TWI493659B - 匹配裝置中之奈米線電路 - Google Patents

匹配裝置中之奈米線電路 Download PDF

Info

Publication number
TWI493659B
TWI493659B TW100111963A TW100111963A TWI493659B TW I493659 B TWI493659 B TW I493659B TW 100111963 A TW100111963 A TW 100111963A TW 100111963 A TW100111963 A TW 100111963A TW I493659 B TWI493659 B TW I493659B
Authority
TW
Taiwan
Prior art keywords
nanowire
node
fet
gate
nfet
Prior art date
Application number
TW100111963A
Other languages
English (en)
Other versions
TW201222736A (en
Inventor
Sarunya Bangsaruntip
Guy Cohen
Amlan Majumdar
Jeffrey W Sleight
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW201222736A publication Critical patent/TW201222736A/zh
Application granted granted Critical
Publication of TWI493659B publication Critical patent/TWI493659B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/54Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Description

匹配裝置中之奈米線電路
本發明係關於半導體奈米線場效電晶體。
奈米線場效電晶體(field effect transistor,FET)包括奈米線的摻雜部分,其接觸裝置的通道區(channel region)並當成源極區(source region)與汲極區(drain region)。FET可用互補金屬氧化物半導體方法製造,以形成多種積體電路。
根據本發明的一個具體實施例,反向器裝置(inverter device)包括連接至一電壓源節點(voltage source node)與一接地節點(ground node)的一第一奈米線;具有一配置在該第一奈米線上的閘極(gate)的一第一p型(p-type)場效電晶體(pFET)裝置;以及具有一配置在該第一奈米線上的閘極的一第一n型場效電晶體(nFET)裝置。
根據本發明的替代具體實施例,形成反向器裝置的方法包括形成一第一奈米線;形成具有一配置在該第一奈米線上的閘極的一第一p型場效電晶體(pFET)裝置;形成具有一配置在該第一奈米線上的閘極的一第一n型場效電晶體(nFET)裝置;以及電連接該第一pFET裝置的該閘極至該第一nFET裝置的該閘極。
根據本發明的另一替代具體實施例,記憶體裝置(memory device)包括連接至一第一位元線節點(bit line node)與一接地節點的一第一奈米線;具有一配置在該第一奈米線上的閘極的一第一場效電晶體(FET);具有一配置在該第一奈米線上的閘極的一第二FET;連接至一電壓源節點與一第一輸入節點(input node)的一第二奈米線;具有一配置在該第二奈米線上的閘極的一第三FET;連接至該電壓源節點與一第二輸入節點的一第三奈米線;具有一配置在該第三奈米線上的閘極的一第四FET;連接至一第二位元線節點與該接地節點的一第四奈米線;具有一配置在該第四奈米線上的閘極的一第五FET;以及具有一配置在該第四奈米線上的閘極的一第六FET。
根據本發明又另一替代具體實施例,形成記憶體裝置的方法包括形成連接至一第一位元線節點與一接地節點的一第一奈米線;形成具有一配置在該第一奈米線上的閘極的一第一場效電晶體(FET);形成具有一配置在該第一奈米線上的閘極的一第二FET;形成連接至一電壓源節點與一第一儲存節點(storage node)的一第二奈米線;形成具有一配置在該第二奈米線上的閘極的一第三FET;形成連接至該電壓源節點與一第二儲存節點的一第三奈米線;形成具有一配置在該第三奈米線上的閘極的一第四FET;形成連接至一第二位元線節點與該接地節點的一第四奈米線;形成具有一配置在該第四奈米線上的閘極的一第五FET;以及形成具有一配置在該第四奈米線上的閘極的一第六FET。
透過本發明的技術可實現其他特徵與優點。本說明書內詳細描述本發明的其他具體實施例與態樣,且這些具體實施例與態樣視為所主張發明的一部分。為了更加了解本發明的優點與特徵,請參閱說明與附圖。
積體電路可包括由奈米線通道場效電晶體(FET)形成的許多不同類型FET裝置,奈米線通道FET包括連接至源極區與汲極區的矽奈米線,以及完全(或部分)包圍奈米線的閘極。通道形成於奈米線之閘極底下的表面上(或在直徑小於大約5 nm的奈米線之奈米線塊體內)。閘極完全包圍奈米線時,該裝置稱之為環繞閘極(gate-all-around,GAA)FET。閘極部分包圍奈米線時,如同奈米線固定至絕緣體之情況,該裝置稱之為omega閘極(omega-gate)FET。奈米線FET可製造來形成例如nFET和pFET裝置。nFET和pFET裝置可相連,以形成多種積體電路裝置,例如反向器以及靜態隨機存取記憶體(static random access memory,SRAM)。在電路裝置中,多個FET一般需要藉由例如相似的臨界電壓與驅動電流而作匹配。
晶圓上形成的奈米線FET裝置可包括任意數量的奈米線。該製程可包括例如使用等向性蝕刻製程(isotropic etching process)在嵌埋氧化物基板(buried oxide substrate,BOX substrate)上形成矽奈米線。該蝕刻製程產生橢圓(包括圓柱)形狀的奈米線,其可懸浮在基板上方或可部分置於基板上。該奈米線上形成金屬或多晶矽閘極結構,該閘極結構旁邊形成源極與汲極區,並且可形成接點,以將源極、汲極和閘極結構連接至其他裝置。
該製程特別可產生具有不同性質的奈米線,像是例如由於晶圓上特定奈米線之位置,晶圓上一奈米線的直徑可能與另一奈米線的直徑不同。雖然在晶圓上的兩條不同奈米線的直徑會改變,不過每一特定奈米線的直徑通常維持不變,並且在所需的公差範圍內。
像是例如SRAM和反向器這類積體電路裝置都包含許多pFET和nFET裝置,其置於配置於晶圓上的奈米線上。由於這些奈米線的性質(例如奈米線直徑)實現裝置的操作,因此需要配置該等裝置,使得奈米線性質差異的影響能降低。
圖1例示反向器的先前技術範例之圖式,該反向器包括連接至nFET裝置103之pFET裝置101。裝置101連接至電壓源節點(Vdd)106、輸入節點(A)102和輸出節點(Q)104。裝置102連接至接地節點(Vss)108、A和Q。
圖2例示靜態隨機存取記憶體(SRAM)電路的先前技術範例之圖式。SRAM包括連接至第一位元線節點(BL)202的第一nFET裝置(M6 )201、第一輸出節點(Q)204和字線節點(WL)206。第二nFET裝置(M3 )203連接至Q節點204、接地節點(Vss)208和第二輸出節點()210。第一pFET裝置(M4 )205連接至Q節點204、節點210和電壓源節點(Vdd)212。第二pFET裝置(M2 )207連接至Vdd節點212、Q節點204和節點210。第三nFET裝置(M1)209連接至Vss節點208、Q節點204和節點210。第四nFET裝置(M5)211連接至第二位元線節點()213、WL節點206和節點210。
