RU2665394C1 - Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения - Google Patents

Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения Download PDF

Info

Publication number
RU2665394C1
RU2665394C1 RU2017121285A RU2017121285A RU2665394C1 RU 2665394 C1 RU2665394 C1 RU 2665394C1 RU 2017121285 A RU2017121285 A RU 2017121285A RU 2017121285 A RU2017121285 A RU 2017121285A RU 2665394 C1 RU2665394 C1 RU 2665394C1
Authority
RU
Russia
Prior art keywords
swcnt
carbon nanotubes
monomer
nanocomposite
polymer
Prior art date
Application number
RU2017121285A
Other languages
English (en)
Inventor
Света Жираслановна Озкан
Галина Петровна Карпачева
Original Assignee
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority to RU2017121285A priority Critical patent/RU2665394C1/ru
Application granted granted Critical
Publication of RU2665394C1 publication Critical patent/RU2665394C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с полимерной мембраной, для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев. Предложен гибридный электропроводящий материал на основе полимера - полидифениламин-2-карбоновой кислоты (поли-N-фенилантраниловой кислоты) и одностенных углеродных нанотрубок (ОУНТ) при содержании ОУНТ в материале 1-3мас.%. Способ его получения включает растворение мономера - дифениламин-2-карбоновой кислоты (ДФАК) в органическом растворителе - хлороформе до концентрации 0.05-0.2 моль/л, добавление к раствору ОУНТ в количестве 1-3 мас.% от массы мономера (ДФАК) и in situ окислительную полимеризацию мономера в щелочной среде в присутствии водного раствора окислителя. Технический результат - повышение электропроводности, прочности, термостойкости нанокомпозитного дисперсного электропроводящего материала при значительном снижении содержания в нем углеродных нанотрубок. 2 н.п. ф-лы, 11 ил., 1 табл., 19 пр.

