合劑及視情況選用之一些鋅粉及添加劑,諸如氧化鉛(II)或銻、鉍、鎘、鎵及銦之氧化物,以防止H2放出。混合物可在水-丙酮混合物上攪拌,且所得均勻懸浮液可過濾,濾餅壓入集電器(諸如鍍鉛銅網)中,並在略微高於100℃之溫度下乾燥。具有約50%孔隙率之電極可包裹在多微孔聚合物膜(諸如Celgard)中,此膜將電極固持在一起且可充當隔板。在其他實施例中,陽極可主要使用Zn粉來組裝,避免初始充電步驟。
電池可包含串聯或並聯連接之電池堆疊,其可具有儲集器以接納電解質之體積變化。電池可進一步包含濕度與CO2管理系統中之至少一者。金屬電極可夾在氧電極之間,以使表面積加倍。氧可自空氣擴散,穿過包含氧擴散電極之多孔鐵氟龍(Teflon)層壓空氣電極。在一個實施例中,來自陽極之電子與氧在氧擴散電極之濕潤部分之催化位點反應,形成經還原之水及氧物質。
在一個實施例中,金屬-空氣電池(諸如Zn-空氣電池)可包含金屬-空氣燃料電池,其中金屬連續添加且氧化金屬(諸如金屬氧化物或氫氧化物)連續移除。藉由諸如抽吸、螺鑽、輸送或熟習此項技術者已知用於移動此等材料之其他機械方法的方式,將新鮮金屬輸送至陽極半電池,且將氧化金屬自陽極半電池廢棄掉。金屬可包含可抽吸之小粒。
在一個實施例中,氧(氫氧)化物可充當形成OH-之氧來源。氧(氫氧)化物可形成穩定氧化物。例示性陰極反應包含以下中之至少一者:氧(氫氧)化物之還原;或氧(氫氧)化物(諸如MnOOH、CoOOH、GaOOH及InOOH及鑭系元素氧(氫氧)化物(諸如LaOOH)之群之一)與H2O及O2中之至少一者的還原反應,形成相應氧化物,諸如La2O3、Mn2O3、CoO、Ga2O3及In2O3。金屬M之例示性反應由以下給出陰極:
MOOH+e-→MO+OH- (329)
2MOOH+2e-+H2O→M2O3+2OH-+H2 (330)
2MOOH+2e-+1/2O2→M2O3+2OH- (331)
或者,氧化物可充當形成OH-之氧來源。經還原之金屬產物可為金屬呈較低氧化態之氧化物、氧(氫氧)化物或氫氧化物。涉及金屬M之一例示性陰極反應為陰極:
yMOx+re-+qH2O→MyOyx+q-r+rOH-+(2q-r)/2H2 (332)
其中y、x、r及q為整數。適合之例示性氧化物為MnO2、Mn2O3、Mn3O4、M'O(M'=過渡金屬)、SeO2、TeO2、P2O5、SO2、CO2、N2O、NO2、NO、SnO、PbO、La2O3、Ga2O3及In2O3,其中氣體可維持在基質中,諸如吸收於碳中。電解質可為諸如在約6.1 M至飽和範圍內之濃鹼。例示性電池為[解離體與氫(諸如PtCB、PdC或Pt(20%)Ru(10%)(H2,約1000托))或金屬氫化物(諸如各種組成之R-Ni、R-Co、R-Cu、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2或表5之氫化物)/鹼之水溶液(諸如KOH(水溶液))電解質(>6.5 M至飽和或>11 M至飽和)/氧(氫氧)化物或氧化物(諸如MnO2、Mn2O3、Mn3O4、M'O(M'=過渡金屬)、SeO2、TeO2、P2O5、SO2、CO2、N2O、NO2、NO、SnO、PbO、La2O3、Ga2O3及In2O3,其中氣體可維持在基質中,諸如吸收於碳中,或CoOOH、MnOOH、LaOOH、GaOOH或InOOH)]、[M/KOH(飽和水溶液)/MOx(x=1或2)(適合金屬M=Zn、Sn、Co、Sb、Te、W、Mo、Pb、Ge)]及[M/KOH(飽和水溶液)/M'OOH(適合金屬M=Zn、Sn、Co、Sb、Te、W、Mo、Pb、Ge;M'=Mn、Co、La、Ga、In)]。
作為OH-氧化反應之中間物形成的OH可充當形成低能量氫之觸媒或觸媒來源(諸如OH或H2O)。在一個實施例中,形成氫氧化物或氧化物之金屬可充當陽極。或者,氫氧化物起始反應物可充當陽極。氧化金屬、金屬氧化物及金屬氫氧化物中之至少一者可將OH-氧化成OH,作為形成包含金屬、氧及氫中之至少兩者之化合物(諸如金屬氫氧化物、氧化物或氧(氫氧)化物)的中間物。舉例而言,金屬可氧化形成氫氧化物,氫氧化物可進一步反應形成氧化物。至少一個氫氧化物H在OH-氧化形成水時可轉移至其。因此,金屬氫氧化物或氧(氫氧)化物可以與氫化物(方程式(313))相同的方式反應,形成可充當形成低能量氫之觸媒的OH中間物。金屬M之例示性反應為
陽極:
M+OH-→M(OH)+e- (333)
接著
M(OH)+OH-→MO+H2O+e- (334)
M+2OH-→M(OH)2+2e- (335)
接著
M(OH)2→MO+H2O (336)
M+2OH-→MO+H2O+2e- (337)
其中水產物之OH最初可作為中間物形成且充當形成低能量氫之觸媒。陽極金屬對與濃鹼之直接反應可為穩定的,或可以緩慢速率反應。適合之金屬為過渡金屬、Ag、Cd、Hg、Ga、In、Sn、Pb及包含一或多種此等及其他金屬之合金。陽極可包含粉末狀金屬與電解質(諸如鹼,諸如MOH(M=鹼金屬))之糊狀物。例示性糊狀物陽極反應物為Zn粉與飽和KOH混合或Cd粉與KOH混合。適用於陽極之正電性金屬為Al、V、Zr、Ti、Mn、Se、Zn、Cr、Fe、Cd、Co、Ni、Sn、In及Pb之群中之一或多者。或者,具有低的水反應性之適合金屬為Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W。在其他實施例中,陽極可包含氫氧化物或氧(氫氧)化物,諸如此等金屬之氫氧化物或氧(氫氧)化物,諸如Co(OH)2、Zn(OH)2、Sn(OH)2及Pb(OH)2。適合之金屬氫氧化物形成氧化物或氧(氫氧)化物。電解質可為諸如在約6.1 M至飽和範圍內之濃鹼。例示性電池為[金屬(諸如Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Cd、Hg、Ga、In、Sn、Pb或具有低的水反應性之金屬(諸如Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W之群之一)或此等金屬與飽和MOH之糊狀物)或金屬氫氧化物(諸如Co(OH)2、Zn(OH)2、Sn(OH)2或Pb(OH)2)/鹼之水溶液(諸如KOH(水溶液))電解質(>6.5 M至飽和或>11 M至飽和)/氧(氫氧)化物或氧化物(諸如MnO2、Mn2O3、Mn3O4、M'O(M'=過渡金屬)、SeO2、TeO2、P2O5、SO2、CO2、N2O、NO2、NO、SnO、PbO、La2O3、Ga2O3及In2O3,其中氣體可維持在基質中,諸如吸收於碳中,或CoOOH、MnOOH、LaOOH、GaOOH或InOOH)或碳、氧電極(諸如碳上之O2或空氣、C(O2)x或氧化碳(諸如蒸汽活性碳)或CB、PtC、PdC、CB(H2)、PtC(H2)、PdC(H2)、針對O2或H2O中至少一者之還原或H2放出具有低過電位之導體(諸如Pt、Pd、Ir、Ru、Rh、Au或於導電載體(諸如碳或鈦)上之此等金屬,作為以H2O及O2作為陰極半電池反應物之陰極))]、[Zn、Sn、Co、Sb、Te、W、Mo、Pb或Y之氫氧化物/KOH(飽和水溶液)/蒸汽碳]及[Zn飽和之MOH糊狀物/MOH(飽和水溶液)/具有O2之CB、活性碳或蒸汽活性碳]。
在一個實施例中,陰極可包含金屬氧化物(諸如氧化物或氧(氫氧)化物),且陽極可包含金屬或相對於陰極氧化金屬之還原氧化物。方程式(314)中給出之水還原可涉及氧化物或氧(氫氧)化物之氧。陰極及陽極可包含呈不同氧化或氧化物狀態之同一金屬。陽極反應可由方程式(333-337)之至少一者給出。例示性電池為[M/KOH(飽和水溶液)/MOOH(M=過渡金屬、稀土金屬、Al、Ga或In)]、[M/KOH(飽和水溶液)/MO2(M=Se、Te或Mn)]及[M/KOH(飽和水溶液)/MO(M=Zn、Sn、Co、Sb、Te、W、Mo、Pb或Ge)]。氫可添加至至少一個半電池中,以引發及擴展水氧化及還原反應(例如方程式(314-315)及(346)),該等反應維持一些OH或包含O與H中之至少一者之其他觸媒。氫來源可為氫化物,諸如R-Ni或LaNi5H6。諸如蒸汽碳之碳亦可添加至諸如陰極之電極中,以促進水還原成OH-以及OH-氧化成OH及可能H2O。至少一個電極可包含含有碳之混合物。舉例而言,陰極可包含碳與金屬氧化物之混合物,諸如蒸汽碳與Zn、Sn、Co、Sb、Te、W、Mo、Pb或Ge之氧化物的混合物。陽極可包含陰極金屬氧化物之相應金屬。其他適用於在陰極處還原O2之觸媒為鈣鈦礦型觸媒(諸如摻雜金屬氧化物之La0.6Ca0.4CoO3、La1-xCaxCoO3、La1-xSrxCoO3(0 x 0.5)或La0.8Sr0.2Co1-yByO3(B=Ni、Fe、Cu或Cr;0 y 0.3))或尖晶石(諸如Co3O4或NiCo2O4)、燒綠石(諸如Pb2Ru2Pb1-xO1-y或Pb2Ru2O6.5)、其他氧化物(諸如Na0.8Pt3O4)或具有Co添加劑之熱解大環化合物。氧還原觸媒可進一步包含導電載體,諸如碳,諸如碳黑或石墨碳。例示性電池為[Zn、Sn、Co、Sb、Te、W、Mo、Pb、Ge/KOH(飽和水溶液)/空氣+碳+O2還原觸媒(諸如鈣鈦礦型觸媒,諸如摻雜金屬氧化物之La0.6Ca0.4CoO3、La1-x CaxCoO3、La1- SrxCoO3(0x0.5)或La0.8Sr0.2Co1-y ByO3(B=Ni、Fe、Cu或Cr;0y0.3);或尖晶石,諸如Co3O4或NiCo2O4;燒綠石,諸如Pb2Ru2Pb1-xO1-y或Pb2Ru2O6.5;其他氧化物,諸如Na0.8Pt3O4或具有Co添加劑之熱解大環化合物)]。在另一實施例中,陰極包含水還原觸媒。
在一個實施例中,電池進一步包含充當反應物,直接或間接參與觸媒及進一步形成低能量氫之H來源之形成的氧來源。電池可包含充當陽極之金屬M,使得相應金屬離子充當遷移離子。適合之例示性金屬為Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W及其金屬合金或其他金屬之合金之群中的至少一者。OH可充當根據表3中給出之反應的觸媒。除諸如M2+之金屬離子外,一些OH可至少短暫地自OH-形成。氧可在陰極處還原。水亦可參與還原反應,形成至少一些可充當形成低能量氫之觸媒的OH。例示性反應為
陽極:
M→M2++2e- (338)
M+2OH-→M(OH)2+2e- (339)
陰極:
M2++2e-+1/2O2→MO (340)
M2++2e-+H2O+1/2O2→M2++2OH-→M(OH)2 (341)
其中一些OH自由基中間物在陽極或陰極形成,以進一步反應形成低能量氫。在另一實施例中,待與水反應之氧來源為氧(氫氧)化物,諸如MnOOH或CoOOH。OH可藉由陽極上OH-氧化及陰極上O或O2還原成OH-形成。O可為氧(氫氧)化物之O。能量平衡可促進在擴展形成低能量氫之反應的條件下OH之形成。在其他實施例中,氧化劑可為氧與另一氧化劑之混合物,該另一氧化劑可為氣體或可為惰性的。適合之例示性混合物為O2與CO2、NO2、NO、N2O、NF3、CF4、SO2、SF6、CS2、He、Ar、Ne、Kr及Xe中之至少一者混合。
鹼(諸如MOH,M=鹼金屬,諸如KOH(水溶液))濃度可在任何所需範圍內,諸如在約0.01 M至飽和(飽和)、約6.5 M至飽和、約7 M至飽和、約8 M至飽和、約9 M至飽和、約10 M至飽和、約11 M至飽和、約12 M至飽和、約13 M至飽和、約14 M至飽和、約15 M至飽和、約16 M至飽和、約17 M至飽和、約18 M至飽和、約19 M至飽和、約20 M至飽和及約21 M至飽和之範圍內。單獨、與鹼(諸如MOH,M=鹼金屬)組合及以任何組合之其他適合之例示性電解質為鹼金屬或銨之鹵化物、硝酸鹽、過氯酸鹽、碳酸鹽、Na3PO4或K3PO4及硫酸鹽及NH4X(X=鹵離子、硝酸根、過氯酸根、磷酸根及硫酸根)。電解質可呈任何所需濃度。當R-Ni用作陽極時,由於R-Ni之鹼性組成或Al與水或鹼反應,所以可形成局部高濃度之OH-。Al反應亦可在陽極供應氫,進一步促進方程式(313)之反應。
陽極粉末顆粒可具有保護塗層,以防止此項技術中已知之金屬鹼腐蝕。適合之鋅腐蝕抑制劑及氫放出抑制劑為螯合劑,諸如選自胺基羧酸、聚胺及胺基醇之群之一,其以足以實現所需抑制之量添加至陽極中。Zn腐蝕之抑制亦可藉由將鋅與多達10% Hg合併及藉由將ZnO溶解於鹼性電解質中或將Zn鹽溶解於酸性電解質中來實現。其他適合之材料為有機化合物,諸如聚乙二醇及美國專利4,377,625(以引用的方式併入本文中)中所揭示之有機化合物,以及熟習此項技術者已知用於商業Zn-MnO2電池之抑制劑。適用於Zn及可能其他金屬之其他例示性抑制劑為如下有機或無機抑制劑:諸如界面活性劑之有機化合物;及含有抑制H2形成之鉛、銻、鉍、鎘及鎵以及相應金屬氧化物之化合物;及螯合劑,諸如5% CoO+0.1%二乙烯三胺五乙酸、5% SnO2+0.1%二乙烯三胺五乙酸、乙二胺四乙酸(EDTA)或類似螯合劑;抗壞血酸、合成鋰皂石或其他該等氫氧化物離子輸送黏土、界面活性劑及硫酸銦、脂族基硫化物(諸如乙基丁基硫化物、二丁基硫化物及烯丙基甲基硫化物)、錯合劑(諸如鹼金屬檸檬酸鹽、鹼金屬錫酸鹽及氧化鈣)、金屬合金及添加劑(諸如第III族及第V族金屬)、聚乙二醇、乙烯-聚乙二醇(諸如具有不同分子質量之聚乙二醇,諸如PEG 200或PEG 600)、氟聚乙二醇(fluoropolietoksyalkohol)、具有環氧乙烷之醚、聚氧化乙烯烷基磷酸酯酸形式、聚乙烯烷基磷酸酯、乙氧基化聚氟醇及烷基聚氧化乙烯。在其他實施例中,用腐蝕抑制劑保護其他正電性金屬(諸如Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ag、Cd、Hg、Ga、In、Sn及Pb)或具有低的水反應性之適合金屬(Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W)。在一個實施例中,可承載保護塗層材料以包含選擇用於OH-之鹽橋。包含鹽橋之一適合電池為如本發明中所給出之燃料電池類型。鹽橋可為具有選擇用於OH-之類似基團之四級銨基之膜。或者,其可為選擇用於OH-之氧化物或氫氧化物。用於氫陽極之對H2滲透有抗性之商業隔板為納菲薄膜350(DuPont)。
電池可藉由電解或藉由與氫反應及藉由本發明中所給出或此項技術中已知之其他化學處理及分離方法及系統再生。氧化金屬(諸如金屬氧化物)可藉由供應H2至陽極,在較低電壓下電解再生,其中金屬沈積在陰極。再例如,可移除Zn陽極,且用具有化學再生Zn之新筒置換。在包含在放電期間分別形成ZnO、PbO及SnO之Zn、Pb或Sn陽極之一個實施例中,產物ZnO、PbO及SnO可用碳或CO處理,形成鋅、鉛及錫及CO2,或用硫酸處理,形成ZnSO4、PbSO4、SnSO4,該等物質可電解形成Zn、Pb及Sn及硫酸,可再循環。在電池包含金屬陽極之初始反應物及相應氧化金屬(諸如氧化物、氧(氫氧)化物及氫氧化物)的情況下,兩個電極上之電池產物為氧化金屬。電池可藉由電解,或藉由移除電極,將包含金屬與氧化金屬化合物之混合物的電極反應物組合且將混合物分離成金屬及氧化金屬化合物而再生。一例示性方法為加熱混合物,使得金屬熔融且形成基於密度可分離之層。適合之金屬為Pb(MP=327.5℃)、Sb(MP=630.6℃)、Bi(MP=271.4℃)、Cd(MP=321℃)、Hg(MP=-39℃)、Se(MP=221℃)及Sn(MP=232℃)。在另一實施例中,陽極包含磁性金屬,諸如鐵磁性金屬,諸如Co或Fe,且陰極包含相應氧化物,諸如CoO及NiO。放電後,陰極及陽極可包含金屬與相應氧化物之混合物。各半電池之金屬及氧化物可藉由磁性分離,因為金屬為鐵磁性的。分離出之金屬可回到陽極,且分離出之金屬氧化物可回到陰極,形成再生電池。
在一般反應中,OH-氧化成OH,用作形成低能量氫之觸媒,且可自H來源(諸如氫化物(方程式(313))或氫氧化物(方程式(334)))形成H2O,其中H2O可充當形成低能量氫之觸媒。氫氧化物提供H之反應可為兩個OH-基團在氧化下形成金屬氧化物及H2O之反應。金屬氧化物可為與至少一個OH-基團之來源不同或相同之金屬。如方程式(334)所給出,金屬M'可與來自MOH(諸如M為鹼金屬)之OH-來源反應,形成OH及H2O。而方程式(355)為作為OH-來源之金屬M與形成金屬氧化物之金屬反應的一實例。參與機制與方程式(334)相同之例示性電池[Na/BASE/NaOH]的方程式(355)及(217)之反應的另一形式為
Na+2NaOH→Na2O+OH+NaH→Na2O+NaOH+1/2H2 (342)
在包含鹼性水性電解質之電解電池之一個實施例中,形成OH及低能量氫之反應機制遵循方程式(313-342)及(355)。舉例而言,電解質可包含鹼金屬(M)鹼,諸如MOH或M2CO3,其提供OH-及鹼金屬離子M+,可形成M2O及作為形成H2O之中間物的OH。舉例而言,遵循方程式(342)之一例示性陰極反應為
K++e-+2KOH→K2O+OH+KH→K2O+KOH+1/2H2 (343)
在水性電解電池之另一實施例中,來自陽極之氧與金屬或金屬氫化物在陰極反應,形成OH-(方程式(314)),OH-在陽極處氧化形成OH。OH亦可作為陰極上之中間物形成。OH進一步反應形成低能量氫。可藉由使用碳或碳塗佈之金屬陰極促進O2及H2O在陰極處還原成OH-。碳可自碳酸鹽電解質(諸如鹼金屬碳酸鹽,諸如K2CO3)電鍍。電池可在無外部複合器下操作,以增加O2濃度,從而提高O2還原速率。
在產生OH之電池的其他實施例中,在氧化與還原反應中之至少一者期間形成的H與O中之至少一者亦可充當形成低能量氫之觸媒。
在具有氫硫族化物離子電解質之另一一般反應中,陰極反應包含進行接受電子與接受H中之至少一者的反應。陽極反應包含進行供出電子、供出H及氧化氫硫族化物離子中之至少一者的反應。
在另一實施例中,圖21中所示之電池系統可包含陽極隔室600、陽極603(諸如Zn)、陰極隔室601、陰極604(諸如碳)及對遷移離子(諸如電解質(諸如6.5 M至飽和MOH,M=鹼金屬)之OH-)選擇性可透過的隔板602(諸如聚烯烴膜)。一適合之膜為Celgard 3501。電極經由開關606,藉由負載605連接,以對電池放電,使得諸如ZnO之氧化物或氫氧化物產物在陽極603形成。包含電極603及604之電池可使用可為另一CIHT電池之電解電源供應器612再充電。電池可進一步包含輔助電極,諸如圖21中所示之輔助隔室607中之輔助陽極609。當包含陽極603及陰極604之電池適當放電時,包含氧化產物(諸如ZnO)之電極603可充當陰極,且輔助電極609充當陽極,以使陽極603電解再生或自發放電。後一情況下具有鹼性電解質之適合電極為Ni或Pt/Ti。在後一情況下,適合之氫化物陽極為用於金屬氫化物電池(諸如熟習此項技術者已知之鎳金屬氫化物電池)中之氫化物陽極。例示性適合之輔助電極陽極為本發明之陽極,諸如金屬(諸如Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag、Cd、Hg、Ga、In、Sn、Pb或具有低的水反應性之金屬(Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn或W)或此等金屬與飽和MOH之糊狀物)、解離體與氫(諸如PtC(H2))或金屬氫化物(諸如R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2及能夠儲存氫之其他合金,諸如AB5(LaCePrNdNiCoMnAl)或AB2(VTiZrNiCrCoMnAlSn)型之一,其中「ABx」名稱係指A型元素(LaCePrNd或TiZr)與B型元素(VNiCrCoMnAlSn)之比率)。在其他實施例中,氫化物陽極包含以下中之至少一者:AB5型:MmNi3.2Co1.0Mn0.6Al0.11Mo0.09(Mm=密鈰合金:25 wt% La、50 wt% Ce、7 wt% Pr、18 wt% Nd);AB2型:Ti0.51Zr0.49V0.70Ni1.18Cr0.12合金;基於鎂之合金,諸如Mg1.9Al0.1Ni0.8Co0.1Mn0.1合金、Mg0.72Sc0.28(Pd0.012+Rh0.012)及Mg80Ti20、Mg80V20;La0.8Nd0.2Ni2.4Co2.5Si0.1、LaNi5-xMx((M=Mn、Al)、(M=Al、Si、Cu)、(M=Sn)、(M=Al、Mn、Cu))及LaNi4Co、MmNi3.55Mn0.44Al0.3Co0.75、LaNi3.55Mn0.44Al0.3Co0.75、MgCu2、MgZn2、MgNi2;AB化合物,諸如TiFe、TiCo及TiNi;ABn化合物(n=5、2或1);AB3-4化合物;及ABx(A=La、Ce、Mn、Mg;B=Ni、Mn、Co、Al)。當開關611閉合且開關606斷開時,包含陽極609及陰極603之電池可經由負載613放電。包含電極603及609之電池可使用可為另一CIHT電池之電源610再充電。或者,在閉合開關614及斷開開關611後,可使用可為另一CIHT電池之電源616對包含電極604及609之放電電池再充電。此外,輔助陽極609(諸如氫化物,諸如R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75或ZrMn0.5Cr0.2V0.1Ni1.2)可藉由電解再充電,或藉由原位添加氫或藉由移除、氫化及置換而再生。在放電期間形成氧化物或氫氧化物且具有熱力學上有利之經H2還原成金屬之再生反應的適合例示性陽極為Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W。此等及其他該等電極可在半電池中在H2下運轉,分批或連續再生電極。電極可交替再循環。舉例而言,放電之金屬氫化物陽極(諸如自LaNi5H6形成LaNi5)可用作另一水性電池中之陰極,其中此陰極上水或H+還原成氫將使LaNi5再氫化成LaNi5H6,LaNi5H6又可充當陽極。推動放電及再充電循環之能源為自氫形成低能量氫。熟習此項技術者可交換本發明之其他陽極、陰極、輔助電極、電解質及溶劑,以包含能夠引起至少一個電極(諸如初始陽極)再生之其他電池。
在其他實施例中,陽極603與陰極604中之至少一者可包含複數個電極,該複數個電極各自進一步包含將該複數個電極每一者電連接於電路或與電路斷開的開關。接著,舉例而言,一陰極或陽極可在放電期間連接,且另一陰極或陽極可在藉由電解再充電期間連接。在具有鹼性電解質(諸如MOH(M=鹼金屬),諸如KOH(飽和水溶液))之一例示性實施例中,陽極包含金屬(諸如具有低的水反應性之適合金屬(Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn、W或Zn))或氫化物(諸如R-Ni或LaNi5H6),且陰極包含複數個至少雙電極,諸如在放電期間連接至電路之碳電極及在再充電期間連接之鎳。在另一實施例中,電解質可在至少一個半電池中改變,接著電解。舉例而言,飽和MOH可經稀釋,以使H2在電解陰極放出,接著再次濃縮以用於放電。在另一實施例中,溶劑與溶質中之至少一者可改變,以允許電池反應物再生。電池產物之電解電壓可超過溶劑;接著選擇溶劑改變以允許反應物藉由電解再生。在一個實施例中,在放電後諸如金屬或氫化物之陽極可自包含該陽極及陰極之第一電池移除,且藉由在具有反電極之第二電池中電解再生,且作為再生陽極回到第一電池。在一個實施例中,包含氫化物陽極之CIHT電池進一步包含對電池間歇充電及放電之電解系統,使得淨能量平衡增加。一例示性電池為放電及充電電流恆定之[LaNi5H6/KOH(飽和水溶液)/SC]脈衝電解,其中放電時間為約充電時間之1.1至100倍且在約10倍內放電及充電電流可為相同的。在一個實施例中,電池間歇充電及放電。在例示性實施例中,電池具有金屬陽極或金屬氫化物(MH)陽極,諸如[Co/KOH(飽和水溶液)/SC]、[Zn/KOH(飽和水溶液)/SC]、[Sn/KOH(飽和水溶液)/SC]及[MH/KOH(飽和水溶液)/SC],其中MH可為LaNi5Hx、TiMn2Hx或La2Ni9CoHx。間歇充電及放電之CIHT電池亦可包含熔融電解質,諸如氫氧化物與鹵化物或其他鹽中之至少一者,且可在陽極進一步包含H來源,諸如可在電解質中之氫化物MH或H2O。適合例示性電池為[MH/M'(OH)n-M"Xm/M''']及[M/M'(OH)n-M"Xm(H2O)/M],其中n、m為整數,M、M'、M"及M'''可為金屬,適合金屬M可為Ni,M'及M"可為鹼金屬及鹼土金屬,且適合陰離子X可為氫氧根、鹵離子、硫酸根、硝酸根、碳酸根及磷酸根。在一例示性實施例中,CIHT電池在諸如1 mA之恆定電流下充電2秒,接著諸如在1 mA之恆定電流下放電20秒。電流及時間可調至任何所需值,以實現最大能量增加。
在一個實施例中,陽極包含形成可由氫還原之氧化物或氫氧化物的金屬。氫可在陰極藉由諸如水之反應(諸如方程式(315)給出之反應)的反應形成。氧化物或氫氧化物亦可藉由添加氫而還原。在一個實施例中,氧化物或氫氧化物在陽極形成,其中水為氫氧化物來源,且氫還原氫氧化物或氧化物,其中水至少部分為氫來源。低能量氫在包含陽極之OH-或金屬氧化、水還原成氫氣、及氫與陽極氧化物或氫氧化物反應以使陽極金屬再生之動力學反應期間形成。接著陽極可包含氧化物或氫氧化物可由氫還原之金屬,諸如以下之群之一:過渡金屬、Ag、Cd、Hg、Ga、In、Sn及Pb或來自Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W之群之具有低的水反應性之適合金屬。在一個實施例中,過渡金屬Zn亦可充當根據表1中給出之反應的觸媒。
電池可藉由水電解,加回在形成低能量氫時消耗或自電池損失之任何氫來再生。在一個實施例中,電解脈衝進行,使得氫化物(諸如金屬氫化物,諸如鎳氫化物)在產生與電解電壓反向之電壓的電解期間形成,且在不存在外加電壓之占空比的時間間隔期間電解水。諸如峰值電壓、電流及功率、補償電壓、電流及功率以及占空比及頻率之電解參數最佳化,以增加能量增加。在一個實施例中,電池產生電力及氫氣(方程式(315)),氫氣可作為產物收集。或者,氫氣可再循環以氫化R-Ni,繼續電池放電,產生電流,其中低能量氫之形成為電池電壓、電流、功率及能量中之至少一者作出貢獻。電池亦可藉由可為另一CIHT電池之外部電源再充電,以產生氫氣,置換在形成低能量氫時消耗或自電池損失之任何氫。在一個實施例中,氫化物物質可藉由原位添加H2或在自陽極隔室移除後在另一容器中再氫化。在前一種情況下,陽極可密封且用氫氣加壓。或者,電池可用氫氣加壓,其中氫氣優先由陽極反應物吸收或保留。在一個實施例中,電池可在操作期間用H2加壓。
在包含氫化物(諸如金屬氫化物半電池反應物及包含氧(氫氧)化物之其他半電池反應物)之電池之另一實施例中,電解質可為氫化物導體,諸如熔融共熔鹽。一例示性電池為[R-Ni/LiCl KCl 0.02 wt% LiH/CoOOH]。
除金屬氫化物(諸如R-Ni)外,陽極可包含蒽醌、聚吡咯或特別鈍化鋰。在一例示性實施例中,陽極可包含蒽醌(AQ)與氫化碳混合,其中陽極反應產生H原子,該等H原子反應形成低能量氫。電池可進一步包含氧(氫氧)化鎳作為陰極及蒽氫醌(AQH2)作為陽極,其中電解質可為鹼性的。一例示性可逆電池反應為
一例示性電池為[AQH2/隔板KOH/NiOOH]。在實施例中,氧(氫氧)化鎳可經另一氧化物或氧(氫氧)化物(諸如鉛或錳之氧化物,諸如PbO2或MnO2)置換。
在其他水性電解質實施例中,OH-為半電池反應物。在金屬離子在陰極處還原下,OH-可氧化成H2O。有機金屬化合物可含有金屬離子。適合之有機金屬化合物為芳族過渡金屬化合物,諸如包含二茂鐵(Fe(C5H5)2)、二茂鎳及二茂鈷之化合物。熟習此項技術者已知可進行氧化還原反應之其他有機金屬化合物可取代此等實例及其衍生物。二茂鐵之氧化形式為二茂鐵鎓離子([Fe(C5H5)2]+)。有機金屬化合物可包含二茂鐵鎓離子氫氧化物或鹵化物,諸如氯化物,其可還原成二茂鐵。二茂鐵鎓離子可包含導電性聚合物,諸如聚乙烯二茂鐵鎓離子。聚合物可連接於導電電極,諸如Pt或在本發明中給出之其他金屬。金屬氫化物R-Ni之一例示性陽極反應由方程式(311)給出。一例示性陰極反應為
二茂鐵鎓離子(OH)+e-→二茂鐵+OH- (345)
在電池操作期間(諸如放電期間)形成的H空位或添加引起低能量氫反應,釋放除來自非基於低能量氫之反應之任何電力外的電力。電解質可包含鹼金屬氫氧化物水溶液。一例示性電池為[R-Ni/聚烯烴KOH(水溶液)、NaOH(水溶液)或LiOH(水溶液)/聚乙烯基二茂鐵鎓離子(OH)]。可使用本發明之其他極性溶劑或混合物以及水溶液。
在一個實施例中,H來源包含氫氣。原子氫可在諸如Pd/C、Pt/C、Ir/C、Rh/C或Ru/C之解離體上形成。氫來源亦可為氫氣可透膜與H2氣體,諸如Ti(H2)、Pd-Ag合金(H2)、V(H2)、Ta(H2)、Ni(H2)或Nb(H2)。電池可包含水性陰離子交換膜,諸如氫氧根離子傳導膜,諸如具有氫氧化四級烷基銨及鹼性水溶液之膜。電池可包含理論上不透H2之膜或鹽橋。膜或鹽橋可對OH-之輸送具有選擇性。鹼性電解質可為氫氧化物水溶液,諸如鹼金屬氫氧化物水溶液,諸如KOH或NaOH。陽極可為氧(氫氧)化物,諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH),或可為高表面積導體,諸如碳(諸如CB、Pt/C或Pd/C)、碳化物(諸如TiC)或硼化物(諸如TiB2)。在鹼性溶液中,反應為
陽極
H2+2OH-→2H2O+2e-或H2+OH→H2O+e-+H(1/p) (346)
陰極
2(CoOOH+e-+H2O→Co(OH)2+OH-)
或CoOOH+2e-+2H2O→Co(OH)2+2OH-+H(1/p) (347)
例示性電池為[R-Ni、H2與Pd/C、Pt/C、Ir/C、Rh/C或Ru/C或金屬氫化物(諸如過渡金屬、內過渡金屬、稀土金屬氫化物)或合金(諸如AB5或AB2型鹼性電池之一)/MOH(M為鹼金屬,諸如KOH(約6M至飽和),其中該鹼可充當觸媒或觸媒來源,諸如K或2K+)或其他鹼(諸如NH4OH)、OH-導體(諸如鹼性水性電解質)、隔板(諸如具有氫氧化四級烷基銨及鹼性水溶液之隔板)、離子液體或固體OH-導體/MO(OH)(M=金屬,諸如Co、Ni、Fe、Mn、Al),諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)或其他H層夾硫族化物或HY]。在另一實施例中,諸如Mg2+之Mg可充當觸媒。例示性電池為[1 wt% Mg(OH)2與R-Ni混合/KOH(飽和水溶液)/CB]及[R-Ni/Mg(OH)2冠醚/CB]。在其他實施例中,電解質可為離子液體或於有機溶劑中之鹽。電池可藉由充電或藉由化學處理再生。
在供應H2之一燃料電池系統實施例中,使H2選擇性或優先在陽極反應。H2在陽極之反應速率遠高於陰極。將H2限於陽極半電池或使用使陽極上反應優先於陰極之材料包含實現選擇性之兩種方法。電池可包含理論上不透H2之膜或鹽橋。膜或鹽橋可對OH-輸送具有選擇性。
在氧或包含氧之化合物參與氧化或還原反應的一個實施例中,O2可用作觸媒或觸媒來源。氧分子鍵能為5.165 eV,且氧原子之第一、第二及第三電離能分別為13.61806 eV、35.11730 eV及54.9355 eV。反應O 2O+O 2+O 2O+O 3+及2O→2O +分別提供約E h 2倍、4倍及1倍之淨焓,且包含藉由接受來自H之此等能量以引起低能量氫形成的形成低能量氫之觸媒反應。在一個實施例中,OH可充當如下提供之產生低能量氫之MH型氫觸媒:O-H鍵斷裂外加2或3個電子自原子O各自電離至連體能階,使得鍵能與2或3個電子之電離能的和為約m‧27.2eV,其中m分別為2或4,如表3中所給出。OH可藉由陽極上如例示性方程式(311)、(313)及(346)所給出之OH-反應或陰極上如例示性方程式(315)及(347)所給出之H2O還原來形成。來自電池(諸如[R-Ni/KOH(飽和)/CoOOHCB]及[R-Ni/KOH(飽和)/PdC])反應產物之分析的大1.2 ppm峰符合OH觸媒在來自H2(1/4)中間物衰變能量之另外27.2 eV下方程式(5)中m=3,與OH觸媒之108.8 eV匹配。R-Ni陽極產物之強度增加證明由OH-氧化形成之OH作為觸媒之機制。
或者,O-H可充當引起躍遷至如表3中所給出之H(1/3)狀態之觸媒,該H(1/3)狀態藉由以H催化,如方程式(10)所給出,迅速躍遷至H(1/4)狀態。1.6 ppm下存在小H2(1/3) NMR峰及1.25 ppm下存在大H2(1/4) NMR峰證明此機制。
在一個實施例中,至少一種電極之過電位可引起觸媒能量更佳地匹配m27.2 eV(m=整數)。舉例而言,如表3A中所示,OH可為方程式(47)中m=2之觸媒。關於O2及水還原中之至少一者的陰極過電位及接受電子、釋放H及將OH-氧化成OH(方程式(313-347))之金屬、金屬氫氧化物、金屬氧(氫氧)化物、金屬氫化物或H2電極之至少一種過電位引起更精確地匹配m27.2 eV,諸如54.4 eV。一適合之陰極材料為碳,其在10A/m-2下過電位>0.6 V且隨電流密度而增加。電流密度可藉由控制負載來調整,以最佳化低能量氫產生對電池電力之貢獻。過電位亦可藉由改質電極(諸如陰極)表面來調整。碳的過電位可藉由用諸如蒸汽處理之方法部分氧化或活化增加。
此外,原子氧為一種在等於原子氫之波耳半徑(Bohr radius)之相同半徑處具有兩個不成對電子的特別原子。當原子H充當觸媒時,接受27.2 eV之能量,使得充當另一H之觸媒之各電離H的動能為13.6 eV。類似地,O之兩個電子各自可在13.6 eV動能轉移至O離子下電離,使得OH之O-H鍵斷裂以及隨後兩個外部不成對電子電離之淨焓為80.4 eV,在表3中所給出。在OH-電離成OH期間,可發生進一步反應成H(1/4)及O2++2e-之能量匹配,其中釋放之204 eV能量貢獻給CIHT電池之電力。反應如下給出:
且總反應為
其中方程式(5)中m=3。動能也可保存在熱電子中。觀測到水蒸氣電漿中H群體反向證明此機制。
在OH-氧化形成OH,進一步反應形成低能量氫之情況下,OH-之濃度可為高的,以增加形成OH之反應速率,因此增加低能量氫,如以下反應所給出:
OH-→OH+e-→1/2O2+e-+H(1/p) (351)
對應於電解質(諸如MOH(M=鹼金屬),諸如KOH或NaOH)之OH-濃度可為任何所需濃度,但較佳為高濃度,諸如1 M至飽和。一例示性電池為[R-Ni/MOH(飽和水溶液)/CB]。
在另一實施例中,pH值可較低,諸如中性至酸性。在H2O氧化形成OH,進一步反應形成低能量氫之情況下,電解質之濃度可為高的,以提高活性及導電性,從而增加形成OH之反應速率,因此增加低能量氫,如以下反應所給出:
陽極
H2O→OH+e-+H+→1/2O2+e-+H++H(1/p) (352)
MHx+H2O→OH+2e-+2H+→1/2O2+2H++2e-+H(1/p) (353)
陰極
H++e-→1/2H2或H++e-→H(1/p) (354)
藉由由方程式(353)給出之競爭反應,與O2放出相比,存在陽極反應物氫化物(諸如MHx,M為除H以外的元素,諸如金屬)更有利於OH形成。形成低能量氫之反應可受氫化物之H可用性限制;因此,可最佳化增加H濃度之條件。舉例而言,可增加溫度或H2可供應給氫化物以補充任何消耗之H2。電池中隔板可為鐵氟龍,且使用高溫。除鹼以外,電解質可為鹽,諸如以下之群中之至少一者:MNO3、MNO、MNO2、MX(X=鹵離子)、NH3、M2S、MHS、M2CO3、MHCO3、M2SO4、MHSO4、M3PO4、M2HPO4、MH2PO4、M2MoO4、MNbO3、M2B4O7(M之四硼酸鹽)、MBO2、M2WO4、M2CrO4、M2Cr2O7、M2TiO3、MZrO3、MAlO2、MCoO2、MGaO2、M2GeO3、MMn2O4、M4SiO4、M2SiO3、MTaO3、MVO3、MIO3、MFeO2、MIO4、MClO4、MScOn、MTiOn、MVOn、MCrOn、MCr2On、MMn2On、MFeOn、MCoOn、MNiOn、MNi2On、MCuOn、MZnOn(M為鹼金屬或銨且n=1、2、3或4)及有機鹼性鹽(諸如M之乙酸鹽或M之羧酸鹽,其中M為鹼金屬或銨)。一例示性電池為[R-Ni/M2SO4(飽和水溶液)/CB]。電解質亦可包含此等及其他陰離子以及可溶於溶劑中之任何陽離子,諸如鹼土金屬、過渡金屬、內過渡金屬、稀土金屬及第III族、第IV族、第V族及第VI族之其他陽離子(諸如Al、Ga、In、Sn、Pb、Bi及Te)。例示性電池為[R-Ni/MgSO4或Ca(NO3)2(飽和水溶液)/活性碳(AC)]。電解液濃度可為任何所需濃度,但較佳為高濃度,諸如0.1 M至飽和。
在一個實施例中,陽極或陰極可包含添加劑,諸如載體,諸如碳化物(諸如TiC或TaC)或碳(諸如Pt/C或CB)或無機化合物或吸氣劑(諸如LaN或KI)。例示性電池為[Zn LaN/KOH(飽和水溶液)/SC]、[Sn TaC/KOH(飽和水溶液)/SC]、[Sn KI/KOH(飽和水溶液)/SC]、[Pb CB/KOH(飽和水溶液)/SC]、[W CB/KOH(飽和水溶液)/SC]。在另一實施例中,電解質可包含鹼混合物,諸如在KOH中飽和之飽和氫氧化銨。例示性電池為[Zn/KOH(飽和水溶液)NH4OH(飽和水溶液)/SC]及[Co/KOH(飽和水溶液)NH4OH(飽和水溶液)/SC]。