如上討論,晶圓上的奈米線可具有不同直徑,影響置於奈米線上之閘極的效能特性(performance characteristic)。當裝置內特定FET具有類似特性時,包括例如圖1和圖2先前技術範例的積體電路之效能可獲得改善。因此,透過在共線(common wire)內使用更好的匹配裝置(matched device),設計積體電路使得特定FET分享共用奈米線(common nanowire)可改善電路之效能。
圖3例示奈米線反向電路300的示範具體實施例,其如上述用基板上形成的矽奈米線裝置所製造。電路300包括連接至電壓源節點(Vdd)306與接地節點(Vss)308的第一奈米線320。pFET裝置301和nFET裝置303具有置於第一奈米線320上的閘極區(G)。裝置301和303的汲極區(D)連接至輸出節點(Q)304。裝置301的源極區(S)連接至Vdd節點306,且裝置303的源極區(S)連接至Vss節點308。裝置301和303的閘極都連接至輸入節點(A)302。例示的具體實施例包括類似於反向電路300的第二反向電路350。反向電路350形成於第二奈米線321上。第二反向電路350的A節點302藉由矽構件(silicon member)352連接至Q節點304。藉由將FET裝置301和303置於相同奈米線上,第一奈米線320上反向電路300的配置改善電路300的效能,導致具有類似效能特性的FET裝置301和303。利用配置第二反向電路350,可獲得類似的優點。
圖4例示奈米線SRAM電路400的示範具體實施例,其以上述類似方式用矽奈米線裝置所製造。電路400包括連接至位元線節點(BL)402與第一接地節點(Vss)408a的第一奈米線420。第一nFET裝置(M6 )401形成於第一奈米線420上,並連接至BL節點402、第一輸出節點(Q)404和第一字線節點(WL)406a。第二nFET裝置(M3 )403形成於第一奈米線420上,並且連接至Q節點404、第一Vss節點408a和第二輸出節點()410。第二奈米線421連接至Q節點404和第一電壓源節點(Vdd)412a。第一pFET裝置(M4 )405形成於第二奈米線421上,並且連接至Q節點404、節點410和Vdd節點412a。第三奈米線422連接至第二Vdd節點412b和節點410。第二pFET裝置(M2 )407形成於第三奈米線422上,並且連接至Vdd節點412b、Q節點404和節點410。第四奈米線423連接至第二Vss節點408b和位元線節點()412。第三nFET裝置(M1)409連接至第二Vss節點408b、Q節點404和節點410。第四nFET裝置(M5)411連接至位元線節點()412、第二WL節點406b和節點410。可形成矽構件452,將第一奈米線420連接至Q節點404,並且可形成矽構件453,將第四奈米線423連接至節點410。
雖然所例示的具體實施例包括在積體電路內實施匹配FET的兩個範例,但是,藉由將特定FET裝置排列在特定奈米線上,上述方法可施加於任何一種積體電路,以改善電路效能,使得相同奈米線上的FET裝置具有類似效能特性。
此處所使用的術語僅為說明特定具體實施例之用,並非用於限制本發明。如此處所使用,除非上下文有明確指示,否則該等單數形式「一」(a,an)和「該」(the)也包含該等複數形式。吾人將更瞭解,說明書中使用的術語「包含」(comprises及/或comprising)指明所陳述的特徵、整體、步驟、操作、元件及/或組件的存在,但是不排除還有一或多個其他特徵、整體、步驟、操作、元件、組件及/或其群組的存在或添加。
對應的結構、材料、動作以及或以下申請專利範圍內所有裝置或步驟附加功能之元件的同等物,都欲包含任何結構、材料或動作,以結合特別主張的其他主張元件來執行該功能。本發明的描述已經為了例示與描述的目的而呈現,但非要將本發明毫無遺漏地限制在所揭之形式中。在不脫離本發明之範疇與精神的前提下,本領與之一般技術者將瞭解許多修正以及變化。具體實施例經過選擇與說明來最佳闡述本發明原理及實際應用,並且使其他本領域之一般技術者瞭解用於各種具體實施例的本發明,這些實施例具有適合於所考量之特定用途的各種修改。
本說明書內說明的圖式只是一個範例,在不悖離本發明精神之下,本說明書內說明的圖式或步驟(或操作)可有許多變化。例如:該等步驟可用不同順序執行,或可增加、刪減或修改步驟。所有這些變化都視為所主張發明的一部分。
雖然已經說明過本發明的較佳具體實施例,但精通此技術的人士可了解,目前與未來可在後附申請專利範圍的範疇內進行各種修改與增強。這些申請專利範圍應被視為對主要描述之本發明維持適當保護。
101...pFET裝置
102...輸入節點(A)
103...nFET裝置
104...輸出節點(Q)
106...源電壓節點(Vdd)
108...接地節點(Vss)
201...第一nFET裝置(M6 )
202...第一位元線節點(BL)
203...第二nFET裝置(M3 )
204...第一輸出節點(Q)
205...第一pFET裝置(M4 )
206...字線節點(WL)
207...第二pFET裝置(M2 )
208...接地節點(Vss)
209...第三nFET裝置(M1)
210...第二輸出節點()
211...第四nFET裝置(M5)
212...電壓源節點(Vdd)
213...第二位元線節點()
300...奈米線反向電路
301...pFET裝置
302...輸入節點(A)
303...nFET裝置
304...輸出節點(Q)
306...源電壓節點(Vdd)
308...接地節點(Vss)
320...第一奈米線
321...第二奈米線
350...第二反向電路
352...矽構件
400...奈米線SRAM電路
401...第一nFET裝置(M6 )
402...位元線節點(BL)
403...第二nFET裝置(M3 )
404...第一輸出節點(Q)
405...第一pFET裝置(M4 )
406a...第一字線節點(WL)
406b...第二WL節點
407...第二pFET裝置(M2 )
408a...第一接地節點(Vss)
408b...第二Vss節點
409...第三nFET裝置(M1)
410...第二輸出節點()
411...第四nFET裝置(M5)
412...位元線節點()
412a...第一電壓源節點(Vdd)
412b...第二Vdd節點
420...第一奈米線
421...第二奈米線
422...第三奈米線
423...第四奈米線
452...矽構件
453...矽構件
在本說明書總結處特別指出與本發明有關的標的,並在申請專利範圍內清楚提出。從下列搭配附圖的詳細說明中,可瞭解本發明的上述與其他特徵和優點,其中:
圖1例示反向器電路的先前技術範例的圖式。
圖2例示靜態隨機存取記憶體(SRAM)電路的先前技術範例的圖式。
圖3例示奈米線反向電路的示範具體實施例。
圖4例示奈米線SRAM電路的示範具體實施例。
300...奈米線反向電路
301...pFET裝置
302...輸入節點(A)
303...nFET裝置
304...輸出節點(Q)
306...源電壓節點(Vdd)
308...接地節點(Vss)
320...第一奈米線
321...第二奈米線
350...第二反向電路
352...矽構件