Description

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с полимерной мембраной, для создания микроэлектромеханических систем, модулей памяти, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев и т.д.
С развитием современных технологий электроактивные полимеры, благодаря комплексу полезных свойств [1, 2], находят все более широкие области практического использования. Расширение круга электроактивных полимеров сдерживается ограничением растворимости новых мономеров в водных растворах кислот при окислительной полимеризации. Интерес исследователей к углеродным нанотрубкам (УНТ) [3] не ослабевает благодаря присущим им замечательным физико-химическим свойствам, таким как высокая термостойкость и механическая прочность, высокая электрическая проводимость и теплопроводность, высокая удельная поверхность и способность формировать пористую среду.
Разработано множество методов получения нанокомпозитов на основе полимеров с системой сопряжения и УНТ. Наиболее перспективным из них является in situ окислительная полимеризация мономера на многостенных углеродных нанотрубках (МУНТ), позволяющая получить однородное полимерное покрытие [4, 5].
Наиболее близкими к предложенным являются гибридный материал на основе полианилина (ПАНи) и многостенных углеродных нанотрубок (МУНТ) и способ получения этого композиционного материала окислительной полимеризацией анилина под действием персульфата аммония в присутствии исходных МУНТ (d=9.5 нм,
Figure 00000001
=1.5 мкм) в реакционной смеси [6].
Недостатком известного материала и способа является незначительное повышение электропроводности - поверхностное сопротивление пленки нанокомпозита МУНТ/ПАНи составляет 16.9 кОм/см (5.9×10-5 См/см) при массовом соотношении анилин : МУНТ=10:1, что только на порядок величины меньше сопротивления ПАНи (343.3 кОм/см) (2.9×10-6 См/см), недостаточная термостабильность нанокомпозита МУНТ/ПАНи на воздухе (50%-ная потеря массы нанокомпозита наблюдается при 460°С; при 620°С материал полностью разлагается).
Задача предлагаемого изобретения заключается в создании гибридного дисперсного электропроводящего наноматериала с высокой термостойкостью (термостабильностью), а также в повышении электропроводности материала при снижении содержания в нем УНТ и разработке простого и эффективного способа его получения.
Поставленная задача решается тем, что предложен гибридный электропроводящий материал на основе полимера и углеродных нанотрубок, в котором в качестве полимера используют полидифениламин-2-карбоновую кислоту (поли-N-фенилантраниловую кислоту), а в качестве углеродных нанотрубок - одностенные углеродные нанотрубки (ОУНТ) при содержании ОУНТ в указанном материале 1-3%масс. от массы мономера - дифениламин-2-карбоновой кислоты (ДФАК).
Поставленная задача также решается тем, что в способе получения гибридного электропроводящего материала in situ окислительной полимеризацией мономера в присутствии углеродных нанотрубок (УНТ) и окислителя в водном растворе щелочи, для получения указанного материала в качестве мономера используют ДФАК, в качестве углеродных нанотрубок - ОУНТ, а перед окислительной полимеризацией ДФАК растворяют в органическом растворителе - хлороформе до концентрации 0.05-0.2 моль/л и добавляют к раствору ОУНТ в количестве 1-3%масс. от массы ДФАК.
Одностенные углеродные нанотрубки (ОУНТ) производства "ООО Углерод Чг" получают электродуговым процессом с катализатором Ni/Y. Характеристики ОУНТ: диаметр d=1.4-1.6 нм, длина
Figure 00000002
=0.5-1.5 мкм.
Мономер представляет собой гетероциклическое соединение, имеющее в своей структуре активную карбоксильную группу и атом азота, соединяющий два фенильных кольца:
Figure 00000003
Гибридный наноматериал ОУНТ/полидифениламин-2-карбоновой кислоты (ОУНТ/ПДФАК) получен в условиях in situ окислительной полимеризации дифениламин-2-карбоновой кислоты (ДФАК) в гетерофазной системе в присутствии органического растворителя - хлороформа. Формирование гибридного нанокомпозитного материала ОУНТ/ПДФАК включает закрепление мономера на поверхности ОУНТ с последующей in situ полимеризацией ДФАК в щелочной среде в присутствии водного раствора окислителя - персульфата аммония.
В качестве органического растворителя используют хлороформ. В качестве щелочи - NH4OH, NaOH или КОН. В качестве окислителя - персульфат аммония, пероксид водорода или FeCl3.
Полидифениламин-2-карбоновая кислота представляет собой черный порошок, полностью растворимый в водных растворах NH4OH и NaOH, N-метилпирролидоне, ДМФА, ДМСО, частично в ТГФ, диоксане, ацетоне.
Синтез нанокомпозита (гибридного материала) ОУНТ/полидифениламин-2-карбоновой кислоты (ОУНТ/ПДФАК) проводят следующим образом. Сначала осуществляют закрепление мономера на поверхности ОУНТ. Для этого требуемое количество мономера (ДФАК) (0.05-0.2 моль/л) растворяют в органическом растворителе - хлороформе. К полученному раствору добавляют ОУНТ (d=1.4-1.6 нм,
Figure 00000004
=0.5-1.5 мкм). Содержание углеродных нанотрубок [ОУНТ]=1-3%масс. относительно массы мономера. Процесс ведут при 40-55°С при постоянном интенсивном перемешивании в течение 0.5-1 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Полученную суспензию ОУНТ/ДФАК перемешивают в ультразвуковой мойке при комнатной температуре в течение 0.5 ч. Затем для проведения in situ окислительной полимеризации ДФАК в присутствии ОУНТ, в предварительно термостатированную при -10-50°С суспензию ОУНТ/ДФАК в хлороформе сразу без постепенного дозирования реагентов добавляют водный раствор смеси окислителя (например, персульфата аммония) (0.05-1.0 моль/л) и щелочи (например, NH4OH) (0.25-1.0 моль/л). Соотношение объемов органической и водной фаз составляет 1:1 (Vобщ.=30 мл). Синтез проводят в течение 1-6 ч при интенсивном перемешивании при -10-50°С. По окончании реакции смесь осаждают в десятикратный избыток 2%-ного раствора H2SO4. Полученный продукт отфильтровывают, многократно промывают дистиллированной водой для удаления остатков реагентов и сушат под вакуумом над КОН до постоянной массы.