在一個實施例中,陰極與陽極半電池反應中之至少一者形成充當形成低能量氫之觸媒的OH與H2O中之至少一者。OH可由OH-氧化形成,或OH可由前驅體(諸如OH、H及O中之至少一者之來源)氧化形成。在後兩種情況下,分別為H與O來源反應形成OH,及O與H來源反應形成OH。前驅體可為負性或中性物質或化合物。負性物質可為包含OH、OH-或含有OH或OH-之部分的離子,諸如包含OH-或包含OH之超氧化物或過氧化物離子()。負性物質可為包含H、H-或含有H或H-之部分的離子,諸如包含H-或包含H之過氧化物離子。負性物質氧化之H產物接著與O來源反應,形成OH。在一個實施例中,OH可由H或H來源與可形成作為形成OH之中間物之OH-的氧化物或氧(氫氧)化物反應形成。負性物質可為包含除H以外之元素的離子,諸如O、O-、O2-或包含O、O-、O2-之部分,諸如金屬氧化物,諸如包含氧化物離子之,或包含O之過氧化物離子。負性物質氧化之O產物接著與H來源反應,形成OH。中性物質或化合物可包含OH、OH-或包含OH或OH-之部分,諸如氫氧化物或氧(氫氧)化物,諸如包含OH-之NaOH、KOH、Co(OH)2或CoOOH或包含OH之H2O、醇或過氧化物。中性物質或化合物可包含H、H-或包含H或H-之部分,諸如包含H-之金屬氫化物或包含H之H2O、醇或過氧化物。氧化之H產物接著與O來源反應,形成OH。中性物質或化合物可包含除H以外的元素,諸如O、O-、O2-或包含O、O-、O2-之部分,諸如包含氧化物離子或其來源之金屬氧化物、氫氧化物或氧(氫氧)化物,或包含O之H2O、醇或過氧化物。氧化之O產物接著與H來源反應,形成OH。
OH可由OH+還原形成,或OH可由前驅體(諸如OH、H及O中之至少一者之來源)還原形成。在後兩種情況下,分別為H與O來源反應形成OH,及O與H來源反應形成OH。前驅體可為正性或中性物質或化合物。正性物質可為包含OH或含有OH之部分的離子,諸如包含OH-或包含OH之過氧化物離子。正性物質可為包含H、H+或含有H或H+之部分的離子,諸如包含H+之H3O+或包含H之過氧化物離子。正性物質還原之H產物接著與O來源反應,形成OH。正性物質可為包含除H以外之元素的離子,諸如O、O-、O2-或包含O、O-、O2-之部分,諸如金屬氧化物,諸如包含氧化物離子之AlO+,或包含O之過氧化物離子。正性物質還原之O產物接著與H來源反應,形成OH。中性物質或化合物可包含OH或包含OH之部分,諸如H2O、醇或過氧化物。中性物質或化合物可包含H、H+或包含H或H+之部分,諸如包含H+之酸式鹽或酸,分別諸如MHSO4、MH2PO4、M2HPO4(M=鹼金屬)及HX(X=鹵離子),或包含H之H2O、醇或過氧化物。還原之H產物接著與O來源反應,形成OH。中性物質或化合物可包含除H以外的元素,諸如O,或包含O之部分,諸如H2O、醇或過氧化物。還原之O產物接著與H來源反應,形成OH。
OH可作為中間物形成,或藉由包含氧化或還原化合物或物質之協同或二次化學反應形成。相同情況適用於H2O觸媒。反應物可包含OH或OH來源,諸如OH-、O及H中之至少一者。作為OH-形成或消耗中之中間物形成的適合OH來源為金屬氧化物、金屬氫氧化物或氧(氫氧)化物,諸如CoOOH。本發明中給出例示性反應,其中OH在涉及OH-之反應期間短暫地形成,且一些OH反應形成低能量氫。由二次反應形成之OH之實例包含氫氧化物或氧(氫氧)化物,諸如包含OH-之NaOH、KOH、Co(OH)2或CoOOH。舉例而言,藉由在諸如[Na/BASE/NaOH]之電池中還原Na+,可形成Na,其中Na與NaOH之反應可形成作為短暫中間產物之OH,如下:
Na++e-→Na;Na+NaOH→Na2+OH→Na2O+1/2H2 (355)
在諸如[Na/BASE/NaOH]之一個實施例中,Na+之輸送速率可藉由諸如升高溫度或減小BASE厚度來降低BASE電阻之方式達到最大,以增加Na2與H中之至少一者的形成速率。因此,增加OH形成速率,隨之增加低能量氫形成速率。
類似地,藉由在諸如[Li/Celgard LP 30/CoOOH]之電池中還原Li+,可形成Li,其中Li與CoOOH之反應可形成作為短暫中間產物之OH,如下:
Li++e-→Li;
3Li+2CoOOH→LiCoO2+Co+Li2+2OH→LiCoO2+Co+2LiOH (356)
或者,在有機電解電池[Li/Celgard LP 30/CoOOH]中,1.22 ppm下之H2(1/4) NMR峰主要在陽極。機制可為OH-遷移至陽極,其中OH-氧化成充當形成低能量氫之反應物的OH。例示性反應為
陰極
CoOOH+e-→CoO+OH- (357)
陽極
OH-→OH+e-;OH→O+H(1/p) (358)
O可與Li反應,形成Li2O。氧(氫氧)化物及電解質可經選擇,以有利於OH-作為遷移離子。在一個實施例中,促進OH-遷移之電解質為離子電解質,諸如熔融鹽,諸如鹼金屬鹵化物之共熔混合物,諸如LiCl-KCl。陽極可為具有OH-或OH之反應物,諸如金屬或氫化物,且陰極可為OH-來源,諸如氧(氫氧)化物或氫氧化物,諸如本發明中所給出之該等物質。例示性電池為[Li/LiCl-KCl/CoOOH、MnOOH、Co(OH)2、Mg(OH)2]。
在一個實施例中,O2、2O、OH及H2O中之至少一者充當固體燃料反應與CIHT電池中之至少一者中形成低能量氫之觸媒。在一個實施例中,OH可由氧來源(諸如P2O5、SO2、KNO3、KMnO4、CO2、O2、NO、N2O、NO2、O2及H2O)與H來源(諸如MH(M=鹼金屬)、H2O或H2氣體與解離體)之反應形成。
電池可藉由電解或藉由H2添加而再生。電解可在本發明所給出之條件下脈衝進行。一CIHT電池可自另一CIHT電池提供電解電力,因為循環過程之其充電-再充電循環相輸出超過再充電之電力的淨電力。電池可為搖椅型,其中H穿梭在陽極與陰極之間。在實施例中,包含H之遷移離子可為OH-或H+。考慮在陽極具有H來源及在陰極具有H儲集體之電池,諸如[R-Ni/KOH(飽和水溶液)/AC]。例示性放電及再充電反應由以下給出
放電
陽極:
R-NiHx+OH-→H2O+R-NiHx-1+e- (359)
陰極
H2O+e-→OH-+碳中1/2H2(C(Hx)) (360)
電解再充電
陰極:
R-NiHx-1+H2O+e-→OH-+R-NiHx (361)
陽極
C(Hx)+OH-→H2O+C(Hx-1)+e- (362)
其中在此等反應(方程式(359-360))期間產生之H或OH中之至少一者充當形成低能量氫之觸媒。電池可用以消耗水來置換形成低能量氫之氫。氧可藉由選擇性針對氧之反應物選擇性地吸除或移除。或者,氫氣可加回電池中。可密封電池,以另外在電極之間含有剩餘H流量。至少一個電極可在電池操作期間連續或間歇再氫化。氫可由氣體管線供應,該氣體管線使H2流至電極中。電池可包含另一移除H2之管線以維持流過至少一個電極。藉由內部氫流量、藉由電解在內部產生之氫及外部供應之氫中之至少一者的再氫化可藉由氫與陰極或陽極或反應物直接反應進行。在一個實施例中,陽極反應物(諸如氫化物)進一步包含用以執行增加陽極反應物(諸如氫化物,諸如R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75或ZrMn0.5Cr0.2V0.1Ni12)對H2之吸收量及吸收速率中之至少一者的試劑。試劑可為氫溢流觸媒。適合之試劑為CB、PtC、PdC及其他氫解離體及載體材料上之氫解離體。氫氣壓力可在約0.01至1000 atm範圍內。適於再氫化LaNi5之範圍為約1至3 atm。
遷移離子可為OH-,其中陽極包含H來源,諸如H層夾之層狀硫族化物,諸如氧(氫氧)化物,諸如CoOOH、NiOOH、HTiS2、HZrS2、HHfS2、HTaS2、HTeS2、HReS2、HPtS2、HSnS2、HSnSSe、HTiSe2、HZrSe2、HHfSe2、HTaSe2、HTeSe2、HReSe2、HPtSe2、HSnSe2、HTiTe2、HZrTe2、HVTe2、HNbTe2、HTaTe2、HMoTe2、HWTe2、HCoTe2、HRhTe2、HIrTe2、HNiTe2、HPdTe2、HPtTe2、HSiTe2、HNbS2、HTaS2、HMoS2、HWS2、HNbSe2、HNbSe3、HTaSe2、HMoSe2、HVSe2、HWSe2及HMoTe2。電解質可為OH-導體,諸如鹼性水溶液,諸如KOH水溶液,其中該鹼可充當觸媒或觸媒來源,諸如OH、K或2K+。電池可進一步包含OH-可透隔板,諸如CG3401。例示性電池為[H層夾之層狀硫族化物(諸如CoOOH、NiOOH、HTiS2、HZrS2、HHfS2、HTaS2、HTeS2、HReS2、HPtS2、HSnS2、HSnSSe、HTiSe2、HZrSe2、HHfSe2、HTaSe2、HTeSe2、HReSe2、HPtSe2、HSnSe2、HTiTe2、HZrTe2、HVTe2、HNbTe2、HTaTe2、HMoTe2、HWTe2、HCoTe2、HRhTe2、HIrTe2、HNiTe2、HPdTe2、HPtTe2、HSiTe2、HNbS2、HTaS2、HMoS2、HWS2、HNbSe2、HNbSe3、HTaSe2、HMoSe2、HVSe2、HWSe2及HMoTe2)/KOH(6.5 M至飽和)+CG3401/碳(諸如CB、PtC、PdC、CB(H2)、PtC(H2)、PdC(H2))、碳化物(諸如TiC)及硼化物(諸如TiB2)]。陽極可藉由提供氫或藉由電解再生。
在一個實施例中,陰極或陽極半電池反應物或電解質中之至少一者包含OH穩定物質或引發劑物質,諸如充當自由基促進劑之自由基觸媒。適合之OH穩定物質為穩定自由基或防止其降解之物質,適合之自由基引發劑為反應形成自由基之化合物,諸如過氧化物或提供Co2+離子與O2反應形成超氧化物之Co2+鹽。自由基來源或氧來源可進一步包含過氧化化合物、過氧化物、H2O2、含有偶氮基之化合物、N2O、NO、NO2、NaOCl、芬頓試劑(Fenton's reagent)或類似試劑、OH自由基或其來源、過氙酸根離子或其來源(諸如鹼金屬或鹼土金屬過氙酸鹽(較佳過氙酸鈉(Na4XeO6)或過氙酸鉀(K4XeO6))、四氧化氙(XeO4)及過氙酸(H4XeO6))及金屬離子來源(諸如金屬鹽)中之至少一者。金屬鹽可為以下至少一者:FeSO4、AlCl3、TiCl3及較佳鹵化鈷,諸如作為Co2+來源之CoCl2。電解質可包含可充當OH引發劑之陽極材料的陽離子。在包含鎳陽極(諸如R-Ni或Ni氫化物或合金)之一例示性實施例中,電解質包含鎳鹽添加劑,諸如Ni(OH)2、NiCO3、Ni3(PO4)2或NiSO4,其中電解質可分別為鹼金屬氫氧化物、碳酸鹽、磷酸鹽或硫酸鹽。例示性電池為[R-Ni、阮尼鈷(R-Co)、阮尼銅(R-Cu)、CoH、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、CrH、FeH、MnH、NiH、ScH、VH、CuH、ZnH、AgH/KOH或NaOH(飽和);FeSO4、AlCl3、TiCl3、CoCl2、Ni(OH)2、NiCO3、Ni3(PO4)2及NiSO4中之至少一者/PdC、CB或CoOOH+CB]。
單獨、與鹼(諸如MOH,M=鹼金屬)組合及以任何組合之例示性電解質為鹼金屬或銨之鹵化物、硝酸鹽、過氯酸鹽、碳酸鹽、Na3PO4或K3PO4及硫酸鹽及NH4X,X=鹵離子、硝酸根、過氯酸根、磷酸根及硫酸根。電解質可包含混合物或氫氧化物或其他鹽,諸如鹵化物、碳酸鹽、硫酸鹽、磷酸鹽及硝酸鹽。一般而言,單獨或組合之例示性適合溶質為MNO3、MNO、MNO2、MX(X=鹵離子)、NH3、MOH、M2S、MHS、M2CO3、MHCO3、M2SO4、MHSO4、M3PO4、M2HPO4、MH2PO4、M2MoO4、MNbO3、M2B4O7(M之四硼酸鹽)、MBO2、M2WO4、M2CrO4、M2Cr2O7、M2TiO3、MZrO3、MAlO2、MCoO2、MGaO2、M2GeO3、MMn2O4、M4SiO4、M2SiO3、MTaO3、MVO3、MIO3、MFeO2、MIO4、MClO4、MScOn、MTiOn、MVOn、MCrOn、MCr2On、MMn2On、MFeOn、MCoOn、MNiOn、MNi2On、MCuOn、MZnOn(M為鹼金屬或銨且n=1、2、3或4)及有機鹼性鹽(諸如M之乙酸鹽或M之羧酸鹽)。電解質亦可包含此等及其他陰離子以及可溶於溶劑中之任何陽離子,諸如鹼土金屬、過渡金屬、內過渡金屬、稀土金屬及第III族、第IV族、第V族及第VI族之其他陽離子(諸如Al、Ga、In、Sn、Pb、Bi及Te)。其他適合之溶質為諸如H2O2之過氧化物(其可以稀釋量連續添加,諸如約<0.001 wt%至10 wt%)、胺化物、有機鹼(諸如脲或類似化合物或鹽及胍或類似化合物,諸如精胺酸之衍生物或其鹽)、亞胺化物、縮醛胺或胺基縮醛、半縮醛胺、ROH(R為醇之有機基團)(諸如乙醇、赤藻糖醇(C4H10O4)、半乳糖醇(甜醇)、(2R,3S,4R,5S)-己烷-1,2,3,4,5,6-己醇或聚乙烯醇(PVA))、RSH(諸如硫醇)、MSH、MHSe、MHTe、MxHyXz(X為酸陰離子,M為諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬之金屬,且x、y、z為整數,包括0)。濃度可為任何所需濃度,諸如飽和溶液。適合之溶質使溶液(諸如水溶液)為鹼性。OH-濃度較佳為高的。例示性電池為[R-Ni/包含來自以下之群之溶質或溶質組合的水溶液:KOH、KHS、K2S、K3PO4、K2HPO4、KH2PO4、K2SO4、KHSO4、K2CO3、KHCO3、KX(X=鹵離子)、KNO3、KNO、KNO2、K2MoO4、K2CrO4、K2Cr2O7、KAlO2、NH3、K2S、KHS、KNbO3、K2B4O7、KBO2、K2WO4、K2TiO3、KZrO3、KCoO2、KGaO2、K2GeO3、KMn2O4、K4SiO4、K2SiO3、KTaO3、KVO3、KIO3、KFeO2、KIO4、KClO4、KScOn、KTiOn、KVOn、KCrOn、KCr2On、KMn2On、KFeOn、KCoOn、KNiOn、KNi2On、KCuOn及KZnOn(n=1、2、3或4)(均飽和)及K之乙酸鹽、稀H2O2添加劑、稀CoCl2添加劑、胺化物、有機鹼、尿素、胍、亞胺化物、縮醛胺或胺基縮醛、半縮醛胺、ROH(R為醇之有機基團)(諸如乙醇、赤藻糖醇(C4H10O4)、半乳糖醇(甜醇)、(2R,3S,4R,5S)-己烷-1,2,3,4,5,6-己醇或聚乙烯醇(PVA))、RSH(諸如硫醇)、MSH、MHSe及MHTe/CB或CoOOH+CB]。
OH可藉由H鍵結介質形成溶劑合物。H及可能O可在介質中進行交換。低能量氫反應可在交換反應期間引發。為增強H鍵結,介質可包含H鍵結溶劑(諸如水或醇)及視情況選用之H鍵結溶質(諸如氫氧化物)。濃度可為高的,以利於H鍵結及提高低能量氫反應之速率。
可使用本發明之其他溶劑或混合物及Mills PCT US 09/052072(以引用的方式併入本文中)之有機溶劑章節之溶劑或混合物以及水溶液或與水溶液組合。溶劑可為極性的。溶劑可包含純水或水與一或多種其他溶劑(諸如醇、胺、酮、醚及腈中之至少一者)之混合物。適合之例示性溶劑可選自以下中之至少一者之群:水、二氧雜環戊烷、二甲氧基乙烷(DME)、1,4-苯并二噁烷(BDO)、四氫呋喃(THF)、二甲基甲醯胺(DMF)、二甲基乙醯胺(DMA)、二甲亞碸(DMSO)、1,3-二甲基-2-咪唑啶酮(DMI)、六甲基磷醯胺(HMPA)、N-甲基-2-吡咯啶酮(NMP)、甲醇、乙醇、胺(諸如三丁胺、三乙胺、三異丙胺、N,N-二甲基苯胺)、呋喃、噻吩、咪唑、吡啶、嘧啶、吡嗪、喹啉、異喹啉、吲哚、2,6-二甲吡啶(2,6-二甲基吡啶)、2-甲吡啶(2-甲基吡啶)及腈(諸如乙腈及丙腈)、4-二甲胺基苯甲醛、丙酮及丙酮-1,3-乙基二甲酯。例示性電池為[R-Ni/包含來自水、醇、胺、酮、醚及腈之群之溶劑或溶劑組合及來自KOH、K3PO4、K2HPO4、KH2PO4、K2SO4、KHSO4、K2CO3、K2C2O4、KHCO3、KX(X=鹵離子)、KNO3、KNO、KNO2、K2MoO4、K2CrO4、K2Cr2O7、KAlO2、NH3、K2S、KHS、KNbO3、K2B4O7、KBO2、K2WO4、K2TiO3、KZrO3、KCoO2、KGaO2、K2GeO3、KMn2O4、K4SiO4、K2SiO3、KTaO3、KVO3、KIO3、KFeO2、KIO4、KClO4、KScOn、KTiOn、KVOn、KCrOn、KCr2On、KMn2On、KFeOn、KCoOn、KNiOn、KNi2On、KCuOn及KZnOn(n=1、2、3或4)(均飽和)及K之乙酸鹽之群的溶質或溶質組合之溶液/CB或CoOOH+CB]。其他例示性電池為[R-Ni/KOH(飽和水溶液)/Pt/Ti]、[R-Ni/K2SO4(飽和水溶液)/Pt/Ti]、[PtC(H2)/KOH(飽和水溶液)/MnOOH CB]、[PtC(H2)/KOH(飽和水溶液)/FePO4CB]、[R-Ni/NH4OH(飽和水溶液)/CB]。
在一個實施例中,至少兩種溶劑為不混溶的。電池經定向,使得各層分隔,以對各陰極及陽極半電池隔室提供不同溶劑。選擇溶劑及電池相對於中心指向之重力的定向,以對各半電池提供穩定化特定物質(諸如OH或H)以增強電池效能之溶劑。選擇電池定向,以分配不混溶溶劑,從而有利於促進低能量氫形成之反應之至少一種反應物或中間物的反應性。
陰極及陽極材料可具有極高表面積以提高動力學,從而增加電力。OH在金屬陰極上可能立即分解或反應,因此,碳陰極可為較佳。其他適合之陰極包含不降解OH或具有較低降解速率之陰極,諸如碳化物、硼化物、氮化物及腈。陽極亦可包含載體作為組分之一。本發明之不同實施例中之載體可為氟化碳載體。例示性電池為[R-Ni、阮尼鈷(R-Co)、阮尼銅(R-Cu)、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、CoH、CrH、FeH、MnH、NiH、ScH、VH、CuH、ZnH、AgH/KOH或NaOH(飽和)/碳、碳化物、硼化物及腈、CB、PdC、PtC、TiC、Ti3SiC2、YC2、TaC、Mo2C、SiC、WC、C、B4C、HfC、Cr3C2、ZrC、CrB2、VC、ZrB2、MgB2、NiB2、NbC、TiB2、六方氮化硼(hBN)及TiCN]。陽極可包含金屬(諸如Zn、Sn、Pb、Cd或Co)或氫化物(諸如LaNi5H6)及載體(諸如碳、碳化物、硼化物及腈、CB、蒸汽碳、活性碳、PdC、PtC、TiC、Ti3SiC2、YC2、TaC、Mo2C、SiC、WC、C、B4C、HfC、Cr3C2、ZrC、CrB2、VC、ZrB2、MgB2、NiB2、NbC、TiB2、六方氮化硼(hBN)及TiCN)。
水合MOH(M=鹼金屬,諸如K)可藉由與方程式(346)及(315)所給出相同且包含OH-及H氧化成H2O及H2O還原成H及OH-之反應的機制以低速率直接反應,形成低能量氫。OH可充當表3中給出之MH型觸媒,或H可充當另一H之觸媒。dDMF中1.22 ppm及2.24 ppm下之NMR峰與H2(1/4)及H2(1/2)之相應觸媒產物匹配。在一個實施例中,藉由使用供應H至陽極之OH-氧化反應之流程及藉由使用大表面積陰極促進陰極之水還原,可顯著增加反應速率,從而加速產生電力之反應。
藉由與OH觸媒相同之機制,表3中給出之SH可充當形成H(1/4)之觸媒。隨後形成H-(1/4)之反應與在諸如NaHS之化合物及可形成SH之反應混合物的液體NMR中觀測到之-3.87 ppm峰一致。
在一個實施例中,根據表3中給出之反應(m=7),SH可在電池中形成,其用作低能量氫觸媒。因為H(1/4)為較佳狀態,所以其可與低能量氫躍遷能量超過轉移至SH觸媒之81.6 eV的剩餘能量一起形成。在一個實施例中,觸媒SH可由陽極上SH-之氧化形成。電池電解質可包含至少一種SH鹽,諸如MSH(M=鹼金屬)。電解質可包含H2O。陽極反應可為以下中之至少一者
陽極反應:
SH-→SH+e-→S+H(1/p) (363)
MHx+SH-→H2S+R-MHx-1+e- (364)
1/2H2+SH-→H2S+e- (365)
其中MHx為氫化物或H來源,且在陽極反應期間,一些H轉化為低能量氫。在後一反應中,H2S可能分解,且H+在陰極可還原成H2。未反應形成低能量氫之氫可再循環。例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2或R-Ni/MSH(飽和水溶液)(M=鹼金屬)/CB]。在另一實施例中,SH藉由除H外或包含H之物質在陰極處還原來形成。該等物質可為硫或硫之氧化物,諸如亞硫酸、硫酸、SO2、亞硫酸鹽、亞硫酸氫鹽、硫酸鹽、硫酸氫鹽或硫代硫酸鹽。陽極可為氫化物或酸穩定之金屬,諸如Pt/Ti,適於該pH值。其他化合物可在電池中形成SH,諸如SF6。一例示性陰極反應為
陰極反應:
SOxHy+qe-→SH+rH2O→S+H(1/p) (366)
例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、R-Ni或Pt/Ti/M2SO4、MHSO4或H2SO4(M=鹼金屬)/CB]。SH來源之濃度可為任何可溶濃度。最佳濃度因形成低能量氫而使電力輸出最佳。在本發明之其他實施例中,SH及SH-可分別取代OH及OH-
水合MSH(M=鹼金屬,諸如Na)可藉由與方程式(365)及(354)所給出相同且包含SH-及H氧化成H2S及H2S還原成H及SH-之反應的機制以低速率直接反應,形成低能量氫。SH可充當表3中給出之MH型觸媒,或H可充當另一H之觸媒。dDMF中-3.87 ppm下之NMR峰與H-(1/4)之相應觸媒產物匹配。在一個實施例中,藉由使用供應H至陽極之SH-氧化反應之流程及藉由使用大表面積陰極促進陰極之H+還原,可顯著增加反應速率,從而加速產生電力之反應。因為S為穩定固體,所以低能量氫氫化物離子可為較佳低能產物,如具有填隙S之Na+H-(1/4)。
在一個實施例中,根據表3中給出之反應(m=3),ClH可在電池中形成,其用作低能量氫觸媒。在一個實施例中,觸媒ClH可由亦供應H之陽極上Cl-氧化形成。電池電解質可包含至少一種Cl鹽,諸如MCl(M=鹼金屬)。電解質可包含H2O。陽極反應可為以下中之至少一者
陽極反應:
MHx+Cl-→ClH+R-MHx-1+e- (367)
1/2H2+C1-→C1H+e- (368)
其中MHx為氫化物或H來源,且在陽極反應期間,一些H轉化為低能量氫。在後一反應中,ClH可能分解,且H+在陰極可還原成H2。未反應形成低能量氫之氫可再循環。例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2或R-Ni/MCl(飽和水溶液)(M=鹼金屬)/CB]。在另一實施例中,ClH藉由除H外或包含H之物質在陰極處還原來形成。該等物質可為氯之氧化物,諸如氯酸鹽、過氯酸鹽、亞氯酸鹽、過亞氯酸鹽或次氯酸鹽。陽極可為氫化物或酸穩定之金屬,諸如Pt/Ti,適於該pH值。其他化合物可在電池中形成ClH,諸如SbCl5。一例示性陰極反應為
陰極反應:
ClOxHy+qe-→ClH+rH2O→Cl+H(1/p) (369)
例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、R-Ni或Pt/Ti/HClO4、HClO3、HClO2、HClO、MClO4、MClO3、MClO2、MClO(M=鹼金屬)/CB]。ClH來源之濃度可為任何可溶濃度。最佳濃度因形成低能量氫而使電力輸出最佳。在本發明之其他實施例中,ClH可取代OH。
水合MCl(M=鹼金屬,諸如Cs)可藉由與方程式(367)及(368)及(354)所給出相同且包含Cl-及H氧化成ClH及HCl還原成H及Cl-之反應的機制以低速率直接反應,形成低能量氫。ClH可充當表3中給出之MH型觸媒,或H可充當另一H之觸媒。具有恆定間距0.25 eV之CsCl中一系列峰之電子束激發發射光譜結果與H2(1/4)之相應觸媒產物匹配。在一個實施例中,藉由使用供應H至陽極之Cl-氧化反應之流程及藉由使用大表面積陰極促進陰極之H+還原,可顯著增加反應速率,從而加速產生電力之反應。
在一個實施例中,根據表3中給出之反應(m=4),SeH可在電池中形成,其用作低能量氫觸媒。因為H(1/4)為較佳狀態,所以其可與低能量氫躍遷能量超過轉移至SeH觸媒之81.6 eV的剩餘能量一起形成。在一個實施例中,觸媒SeH可由陽極上SeH-氧化形成。電池電解質可包含至少一種SeH鹽,諸如MSeH(M=鹼金屬)。陽極反應可為以下中之至少一者
陽極反應:
SeH-→SeH+e-→Se+H(1/p) (370)
MHx+SeH-→H2Se+R-MHx-1+e- (371)
1/2H2+SeH-→H2Se+e- (372)
其中MHx為氫化物或H來源,且在陽極反應期間,一些H轉化為低能量氫。在後一反應中,H2Se可能分解,且H+在陰極可還原成H2,或H2Se可還原成SeH-。未反應形成低能量氫之氫可再循環。例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2或R-Ni/MSeH(飽和水溶液)(M=鹼金屬)/CB]。在另一實施例中,SeH藉由除H外或包含H之物質在陰極處還原來形成。該等物質可為Se或硒之氧化物(諸如SeO2或SeO3)、化合物(諸如M2SeO3、M2SeO4、MHSeO3(M=鹼金屬))或酸(諸如H2SeO3或H2SeO4)。陽極可為氫化物或酸穩定之金屬,諸如Pt/Ti,適於該pH值。其他化合物可在電池中形成SeH,諸如SeF4。一例示性陰極反應為
陰極反應:
SeOxHy+qe-→SeH+rH2O→Se+H(1/p) (373)
例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、R-Ni或Pt/Ti/SeO2或SeO3、M2SeO3、M2SeO4、MHSeO3(M=鹼金屬)、H2SeO3或H2SeO4(水溶液)/CB]。SeH可藉由在陽極,SeH-氧化來形成,其可進一步與H反應,形成SeH2。或者,SeH可藉由H與Se2-反應,氧化成SeH來形成。可能形成一些H2Se。H來源可為H可透膜與H2氣體。電池可包含鹽橋(諸如BASE)及可包含熔融鹽(諸如共熔混合物)之陰極反應物。例示性電池為[Ni(H2)Na2Se/BASE/LiCl-BaCl2或NaCl-NiCl2或NaCl-MnCl2]。SeH來源之濃度可為任何可溶濃度。最佳濃度因形成低能量氫而使電力輸出最佳。在本發明之其他實施例中,SeH及SeH-可分別取代OH及OH-
在一般實施例中,H2O用以供應H或接受來自還原劑及氧化劑中之至少一者之H,形成表3之MH型觸媒。在一個實施例中,H2O充當反應物及產物之溶劑。在一個實施例中,反應中不消耗H2O;更確切些,消耗H來源,形成低能量氫,諸如氫化物或氫與解離體。在其他實施例中,H2O之作用可由一般技術者已知之本發明之另一適合溶劑置換。
藉由例示性觸媒OH、SH、ClH及SeH之相同一般機制,MH(表3中給出之物質)可充當形成H(1/p)之觸媒。在一個實施例中,根據表3中給出之反應,藉由MH-在陽極處氧化,MH可在電池中形成,用作低能量氫觸媒。電池電解質可包含至少一種MH鹽或其來源MH-。陽極反應可為以下中之至少一者:
陽極反應:
MH-→MH+e- (374)
MHx+MH-→H2M+MHx-1+e- (375)
1/2H2+MH-→H2M+e- (376)
其中MHx為氫化物或H來源,且在陽極反應期間,一些H轉化為低能量氫。在後一反應中,H2M可能分解,且H+在陰極可還原成H2,或H2M可還原成MH-。未反應形成低能量氫之氫可再循環。例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2或R-Ni/MH-來源(非反應性溶劑)/CB]。在另一實施例中,MH藉由在陰極處還原單獨或具有H來源之物質來形成。該等物質可為M或單獨或具有H來源之包含M之能夠還原成MH的化合物。陽極可為氫化物或酸穩定之金屬,諸如Pt/Ti,適於該pH值。一例示性陰極反應為
陰極反應:
MHX+qe-→MH+X' (377)
其中在陰極反應期間一些H轉化為低能量氫,X包含氧化劑之一或多種元素,且X'為還原產物。例示性電池為[LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、R-Ni或Pt/Ti/單獨或具有H來源之還原成MH之化合物(非反應性溶劑)/CB]。MH來源之濃度可為任何可溶濃度。最佳濃度因形成低能量氫而使電力輸出最佳。例示性電池為[Zn、H2RuS2、R-Ni、LaNi5H6/KOH、NaHS或NaHSe或KCl(飽和水溶液、有機或混合物)/蒸汽碳]。
本發明CIHT電池之半電池反應與總反應中之至少一者可包含用於產生熱能之反應。在實施例中,可產生熱能與電能。熱動力亦可藉由本發明之系統及此項技術中已知之系統轉化為電。
在一個實施例中,OH、SH及ClH觸媒中之至少一者及低能量氫分別藉由H與O、S及Cl之來源反應來形成。H可由陽極上H-氧化形成。H來源為包含氫化物(諸如過渡金屬、內過渡金屬或稀土金屬氫化物)、氫氣與解離體或氫氣與H可透膜(如本發明之其他適合來源下所給出)之陰極。電池可包含傳導H-之電解質,諸如熔融鹽,諸如鹼金屬鹵化物之共熔混合物。陽極上O、S或Cl之來源可為與陽極接觸或在如圖20中所示對H可透之密封室中之化合物或此等元素。例示性電池為[Ni、V、Ti、SS或Nb(O2、S或Cl2)或S/LiCl-KCl/TiH2、ZrH2、CeH2、LaH2或Ni、V、Ti、SS或Nb(H2)]。或者,與O、S及Cl之來源反應之H可由H+在陰極處還原形成。H來源可為包含氫氣與解離體之陽極,在本發明中所給出。電池可包含質子傳導電解質,諸如納菲薄膜。陰極上O、S或Cl之來源可為與陰極接觸或在如圖20中所示對H可透之密封室中之化合物或此等元素。例示性電池為[PtC(H2)或PdC(H2)/納菲薄膜/O2、S或Cl2]。
在一個實施例中,MH-為在氧化後形成之MH觸媒之來源。舉例而言,可在陽極處氧化OH-、SH-或Cl-,分別形成OH、SH及ClH以及低能量氫。陽極半電池反應物可包含NaOH、NaHS或NaCl中之至少一者。陽極半電池反應物可進一步包含H來源,諸如氫化物、氫與解離體或氫與氫可透膜(諸如Ni(H2)、V(H2)、Ti(H2)、Fe(H2)或Nb(H2)膜或可為電極(諸如陽極)之管)。電池可包含固體電解質鹽橋,諸如BASE,在遷移離子為Na+之情況下諸如為NaBASE。形成觸媒之氧化反應在本發明中給出。舉例而言,OH由方程式(346)或(359)之陽極反應形成。鹼MOH(M=鹼金屬)之M+經由諸如BASE之鹽橋遷移,且還原成Na,且可以協同方式或隨後與至少一種陰極反應物反應。反應物可在維持在至少電池反應物熔點之高電池溫度下熔融。陰極半電池反應物包含至少一種與經還原之遷移離子反應之化合物。產物鈉化合物可比陽極半電池反應物之鈉化合物穩定。陰極產物可為NaF。陰極反應物可包含氟來源,諸如碳氟化合物、XeF2、BF3、NF3、SF6、Na2SiF6、PF5及其他類似化合物,諸如本發明之含氟化合物。另一鹵素可置換陰極中之F。舉例而言,陰極反應物可包含I2。其他陰極反應物包含其他鹵化物,諸如金屬鹵化物,諸如過渡金屬、內過渡金屬、稀土金屬、Al、Ga、In、Sn、Pb、Sb、Bi、Se及Te鹵化物,諸如NiCl2、FeCl2、MnI2、AgCl、EuBr2、EuBr3及本發明固體燃料之其他鹵化物。任一電池隔室均可包含熔融鹽電解質,諸如共熔鹽,諸如鹼金屬鹵化物鹽之混合物。陰極反應物亦可為共熔鹽,諸如可包含過渡金屬鹵化物之鹵化物混合物。包含金屬(諸如過渡金屬)之適合共熔鹽為CaCl2-CoCl2、CaCl2-ZnCl2、CeCl3-RbCl、CoCl2-MgCl2、FeCl2-MnCl2、FeCl2-MnCl2、KAlCl4-NaAlCl4、AlCl3-CaCl2、AlCl3-MgCl2、NaCl-PbCl2、CoCl2-FeCl2及表4中之其他共熔鹽。例示性電池為[NaOH、NaHS、NaCl、R-Ni、LaNi5H6、La2Co1Ni9H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、CeH2、LaH2、PtC(H2)、PdC(H2)、Ni(H2)、V(H2)、Ti(H2)、Fe(H2)或Nb(H2)之群中之至少一者/BASE/I2、I2+NaI、碳氟化合物、XeF2、BF3、NF3、SF6、Na2SiF6、PF5、金屬鹵化物(諸如過渡金屬、內過渡金屬、稀土金屬、Al、Ga、In、Sn、Pb、Sb、Bi、Se及Te鹵化物,諸如NiCl2、FeCl2、MnI2、AgCl、EuBr2及EuBr3)、共熔鹽(諸如CaCl2-CoCl2、CaCl2-ZnCl2、CeCl3-RbCl、CoCl2-MgCl2、FeCl2-MnCl2、FeCl2-MnCl2、KAlCl4-NaAlCl4、AlCl3-CaCl2、AlCl3-MgCl2、NaCl-PbCl2、CoCl2-FeCl2及表4之其他共熔鹽)]及[NaOH+PtC(H2)、PdC(H2)、Ni(H2)、V(H2)、Ti(H2)、Fe(H2)或Nb(H2)/BASE/NaX(X為陰離子,諸如鹵離子、氫氧根、硫酸根、硝酸根、碳酸根)+NaCl、AgCl、AlCl3、AsCl3、AuCl、AuCl3、BaCl2、BeCl2、BiCl3、CaCl2、CdCl3、CeCl3、CoCl2、CrCl2、CsCl、CuCl、CuCl2、EuCl3、FeCl2、FeCl3、GaCl3、GdCk3、GeCl4、HfCl4、HgCl、HgCl2、InCl、InCl2、InCl3、IrCl、IrCl2、KCl、KAgCl2、KAlCl4、K3AlCl6、LaCl3、LiCl、MgCl2、MnCl2、MoCl4、MoCl5、MoCl6、NaAlCl4、Na3AlCl6、NbCl5、NdCl3、NiCl2、OsCl3、OsCl4、PbCl2、PdCl2、PrCl3、PtCl2、PtCl4、PuCl3、RbCl、ReCl3、RhCl、RhCl3、RuCl3、SbCl3、SbCl5、ScCl3、SiCl4、SnCl2、SnCl4、SrCl2、ThCl4、TiCl2、TiCl3、TlCl、UCl3、UCl4、VCl4、WCl6、YCl3、ZnCl2及ZrCl4之群之一或多者]。另一鹼金屬可取代Na,其他鹵化物可取代Cl,且BASE可與遷移離子匹配。
電池可藉由電解或以機械方法再生。舉例而言,電池[Ni(H2 1 atm) NaOH/BASE/NaCl-MgCl2共熔物]產生H2O,在一個實施例中,H2O自半電池排出。在陰極,來自遷移Na+之Na可與MgCl2反應,形成NaCl及Mg。代表性電池反應為
陽極
NaOH+1/2H2→H2O+Na++e- (378)
陰極
Na++e-+1/2MgCl2→NaCl+1/2Mg (379)
陽極半電池可另外含有鹽,諸如鹼金屬或鹼土金屬鹵化物,諸如鹵化鈉。放電後,陽極可藉由添加水或水來源再生。電池亦可藉由添加H2O反向自發運轉,因為由方程式(379)給出之反應的自由能為+46千焦/莫耳(500℃)。水來源可為蒸汽,其中密封半電池。或者,水來源可為水合物。例示性水合物為磷酸鎂五水合物或八水合物、硫酸鎂七水合物、鈉鹽水合物、鋁鹽水合物及鹼土金屬鹵化物水合物,諸如SrBr2、SrI2、BaBr2或BaI2。來源可包含含有NaOH之熔融鹽混合物。在一替代性例示性機械再生方法中,當NaCl與Mg反應形成MgCl2及Na時,藉由蒸發Na,使MgCl2再生。Na可與水反應,形成NaOH及H2,其為再生之陽極反應物。電池可包含流動系統,其中陰極及陽極反應物流動穿過相應半電池,且在各別隔室中再生且回到流動流中。或者,在電池[Na/BASE/NaOH]中,Na可直接用作陽極反應物。電池可級聯。
在一個實施例中,陽極包含金屬硫族化物,諸如MOH、MSH或MHSe(M=鹼金屬),其中觸媒或觸媒來源可為OHSH或HSe。陰極可進一步包含氫來源,諸如氫化物,諸如稀土金屬或過渡金屬氫化物或本發明之其他氫化物,或為可透膜與氫氣,諸如Ni(H2)、Fe(H2)、V(H2)、Nb(H2)及本發明之其他可透膜與氫氣。觸媒或觸媒來源可分別來自OH-、SH-或HSe-之氧化。涉及與H進一步反應之陽極氧化產物可分別為H2O、H2S及H2Se。電池可包含電解質與鹽橋中之至少一者,鹽橋可為固體電解質,諸如BASE(β-氧化鋁)。陰極可包含可與遷移離子或還原之遷移離子(分別諸如M+或M)反應,形成溶液、合金、混合物或化合物的元素、化合物、金屬、合金及其混合物中之至少一者。陰極可包含熔融元素或化合物。適合之熔融元素為In、Ga、Te、Pb、Sn、Cd、Hg、P、S、I、Se、Bi及As中之至少一者。在具有Na+作為穿過鹽橋(諸如β氧化鋁固體電解質(BASE))之遷移離子的一例示性實施例中,陰極包含熔融硫,且陰極產物為Na2S。例示性電池為[NaOH+H來源(諸如LaH2、CeH2、ZrH2、TiH2或Ni(H2)、Fe(H2)、V(H2)、Nb(H2))/BASE/S、In、Ga、Te、Pb、Sn、Cd、Hg、P、I、Se、Bi及As中之至少一者及視情況選用之載體]。在另一實施例中,電池缺乏諸如BASE之鹽橋,因為諸如H2或氫化物之還原劑限定於陽極中,且另外半電池反應物之間的反應在能量方面或在動力學方面為不利的。在不具有鹽橋之一個實施例中,陽極半電池反應物不與陰極半電池反應物進行放能反應。例示性電池為[H來源(諸如LaH2、CeH2、ZrH2、TiH2或Ni(H2)、Fe(H2)、V(H2)、Nb(H2)/氫氧化物熔融鹽(諸如NaOH)/S、In、Ga、Te、Pb、Sn、Cd、Hg、P、I、Se、Bi及As及合金中之至少一者及視情況選用之載體]。