Claims (15)

  1. 一種反向器裝置,包括:一第一奈米線,其連接至一電壓源節點與一接地節點;一第一p型場效電晶體(pFET)裝置,其具有一配置在該第一奈米線上的閘極;以及一第一n型場效電晶體(nFET)裝置,其具有一配置在該第一奈米線上的閘極。
  2. 如申請專利範圍第1項之裝置,其中該裝置另包括:一第二奈米線,其連接至該電壓源節點與該接地節點;一第二p型場效電晶體(pFET)裝置,其具有一配置在該第二奈米線上的閘極;以及一第二n型場效電晶體(nFET)裝置,其具有一配置在該第二奈米線上的閘極。
  3. 如申請專利範圍第2項之裝置,其中該裝置另包括連接至該第一pFET裝置的該閘極與該第一nFET裝置的該閘極的一第三節點,及/或連接至該第二pFET裝置的該閘極與該第二nFET裝置的該閘極的一第四節點。
  4. 如申請專利範圍第3項之裝置,其中該裝置包括該第四節點與該第一pFET裝置的一汲極區和該第一nFET裝置的一汲極區之間的一連接。
  5. 如申請專利範圍第1項之裝置,其中該第一奈米線為一矽奈米線,或懸浮在一基板上方。
  6. 一種形成一反向器裝置的方法,該方法包括:形成一第一奈米線;形成一第一p型場效電晶體(pFET)裝置,其具有一配置在該第一奈米線上的閘極;形成一第一n型場效電晶體(nFET)裝置,其具有一配置在該第一奈米線上的閘極;以及電連接該第一pFET裝置的該閘極至該第一nFET裝置的該閘極。
  7. 如申請專利範圍第6項之方法,其中該方法另包括:形成一第二奈米線;形成一第二p型場效電晶體(pFET)裝置,其具有一配置在該第二奈米線上的閘極;形成一第二n型場效電晶體(nFET)裝置,其具有一配置在該第二奈米線上的閘極;以及電連接該第二pFET裝置的該閘極至該第二nFET裝置的該閘極、該第一pFET裝置的一汲極區以及該第一nFET裝置的一汲極區。
  8. 如申請專利範圍第6項之方法,其中該方法另包括連接該第一pFET裝置的一源極區至一電壓源節點,或連接該第一nFET裝置的一源極區至一接地節點。
  9. 一種記憶體裝置,包括:一第一奈米線,其連接至一第一位元線節點與一接地節點;一第一場效電晶體(FET),其具有一配置在該第一奈米線上的閘極;一第二FET,其具有一配置在該第一奈米線上的閘極;一第二奈米線,其連接至一電壓源節點與一第一輸入節點;一第三FET,其具有一配置在該第二奈米線上的閘極;一第三奈米線,其連接至一電壓源節點與一第二輸入節點;一第四FET,其具有一配置在該第三奈米線上的閘極;一第四奈米線,其連接至一第二位元線節點與該接地節點;一第五FET,其具有一配置在該第四奈米線上的閘極;以及一第六FET,其具有一配置在該第四奈米線上的閘極。
  10. 如申請專利範圍第9項之裝置,其中該第一FET的一閘極端子(terminal)連接至一字線節點,該第二FET的一閘極端子連接至該第二輸入節點,該第三FET的一閘極端子連接至該第二輸入節點,該第四FET的一閘極端子連接至該第一輸入節點,該第五FET的一閘極端子連接至該第一輸入節點,且該第六FET的一閘極端子連接至該字線節點。
  11. 如申請專利範圍第9項之裝置,其中該第一FET為一n型FET(nFET),該第二FET為一nFET,該第三FET為一p型FET(pFET),該第四FET為一pFET,該第五FET為一nFET,且該第六FET為一nFET。
  12. 如申請專利範圍第9項之裝置,其中該第一奈米線為一矽奈米線,或懸浮在一基板上方。
  13. 如申請專利範圍第9項之裝置,其中該第一奈米線的一部分連接至該第一輸入節點,並且該第四奈米線的一部分連接至該第二輸入節點。
  14. 一種形成一記憶體裝置的方法,該方法包括:形成連接至一第一位元線節點與一接地節點的一第一奈米線;形成一第一場效電晶體(FET),其具有一配置在該第一奈米線上的閘極;形成一第二FET,其具有一配置在該第一奈米線上的閘極;形成連接至一電壓源節點與一第一儲存節點的一第二奈米線;形成一第三FET,其具有一配置在該第二奈米線上的閘極;形成連接至該電壓源節點與一第二儲存節點的一第三奈米線;形成一第四FET,其具有一配置在該第三奈米線上的閘極;形成連接至一第二位元線節點與該接地節點的一第四奈米線;形成一第五FET,其具有一配置在該第四奈米線上的閘極;以及形成一第六FET,其具有一配置在該第四奈米線上的閘極。
  15. 如申請專利範圍第14項之方法,其中該第一奈米線為用一等向性蝕刻製程形成的一矽奈米線,或懸浮在一基板上方。
TW100111963A 2010-04-13 2011-04-07 匹配裝置中之奈米線電路 TWI493659B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/758,939 US8324940B2 (en) 2010-04-13 2010-04-13 Nanowire circuits in matched devices

Publications (2)

Publication Number Publication Date
TW201222736A TW201222736A (en) 2012-06-01
TWI493659B true TWI493659B (zh) 2015-07-21

Family

ID=44760818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111963A TWI493659B (zh) 2010-04-13 2011-04-07 匹配裝置中之奈米線電路

Country Status (7)