Образование нанокомпозита ОУНТ/ПДФАК подтверждено данными просвечивающей (ПЭМ) и сканирующей (СЭМ) электронной микроскопии, ИК Фурье, электронной спектроскопии, ЯМР 13С твердого тела высокого разрешения ВМУ и рентгеноструктурного исследования, представленными на фиг. 1-7, где I - интенсивность, 2θ - угол, I/I0 - соотношение интенсивностей падающего и прошедшего излучения, ν - частота излучения, λ - длина волны, D - оптическая плотность, δС - химический сдвиг.
На фиг. 1 представлены ИК-спектры ПДФАК (1) и нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=2%масс. относительно массы мономера (2).
На фиг. 2 представлены электронные спектры поглощения ПДФАК (1) и нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=2%масс. относительно массы мономера (2).
На фиг. 3 представлены спектры ЯМР ВМУ 13С ПДФАК (1) и нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=2%масс. относительно массы мономера (2).
На фиг. 4 представлены ПЭМ микрофотографии нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=3%масс. относительно массы мономера.
На фиг. 5 представлены СЭМ изображения нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=2%масс. относительно массы мономера.
На фиг. 6 представлена дифрактограмма нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=2%масс. относительно массы мономера.
Анализ результатов спектральных исследований методами ИК Фурье, электронной, рентгенофотоэлектронной спектроскопии, ЯМР 13С твердого тела высокого разрешения ВМУ позволяет представить химическую структуру полидифениламин-2-карбоновой кислоты (поли-N-фенилантраниловой кислоты) следующим образом:
Figure 00000005
ПДФАК представляет собой поликислоту, в структуре которой карбоксильные группы образуют внутримолекулярные водородные связи с аминогруппами вдоль всей полимерной цепи [7]. ПДФАК впервые получена в условиях химической окислительной полимеризации ДФАК в гетерофазной системе в присутствии органического растворителя - хлороформа. При интенсивном перемешивании формируется дисперсионная реакционная среда, в которой непрерывной фазой является водный щелочной раствор, содержащий окислитель, а дисперсионной фазой являются капли раствора мономера в хлороформе. В рассматриваемом процессе на границе раздела фаз происходит только инициирование полимеризации. В силу того, что мономер растворяется не только в хлороформе, но и в водном растворе щелочи, рост полимерной цепи протекает в водной фазе, с постепенным переходом мономера из органической фазы в водную.
Максимальный выход ПДФАК 72-79%. По данным ГПХ молекулярная масса полимера достигает Mw=2.6×104, степень полимеризации более 120, индекс полидисперсности 2.2. ММ полимеров ДФАК измеряют методом ГПХ на приборе "Water's 150С", оснащенном колонками PLgel 5um MIXED-C, используя N-метилпирролидон в качестве элюента, при Т=60°С. Скорость потока элюента 1 мл/мин. Объем вводимого образца 150 мкл. Калибровка проведена по полистиролу. В качестве детектора используют RI-детектор. Точность определения ММ ~ 5% [7].
Полученные гетероциклические полимеры ДФАК являются аморфными, электроактивными и термостабильными. Потеря массы при 168°С связана с удалением групп СООН [7]. Удаление групп СООН подтверждается данными высокотемпературной ИК-спектроскопии (фиг. 7). Сравнительный анализ ИК-спектров исходного полимера и полимера, прогретого до 200°С на воздухе, показал, что по мере повышения температуры постепенно понижается интенсивность полос при 1683 и 1227 см-1, характеризующих группы СООН. Для регистрации ИК-спектров при высокой температуре образцы готовят, растирая навеску образца с KBr, таблетируют в пресс-форме и устанавливают полученную таблетку в высокотемпературную ячейку ИК-Фурье спектрометра. Образец прогревают до 200°С с шагом 10°С, термостатируя образец по достижении заданной температуры в течение 10 мин и регистрируют ИК-спектр, не вынимая ячейку из кюветного отделения спектрометра.
На фиг. 7 показаны ИК-спектры ПДФАК до (а) и после нагревания на воздухе до 170 (б) и 200°С (в) со скоростью 5°С/мин.
ПДФАК теряет половину первоначальной массы на воздухе при 520°С. В инертной атмосфере 50%-ная потеря массы полимера наблюдается при 660°С. При 800°С остаток составляет 31% [7].
ПДФАК способна обратимо окисляться-восстанавливаться при изменении знака приложенного потенциала. На циклической вольтамперограмме ПДФАК четко идентифицируются редокс-пики (фиг. 8). При увеличении рН раствора от 1 до 2.8 пики редокс-активности сдвигаются в катодную область потенциалов. Потенциометрические измерения проводят на электрохимическом анализаторе Solartron 1286 фирмы Schlumberger UK в HCl при скорости развертки потенциала 40 мВ/с. 4 мкл раствора ПДФАК наносят на печатные электроды и высушивают на воздухе.
На фиг. 8 показаны циклические вольтамперограммы планарного электрода, модифицированного ПДФАК, в HCl при рН 1.0 (7) и 2.8 (2) при скорости развертки потенциала 40 мВ/с.
Сравнение ИК-спектров полимера и нанокомпозита показало, что в ИК-Фурье спектрах нанокомпозита ОУНТ/ПДФАК сохраняются все основные полосы, характеризующие химическую структуру ПДФАК (фиг. 1). Как и в ПДФАК, в нанокомпозите рост полимерной цепи осуществляется путем С-С - присоединения в 2- и 4-положениях фенильных колец по отношению к азоту. Полосы поглощения при 830 и 750 см-1 обусловлены неплоскими деформационными колебаниями связей δС-H 1,2,4- и 1,2-замещенного бензольного кольца [7]. Полосы поглощения при 1683 и 1227 см-1 характеризуют группы СООН. При этом группы СООН ассоциируются с группой N-H (3239 см-1) основной цепи. Регистрацию ИК-спектров выполняют на ИК Фурье спектрометре «IFS 66v» в области 400-4000 см-1 и обрабатывают по программе Soft-Spectra. Образцы готовят в виде таблеток, прессованных с KBr.