在一個實施例中,觸媒包含諸如原子、帶正電或帶負電之離子、帶正電或帶負電之分子離子、分子、準分子、化合物或其任何組合,處於能夠接受m‧27.2eV,m=1,2,3,4,....(方程式(5))之能量之基態或激發態的任何物質。咸信當淨反應焓更緊密地與m‧27.2eV匹配時催化速率增加。已發現具有在m‧27.2eV±10%、較佳±5%內之淨反應焓的觸媒適於大部分應用。在將低能量氫原子催化至較低能態之情況下,以與低能量氫原子之位能相同的因子對m‧27.2eV(方程式(5))之反應焓作相對論校正。在一個實施例中,觸媒共振及非輻射地接受來自原子氫之能量。在一個實施例中,所接受之能量使觸媒位能之量值減少約自原子氫轉移之量。由於最初束縛電子之動能守恆,所以可產生高能離子或電子。至少一個原子H充當至少一個另一原子H之觸媒,其中受體之27.2 eV位能由27.2 eV自催化之供體H原子轉移而消除。受體觸媒H之動能可作為快速質子或電子而保存。另外,在催化H中形成之中間態(方程式(7))隨連續能量以輻射或第三體中誘導之動能形式發射而衰減。此等能量釋放可在CIHT電池中產生電流。
在一個實施例中,分子或帶正電或帶負電之分子離子中之至少一者充當接受來自原子H之約m27.2 eV之觸媒,其中分子或帶正電或帶負電之分子離子的位能量值減少約m27.2 eV。舉例而言,Mills GUTCP中給出之H2O之位能為
在一個實施例中,形成觸媒之反應包含形成充當另一H之觸媒之H2O的反應。能量可以熱或光或電之形式釋放,其中反應包含半電池反應。在反應物形成充當觸媒之H2O的一個實施例中,反應物可包含可氧化為H2O之OH-。本發明中給出例示性反應。反應可發生在CIHT電池或電解電池中。使用處於形成產物之過渡狀態下的H2O,可有利於觸媒反應。電池進一步包含原子H來源。來源可為氫化物、氫氣、由電解產生之氫、氫氧化物或本發明中給出之其他來源。舉例而言,陽極可包含金屬,諸如Zn或Sn,其中半電池反應包含OH-氧化成水及金屬氧化物。在形成之H2O存在下,反應亦形成原子H,其中H2O充當形成低能量氫之觸媒。陽極可包含氫化物,諸如LaNi5H6,其中半電池反應包含OH-氧化成H2O,其中H由氫化物提供。在來自氫化物之H存在下發生氧化反應,H由形成之H2O催化,形成低能量氫。陽極可包含金屬與氫化物之組合,其中OH-氧化成H2O,伴隨形成金屬氧化物或氫氧化物,且H由氫化物提供。H由形成之H2O充當觸媒,催化形成低能量氫。在另一實施例中,諸如CO2之氧化劑或諸如R-Ni之Zn或Al之還原劑可與OH-反應,形成H2O及H作為中間物,其中在該反應期間一些H由H2O催化形成低能量氫。在另一實施例中,H2O與H中之至少一者可藉由至少一種包含O與H中之至少一者之物質(諸如H2、H、H+、O2、O3、O、O+、H2O、H3O+、OH、OH+、OH-、HOOH、OOH-、O-、O2-)進行還原反應而形成。在另一實施例中,H2O與H中之至少一者可藉由至少一種包含O與H中之至少一者之物質(諸如H2、H、H+、O2、O3、O、O+、H2O、H3O+、OH、OH+、OH-、HOOH、OOH-、O-、O2-)進行氧化反應而形成。反應可包含本發明之反應之一。反應可發生在CIHT電池或電解電池中。反應可為發生在燃料電池(諸如質子交換膜、磷酸及固體氧化物燃料電池)中之反應。反應可發生在CIHT電池陽極。反應可發生在CIHT電池陰極。發生在水性介質中以在陰極與陽極中之一或兩者上形成H2O觸媒及H或形成可形成H2O觸媒及H之中間物質的代表性陰極反應為
O2+4H++4e-→2H2O (381)
O2+2H++2e-→H2O2 (382)
O2+2H2O+4e-→4OH- (383)
O2+H++e-→HO2 (384)
O2+2H2O+2e-→H2O2+2OH- (386)
H2O2+2H++2e-→2H2O (390)
2H2O2→2H2O+O2 (391)
在一個實施例中,能夠進行H鍵結之觸媒的H鍵結可改變其在充當觸媒時可自原子氫接受之能量。H鍵結可影響包含與負電原子(諸如O、N及S)之H鍵的觸媒。離子鍵結亦可改變能量。一般而言,觸媒可自H接受之淨焓可基於其化學環境而改變。化學環境及與包括其他觸媒物質之其他物質的相互作用可藉由改變反應組成或條件來改變。可調整反應混合物之組成(諸如固體燃料或CIHT半電池之組成),以調整觸媒能量。舉例而言,溶質及溶劑之組成以及諸如溫度之條件可如本發明中所給出來調整。從而可調整觸媒速率及來自低能量氫形成之電力。在CIHT電池中,另外可調整電流以控制催化速率。舉例而言,可藉由調整負載,使電流最佳,以提供高濃度由半電池反應形成之H2O及H,以便形成之產物H2O可催化H以高速率形成低能量氫。來自CIHT電池(諸如[M/KOH(飽和水溶液)/蒸汽碳+空氣];M=金屬,諸如Zn、Sn、Co、LaNi5H6、La、Pb、Sb、In及Cd,其在陽極藉由氧化OH-形成H2O)且在dDMF中萃取後於1.25 ppm下大H2(1/4) NMR峰之存在證明此機制。其他例示性電池為[M/K2CO3(飽和水溶液)/SC]、[M/KOH 10-22M+K2CO3(飽和水溶液)/SC](M=R-Ni、Zn、Co、Cd、Pb、Sn、Sb、In、Ge)、[LaNi5H6/LiOH(飽和水溶液)LiBr/CB-SA]及[LaNi5H6/KOH(飽和水溶液)Li2CO3/CB-SA]。除低能量氫外,充當觸媒之H2O之產物為電離H2O,其可重組成H2及O2;因此,H2O催化可產生可用於商業上之此等氣體。此H2來源可用以維持CIHT電池之電力輸出。其可直接供應H2或供應H2作為反應物,以再生CIHT半電池反應物,諸如陽極氫化物或金屬。在一個實施例中,R-Ni充當反應形成低能量氫之H2O與H之來源。H2O及視情況存在之H之來源可為水合氧化鋁,諸如Al(OH)3。在一個實施例中,R-Ni可再水合且再氫化,以用於重複循環中形成低能量氫。能量可呈熱或電之形式釋放。在前一種情況下,反應可藉由加熱引發。
在一個實施例中,還原之氧物質為HO來源,諸如OH-,其可在CIHT電池之陽極氧化或在固體燃料反應中化學產生。諸如CIHT電池之陽極反應物的電池反應物進一步包含H2。H2與OH反應,形成H及呈活性狀態之H2O,H2O用作藉由與H反應形成低能量氫之觸媒。或者,反應物包含H來源,諸如氫化物或H2與解離體,使得H與OH反應,形成活性H2O低能量氫觸媒,進一步與另一H反應,形成低能量氫。例示性電池為[M+H2/KOH(飽和水溶液)/蒸汽碳+O2]及[M+H2+解離體(諸如PtC或PdC)/KOH(飽和水溶液)/蒸汽碳+O2];M=Zn、Sn、Co、LaNi5H6、Cd、Pb、Sb及In。在熱反應器之一個實施例中,氫與氧組合在金屬表面上,形成H2O觸媒及H,兩者反應形成低能量氫。金屬促進H與O氧化重組形成水,該水充當H形成低能量氫之觸媒,其中氧化金屬可形成氫氧化物或氧化物。適合之例示性金屬為Zn、Sn、Co、LaNi5H6、Cd、Pb、Sb及In。
[Na/BASE/NaOH]及[NaOH+Ni(H2)/BASE/MgCl2+NaCl]電池之負載穩定狀態電壓為約0.4 V,與H2O之H鍵能匹配。因此,在一個實施例中,當CIHT電池電壓破壞H鍵結時,電池為活性的,使得H2O分子可自主引起H催化,形成低能量氫,其中H2O接受之焓為3×27.2 eV。
在一個實施例中,電解質之離子強度經調整,以斷裂水分子之間的H鍵結,使得各自可充當H之觸媒。離子強度可藉由添加其他溶質或溶劑來調整。或者,反應物包含吸收分離之H2O分子及H之載體。載體可為碳奈米管、芙或類似籠狀或空穴狀化合物。載體可為由除碳以外的元素(諸如Al及Si中之至少一者)構成之籠狀化合物,諸如沸石。沸石可摻雜有導體。載體可為陽極半電池反應物,其可進一步包含與OH-反應形成H2O之還原劑,諸如Zn、Co、Pb、LaNi5H6、Cd、Sn、Sb及In中之至少一者。載體可包含具有一定介電常數且藉由與H2O相互作用而降低H2O之介電常數的介質。
在一個實施例中,經分離之H2O分子由包含O與H中之至少一者之反應物的化學反應(諸如氧化或還原反應)形成,該化學反應形成呈活性觸媒狀態之H2O,以催化H形成低能量氫。在一個實施例中,反應可包含脫水步驟以至少短暫地形成經分離之H2O分子。生物系統可使用電子傳輸鏈中及光合作用中之水形成作為能源,其中形成之水與H反應,形成低能量氫。在實施例中,類似化學系統用以在CIHT電池中產生電。
在一個實施例中,H2O在與其他水分子分離之環境中形成,以避免H鍵結,使得其可充當形成低能量氫之觸媒。OH-可進行氧化且與H反應,在不包括聚集水之通道、籠或其他幾何結構或疏水性或其他熱力學環境內部形成H2O。可吸收個別H2O分子或以其他方式排除聚集水之適合陽極反應物為碳奈米管、芙或或類似籠狀或空穴狀化合物,諸如沸石,其可與諸如碳之導體混合,或摻雜有導體,諸如Pt/奈米Ti、Pt/Al2O3、沸石、Y沸石、HY沸石及Ni-Al2O3-SiO2。具有一些親水性官能基之蒸汽或活性碳可充當載體,諸如陽極之載體。纖維素、碳纖維、納菲薄膜、陽離子或陰離子交換樹脂、分子篩(諸如4A或13X)或導電聚合物(諸如聚苯胺、聚噻吩、聚乙炔、聚吡咯、聚乙烯基二茂鐵、聚乙烯基二茂鎳或聚乙烯基二茂鈷)可添加至陽極中。可添加H來源,諸如H2氣體。OH可由OH-氧化來形成。H2氣體可與OH反應,形成H2O。或者,H原子可由H2解離體(諸如可活化之Pt/C或Pd/C)提供。
在一個實施例中,至少一種半電池反應混合物包含界面活性劑。界面活性劑可為離子型,諸如陰離子型或陽離子型。適合之陰離子型界面活性劑係基於永久性陰離子(硫酸根、磺酸根、磷酸根)或pH依賴性陰離子(羧酸根)。例示性硫酸鹽為烷基硫酸鹽(諸如月桂基硫酸銨、月桂基硫酸鈉或十二烷基硫酸鈉(SDS))、烷基醚硫酸鹽(諸如月桂基醚硫酸鈉(SLES)及肉豆蔻醇聚醚硫酸鈉)。例示性磺酸鹽為多庫酯鹽(諸如磺琥珀酸鈉二辛酯)、磺酸鹽氟界面活性劑(諸如全氟辛烷磺酸鹽(PFOS)及全氟丁烷磺酸鹽)及烷基苯磺酸鹽。例示性磷酸鹽為烷基芳基醚磷酸鹽及烷基醚磷酸鹽。例示性羧酸鹽為烷基羰酸鹽(諸如脂肪酸鹽(肥皂),諸如硬脂酸鈉及月桂醯基肌胺酸鈉)、羧酸鹽氟界面活性劑(諸如全氟壬酸鹽及全氟辛酸鹽(PFOA或PFO))。適合之陽離子型界面活性劑為基於以下之陽離子型界面活性劑:pH依賴性一級胺、二級胺或三級胺,其中例如一級胺在pH<10下帶正電,二級胺在pH<4下帶電,諸如二鹽酸奧替尼啶(octenidine dihydrochloride);永久帶電之四級銨陽離子,諸如烷基三甲基銨鹽(諸如溴化十六烷基三甲基銨(CTAB)及氯化十六烷基三甲基銨(CTAC))、氯化十六烷基吡錠(CPC)、聚乙氧基化牛脂胺(POEA)、苯紮氯銨(benzalkonium chloride,BAC)、苄索氯銨(benzethonium chloride,BZT)、5-溴-5-硝基-1,3-二噁烷、氯化二甲基雙十八烷基銨及溴化雙十八烷基二甲基銨(DODAB))。例示性兩性離子(兩性)界面活性劑係基於磺酸鹽(諸如CHAPS(3-[(3-膽醯胺基丙基)二甲基二甲基銨基]-1-丙烷磺酸鹽))、磺基甜菜鹼(椰油醯胺基丙基羥基磺基甜菜鹼)、羰酸鹽(諸如胺基酸、亞胺基酸)、甜菜鹼(諸如椰油醯胺基丙基甜菜鹼)及磷酸鹽(諸如卵磷脂)之一級胺、二級胺或三級胺或四級銨陽離子。界面活性劑可為非離子型,諸如脂肪醇(諸如鯨蠟醇、硬脂醇、諸如主要由鯨蠟醇及硬脂醇組成之鯨蠟硬脂醇、油醇)、聚氧乙二醇烷基醚(諸如辛二醇單十二醚、戊二醇單十二醚)、聚丙二醇烷基醚、糖苷烷基醚(諸如癸基糖苷、月桂基糖苷及辛基糖苷)、聚氧乙二醇辛基酚(諸如Triton X-100)、聚氧乙二醇烷基酚醚(諸如壬苯醇醚-9)、甘油烷基酯(諸如甘油基月桂酸酯)、聚氧乙二醇脫水山梨糖醇烷基酯(諸如聚山梨醇酯)、脫水山梨糖醇烷基酯(諸如spans)、椰油醯胺MEA、椰油醯胺DEA、十二烷基二甲基氧化胺及聚乙二醇與聚丙二醇之嵌段共聚物(諸如泊洛沙姆(poloxamer))。陽離子可包含諸如鹼金屬、鹼土金屬及過渡金屬之金屬及諸如銨、吡錠及三乙醇胺(TEA)之多原子物質或有機物。陰離子可為無機的,諸如鹵化物,或為有機的,諸如甲苯磺醯基、三氟甲烷磺酸酯基及甲基硫酸酯基。
電池溫度可維持在任何所需溫度下。在H2O充當觸媒之一個實施例中,破壞H鍵結,以使H2O之位能更佳地匹配27.2 eV之整數。H鍵結可藉由以下中之至少一者破壞:維持高濃度電解液;維持電池在高溫下,諸如在約30℃至100℃範圍內;及添加其他氣體或溶劑至水中,分別諸如NH3、胺或稀有氣體及DMSO以及本發明中給出之其他氣體或溶劑。其他適合之氣體為CO2、NO2、NO、N2O、NF3、CF4、SO2、SF6、CS2、He、Ar、Ne、Kr及Xe中之至少一者。在一個實施例中,添加至電解質之NH3之莫耳濃度在約1 mM至18 M範圍內。一例示性電解質為飽和KOH(諸如高達約22 M)與飽和NH3(諸如高達約18 M)之混合物。溶解之氣體濃度可藉由施加諸如在約1 atm至500 atm之壓力範圍內之高壓氣體來提高。H鍵結亦可藉由施加外部激發(諸如本發明中給出之來源)來破壞。氣體混合物可包含O2或氧來源。
在一個實施例中,加強電位(boost potential)施加於電池,其可超過或低於水電解之臨限值。考慮到電極之過電位,該電位可在約1 V至3.5 V範圍內。加強電位來源可負載高電阻,且連接至CIHT電極,或其電流相對於在缺乏加強電位下之負載CIHT電池,可限於低值。電位可在CIHT電池為開路時間歇地施加。接著可在開路中產生加強電位,同時CIHT電池負載。當CIHT電池連接至負載時由其提供之電壓貢獻引起電流在其電路中流動,穿過相對電阻小得多之其負載,使得耗散功率基本上為CIHT電池之耗散功率。在一個實施例中,形成諸如H2O及H之觸媒之反應可在速率低至不良或受限制的情況下擴展。在一個實施例中,H2O可在陰極處還原成OH-,且OH-可在陽極處氧化成H2O,其中外部加強電位電源輔助充電。在反應期間產生低能量氫,其中由CIHT電池產生有用功率且在其具有自加強電位來源得到之最小功率之負載中散逸。一例示性電池為[LaNi5H6/KOH(飽和水溶液)/SC加強電位]。施加加強電位之頻率可為增加CIHT電池之淨輸出能量且可在1 mHz至100 GHz範圍內之頻率。
在一個實施例中,藉由催化H形成低能量氫,產生電場,該電場顯現為CIHT電池之電池電壓。電壓及相應電場隨電池負載及卸載而變,其中電流隨電池負載而流動。電路斷開及閉合之頻率為引起水分子回應於改變之電場而分散及斷裂H鍵結,使得H2O可充當形成低能量氫之觸媒的頻率。或者,電壓施加頻率為引起水分子回應於改變之電場而分散及斷裂H鍵結,使得H2O可充當形成低能量氫之觸媒的頻率。
在CIHT電池之一個實施例中,可藉由施加脈衝或交替電場減少H2O之H鍵結,形成作為觸媒之活性狀態H2O。頻率、電壓及其他參數可為本發明中給出之頻率、電壓及其他參數。在一個實施例中,施加電場在減小H2O與電解質中之至少一者之電容率的頻率下。適合之頻率為對應於約最小電容率之頻率。
在包含藉由電磁輻射(諸如RF或微波)激發之一個實施例中,水蒸氣壓維持在低壓下且溫度維持在高值下,以使H鍵結最小,更有利於形成經分離之H2O分子,該等H2O分子呈活性狀態,以催化亦存在之H,形成低能量氫。反應物可包含含有經分離之H2O分子及H原子的水蒸氣電漿,其中H2充當接受來自H之約3×27.2 eV的觸媒以形成H(1/4)。溫度可為35℃至1000℃且壓力可為600托至1微托。
類似於H2O,Mills GUTCP中給出之胺化物官能基NH2之位能為-78.77719 eV。自CRC,由各相應ΔH f 計算之NH2形成KNH2之反應的ΔH為(-128.9-184.9)千焦/莫耳=-313.8千焦/莫耳(3.25 eV)。自CRC,由各相應ΔH f 計算之NH2形成NaNH2之反應的ΔH為(-123.8-184.9)千焦/莫耳=-308.7千焦/莫耳(3.20 eV)。自CRC,由各相應ΔH f 計算之NH2形成LiNH2之反應的ΔH為(-179.5-184.9)千焦/莫耳=-364.4千焦/莫耳(3.78 eV)。因此,對應於醯胺基之位能與自醯胺基形成胺化物之能量的總和,充當形成低能量氫之H觸媒的鹼金屬胺化物MNH2(M=K、Na、Li)可接受之淨焓分別為約82.03 eV、81.98 eV及82.56 eV(方程式(5)中m=3)。在dDMF中萃取後來自MNH2之1.25 ppm下大H2(1/4) NMR峰之存在證明此機制。在一個實施例中,可為NH2來源。H+在陰極處還原且H在陽極處氧化之一例示性電池為[LaNi5H6或Ni(H2)/CF3CO2NH4/PtC]。
類似於H2O,Mills GUTCP中給出之H2S官能基之位能為-72.81 eV。此位能之消除亦除去與3p外殼混成化有關之能量。藉由氫化物軌道半徑與初始原子軌道半徑之比率乘以外殼之總能量,得出7.49 eV之混成化能量。另外,由於形成兩個1.10 eV之S-H鍵而導致之S3p外殼能量改變包括在觸媒能量中。因此,H2S觸媒之淨焓為81.40 eV(方程式(5)中m=3)。H2S觸媒可由MHS(M=鹼金屬)藉由以下反應形成:
2MHS→M2S+H2S (392)
此可逆反應可形成處於形成產物H2S之過渡狀態下的呈活性觸媒狀態之H2S,該H2S可催化H形成低能量氫。反應混合物可包含形成H2S及原子H來源之反應物。在dDMF中萃取後來自MHS之-3.86 ppm下大H-(1/4) NMR峰之存在證明此機制。
電池或反應器可包含諸如H2O、MNH2或H2S或其來源之觸媒、H來源及引起H2O、MNH2或H2S或其來源用作形成低能量氫之觸媒的構件。在一個實施例中,諸如H2O、MNH2或H2S之觸媒藉由外部激發活化。適合之例示性外部激發包含應用超音波、熱、光、RF輻射或微波。所應有之激發可引起諸如H2O之觸媒之轉動、振動或電子激發。微波或RF激發可為水性電解質(諸如鹼之水溶液(諸如MOH)或鹼金屬鹵化物之水溶液(諸如NaCl))之微波或RF激發。RF激發頻率可為約13.56 MHz且可包含偏振RF輻射。溶液可為任何濃度。一適合之例示性濃度為約1 M至飽和。外部激發亦可自諸如H2或H2O之來源形成H。H亦可為充當觸媒之H2O之產物,其中H2O分子在接受來自H之能量之過程中電離。H亦可由本發明之其他系統及方法形成,諸如H自H2與解離體形成。
包含H2O、H2S或MNH2(M=鹼金屬)之連續或脈衝DC或其他頻率電漿可具有任何所需波形、頻率範圍、峰值電壓、峰值功率、峰值電流、占空比及補償電壓。電漿可為DC,或施加電壓可為交替的或具有波形。施加可在所需頻率下脈衝進行,且波形可具有所需頻率。適合之脈衝頻率在約1至約1000 Hz範圍內且占空比可為約0.001%至約95%。峰值電壓可為在約0.1 V至10 V範圍內之至少一者。在另一實施例中,施加之高壓脈衝可在約10 V至100 kV範圍內,但可在此範圍內數量級增加之更窄範圍內。波形之頻率可在約0.1 Hz至約100 MHz、約100 MHz至10 GHz及約10 GHz至100 GHz中之至少一者的範圍內。占空比可在約0.001%至約95%及約0.1%至約10%範圍內,但可在此範圍內2倍增量之較窄範圍內。在一個實施例中,頻率破壞H鍵結或引起H2O電容率之分散。頻率在引起水之電容率的實數部分降低之範圍內。適合之值在最小電容率之2倍範圍內。頻率可在1 GHz至50 GHz範圍內。脈衝之峰值功率密度可在約0.001 W/cm3至1000 W/cm3範圍內,但可在此範圍內數量級增加之較窄範圍內。脈衝之平均功率密度可在約0.0001 W/cm3至100 W/cm3範圍內,但可在此範圍內數量級增加之較窄範圍內。氣體壓力可在約1微托至10 atm範圍內,但可在此範圍內數量級增加之較窄範圍內,諸如在約1微托至10微托範圍內。
在一個實施例中,陽極與陰極半電池反應物之間的協同反應引起H與H2O觸媒之間的至少一種能量匹配,從而形成低能量氫且提供低能量氫催化反應之活化能。在一例示性實施例中,包含[M/KOH(飽和水溶液)/H2O或O2還原觸媒+空氣](M=Zn、Co、Pb、LaNi5H6、Cd、Sn、Sb、In或Ge,H2O或O2還原觸媒諸如為蒸汽碳(SC)或碳黑(CB))之CIHT起引起能量匹配與提供活化能中之至少一者的作用。在一個實施例中,形成呈活性觸媒狀態之H2O及H的反應物可用以產生熱能。半電池反應物可混合,以直接使熱能釋放。例示性反應物可為M+KOH(飽和水溶液)+H2O或O2還原觸媒+空氣之混合物;M可為Zn、Co、Pb、LaNi5H6、Cd、Sn、Sb、In或Ge,且H2O或O2還原觸媒可為碳、碳化物、硼化物或腈。在另一實施例中,陽極可為金屬M',諸如Zn,且陰極可為金屬氫化物MHx,諸如LaNi5H6。例示性CIHT電池可包含[Zn/KOH(飽和水溶液)/LaNi5H6、R-Ni或PtC+空氣或O2]。例示性一般電極反應為
陰極:
MHx+1/2O2+e-→MHx-1+OH- (393)
陽極:
2M'+3OH-→2M'O+H+H2O+3e-;H→H(1/p) (394)
適合之例示性熱反應混合物為Sn+KOH(飽和水溶液)+CB或SC+空氣及Zn+KOH(飽和水溶液)+LaNi5H6、R-Ni或PtC+空氣。
除氧化OH-及與H反應外,形成H2O觸媒之反應可為脫水反應。一適合之例示性反應為金屬氫氧化物脫水形成金屬氧化物,諸如Zn(OH)2→ZnO+H2O、Co(OH)2→CoO+H2O、Sn(OH)2→SnO+H2O或Pb(OH)2→ZnO+H2O。另一實例為Al(OH)3→Al2O3+H2O,其中R-Ni可包含Al(OH)3,以及充當可催化形成低能量氫之H來源,其中OH與H2O中之至少一者充當觸媒。反應可藉由加熱引發及擴展。
在一個實施例中,電池包含含有氫氧化物之熔融鹽電解質。電解質可包含鹽混合物。在一個實施例中,鹽混合物可包含金屬氫氧化物及相同金屬以及本發明之另一陰離子,諸如鹵離子、硝酸根、硫酸根、碳酸根及磷酸根。適合之鹽混合物為CsNO3-CsOH、CsOH-KOH、CsOH-LiOH、CsOH-NaOH、CsOH-RbOH、K2CO3-KOH、KBr-KOH、KCl-KOH、KF-KOH、KI-KOH、KNO3-KOH、KOH-K2SO4、KOH-LiOH、KOH-NaOH、KOH-RbOH、Li2CO3-LiOH、LiBr-LiOH、LiCl-LiOH、LiF-LiOH、LiI-LiOH、LiNO3-LiOH、LiOH-NaOH、LiOH-RbOH、Na2CO3-NaOH、NaBr-NaOH、NaCl-NaOH、NaF-NaOH、NaI-NaOH、NaNO3-NaOH、NaOH-Na2SO4、NaOH-RbOH、RbCl-RbOH及RbNO3-RbOH。混合物可為共熔混合物。電池可在約為共熔混合物之熔點的溫度下操作,但可在較高溫度下操作。觸媒H2O可由OH-在陽極處氧化及與來自諸如滲透入金屬膜(諸如Ni、V、Ti、Nb、Pd、PdAg或Fe)之H2氣體之來源(稱為Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2))的H反應形成。氫氧化物之金屬、氫氧化物之陽離子(諸如金屬)或另一陽離子M可在陰極處還原。例示性反應為
陽極
1/2H2+OH-→H2O+e-或H2+OH→H2O+e-+H(1/p) (395)
陰極
M++e-→M (396)
M可為金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Se及Te,且可為諸如S或P之另一元素。除氫氧化物陽離子以外的陽離子之還原可導致鹽陽離子之間的陰離子交換。例示性電池為[M'(H2)/MOH M"X/M'''],其中M、M'、M"及M'''為諸如金屬之陽離子,X為可為氫氧根或諸如鹵離子、硝酸根、硫酸根、碳酸根及磷酸根之另一陰離子的陰離子,且M'為H2可透。另一實例為[Ni(H2)/M(OH)2-M'X/Ni],其中M=鹼土金屬,M'=鹼金屬且X=鹵離子,諸如[Ni(H2)/Mg(OH)2-NaCl/Ni]、[Ni(H2)/Mg(OH)2-MgCl2-NaCl/Ni]、[Ni(H2)/Mg(OH)2-MgO-MgCl2/Ni]及[Ni(H2)/Mg(OH)2-NaF/Ni]。H2O與H形成,且在陽極反應,進一步形成低能量氫,且金屬Mg為自陰極反應獲得之熱力學最穩定之產物。其他適合之例示性電池為[Ni(H2)/MOH-M'鹵化物/Ni]、[Ni(H2)/M(OH)2-M'鹵化物/Ni]、[M"(H2)/MOH-M'鹵化物/M"]及[M"(H2)/M(OH)2-M'鹵化物/M"],其中M=鹼金屬或鹼土金屬,M'=氫氧化物與氧化物中之至少一者不如鹼金屬或鹼土金屬之氫氧化物及氧化物穩定或具有低的水反應性之金屬,諸如來自Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W之群之一,且M"為氫可透金屬。或者,M'可為正電性金屬,諸如Al、V、Zr、Ti、Mn、Se、Zn、Cr、Fe、Cd、Co、Ni、Sn、In及Pb之群中之一或多者。在另一實施例中,M與M'中之至少一者可包含來自Li、Na、K、Rb、CS、Mg、Ca、Sr、Ba、Al、V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之一。在一個實施例中,陽離子可為鹽混合物電解質之陰離子所共用,或陰離子可為陽離子所共用。或者,氫氧化物可對混合物之其他鹽穩定。例示性電池為[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/LiOH-LiX、NaOH-NaX、KOH-KX、RbOH-RbX、CsOH-CsX、Mg(OH)2-MgX2、Ca(OH)2-CaX2、Sr(OH)2-SrX2或Ba(OH)2-BaX2(其中X=F、Cl、Br或I)/Ni]、[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/CsNO3-CsOH、CsOH-KOH、CsOH-LiOH、CsOH-NaOH、CsOH-RbOH、K2CO3-KOH、KBr-KOH、KCl-KOH、KF-KOH、KI-KOH、KNO3-KOH、KOH-K2SO4、KOH-LiOH、KOH-NaOH、KOH-RbOH、Li2CO3-LiOH、LiBr-LiOH、LiCl-LiOH、LiF-LiOH、LiI-LiOH、LiNO3-LiOH、LiOH-NaOH、LiOH-RbOH、Na2CO3-NaOH、NaBr-NaOH、NaCl-NaOH、NaF-NaOH、NaI-NaOH、NaNO3-NaOH、NaOH-Na2SO4、NaOH-RbOH、RbCl-RbOH及RbNO3-RbOH/Ni]及[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/LiOH、NaOH、KOH、RbOH、CsOH、Mg(OH)2、Ca(OH)2、Sr(OH)2或Ba(OH)2+AlX3、VX2、ZrX2、TiX3、MnX2、ZnX2、CrX2、SnX2、InX3、CuX2、NiX2、PbX2、SbX3、BiX3、CoX2、CdX2、GeX3、AuX3、IrX3、FeX3、HgX2、MoX4、OsX4、PdX2、ReX3、RhX3、RuX3、SeX2、AgX2、TcX4、TeX4、TlX及WX4中之一或多者(其中X=F、Cl、Br或I)/Ni]。其他適合之H2可透金屬可置換Ni陽極且穩定陰極可置換Ni。在一個實施例中,電解質可包含氧(氫氧)化物或諸如氫氧化物、鹵化物、硝酸鹽、碳酸鹽、硫酸鹽、磷酸鹽中之一或多者之鹽與氧(氫氧)化物的混合物。在一個實施例中,電池可包含鹽橋,諸如BASE或NASICON。
在一個實施例中,氧與H2O中之至少一者之來源供應給電池且可選擇性地供應給陰極。在一個實施例中,H2可選擇性地供應給陽極,使得陽極反應由方程式(395)給出。在一個實施例中,O2與H2O中之至少一者可供應給電池。在一個實施例中,O2或H2O可添加至陰極半電池中,使得反應為
陰極
M++e-+H2O→MOH+1/2H2 (397)
M++2e-+1/2O2→M2O (398)
接著可添加H2O,使得反應為
M2O+H2O→2MOH (399)
在提供O2之情況下,總平衡反應可為H2之燃燒,H2藉由單獨電解H2O再生。在一個實施例中,H2供應於陽極且H2O及視情況存在之O2供應於陰極。H2可藉由透過膜選擇性地施加,且H2O可藉由鼓入蒸汽選擇性地施加。在一個實施例中,維持熔融電解質上方控制之H2O蒸氣壓。H2O感測器可用以監測蒸氣壓及控制蒸氣壓。H2O蒸氣壓可由加熱之水觸集器供應,由惰性載氣(諸如N2或Ar)運載,其中觸集器溫度及流動速率決定感測器所監測到之蒸氣壓。電池可藉由自電池收集蒸汽及H2(分別諸如未反應之供應物及在陽極及陰極形成之氣體),藉由諸如H2O冷凝之方式分離氣體,及對陽極再供應H2及對陰極再供應H2O來連續運轉。在一個實施例中,陽離子可為鹽混合物電解質之陰離子所共用,或陰離子可為陽離子所共用。或者,氫氧化物可對混合物之其他鹽穩定。電極可包含高表面積電極,諸如多孔或燒結之金屬粉末,諸如Ni粉。例示性電池為[Ni(H2)/Mg(OH)2-NaCl/Ni芯(H2O及視情況存在之O2)]、[Ni(H2)/Mg(OH)2-MgCl2-NaCl/Ni芯(H2O及視情況存在之O2)]、[Ni(H2)/Mg(OH)2-MgO-MgCl2/Ni芯(H2O及視情況存在之O2)]、[Ni(H2)/Mg(OH)2-NaF/Ni芯(H2O及視情況存在之O2)]、[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/LiOH-LiX、NaOH-NaX、KOH-KX、RbOH-RbX、CsOH-CsX、Mg(OH)2-MgX2、Ca(OH)2-CaX2、Sr(OH)2-SrX2或Ba(OH)2-BaX2(其中X=F、Cl、Br或I)/Ni芯(H2O及視情況存在之O2)]、[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/CSNO3-CsOH、CsOH-KOH、CSOH-LiOH、CsOH-NaOH、CsOH-RbOH、K2CO3-KOH、KBr-KOH、KCl-KOH、KF-KOH、KI-KOH、KNO3-KOH、KOH-K2SO4、KOH-LiOH、KOH-NaOH、KOH-RbOH、Li2CO3-LiOH、LiBr-LiOH、LiCl-LiOH、LiF-LiOH、LiI-LiOH、LiNO3-LiOH、LiOH-NaOH、LiOH-RbOH、Na2CO3-NaOH、NaBr-NaOH、NaCl-NaOH、NaF-NaOH、NaI-NaOH、NaNO3-NaOH、NaOH-Na2SO4、NaOH-RbOH、RbCl-RbOH及RbNO3-RbOH/Ni芯(H2O及視情況存在之O2)]及[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/LiOH、NaOH、KOH、RbOH、CsOH、Mg(OH)2、Ca(OH)2、Sr(OH)2或Ba(OH)2+AlX3、VX2、ZrX2、TiX3、MnX2、ZnX2、CrX2、SnX2、InX3、CuX2、NiX2、PbX2、SbX3、BiX3、CoX2、CdX2、GeX3、AuX3、IrX3、FeX3、HgX2、MoX4、OsX4、PdX2、ReX3、RhX3、RuX3、SeX2、AgX2、TcX4、TeX4、TlX及WX4中之一或多者(其中X=F、Cl、Br或I)/Ni芯(H2O及視情況存在之O2)]。諸如[Ni(H2)/MOH(M=鹼金屬)M'X2(M'=鹼土金屬)及視情況存在之MX(X=鹵離子)/Ni]之電池可在高溫下運轉,使得反應物對氫氧根-鹵離子交換為熱力學上穩定的。
在一個實施例中,電池可包含鹽橋,諸如BASE或NASICON。陰極可包含H2O或O2還原觸媒。H2O及視情況存在之O2可藉由經由多孔電極(諸如由Ni多孔體(Celmet #6,Sumitomo Electric Industries,Ltd.)緊密結合組裝在外部氧化鋁管內組成之多孔電極)鼓泡來供應。在另一實施例中,H2O注射或滴入電解質主體中,且在其因電解質溶劑化而蒸發前,保持足以維持電池電壓之時間。H2O可週期性或連續加回。在一個實施例中,諸如氫可透陽極之陽極經清潔。例示性Ni(H2)陽極可藉由磨蝕或浸入3%H2O2/0.6 M K2CO3中,接著用蒸餾水沖洗來清潔。磨蝕亦將增加表面積。分別選擇陽極之形態學與幾何結構中之至少一者,以增加陽極表面積。
在一個實施例中,熔融鹽電解質電池之陽極包含至少一種氫化物,諸如LaNi5H6及來自本發明之其他氫化物(諸如水性鹼性電池之氫化物),以及金屬,諸如來自Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Al、V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之一。例示性電池為[M或MH/Mg(OH)2-NaCl/Ni芯(H2O及視情況存在之O2)]、[M或MH/Mg(OH)2-MgCl2-NaCl/Ni芯(H2O及視情況存在之O2)]、[M或MH/Mg(OH)2-MgO-MgCl2/Ni芯(H2O及視情況存在之O2)]、[M或MH/Mg(OH)2-NaF/Ni芯(H2O及視情況存在之O2)]、[M或MH/LiOH-LiX、NaOH-NaX、KOH-KX、RbOH-RbX、CsOH-CsX、Mg(OH)2-MgX2、Ca(OH)2-CaX2、Sr(OH)2-SrX2或Ba(OH)2-BaX2(其中X=F、Cl、Br或I)/Ni芯(H2O及視情況存在之O2)]、[M或MH/CsNO3-CsOH、CsOH-KOH、CsOH-LiOH、CsOH-NaOH、CsOH-RbOH、K2CO3-KOH、KBr-KOH、KCl-KOH、KF-KOH、KI-KOH、KNO3-KOH、KOH-K2SO4、KOH-LiOH、KOH-NaOH、KOH-RbOH、Li2CO3-LiOH、LiBr-LiOH、LiCl-LiOH、LiF-LiOH、LiI-LiOH、LiNO3-LiOH、LiOH-NaOH、LiOH-RbOH、Na2CO3-NaOH、NaBr-NaOH、NaCl-NaOH、NaF-NaOH、NaI-NaOH、NaNO3-NaOH、NaOH-Na2SO4、NaOH-RbOH、RbCl-RbOH及RbNO3-RbOH/Ni芯(H2O及視情況存在之O2)]及[M或MH/LiOH、NaOH、KOH、RbOH、CsOH、Mg(OH)2、Ca(OH)2、Sr(OH)2或Ba(OH)2+AlX3、VX2、ZrX2、TiX3、MnX2、ZnX2、CrX2、SnX2、InX3、CuX2、NiX2、PbX2、SbX3、BiX3、CoX2、CdX2、GeX3、AuX3、IrX3、FeX3、HgX2、MoX4、OsX4、PdX2、ReX3、RhX3、RuX3、SeX2、AgX2、TcX4、TeX4、TlX及WX4中之一或多者(其中X=F、Cl、Br或I)/Ni芯(H2O及視情況存在之O2)],其中MH=LaNi5H6及來自本發明之其他氫化物;M=來自Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Al、V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之一。諸如H2、O2及空氣(諸如施加於電池之H2、O2及空氣)之氣體壓力、H2滲透壓力或鼓入電池中之任何氣體的壓力可為任何所需壓力。適合之壓力在約0.001托至200,000托、約1托至50,000托及約700托至10,000托之範圍內。反應物濃度比率可為任何所需比率。適合之濃度比率為使電力達到最大、成本降至最低、增加耐久性、提高再生能力及增強熟習此項技術者已知之其他操作特徵的濃度比率。此等標準亦適用於本發明之其他實施例。電解質之適合例示性濃度比率為約共熔混合物之濃度比率。在另一實施例中,電池以接近於在整段時期內添加O2或H2O之分批模式操作。H2可添加至電池中,或其亦可接近於該批次期間之H2添加。在陽極形成之H2O及H2可在內循環中在陰極反應,或陽極氣體產物可動力移除。反應混合物可在該批次後再生。
由方程式(355)及(217)表示之反應之另一形式如下,其參與例示性電池[Na/BASE/NaOH]且亦可在遵循與方程式(322-325)及(334)類似之機制的電解電池中操作:
Na+3NaOH→2Na2O+H2O+1/2H2;H→H(1/p) (400)