Country Link
US (2) US8324940B2 (zh)
JP (1) JP5944377B2 (zh)
CN (1) CN102844870B (zh)
DE (1) DE112011100438B4 (zh)
GB (1) GB2494311B (zh)
TW (1) TWI493659B (zh)
WO (1) WO2011129952A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884004B2 (en) * 2009-02-04 2011-02-08 International Business Machines Corporation Maskless process for suspending and thinning nanowires
CN102522426B (zh) * 2011-11-30 2014-05-28 上海华力微电子有限公司 硅纳米线探测单元
DE112011105979B4 (de) * 2011-12-20 2022-09-15 Intel Corporation Halbleiterbauelement mit isolierten Halbleiterkörperteilen und Herstellungsverfahren
US9000530B2 (en) * 2013-04-23 2015-04-07 International Business Machines Corporation 6T SRAM architecture for gate-all-around nanowire devices
US8900951B1 (en) 2013-09-24 2014-12-02 International Business Machines Corporation Gate-all-around nanowire MOSFET and method of formation
US9400862B2 (en) 2014-06-23 2016-07-26 Synopsys, Inc. Cells having transistors and interconnects including nanowires or 2D material strips
WO2015200363A1 (en) * 2014-06-23 2015-12-30 Synopsys, Inc. Memory cells and logic cells having transistors with different numbers of nanowires or 2d material strips
US9985026B2 (en) 2014-08-15 2018-05-29 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor, integrated circuit and method of fabricating the same
US9893159B2 (en) 2014-08-15 2018-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor, integrated circuit and method of fabricating the same
US9431388B1 (en) 2015-04-29 2016-08-30 Globalfoundries Inc. Series-connected nanowire structures
US9607900B1 (en) 2015-09-10 2017-03-28 International Business Machines Corporation Method and structure to fabricate closely packed hybrid nanowires at scaled pitch
CN108701653B (zh) * 2016-02-25 2022-07-29 株式会社索思未来 半导体集成电路装置
US10312229B2 (en) 2016-10-28 2019-06-04 Synopsys, Inc. Memory cells including vertical nanowire transistors
JPWO2019142670A1 (ja) 2018-01-19 2021-01-07 株式会社ソシオネクスト 半導体集積回路装置
JPWO2019159739A1 (ja) * 2018-02-15 2021-01-28 株式会社ソシオネクスト 半導体集積回路装置
US11678475B2 (en) * 2021-07-21 2023-06-13 International Business Machines Corporation Static random access memory using vertical transport field effect transistors
CN114171589B (zh) * 2022-02-11 2022-04-29 晶芯成(北京)科技有限公司 半导体器件结构

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365465B1 (en) * 1999-03-19 2002-04-02 International Business Machines Corporation Self-aligned double-gate MOSFET by selective epitaxy and silicon wafer bonding techniques
TW540086B (en) * 2000-08-14 2003-07-01 Matrix Semiconductor Inc Dense arrays and charge storage devices, and methods for making same
US6642115B1 (en) * 2000-05-15 2003-11-04 International Business Machines Corporation Double-gate FET with planarized surfaces and self-aligned silicides
US20040166642A1 (en) * 2003-02-20 2004-08-26 Hao-Yu Chen Semiconductor nano-rod devices
US20040169241A1 (en) * 2001-07-26 2004-09-02 Technische Universiteit Delft Electronic device using carbon nanotubes
US6882051B2 (en) * 2001-03-30 2005-04-19 The Regents Of The University Of California Nanowires, nanostructures and devices fabricated therefrom
TW200627453A (en) * 2004-06-30 2006-08-01 Koninkl Philips Electronics Nv Method for manufacturing an electric device with a layer of conductive material contacted by nanowire
US7151209B2 (en) * 2002-04-02 2006-12-19 Nanosys, Inc. Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices
US7180107B2 (en) * 2004-05-25 2007-02-20 International Business Machines Corporation Method of fabricating a tunneling nanotube field effect transistor
TWI282582B (en) * 2004-06-10 2007-06-11 Taiwan Semiconductor Mfg Semiconductor nano-wire devices and methods of fabrication
TW200735356A (en) * 2005-05-23 2007-09-16 Ibm A vertical FET with nanowire channels and a silicided bottom contact
TW200737659A (en) * 2006-03-26 2007-10-01 Alpha & Omega Semiconductor Circuit configuration and method to reduce ringing in the semiconductor power switching circuits
US7297615B2 (en) * 2005-05-13 2007-11-20 Samsung Electronics, Co., Ltd. Si nanowire substrate, method of manufacturing the same, and method of manufacturing thin film transistor using the same
TWI292218B (en) * 2006-02-13 2008-01-01 Wang Chih-Hsin An electrically erasable and programmable nonvolatile memory device and array and method for operating thereof
TWI294183B (zh) * 2005-08-29 2008-03-01 Univ Nat Chiao Tung
TWI305385B (en) * 2005-03-24 2009-01-11 Samsung Electronics Co Ltd Semiconductor device having a round-shaped nano-wire transistor channel and method of manufacturing same
US20090217216A1 (en) * 2007-02-28 2009-08-27 Motorola, Inc. Carbon nanotube circuits design methodology
TW201010077A (en) * 2008-08-20 2010-03-01 Univ Nat Formosa Gas sensor made of field effect transistor based on ZnO nanowires