Карбоксильные группы вдоль всей полимерной цепи образуют внутримолекулярные водородные связи с аминогруппами, что подтверждено присутствием полосы поглощения в области 3288 см-1 в ИК-спектрах и максимума λmax=550 нм в электронных спектрах поглощения (фиг. 2). Электронные спектры поглощения образцов в ДМФА записывают на спектрофотометре UV-1700 фирмы "Shimadzu" в области 190-1100 нм.
Данные ЯМР 13С твердого тела высокого разрешения ВМУ подтверждают предложенный выше характер роста полимерной цепи. Получены спектры ПДФАК и нанокомпозита ОУНТ/ПДФАК на ядрах углерода (без переноса поляризации) (фиг. 3). В твердотельном спектре ЯМР ВМУ 13С нанокомпозита ОУНТ/ПДФАК в целом сохраняются сигналы, присутствующие в полимере. Оба спектра показывают широкие сигналы от 105 до 155 м.д. с максимумом при 129 м.д., которые характеризуют углеродные центры в бензольных кольцах. Сигнал в области 149 м.д. соответствует атомам углерода групп С-NH. Сигнал в районе 141 м.д. характеризует группы С-СООН. Твердотельные спектры ЯМР ВМУ 13С получают на спектрометре ЯМР "Infinity 500" фирмы "Varian". Для регистрации спектров используют трехканальный твердотельный датчик с системой ВМУ (вращение под "магическим" углом) с внешним диаметром ротора 3.2 мм. Образец в виде порошка помещают в специальные роторы из оксида циркония. Во время регистрации спектров образец вращался со скоростью 15000 Гц. Время контакта составляло 2 мс, время между сканами 2 с, время 90° импульса по 1Н 5 мкс. В качестве внешнего стандарта шкалы химических сдвигов используют кристаллический адамантан.
Характеристичным изменением в спектре ЯМР ВМУ 13С нанокомпозита ОУНТ/ПДФАК по сравнению со спектром полимера является значительное уширение всех сигналов спектра, в особенности сигналов в области 129 м.д., а также увеличение интенсивности сигналов от 105 до 125 м.д. Это указывает на взаимодействие углеродных центров в области до 125 м.д. с углеродными нанотрубками, что приводит к уменьшению времени релаксации Т1 этих центров.
Структура и морфология полученных гибридных наноматериалов исследованы методами РФА, ПЭМ и СЭМ. По данным ПЭМ и СЭМ полимер формируется на поверхности ОУНТ в виде сплошного полимерного покрытия (фиг. 4, 5). По данным РФА полимерное покрытие является аморфным (фиг. 6). Отсутствие на дифрактограммах ОУНТ/ПДФАК пика отражения углеродной фазы объясняется невозможностью получения дифракционной картины от единичной плоскости ОУНТ. Электронно-микроскопические исследования осуществляют на просвечивающем электронном микроскопе JEM-2100 при ускоряющем напряжении 200 кВ и растровом электронном автоэмиссионном микроскопе Supra 25 производства Zeiss с рентгеноспектральной энергодисперсионной приставкой INCA Energy производства Oxford Instruments для определения элементного состава образцов. Разрешение на получаемых изображениях составляет величину 1-2 нм. Рентгеноструктурные исследования проводят при комнатной температуре на рентгеновском дифрактометре «Дифрей» с фокусировкой по Бреггу-Брентано на CrKα-излучении.
Присутствие в реакционной среде органического растворителя - хлороформа - приводит к изменению морфологии ПДФАК [7]. Так как в гетерофазной системе рост полимерной цепи происходит в растворе гидроксида аммония с постепенным переходом мономера из органической фазы в водную, на месте капель хлороформа образуются каверны, что подтверждено методом СЭМ (фиг. 5).
Полученный нанокомпозит ОУНТ/ПДФАК образует в этиловом спирте стабильную суспензию, тогда как ОУНТ, диспергированные в этиловом спирте, начинают оседать на дно с первых минут (фиг. 9). Таким образом, благодаря тому, что ПДФАК препятствует агрегированию ОУНТ, обеспечивается стабильность суспензии в течение длительного времени (по крайней мере, более шести месяцев).
На фиг. 9 представлены суспензии ОУНТ (а) и нанокомпозита ОУНТ/ПДФАК (б) в этиловом спирте.
Термическая стабильность нанокомпозита ОУНТ/ПДФАК исследована методами ТГА и ДСК. На фиг. 10 показана температурная зависимость уменьшения массы нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=3%масс., по сравнению с ПДФАК при нагревании до 1000°С в токе аргона и на воздухе. Как видно, кривые потери массы имеют ступенчатый характер. Потеря массы при низких температурах (~90°С) связана с удалением влаги, что также подтверждается данными ДСК (фиг. 11). Потеря массы при ~170°С связана с удалением групп СООН [7]. На термограммах ДСК в этой области температур присутствует экзотермический пик, связанный с разложением. При повторном нагревании этот пик отсутствует.
Термическая стабильность нанокомпозита ОУНТ/ПДФАК выше, чем полимера и нанокомпозита МУНТ/ПАНи (по прототипу). Нанокомпозит ОУНТ/ПДФАК теряет половину первоначальной массы в инертной атмосфере при 835°С, а ПДФАК - при 660°С. В нанокомпозите ОУНТ/ПДФАК, полученном при [ОУНТ]=3%масс., при 1000°С остаток составляет 44%. Процессы термоокислительной деструкции и нанокомпозита ОУНТ/ПДФАК, и исходного полимера ПДФАК начинаются при 350°С; на воздухе 50%-ная потеря массы нанокомпозита ОУНТ/ПДФАК наблюдается при 545°С. Исходный полимер ПДФАК и полимер МУНТ/ПАНи (по прототипу) теряют половину первоначальной массы на воздухе при 520 и 460°С, соответственно. Термический анализ осуществляют на приборе TGA/DSC1 фирмы "Mettler Toledo" в динамическом режиме в интервале 30-1000°С на воздухе и в токе азота. Навеска полимеров - 100 мг, скорость нагревания 10°С/мин, ток азота - 10 мл/мин. В качестве эталона используют прокаленный оксид алюминия. Анализ образцов проводят в тигле AI2O3. ДСК-анализ проводят на калориметре DSC823e фирмы "Mettler Toledo". Нагрев образцов осуществляют со скоростью 10°С/мин, в атмосфере аргона при его подаче 70 мл/мин. Обработка результатов измерения проводят с помощью сервисной программы STARe, поставляемой в комплекте с прибором.