OH與H2O中之至少一者可充當觸媒。在一個實施例中,包含可形成H2O之氫氧化物之電池(諸如[Na/BASE/NaOH])可進一步包含諸如BaI2 2H2O之水合物,或H2O可添加至陰極。電池可進一步包含H來源,諸如氫化物或經由可透膜供應之H2氣體(諸如Ni(H2))。
在一個實施例中,陰極包含水與氧來源中之至少一者。陰極可為水合物、氧化物、過氧化物、超氧化物、氧(氫氧)化物及氫氧化物。陰極可為不溶於電解質(諸如熔融鹽電解質)中之金屬氧化物。適合之例示性金屬氧化物為PbO2、Ag2O2、RuO2、AgO、MnO2,以及V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之氧化物。適合之例示性金屬氧(氫氧)化物為AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(O H)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)。適合之例示性氫氧化物為Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Al、V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之氫氧化物。在一個實施例中,熔融鹽電解質電池之陽極包含至少一種氫化物,諸如LaNi5H6及來自本發明之其他氫化物,諸如水性鹼性電池之氫化物,以及金屬,諸如來自Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Al、V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之一。一適合之氫化物或金屬適宜不溶於熔融電解質中。例示性電池為[氫化物(諸如LaNi5H6)/包含氫氧化物之熔融鹽電解質/Ni或Ni芯(H2O及視情況存在之O2)]、[氫化物(諸如LaNi5H6)或M(H2)/熔融鹽電解質(包含氫氧化物)/氧化物(諸如PbO2、Ag2O2、RuO2、AgO、MnO2以及V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群的氧化物之群之一)](其中M為H2可透金屬,諸如Ni、Ti、Nb、V或Fe)、[氫化物(諸如LaNi5H6)或M(H2)/包含氫氧化物之熔融鹽電解質/氧(氫氧)化物(諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)之群之一)](其中M為H2可透金屬,諸如Ni、Ti、Nb、V或Fe)及[氫化物(諸如LaNi5H6)或M(H2)/包含氫氧化物之熔融鹽電解質/氫氧化物(諸如包含來自Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Al、V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之陽離子的氫氧化物之一)](其中M為H2可透金屬,諸如Ni、Ti、Nb、V或Fe)。
在一個實施例中,諸如熔融鹽或水性鹼溶液之電解質可包含離子型化合物,諸如具有可以一種以上氧化態存在之陽離子的鹽。能夠為多價之適合例示性陽離子為Fe3+(Fe2+)、Cr3+(Cr2+)、Mn3+(Mn2+)、Co3+(Co2+)、Ni3+(Ni2+)、Cu2+(Cu+)及Sn4+(Sn2+)、過渡金屬、內過渡金屬及稀土金屬陽離子(諸如Eu3+(Eu2+))。陰離子可為鹵離子、氫氧根、氧化物陰離子、碳酸根、硫酸根或本發明之其他陰離子。在一個實施例中,OH-可氧化且與H在陽極反應,形成H2O。OH與H2O中之至少一者可充當觸媒。氫化物陽極反應可由方程式(313)給出。能夠為多價之陽離子可在陰極處還原。一例示性總反應為
LaNi5H6+KOH+FeCl3或Fe(OH)3→KCl或
KOH+FeCl2或Fe(OH)2+LaNi5H5+H2O (401)
在包含能夠為多價之陽離子之化合物不溶的情況下,其可包含陰極半電池反應物。其可與導電性載體(諸如碳、碳化物、硼化物或腈)混合。本發明之另一氫化物或金屬可充當陽極,諸如V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之一,其中陽極反應可由方程式(337)給出。金屬可與電解質(諸如氫氧化物)反應,形成氫及觸媒(諸如OH與H2O中之至少一者)。其他氫氧化物可充當電解質,諸如本發明之電解質,且可置換KOH。具有能夠為多價之陽離子之其他鹽(諸如K2Sn(OH)6或Fe(OH)3)可置換FeCl3。在一個實施例中,化合物之還原電位大於H2O之還原電位。例示性電池為[可氧化金屬(諸如V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之一)、金屬氫化物(諸如LaNi5H6)或H2與氫可透膜(諸如V、Nb、Fe、Fe-Mo合金、W、Mo、Rh、Ni、Zr、Be、Ta、Rh、Ti、Th、Pd、Pd塗佈之Ag、Pd塗佈之V及Pd塗佈之Ti之一)/KOH(飽和水溶液)+具有能夠為多價之陽離子之鹽(諸如K2Sn(OH)6、Fe(OH)3或FeCl3)/導體(諸如碳或粉狀金屬)]、[可氧化金屬(諸如V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之一)、金屬氫化物(諸如LaNi5H6)或H2與氫可透膜(諸如V、Nb、Fe、Fe-Mo合金、W、Mo、Rh、Ni、Zr、Be、Ta、Rh、Ti、Th、Pd、Pd塗佈之Ag、Pd塗佈之V及Pd塗佈之Ti之一)/KOH(飽和水溶液)/具有能夠為多價之陽離子之鹽(諸如Fe(OH)3、Co(OH)3、Mn(OH)3、Ni2O3或Cu(OH)2)與導體(諸如碳或粉狀金屬)混合]、[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/LiOH-LiX、NaOH-NaX、KOH-KX、RbOH-RbX、CsOH-CsX、Mg(OH)2-MgX2、Ca(OH)2-CaX2、Sr(OH)2-SrX2或Ba(OH)2-BaX2(其中X=F、Cl、Br或I)及具有能夠為多價之陽離子之鹽(諸如K2Sn(OH)6、Fe(OH)3或FeCl3)/Ni]、[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/CsNO3-CsOH、CsOH-KOH、CsOH-LiOH、CsOH-NaOH、CsOH-RbOH、K2CO3-KOH、KBr-KOH、KCl-KOH、KF-KOH、KI-KOH、KNO3-KOH、KOH-K2SO4、KOH-LiOH、KOH-NaOH、KOH-RbOH、Li2CO3-LiOH、LiBr-LiOH、LiCl-LiOH、LiF-LiOH、LiI-LiOH、LiNO3-LiOH、LiOH-NaOH、LiOH-RbOH、Na2CO3-NaOH、NaBr-NaOH、NaCl-NaOH、NaF-NaOH、NaI-NaOH、NaNO3-NaOH、NaOH-Na2SO4、NaOH-RbOH、RbCl-RbOH及RbNO3-RbOH+具有能夠為多價之陽離子之鹽(諸如K2Sn(OH)6、Fe(OH)3或FeCl3)/Ni]、[Ni(H2)、V(H2)、Ti(H2)、Nb(H2)、Pd(H2)、PdAg(H2)或Fe(H2)/LiOH、NaOH、KOH、RbOH、CsOH、Mg(OH)2、Ca(OH)2、Sr(OH)2或Ba(OH)2+AlX3、VX2、ZrX2、TiX3、MnX2、ZnX2、CrX2、SnX2、InX3、CuX2、NiX2、PbX2、SbX3、BiX3、CoX2、CdX2、GeX3、AuX3、IrX3、FeX3、HgX2、MOX4、OsX4、PdX2、ReX3、RhX3、RuX3、SeX2、AgX2、TcX4、TeX4、TlX及WX4中之一或多者(其中X=F、Cl、Br或I)+具有能夠為多價之陽離子之鹽(諸如K2Sn(OH)6、Fe(OH)3或FeCl3)/Ni]、[LaNi5H/KOH(飽和水溶液)/有機金屬物質(諸如二茂鐵鎓離子SC)]及[LaNi5H6/KOH(飽和水溶液)/有機金屬物質(諸如二茂鐵鎓離子)]。電池可藉由電解或以機械方法再生。
在一個實施例中,CIHT電池之電極上之氫來源(諸如H2可透膜與H2氣體(諸如Ni(H2))或氫化物(諸如LaNi5H6))可經氫氣來源(諸如H2鼓泡金屬管,其中金屬可為多孔的,諸如由燒結金屬粉末(諸如Ni粉末)構成之H2多孔管)置換。H2鼓泡電極可置換在相應電極或相應半電池具有氫作為反應物之電池的陽極或陰極。舉例而言,H2鼓泡電極可置換本發明電池之電極,諸如水性鹼性電池之陽極、包含含有氫氧化物之熔融鹽之電池的陽極或包含具有H-遷移離子之熔融鹽之電池的陰極。例示性電池為[導體(鼓泡H2)/KOH(飽和水溶液)/SC+空氣]及[導體(鼓泡H2)/包含鹼金屬氫氧化物之共熔鹽電解質(諸如LiOH-NaOH、LiOH-LiX、NaOH-NaX(X=鹵離子或硝酸根)或LiOH-Li2X或NaOH-Na2X(X=硫酸根或碳酸根))/導體+可為O2還原觸媒之空氣]。
在一個實施例中,藉由活化能來源擴展低能量氫反應。活化能可由加熱與化學反應中之至少一者提供。在包含在電池之升高操作溫度下揮發之水性電池或溶劑或反應物的一個實施例中,對電池加壓,其中電池外殼或至少一個半電池隔室包含壓力容器。提供活化能之化學反應可為氧化或還原反應,諸如氧在陰極處還原或OH-在陽極處氧化及與H反應形成H2O。H來源可為氫化物,諸如LaNi5H6。陽極反應亦可包含金屬(諸如Zn、Co、Sn、Pb、S、In、Ge及本發明之其他金屬)之氧化。能夠為多價之陽離子(諸如Fe3+(Fe2+)、Cr3+(Cr2+)、Mn3+(Mn2+)、Co3+(Co2+)、Ni3+(Ni2+)、Cu2+(Cu+)及Sn4+(Sn2+)之一)的還原可提供活化能。滲透入氫可透膜且形成諸如金屬氫化物(諸如LiH)之化合物的在陰極形成之H之滲透可提供活化能。在一個實施例中,CIHT電池之反應亦用以產生熱,以達成諸如維持電池操作(諸如供應反應活化能或維持熔融電解質(若使用))之目的。熱輸出亦可用於加熱外部負載。或者,反應可在無電極下進行,產生熱,以維持低能量氫反應且供應熱至外部負載。
在一個實施例中,氧物質(諸如O2、O3、O、O+、H2O、H3O+、OH、OH+、OH-、HOOH、OOH-、O-、O2-中之至少一者)可與H物質(諸如H2、H、H+、H2O、H3O+、OH、OH+、OH-、HOOH及OOH-中之至少一者)進行氧化反應,形成充當形成低能量氫之觸媒的OH與H2O中之至少一者。H物質來源可為諸如氫化物(諸如LaNi5H6)、氫氧化物或氧(氫氧)化物之化合物、H2或H2來源與氫可透膜(諸如Ni(H2)、V(H2)、Ti(H2)、Fe(H2)或Nb(H2))中之至少一者。O物質可由H2O或O2在陰極之還原反應提供。O物質之O2來源可來自空氣。或者,O物質可供應給電池。O物質(諸如OH-、HOOH、OOH-、O-、O2-)之適合來源為氧化物、過氧化物(諸如鹼金屬之過氧化物)、超氧化物(諸如鹼金屬及鹼土金屬之超氧化物)、氫氧化物及氧(氫氧)化物(諸如本發明之氧(氫氧)化物)。例示性氧化物為過渡金屬之氧化物(諸如NiO及CoO)及錫之氧化物(諸如SnO)、鹼金屬之氧化物(諸如Li2O、Na2O及K2O)及鹼土金屬之氧化物(諸如MgO、CaO、SrO及BaO)。諸如NiO或CoO之氧化物來源可添加至熔融鹽電解質中。其他例示性氧化物為來自Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn及W之群之一。例示性電池為[Ni(H2)、V(H2)、Ti(H2)、Fe(H2)或Nb(H2)或氫化物(諸如LaNi5H6)/包含鹼金屬氫氧化物之共熔鹽電解質(諸如LiOH-NaOH、LiOH-LiX、NaOH-NaX(X=鹵離子或硝酸根)或LiOH-Li2X或NaOH-Na2X(X=硫酸根或碳酸根))及Li2O、Na2O、K2O、MgO、CaO、SrO或BaO或Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl、Sn或W之氧化物、過氧化物(諸如鹼金屬之過氧化物)或超氧化物(諸如鹼金屬及鹼土金屬之超氧化物)/Ni或可與陽極相同之其他金屬]。
在一個實施例中,OH-可在陽極處氧化且與H反應,形成可充當H形成低能量氫之觸媒的H2O。在兩種情況下,H可來自諸如氫化物(諸如LaNi5H6)或可透過膜(諸如Ni、Ti、V、Nb、Pd、PdAg或Fe)之H2的來源,來自諸如流過管線642及調節器644之桶或供應器640(圖22)之氫來源。來源可為水性電解電池640,其具有H2與O2隔板,以供應實質上純H2。H2O可在陰極處還原成H2及OH-。在圖22中所示之一個實施例中,CIHT電池包含H2O及H2收集及再循環系統。CIHT 650電池包含容器651、陰極652、陽極653、負載654、電解質655及收集來自CIHT電池之H2O蒸氣(諸如在陽極形成之H2O蒸氣)的系統657。H2O收集系統包含連接至電池之第一腔室658,其經由自電池至H2O收集腔室658之蒸氣通道659接收H2O蒸氣。收集系統包含H2O吸收器與H2O冷凝器660中之至少一者。收集之水可以H2O蒸氣或液體水形式,經由通道661,由泵663或由用加熱器665加熱收集之水所產生之壓力幫助,回到CIHT電池。水流量及任何蒸氣壓力可在腔室中由閥666、667及668控制,由計量器669監測。水可回到陰極652,其可為返回之H2O所滲透。CIHT電池進一步包含系統671以收集來自CIHT電池之H2。H2收集系統包含含有H2吸氣劑673之第二腔室672,其中來自陽極來源之未反應H2與在陰極形成之H2可由H2吸氣劑收集。具有至少部分由H2O收集系統移除之水的H2經由氣體通道675自第一腔室流至第二腔室。在一個實施例中,H2選擇性膜存在於腔室之間,以防止H2O進入第二腔室且與吸氣劑反應。吸氣劑可包含過渡金屬、鹼金屬、鹼土金屬、內過渡金屬、稀土金屬、金屬組合、合金及氫儲存材料(諸如本發明之氫儲存材料)。收集之H2可經由通道676,由泵678或由用加熱器680加熱吸氣劑或收集之H2所產生之壓力幫助,回到CIHT電池。H2流量及壓力可在腔室中由閥681及682控制,由計量器684監測。在閥681打開及閥682對電池關閉下,吸氣劑可收集氫,其中加熱器維持其在適於重新吸收H2之一溫度下。接著閥681可關閉,且溫度升高至引起釋放之氫經計量器684量測達所需壓力的溫度。閥682可打開,以允許加壓氫流向電池。可流向包含H2可透壁之陽極653。在重複循環中,閥682可關閉,加熱器680之溫度降低,且閥681打開,以用吸氣劑673收集H2。在一個實施例中,加熱器、閥及計量器之電力可由CIHT電池提供。在一個實施例中,當引入H2或H2O至電池中時收集系統與電池之間的溫度差可用以達到所需壓力。舉例而言,H2可在密封室中第一溫度及壓力下,該密封室浸於熱鹽中以在較高鹽溫度下達到第二較高壓力。在一個實施例中,CIHT電池包含複數個氫可透陽極,該等陽極可經由常見供氣歧管供應氫。
在圖22中所示之系統的另一實施例中,O2來源供應於陰極651,諸如空氣、O2、氧化物、H2O、HOOH、氫氧化物及氧(氫氧)化物中之至少一者。氧來源亦可經由可為複數個之選擇性閥或膜646供應給電池,其中膜為O2可透膜,諸如鐵氟龍膜。接著系統657包含H2與其他電池氣體(諸如氮氣、水蒸氣及氧氣中之至少一者)之隔板,其中系統671收集未使用之氫且使其經由H2可透陽極653回到電池。系統657可冷凝水。系統667可另外或視情況包含選擇性H2可透膜及閥668,其可位於系統657之出口上,保留O2、N2及可能水且允許H2選擇性地傳至系統671。
在一個實施例中,H2可透電極經H2鼓泡陽極653置換。H2可在不移除H2O下使用至少一個泵(諸如678)再循環。若氧氣諸如經由選擇性閥或膜646或在O2可透陰極652供應給電池,則其可藉由系統657自H2移除。藉由鼓泡供應H2、H2O、空氣及O2中之至少一者之一例示性多孔電極包含在外部氧化鋁管內Ni多孔體(Celmet #6,Sumitomo Electric Industries,Ltd)之緊密結合組裝。若空氣供應給電池,則N2視情況自再循環之H2氣體中移除。消耗形成低能量氫或自系統中損失之任何H2可置換。H2可由H2O電解置換。電解電力可來自CIHT電池。
在產生熱能之一個實施例中,圖22中所示之電池可包含供應H之氫可透膜653且可缺乏陰極652。溶液可包含鹼,諸如MOH、M2CO3(M為鹼金屬)、M'(OH)2、M'CO3(M'為鹼土金屬)、M"(OH)2、MCO3、(M"為過渡金屬)、稀土金屬氫氧化物、Al(OH)3、Sn(OH)2、In(OH)3、Ga(OH)3、Bi(OH)3及本發明其他氫氧化物及氧(氫氧)化物之群中的至少一者。溶劑可為水性溶劑或本發明之其他溶劑。氫可透過膜,且與OH-反應,形成可充當形成低能量氫之觸媒之OH與H2O中的至少一者。反應混合物可進一步包含促進形成OH與H2O觸媒中之至少一者之反應的氧化劑。氧化劑可包含H2O2、O2、CO2、SO2、N2O、NO、NO2、O2,或充當O來源或充當如本發明中所給出或熟習此項技術者已知之氧化劑的另一化合物或氣體。其他適合之例示性氧化劑為M2S2O8、MNO3、MMnO4、MOCl、MClO2、MClO3、MClO4(M為鹼金屬)及氧(氫氧)化物(諸如WO2(OH)、WO2(OH)2、VO(OH)、VO(OH)2、VO(OH)3、V2O2(OH)2、V2O2(OH)4、V2O2(OH)6、V2O3(OH)2、V2O3(OH)4、V2O4(OH)2、FeO(OH)、MnO(OH)、MnO(OH)2、Mn2O3(OH)、Mn2O2(OH)3、Mn2O(OH)5、MnO3(OH)、MnO2(OH)3、MnO(OH)5、Mn2O2(OH)2、Mn2O6(OH)2、Mn2O4(OH)6、NiO(OH)、TiO(OH)、TiO(OH)2、Ti2O3(OH)、Ti2O3(OH)2、Ti2O2(OH)3、Ti2O2(OH)4及NiO(OH))。電池可在高溫下操作,諸如在約25℃至1000℃或約200℃至500℃之溫度範圍中。容器651可為壓力容器。氫氣可於高壓下供應,諸如在約2至800 atm或約2至150 atm範圍內。可添加諸如約0.1至10 atm N2或Ar之惰性氣體保護層,以防止諸如水溶液之溶液沸騰。反應物可呈任何所需莫耳濃度比率。一例示性電池為Ni(H2 50-100 atm)KOH+K2CO3,其中KOH濃度在0.1 M至飽和之莫耳範圍內,K2CO3濃度在0.1 M至飽和之莫耳範圍內,且容器在約200-400℃之操作溫度下。
在一個實施例中,水性鹼性電池包含圖20中所示之一膜雙室電池,其中變化為陽極膜與隔室475可不存在。陽極可包含在與OH-反應成H2O中氧化之金屬,如方程式(337)所給出。OH與H2O中之至少一者可充當觸媒。陽極金屬可為V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之群之一。或者,陽極可包含氫化物,諸如LaNi5H6及本發明之其他氫化物,其提供H且將OH-氧化成H2O,如方程式(313)所給出。陽極亦可包含可在隔室475中之H2可透膜472與氫來源(諸如H2氣體),氫來源提供H且將OH-氧化成H2O,如方程式(346)所給出。在陰極,H2O可還原成H2及OH-,如方程式(315)所給出。陰極473可包含對氫氣具有高滲透性之金屬。電極可包含提供較高表面積之幾何結構,諸如管形電極,或其可包含多孔電極。為提高水還原之速率及產率中之至少一者,可使用水還原觸媒。在另一實施例中,陰極半電池反應物包含與H形成化合物,釋放能量以提高H2O還原速率及產率中之至少一者的H反應物。H反應物可含於陰極隔室474中。由水還原形成之H可透過氫可透膜473且與H反應物反應。H可透電極可包含V、Nb、Fe、Fe-Mo合金、W、Mo、Rh、Ni、Zr、Be、Ta、Rh、Ti、Th、Pd、Pd塗佈之Ag、Pd塗佈之V、Pd塗佈之Ti、稀土金屬、其他耐火金屬及熟習此項技術者已知之其他該等金屬。H反應物可為形成氫化物之元素或化合物,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及稀土金屬、合金或其混合物及氫儲存材料,諸如本發明之氫儲存材料。例示性反應為
陰極外壁
H2O+e-→1/2H2+OH- (402)
陰極內壁
1/2H2+M→MH (403)
化學物質可藉由加熱在陰極隔室中形成之任何氫化物,使其熱分解來熱再生。氫氣可流動或抽吸至陽極隔室以使初始陽極反應物再生。再生反應可發生在陰極隔室與陽極隔室中,或該等隔室中之一或兩者中的化學物質可輸送至一或多個反應容器進行再生。或者,初始陽極金屬或氫化物及陰極反應物(諸如金屬)可藉由原位或遠距離電解再生。例示性電池為[可氧化金屬(諸如V、Zr、Ti、Mn、Zn、Cr、Sn、In、Cu、Ni、Pb、Sb、Bi、Co、Cd、Ge、Au、Ir、Fe、Hg、Mo、Os、Pd、Re、Rh、Ru、Se、Ag、Tc、Te、Tl及W之一)、金屬氫化物(諸如LaNi5H6)或H2及氫可透膜(諸如V、Nb、Fe、Fe-Mo合金、W、Mo、Rh、Ni、Zr、Be、Ta、Rh、Ti、Th、Pd、Pd塗佈之Ag、Pd塗佈之V及Pd塗佈之Ti之一)/KOH(飽和水溶液)/M(M')],其中M=氫可透膜,諸如V、Nb、Fe、Fe-Mo合金、W、Mo、Rh、Ni、Zr、Be、Ta、Rh、Ti、Th、Pd、Pd塗佈之Ag、Pd塗佈之V及Pd塗佈之Ti之一且M'為形成氫化物之金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及稀土金屬、合金或其混合物或氫氣儲存材料。電池可在高溫及高壓下運轉。
在一個實施例中,遷移離子為氧化物離子,其與H來源反應,形成可充當H來源之觸媒之OH與H2O中的至少一者。陰極可包含氧化物離子來源,諸如氧或包含O之化合物(諸如氧化物)。電池可包含電解質與鹽橋中之至少一者。電解質可為具有高濃度(諸如在約12 M至飽和之範圍內)之氫氧化物,諸如鹼金屬氫氧化物,諸如KOH。鹽橋可針對氧化物離子來選擇。適合之鹽橋為氧化釔穩定化二氧化鋯(YSZ)、氧化釓摻雜之二氧化鈰(CGO)、鎵酸鑭及鉍銅釩氧化物(諸如BiCuVOx)。一些鈣鈦礦材料(諸如La1-xSrxCoyO3-δ)亦展示混合之氧化物及電子傳導率。H來源可為氫氣與解離體、氫氣可透膜或氫化物。例示性電池為[PtC(H2)、Ni(H2)、CeH2、LaH2、ZrH2或LiH/YSZ/O2或氧化物]。
在一個實施例中,CIHT電池包含電能與熱能產生用於負載之熱電共生系統。電與熱負載中之至少一者可為內部與外部中之至少一者。舉例而言,藉由形成低能量氫產生之至少一部分熱能或電能可維持電池溫度,諸如包含熔融鹽電解質或熔融反應物之CIHT電池之熔融鹽的溫度。電能可至少部分地供應電解電力以使初始電池反應物自產物再生。在一個實施例中,諸如水性或熔融鹽電解質之電解質可經由或經熱交換器抽吸,該熱交換器移除熱且最終將熱轉移至負載。
在一個實施例中,氧(氫氧)化物陰極反應物在酸性溶液(諸如酸性水性、有機酸性或無機酸性電解溶液)中為穩定的。例示性酸為乙酸、丙烯酸、苯甲酸或丙酸或酸性有機溶劑。鹽可為本發明之鹽,諸如鹼金屬鹵化物、硝酸鹽、過氯酸鹽、磷酸二氫鹽、磷酸氫鹽、磷酸鹽、硫酸氫鹽或硫酸鹽。質子由陽極上之氧化形成,且氫氣在陰極形成,其中至少一些氫氣反應形成低能量氫。例示性反應為
陰極
H++MO(OH)+e-→MO2+H2(1/p) (404)
陽極
M'H→M'+H++e- (405)
M為諸如過渡金屬或Al之金屬,M'為金屬氫化物之金屬。陰極可包含氧(氫氧)化物,且陽極可包含H+來源,諸如金屬氫化物以及氫與解離體(諸如Pt/C、Pd/C、Ir/C、Rh/C或Ru/C)中之至少一者。氫來源亦可為氫氣可透膜與H2氣體,諸如Ti(H2)、Pd-Ag合金(H2)、V(H2)、Ta(H2)、Ni(H2)或Nb(H2)。至少一種半電池反應物可進一步包含載體,諸如碳、碳化物或硼化物。包含具有層夾H材料及作為遷移離子之H+之陰極的電池可連續再生,其中至少一些遷移H層夾於陰極材料中,同時其他層夾H消耗形成至少氫與低能量氫。陰極材料亦可包含H+於基質中,諸如H+摻雜之沸石,諸如HY。在其他實施例中,沸石可摻雜金屬陽離子,諸如NaY中之Na,其中金屬陽離子經遷移H置換或與遷移H反應。例示性電池為[H2與Pd/C、Pt/C、Ir/C、Rh/C或Ru/C或金屬氫化物(諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬氫化物)/H+導體(諸如水性電解質、離子液體、納菲薄膜或固體質子導體)/MO(OH)(M=金屬,諸如Co、Ni、Fe、Mn、Al)、HY或NaY CB]及[質子來源(諸如PtC(H2))/質子導體(諸如HCl-LiCl-KCl熔融鹽)/氧(氫氧)化物(諸如CoO(OH))]。
在一個實施例中,H來源包含氫。原子氫可在諸如Pd/C、Pt/C、Ir/C、Rh/C或Ru/C之解離體上形成。氫來源亦可為氫可透膜與H2氣體,諸如Ti(H2)、Pd-Ag合金(H2)、V(H2)、Ta(H2)、Ni(H2)或Nb(H2)。電池可包含水性陽離子交換膜,諸如H+離子傳導膜,諸如納菲薄膜及酸性水溶液。酸性電解質可為酸之水溶液,諸如HX(X=鹵離子)、HNO3或有機酸(諸如乙酸)之水溶液。陽極可為氧(氫氧)化物,諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)。在酸性溶液中,反應為
陽極
H2+→2H++2e (406)
方程式(404)之陰極反應或來自任何H+來源之替代陰極反應可為
CoOOH+2e-+2H+→Co(OH)2+H(1/p) (407)
例示性電池為[H2及Pd/C、Pt/C、Ir/C、Rh/C或Ru/C或金屬氫化物(諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬氫化物)/酸之水溶液(諸如HX(X=鹵離子)或HNO3)、H+導體(諸如納菲薄膜、離子液體、固體H+導體或HCl-LiCl-KCl熔融鹽)/MO(OH)(M=金屬,諸如Co、Ni、Fe、Mn、Al)(諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))或其他H層夾之硫族化物、HY或NaY]。在其他實施例中,電解質可為離子液體或於有機溶劑中之鹽。電池可藉由充電或藉由化學處理再生。
在另一實施例中,H+可自陽極遷移至陰極,藉由在陰極處還原,形成H。H可結合於氫化物受體或儲集體,諸如金屬,從而形成氫化物,或其可結合形成氫化化合物。H原子可在適合環境中相互作用,形成低能量氫。環境可包含H原子儲集體,諸如金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬,其形成氫化物。或者,H儲集體可為氫化化合物,諸如M-N-H系統化合物,諸如Li3N或Li2NH。H儲集體可為缺乏金屬之層夾化合物。H可在諸如Li位點之金屬位點上取代或可置換諸如Li之金屬。適合之例示性層夾化合物為Li石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)、LiTi2O4及其他Li層狀硫族化物及一些H置換Li之此等化合物或缺乏Li之此等化合物中的至少一者。電解質可為無機液體質子導體。H來源可為Pt/C與H2氣體及PEM燃料電池之其他負電極,諸如H2與Pd/C、Pt/C、Ir/C、Rh/C及Ru/C。氫來源亦可為氫可透膜與H2氣體,諸如Ti(H2)、Pd-Ag合金(H2)、V(H2)、Ta(H2)、Ni(H2)或Nb(H2)。形成H+之H2來源可為氫化物,諸如鹼金屬氫化物、鹼土金屬氫化物(諸如MgH2)、過渡金屬氫化物、內過渡金屬氫化物及稀土金屬氫化物,其可接觸陽極半電池反應物,諸如Pd/C、Pt/C、Ir/C、Rh/C及Ru/C。例示性電池為[Pt(H2)、Pt/C(H2)、硼烷、胺基硼烷及硼烷胺、AlH3或H-X化合物(X=第V、VI或VII元素)/包含液體電解質之無機鹽混合物(諸如硝酸銨-三氟乙酸銨)/Li3N、Li2NH或M(M=金屬,諸如過渡金屬、內過渡金屬或稀土金屬)、包含LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及其他Li層狀硫族化物之群中之至少一者的Li缺乏化合物]。
在另一實施例中,H+可自陽極遷移至陰極,藉由在陰極處還原,形成H層夾之化合物。諸如H2氣體與解離體(諸如載體(諸如碳)上Pt、Re、Rh、Ir或Pd)之H來源可在陽極處氧化成H+,H+經由H+傳導電解質(諸如納菲薄膜、離子液體、固體質子導體或水性電解質)遷移至陰極半電池,其中H+在層夾時還原成H。陰極材料為能夠層夾H之層夾化合物。在一個實施例中,H+置換Li+或Na+作為層夾及還原之遷移離子。產物化合物可包含層夾之H。陰極化合物可包含硫族化物,諸如層狀氧化物,諸如CoO2或NiO,其形成相應H層夾之產物,分別諸如CoO(OH)(亦稱為HCoO2)及NiO(OH)。陰極材料可包含至少一些及可能所有鹼金屬移除之鹼金屬層夾之硫族化物。陰極半電池化合物可為層狀化合物,諸如鹼金屬缺乏或消耗之層狀硫族化物,諸如至少一些層夾之鹼金屬(諸如Li)經移除之層狀氧化物,諸如LiCoO2或LiNiO2。在一個實施例中,至少一些H及可能一些鹼金屬(諸如Li)在放電期間層夾。至少一些Li移除之適合層夾化合物為包含Li或Na離子電池之陽極或陰極的層夾化合物,諸如本發明之層夾化合物。適合之例示性層夾化合物包含以下之群中之至少一者:Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4、至少一些及可能所有Li移除之其他Li層狀硫族化物。例示性電池為[Pt/C(H2)、Pd/C(H2)、鹼金屬氫化物、R-Ni/質子導體(諸如納菲薄膜)、共熔物(諸如LiCl-KCl)、離子液體、水性電解質/H層夾化合物(諸如CoO2、NiO2及Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4、至少一些及可能所有Li移除之其他Li層狀硫族化物之群中的至少一者中之至少一者)]。在其他實施例中,鹼金屬經另一鹼金屬置換。
在另一實施例中,陰極材料可包含鹼金屬層夾之硫族化物。陰極半電池化合物可為層狀化合物,諸如鹼金屬硫族化物,諸如層狀氧化物,諸如LiCoO2或LiNiO2。在一個實施例中,至少一些H及可能一些鹼金屬(諸如Li)在放電期間層夾,其中H置換Li,且Li可視情況形成LiH。適合之層夾化合物為包含Li或Na離子電池之陽極或陰極的層夾化合物,諸如本發明之層夾化合物。適合之例示性層夾化合物包含以下之群中之至少一者:Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及其他Li層狀硫族化物。例示性電池為[Pt/C(H2)、Pd/C(H2)、鹼金屬氫化物、R-Ni/質子導體(諸如納菲薄膜)、共熔物(諸如LiCl-KCl)、離子液體、水性電解質/H層夾化合物(諸如CoO2、NiO2及Li-石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及其他Li層狀硫族化物之群中之至少一者中的至少一者)]。
在一個實施例中,H受體為形成氫化物之金屬,諸如過渡金屬、內過渡金屬、稀土金屬或貴金屬。在其他實施例中,H受體為包含鹼性鹽或具有酸陰離子之化合物。可包含H+為遷移離子之陰極半電池反應物或H-為遷移離子之陽極半電池反應物的例示性化合物為以下之群中之一或多者:MNO3、MNO、MNO2、M3N、M2NH、MNH2、MX、NH3、MBH4、MAlH4、M3AlH6、MOH、M2S、MHS、MFeSi、M2CO3、MHCO3、M2SO4、MHSO4、M3PO4、M2HPO4、MH2PO4、M2MoO4、MNbO3、M2B4O7(M之四硼酸鹽)、MBO2、M2WO4、MAlCl4、MGaCl4、M2CrO4、M2Cr2O7、M2TiO3、MZrO3、MAlO2、MCoO2、MGaO2、M2GeO3、MMn2O4、M4SiO4、M2SiO3、MTaO3、MCuCl4、MPdCl4、MVO3、MIO3、MFeO2、MIO4、MClO4、MScOn、MTiOn、MVOn、MCrOn、MCr2On、MMn2On、MFeOn、MCoOn、MNiOn、MNi2On、MCuOn及MZnOn(其中M為陽離子,諸如金屬,諸如Li、Na或K,且n=1、2、3或4)、氧陰離子、強酸之氧陰離子、氧化劑、分子氧化劑(諸如V2O3、I2O5、MnO2、Re2O7、CrO3、RuO2、AgO、PdO、PdO2、PtO、PtO2、I2O4、I2O5、I2O9、SO2、SO3、CO2、N2O、NO、NO2、N2O3、N2O4、N2O5、Cl2O、ClO2、Cl2O3、Cl2O6、Cl2O7、PO2、P2O3及P2O5)、NH4X(其中X為硝酸根或熟習此項技術者已知之其他適合陰離子)及具有可形成H化合物之陰離子(諸如包含F-、Cl-、Br-、I-、NO3 -、NO2 -、SO4 2-、HSO4 -、CoO2 -、IO3 -、IO4 -、TiO3 -、CrO4 -、FeO2 -、PO4 3-、HPO4 2-、H2PO4 -、VO3 -、ClO4 -及Cr2O7 2-及其他該等陰離子之群之一)的化合物。電池可進一步包含作為質子來源(諸如氫來源,諸如氫化物,諸如金屬氫化物或氫氣與解離體(諸如Pt/C或Pd/C))之負電極、隔板或鹽橋、及電解質(諸如質子傳導電解質,諸如納菲薄膜或離子液體)。氫來源亦可為氫可透膜與H2氣體,諸如Ti(H2)、Pd-Ag合金(H2)、V(H2)、Ta(H2)、Ni(H2)或Nb(H2)。例示性電池為[Pt/C(H2)、Pd/C(H2)、鹼金屬氫化物、R-Ni/質子導體(諸如納菲薄膜)、共熔物(諸如LiCl-KCl)、離子液體/稀土金屬(諸如La)、鹼性鹽(諸如Li2SO4)、形成氫化物之金屬(諸如過渡金屬、內過渡金屬、稀土金屬或貴金屬);MNO3、MNO、MNO2、M3N、M2NH、MNH2、MX、NH3、MBH4、MAlH4、M3AlH6、MOH、M2S、MHS、MFeSi、M2CO3、MHCO3、M2SO4、MHSO4、M3PO4、M2HPO4、MH2PO4、M2MoO4、MNbO3、M2B4O7(M之四硼酸鹽)、MBO2、M2WO4、MAlCl4、MGaCl4、M2CrO4、M2Cr2O7、M2TiO3、MZrO3、MAlO2、MCoO2、MGaO2、M2GeO3、MMn2O4、M4SiO4、M2SiO3、MTaO3、MCuCl4、MPdCl4、MVO3、MIO3、MFeO2、MIO4、MClO4、MScOn、MTiOn、MVOn、MCrOn、MCr2On、MMn2On、MFeOn、MCoOn、MNiOn、MNi2On、MCuOn及MZnOn(其中M為陽離子,諸如金屬,諸如Li、Na或K,且n=1、2、3或4)、氧陰離子、強酸之氧陰離子、氧化劑、分子氧化劑(諸如V2O3、I2O5、MnO2、Re2O7、CrO3、RuO2、AgO、PdO、PdO2、PtO、PtO2、I2O4、I2O5、I2O9、SO2、SO3、CO2、N2O、NO、NO2、N2O3、N2O4、N2O5、Cl2O、ClO2、Cl2O3、Cl2O6、Cl2O7、PO2、P2O3及P2O5)、NH4X(其中X為硝酸根或熟習此項技術者已知之其他適合陰離子)及具有可形成H化合物之陰離子(諸如包含F-、Cl-、Br-、I-、NO3 -、NO2 -、SO4 2-、HSO4 -、CoO2 -、IO3 -、IO4 -、TiO3 -、CrO4 -、FeO2 -、PO4 3-、HPO4 2-、H2PO4 -、VO3 -、ClO4 -及Cr2O7 2-及其他該等陰離子之群之一)的化合物之群中之一或多者]。
舉例而言,適合之化合物為酸之鹽,諸如可形成LiHSO4之Li2SO4,或可形成Li2HPO4之Li3PO4。例示性反應為
陰極反應
2H++Li2SO4+2e-→Li+H(1/p)+LiHSO4 (408)
陽極反應
H2+→2H++2e- (409)
再生
Li+LiHSO4+→1/2H2+Li2SO4 (410)
總反應
H→H(1/p)+至少部分呈電形式之能量 (411)