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638769A (en) 1985-03-18 1987-01-27 Caterpillar Inc. Engine having a multipiece cylinder block
US4995001A (en) 1988-10-31 1991-02-19 International Business Machines Corporation Memory cell and read circuit
JPH04299569A (ja) 1991-03-27 1992-10-22 Nec Corp Soisの製造方法及びトランジスタとその製造方法
US5308445A (en) 1991-10-23 1994-05-03 Rohm Co., Ltd. Method of manufacturing a semiconductor device having a semiconductor growth layer completely insulated from a substrate
JPH0637302A (ja) 1992-07-14 1994-02-10 Mitsuteru Kimura トンネルトランジスタ
JP3319472B2 (ja) 1992-12-07 2002-09-03 富士通株式会社 半導体装置とその製造方法
US6653209B1 (en) 1999-09-30 2003-11-25 Canon Kabushiki Kaisha Method of producing silicon thin film, method of constructing SOI substrate and semiconductor device
US6982460B1 (en) 2000-07-07 2006-01-03 International Business Machines Corporation Self-aligned gate MOSFET with separate gates
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
DE10118405A1 (de) 2001-04-12 2002-10-24 Infineon Technologies Ag Heterostruktur-Bauelement
US6891227B2 (en) 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US6815750B1 (en) 2002-05-22 2004-11-09 Hewlett-Packard Development Company, L.P. Field effect transistor with channel extending through layers on a substrate
US6919740B2 (en) 2003-01-31 2005-07-19 Hewlett-Packard Development Company, Lp. Molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits, and more complex circuits composed, in part, from molecular-junction-nanowire-crossbar-based inverter, latch, and flip-flop circuits
US6903013B2 (en) 2003-05-16 2005-06-07 Chartered Semiconductor Manufacturing Ltd. Method to fill a trench and tunnel by using ALD seed layer and electroless plating
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6835618B1 (en) 2003-08-05 2004-12-28 Advanced Micro Devices, Inc. Epitaxially grown fin for FinFET
US7060576B2 (en) 2003-10-24 2006-06-13 Intel Corporation Epitaxially deposited source/drain
WO2005065425A2 (en) 2003-12-30 2005-07-21 The Regents Of The University Of California Localized synthesis and self-assembly of nanostructures
KR100625177B1 (ko) 2004-05-25 2006-09-20 삼성전자주식회사 멀티-브리지 채널형 모오스 트랜지스터의 제조 방법
US20070257277A1 (en) * 2004-06-04 2007-11-08 Nec Corporation Semiconductor Device and Method for Manufacturing the Same
US7443025B2 (en) 2004-06-07 2008-10-28 Broadcom Corporation Thermally improved placement of power-dissipating components onto a circuit board
KR100618831B1 (ko) 2004-06-08 2006-09-08 삼성전자주식회사 게이트 올 어라운드형 반도체소자 및 그 제조방법
US8288813B2 (en) 2004-08-13 2012-10-16 Infineon Technologies Ag Integrated memory device having columns having multiple bit lines
US7361958B2 (en) 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US7473943B2 (en) 2004-10-15 2009-01-06 Nanosys, Inc. Gate configuration for nanowire electronic devices
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US7465973B2 (en) 2004-12-03 2008-12-16 International Business Machines Corporation Integrated circuit having gates and active regions forming a regular grating
US7598516B2 (en) 2005-01-07 2009-10-06 International Business Machines Corporation Self-aligned process for nanotube/nanowire FETs
US20080121932A1 (en) 2006-09-18 2008-05-29 Pushkar Ranade Active regions with compatible dielectric layers
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
WO2006132659A2 (en) 2005-06-06 2006-12-14 President And Fellows Of Harvard College Nanowire heterostructures
US7387946B2 (en) 2005-06-07 2008-06-17 Freescale Semiconductor, Inc. Method of fabricating a substrate for a planar, double-gated, transistor process
KR100618900B1 (ko) 2005-06-13 2006-09-01 삼성전자주식회사 다중 채널을 갖는 모스 전계효과 트랜지스터의 제조방법 및그에 따라 제조된 다중 채널을 갖는 모스 전계효과트랜지스터
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7190050B2 (en) 2005-07-01 2007-03-13 Synopsys, Inc. Integrated circuit on corrugated substrate
US7354831B2 (en) 2005-08-08 2008-04-08 Freescale Semiconductor, Inc. Multi-channel transistor structure and method of making thereof
US7452759B2 (en) 2005-11-29 2008-11-18 Micron Technology, Inc. Carbon nanotube field effect transistor and methods for making same
US7871912B2 (en) 2005-12-13 2011-01-18 Versatilis Llc Methods of making semiconductor-based electronic devices by forming freestanding semiconductor structures
US7498211B2 (en) 2005-12-28 2009-03-03 Intel Corporation Independently controlled, double gate nanowire memory cell with self-aligned contacts
US7449373B2 (en) 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