На фиг. 10 показано уменьшение массы ПДФАК (1, 2) и нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=3%масс. относительно массы мономера (3, 4), при нагревании до 1000°С со скоростью 10°С/мин в токе аргона (1, 3) и на воздухе (2, 4).
На фиг. 11 представлены ДСК-термограммы нанокомпозита ОУНТ/ПДФАК, полученного при [ОУНТ]=3%масс. относительно массы мономера, при нагревании в токе азота до 350°С со скоростью 10°С/мин (1 - первое нагревание, 2 - второе нагревание).
Включение в состав наноматериалов ~1-3% электропроводящих углеродных нанотрубок приводит к увеличению на 4-6 порядков величины электропроводности нанокомпозитов ОУНТ/ПДФАК (от 9.1×105 См/см до 3.6×10-3 См/см) по сравнению с электропроводностью исходного полимера ПДФАК (8.4×10-9 См/см). Электропроводность МУНТ/ПАНи (по прототипу), полученного при МУНТ=10%масс., σ=5.9×10-5 См/см, что тоже на 2 порядка величины меньше электропроводности ОУНТ/ПДФАК (3.6×10-3 См/см, ОУНТ = 3%масс.). При этом содержание УНТ в нанокомпозите МУНТ/ПАНи (по прототипу) значительно выше (МУНТ = 10%масс.). Присутствие ОУНТ в нанокомпозите делает материал менее чувствительным к процессам допирования-дедопирования, обеспечивая стабильность электрических свойств. Удельную электропроводность образцов измеряли стандартным четырехточечным методом на приборе Loresta-GP, МСР-Т610 (Япония).
В выбранных условиях формируется термостойкий (термостабильный) электропроводящий гибридный наноматериал ОУНТ/полидифениламин-2-карбоновой кислоты (поли-N-фенилантраниловой кислоты). Электропроводность наноматериала ОУНТ/ПДФАК значительно выше электропроводности исходного полимера ПДФАК и нанокомпозита МУНТ/ПАНи (по прототипу) и зависит от количественного содержания нанотрубок. Нанокомпозитный материал ОУНТ/ПДФАК представляет собой черный порошок, образующий в этиловом спирте стабильную суспензию. Такие термостойкие (термостабильные) нанокомпозитные материалы, обладающие электрическими свойствами и способные образовать стабильные суспензии, могут быть использованы в органической электронике и электрореологии, медицине (перенос молекул для доставки лекарств к клетке, например, при лечении онкологических заболеваний), в качестве носителей для катализаторов, в топливных элементах с полимерной мембраной, для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, модулей памяти, преобразователей энергии, плоских панелей дисплеев, датчиков и нанозондов, электрохимических источников тока, перезаряжаемых батарей, сенсоров и биосенсоров, суперконденсаторов, солнечных батарей и других электрохимических устройств.
Новизна предлагаемых методов и подходов к созданию гибридного дисперсного материала определяется тем, что впервые полимерный компонент нанокомпозита представляет собой термостойкую (термостабильную) электроактивную гетероциклическую поликислоту - полидифениламин-2-карбоновую кислоту (поли-N-фенилантраниловую кислоту), в структуре которой карбоксильные группы образуют внутримолекулярные водородные связи с аминогруппами вдоль всей полимерной цепи.
Преимущества предложенного материала и способа:
1. Формирование гибридного наноматериала ОУНТ/ПДФАК осуществляется в условиях окислительной полимеризации in situ в гетерофазной системе в щелочной среде при -10-50°С в течение 1-6 ч, что позволяет исключить сложное оборудование и существенно снизить энергозатраты.
2. Так как ПДФАК является электроактивной, а электропроводность наноматериала ОУНТ/ПДФАК на 2 порядка величины выше электропроводности МУНТ/ПАНи (по прототипу) и зависит от количественного содержания нанотрубок, нанокомпозит ОУНТ/ПДФАК может быть использован для создания электрохимических устройств, например сенсоров и биосенсоров, перезаряжаемых батарей, суперконденсаторов, тонкопленочных транзисторов, нанодиодов, модулей памяти, преобразователей энергии, плоских панелей дисплеев, датчиков и нанозондов.
3. Полученный гибридный наноматериал характеризуется высокой термостабильностью, превышающей термостабильность МУНТ/ПАНи (по прототипу). Высокая термостабильность нанокомпозита ОУНТ/ПДФАК определяется высокой термической и термоокислительной стабильностью ПДФАК. Высокая термостабильность полимерной матрицы на воздухе (до 350-380°С) и в инертной атмосфере (при 1000°С остаток составляет 36-67%) обеспечивает возможность использования предложенного нанокомпозитного дисперсного материала ОУНТ/ПДФАК в высокотемпературных процессах, например в качестве конструкционных материалов, защитных покрытий, носителей катализаторов в топливных элементах, наноэлектропроводов, электрохимических источников тока, перезаряжаемых и солнечных батарей.
Авторами предложенного изобретения впервые получены гибридные электропроводящие термостойкие (термостабильные) дисперсные наноматериалы, в которых термостойкий полимер - полидифениламин-2-карбоновой кислоты (поли-N-фенилантраниловой кислоты) формируется на поверхности одностенных углеродных нанотрубок (d=1.4-1.6 нм,
Figure 00000001
=0.5-1.5 мкм) в виде сплошного полимерного покрытия. Благодаря тому, что ПДФАК препятствует агрегированию ОУНТ, обеспечивается стабильность суспензии в органических растворителях в течение длительного времени.