在另一實施例中,金屬氫化物可在至少一個半電池反應中分解或形成,其中由半電池反應引起之H或H空位之形成可形成反應形成低能量氫之H原子。舉例而言,陰極上諸如金屬氫化物之氫化物可進行還原,形成H-,其中在氫化物之晶格位置上形成空位,引起H相互作用,形成低能量氫。或者或另外,H-遷移至陽極,且氧化成H。H原子可在適合環境中相互作用,形成低能量氫。環境可包含H原子儲集體,諸如金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬、貴金屬或稀土金屬,其形成氫化物。或者,H儲集體可為氫化化合物,諸如M-N-H系統化合物,諸如Li3N或Li2NH。H儲集體可為缺乏金屬之層夾化合物。H可在諸如Li位點之金屬位點上取代或可置換諸如Li之金屬。適合之例示性層夾化合物為Li石墨、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4及一些H置換Li之此等化合物或缺乏Li之此等化合物中之至少一者。其他陽極材料為層夾H或形成氫化硫族化物之硫族化物,諸如層狀過渡金屬氧化物,諸如CoO2及NiO2,其分別形成CoO(OH)及NiO(OH)。例示性電池為[Li3N、Li2NH或M(M=金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬)、Li缺乏之LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)及其他Li層狀硫族化物及層狀氧化物(諸如CoO2及NiO2)/H-傳導電解質(諸如熔融共熔鹽,諸如LiCl-KCl)/H可透陰極與H2(諸如Ni(H2)及Fe(H2))、氫化物(諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬氫化物,後者為例如CeH2、DyH2、ErH2、GdH2、HoH2、LaH2、LuH2、NdH2、PrH2、ScH2、TbH2、TmH2及YH2)及M-N-H化合物(諸如Li2NH或LiNH2)]。在另一實施例中,陽極反應物可包含氧(氫氧)化物或相應氧化物或部分鹼金屬層夾之硫族化物。適合例示性氧(氫氧)化物為AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)。例示性電池為[氧(氫氧)化物(諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))、其他層狀硫族化物、H層夾之層狀硫族化物及層狀氧化物(諸如CoO2及NiO2)之群中之至少一者/H-傳導電解質(諸如熔融共熔鹽,諸如LiCl-KCl)/H可透陰極與H2(諸如Ni(H2)及Fe(H2))、氫化物(諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬氫化物,後者為例如CeH2、DyH2、ErH2、GdH2、HoH2、LaH2、LuH2、NdH2、PrH2、ScH2、TbH2、TmH2及YH2)及M-N-H化合物(諸如Li2NH或LiNH2)]。
因此,電池包含氫來源,其中氫充當形成低能量氫之觸媒及反應物。氫來源可為氫氣或氫化物。氫可透過膜。電池反應可涉及H-氧化形成H或H+還原形成H。例示性電池反應為
陰極反應
H+e-→H- (412)
陽極反應
nH-→n-1H+H(1/p)+ne- (413)
總反應
H→H(1/p) (414)
陰極反應
nH++ne-→n-1H+H(1/p) (415)
陽極反應
H→H++e- (416)
總反應
H→H(1/p) (417)
電池可進一步包含電解質,諸如熔融鹽,諸如鹼金屬鹵化物之共熔混合物。至少一種半電池反應物可包含載體,諸如高表面積導電性載體,諸如碳化物、硼化物或碳。在一個實施例中,陽極反應物可包含除H或H-以外的還原劑,諸如金屬,諸如Li或Li合金。陰極反應物可包含H來源,諸如氫化物,諸如穩定程度近乎於LiH或高於LiH之導電性氫化物,諸如CeH2、DyH2、ErH2、GdH2、HoH2、LaH2、LuH2、NdH2、PrH2、ScH2、TbH2、TmH2及YH2中之至少一者。一例示性電池為[Li/KCl-LiCl/LaH2 TiC]。至少一種半電池反應混合物包含以下之混合物中之至少一者:氫化物、金屬、金屬氫化物及氫來源(諸如氫氣或藉由透過諸如金屬膜所供應之氫)。氫來源或氫化物亦可為電解質或鹽橋之組分。例示性電池為[Li/KCl-LiClLiH/LaH2TiC]、[Li/KCl-LiCl/LaH2 Mg TiC]、[Li/KCl-LiCl LiH/LaH2 Mg TiC]、[Li/KCl-LiCl/LaH2 ZrH2 TiC]、[Li/KCl-LiCl LiH/LaH2 ZrH2 TiC]、[LiM/LiX-LiH/M1H2M2H2載體],其中LiM為Li、Li合金或Li化合物,LiX-LiH為鹵化鋰(X)之共熔混合物,其中其他共熔鹽電解質可取代,M1H2及M2H2為第一及第二氫化物,其中各自可來自以下之群:CeH2、DyH2、ErH2、GdH2、HoH2、LaH2、LuH2、NdH2、PrH2、ScH2、TbH2、TmH2及YH2、TiH2、VH、VH1.6、LaNi5H6、ZrCr2H3.8、LaNi3.55Mn0.4Al0.3Co0.75、ZrMn0.5Cr0.2V0.1Ni1.2、CrH、CrH2、NiH、CuH、YH2、YH3、ZrH2、NbH、NbH2、PdH0.7、LaH2、LaH3、TaH、鑭系元素氫化物(MH2(氟石)M=Ce、Pr、Nb、Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu;MH3(立方)M=Ce、Pr、Nd、Yb;MH3(六方)M=Sm、Gd、Tb、Dy、Ho、Er、Tm、Lu)、錒系元素氫化物(MH2(氟石)M=Th、Np、Pu、Am;MH3(六方)M=Np、Pu、Am,且MH3(立方複合結構)M=Pa、U)、鹼金屬氫化物、鹼土金屬氫化物、過渡金屬氫化物、內過渡金屬氫化物、稀土金屬氫化物、貴金屬氫化物、LiAlH4、LiBH4及類似氫化物。至少一種氫化物或金屬(LiH、Li、NaH、Na、KH、K、RbH、Rb、CsH或Cs)可充當觸媒或觸媒來源。反應形成低能量氫之觸媒或H可在電池操作期間形成。或者,經還原的遷移離子或其氫化物可充當觸媒或觸媒來源。
在一個實施例中,整數個H原子充當至少一個其他H原子之觸媒。或者,經還原的遷移離子或其氫化物可充當觸媒或觸媒來源。電池可包含可在陰極形成氫化物離子之H來源。H來源可為氫化物、可來自透過金屬(諸如金屬管或膜陰極)之氫、氫儲存材料、氫化材料(諸如氫化碳)及M-N-H系統化合物。電池可包含用於遷移H-離子之電解質。適合之電解質為共熔熔融鹽,諸如包含鹼金屬鹵化物之混合物的共熔熔融鹽,諸如LiCl-KCl或LiF-LiCl、NaH NaAlEt4及KH-KOH。陽極可包含氫化物離子、氫及質子中之至少一者之儲集體。氫化物離子可在陽極處氧化成H。H可充當形成低能量氫之反應物及觸媒。H儲集體可為以下中之至少一者:形成氫化物之金屬、氫儲存材料(諸如本發明之氫儲存材料)、M-N-H系統化合物、形成亞胺化物或胺化物中之至少一者之氮化物或亞胺化物、及層夾化合物(諸如碳、硫族化物及本發明之其他化合物,諸如鋰離子電池之層夾化合物)。一例示性電池在陰極包含金屬氫化物,諸如稀土金屬氫化物、TiH2或ZrH2,且在陽極包含可形成氫化物之金屬,諸如稀土金屬、Ti或Nb金屬粉末或鹼土金屬或鹼金屬。或者,陽極反應物包含諸如Li3N或活性碳之作為H儲集體之化合物。電池可進一步包含於任一半電池中之載體,諸如碳、碳化物或硼化物,諸如碳黑、TiC、WC、YC2、TiB2或MgB2。特定例示性電池為[Mg、Ca、Sr、Ba、稀土金屬粉末、氫儲存材料、R-Ni、Ti、Nb、Pd、Pt、碳、Li3N、Li2NH/熔融共熔鹽H-導體(諸如LiCl-KCl)/TiH2、ZrH2、MgH2、LaH2、CeH2、R-Ni、氫可透管H來源(諸如Ni(H2))或其他金屬(包括稀土金屬塗佈之Fe)]。
在一個實施例中,整數個H原子充當至少一個其他H原子之觸媒。或者,經還原的遷移離子或其氫化物可充當觸媒或觸媒來源。電池可包含可在陽極形成質子之H來源。H來源可為氫化物、可來自透過金屬(諸如金屬管或膜陰極)之氫、氫儲存材料、氫化材料(諸如氫化碳)及M-N-H系統化合物。電池可包含用於遷移H+離子之電解質。電解質可包含質子導體。系統可為水性或非水性的。陰極可包含氫化物離子、氫及質子中之至少一者之儲集體。遷移質子可在陰極處還原成H或H-。H可充當形成低能量氫之反應物及觸媒。H儲集體可為以下中之至少一者:形成氫化物之金屬、氫儲存材料(諸如本發明之氫儲存材料)、M-N-H系統化合物、形成亞胺化物或胺化物中之至少一者之氮化物或亞胺化物、及層夾化合物(諸如碳、硫族化物及本發明之其他化合物,諸如鋰離子電池之層夾化合物)。一例示性電池在陰極包含金屬氫化物,諸如稀土金屬氫化物、TiH2或ZrH2,且在陰極包含可形成氫化物之金屬,諸如稀土金屬、Ti或Nb金屬粉末或鹼土金屬或鹼金屬。或者,陰極反應物包含諸如Li3N或活性碳之作為H儲集體之化合物。電池可進一步包含於任一半電池中之載體,諸如碳、碳化物或硼化物,諸如碳黑、TiC、WC、YC2、TiB2或MgB2。特定例示性電池為[TiH2、ZrH2、MgH2、LaH2、CeH2、R-Ni、氫可透管H來源(諸如Ni(H2))或其他金屬(包括稀土金屬塗佈之Fe)/H+導體/Mg、Ca、Sr、Ba、稀土金屬粉末、氫儲存材料、R-Ni、Ti、Nb、Pd、Pt、碳、Li3N、Li2NH]。
對於使用H作為觸媒且可缺乏作為觸媒或觸媒來源之鹼金屬或鹼金屬氫化物之系統,可使用與此等物質反應之電解質,諸如MAlCl4(M為鹼金屬)。例示性電池為[Li/LiAlCl4/TiH2或ZrH2]、[K/KAlCl4/TiH2或ZrH2]、[Na/NaAlCl4/TiH2或ZrH2]、[Ti或Nb/NaAlCl4/Ni(H2)、TiH2、ZrH2或LaH2]及[Ni(H2)、TiH2、ZrH2或LaH2/NaAlCl4/Ti或Nb]。H觸媒電池可藉由分解及分別添加H2至氫化物及金屬產物來熱再生。或者,經還原的遷移離子或其氫化物可充當觸媒或觸媒來源。
在一個實施例中,電池包含諸如熔融共熔鹽電解質之電解質,該電解質進一步包含諸如LiH之氫化物。熔融共熔鹽電解質可包含鹼金屬鹵化物之混合物(諸如LiCl-KCl、LiF-LiCl、LiCl-CSCl或LiCl-KCl-CsCl)以及溶解在0.0001莫耳%至飽和之範圍內之LiH,或熔融共熔鹽電解質可包含LiH與一或多種鹼金屬鹵化物(LiCl、LiBr及LiI)之混合物。電解質可經選擇,以達到有利於形成低能量氫之反應的所需操作溫度。可控制溫度,以控制一或多種物質之活性、物質(諸如氫化物之混合物)之間的熱力學平衡或物質之溶解性(諸如LiH在電解質中之溶解性)。電池陰極及陽極可包含兩種不同材料、化合物或金屬。在一個實施例中,陰極金屬可形成比電解質之氫化物穩定之氫化物;而陽極金屬可形成不太穩定之氫化物。陰極可包含例如Ce、Dy、Er、Gd、Ho、La、Lu、Nd、Pr、Sc、Tb、Tm及Y中之一或多者。陽極可包含過渡金屬,諸如Cu、Ni、Cr或Fe,或不鏽鋼。氫可以H2氣體形式,藉由諸如透過膜(其中膜可包含陰極或陽極),或藉由諸如鼓泡穿過多孔電極(諸如由Ni多孔體(Celmet #6,Sumitomo Electric Industries,Ltd.)緊密結合組裝在外部氧化鋁管內組成之多孔電極)來供應。
在其他實施例中,電解質可包含遷移離子之離子(諸如Li+電解質,諸如鋰鹽,諸如六氟磷酸鋰)於有機溶劑(對於遷移離子為Li+之情況,諸如為碳酸二甲酯或碳酸二乙酯及碳酸伸乙酯)中。接著鹽橋可為玻璃,諸如浸透Li+電解質之硼矽玻璃,或為陶瓷,諸如Li+浸漬之β氧化鋁。電解質亦可包含陶瓷、聚合物及凝膠中之至少一者或多者。例示性電池包含(1)1 cm2、75 μm厚的含有7-10 mg金屬氫化物之複合正電極圓盤(諸如LaH2與TiC混合而成,或LaH2與15%碳SP(MM之碳黑)混合而成);(2)1 cm2 Li金屬盤,作為負電極;及(3)浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的Whatman GF/D硼矽玻璃纖維板,作為隔板/電解質。其他適合之電解質為於有機溶劑(諸如碳酸伸乙酯)中之六氟磷酸鋰(LiPF6)、六氟碑酸鋰單水合物(LiAsF6)、過氯酸鋰(LiClO4)、四氟硼酸鋰(LiBF4)及三氟甲磺酸鋰(LiCF3SO3)。另外,H2氣體可添加至電池中,諸如添加至陰極隔室中。
電池可包含作為觸媒或觸媒來源之離子,諸如鹼金屬離子,諸如作為Li觸媒來源之Li+。該離子來源可為相應金屬、鹼金屬合金或鹼金屬化合物。電池可包含鹽橋或隔板,且可進一步包含電解質及可能載體,諸如碳化物、硼化物或碳,如本發明中所給出之所有載體。在一個實施例中,m個H原子(m為整數)充當其他H原子之觸媒。H原子可維持在諸如碳化物、硼化物或碳之載體上。H來源可為H氣體、透過膜之H、氫化物或諸如胺化物或亞胺化物之化合物。在一個實施例中,載體具有大的表面積且相對於H來源(諸如氫化物或化合物)莫耳過量。例示性電池為[Li/浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的硼矽玻璃纖維板/TiC]、[Li/浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的硼矽玻璃纖維板/Fe粉]、[Li/浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚烯烴板/TiC 10 mol% LaH2]、[Li/浸透1 MLiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚烯烴板/WC 10 mol% LaH2]、[Li/浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚丙烯膜/TiC 10 mol%LaH2]、[Li/浸透1 M LiPF6電解質於1:1碳酸二甲酯/碳酸伸乙酯中之溶液的聚丙烯膜/WC 10 mol% LaH2]及[Li來源/鹽橋或隔板-電解質/載體及H來源]。
在一個實施例中,電池在放電或充電期間形成混合金屬M-N-H系統化合物,諸如胺化物、亞胺化物或氮化物,其中M為至少兩種以任何比率之金屬。適合之金屬為諸如Li、Na及K之鹼金屬及諸如Mg之鹼土金屬。或者,混合金屬M-N-H系統化合物為至少一個半電池之起始物質。在充電或放電期間,化合物反應,得到或失去H。在一個實施例中,H及觸媒之產生、空位藉由諸如取代、反應或置換之方式的產生、及H添加中的至少一者會引起低能量氫形成,產生電力。在後一情況下,一或多個H可充當另一H之觸媒。在實施例中,金屬離子(諸如鹼金屬離子)可為遷移離子。在其他實施例中,H-或H+可為遷移離子。電池可包含本發明之陽極、陰極、鹽橋、載體、基質及電解質,其中另一特徵為金屬為混合物。在其他實施例中,半電池反應物或產物包含以下至少兩者之混合物:M-N-H系統化合物、硼烷、胺基硼烷及硼烷胺、氫化鋁、鹼金屬鋁氫化物(alkali aluminum hydride)、鹼金屬硼氫化物、鹼金屬氫化物、鹼土金屬氫化物、過渡金屬氫化物、內過渡金屬氫化物及稀土金屬氫化物。電池可包含電解質及視情況選用之鹽橋,該鹽橋將電解質限定於至少一個半電池。電解質可為共熔鹽。電解質可為離子液體,其可在至少一個半電池中。離子液體可為本發明之至少一者,諸如硝酸乙基銨、摻雜磷酸二氫鹽之硝酸乙基銨(諸如摻雜約1%)、硝酸肼、NH4PO3-TiP2O7及LiNO3-NH4NO3之共溶鹽。其他適合之電解質可包含至少一種以下之群之鹽:LiNO3、三氟甲磺酸銨(Tf=CF3SO3 -)、三氟乙酸銨(TFAc=CF3COO-)、四氟硼酸銨(BF4 -)、甲烷磺酸銨(CH3SO3 -)、硝酸銨(NO3 -)、硫氰酸銨(SCN-)、磺胺酸銨(SO3NH2 -)、酸式氟化銨(HF2 -)、硫酸氫銨(HSO4 -)、雙(三氟甲烷磺醯基)亞胺化銨(TFSI=CF3SO2)2N-)、雙(全氟乙烷磺醯基)亞胺化銨(BETI=CF3CF2SO2)2N-)、硝酸肼,且可進一步包含混合物,諸如進一步包含NH4NO3、NH4Tf及NH4TFAc中之至少一者的共熔混合物。其他適合之溶劑包含諸如磷酸之酸。例示性電池為[M=Li、Na、K/烯烴隔板M=Li、Na、K PF6 EC DEC混合物、BASE或共熔鹽/M'NH2、M'2NH(M'=Li、Na、K,其中M不同於M')及視情況選用之電解質(諸如離子液體)或共熔鹽(諸如鹼金屬鹵化物鹽混合物)、氫化物(諸如M或M'AlH4或M或M'BH4、M或M'H或M或M'H2,其中M及M'=鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬)及載體(諸如碳、碳化物或硼化物)]及[至少M3N、M2NH、M'3N及M'2NH之群中之至少兩者的混合物(M、M'=Li、Na、K,其中M不同於M')/共熔鹽(諸如LiCl-KCl)/氫化物(諸如M或M'H,或M或M'H2(其中M及M'=鹼金屬、鹼土金屬、過渡金屬、內過渡金屬或稀土金屬),M或M'AlH4,或M或M'BH4)及載體(諸如碳、碳化物或硼化物)]。因為一或多個H充當觸媒,所以產物為H(1/p)、H2(1/p)及H-(/1/p)中之至少一者,其中p視充當其他H躍遷形成低能量氫(方程式(6-9)及(10))之觸媒的H原子數目而定。諸如H2(1/p)及H-(/1/p)之產物可藉由質子NMR分別根據方程式(20)及(12)確定。
本發明之其他適合之層夾化合物為LiNi1/3Al1/3Mn1/3O2、LiAl1/3-xCoxNi1/3Co1/3O2(0 x 1/3)、LiNixCo1-2xMnxO2(0 x 1/3)、LixAlyCo1-yO2、LixAlyMn1-yO2、LixAlyCozMn1-y-zO2、LiNi1/2Mn1/2O2及形成層夾化合物之金屬之其他組合及混合物。在如本發明中針對其他該等化合物所述的實施例中,Li可至少部分地經H置換或可至少部分至完全地移除。諸如Na之另一鹼金屬可取代Li。
本發明適合之氧(氫氧)化物具有八面體配位之M離子,諸如M3+=Al、Sc、Y、V、Cr、Mn、Fe、Co、Ni、Rh、Ga及In,以及其合金及混合物,諸如Ni1/2Co1/2及Ni1/3Co1/3Mn1/3。相應之例示性氧(氫氧)化物為AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(O H)及Ni1/3Co1/3Mn1/3O(OH)。氧(氫氧)化物可包含層夾之H。氧(氫氧)化物可具有強氫鍵結。具有強H鍵結之適合氧(氫氧)化物為包含Al、Sc、Y、V、Cr、Mn、Fe、Co、Ni、Rh、Ga及In以及其合金及混合物(諸如Ni1/2Co1/2及Ni1/3Co1/3Mn1/3)之群的氧(氫氧)化物。相應之例示性氧(氫氧)化物為AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)。例示性電池為[Li、Li合金、K、K合金、Na或Na合金/Celgard LP 30/AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH)之群中之至少一者]。陽極可包含諸如金屬之反應物,其在放電期間與水反應,形成氫氧化物。包含水性電解質及氧(氫氧)化物陰極之例示性CIHT電池為[PtC(H2)、PdC(H2)或R-Ni/KOH(6 M至飽和之水溶液)(其中該鹼可用作觸媒或觸媒來源,諸如K或2K+)或氫氧化銨/MO(OH)(M=金屬,諸如Co、Ni、Fe、Mn、Al)(諸如氧(氫氧)化物,諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))以及HY]、[NiAl/KOH/CoOOH]、[R-Ni/K2CO3(水溶液)/CoOOH]及[在放電期間與水形成氫氧化物或氧化物之金屬(諸如Al、Co、Ni、Fe或Ag金屬)/KOH水溶液(6 M至飽和)或氫氧化銨/MO(OH)(M=金屬,諸如Co、Ni、Fe、Mn、Al)(諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))或HY]。在實施例中,諸如氧(氫氧)化物及金屬硫族化物之化合物中層夾之H包含H+與鍵結於O之共價O-H氫中之至少一者。藉由至少還原遷移離子或還原金屬離子(諸如金屬離子M3+還原成M2+)中之一者,實現陰極材料之中性。在其他實施例中,另一硫族化物取代O。在一個實施例中,O-HH距離可在約2至3範圍內且較佳在約2.2至2.7範圍內。在一個實施例中,H鍵結之陰極反應物(諸如氧(氫氧)化物或金屬硫族化物)進一步包含一些結晶水,該結晶水提供參與H鍵結、改變晶體結構(其中該改變可增加晶體中之H鍵結)及增加形成低能量氫之速率中的至少一者。H鍵結對溫度敏感;因此,在一個實施例中,控制H鍵結之反應物的溫度以控制低能量氫反應速率,因而控制CIHT電池之電壓、電流、功率及能量之一。具有氧(氫氧)化物陰極之電池可在由加熱器控制之高溫下操作。
在一個實施例中,H層夾於硫族化物中,其中反應起起低能量氫之形成,且釋放之能量又貢獻給電池能量。或者,遷移離子與H層夾之硫族化物反應,其中反應引起低能量氫之形成,且釋放之能量又貢獻給電池能量。遷移離子可為OH-、H+、M+(M=鹼金屬)及H-中之至少一者。能夠層夾H且在放電期間進行H層夾之硫族化物反應物及至少部分地層夾H且在放電期間進行諸如H置換之反應之硫族化物反應物的變換為本發明之實施例,其中硫族化物反應物及其他反應物(諸如參與層夾或置換反應之反應物)為可由熟習此項技術者確定之本發明反應物。
特定言之,遷移離子可為OH-,其中陽極包含H來源,諸如氫化物(諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及稀土金屬氫化物中之至少一者)及R-Ni,陰極包含能夠層夾H之層狀硫族化物,且電解質為OH-導體,諸如鹼性水溶液,諸如KOH水溶液,其中該鹼可充當觸媒或觸媒來源,諸如K或2K+。電池可進一步包含OH-可透隔板,諸如CG3401。例示性電池為[氫化物(諸如R-Ni,諸如(4200#,漿狀物))或氫來源(諸如PtC(H2)或PdC(H2))/KOH(6 M至飽和)+CG3401/能夠層夾H之層狀硫族化物(諸如CoO2、NiO2、TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、VSe2、WSe2及MoTe2)]。或者,陰極反應物包含H層夾之層狀硫族化物。例示性電池為[氫化物(諸如R-Ni(4200#,漿狀物))或氫來源(諸如PtC(H2)或PdC(H2))/KOH(6 M至飽和)+CG3401/H層夾之層狀硫族化物(諸如CoOOH、NiOOH、HTiS2、HZrS2、HHfS2、HTaS2、HTeS2、HReS2、HPtS2、HSnS2、HSnSSe、HTiSe2、HZrSe2、HHfSe2、HTaSe2、HTeSe2、HReSe2、HPtSe2、HSnSe2、HTiTe2、HZrTe2、HVTe2、HNbTe2、HTaTe2、HMoTe2、HWTe2、HCoTe2、HRhTe2、HIrTe2、HNiTe2、HPdTe2、HPtTe2、HSiTe2、HNbS2、HTaS2、HMoS2、HWS2、HNbSe2、HNbSe3、HTaSe2、HMoSe2、HVSe2、HWSe2及HMoTe2)]。
遷移離子可為H+,其中陽極包含H來源,諸如氫氣與解離體(諸如Pd/C、Pt/C、Ir/C、Rh/C或Ru/C),陰極包含能夠層夾H之層狀硫族化物,且電解質為H+導體。例示性電池為[H2與Pd/C、Pt/C、Ir/C、Rh/C或Ru/C/H+導體(諸如酸性水性電解質、離子液體、納菲薄膜或固體質子導體)/能夠層夾H之層狀硫族化物(諸如CoO2、NiO2、TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、VSe2、WSe2及MoTe2)]。或者,陰極反應物包含H層夾之層狀硫族化物。例示性電池為[H2與Pd/C、Pt/C、Ir/C、Rh/C或Ru/C/H+導體(諸如酸性水性電解質、離子液體、納菲薄膜或固體質子導體)/H層夾之層狀硫族化物(諸如CoOOH、NiOOH、HTiS2、HZrS2、HHfS2、HTaS2、HTeS2、HReS2、HPtS2、HSnS2、HSnSSe、HTiSe2、HZrSe2、HHfSe2、HTaSe2、HTeSe2、HReSe2、HPtSe2、HSnSe2、HTiTe2、HZrTe2、HVTe2、HNbTe2、HTaTe2、HMoTe2、H WTe2、HCoTe2、HRhTe2、HIrTe2、HNiTe2、HPdTe2、HPtTe2、HSiTe2、HNbS2、HTaS2、H MoS2、HWS2、HNbSe2、HNbSe3、HTaSe2、HMoSe2、HVSe2、HWSe2及HMoTe2)]。
遷移離子可為H-,其中陰極包含H來源,諸如氫化物(諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及稀土金屬氫化物中之至少一者)及R-Ni、及氫氣與解離體(諸如Pd/C、Pt/C、Ir/C、Rh/C或Ru/C)、及氫氣與氫可透膜中之至少一者,陰極包含能夠層夾H之層狀硫族化物,且電解質為H-導體,諸如熔融共溶鹽,諸如鹼金屬鹵化物之混合物。例示性電池為[能夠層夾H之層狀硫族化物(諸如CoO2、NiO2、TiS2、ZrS2、HfS2、TaS2、TeS2、ReS2、PtS2、SnS2、SnSSe、TiSe2、ZrSe2、HfSe2、TaSe2、TeSe2、ReSe2、PtSe2、SnSe2、TiTe2、ZrTe2、VTe2、NbTe2、TaTe2、MoTe2、WTe2、CoTe2、RhTe2、IrTe2、NiTe2、PdTe2、PtTe2、SiTe2、NbS2、TaS2、MoS2、WS2、NbSe2、NbSe3、TaSe2、MoSe2、VSe2、WSe2及MoTe2)/氫化物傳導熔融鹽(諸如LiCl-KCl)/H來源(諸如氫化物(諸如TiH2、ZrH2、LaH2或CeH2)或H2可透陰極與H2(諸如Fe(H2)、Ta(H2)或Ni(H2)))]。或者,陽極反應物包含H層夾之層狀硫族化物。例示性電池為[H層夾之層狀硫族化物(諸如CoOOH、NiOOH、HTiS2、HZrS2、HHfS2、HTaS2、HTeS2、HReS2、HPtS2、HSnS2、HSnSSe、HTiSe2、HZrSe2、HHfSe2、HTaSe2、HTeSe2、HReSe2、HPtSe2、HSnSe2、HTiTe2、HZrTe2、HVTe2、HNbTe2、HTaTe2、HMoTe2、HWTe2、HCoTe2、HRhTe2、HIrTe2、HNiTe2、HPdTe2、HPtTe2、HSiTe2、HNbS2、HTaS2、HMoS2、HWS2、HNbSe2、HNbSe3、HTaSe2、HMoSe2、HVSe2、HWSe2及HMoTe2)/氫化物傳導熔融鹽(諸如LiCl-KCl)/H來源(諸如氫化物(諸如TiH2、ZrH2、LaH2或CeH2)或H2可透陰極與H2(諸如Fe(H2)、Ta(H2)或Ni(H2)))]。
遷移離子可為M+(M=鹼金屬),其中陽極包含M+來源,諸如M金屬或合金,諸如Li、Na、K,或合金,諸如LiC、Li3Mg或LiAl,陰極包含H層夾之層狀硫族化物,且電解質為M+導體。例示性電池為[鹼金屬或鹼金屬來源M(諸如Li、LiC或Li3Mg)/M+導體(諸如Celgard以及有機溶劑)及M鹽(諸如LP 30)/H層夾之層狀硫族化物(諸如CoOOH、NiOOH、HTiS2、HZrS2、HHfS2、HTaS2、HTeS2、HReS2、HPtS2、HSnS2、HSnSSe、HTiSe2、HZrSe2、HHfSe2、HTaSe2、HTeSe2、HReSe2、HPtSe2、HSnSe2、HTiTe2、HZrTe2、HVTe2、HNbTe2、HTaTe2、H MoTe2、HWTe2、HCoTe2、HRhTe2、HIrTe2、HNiTe2、HPdTe2、HPtTe2、HSiTe2、HNbS2、HTaS2、HMoS2、HWS2、HNbSe2、HNbSe3、HTaSe2、HMoSe2、HVSe2、HWSe2及HMoTe2)]。
在其他實施例中,H-或H+可遷移且分別氧化或還原,其中H併入硫族化物中,不一定作為層夾之H。例如H可還原氧化物。例示性電池為[氫化物(諸如R-Ni(4200#,漿狀物))或氫來源(諸如PtC(H2)或PdC(H2))/KOH(6 M至飽和)+CG3401/SeO2、TeO2或P2O5]、[H2與Pd/C、Pt/C、Ir/C、Rh/C或Ru/C/H+導體(諸如酸性水性電解質、離子液體、納菲薄膜或固體質子導體)/SeO2、TeO2或P2O5]及[SeO2、TeO2或P2O5/H-傳導電解質(諸如熔融共熔鹽,諸如LiCl-KCl)/氫化物(諸如ZrH2、TiH2、LaH2或CeH2)或H可透陰極與H2(諸如Ni(H2)及Fe(H2))]。
在實施例中,為以下中之至少一者:(i)羥基之OH鍵或氫化物離子(OH-)之OH鍵斷裂形成H,使得一些H進一步反應形成低能量氫;(ii)H與化合物之O反應形成OH或OH-基團,使得一些H反應形成過渡狀態之低能量氫,而非形成OH或OH-基團;及(iii)H由H來源以及OH或OH-形成,其中後者與元素或化合物反應且至少一些H進一步反應形成低能量氫。陽極及電解質包含本發明之陽極及電解質。遷移離子可為金屬離子(M+)(諸如鹼金屬離子),或H物質(諸如OH-、H-或H+),其中陰極與陽極反應中之至少一者涉及此等物質中之一者。OH-、H-或H+以及H之來源可為水,且H-或H+之來源可為氫化物,其中陽極或陰極反應物中之至少一者可為氫化物。陽極反應可形成H+,包含H或H-與OH-反應形成H2O,包含H-反應形成H,或包含諸如金屬之元素之氧化。陰極反應可涉及M+反應形成M、H+反應形成H或H2O反應形成OH-。陽極可為諸如鹼金屬之金屬或形成氫氧化物之金屬的來源或諸如氫化物之H來源。諸如水性電解質之電解質可為H、H+、H2O及OH-中之至少一者之來源。電解質可為鹽及有機溶劑、水溶液(諸如鹼之水溶液)或熔融鹽(諸如共溶鹽,諸如鹼金屬鹵化物之混合物)。
在上述有關H-O鍵斷裂之情況(i)下,H可藉由與在陰極由相應遷移離子還原形成之金屬反應而脫離。金屬原子可為觸媒或觸媒來源,諸如Li、Na或K。OH或OH-之氧接著可形成具有OH或OH-基團之來源的非常穩定之化合物。非常穩定之化合物可為氧化物,諸如過渡金屬、內過渡金屬、鹼金屬、鹼土金屬或稀土金屬之氧化物,以及另一穩定氧化物,諸如Al、B、Si及Te之氧化物之一。例示性電池為[Li、Na或 K或其來源(諸如合金)/Celgard LP 30/稀土金屬或鹼土金屬氫氧化物(諸如La(OH)3、Ho(OH)3、Tb(OH)3、Yb(OH)3、Lu(OH)3、Er(OH)3、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2)或氧(氫氧)化物(諸如HoO(OH)、TbO(OH)、YbO(OH)、LuO(OH)、ErO(OH)、YO(OH)、AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))]。在上述情況(ii)下,諸如H+、H-或H2O之H來源可在電極進行還原或氧化,自化合物之O基團形成OH基團,或直接自諸如H2O之來源形成OH或OH-基團。包含形成羥基或氫氧根基中之至少一者之反應物的化合物可為氧化物或氧(氫氧)化物。氧化物可為鹼金屬層夾之層狀氧化物、缺乏鹼金屬之鹼金屬層夾之層狀氧化物及缺乏鹼金屬之相應層狀氧化物中的至少一者。適合層狀氧化物或金屬層夾氧化物為本發明之彼等氧化物,諸如Li離子電池之彼等氧化物,諸如CoO2、NiO2、LixW O3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4,其中該化合物可缺乏至少一些或所有Li。在其他實施例中,另一層狀硫族化物可取代氧化物,且另一鹼金屬可取代所給出之鹼金屬。例示性電池為[氫化物(諸如R-Ni)/鹼之水溶液(諸如KOH(6 M至飽和),其中鹼可用作觸媒或觸媒來源,諸如K或2K+)/氧(氫氧)化物(諸如HoO(OH)、TbO(OH)、YbO(OH)、LuO(OH)、ErO(OH)、YO(OH))]、[氫化物(諸如R-Ni)/鹼之水溶液(諸如KOH(6 M至飽和))/氧(氫氧)化物(諸如AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))]、[氫化物(諸如R-Ni)/鹼之水溶液(諸如KOH(6 M至飽和))/氧化物(諸如MgO、CaO、SrO、BaO、TiO2、SnO2、Na2O、K2O、MNiO2(M=鹼金屬,諸如Li或Na)及CoO2、NiO2、LixW O3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4,其中該化合物可缺乏至少一些或所有Li)或Fe(VI)鐵酸鹽(諸如K2FeO4或BaFeO4)]、[PtC(H2)、PdC(H2)或R-Ni/質子導體(諸如H+Al2O3)/稀土金屬或鹼土金屬氫氧化物(諸如La(OH)3、Ho(OH)3、Tb(OH)3、Yb(OH)3、Lu(OH)3、Er(OH)3、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2)或氧(氫氧)化物(諸如HoO(OH)、TbO(OH)、YbO(OH)、LuO(OH)、ErO(OH)、YO(OH)、AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))或氧化物(諸如MgO、CaO、SrO、BaO、TiO2、SnO2、Na2O、K2O、MNiO2(M=鹼金屬,諸如Li或Na)及CoO2、NiO2、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4,其中該化合物可缺乏至少一些或所有Li)或Fe(VI)鐵酸鹽(諸如K2FeO4或BaFeO4)]及[稀土金屬或鹼土金屬氫氧化物(諸如La(OH)3、Ho(OH)3、Tb(OH)3、Yb(OH)3、Lu(OH)3、Er(OH)3、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2)或氧(氫氧)化物(諸如HoO(OH)、TbO(OH)、YbO(OH)、LuO(OH)、ErO(OH)、YO(OH)、AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))或氧化物(諸如MgO、CaO、SrO、BaO、TiO2、SnO2、Na2O、K2O、MNiO2(M=鹼金屬,諸如Li或Na)及CoO2、.NiO2、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4,其中該化合物可缺乏至少一些或所有Li)或Fe(VI)鐵酸鹽(諸如K2FeO4或BaFeO4)/LiCl-KCl/氫化物(諸如TiH2、ZrH2、LaH2或CeH2)]。或者,在上述情況(iii)下,OH-基團可與諸如金屬(諸如過渡金屬、內過渡金屬、鹼金屬、鹼土金屬及稀土金屬以及Al)之元素形成氫氧化物。例示性電池為[Al、Co、Ni、Fe、Ag/鹼之水溶液(諸如KOH(6M至飽和),其中鹼可用作觸媒或觸媒來源,諸如K或2K+)/氧化物(諸如MgO、CaO、SrO、BaO、TiO2、SnO2、Na2O、K2O、MNiO2(M=鹼金屬,諸如Li或Na)及CoO2、NiO2、LixWO3、LixV2O5、LiCoO2、LiFePO4、LiMn2O4、LiNiO2、Li2FePO4F、LiMnPO4、VOPO4系統、LiV2O5、LiMgSO4F、LiMSO4F(M=Fe、Co、Ni、過渡金屬)、LiMPO4F(M=Fe、Ti)、Lix[Li0.33Ti1.67O4]或Li4Ti5O12、層狀過渡金屬氧化物(諸如Ni-Mn-Co氧化物,諸如LiNi1/3Co1/3Mn1/3O2及Li(LiaNixCoyMnz)O2)及LiTi2O4,其中該化合物可缺乏至少一些或所有Li)或Fe(VI)鐵酸鹽(諸如K2FeO4或BaFeO4)或氧(氫氧)化物(諸如HoO(OH)、TbO(OH)、YbO(OH)、LuO(OH)、ErO(OH)、YO(OH)、AlO(OH)、ScO(OH)、YO(OH)、VO(OH)、CrO(OH)、MnO(OH)(α-MnO(OH)錳榍石及γ-MnO(OH)水錳礦)、FeO(OH)、CoO(OH)、NiO(OH)、RhO(OH)、GaO(OH)、InO(OH)、Ni1/2Co1/2O(OH)及Ni1/3Co1/3Mn1/3O(OH))]。在氧(氫氧)化物反應形成氫氧化物中,亦可發生上述低能量氫形成機制(ii)。
在一個實施例中,至少一個半電池之反應物經磁化。諸如磁化粒子之磁性材料(諸如鐵、亞力可(Alnico)、稀土金屬(諸如釹或釤-鈷)或其他該等磁性粒子)可與反應物混合。在一個實施例中,磁性粒子不參與半電池反應,但提供磁場來源。在另一實施例中,反應物經在反應物外部之磁體磁化。磁化可增加低能量氫反應之速率。
反應物H及觸媒(H包括於本發明之術語觸媒內)由CIHT電池之離子及電子遷移形成,以引起低能量氫形成。H躍遷至低於n=1的狀態會導致連續輻射之發射。在一個實施例中,發射轉化為陽極上電子之流動。正性陽極可氧化陽極半電池反應物,且電子可還原陰極半電池反應物。例示性電池為陽極與光輔助電解材料(諸如半導體,諸如SrTiO3)接觸之本發明電池,諸如[Na SrTiO3/BASE/NaOH]、[Li SrTiO3/烯烴隔板LP 40/CoO(OH)]、[CNa與CyNaHx中之至少一者、SrTiO3/Na鹽水溶液/CNa、Cy’NaHx'、HY、R-Ni及Na4Mn9O18中之至少一者+碳(H2)]、[LiV2O5 CB(H2)或R-Ni SrTiO3/LiNO3水溶液/CB(H2) LiMn2O4]及[LiV2O5SrTiO3/LiOH水溶液/R-Ni]。