US7608489B2 (en) 2006-04-28 2009-10-27 International Business Machines Corporation High performance stress-enhance MOSFET and method of manufacture
US7772071B2 (en) 2006-05-17 2010-08-10 Chartered Semiconductor Manufacturing Ltd. Strained channel transistor and method of fabrication thereof
US7880160B2 (en) 2006-05-22 2011-02-01 Qimonda Ag Memory using tunneling field effect transistors
JP5060740B2 (ja) * 2006-05-26 2012-10-31 シャープ株式会社 集積回路装置およびその製造方法、ならびに表示装置
US7456068B2 (en) 2006-06-08 2008-11-25 Intel Corporation Forming ultra-shallow junctions
US7629603B2 (en) 2006-06-09 2009-12-08 Intel Corporation Strain-inducing semiconductor regions
US20080014689A1 (en) 2006-07-07 2008-01-17 Texas Instruments Incorporated Method for making planar nanowire surround gate mosfet
US7999251B2 (en) 2006-09-11 2011-08-16 International Business Machines Corporation Nanowire MOSFET with doped epitaxial contacts for source and drain
KR100745769B1 (ko) * 2006-09-11 2007-08-02 삼성전자주식회사 나노와이어 전기기계 스위칭 소자 및 그 제조방법, 상기나노와이어 전기기계 소자를 이용한 전기기계 메모리 소자
US7893476B2 (en) 2006-09-15 2011-02-22 Imec Tunnel effect transistors based on silicon nanowires
EP1900681B1 (en) 2006-09-15 2017-03-15 Imec Tunnel Field-Effect Transistors based on silicon nanowires
KR100801063B1 (ko) 2006-10-02 2008-02-04 삼성전자주식회사 게이트 올 어라운드형 반도체 장치 및 그 제조 방법
JP5057739B2 (ja) * 2006-10-03 2012-10-24 株式会社東芝 半導体記憶装置
KR100757328B1 (ko) 2006-10-04 2007-09-11 삼성전자주식회사 단전자 트랜지스터 및 그 제조 방법
US7498265B2 (en) 2006-10-04 2009-03-03 Micron Technology, Inc. Epitaxial silicon growth
US20080128760A1 (en) 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
US20080135949A1 (en) 2006-12-08 2008-06-12 Agency For Science, Technology And Research Stacked silicon-germanium nanowire structure and method of forming the same
KR100881185B1 (ko) 2006-12-20 2009-02-05 삼성전자주식회사 비휘발성 메모리 소자 및 그 동작 방법
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
JP2008172082A (ja) * 2007-01-12 2008-07-24 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP5100137B2 (ja) 2007-01-26 2012-12-19 株式会社東芝 半導体装置の製造方法および半導体装置
US8120115B2 (en) 2007-03-12 2012-02-21 Imec Tunnel field-effect transistor with gated tunnel barrier
US7859036B2 (en) 2007-04-05 2010-12-28 Micron Technology, Inc. Memory devices having electrodes comprising nanowires, systems including same and methods of forming same
US7871851B2 (en) 2007-05-25 2011-01-18 RF Nano Method for integrating nanotube devices with CMOS for RF/analog SoC applications
JP2009016418A (ja) * 2007-07-02 2009-01-22 Nec Electronics Corp 半導体装置
US7812370B2 (en) 2007-07-25 2010-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistor with narrow band-gap channel and strong gate coupling
US8154127B1 (en) 2007-07-30 2012-04-10 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US7795677B2 (en) 2007-09-05 2010-09-14 International Business Machines Corporation Nanowire field-effect transistors
US7534675B2 (en) 2007-09-05 2009-05-19 International Business Machiens Corporation Techniques for fabricating nanowire field-effect transistors
JP4966153B2 (ja) 2007-10-05 2012-07-04 株式会社東芝 電界効果トランジスタおよびその製造方法
KR20090044799A (ko) 2007-11-01 2009-05-07 삼성전자주식회사 액티브 핀의 제조 방법 및 이를 포함하는 트랜지스터
JP2009130167A (ja) 2007-11-26 2009-06-11 Renesas Technology Corp 半導体装置およびその製造方法
US7834345B2 (en) 2008-09-05 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistors with superlattice channels
US8362604B2 (en) 2008-12-04 2013-01-29 Ecole Polytechnique Federale De Lausanne (Epfl) Ferroelectric tunnel FET switch and memory
US7884004B2 (en) 2009-02-04 2011-02-08 International Business Machines Corporation Maskless process for suspending and thinning nanowires
KR20100094192A (ko) * 2009-02-18 2010-08-26 삼성전자주식회사 탄소나노튜브 박막을 이용한 에스램
JP2011040524A (ja) * 2009-08-10 2011-02-24 Fujitsu Semiconductor Ltd 半導体装置の製造方法及び半導体装置
US8097515B2 (en) 2009-12-04 2012-01-17 International Business Machines Corporation Self-aligned contacts for nanowire field effect transistors
US8173993B2 (en) 2009-12-04 2012-05-08 International Business Machines Corporation Gate-all-around nanowire tunnel field effect transistors
US8129247B2 (en) 2009-12-04 2012-03-06 International Business Machines Corporation Omega shaped nanowire field effect transistors
US20110147840A1 (en) 2009-12-23 2011-06-23 Cea Stephen M Wrap-around contacts for finfet and tri-gate devices
US8420455B2 (en) 2010-05-12 2013-04-16 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
US8338280B2 (en) 2010-07-08 2012-12-25 Globalfoundries Singapore Pte. Ltd. Method for fabricating nano devices