Примеры получения нанокомпозитного дисперсного материала ОУНТ/ПДФАК. Характеристики полученных по примерам гибридных материалов (нанокомпозитов): содержание ОУНТ, термостойкость (термостабильность) и электропроводность приведены в таблице 1.
Пример 1
Для синтеза нанокомпозита (гибридного материала) ОУНТ/полидифениламин-2-карбоновой кислоты (ОУНТ/ПДФАК) 0.1 моль/л (0.64 г) ДФАК растворяют в хлороформе (15 мл). К полученному раствору добавляют 2% масс. относительно массы мономера (0.0128 г) ОУНТ (d=1.4-1.6 нм,
Figure 00000001
=0.5-1.5 мкм). Процесс ведут при 55°С при постоянном интенсивном перемешивании в течение 0.5 ч. Охлаждение суспензии проводят при комнатной температуре при постоянном интенсивном перемешивании в течение 1 ч. Полученную суспензию ОУНТ/ДФАК перемешивают в ультразвуковой мойке при комнатной температуре в течение 0.5 ч. Затем для проведения in situ окислительной полимеризации ДФАК в присутствии ОУНТ, в предварительно термостатированную до 0°С суспензию ОУНТ/ДФАК в хлороформе сразу без постепенного дозирования реагентов добавляют водный раствор (15 мл) смеси персульфата аммония 0.2 моль/л (1.368 г) и NH4OH 0.5 моль/л (2.3 мл). Соотношение объемов органической и водной фаз составляет 1:1 (Vобщ.=30 мл). Синтез проводят в течение 3 ч при интенсивном перемешивании при 0°С. По окончании реакции смесь осаждают в десятикратный избыток 2%-ного раствора H2SO4. Полученный продукт отфильтровывают, многократно промывают дистиллированной водой для удаления остатков реагентов и сушат под вакуумом над КОН до постоянной массы. Выход ОУНТ/ПДФАК составляет 0.441 г.
Пример 2
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.0192 г ОУНТ (содержание нанотрубок [ОУНТ]=3%масс. относительно массы мономера).
Пример 3
Способ получения нанокомпозита проводят аналогично примеру 2, но синтез проводят в течение 6 ч при 15°С.
Пример 4
Способ получения нанокомпозита проводят аналогично примеру 1, но берут 0.0064 г ОУНТ (содержание нанотрубок [ОУНТ]=1%масс. относительно массы мономера).
Пример 5
Способ получения нанокомпозита проводят аналогично примеру 3, но синтез проводят в течение 4 ч при 40°С, а также берут 1.28 г ДФАК ([мономер]=0.2 моль/л) и 7.36 мл NH4OH ([NH4OH]:[мономер]=8).
Пример 6
Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят в течение 4 ч при 15°С, а также берут 0.32 г ДФАК ([мономер]=0.05 моль/л).
Пример 7
Способ получения нанокомпозита проводят аналогично примеру 3, но синтез проводят в течение 3 ч, а также берут 2.736 г персульфата аммония ([окислитель]:[мономер]=4) и 4.6 мл NH4OH ([NH4OH]:[мономер]=10).
Пример 8
Способ получения нанокомпозита проводят аналогично примеру 5, но синтез проводят при 0°С, а также берут 4.6 мл NH4OH (NH4OH]:[мономер]=5).
Пример 9
Способ получения нанокомпозита проводят аналогично примеру 2, но синтез проводят при 50°С.
Пример 10
Способ получения нанокомпозита проводят аналогично примеру 3, но синтез проводят при -10°С.
Пример 11
Способ получения нанокомпозита проводят аналогично примеру 10, но берут 3.42 г персульфата аммония ([окислитель]:[мономер]=5).
Пример 12
Способ получения нанокомпозита проводят аналогично примеру 3, но синтез проводят в течение 1 ч, а также берут 4.6 мл NH4OH ([NH4OH]:[мономер]=10).
Пример 13
Способ получения нанокомпозита проводят аналогично примеру 12, но берут 0.0064 г ОУНТ (содержание нанотрубок [ОУНТ]=1%масс. относительно массы мономера).
Пример 14
Способ получения нанокомпозита проводят аналогично примеру 1, но синтез проводят при 15°С.
Пример 15
Способ получения нанокомпозита проводят аналогично примеру 11, но синтез проводят при 0°С, а также берут 1.28 г ДФАК ([мономер]=0.2 моль/л) и 9.2 мл NH4OH ([NH4OH]:[мономер]=10).
Пример 16
Способ получения нанокомпозита проводят аналогично примеру 15, но синтез проводят при 15°С.
Пример 17
Способ получения нанокомпозита проводят аналогично примеру 6, но берут 0.0032 г ОУНТ (содержание нанотрубок [ОУНТ]=1%масс. относительно массы мономера).
Пример 18
Способ получения нанокомпозита проводят аналогично примеру 4, но берут 1.28 г ДФАК ([мономер]=0.2 моль/л) и 4.104 г персульфата аммония ([окислитель]:[мономер]=3).
Пример 19
Способ получения нанокомпозита проводят аналогично примеру 18, но берут 0.0384 г ОУНТ (содержание нанотрубок [ОУНТ]=3%масс. относительно массы мономера) и 1.368 г персульфата аммония ([окислитель]:[мономер]=1).
Figure 00000006
Источники информации
1. Malinauskas A. Chemical deposition of conducting polymers. Polymer. 2001. V. 42. №9. P. 3957-3972.
2. MacDiarmid AG. Synthetic metals: a novel role for organic polymers. Synth. Met. 2002. V. 125. №1. P. 11-22.
3. Iijima S. Helical microtubules of graphitic carbon. // Nature. 1991. V. 354. №7. P. 56-58.
4. Cochet M., Maser W.K., Benito A.M., Callejas M.A., Martinez M.T., Benoit J.-M., Schreiber J., Chauvet O. Synthesis of a new polyaniline/nanotube composite: "in-situ" polymerization and charge transfer through site-selective interaction. // Chem. Commun. 2001. P. 1450-1451.
5. Konyushenko E.N., Stejskal J., Trchova M., Hradil J., Kovarova J., Prokes J., Cieslar M., Hwang J.-Y., Chen K.-H., Sapurina I. Multi-wall carbon nanotubes coated with polyaniline. // Polymer. 2006. V. 47. №16. P. 5715-5723.
6. Suckeveriene R.Y., Zelikman E., Mechrez G., Tzur A., Frisman I., Cohen Y., Narkis M. Synthesis of Hybrid Polyaniline/Carbon Nanotube Nanocomposites by Dynamic Interfacial Inverse Emulsion Polymerization Under Sonication. // J. Appl. Polym. Sci. 2011. V. 120. №2. P. 676-682.
7. Ozkan S.Zh., Eremeev I.S., Karpacheva G.P., Bondarenko G.N. Oxidative polymerization of N-phenylanthranilic acid in the heterophase system. // Open J. Polym. Chem. 2013. V. 3. №3. P. 63-69.