在一個實施例中,由所揭示之低能量氫反應混合物在氫催化下形成之低能量氫充當氧化劑。低能量氫與電子在燃料電池之陰極405反應,形成低能量氫氫化物離子H -(1/p)。還原劑與陽極410反應,供應電子,流過負載425,流至陰極405,且適合之陽離子藉由自陽極隔室402經由鹽橋420遷移至陰極隔室401,來形成電路。或者,諸如低能量氫氫化物離子之適合陰離子藉由自陰極隔室401經由鹽橋420遷移至陽極隔室402,來形成電路。
電池之陰極半反應為:
陽極半反應為:
還原劑→還原劑++e - (419)
總電池反應為:
還原劑可為任何電化學還原劑,諸如鋅。在一個實施例中,還原劑具有高氧化電位且陰極可為銅。在一個實施例中,還原劑包括質子來源,其中質子可藉由自陽極隔室402經由鹽橋420遷移至陰極隔室401來形成電路,或氫化物離子可以反方向遷移。質子來源包括氫、包含氫原子之化合物、分子及/或質子,諸如結合能增加之氫化合物、水、分子氫、氫氧化物、普通氫化物離子、氫氧化銨及HX,其中X -為鹵離子。在一個實施例中,包含質子來源之還原劑之氧化產生質子及在操作燃料電池時可排出之氣體。
在另一燃料電池實施例中,低能量氫來源430與容器400經由低能量氫通道460連通。低能量氫來源430為根據本發明之產生低能量氫之電池。在一個實施例中,陰極隔室供有藉由自本文所揭示之反應物進行低能量氫反應所產生的低能量氫或結合能增加之化合物。低能量氫亦可自氧化劑來源藉由熱分解或化學分解結合能增加之氫化合物來供應給陰極。由低能量氫反應物產生之氧化劑430之一例示性來源包含,其具有陽離子M n +(其中n為整數)結合於低能量氫氫化物離子,使得陽離子或原子M ( n - 1)+之結合能小於低能量氫氫化物離子之結合能。其他適合之氧化劑進行還原或反應,產生以下至少一者:(a)化學計量不同於反應物之結合能增加之氫化合物;(b)具有相同化學計量且包含一或多種結合能增加之物質(其結合能高於反應物之相應物質)的結合能增加之氫化合物;(c)低能量氫或低能量氫氫化物;(d)結合能高於反應物二.低能量氫之二低能量氫;或(e)結合能高於反應物低能量氫之低能量氫。
在某些實施例中,除僅形成低能量氫時所消耗之氫需要置換外,使反應物再生且維持形成較低能量氫之反應的本文所揭示之電力、化學物質、電池及燃料電池系統可閉合,其中消耗之氫燃料可自水電解獲得。燃料電池可用於廣泛應用,諸如發電,諸如公用電力、熱電共生、原動力、船舶動力及航空。在後一情況下,CIHT電池可對電池充電,作為電動車輛之電力儲存。
電力可藉由控制陰極及陽極半電池反應物及反應條件來控制。適合之控制參數為氫壓力及操作溫度。燃料電池可為包含堆疊之複數個電池的部件。燃料電池部件可堆疊且可藉由各接合點之互連來串聯互連。互連可為金屬或陶瓷。適合之互連為導電金屬、陶瓷及金屬陶瓷複合物。
在一個實施例中,在視情況選用之外加電壓下電池之極性週期性顛倒,以移除氧化還原反應產物及低能量氫產物中之至少一者,從而消除產物抑制。產物亦可藉由物理及熱法(分別諸如超音波及加熱)移除。
X. 化學反應器
本發明亦針對用於產生本發明之結合能增加之氫化合物,諸如二低能量氫分子及低能量氫氫化物化合物的其他反應器。其他催化產物為電力及視情況存在之電漿及光,視電池類型而定。此類反應器在下文中稱為「氫反應器」或「氫電池」。氫反應器包含用於產生低能量氫之電池。用於產生低能量氫之電池可採取化學反應器或氣體燃料電池(諸如氣體放電電池、電漿炬電池或微波動力電池)及電化學電池的形式。用於產生低能量氫之電池之例示性實施例可採取液體燃料電池、固體燃料電池、非均勻燃料電池及CIHT電池的形式。此等電池各自包含:(i)原子氫來源;(ii)至少一種選自用於產生低能量氫之固體觸媒、熔融觸媒、液體觸媒、氣態觸媒或其混合物的觸媒;及(iii)使氫與觸媒反應以產生低能量氫之容器。如本文所用及如本發明所涵蓋,除非另外說明,否則術語「氫」不僅包括氕(1 H),而且包括氘(2 H)及氚(3 H)。在使用氘作為低能量氫反應之反應物的情況下,預期有相對痕量之非均勻燃料及固體燃料之氚或氦產物。
因為鹼金屬在氣相中為共價雙原子分子,所以在一個實施例中,形成結合能增加之氫化合物的觸媒由來源與至少一種其他元素反應而形成。藉由將金屬K或Li分散於諸如KX或LiX之鹼金屬鹵化物中,可產生諸如K或Li之觸媒,以形成KHX、LiHX(其中X為鹵素)。亦可藉由經汽化K2或Li2與原子H反應,分別形成KH及K或LiH及Li,產生觸媒K或Li。結合能增加之氫化合物可為MHX,其中M為鹼金屬,H為低能量氫氫化物,且X為帶一個負電荷之離子,X較佳為鹵素及之一。在一個實施例中,形成KHI或KHCl之反應混合物(其中H為低能量氫氫化物)包含分別經KX(X=Cl、I)覆蓋之K金屬及解離體(較佳鎳金屬,諸如鎳網及R-Ni)。藉由在添加氫下維持反應混合物在高溫下,較佳在400-700℃之範圍內來進行反應。氫壓力較佳維持在約5 PSI之計示壓力下。因此,MX置放於K上,使得K原子經由鹵化物晶格遷移且鹵化物用以分散K且充當K2之解離體,其在界面處與來自解離體(諸如鎳網或R-Ni)之H反應,形成KHX。
用於合成低能量氫氫化物之適合反應混合物包含觸媒、氫來源、氧化劑、還原劑及載體之群中之至少兩種物質,其中氧化劑為硫、磷及氧中之至少一者之來源,諸如SF 6SSO 2、SO3、S2O5Cl2、F5SOF、M 2 S 2 O 8、SxXy(諸如S2Cl2、SCl2、S2Br2、S2F2)、CS2、Sb2S5、SOxXy(諸如SOCl2、SOF2、SO2F2、SOBr2)、P、P2O5、P2S5、PxXy(諸如PF3、PCl3、PBr3、PI3、PF5、PCl5、PBr4F或PCl4F)、POxXy(諸如POBr3、POI3、POCl3或POF3)、PSxXy(諸如PSBr3、PSF3、PSCl3)、磷-氮化合物(諸如P3N5、(Cl2PN)3或(Cl2PN)4、(Br2PN)x(M為鹼金屬,x及y為整數,X為鹵素))、O2、N2O及TeO2。氧化劑可進一步包含鹵素、較佳氟之來源,諸如CF4、NF3或CrF2。混合物亦可包含吸氣劑作為磷或硫之來源,諸如MgS及MHS(M為鹼金屬)。適合吸氣劑為產生普通H之高磁場位移之NMR峰及位於普通H峰之高磁場之低能量氫氫化物峰的原子或化合物。適合吸氣劑包含元素S、P、O、Se及Te或包含含有S、P、O、Se及Te之化合物。用於低能量氫氫化物離子之適合吸氣劑的一般性質在於其形成呈元素形式、呈摻雜元素形式或與捕獲及穩定低能量氫氫化物離子之其他元素的鏈、籠或環。較佳可在固體或溶液NMR中觀測到H-(1/p)。在另一實施例中,NaH、BaH或HCl用作觸媒。適合反應混合物包含MX及M'HSO4,其中M及M'分別為鹼金屬,較佳Na及K,且X為鹵素,較佳Cl。
包含以下至少一者之反應混合物為用於產生電力以及產生較低能量氫化合物之適合系統:(1)NaH觸媒、MgH2、SF6及活性碳(AC);(2)NaH觸媒、MgH2、S及活性碳(AC);(3)NaH觸媒、MgH2、K2S2O8、Ag及AC;(4)KH觸媒、MgH2、K2S2O8及AC;(5)MH觸媒(M=Li、Na、K)、Al或MgH2、O2、K2S2O8及AC;(6)KH觸媒、Al、CF4及AC;(7)NaH觸媒、Al、NF3及AC;(8)KH觸媒、MgH2、N2O及AC;(9)NaH觸媒、MgH2、O2及活性碳(AC);(10)NaH觸媒、MgH2、CF4及AC;(11)MH觸媒、MgH2(M=Li、Na或K)、P2O5(P4O10)及AC;(12)MH觸媒、MgH2、MNO3(M=Li、Na或K)及AC;(13)NaH或KH觸媒、Mg、Ca或Sr、過渡金屬鹵化物(較佳FeCl2、FeBr2、NiBr2、MnI2)或稀土金屬鹵化物(諸如EuBr2)及AC;及(14)NaH觸媒、Al、CS2及AC。在上文給出之例示性反應混合物之其他實施例中,觸媒陽離子包含Li、Na、K、Rb或Cs之一且反應混合物之其他物質係選自反應1至14之物質。反應物可呈任何所需比率。
低能量氫反應產物為質子NMR峰分別朝普通分子氫或氫化氫之質子NMR峰之高磁場移位的氫分子與氫化物離子中之至少一者。在一個實施例中,氫產物結合除氫以外之元素,其中質子NMR峰朝具有與該產物相同之分子式的普通分子、物質或化合物之質子NMR峰的高磁場移位,或普通分子、物質或化合物在室溫下不穩定。
在用NMR溶劑、較佳氘化DMF萃取產物混合物後,使用液體NMR,可分別在約1.22 ppm及-3.86 ppm下觀測到具有較佳1/4態之產物分子低能量氫及低能量氫氫化物離子。
在另一實施例中,電力及結合能增加之氫化合物由包含兩種或兩種以上下列物質之反應混合物產生:LiH、NaH、KH、Li、Na、K、H2、金屬或金屬氫化物還原劑(較佳MgH2或Al粉末)、載體(諸如碳,較佳活性碳)及硫、磷及氧中之至少一者之來源(較佳S或P粉末、SF6、CS2、P2O5及MNO3(M為鹼金屬))。反應物可呈任何莫耳比率。反應混合物較佳包含8.1莫耳%MH、7.5莫耳% MgH2或Al粉末、65莫耳% AC及19.5莫耳%S(M為Li、Na或K),其中各物質之莫耳%可在針對各物質所給出之莫耳%加上或減去因子10的範圍內變化。適合反應混合物包含呈此等莫耳比率之NaH、MgH2或Mg、AC及S粉末。在用NMR溶劑、較佳氘化DMF萃取產物混合物後,使用液體NMR,可分別在約1.22 ppm及-3.86 ppm下觀測到具有較佳1/4態之產物分子低能量氫及低能量氫氫化物離子。
在另一實施例中,電力及結合能增加之氫化合物由包含NaHS之反應混合物產生。低能量氫氫化物離子可自NaHS分離。在一個實施例中,固態反應發生在NaHS內,形成H-(1/4),H-(1/4)可與質子來源(諸如溶劑,較佳H2O)進一步反應,形成H2(1/4)。
形成分子低能量氫之例示性反應混合物為8 g NaH+8 g Mg+3.4 g LiCl、8 g NaH+8 g Mg+3.4 g LiCl+32 g WC、4 g AC+1 g MgH2+1 g NaH+0.01 mol SF6、5 g Mg+8.3 g KH+2.13 g LiCl、20 g TiC+5 g NaH、3 g NaH+3 g Mg+10 g C奈米、5 g NaH+20 g Ni2B、8 g TiC+2 g Mg+0.01 g LiH+2.5 g LiCl+3.07 g KCl、4.98 g KH+10 g C奈米、20 g TiC+8.3 gKH+5 g Mg+0.35 g Li、5 g Mg+5 g NaH+1.3 g LiF、5 g Mg+5 g NaH+5.15 g NaBr、8 g TiC+2 g Mg+0.01 g NaH+2.5 g LiCl+3.07 g KCl、20 g KI+1 g K+15 g R-Ni、8 g NaH+8 g Mg+16.64 g BaCl2+32 g WC、8 g NaH+8 g Mg+19.8 g SrBr2+32 g WC、2.13 g LiCl+8.3 g KH+5 g Mg+20 g MgB2、8 g NaH+8 g Mg+12.7 g SrCl2+32 g WC、8 g TiC+2 g Mg+0.01 g LiH+5.22 g LiBr+4.76 g KBr、20 g WC+5 g Mg+8.3 g KH+2.13 g LiCl、12.4 g SrBr2+8.3 g KH+5 g Mg+20 g WC、2 g NaH+8 g TiC+10 g KI、3.32 g+KH+2 g Mg+8 g TiC 2.13 g+LiCl、8.3 g KH+12 g Pd/C、20 g TiC+2.5 g Ca+2.5 g CaH2、20 g TiC+5 g Mg、20 g TiC+8.3 g KH、20 g TiC+5 g Mg+5 g NaH、20 g TiC+5 g Mg+8.3 g KH+2.13 g LiCl、20 g TiC+5 g Mg+5 g NaH+2.1 g LiCl、12 g TiC+0.1 g Li+4.98 g KH、20 g TiC+5 g Mg+1.66 g LiH、4.98 g KH+3 g NaH+12g TiC、1.66 g KH+1 g Mg+4 g AC+3.92 g EuBr3、1.66 g KH+10 g KCl+1 g Mg+3.92 g EuBr3、5 g NaH+5 g Ca+20 g CA II-300+15.45 g MnI2、20 g TiC+5 g Mg+5 g NaH+5 g Pt/Ti、3.32 g KH+2 g Mg+8 g TiC+4.95 g SrBr2及8.3 g KH+5 g Mg+20 g TiC+10.4 g BaCl2。反應可在100℃至1000℃之溫度範圍內進行,歷時1分鐘至24小時。例示性溫度及時間為500℃或24小時。
在一個實施例中,低能量氫氫化物可經純化。純化方法可包含使用適合溶劑萃取及再結晶中之至少一者。該方法可進一步包含層析及熟習此項技術者已知之用於分離無機化合物之其他技術。
在一個實施例中,產物分子低能量氫捕獲及儲存於低溫冷卻膜(諸如液氮冷卻之聚酯薄膜(Mylar))中。在一個實施例中,分子低能量氫H2(1/p)、較佳H2(1/4)為經進一步還原形成相應氫化物離子之產物,該等氫化物離子可用於諸如氫化物電池及表面塗層之應用。分子低能量氫鍵可由碰撞法斷裂。H2(1/p)可經由與電漿或電子束中離子或電子高能碰撞而解離。接著解離之低能量氫原子可反應形成所需氫化物離子。
在一熔融鹽實施例中,電力及結合能增加之氫化合物由包含M-N-H系統之反應混合物產生,其中M可為鹼金屬。適合之金屬為Li、Na及K。舉例而言,反應混合物可包含於熔融鹽(諸如熔融共熔鹽,諸如LiCl-KCl共熔混合物)中之LiNH2、Li2NH、Li3N及H2中之至少一者。一例示性反應混合物為於熔融共熔鹽(諸如LiCl-KCl)中之LiNH2(400-500℃)。分子低能量氫及低能量氫氫化物產物可用諸如d-DMF之溶劑萃取且由質子NMR分析,以鑑別低能量氫物質產物。
在一個實施例中,低能量氫氫化物化合物由CIHT電池或陰極與陽極半電池反應物之反應混合物形成。用於形成低能量氫及低能量氫氫化物之例示性CIHT電池或陰極與陽極半電池反應物之反應混合物為[M/KOH(飽和水溶液)+CG3401/蒸汽碳+空氣或O2](M=R-Ni、Zn、Sn、Co、Sb、Pb、In、Ge)、[NaOH Ni(H2)/BASE/NaCl MgCl2]、[Na/BASE/NaOH]、[LaNi5H6/KOH(飽和水溶液)+CG3401/蒸汽碳+空氣或O2]、[Li/Celgard LP 30/CoO(OH)]、[Li3Mg/LiCl-KCl/TiH2或ZrH2]、[Li3N TiC/LiCl-KCl/CeH2 CB]及[Li/LiCl-KCl/LaH2]。在用NMR溶劑、較佳氘化DMF萃取產物混合物後,使用液體NMR,可分別在約1.22 ppm及-3.86 ppm下觀測到具有較佳1/4態之產物分子低能量氫及低能量氫氫化物離子。
陽極可為吸氣劑及遷移離子(諸如Li+)之來源。適合之陽極為Li3Mg。陰極可為經改質之碳,諸如HNO3層夾碳,且可進一步包含氫。HNO3可與低能量氫氫化物離子根據其穩定性以較慢速率反應,以選擇具有高p量子數之低能量氫氫化物離子,諸如低能量氫氫化物離子H-(1/9)。
在一個實施例中,低能量氫物質(諸如分子低能量氫或低能量氫氫化物離子)藉由H與OH及H2O觸媒中之至少一者反應來合成。低能量氫物質可由以下之群中之至少兩者產生:金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及稀土金屬、Al、Ga、In、Ge、Sn、Pb、As、Sb及Te;金屬氫化物,諸如LaNi5H6及本發明之其他金屬氫化物;氫氧化物水溶液,諸如鹼金屬氫氧化物,諸如0.1 M至飽和濃度之KOH;載體,諸如碳、Pt/C、蒸汽碳、碳黑、碳化物、硼化物或腈;及氧氣。用於形成低能量氫物質(諸如分子低能量氫)之適合反應混合物為:(1)Co PtC KOH(飽和)(含O2及不含O2);(2)Zn或Sn+LaNi5H6+KOH(飽和);(3)Co、Sn、Sb或Zn+O2+CB+KOH(飽和)、(4)Al CB KOH(飽和)、(5)Sn Ni塗佈之石墨KOH(飽和)(含O2及不含O2);(6)Sn+SC或CB+KOH(飽和)+O2;(7)Zn Pt/C KOH(飽和)O2;(8)Zn R-Ni KOH(飽和)O2;(9)Sn LaNi5H6 KOH(飽和)O2;(10)Sb LaNi5H6 KOH(飽和)O2;及(11)Co、Sn、Zn、Pb或Sb+KOH(飽和水溶液)+K2CO3+CB-SA。藉由自此等反應混合物中,於dDMF中之大1.23 ppm峰證實產生H2(1/4)。在一個實施例中,反應混合物包含氧化劑,諸如PtO2、Ag2O2、RuO2、Li2O2、YOOH、LaOOH、GaOOH、InOOH、MnOOH、AgO及K2CO3中之至少一者。在一個實施例中,可在任何H2及H2O放出後收集氣體,其中H2(1/p)氣體仍自反應物放出。放出可歸因於H-(1/p)與水形成H2(/p)的慢反應,諸如反應H-(1/4)+H2O→H2(1/4)。
在一個實施例中,低能量氫物質(諸如分子低能量氫或低能量氫氫化物離子)藉由H與MNH2(M=鹼金屬)或SH2觸媒中之至少一者反應來合成。低能量氫物質可由以下之群中之至少兩者產生:金屬,諸如鹼金屬、鹼土金屬、過渡金屬、內過渡金屬及稀土金屬、Al、Ga、In、Ge、Sn、Pb、As、Sb及Te;氫來源,諸如金屬氫化物,諸如鹼金屬氫化物,諸如LiH、NaH或KH,以及本發明之其他氫化物,或H2氣體;硫來源,諸如SF6、S、K2S2O8、CS2、SO2、M2S、MS(M為金屬,諸如鹼金屬或過渡金屬)、Sb2S5或P2S5;N來源,諸如N2氣體、尿素、NF3、N2O、LiNO3、NO、NO2、Mg(NH2)2、Mg3N2、Ca3N2、M3N、M2NH或MNH2(M為鹼金屬);載體,諸如碳、Pt/C、蒸汽碳、碳黑、碳化物、硼化物或腈。用於形成低能量氫物質(諸如分子低能量氫)之適合反應混合物為LiH、KH或NaH;SF6、S、K2S2O8、CS2、SO2、M2S、MS(M為金屬,諸如鹼金屬或過渡金屬)、Sb2S5、P2S5之一;N2氣體、尿素、NF3、N2O、LiNO3、NO、NO2、Mg(NH2)2、Mg3N2、Ca3N2、M3N、M2NH及MNH2(M為鹼金屬);及載體,諸如碳、Pt/C、蒸汽碳、碳黑、碳化物、硼化物或腈。
在一個實施例中,低能量氫氣體藉由加熱而自含有低能量氫之固體或液體(諸如低能量氫反應產物)釋放。除分子低能量氫以外之任何氣體(諸如溶劑,諸如H2O)可使用例如冷凝器冷凝。冷凝物可回流。可藉由分級蒸餾收集分子低能量氫氣體,其不含其他氣體。亦可用複合器或藉由燃燒移除普通氫及藉由蒸餾移除H2O。低能量氫物質(諸如分子低能量氫)可在諸如有機溶劑(諸如DMF)之溶劑中萃取且藉由諸如加熱及視情況自溶劑蒸餾分子低能量氫氣體之方式自溶劑中純化出來。在一個實施例中,含有低能量氫物質之產物用諸如有機溶劑(諸如DMF)之溶劑萃取,且加熱溶劑且視情況回流,以釋放所收集之低能量氫氣體。低能量氫氣體亦可藉由使用包含不大範圍吸收氣體之載體或添加劑(諸如碳化物,諸如TiC或TaC或LaN)之反應混合物獲得。
自原子H或低能量氫轉移整數個27.2 eV至另一H或低能量氫會引起快質子形成,以使動能守恆。在一個實施例中,低能量氫反應用以產生快H+、D+或T+,以引起高能核之融合。反應系統可為本發明之固體燃料,其可進一步包含低能量氫,諸如分子低能量氫、低能量氫氫化物及可在引發低能量氫反應時經歷進一步催化而形成快H之低能量氫原子中的至少一者。可藉由加熱或藉由粒子、電漿或光子轟擊來引發。一例示性反應為摻鉀氧化鐵之固體燃料在低壓氘氣腔室中,其中涉及一些內在低能量氫物質之低能量氫反應由高功率雷射脈衝引發。一例示性壓力範圍為約10-5至1毫巴。一例示性雷射為10 Hz、564 nm光下的Nd:YAG雷射,功率為約100 mJ,使用f=400 mm之透鏡。其他大功率密度雷射為足夠的,如熟習此項技術者所知。
XI. 實驗
A. 水流分批熱量測定
使用約130.3 cm 3體積(1.5"內直徑(ID)、4.5"長及0.2"壁厚)或1988 cm 3體積(3.75"內直徑(ID)、11"長及0.375"壁厚)之圓筒形不鏽鋼反應器及包含含有各電池之真空室及可收集電池中釋出能量99+%達到誤差<±1%之外部水冷卻旋管的水流熱量計,獲得下文各條目右側列出之觸媒反應混合物之能量及動力平衡。藉由對隨時間之總輸出功率P T 求積分來測定能量回收。功率如以下給出
其中為質量流率,C p 為水比熱,且ΔT為入口與出口之間的絕對溫度變化。藉由施加精確功率至外加熱器來引發反應。詳言之,提供100-200 W功率(130.3 cm 3電池)或800-1000 W(1988 cm 3電池)給加熱器。在此加熱期期間,試劑達到低能量氫反應臨限溫度,其中通常由電池溫度急劇升高來確認反應開始。一旦電池溫度達到約400-500℃,則設定輸入功率為零。50分鐘後,程式指示功率為零。為增加熱傳遞至冷卻劑之速率,用1000托氦氣對腔室再次加壓,且最大水溫變化(出口減去入口)為約1.2℃。如由觀測到流式熱敏電阻中完全平衡所確認,使該總成經24小時之時段完全達到平衡。
在各測試中,藉由對相應功率求積分來計算能量輸入及能量輸出。使用方程式(421),藉由水體積流動速率乘以19℃下的水密度(0.998 kg/l)、水比熱(4.181 kJ/kg ℃)、校正之溫差及時間間隔,計算出冷卻劑流每次增加之熱能。將整個實驗中的值求和,以獲得總能量輸出。來自電池之總能量E T 必須等於能量輸入E in 與任何淨能量E net 。因此,淨能量如以下給出:
E net =E T -E in 。 (422)
根據此能量平衡,由以下確定相對於最大理論E mt 的任何過剩熱E ex
E ex =E net -E mt 。 (423)
校準測試結果顯示,電阻性輸入與輸出冷卻劑超過98%之熱耦合,且零過剩熱對照顯示在應用檢校下熱量計精確至小於1%誤差內。結果如下給出,其中Tmax為最大電池溫度,Ein為輸入能量,且dE為超過輸入能量之所量測之輸出能量。所有能量均為放熱的。給出之正值表示能量量值。在使用本體觸媒(諸如Mg)以及載體(諸如TiC)之實驗中,H2因容器之金屬脫氫而存在,如質譜分析及氣相層析所確認。
熱量測定結果
電池編號4056-092310WFCKA4:1.5" LDC;5.0 g NaH-16+5.0 g Mg-17+19.6 g BaI2-6+20.0 g TiC-141;TSC:無;Tmax:459℃;Ein:193 kJ;dE:7 kJ;理論能量:1.99 kJ;能量增加:3.5
電池編號3017-080210WFCKA2:1.5" LDC;5.0 g NaH-16+5.0 g Mg-16+10.45 g EuF3-1+20.0 g TiC-135;TSC:小;Tmax:474℃;Ein:179 kJ;dE:16 kJ;理論能量:8.47 kJ;能量增加:1.9
電池編號3004-072810WFCKA1:1.5" LDC;8.0 g NaH-17+8.0 g Mg-2+3.4 g LiCl-3+32.0 g TiC-133 1 g混合物用於XRD;TSC:無;Tmax:408℃;Ein:174 kJ;dE:10 kJ;理論能量:2.9 kJ;能量增加:3.4
電池編號2088-072310WFCKA2:1.5" LDC;5.0 g NaH-16+5.0 g Mg-16+15.6 g EuBr2-3+20.0 g TiC-137;TSC:無;Tmax:444℃;Ein:179 kJ;dE:12 kJ;理論能量:1.48 kJ;能量增加:8.1
電池編號2087-072310WFCKA3:1.5" LDC;5.0 g NaH-16+5.0 g Mg-16+15.6 g EuBr2-3+20.0 g TiC-137;TSC:無;Tmax:449℃;Ein:179 kJ;dE:10 kJ;理論能量:1.48 kJ;能量增加:6.7
電池編號2005-062910WFCKA1:1.5" LDC;8.3 g KH-32+5.0 g Mg-15+7.2g AgCl-AD-6+20.0 g TiC-132;TSC:200-430℃;Tmax:481℃;Ein:177kJ;dE:21 kJ;理論能量:14 .3kJ;能量增加:1.5
電池編號4870-062410WFJL3(1.5" HDC):20 g TiC#129+8.3 g KH#32+2.13 g LiCl#6;TSC:無;Tmax:434℃;Ein:244.2 kJ;dE:5.36 kJ;理論能量:-3.03 kJ;增加:1.77。
電池編號1885-62310WFCKA4:1.5" LDC;8.3 g KH-32+5.0 g Mg-15+10.4 g BaCl2-7+20.0 g TiC-129;TSC:無;Tmax:476℃;Ein:203 kJ;dE:8 kJ;理論能量:4.1 kJ;能量增加:1.95
電池編號1860-061610WFCKA3:1.0" HDC;3.0 g NaH-19+3.0 g Mg-14+7.42 g SrBr2-5+12.0 g TiC-128;TSC:無;Tmax:404℃;Ein:137 kJ;dE:4 kJ;理論能量:2.1 kJ;能量增加:2.0
電池編號579-061110WFRC1:(<500℃)8.3 g KH-32+5 g KOH-1+20 g TiC-127;TSC:無;Tmax:534℃;Ein:292.4 kJ;dE:8 kJ;理論能量:0 kJ;能量增加:無限。
電池編號1831-060810WFCKA4:1.5" LDC;8.3 g KH-31+5.0 g Mg-13+12.37 g SrBr2-4+20.0 g TiC-126;TSC:無;Tmax:543℃;Ein:229 kJ;dE:17 kJ;理論能量:6.7 kJ;能量增加:2.5
電池編號1763-051410WFCKA2:1.5" HDC;13.2 g KH-24+8.0 g Mg-9+16.64 g BaCl2-SD-7測試+32.0 g TiC-105;TSC:無;Tmax:544℃;Ein:257 kJ;dE:17 kJ;理論能量:6.56 kJ;能量增加:2.6
電池編號4650-051310WFGH2(1.5" HDC):20 g MgB2#4+8.3 g KH#28+0.83 g KOH#1;TSC:無.;Tmax:544℃;Ein:311.0 kJ;dE:9.31 kJ;理論能量:0.00 kJ;增加:~。
電池編號4652-051310WFGH5(1.5" HDC):20 g TiC#120+5 g Mg#12+1 g LiH#2+2.5 g LiCl#4+3.07 g KCl#2;TSC:無.;Tmax:589℃;Ein:355.0 kJ;dE:8.15 kJ;理論能量:0.00 kJ;增加:~。
電池編號1762-051310WFCKA1:1.5" HDC;13.2 g KH-24+8.0 g Mg-9+19.8 g SrBr2-AD-3+32.0 g TiC-124測試;TSC:無;Tmax:606℃;Ein:239 kJ;dE:20 kJ;理論能量:10.7 kJ;能量增加:1.87
電池編號504-043010WFRC4:0.83 g KOH-1+8.3 g KH-27+20 g CB-S-1;TSC:無;Tmax:589℃;Ein:365.4 kJ;dE:5 kJ;理論能量:0 kJ;能量增加:無限。
電池編號4513-041210WFGH5(1.5" HDC):20 g B4C#1+8.3 g KH#26+0.83 g KOH#1;TSC:未觀測到;Tmax:562℃;Ein:349.2 kJ;dE:8.85 kJ;理論能量:0.00 kJ;增加:~。
電池編號403-032510WFRC3:8.3 g KH-23+5 g KOH-1+20 g TiC-112;TSC:無;Tmax:716℃;Ein:474.9 kJ;dE:13 kJ;理論能量:0 kJ;能量增加:無限。
B. 燃料溶液NMR
用於形成低能量氫之代表性反應混合物包含:(i)至少一種觸媒或觸媒來源及氫,諸如選自Li、Na、K、LiH、NaH及KH之一;(ii)至少一種氧化劑,諸如選自SrCl2、SrBr2、SrI2、BaCl2、BaBr2、MgF2、MgCl2、CaF2、MgI2、CaF2、CaI2、EuBr2、EuBr3、FeBr2、MnI2、SnI2、PdI2、InCl、AgCl、Y2O3、KCl、LiCl、LiBr、LiF、KI、RbCl、Ca3P2、SF6、Mg3As2及AlN之一;(iii)至少一種還原劑,諸如選自Mg、Sr、Ca、CaH2、Li、Na、K、KBH4及NaBH4之一;及(iv)至少一種載體,諸如選自TiC、TiCN、Ti3SiC2、YC2、CrB2、Cr3C2、GdB6、Pt/Ti、Pd/C、Pt/C、AC、Cr、Co、Mn、Si奈米粉末(NP)、MgO及TiC之一。在其他實施例中,CIHT電池之電解質包含反應產物。將反應混合物之50 mg反應產物添加至用玻璃TEFLONTM閥密封之小瓶中的1.5 ml氘化N,N-二甲基甲醯胺-d7(DCON(CD 3)2)DMF-d7(99.5% Cambridge Isotope Laboratories,Inc.)中,攪動,且使其在手套箱中在氬氣氛圍下經12小時之時段溶解。藉由不透氣之連接將無任何固體之溶液轉移至NMR管(5 mm OD,23 cm長,Wilmad)中,接著火焰密封管。用經氘鎖定之500 MHz Bruker NMR頻譜儀記錄NMR譜。化學位移參照在相對於四甲基矽烷(TMS)8.03 ppm下諸如DMF-d7之溶劑頻率。
預測在相對於TMS約-3.86 ppm下觀測到低能量氫氫化物離子H-(1/4),且預測在相對於TMS 1.21 ppm下觀測到分子低能量氫H2(1/4)。表6中給出特定反應混合物之此等峰出現的位置以及位移及強度。
表6. 低能量氫觸媒系統之產物經DMF-d7溶劑萃取後的1H溶液NMR。
C. 例示性再生反應
鹼土金屬或鋰之鹵化物藉由使鹼土金屬或鋰之氫化物(或鋰)與相應鹼金屬鹵化物反應形成。表7中給出反應物負載、反應條件及XRD結果。通常,將鹼金屬鹵化物與鹼土金屬之2:1莫耳混合物或鹼金屬鹵化物與Li或LiH之1:1莫耳混合物置放於用約25.4 cm長、1.27-1.9 cm OD不鏽鋼(SS)管(一端打開)在2.54 cm OD真空密封之石英管(一端打開)中製成之坩鍋的底部。SS管之開口端置放於熔爐外之約2.54 cm,使得在反應期間形成之任何鹼金屬在加熱區外部冷卻且冷凝,以避免鹼金屬與石英管之間的任何腐蝕反應。該裝置水平定向,以增加加熱化學物質之表面積。使反應在700-850℃下在真空下或在1 atm Ar氣體下進行30分鐘,接著在類似溫度下排出鹼金屬,歷時30分鐘。在另一裝置中,反應物置放於SS坩鍋中,且用乾燥Ar對熔融物鼓泡(10 sccm)以進行混合。經由開口在熔融物底部之針供應Ar。鹼金屬自熱區蒸發。反應後,反應器冷卻至室溫且轉移至手套箱中以收集產物。使用XRD鑑別產物。在手套箱中藉由粉碎產物且將其負載至用塑料覆蓋膜密封之Panalytical固持器中來製備樣品。表7中給出反應物之量、溫度、持續時間及XRD結果,表明鹵化物氫化物交換反應熱法可逆。
D. 例示性CIHT電池測試結果
各自包含陽極、共熔熔融鹽電解質及含於惰性氧化鋁坩鍋中之陰極的熔融鹽CIHT電池裝在具有不含氧之氬氣氛圍之手套箱中且在手套箱中於氬氣氛圍下加熱。組裝其他熔融電池且在氬氣氛圍下放電,各自包含於BASE管中之熔融Na陽極及於具有Ni電極之Ni坩鍋中之NaOH陰極。在第三類型CIHT電池中,Na經NaOH及H來源Ni(H2)置換,且陰極包含共熔混合物(諸如MgCl2-NaCl)或熔融元素(諸如Bi)。第四類型包含飽和KOH水溶液電解質、金屬或金屬氫化物陽極及氧還原陰極(諸如蒸汽碳),其中電池密封在保留H2O,但使O2透過之膜中。第五類型包含氫可透陽極(諸如Ni(H2))、熔融氫氧化物電解質(諸如LiOH-LiBr)及對空氣敞開之Ni陰極。如下給出來自稱為[陽極/電解質/陰極](諸如[Ni(H2)/MOH或M(OH)2-M'X或M'X2/Ni](M及M'為Li、Na、K、Rb、Cs、Mg、Ca、Sr及Ba之一;X為氫氧根、鹵離子、硫酸根及碳酸根之一)、[M/KOH(飽和水溶液)+CG3401/蒸汽碳、空氣](M為R-Ni、Zn、Sn、Co、Cd、Sb及Pb之一)、[NaOH Ni(H2)/BASE/NaCl MgCl2]、[Na/BASE/NaOH]、[LaNi5H6/KOH(飽和水溶液)+CG3401/蒸汽碳、空氣]、[Li/Celgard LP 30/CoO(OH)]、[Li3Mg/LiCl-KCl/TiH2]、[Li3N TiC/LiCl-KCl/CeH2 CB]及[Li/LiCl-KCl/LaH2])之例示性電池的結果:
031111XY1-421(Ni(H2)/NaOH-NaI/Ni):熔融鹽電池
-陽極:Ni管(1/8吋)流經H2
-陰極:Ni箔
-電解質:64.14 g NaOH+59.46 g NaI(莫耳比率0.8:0.2)
-溫度:500℃(電池內真實T為450℃)
499歐姆負載下之電壓(0-5小時)=0.85-0.86 V;穩定電壓
=0.55-0.58 V>5小時
031011XY5-420(LaNi5/KOH/SC):Demo電池,第四單元
-陽極:LaNi5,自商業Ni-MH電池獲得
-陰極:蒸汽碳與飽和KOH混合
-隔板:Celgard 3501
-電解質:飽和KOH
-放電功能:恆定電流400 mA
放電容量:7.62 Ah,放電能量:4.46Wh
-031111GZCl-428:NaOH+Ni(H2)/Na-BASE/NaCl+SrCl2(MP=565℃)
-2.75"氧化鋁坩堝
-電解質混合物:28.3 g NaCl+82 g SrCl2(MP=565℃)
-電極:H2於1/8" Ni管(陽極)中,Ni箔(陰極)
-T=650℃(熔融物中之真實T:600℃),PH2=1 Psig
(1)H2下OCV=1.44 V
(2)在106.5歐姆下CCV=0.2 V(穩定)
-030911GZC6-423:Ni(H2)/Sr(OH)2(MP=375℃)/Ni
-2.75"氧化鋁坩堝
-電解質混合物:80 g Sr(OH)2(MP=375℃)
-電極:H2於1/8" Ni管(陽極)中,Ni箔(陰極)
-T=600℃(熔融物中之真實T:378℃),PH2=800托
(1)OCV=0.96 V。
(2)在100.1歐姆負載下CCV穩定在約0.8 V下。添加H2O以代替脫水所失去之水。
030911XY2-409(TiMn2/KOH/SC):未密封
-陽極:TiMn2粉與飽和KOH混合,純TiMn2=0.097 g
-陰極:蒸汽碳與飽和KOH混合,純SC=0.132 g
-隔板:Celgard 3501
-電解質:飽和KOH
-放電功能:恆定電流
電池頻繁放電/充電。電池在1 mA恆定電流下充電2秒,接著在1 mA恆定電流下放電20秒。
總能量=32.8 J;比能量=93.8 Wh/kg;比容量=139.2 mAh/;能量增加=10X。
030811XY1-396(Sn+KI/KOH/SC):未密封
-陽極:Sn粉及KI粉(90:10質量比)與飽和KOH混合。純Sn=0.11 g。
-陰極:蒸汽碳與飽和KOH混合,純SC=0.182 g
-隔板:Celgard 3501
-電解質:飽和KOH
-放電負載:1000歐姆
總能量=91.6 J;比能量=231.4 Wh/kg
030711XY1-391(Ni(H2)/LiOH-LiF/Ni):熔融鹽電池
-陽極:Ni管(1/8吋)流經H2
-陰極:Ni箔
-電解質:38.40 g LiOH+10.40 g LiF(0.8:0.2莫耳比率)
-溫度:550℃(電池內真實T為500℃)
在499歐姆下放電,電池電壓在0.90-1.0 V之間。
在249歐姆下放電,電池電壓在0.80-0.9 V之間。
在100歐姆下放電,電池電壓在0.55-0.65 V之間。
穩定電壓>45小時及運轉。
HT電池:(氫氧化物熔融共熔系統)
-030911GZC6-423:Ni(H2)/Sr(OH)2(MP=375℃)/Ni
-2.75"氧化鋁坩堝
-電解質混合物:80 g Sr(OH)2(MP=375℃)
-電極:H2於1/8" Ni管(陽極)中,Ni箔(陰極)
-T=600℃(熔融物中之真實T:378℃),PH2=800托
(1) OCV=0.96 V
(2) 在100.1歐姆負載下CCV穩定在約0.8 V下。
CIHT# 022211JL1:[NaOH+Ni(H2)/Na-BASE/Bi](理論能量=-0.6372 V)
-陽極:1.5 g NaOH#5+約0.8 PSIg H2下1/16 Ni管
-陰極:5 g Bi
-OCV->0.8706 V
-CCV(1000)->穩定在0.2634 V下
-資料收集>1400分鐘且停止
電池編號030411RC1-363:[La2Co1Ni9Hx(x<2)/KOH+TBAC/SC+PVDF],密封在塑料袋(O2可透)中室溫下
-電解質:飽和KOH溶液+0.5 wt% TBAC(氯化四丁基銨,陽離子清潔劑)