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365465B1 (en) * 1999-03-19 2002-04-02 International Business Machines Corporation Self-aligned double-gate MOSFET by selective epitaxy and silicon wafer bonding techniques
US6642115B1 (en) * 2000-05-15 2003-11-04 International Business Machines Corporation Double-gate FET with planarized surfaces and self-aligned silicides
TW540086B (en) * 2000-08-14 2003-07-01 Matrix Semiconductor Inc Dense arrays and charge storage devices, and methods for making same
US6996147B2 (en) * 2001-03-30 2006-02-07 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6882051B2 (en) * 2001-03-30 2005-04-19 The Regents Of The University Of California Nanowires, nanostructures and devices fabricated therefrom
US20040169241A1 (en) * 2001-07-26 2004-09-02 Technische Universiteit Delft Electronic device using carbon nanotubes
US7151209B2 (en) * 2002-04-02 2006-12-19 Nanosys, Inc. Methods of making, positioning and orienting nanostructures, nanostructure arrays and nanostructure devices
US20040166642A1 (en) * 2003-02-20 2004-08-26 Hao-Yu Chen Semiconductor nano-rod devices
US7180107B2 (en) * 2004-05-25 2007-02-20 International Business Machines Corporation Method of fabricating a tunneling nanotube field effect transistor
TWI282582B (en) * 2004-06-10 2007-06-11 Taiwan Semiconductor Mfg Semiconductor nano-wire devices and methods of fabrication
TW200627453A (en) * 2004-06-30 2006-08-01 Koninkl Philips Electronics Nv Method for manufacturing an electric device with a layer of conductive material contacted by nanowire
TWI305385B (en) * 2005-03-24 2009-01-11 Samsung Electronics Co Ltd Semiconductor device having a round-shaped nano-wire transistor channel and method of manufacturing same
US7297615B2 (en) * 2005-05-13 2007-11-20 Samsung Electronics, Co., Ltd. Si nanowire substrate, method of manufacturing the same, and method of manufacturing thin film transistor using the same
TW200735356A (en) * 2005-05-23 2007-09-16 Ibm A vertical FET with nanowire channels and a silicided bottom contact
TWI294183B (zh) * 2005-08-29 2008-03-01 Univ Nat Chiao Tung
TWI292218B (en) * 2006-02-13 2008-01-01 Wang Chih-Hsin An electrically erasable and programmable nonvolatile memory device and array and method for operating thereof
TW200737659A (en) * 2006-03-26 2007-10-01 Alpha & Omega Semiconductor Circuit configuration and method to reduce ringing in the semiconductor power switching circuits
US20090217216A1 (en) * 2007-02-28 2009-08-27 Motorola, Inc. Carbon nanotube circuits design methodology
TW201010077A (en) * 2008-08-20 2010-03-01 Univ Nat Formosa Gas sensor made of field effect transistor based on ZnO nanowires