Claims (2)

1. Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок, отличающийся тем, что в качестве полимера используют полидифениламин-2-карбоновую кислоту, а в качестве углеродных нанотрубок - одностенные углеродные нанотрубки ОУНТ при содержании ОУНТ в указанном материале 1-3 мас.% от массы мономера - дифениламин-2-карбоновой кислоты ДФАК.
2. Способ получения гибридного электропроводящего материала in situ окислительной полимеризацией мономера в присутствии углеродных нанотрубок и окислителя в водном растворе щелочи, отличающийся тем, что для получения материала по п. 1 в качестве мономера используют дифениламин-2-карбоновую кислоту ДФАК, в качестве углеродных нанотрубок - ОУНТ, а перед окислительной полимеризацией ДФАК растворяют в органическом растворителе - хлороформе до концентрации 0.05-0.2 моль/л и добавляют к раствору ОУНТ в количестве 1-3 мас.% от массы ДФАК.
RU2017121285A 2017-06-19 2017-06-19 Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения RU2665394C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121285A RU2665394C1 (ru) 2017-06-19 2017-06-19 Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121285A RU2665394C1 (ru) 2017-06-19 2017-06-19 Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Publications (1)

Publication Number Publication Date
RU2665394C1 true RU2665394C1 (ru) 2018-08-29

Family

ID=63459768

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121285A RU2665394C1 (ru) 2017-06-19 2017-06-19 Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Country Status (1)

Country Link
RU (1) RU2665394C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2067087C1 (ru) * 1993-08-30 1996-09-27 Московское научно-производственное объединение "НИОПИК" Способ получения n-фенилантраниловой кислоты
RU2426188C1 (ru) * 2010-06-02 2011-08-10 Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран) Нанокомпозитный дисперсный магнитный материал и способ его получения
WO2011116236A2 (en) * 2010-03-18 2011-09-22 Blacklight Power, Inc. Electrochemical hydrogen-catalyst power system
RU2495509C1 (ru) * 2012-07-23 2013-10-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения композитного материала для электрода суперконденсатора

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2067087C1 (ru) * 1993-08-30 1996-09-27 Московское научно-производственное объединение "НИОПИК" Способ получения n-фенилантраниловой кислоты
WO2011116236A2 (en) * 2010-03-18 2011-09-22 Blacklight Power, Inc. Electrochemical hydrogen-catalyst power system
RU2426188C1 (ru) * 2010-06-02 2011-08-10 Учреждение Российской Академии Наук Ордена Трудового Красного Знамени Институт Нефтехимического Синтеза Им. А.В. Топчиева Ран (Инхс Ран) Нанокомпозитный дисперсный магнитный материал и способ его получения
RU2495509C1 (ru) * 2012-07-23 2013-10-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения композитного материала для электрода суперконденсатора

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.Y.SUCKEVERIENE et al. Synhesis of Hybrid Polyaniline/Carbon Nanotube Nanocomposites by Dynamic Interfacial Inverse Emulsion Polymerization Under Sonication//J.Appl.Polym.Sci., 2011, V. 120, N 2, pp. 676-682. С. Ж. Озкан и др. Полимеры дифениламин-2-карбоновой кислоты: синтез, структура и свойства. Высокомолекулярные соединения, Серия Б, 2013, том 55. *

Similar Documents

Publication Publication Date Title
Wang et al. Graphene-based polyaniline nanocomposites: preparation, properties and applications
Kumar et al. Synthesis and characterization of covalently-grafted graphene–polyaniline nanocomposites and its use in a supercapacitor
Goswami et al. Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: Sustainable materials for renewable energy applications
Zhu et al. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor
Wang et al. Graphene/oligoaniline based supercapacitors: towards conducting polymer materials with high rate charge storage
Purty et al. Chemically grown mesoporous f-CNT/α-MnO 2/PIn nanocomposites as electrode materials for supercapacitor application
Chang et al. Preparation of gold/polyaniline/multiwall carbon nanotube nanocomposites and application in ammonia gas detection
Hussein et al. The impact of graphene nano-plates on the behavior of novel conducting polyazomethine nanocomposites
Konwer Graphene oxide-polyaniline nanocomposites for high performance supercapacitor and their optical, electrical and electrochemical properties
Ma et al. Optical, electrochemical, photoelectrochemical and electrochromic properties of polyamide/graphene oxide with various feed ratios of polyamide to graphite oxide
Heydari et al. Polyaniline/reduced graphene oxide–cobalt sulfide ternary composite for high-performance supercapacitors
Ma et al. One-step template-free electrodeposition of novel poly (indole-7-carboxylic acid) nanowires and their high capacitance properties
Zhang et al. In situ supramolecular self-assembly assisted synthesis of Li4Ti5O12–carbon-reduced graphene oxide microspheres for lithium-ion batteries
Valentini et al. Preparation of alginate/graphene oxide hybrid films and their integration in triboelectric generators
Liu et al. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells
Choi et al. Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization
Yazar et al. Effects of pyridinic N of carboxylic acid on the polymerization of polyaniline and its supercapacitor performances
Park et al. Functionalization of pristine graphene for the synthesis of covalent graphene–polyaniline nanocomposite
Wang et al. One-pot electrochemical assembling of porous cobalt hydroxide/nitrogen-doped porous graphene onto Ni foam as a binder-free electrode for supercapacitor applications
Ates et al. Electrochemical supercapacitors of PANI/MWCNT, PEDOT/MWCNT and P (ANI-co-EDOT)/MWCNT nanocomposites
Gusain et al. Highly ordered polyaniline: synthesis, characterization and electrochemical properties
Bharate et al. Ionic liquid (IL) capped MnO2 nanoparticles as an electrode material and IL as electrolyte for supercapacitor application
Majhi et al. CoCl 2-doped polyaniline composites as electrode materials with enhanced electrochemical performance for supercapacitor application
RU2663049C1 (ru) Нанокомпозитный магнитный материал и способ его получения
Patil et al. Gas sensitivity study of polypyrrole decorated graphene oxide thick film