-隔板:CG3501
-陽極:具有SS圓盤集電器之250 mg濕La2Co1Ni9Hx(含有約200 mg La2Co1Ni9Hx)
-陰極:具有Ni圓盤集電器之126 mg SC+14 mg PVDF小球
-電阻器:499歐姆
-V範圍:0至1.37 V
-V10分鐘=0.9 V,V1小時=0.9 V,V3小時=0.91 V,V25小時=0.15 V
-電能:142.4J
030711XY5-395(LaNi5/KOH/SC):Demo電池,第一單元
-陽極:LaNi5,自商業Ni-MH電池獲得
-陰極:蒸汽碳與飽和KOH混合
-隔板:Celgard 3501
-電解質:飽和KOH
-放電功能:恆定電流500 mA 0.72 V
6.4 Ah容量,獲得4.3Wh放電能量。電池在1A恆定電流下可再充電
030611XY2-390(Ni(H2)/LiOH/Ni):熔融鹽電池
-陽極:Ni管(1/8吋)流經H2
-陰極:Ni箔
-電解質:50.0 g LiOH
-溫度:550℃(電池內真實T為500℃)
在499歐姆下放電,電池電壓在0.90-1.0 V之間,超過100 h
022711XY4-348(Zn/KOH/SC):用新設計之在陽極側具有O型環、但在陰極側無O型環之塑膠電池製備此電池
-陽極:Zn糊狀物,自商業Zn/空氣電池獲得,0.381 g,純Zn=0.201 g
-陰極:蒸汽碳與飽和KOH混合,純SC=0.178 g
-隔板:Celgard 3501
-電解質:飽和KOH
-放電負載:1000歐姆
能量717.3 J;比能量:991.3 Wh kg-1;能量效率:75.6%;比容量:827.5 mAh g-1;庫侖效率:106.3%
030111JH1-400:Ni(H2)|LiOH-NaOH|Ni(H2O)
-陽極:H2於Ni管中
-陰極:LiOH-NaOH(Ni網)
-溫度在350℃下,隨後增加至400℃(凝固點)
OCV:約1.10 V
-500歐姆,3天後負載電壓仍為1.00 V
100小時,能量:533 J
030211GC1/H2(約760托)Ni管/LiBr(99.4 g)+LiOH(20.6 g)/Ni箔包裹之坩堝(敞口)T=440℃;OCV:引入H2至760托,OCV逐漸增加至0.99 V,負載499歐姆,負載電壓仍在0.9與1 V之間,歷時48小時,且穩定運轉。轉換負載為249歐姆,V為約0.88 V>350小時,仍運轉。對照電池顯示無電壓,且H2滲透速率明顯過低而無法供應此電力。
022811GC1/H2(約1000托)Ni管/LiBr(99.4 g)+LiOH(20.6 g)/包裹之Ni板中H2O(<1 ml)/(敞口)T=440℃;電阻=1K歐姆OCV:Vin=0.27 V,添加H2及4滴H2O,5分鐘後OCV突然增加至Vmax=1.02 V;1000歐姆負載電壓為0.82 V,在17小時內降至約0.4 V,添加3滴H2O 3次且負載電壓增加至約0.6 V。添加4滴水,電壓迅速下降,在40小時V=0.2 V下停止
Eout=27.9 J
022411XY8-334(LaNi5/KOH/SC):間歇放電-充電,各循環在恆定電流下。未密封
-陽極:LaNi5,自商業電池獲得,純LaNi5=0.255 g
-陰極:蒸汽碳與飽和KOH混合,純SC=0.195 g
-隔板:Celgard 3501
-電解質:飽和KOH
-放電電流:1 mA
電池頻繁放電/充電。電池在1 mA恆定電流下充電20秒,接著在1 mA恆定電流下放電2秒。
V(1分鐘)=0.951 V;比能量=310.2 Wh/kg;基於所量測之組成LaNi5H3的理論比能量為227 Wh/kg。
022211GC3/Co(0.30 g)+LaNi5H6 B(B表示電池來源)(0.2 g)/KOH(飽和)NH3+CG3501/SC(糊狀物)(50 mg)/RT電池;電阻=499歐姆,塑膠膜密封之扁平方型電池,在外部運轉OCV:Vmax=0.92;負載499歐姆。
Eout=464.7 J
比能量:Co,430.2 Wh/Kg
容量:Co,608.3 mAh/g
030111XY1-357(Ni(H2)/NaOH-NaBr/Ni):熔融鹽電池(敞口)
-陽極:Ni管(1/8吋)流經H2
-陰極:Ni箔
-電解質:65.92 g NaOH+36.28 g NaBr(0.82:0.18莫耳比率)
-溫度:400℃(電池內真實T為350℃)
電池之OCV為0.96 V。在1000歐姆放電負載(無水添加至陰極)下,電壓平台暫時維持在約0.75 V下,接著降至約0.4-0.3 V下之另一放電平台。添加4滴水至陰極容器後,電池電壓增加至0.36 V且穩定17小時。添加8滴水後,電壓升至0.9 V,穩定3小時且降至0.55 V並保持穩定>30小時。
030111XY2-358(Ni(H2)/LiOH-LiI/Ni):熔融鹽電池(敞口)
-陽極:Ni管(1/8吋)流經H2
-陰極:Ni箔
-電解質:10.30 g LiOH+73.03 g LiI(0.45:0.55莫耳比率)
-溫度:350℃(電池內真實T為300℃)
電池之OCV為0.75 V。在1000歐姆放電負載下,電壓平台維持在約0.55 V下,持續55小時,且仍穩定運轉。
-022111GZC3-367:0.2 g Co/G3501+KOH+Li2CO3/60 mg CB-SA(不氣密密封)
-隔板:CG3501
-電解質混合物:3 g飽和KOH+0.1 g Li2CO3
-電極:0.2 g Co(陽極),60 mg CB-SA(陰極)
-電阻器=1000歐姆;T=RT
基於100% Co消耗之結果:E=329 J,庫侖=450.8C,容量=456.9 Wh/kg,能量效率=45.4%,庫侖效率=68.9%。Li2CO3顯著增強Co陽極之效率。分析顯示30% Co未反應。
-022411GZC5-378:1 g NaOH+1 Psi H2/Na-BASE/42 g NaCl+86.7 g CaCl2(MP=504℃)(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:1 mm厚Na-BASE管(更新且更小之管)
-電極:NaOH+Ni管(陽極),NaCl+CaCl2熔融鹽,以鎳箔為集電器(陰極)
-電阻器=100歐姆;T=600℃(熔融物中之真實T:550℃)
(1)OCV=1.392 V
(2)在負載下,CCV緩慢下降且穩定在0.49 V下
(3)在550℃下,2NaOH+CaCl2+H2=2NaCl+Ca+2H2O dG=+198.5 kJ/mol CaCl2。理論能量為0;E=436.5J,庫侖=1043.7 C
-020411GZC5-311:6 g NaOH+1 Psi H2/Na-BASE/49.9 gNaCl+61.4 g MgCl2(MP=459℃)(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:1.3 mm厚Na-BASE管
-電極:NaOH+"Ni管(陽極),NaCl+MgCl2熔融鹽,以鎳箔為集電器(陰極)
-電阻器=100歐姆;T=550℃(熔融物中之真實T:500℃)E=815 J,庫侖=3143 C,容量=37 Wh/kg,陽極能量效率=無限,庫侖效率=22%
020311XY3-186(MH-KOH-SC):未密封
-陽極:自Ni-MH電池獲得之LaNi5,純MH=0.900 g
-陰極:蒸汽碳與飽和KOH混合,純SC=0.160 g
-隔板:Celgard 3501
-電解質:飽和KOH
-放電負載:249歐姆
結果:E=506.4 J,比能量=156.3 Wh/kg,基於所量測之LaNi5H3消耗:能量效率=72%,庫侖效率=145%。
6.RT電池:(不氣密密封)
-020811GZC6-321:來自鹼性電池之0.5 g Zn糊狀物/CG3501+KOH/60 mg CB-SA(不氣密密封)
-隔板:CG3501
-電解質混合物:飽和KOH
-電極:0.5 g Zn糊狀物(陽極),60 mgCB-SA(陰極)
-電阻器=1000歐姆;T=RT
結果:E=967.6 J,庫侖=904 C,容量=1306.7 Wh/kg,能量效率=74.1%,庫侖效率=115%。
Na-BASE電池:
-020911GZC1-322:於1.33 mm厚BASE管中之7.62 g Na/Na-BASE/於2" Ni坩堝中之120 g NaOH(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:1.3 mm厚Na-BASE管
-電極:於1.33 mm厚BASE管中之7.62 g Na(陽極),於2" Ni坩堝中之120 g NaOH(陰極)
-電阻器=10.2歐姆;T=500℃(熔融物中之真實T:450℃)結果:總E=5.9 kJ
021111XY10-237(Sn+TaC-KOH-SC):未密封
-陽極:Sn粉及TaC粉與飽和KOH混合(純Sn:TaC=50:50),純Sn+TaC=0.601 g
-陰極:蒸汽碳與飽和KOH混合,純SC=0.154 g
-隔板:Celgard 3501
-電解質:飽和KOH
-放電負載:499歐姆
Vavg=0.89 V,總E=530 J;491 Wh/kg,84%能量效率
020911XY9-214(Zn+LaN-KOH-SC):未密封
-陽極:Zn糊狀物(來自商業電池)及LaN粉與飽和KOH混合(純Zn:LaN=50:50),純Zn+LaN=0.664 g
-陰極:蒸汽碳與飽和KOH混合,純SC=0.177 g
-隔板:Celgard 3501
-電解質:飽和KOH
-放電負載:499歐姆
Vavg=1.1 V,總E=974 J;815 Wh/kg,62%能量效率
012811JH2-357:NaOH+Ni(KH)|BASE|LiCl+CsCl(手套箱)
-陽極:於Ni管中之NaOH(4.0 g)+1 g KH
-陰極:60 g LiCl-47+172.6 g CsCl
-隔板/電解質:Na-BASE
-OCV:1.3-1.5 V
-200歐姆;CCV=0.234 V;能量=45.6 J
Na-BASE-HT電池
-020111GZC3-294:6 g NaOH+1 Psi H2/Na-BASE/35.1 g NaCl+135 g NaI(MP=573℃)(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:5 Na-BASE管
-電極:NaOH+Ni管(陽極),NaCl+NaI熔融鹽,以鎳箔為集電器(陰極)
-電阻器=100歐姆;T=650℃(熔融物中之真實T:600℃)
(1)OCV=0.937 V。第2天E=35 J。理論能量:0。
011011XY4-103(Zn-KOH-SC):
-陽極:Zn糊狀物,1.62 g(包括電解質)(0.81 g純Zn)
-陰極:蒸汽碳與飽和KOH混合,純SC=0.188 g
-隔板:Celgard 3501
-電解質:飽和KOH
-在500歐姆下放電
V1分鐘=1.281 V,V5分鐘=1.201 V,V30分鐘=1.091 V,V24小時=1.026 V,V48小時=1.169 V,V72小時=1.216 V,V96小時=1.236 V,V168小時=1.220 V,V192小時=1.201 V,V216小時=1.173 V,
2350 J,805 Wh/kg,60%能量效率,90%庫侖效率
Na-BASE-HT電池
-010611GZC1-233:36 g Na/5個平行Na-BASE管/50 g NaOH(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:5 Na-BASE管
-電極:Na(陽極),5×10 g NaOH(陰極)
-電阻器=10歐姆;T=500℃
(1)CCV為約0.1 V,總E:11.3 kJ
012011JH1-342:NaOH+Ni(KH)|BASE|LiCl+BaCl2(手套箱)
-陽極:於Ni管中之NaOH(約4 g)+1 g KH
-陰極:40 g LiCl-47+64.5 g BaCl2-3
-隔板/電解質:Na-BASE
-OCV:0.57-0.62 V
-200歐姆
-V1分鐘=0.369 V,V10分鐘=0.301 V,V20分鐘=0.281 V,V30分鐘=0.269 V,V1小時=0.252 V,V2小時=0.253V,V3小時=0.261 V。能量=475.3 J
Na-BASE-HT電池
-010611GZC1-233:36 g Na/5個平行之Na-BASE管/50 g NaOH(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:5 Na-BASE管
-電極:Na(陽極),5×10 g NaOH(陰極)
-電阻器=10歐姆;T:500℃
(1)運轉,CCV為約0.26 V。收集約5 kJ能量
122010-Rowan Validation-Na-BASE:1 g Na/Na-BASE/3.24 g NaOH(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:Na-BASE
-電極:Na(陽極),3.24 g NaOH(陰極)
-電阻器=107歐姆;T=500℃
-總E=1071 J。能量增加:53
CIHT# 121310JL2:[RNi(4200)/CG3401+飽和KOH/CoOOH+CB+PVDF](理論能量=0.6300 V)
-室溫;方型電池設計--半密封
-陽極:約500 mg RNi(4200);使用來自手套箱之乾燥RNi(4200)及經由注射器及密封小瓶添加作為電解質之飽和KOH
-陰極:約80 mg CoOOH+20 mg CB#4+約15 mg PVDF;在23 kPSI下用IR壓力機壓成小球
-OCV:0.826 V及緩慢增加
-CCV(1000):
-自滿負載電壓相當緩慢及平滑衰減至0 V,在約11000分鐘及約0.5 V下有略微斜率變化
-總能量:327.6 J
-C-SED:1137.5 Wh/Kg
-A-SED:182.0 Wh/Kg
CIHT# 122210JL2:[RNi(2400)/CG3501+飽和KOH/Pd/C-H1+PVDF](理論能量=0 V)
-室溫;方型電池設計--密封;無夾子;Ni電極;
-陽極:150 mg RNi(2400)#185+10 mg PVDF,乾燥使用及添加飽和KOH;
-陰極:53 mg Pd/C-H1+14 mg PVDF;在23 kPSI下用IR壓力機壓成至小球
-OCV為約0.9249 V且穩定
-CCV(1000):
-在負載下,降至約0.89且緩慢下降
-自滿負載電壓,相當緩慢及平滑衰減至0 V,在約3100分鐘及約0.6 V下有微傾斜變化
-總能量:128.8 J
-C-SED:675.2 Wh/Kg
-A-SED:238.6 Wh/Kg
120110GZC1-185:1 g Na/Na-BASE/3.3 g NaOH+0.82 g MgCl2+0.67 g NaCl(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:Na-BASE
-電極:Na(陽極),3.3 g NaOH+0.82 g MgCl2+0.67 g NaCl(陰極)
-電阻器=107歐姆;T=500℃
(1)停止,E=548 J,46k Whr/kg NaOH。
夾層電池112910XY1-1-20:Li/LP30-CG2400/CoOOH(維持在Ni網/納菲薄膜/PtC(H2)
-陽極:Li金屬(過度容量)
-陰極:75% CoOOH+25 CB;純CoOOH 10 mg
-隔板在Li/CoOOH之間:Celgard 2400
-隔板在CoOOH/PtC(H)之間:納菲薄膜
-第三層:PtC(H)
-在2000歐姆下放電
-V1分鐘=2.2 V,V1小時=1.5 V,V2小時=1.18 V,V10小時=1.0 V,V20小時=0.99 V,V25小時=0.89 V,V30小時=0.72 V,V35小時=0.54 V。
量測之容量>1800 Whr/kg。
110910GZC1-159:1 g Na/Na-BASE/3.24 g NaOH#3+0.94 g NaBr#1+1.5 g NaI#1(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:Na-BASE
-電極:Na(陽極),.24 g NaOH#3+0.94 g NaBr#1+1.5 g NaI#1,MP=260℃
-電阻器=100歐姆;T=450℃
(1)總能量:523 J(45 Whr/kg)
1102910JH1-1:Li|1M LiPF6-DEC-EC|CoOOH
-陽極:Li(約25 mg)
-陰極:CoOOH(新製備,烘箱乾燥,150 mg)
-隔板:Celgard 2400
-OCV範圍=3.6-3.5 V
2000歐姆(當OCV=3.5 V時);CCV=1.08 V
總能量:520.6 J;總比能量:964 Wh/kg。電池敞口且包含作為陰極之陰極CoOOH物質經測定,為重量少於125 mg。因此,比能量為1156 Wh/kg。
102710GZC1-143:1 g Na3Mg/Na-BASE/3.28 g NaOH(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:Na-BASE
-電極:Na3Mg(陽極),3.28 g NaOH(陰極),MP=323℃
-電阻器=100歐姆;T=450℃(熔融物中之真實T:400℃)
(1)仍運轉。CCV=0.300 V。
(2)經檢查之OCV=0.557 V
總能量為:0.69 kJ。Na-BASE管完整。
102110GZC1-138:1 g Na/Na-BASE/1.85 g NaBr+3.28 g NaOH(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:Na-BASE
-電極:Na(陽極),1.85 g NaBr+3.28 g NaOH(陰極),MP=260℃
-電阻器=107歐姆;T=450℃(熔融物中之真實T:400℃)
(1)收集約0.83 kJ之總能量,其對應於37 Whr/kg電極材料。
102810JH3-1:Li3Mg|LiCl+KCl-LiH|TiH2
-2.84"氧化鋁圓筒
-共熔96.8 g LiCl+120.0 g KCl;MP:352℃
-電池溫度:415℃
-陽極:SS網狀包裹中Li3Mg(0.5 g)
-陰極:TiH2(0.8 g)
-OCV範圍=1.51-198 V
106歐姆負載,測試長持續時間操作。CCV=0.35 V。能量=300.4 J。
ID# 102810GH2 Li/KCl+LiCl/NaNH2
-2.75"氧化鋁坩堝;
-於網狀SS杯中之0.05 g Li(陽極);於另一網狀SS杯中之0.1 g NaNH2(陰極);
-電解質混合物:56.3 g LiCl+69.1 g KCl,MP=352℃;
-T=400℃;
-電阻器=100歐姆;
-總負載時間:90分鐘。
OCV=0.6496 V
V10秒=0.6186 V,V20秒=0.6104 V,V30秒=0.6052 V,V1分鐘=0.5979 V,V5分鐘=0.5815 V,V90分鐘=0.4975 V
102210JH2-2:Li3Mg|LiCl+KCl-LiH|TiH2
-2.84"氧化鋁圓筒
-共熔混合物:繼續來自102110JH2-1;(96.8 g LiCl+120.0 g KCl+0.098 g LiH;MP:352℃)
-電池溫度:440℃
-陽極:SS網狀包裹中Li3Mg(0.3 g)
-陰極:TiH2(0.3 g)
-OCV範圍=0.51-0.545 V
200歐姆(當OCV=0.537 V時)
-V20秒=0.525 V,V1分鐘=0.514 V,V10分鐘=0.466 V,V20分鐘=0.449 V,V30分鐘=0.430 V,V1小時=0.405 V,V2小時=0.380 V
-V恢復=0.410 V,在約7分鐘內自0.377 V
100歐姆(OCV=0.408 V)
-V20秒=0.391 V,V1分鐘=0.383 V,V10分鐘=0.362 V,V20分鐘=0.357 V,V30分鐘=0.354 V,V1小時=0.349 V
運轉時間:5513分鐘
負載:100歐姆
電壓:0.223 V(似乎穩定在此電壓下2天)
能量:218 J
E理論=0.11 V
CIHT#102210JL1:[Li/CG2400+4MeDO+LiClO4/RNi(2800)](理論能量=約0.7078 V)
-室溫
-陽極:約30 mg Li圓盤
-陰極:200 mg RNi(2800)#186
-OCV:2.2912 V且緩慢下降
-CCV(1000):
-V20秒=2.3730 V
-V1分鐘=2.2137 V
-V10分鐘=2.1048 V
-V20分鐘=2.0445 V
-V30分鐘=2.0005 V
-V4146分鐘=0.1058 V
-OCV(9分鐘恢復)=0.8943 V
-總能量=112.45 J
-理論=33.7 J
-增加=3.34X
-陰極物質之比能量密度=156 Wh/kg
-在電壓接近0 V前之總運轉時間=約4000分鐘
101510GZC1-132:1 g K/K-BASE/KOH+KI(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:57.5 g KI#1+45.2 g KOH#1,MP=240℃
-電極:K(陽極),於SS坩堝中之KOH+KI(陰極)
-電阻器=100歐姆;T=450℃(熔融物中之真實T:400℃)
(1)至目前為止,收集1.1 kJ電能。仍運轉且CCV保持恆定在0.6 V下。
093010GZC1-117:Na/BASE/NaI+NaOH(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:60 g NaI#1+64 g NaOH#2,MP=230℃
-電極:Na(陽極),60 g NaI#1+64 g NaOH#2(陰極)
-電阻器=100歐姆;T=500℃(熔融物中之真實T:450℃)
電池仍運轉。至目前為止,收集0.975 kJ電能
目前在100歐姆負載下CCV=0.876V
100410GZC1-120:1 g Na/BASE/NaI+NaOH/於SS網狀包裹中之1.5 g RNi4200(手套箱)
-2.75"氧化鋁坩堝
-電解質混合物:60 g NaI#1+64 g NaOH#2,MP=230℃
-電極:Na(陽極),於SS網狀包裹中之1.5 g RNi4200(陰極)
-電阻器=100歐姆;T=500℃(熔融物中之真實T:450℃)
總電能:1.67 kJ,CCV=0.442 V,可獲得更多能量
若更長時間運轉。對於Na+NaOH=Na2O+NaH,理論電壓=0.001 V
082610GC2:於包裹SS箔中之Li3N/LiCl+KCl/於SS包裹箔中之CeH2+TiC-136
-2.75"氧化鋁坩堝
-電解質共熔混合物:67.6 g LiCl+82.9 g KCl;
-電極:陽極:於包裹SS箔中之Li3N;
-陰極:於包裹SS箔中之CeH2+TiC-136(1:1);
-電阻器為100歐姆;
-電池溫度=460℃
理論計算:
陽極:4H-+Li3N→LiNH2+2LiH+4e-
陰極:2CeH2+4e-→2Ce+4H-
總反應:2CeH2+Li3N→2Ce+2LiH+LiNH2
DG=164.4 kJ/mol,吸熱,DE應為0。
資料:
OCV Vmax=1.30 V;負載下Vmax=0.58 V;
V1分鐘=0.50 V;V10分鐘=0.57 V;V20分鐘=0.57 V;V40分鐘=0.51 V;V60分鐘=0.53 V(不穩定);負載下Imax=0.0058 A;負載下Pmax=3.4 mW;
恢復:Vmax=0.84 V
082410GC1:於包裹之SS箔中Li/LiCl+KCl/於SS包裹箔中之CeH2+TiC-136
-2.75"氧化鋁坩堝
-電解質共熔混合物:67.6 g LiCl+82.9 g KCl;
-電極:陽極:於包裹之SS箔中Li;
-陰極:於SS包裹箔中之CeH2+TiC-136(1:1);
-電阻器:100歐姆;
-電池溫度=460℃
理論計算:
陽極:2 Li→2Li++2e-
陰極:CeH2+2Li+2e-→Ce+2LiH
總反應:CeH2+2 Li→Ce+2 LiH
DG=15.6 kJ/mol,吸熱,DE應為0。
資料:OCV Vmax=1.94 V;負載下Vmax=1.37 V;V1分鐘=1.23 V;V10分鐘=1.06 V;V20分鐘=0.95 V;V40分鐘=0.86 V;
負載下Imax=0.014A;負載下Pmax=19 mW;
恢復:Vmax=1.11 V
電池編號082010RCC2-108:[Li/LiCl-KCl-LiH-NaCl/ZrH2],在450℃下
-2.75"OD×6"氧化鋁坩堝
-共熔混合物:56.3 g LiCl-26+69.1 g KCl-27+0.018 g LiH-4+0.13 g NaCl-2
-陽極:於用SS接線之SS箔坩堝中之0.35 g Li-7
-陰極:於用SS接線之SS箔坩堝中之1.9 g ZrH2-1+0.9 g TiC-138
-電阻器=100歐姆
-V範圍:0.168至1.299 V
-Vmax:在450℃下1.299 V
-100歐姆電阻器與電池連接
負載下Vmax=1.064 V,負載下Imax=0.01064 A,負載下Pmax=11.3 mW,
V10秒=0.849 V,V20秒=0.819 V,V30秒=0.796 V,
V1分鐘=0.748 V,V10分鐘=0.731 V,V21.6小時=0.168 V。
-OCV(21.6小時負載+43.4分鐘恢復後之開路電壓)=0.265。
-註釋:
當OCV達到1.299 V時,100歐姆電阻器與CIHT電池連接。對於反應ZrH2+2Li=2LiH+Zr,
在700 K(427℃)下,DG=DH-TDS=-1,910焦/反應,E=-DG/zF=0.01 V。
E=E0+
在800 K(527℃)下,DG=DH-TDS=-835焦/反應,E=-DG/zF=0.004 V,
在500℃(液體共熔鹽之真實T:422℃)下,假定液體鹽之體積為100 ml,[H-]=0.018/(0.1×8)=2.25×10-2(M)。
E=E0-R×T×Ln(H-)/(nF)=E0-8.314×695×Ln(2.25×10-2)/(2×96485)=E0+0.114=0.01+0.114=0.124(V)。
電池編號082010RCC1-107:[Li/LiCl-KCl-LiH-NaCl/TiH2],在450℃下
-2.75" OD×6"氧化鋁坩堝
-共熔混合物:56.3 g LiCl-26+69.1 g KCl-27+0.018 g LiH-4+0.13 g NaCl-2
-陽極:於用SS連接之SS箔坩堝中0.35 g Li-7
-陰極:於用SS連接之SS箔坩堝中0.9 g TiH2-1+0.9 g TiC-136
-電阻器=100歐姆
-V範圍:0.462至0.831 V
-Vmax:在450℃下0.831 V,
-100歐姆電阻器與電池連接
負載下Vmax=0.808 V,負載下Imax=0.00808 A,
負載下Pmax=6.5 mW,V10秒=0.594 V,V20秒=0.582 V,V30秒=0.574 V,V1分鐘=0.564 V,V10分鐘=0.539 V,V162分鐘=0.577 V。
-OCV(開路電壓電壓,162分鐘負載+54.2分鐘恢復後)=0.908 V。
-100歐姆電阻器再與電池連接
V'負載最大=0.899 V,I'負載最大=0.00899 A,P'負載最大=8.1 mW,V'1分鐘=0.631 V,V'10分鐘=0.581 V。
-註釋:
當OCV達到0.818 V時,100歐姆電阻器與CIHT電池連接。在100歐姆電阻器拿掉後,當OCV為0.907 V時,100歐姆負載再與電池連接。
對於反應TiH2+2Li=2LiH+Ti,
在700 K(427℃)下,DG=DH-TDS=-28,015焦/反應,E=-DG/zF=0.15 V。
在800 K(527℃)下,DG=DH-TDS=-25,348焦/反應,E=-DG/zF=0.13 V,
在450℃(液體之真實T共熔鹽:388℃)下,假定液體鹽之體積為100 ml,[H-]=0.018/(0.1×8)=2.25×10-2(M)。
E=E0-R×T×Ln(H-)/(nF)=E0-8.314×661 Ln(2.25×10-2)/(2×96485)=E0+0.114=0.15+0.108=0.258(V)。
072210GZC1-40:Li鐘形物(於3/8" SS管中之Li)/LiCl+KCl/於Ni管中之H2
-2.75"氧化鋁坩堝
-電解質混合物:56.3 g LiCl#15+69.1 g KCl#12,MP=350℃
-電極:Li鐘形物(陽極),於Ni管中之H2(陰極)
-電阻器=N/A;T=450℃
結果:
(1)OCV隨添加至電極中之LiH之量而變:
註釋
(1)V=0.215-0.0571lnC(LiH,mol%);能斯特方程式(Nernst equation)斜率:-0.0580
(2)在添加之LiH之量小於14 mg下的資料明顯脫離能斯特方程式線,換言之,在電解質中LiH濃度<0.1%(mol)下觀測到明顯雜散電壓(spurious voltage)。
E. CIHT電池溶液NMR
CIHT電池之低能量氫產物亦由液體NMR鑑別,該液體NMR展示分子低能量氫及低能量氫氫化物離子之分別由方程式(12)及(20)給出之峰。舉例而言,在dDMF中溶劑萃取半電池反應產物後,藉由質子NMR在相對於TMS之約1.2 ppm及2.2 ppm下觀測到低能量氫反應產物,分別對應於H2(1/4)及H2(1/2)。表8中給出展示H2(1/4)峰及可能H2(1/2)峰之特定半電池反應混合物。
表8. CIHT電池之產物在DMF-d7溶劑萃取後的1H溶液NMR。觀測到H2(1/4)為通常1.2 ppm下之寬峰,藉由dDMF中之過量水,其可移位及增寬。在大部分情況下亦觀測到H2(1/2)為2.2 ppm下之較尖銳之峰。
陽極低能量氫峰
R-Ni/KOH(飽和水溶液)/CoOOH
R-Ni/KOH(飽和水溶液)/MnOOH
R-Ni/KOH(飽和水溶液)/InOOH
R-Ni/KOH(飽和水溶液)/GaOOH
R-Ni/KOH(飽和水溶液)/LaOOH
R-Ni/KOH(飽和水溶液)/蒸汽碳
Co/KOH(飽和水溶液)/CoO SC
Zn/KOH(飽和水溶液)/蒸汽碳
Pb/KOH(飽和水溶液)/蒸汽碳
In/KOH(飽和水溶液)/蒸汽碳
Sb/KOH(飽和水溶液)/蒸汽碳
LaNi5H/KOH(飽和水溶液)/MnOOH CB
Zn/KOH(飽和水溶液)/CoOOH CB
Zn/KOH(飽和水溶液)/MnOOH CB
CoH/KOH(飽和水溶液)/PdC
Ni奈米漿狀物/KOH(飽和水溶液)/蒸汽碳
R-Ni/KOH(飽和水溶液)/TiC
R-Ni/KOH(飽和水溶液)/TiCN
R-Ni/KOH(飽和水溶液)/NbC
R-Ni/KOH(飽和水溶液)/TiB2
R-Ni/KOH(飽和水溶液)/MgB2
R-Ni/KOH(飽和水溶液)/B4C
Cd/KOH(飽和水溶液)/PtC
La/KOH(飽和水溶液)/蒸汽碳
Cd/KOH(飽和水溶液)/蒸汽碳
Sn/KOH(飽和水溶液)/MnOOH CB
Co/KOH(飽和水溶液)/SC
R-Ni+M/KOH(飽和水溶液)/MnOOH(閉合)M=Pb、Mo、
Zn、Co、Ge CB-SA
HWS2/KOH(飽和水溶液)/CB
Co/KOH(飽和水溶液)/MnOOH SC
Sm-Co/KOH(飽和水溶液)/CB SA
Co/KOH(飽和水溶液)CoO DTPA/SC
Co/KOH(飽和水溶液)DTPA/Ni SC
Pb/KOH(飽和水溶液)/CB SC
Zn/KOH(飽和水溶液)/ZnO SC
Co/KOH(飽和水溶液)CoO DTPA/SC
Ni奈米粉末/KOH(飽和水溶液)/NiO CB(打開,但無能量:直接反應)
Co/KOH(飽和水溶液)/CuO CB(打開,但無能量:直接反應)
Ti|CG3501,飽和KOH|SC
Zn-KOH-SC+I2O5
Co/KOH(飽和水溶液)/CoO+SC(O2密封,但漏氣)
Zn/15M KOH/SC
Ge粉末(0.16 g)/KOH(飽和)+CG3501/CuO+CB+PVDF
電池編號012811RC2-290:
[Zn/KOH+EDTA/Ag2O2+CB+PVDF](手套箱)
電池編號012811RC3-291:
[Zn/KOH+EDTA/PtO2+CB+PVDF](手套箱)
電池編號013111RC1-292:
[Co/KOH+EDTA/PtO2+CB+PVDF](手套箱)
Cd/KOH(飽和水溶液)/CB-SA
Cd/KOH(飽和水溶液)/SC
ZnKOH(飽和水溶液)PtC混合於手套箱中
Ni(H2)NaOH/BASE/MgCl2-NaCl
陰極低能量氫峰
Na/Na鹼/NaI+NaOH
5...反應器
10...鍋爐
11...燃料反應混合物
12...氫來源
13...蒸汽管及蒸汽產生器
14...電力轉換器/渦輪機
16...水冷凝器
17...補水來源/水源
18...燃料再循環器
19...氫-二低能量氫氣體分離器
21...分離器
22...移相器/旋風分離器
23...磁力分離器
24...差異性產物增溶或懸浮系統
25...組分溶劑洗滌液
26...化合物回收系統
27...溶劑蒸發器
28...化合物收集器
29...沈澱器
30...化合物乾燥器及收集器
31...電解器
32...高揮發性氣體收集器
33...金屬收集器
34...金屬蒸餾器/分離器
35...氫化反應器
36...電力反應器
37...金屬及氫化物之入口及出口
38...氫氣入口
39...氫氣閥
40...氫氣供應器
41...氣體出口
42...氣體閥
43...泵
44...加熱器
45...壓力及溫度計
46...鹵化反應器
47...電池
48...碳入口及鹵化產物出口
49...氟氣入口
50...氟氣閥
51...鹵素氣體供應器
52...氣體出口
53...氣體閥
54...泵
55...加熱器
56...壓力及溫度計
57...金屬
58...混合器
61...觸媒供應通道
62...供應通道
70...氫觸媒反應器
72...容器
74...能量反應混合物
76...來源/能量釋放材料
78...觸媒/催化材料
80...熱交換器
82...蒸汽產生器
90...渦輪機
100...多管反應器
101...主反應器/反應室
102...第二腔室
103...熱交換器
104...蒸汽產生器/發電器系統
105...蒸汽渦輪機/發電器系統
106...發電器/發電器系統
107...管線
108...返回管線/冷輸入管線
110...雙室反應器/反應器
111...熱交換器
112...冷凝器
113...循環管線
115...閉合主循環迴路/管線
116...次迴路
120...管線/氫氣入口/供應器
121...排氣機構
122...低能量氫氣體分離器
123...氫氣再循環器
124...系統
125...供應器
127...真空泵
129...循環泵
130...反應室
131...金屬冷凝及再氫化腔室/觸媒室
132...閘閥
133...排氣管線
134...泵
135...管線
136...管線
137...管線
138...管線
139...熱交換器/冷卻劑迴路
141...電池
142...高傳導性材料
143...鍋爐管/外環
144...內部圓筒形環或束限制管
145...絕緣物或真空間隙
147...束
148...電池
149...鍋爐
150...鍋爐
151...多電池束
152...電池反應室
153...觸媒室
154...導管
155...冷卻劑
156...蒸汽歧管
158...鍋爐
159...高壓渦輪機
160...低壓渦輪機
161...發電器
162...濕氣分離器
163...冷凝器
164...冷卻塔
165...冷卻水泵
166...冷凝泵
167...鍋爐給水純化系統
168...第一段給水加熱器
169...脫氣給水箱
170...給水泵
171...增壓泵
172...產物儲存及處理器
173...反應物儲存及處理器
174...真空系統
175...起動加熱器
176...電解器
177...氫供應器
178...冷卻劑管線
179...冷卻劑閥
180...反應物及產物管線
181...反應物及產物管線閥
185...多管反應器電池/束
186...反應器電池
187...氣隙
188...熱收集器/交換器/負載
189...絕緣物
192...重複絕緣平面層
193...反應器電池
194...熱傳導介質
195...熱交換器/收集器
197...化學物質
198...絕緣材料
199...反應器
200...導熱材料/高度傳導性熱介質/腔室
201...嵌埋水管/鍋爐管
204...反應器