Also Published As

Publication number Publication date
CN102844870A (zh) 2012-12-26
GB201219460D0 (en) 2012-12-12
US20110249489A1 (en) 2011-10-13
US20120280206A1 (en) 2012-11-08
TW201222736A (en) 2012-06-01
GB2494311A (en) 2013-03-06
GB2494311B (en) 2013-10-23
JP2013528931A (ja) 2013-07-11
WO2011129952A1 (en) 2011-10-20
JP5944377B2 (ja) 2016-07-05
US8520430B2 (en) 2013-08-27
DE112011100438B4 (de) 2019-12-19
US8324940B2 (en) 2012-12-04
CN102844870B (zh) 2016-02-17
DE112011100438T5 (de) 2013-04-04

Similar Documents

Publication Publication Date Title
TWI493659B (zh) 匹配裝置中之奈米線電路
TWI628782B (zh) 靜態隨機存取記憶體裝置
US10157934B2 (en) Connection structure for vertical gate all around (VGAA) devices on semiconductor on insulator (SOI) substrate
JP5373624B2 (ja) カーボンナノチューブトランジスタを用いた論理回路
US9034704B2 (en) 6T SRAM architecture for gate-all-around nanowire devices
CN104778970B (zh) 存储单元
US8796667B2 (en) Static random access memories having carbon nanotube thin films
US20070146008A1 (en) Semiconductor circuit comprising vertical transistor
Bhattacharjee et al. Impact of gate/spacer-channel underlap, gate oxide EOT, and scaling on the device characteristics of a DG-RFET
JP2011192787A (ja) 半導体記憶装置
Sinha et al. Si/Ge/GaAs as channel material in Nanowire-FET structures for future semiconductor devices
US20140080255A1 (en) Ultra-low power swnt interconnects for sub-threshold circuits
Moon et al. Silicon nanowire CMOS NOR logic gates featuring one-volt operation on bendable substrates
Yun et al. Nanowatt power operation of silicon nanowire NAND logic gates on bendable substrates
US8460991B2 (en) Differentially recessed contacts for multi-gate transistor of SRAM cell
TW201635540A (zh) 使用鍺奈米線之場效電晶體結構
Sharma et al. Memory Design Using Nano Devices