205...蒸汽收集管線
206...入口再循環管
207...蒸汽-水分離器
208...鍋爐管
209...循環泵
210...出口再循環管
211...配水管線
212...主蒸汽管線
213...入口返水管
214...入口增壓泵
217...鍋爐
218...熱交換器
219...高壓渦輪機
220...低壓渦輪機
221...發電器
222...濕氣分離器
223...冷凝器
224...冷卻塔
225...冷卻水泵
226...冷凝泵
227...鍋爐給水純化系統
228...第一段給水加熱器
229...脫氣給水箱
230...給水泵
232...產物儲存及處理器
233...反應物儲存及處理器
234...真空系統
235...起動加熱器
236...電解器
237...氫供應器
238...冷卻劑管線
239...冷卻劑閥
240...反應物及產物管線
241...反應物及產物管線閥
251...增壓泵
252...蒸汽-水分離器
253...鍋爐系統
260...腔室/反應室/容器/電池
261...反應容器
262...氫來源
263...控制器
264...氫供應通道
265...壓力感測器
266...真空泵
267...真空管線
268...觸媒來源
269...觸媒儲集器
270...觸媒供應通道
271...溫度控制組件/加熱旋管/加熱器
272...電源供應器
273...熱長絲
274...供應器
275...觸媒儲集器加熱器
276...電源供應器
277...外部氫儲集器
278...壁
279...吸氣器/捕集器
280...選擇閥
281...固體燃料/異質觸媒燃料混合物/反應物
282...容器
283...控制閥
284...連接機構
300...腔室/反應室/電池室
301...選擇性排放閥
305...陰極
307...氣體放電電池
313...容器/壁
315...輝光放電真空容器
320...陽極
322...氫來源
325...控制閥
330...電壓及電流來源
341...觸媒供應通道
342...氫供應通道
350...氣體觸媒
372...電源供應器
380...加熱旋管/加熱器
385...電源供應器
390...外部氫儲集器
392...觸媒儲集器加熱器
395...觸媒儲集器
400...燃料電池/容器
401...陰極隔室
402...陽極隔室
405...陰極/電極
410...陽極/電極
411...加熱器
412...再生電池
413...氫來源及泵
414...控制閥
415...管線
416...通道
418...通道
419...通道
420...鹽橋
421...通道
422...通道
423...通道
425...負載/外部電路
430...低能量氫來源/氫系統
431...氫系統
440...泵
460...入口/通道/氫系統
461...通道/氫系統
470...電解質/隔室/腔室
471...離子傳導性電解質
472...陽極/H2可透膜
473...陰極/氫可透膜
474...內室/陰極隔室
475...陽極隔室
476...外部電路
500...CIHT電池堆疊
501...電解電池及水槽或氫氣貯槽/氫來源
502...電動馬達
503...電子控制系統
504...齒輪系或齒輪傳動
600...陽極隔室
601...陰極隔室/陰極/一次陰極半電池
602...隔板
603...陽極/電極/陰極
604...陰極/電極
605...負載
606...開關
607...第三或再生半電池/腔室/輔助隔室
608...質子導體/隔板
609...電極/輔助陽極
610...電源/電源供應器
611...開關
612...電解電源供應器
613...負載
614...開關
616...電源
640...貯槽或供應器/水性電解電池
642...管線
644...調節器
646...選擇性閥或膜
650...CIHT電池
651...容器/陰極
652...陰極
653...H2可透陽極/氫可透膜
654...負載
655...電解質
657...系統
658...第一腔室/H2O收集腔室
659...蒸氣通道
660...H2O吸收器/H2O冷凝器
661...通道
663...泵
665...加熱器
666...閥
667...閥/系統
668...閥/選擇性H2可透膜及閥
669...計量器
671...系統
672...第二腔室
673...H2吸氣劑
675...氣體通道
676...通道
678...泵
680...加熱器
681...閥
682...閥
684...計量器
...步驟
...步驟
...步驟
...步驟
圖1為根據本發明之能量反應器及發電廠之示意圖;
圖2為根據本發明之用於再循環或再生燃料的能量反應器及發電廠之示意圖;
圖3為根據本發明之電力反應器的示意圖;
圖4為根據本發明之用於再循環或再生燃料的系統之示意圖;
圖5為根據本發明之多管反應系統的示意圖,其進一步展示用於再循環或再生燃料的單位能量反應器及發電廠之細節;
圖6為根據本發明之多管反應系統之一條管道的示意圖,該管道包含反應室及金屬冷凝及再氫化腔室,其由用於蒸發金屬蒸氣、再氫化金屬及再供應再生鹼金屬氫化物之閘閥(sluice valve;gate valve)隔開;
圖7為根據本發明之熱耦接多電池束之示意圖,其中循環之電力產生階段中之電池加熱再生階段中之電池,且將電池束浸漬於水中,使得跨越間隙具有熱梯度之外環的外表面上發生沸騰及蒸汽產生;
圖8為根據本發明之複數個熱耦接多電池束之示意圖,其中可將電池束配置於鍋爐箱中;
圖9為根據本發明之容納反應器束且將蒸汽引導至圓頂歧管中之鍋爐的示意圖;
圖10為根據本發明之發電系統的示意圖,其中在圖9之鍋爐中產生蒸汽且經引導通過圓頂歧管達至蒸汽管線,蒸汽渦輪機自沸水接收蒸汽,以發電器發電,且蒸汽經冷凝且抽回至鍋爐;
圖11為根據本發明之多管反應系統之示意圖,其包含反應器電池束呈熱接觸且藉由氣體間隙與熱交換器隔開;
圖12為根據本發明之多管反應系統之示意圖,其包含交替的絕緣層、反應器電池、熱傳導介質及熱交換器或收集器;
圖13為根據本發明之多管反應系統之單一單元的示意圖,其包含交替的絕緣層、反應器電池、熱傳導介質及熱交換器或收集器;
圖14為根據本發明之鍋爐系統之示意圖,其包含圖12之多管反應系統及冷卻劑(飽和水)流量調節系統;
圖15為根據本發明之發電系統示意圖,其中在圖14之鍋爐中產生蒸汽且自蒸汽-水分離器輸出至主蒸汽管線,蒸汽渦輪機自沸水接收蒸汽,以發電器發電,且蒸汽經冷凝且抽回至鍋爐;
圖16為根據本發明之蒸汽產生流程圖的示意圖;
圖17為根據本發明之放電電力及電漿電池及反應器的示意圖;
圖18為根據本發明之電池及燃料電池的示意圖;
圖19為根據本發明之利用CIHT電池堆疊的汽車架構;
圖20為根據本發明之CIHT電池的示意圖;
圖21為根據本發明之三種半電池CIHT電池的示意圖;及
圖22為根據本發明之包含H2O及H2收集及再循環系統之CIHT電池的示意圖。
61...觸媒供應通道
62...供應通道
70...氫觸媒反應器
72...容器
74...能量反應混合物
76...來源/能量釋放材料
78...觸媒/催化材料
80...熱交換器
82...蒸汽產生器
90...渦輪機
100...多管反應器
110...雙室反應器/反應器

Claims (5)

  1. 一種電化學電力系統,其包括一燃料電池,該燃料電池包含:可氧化含氫物質之陽極;熔融共晶鹽電解質,其係以MOH-MX表示,其中M為鹼金屬且X為鹵素;及能還原O2或H2O至少一者之陰極。
  2. 如請求項1之電化學電力系統,其中該陽極包含氫可透膜。
  3. 如請求項1之電化學電力系統,其包含:具有氫來源且可氧化含氫物質之陽極;具有O2來源或H2O來源至少一者,且能還原O2或H2O之至少一者之陰極;能收集並再循環H2O蒸氣、N2及O2之至少一者的系統;及用於收集並再循環H2之系統。
  4. 一種電化學電力系統,其包含一燃料電池,該燃料電池包含一具有以下構件之電池:(i)具有氫來源且可氧化含氫物質之陽極;(ii)熔融共晶鹽電解質,其係以MOH-MX表示,其中M為鹼金屬且X為鹵素;(iii)具有空氣來源或O2來源之至少一者,且能還原O2或H2O之至少一者之陰極。
  5. 如請求項1至4任一項之電化學電力系統,其包含: 具有陽極之陽極隔室以及具有陰極之陰極隔室,其中該陽極隔室與陰極隔室藉由各別導管連接以便電子與離子在該等隔室之間形成電路。
TW100109487A 2010-03-18 2011-03-18 電化學氫觸媒電力系統 TWI530011B (zh)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
US31518610P 2010-03-18 2010-03-18
US31717610P 2010-03-24 2010-03-24
US32995910P 2010-04-30 2010-04-30
US33252610P 2010-05-07 2010-05-07
US34713010P 2010-05-21 2010-05-21
US35634810P 2010-06-18 2010-06-18
US35866710P 2010-06-25 2010-06-25
US36309010P 2010-07-09 2010-07-09
US36505110P 2010-07-16 2010-07-16
US36928910P 2010-07-30 2010-07-30
US37159210P 2010-08-06 2010-08-06
US37349510P 2010-08-13 2010-08-13
US37761310P 2010-08-27 2010-08-27
US38392910P 2010-09-17 2010-09-17
US38900610P 2010-10-01 2010-10-01
US39371910P 2010-10-15 2010-10-15
US40838410P 2010-10-29 2010-10-29
US41324310P 2010-11-12 2010-11-12
US41959010P 2010-12-03 2010-12-03
US201061425105P 2010-12-20 2010-12-20
US201161430814P 2011-01-07 2011-01-07
US201161437377P 2011-01-28 2011-01-28
US201161442015P 2011-02-11 2011-02-11
US201161449474P 2011-03-04 2011-03-04

Publications (2)

Publication Number Publication Date
TW201138198A TW201138198A (en) 2011-11-01
TWI530011B true TWI530011B (zh) 2016-04-11

Family

ID=44461946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109487A TWI530011B (zh) 2010-03-18 2011-03-18 電化學氫觸媒電力系統

Country Status (14)

Country Link
EP (2) EP3595066A3 (zh)
JP (3) JP5698337B2 (zh)
KR (2) KR20180127523A (zh)
CN (1) CN102906925B (zh)
AU (1) AU2011227129A1 (zh)
CA (1) CA2793398A1 (zh)
EA (2) EA028372B1 (zh)
ES (1) ES2756719T3 (zh)
HK (1) HK1181194A1 (zh)
IL (1) IL221864A (zh)
MX (1) MX367435B (zh)
SG (1) SG183976A1 (zh)
TW (1) TWI530011B (zh)
WO (1) WO2011116236A2 (zh)

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2382174A4 (en) 2009-01-29 2013-10-30 Trustees Of The University Of Princeton CONVERSION OF CARBON DIOXIDE IN ORGANIC PRODUCTS
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US9200375B2 (en) 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
SA112330516B1 (ar) 2011-05-19 2016-02-22 كاليرا كوربوريشن انظمة وطرق هيدروكسيد كهروكيميائية مستخدمة لأكسدة المعدن
TWI612717B (zh) * 2012-05-21 2018-01-21 明亮光源能源公司 觸媒誘導亞氫遷移電力系統
CN102709140B (zh) * 2012-05-23 2014-09-17 四川大学 一种用于中子管的气体放电型离子源
US8858777B2 (en) 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US9175407B2 (en) 2012-07-26 2015-11-03 Liquid Light, Inc. Integrated process for producing carboxylic acids from carbon dioxide
US8692019B2 (en) 2012-07-26 2014-04-08 Liquid Light, Inc. Electrochemical co-production of chemicals utilizing a halide salt
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US20140206896A1 (en) 2012-07-26 2014-07-24 Liquid Light, Inc. Method and System for Production of Oxalic Acid and Oxalic Acid Reduction Products
US8641885B2 (en) 2012-07-26 2014-02-04 Liquid Light, Inc. Multiphase electrochemical reduction of CO2
WO2014043651A2 (en) 2012-09-14 2014-03-20 Liquid Light, Inc. High pressure electrochemical cell and process for the electrochemical reduction of carbon dioxide
WO2014055873A1 (en) * 2012-10-05 2014-04-10 Massachusetts Institute Of Technology Low-temperature liquid metal batteries for grid-scaled storage
CA2888463C (en) 2012-10-16 2021-01-26 Ambri Inc. Electrochemical energy storage devices and housings
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
CN102931335B (zh) * 2012-10-24 2016-08-10 东华大学 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
CA2895253C (en) * 2012-12-21 2022-03-01 Liquid Light, Inc. Method and system for production of oxalic acid and oxalic acid reduction products
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
TWI645910B (zh) * 2013-07-10 2019-01-01 曹艷環 渦流反應裝置
ES2735014T3 (es) * 2013-07-18 2019-12-13 Hydrogen Eng Application& Development Company Dispositivo de calentamiento y método de calentamiento
TWI633206B (zh) 2013-07-31 2018-08-21 卡利拉股份有限公司 使用金屬氧化物之電化學氫氧化物系統及方法
JP6685898B2 (ja) 2013-10-16 2020-04-22 アンブリ・インコーポレイテッド 高温反応性材料デバイスのためのシール
EA201691042A1 (ru) * 2013-11-20 2016-12-30 Бриллиант Лайт Пауэр, Инк. Системы и способы генерации энергии
CN103590864A (zh) * 2013-11-28 2014-02-19 陕西胜慧源信息科技有限公司 一种利用超低温尾气的朗肯循环工质及其使用方法
ITBL20130019A1 (it) * 2013-12-17 2015-06-18 Fabrizio Righes Metodo per la produzione di energia, dalla reazione nucleare lern tra atomi di idrogeno e molecole di polimero sintetico, ed apparechio per l'attuaizone di tale metodo
UA118772C2 (uk) 2013-12-20 2019-03-11 Філіп Морріс Продактс С.А. Курильний виріб, який має фільтр, що містить капсулу
WO2015102618A1 (en) * 2013-12-31 2015-07-09 Rutgers, The State University Of New Jersey Nickel phosphides electrocatalysts for hydrogen evolution and oxidation reactions
EP3090464A4 (en) * 2014-01-02 2017-07-19 Phinergy Ltd. Hybrid metal air system and method
KR20160132888A (ko) * 2014-03-03 2016-11-21 브릴리언트 라이트 파워, 인크. 광전 발전 시스템 및 이에 관한 방법
CA2944454A1 (en) 2014-04-01 2015-10-08 The Research Foundation For The State University Of New York Electrode materials for group ii cation-based batteries
MX2016015386A (es) * 2014-05-29 2018-01-26 Brilliant Light Power Inc Sistemas de generacion de energia electrica y metodos relacionados con los mismos.
CA2958089C (en) 2014-09-15 2021-03-16 Calera Corporation Electrochemical systems and methods using metal halide to form products
TWI534131B (zh) 2014-11-27 2016-05-21 財團法人工業技術研究院 氫化4,4’-二胺基二苯甲烷的觸媒與方法
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
KR101667479B1 (ko) * 2015-03-25 2016-10-18 연세대학교 원주산학협력단 수은 또는 비스므스 박막전극을 이용하여 과염소산 이온을 제거하는 방법
CN104802631B (zh) * 2015-04-03 2018-04-24 中国长江三峡集团公司 钍燃料动力系统及方法
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
CN107710331B (zh) * 2015-05-09 2021-03-05 辉光能源公司 热光伏电力产生器
CN104914145B (zh) * 2015-05-26 2018-06-15 中国核动力研究设计院 一种基于催化反应电化学原理的氢气浓度传感器
KR101670860B1 (ko) * 2015-06-25 2016-11-01 서울대학교산학협력단 물 분해용 촉매 및 이의 제조방법
WO2017075014A1 (en) 2015-10-27 2017-05-04 Massachusetts Institute Of Technology Electrochemical process for gas separation
EP3368502B1 (en) 2015-10-28 2020-09-02 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
JP6066143B1 (ja) * 2015-12-15 2017-01-25 株式会社クリーンプラネット 発熱システム
US20200403555A1 (en) * 2016-01-19 2020-12-24 Brilliant Light Power, Inc. Thermophotovoltaic electrical power generator
WO2017141692A1 (ja) * 2016-02-19 2017-08-24 国立研究開発法人物質・材料研究機構 水素発生剤、水素発生方法、及び物質の製造方法
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
CA3053126A1 (en) * 2017-02-12 2018-11-08 Brilliant Light Power, Inc. Magnetohydrodynamic electric power generator
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
RU2665394C1 (ru) * 2017-06-19 2018-08-29 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения
CN109225284B (zh) * 2017-07-11 2022-03-04 中国科学院理化技术研究所 一种储氢材料分解放氢体系
US10556848B2 (en) 2017-09-19 2020-02-11 Calera Corporation Systems and methods using lanthanide halide
CN107910574B (zh) * 2017-11-15 2020-04-17 白强 一种用于燃料电池的复合固体电解质制备方法
CN108054429B (zh) * 2017-11-30 2019-11-01 苏州科技大学 一种锂金属负极保护用电解液添加剂及其制备方法和应用
JP2019189829A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 蓄熱材料、蓄熱材料の製造方法、及び化学ヒートポンプ
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid
CN108808030B (zh) * 2018-07-03 2023-08-08 重庆大学 基于b-z振荡反应的脉冲电池设计
US20210199396A1 (en) * 2018-07-06 2021-07-01 Carrier Corporation Electrochemical heat transfer system
CN111007132A (zh) * 2018-10-05 2020-04-14 科奥比株式会社 用电化学活性细菌通过传感器信号模式分析方法同时测量水中有机物浓度和毒性的集成系统
CN109301402A (zh) * 2018-10-23 2019-02-01 郑州佛光发电设备有限公司 一种基于空气电池和氢燃料电池的一体化发电系统
CN109459396B (zh) * 2018-12-04 2023-08-25 南京信息工程大学 大气颗粒物碳同位素在线激光探测分析仪及其使用方法
CN109650391B (zh) * 2019-01-29 2022-03-18 武汉科技大学 二维碳化钒MXene的制备方法
RU2709009C1 (ru) * 2019-01-31 2019-12-13 Борис Александрович Астахов Устройство для нагрева теплоносителя
CN109974907B (zh) * 2019-03-15 2021-08-24 钛深科技(深圳)有限公司 一体化主动供电柔性压力传感器
CN110133207B (zh) * 2019-05-30 2023-07-18 四川省乐山市科百瑞新材料有限公司 一种稀土金属自动分选装置及其分选方法
US10917454B1 (en) 2019-08-01 2021-02-09 Rohde & Schwarz Gmbh & Co. Kg System and method for ATC voice quality assurance
CN110436410B (zh) * 2019-08-20 2020-12-11 中核能源科技有限公司 一种高温气冷堆耦合碘硒热化学循环碳还原制氢方法
KR20220053626A (ko) 2019-08-28 2022-04-29 메사추세츠 인스티튜트 오브 테크놀로지 루이스 산 기체의 전기화학적 포집
CN110898838B (zh) * 2019-09-06 2022-06-10 天津大学 毫秒激光直写技术合成Ni掺杂FeOOH/NF的制备方法及应用
CN110592611A (zh) * 2019-09-23 2019-12-20 苏州大学 催化电极及其制备方法及应用
CN110729870B (zh) * 2019-10-08 2020-07-28 中国科学院电工研究所 一种碱金属种子注入装置
CN111082008B (zh) * 2019-12-14 2021-07-23 莒南凯佳化工有限公司 一种电化学储能用纳米纤维素/氧化锌复合物制备方法
CN111228577A (zh) * 2020-01-15 2020-06-05 太原科技大学 一种可短期降解医用镁合金及其制备方法
CN111167390A (zh) * 2020-03-17 2020-05-19 北京双子动力科技发展有限公司 一字型三原子氢高能火箭燃料的制备装置及其制备方法
CN111377481A (zh) * 2020-03-20 2020-07-07 苏州科技大学 钴掺杂硫化钼材料于自供能压电增强制氢中的应用
WO2021194043A1 (ko) * 2020-03-25 2021-09-30 한국과학기술연구원 표면에 기능기를 함유하는 금속 산화물을 포함하는 펜톤 반응 시스템용 촉매 및 이를 이용한 펜톤 반응 시스템
CN111495402B (zh) * 2020-04-20 2023-03-24 嘉兴学院 一种利用微波火花制备钼基复合材料及其方法和应用
CN111661816B (zh) * 2020-06-09 2023-07-11 世能氢电科技有限公司 MgH2-三元金属氧化物-石墨复合储氢材料及其制备方法
CN111662011A (zh) * 2020-06-22 2020-09-15 哈尔滨工程大学 一种s波段宽带发光铥掺杂铋酸盐激光玻璃及制备方法
CN112117517B (zh) * 2020-09-01 2021-09-10 威海广泰空港设备股份有限公司 一种用于电动旅客登机梯的柔性锌空气电池及制备方法
CN114430057A (zh) * 2020-10-29 2022-05-03 南开大学 制氢系统以及使用该制氢系统的制氢方法和动力系统
WO2022098795A1 (en) * 2020-11-03 2022-05-12 Advancedmems Llc Antipathogenic personal protective equipment (ppe)
CN113371794B (zh) * 2020-11-23 2022-05-17 南昌航空大学 一种钯改性的碳布用于电化学高值化回收废水中三价锑的方法
CN113943977B (zh) * 2021-10-09 2022-12-06 中国科学院福建物质结构研究所 KMgSO4F化合物、KMgSO4F非线性光学晶体及其制法和用途
CN114774686A (zh) * 2022-05-06 2022-07-22 河南理工大学 一种在硫代硫酸盐浸金体系中置换回收金的装置及方法
CN115048775B (zh) * 2022-05-27 2024-04-09 中国空气动力研究与发展中心计算空气动力研究所 一种热化学非平衡流动的组分限制方法
CN115155597B (zh) * 2022-08-12 2023-07-18 洛阳理工学院 可回收钴酸镍/二氧化钛@AC@CFs光电催化材料的制备方法
CN115318281A (zh) * 2022-08-30 2022-11-11 陕西氢易能源科技有限公司 用于杂环化合物脱氢的负载型脱氢催化剂及其制备方法
CN115360324B (zh) * 2022-10-19 2023-02-07 北京金羽新材科技有限公司 一种调控锂离子梯度分布的三维框架结构改性锂负极及其制备方法和应用
CN115779934B (zh) * 2022-11-01 2024-02-13 安徽大学 一种高效光催化材料及其制备方法和应用
CN116237063B (zh) * 2023-02-17 2023-08-15 兰州大学 钇促进的二氧化碳还原催化剂及其制备方法
CN116859830B (zh) * 2023-03-27 2024-01-26 福建天甫电子材料有限公司 用于电子级氟化铵生产的生产管理控制系统
CN117577792B (zh) * 2024-01-16 2024-04-19 淄博火炬机电设备有限责任公司 正板栅灌浆系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UST863144I4 (zh) * 1959-12-31
US3669750A (en) * 1968-12-24 1972-06-13 Prototech Inc Fuel cell system
US4377625A (en) 1981-10-30 1983-03-22 Duracell Inc. Corrosion and hydrogen evolution inhibitors for current-producing cells having zinc anodes
US4659554A (en) * 1984-06-04 1987-04-21 Allied Corporation Low-energy process for separation of hydrogen isotopes
JPH06215791A (ja) * 1988-07-29 1994-08-05 Hughes Aircraft Co 熱電気化学装置及び方法
US5427657A (en) 1994-05-19 1995-06-27 General Motors Corporation Fused fluoride electrolytes for magnesium oxide electrolysis in the production of magnesium metal
EA002888B1 (ru) * 1997-07-22 2002-10-31 Блэклайт Пауэр, Инк. Неорганические водородные соединения, способы получения и применение
US20090148731A1 (en) * 1998-01-20 2009-06-11 Mills Randell L Hydride battery and fuel cell
JP2005504956A (ja) * 2001-03-07 2005-02-17 ブラックライト パワー インコーポレーティド マイクロ波パワーセル、化学反応炉、及びパワー変換装置
CN100372158C (zh) 2001-04-06 2008-02-27 威伦斯技术公司 钠离子电池
AP3363A (en) * 2008-07-30 2015-07-31 Blacklight Power Inc Heterogeneous hydrogen-catalyst reactor
JP2012505810A (ja) * 2008-07-30 2012-03-08 ブラックライト パワー インコーポレーティド 不均一系水素触媒反応器

Also Published As

Publication number Publication date
EA201201295A1 (ru) 2013-09-30
EP2548257B1 (en) 2019-09-11
WO2011116236A3 (en) 2011-12-08
JP2013542547A (ja) 2013-11-21
WO2011116236A8 (en) 2012-01-12
IL221864A (en) 2016-07-31
EP3595066A3 (en) 2020-04-01
MX367435B (es) 2019-08-21
AU2011227129A1 (en) 2012-10-11
SG183976A1 (en) 2012-10-30
JP2015149284A (ja) 2015-08-20
ES2756719T3 (es) 2020-04-27
JP5698337B2 (ja) 2015-04-08
EP2548257A2 (en) 2013-01-23
CN102906925A (zh) 2013-01-30
HK1181194A1 (zh) 2013-11-01
TW201138198A (en) 2011-11-01
EA028372B1 (ru) 2017-11-30
EP3595066A2 (en) 2020-01-15
KR20130048728A (ko) 2013-05-10
EA201700332A1 (ru) 2017-10-31
CN102906925B (zh) 2016-05-25
MX2012010588A (es) 2013-01-29
CA2793398A1 (en) 2011-09-22
JP2018067536A (ja) 2018-04-26
WO2011116236A2 (en) 2011-09-22
KR20180127523A (ko) 2018-11-28

Similar Documents

Publication Publication Date Title
TWI530011B (zh) 電化學氫觸媒電力系統
US20210313606A1 (en) H2o-based electrochemical hydrogen-catalyst power system
US20130084474A1 (en) Electrochemical hydrogen-catalyst power system
JP2013542547A5 (zh)
JP6120420B2 (ja) Cihtパワー・システム
AU2015246122A1 (en) Electrochemical hydrogen-catalyst power system
EP2966723A1 (en) Heterogeneous hydrogen-catalyst power system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees