TWI398003B - 半導體裝置及其製造方法 - Google Patents
半導體裝置及其製造方法 Download PDFInfo
- Publication number
- TWI398003B TWI398003B TW094133446A TW94133446A TWI398003B TW I398003 B TWI398003 B TW I398003B TW 094133446 A TW094133446 A TW 094133446A TW 94133446 A TW94133446 A TW 94133446A TW I398003 B TWI398003 B TW I398003B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor device
- layer
- trench
- diode
- region
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 103
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 31
- 229910052732 germanium Inorganic materials 0.000 claims description 24
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 24
- 238000009792 diffusion process Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 14
- 230000035515 penetration Effects 0.000 claims description 10
- 229920002098 polyfluorene Polymers 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- 230000009545 invasion Effects 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 109
- 230000004888 barrier function Effects 0.000 description 20
- 230000000903 blocking effect Effects 0.000 description 14
- 230000008901 benefit Effects 0.000 description 11
- 238000005530 etching Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 230000007704 transition Effects 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002800 charge carrier Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/6609—Diodes
- H01L29/66143—Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/8611—Planar PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/866—Zener diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/872—Schottky diodes
- H01L29/8725—Schottky diodes of the trench MOS barrier type [TMBS]
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Element Separation (AREA)
Description
本發明關於申請專利範圍第1項的引文的一種半導體裝置以及其製造方法。這種半導體裝置係一種「接合屏障肖特基二極體」(Junction-Barrier-Schottky-Diode),它具有渠溝(Grab,英:trench)構造。此半導體構造特別適合當作Z二極體(齊納二極體)以使用在汽車的供電網路(Bordnetz)中。
在現代汽車,用電構件實施越來越多的功能。如此對電功率的需求越來越高。為了達成這需求,故汽車中的發電系統的效率要提高。迄今一般在汽車的發電機系統中使用PN二極體當作齊納二極體。PN二極體的優點一方面為阻斷電流低,另方面為強固性大。但其主要缺點為流動電壓(順向偏壓)(Fluspannung)UF較高。在室溫時,電流在順向偏壓UF約0.7V時才開始流動。在正常操作條件下(其中電流密度約500A/cm2
),順向偏壓UF上升至超過1V。這點使效率低下。
根據理論考量,可考慮用肖特基二極體(Schottky-Diode)作為另一種選擇。一種肖特基二極體的順向偏壓遠小於PN二極體者。舉例而言,一肖特基二極體的順向偏壓約為0.5V~0.6V(在電流密度約500A/cm2
時)。此外在快速切換操作時,用肖特基二極體當作主載體構件很有利,但迄今仍未有人使用肖特基二極體在汽車的發電機系統中。其原因可歸咎於肖特基二極體的一些缺點,它們使得這種應用遲遲未能實現。第一,肖特基二極體比起PN二極體來,阻斷電流(逆向電流)(Sperrstrom)較大。這種道向電流更與逆向偏壓(Sperrspannung)關係密切。最後一點,肖特基二極體的強固性較差,特別是在高溫時。迄今這些缺點阻礙了-肖特基二極體在汽車的應用。
在T.酒井氏等人的“Experimental investigation of dependence of electrical characteristics on device parameters in Trench MOS Barrier Schottky Diodes”(在1998年京都的Power Semiconductors & ICs國際座談會,第293~296頁)以及S.久德(?)氏等人的“Low leakage current Schottky barrier diode”京都1992年的功率電晶體及IC的國際座談會,第80~85頁以及德專利19 749 195已提到改善肖特基二極體的性質的措施,它們導致所謂的JBS(JBS=Junction-Barrier-Schottky-Diode)接合屏障肖特基二極體或所謂的TMBS(TMBS=Trench-MOS-Barrier-Schottky-Diode)。在JBS的場合,可藉著將特定的構造參數適當地測量而將該與高逆向電流(Sperrstrom)有關的肖特基效應(Schottky-Effekt)至少部分地遮蔽,並藉此減少該逆向電流。然而想藉更深的p-擴散作用更進一步的遮蔽作用卻不能施,因為擴散領域同時也會沿旁側方向進一步擴展。但如此一來,可供電流沿流動方向流過的面積也呈不利的方式進一步減少,而TMBS的優點在於逆向電流可減少。在此,逆向電流主要經該二極體的MOS構造之一似反相層(Quasi-Inversionsschicht)沿一渠溝(Grab)(它設入二極體構造中)流過。其結果,使該MOS構造可由於一種n表層(n-Epischicht)所謂的「熱」電荷載體注入一個氧化層中而崩解,且在特別敵對的條件下甚至會破壞。由於要形成反相通道需要一些時間,因此該空間電荷區域在快速切換過程開始時會短時地擴大,因此使電場強度增加。這點導致二極體在貫穿時短時之不當的操作。因此幾乎沒人會想要使用TMBS(它在逆向電流方面較佳)當作齊納二極體用並在貫穿區域中操作。
具有申請專利範圍第1項的特點的本發明提供一種具有低壓、低逆向電流及高強固性的半導體裝置。
它特別有一優點,即:該易損壞的氧化物層被一p摻雜的矽區域取代,且所謂的「熱」電荷載體注入(Injection)的情事不再會發生。這點達成之道,係使在貫穿時發生的高電場強度不位在該敏感氧化物層附近,因為該整合之PN二極體的貫穿電壓比該肖特基二極體及MOS構造的貫穿電壓低。因此,依本發明設計的半導體裝置的特色為強固性特大,使得該半導體裝置可在汽車供電網路(Bordnetz),特別是在供電網路的發電機系統中可靠地使用。特別有利的是該半導體可在幾十伏特程度的貫穿電壓及幾百A/cm2
的電流密度使用而安全地操作。特別有利的方式,該半導體裝置第一實施例包含一n+基質,其上設有一n層,將渠溝設入該n層中。再將該渠溝完全用p摻的材料充填,該材料在該處構成p摻雜區域。n+基質與n層各帶有一接觸層。
本發明的半導體裝置第二實施例包含一n+基質,其上設有一n層,將渠溝設入該n層中。再將該渠溝完全用p摻雜區域包覆,n+基質與n層帶有接觸層。
本發明的其他優點與特點及製造本發明之半導體裝置的有利方法見於申請專利範圍附屬項及說明書及圖式。
以下配合圖式詳細說明本發明的實施例。
本發明的實施例在以下配合圖式詳細說明:
以下首先簡短說明用的半導體裝置,俾與本發明所能達成的優點作比較。第1圖先顯示一半導體裝置(10),呈一習用的接合屏障肖特基二極體JBS(Junction-Barrier-Schottky-Diode)形式,它由一n+基質(1)、一n 層(2)、至少二個擴散到該n層(2)中的p盆(3)與接觸層(4)與(5),該接觸層(4)(5)分別在晶片的前側及後側。從電的觀點看,此JBS係一種PN二極體〔在p盆(3)(當作陽極)與n層(2)(當作陰極)之間的過渡區〕與一肖特基二極體〔在接觸層(4)(當作陽極)與n層(2)(當作陰極)之間的肖特基屏障〕的組合。在晶片後側的接觸層(5)當作陰極電極,在晶片前側上的接觸層(4)當作陽極電極,具有接到p-盆(3)的歐姆式接點,且同時當作接到n層(2)的肖特基接點。由於肖特基二極體的流動電壓比起PN二極體來要小,故電流沿流動方向(順向)只流經該肖特基二極體的區域。因此在JBS的場合,供順向電流沿順向流動方向流動的有效面積(每單位面積)比傳統平面肖特基二極體小得多。該空間電荷區域沿阻斷方向隨著電壓上升而擴張,且當電壓小於該JBS的貫穿電壓時,就會在相鄰的p盆(3)之間的區域中央相撞。如此,與該高逆向電流有關的肖特基效應就部分地被遮蔽,且逆向電流因而減少。這種遮蔽效應與特定構造參數有密切關係,例如和Xj p
(p-擴散作用的侵入深度)、Wn
(p盆間的距離)及Wp
(p盆的寬度)有關。一種做JBS的p盆的習用技術係先作p植入然後作p擴散。藉著沿x方向作側向擴散(其深度與沿y方向的垂直擴散相當)造成二度空間圖式中的圓筒形p盆(沿著垂直於xy平面的z方向無限長度),其半徑相當於侵深度Xj p
。但由於空間電荷區域沿徑向擴張,這種形式的p盆對肖特基效應並不呈現很有效的遮蔽作用。而且也不可能單獨利用p擴散作用加強遮蔽效用。因為同時也會使側向擴散作用對應地更寬。此外也有人考慮將p盆間的距離Wn
進一步減少。如此固然遮蔽作用加強,但流動電流沿流動方向的有效面積卻進一步減少。
第2圖顯示一習知半導體,特別是一種所謂TMBS二極體,以下簡稱TMBS,以與本發明的優點比較。該TMBS(20)由一n+
基質(1)及一設在此n+
基質上的n層(2)構成。在此n層(2)中設入渠溝(6),一般亦稱「壕溝」(trenchs)。渠溝(6)的底面與壁用一個氧化物層(7)蓋住。TMBS(20)的前側上的一金屬層(4)用於作陽極電極。TMBS(10)的背側上的一金屬層(5)用於作陰極電極。從電的關點看,該TMBS(10)係一種MOS構造〔金屬層(4)、氧化物層(7)與n層(2)〕與一肖特基二極體的組合。在此,該肖特基屏障位於做陽極的金屬層(4)與做陰極的n層(2)之間。
有一股電流沿流動方向流過該TMBS(10)之由渠溝(6)所圍之台面(Mesa)區域(10)。渠溝(6)本身並沒有電流過。因此沿流動方向電流的有效面積,在TMBS的場合係比傳統之平面肖特基二極體更小。這種TMBS(20)的優點為阻斷電流減少。在MOS構造及在肖特基二極體的場合,沿阻斷方向都形成空間電荷區域。此空間電荷區域隨電壓升高而擴張,且在電壓小於該TMBS(20)的貫穿電壓時在該相鄰的渠溝(6)之間的台面區域(3)中央相撞擊。如此,該與高阻斷電流有關的肖特基效應被遮蔽,且阻斷電流減少。此遮蔽效應與TMBS的構造參數--例如,特別是Dt
〔渠溝(6)的深度〕、Wm
〔渠溝(6)之間的距離〕、Wt
〔渠溝(6)的寬度〕、以及To
〔氧化物層(7)的厚度〕關係密切。因此該肖特基效應的遮蔽效應在TMBS的場合比起具有擴散的p-桶的JBS〔接合屏障肖特基二極體(Junction Barrier Schottky Diode)〕來更有效得多。但習知TMBS的一重要缺點為MOS構造脆弱。當貫穿時,在氧化物層(7)內及在n層(2)的氧化物層(7)附近產生很大的電場。阻斷電流主要沿渠溝(6)表面流經該MOS構造的以及層。結果,該MOS構造會由於“熱”電荷載體從n層(2)注入氧化層(7)中而崩解,且在特定的不利的操作條件下甚至會破壞。由於要形成該反相通道需要某些時間〔深耗盡(deep depletion)〕,故該空間電荷區在迅速切換過程開始時,會短時地再擴張,且因此電場強度進一步升高。這點會造成在貫穿時短時不想要的操作。因此幾乎沒有人考慮使用TMBS當作齊納二極體並在貫穿範圍中操作。
與之相較,本發明係提供新式的半導體裝置,它具有低流動電壓、低阻斷電流與高強固性(Robustheit)的特色。在此它係一種「接合屏障肖特基二極體」(JBS),具有一種渠溝構造,它也可稱為「渠溝接合屏障肖特基二極基」(TJBS)。
在此不採取像傳統JBS那樣作較大侵入深度(例如Xj p
>1 μ m)的p擴散,而係利用蝕刻,然後將渠溝用p摻雜的矽或聚矽(Poly-Si)充填以製造TJBS的p盆。另一種方式,也可藉蝕刻,然後配合一道淺侵入的硼擴散作用作硼鋪蓋作用,而製造TJBS的渠溝。在此,該PN二極體的貫穿電壓BV- p n
要設計成比肖特基二極體的貫穿電壓BV- S c h o t t k y
低兩倍。TJBS具有沿順向流動方向的高流動能力、沿逆向的肖特基效應的高遮蔽作用及且因此具低逆向電流、以及由於PN二極體的箝位作用(Klammerfunktion,英:clamping function)有高強度性、以及貫穿作用在渠溝底部發生。因此它特別通用當作Z二極體以用於汽車發電機系統中。
在本發明第一實施例中,它係為一種TJBS類型的半導體裝置(30),具有充填的渠溝;它在以下配合第3圖詳細說明。如第3圖所示,該半導體裝置(30)包含一n+基質(1)、一設在n+基質(1)上的n層(2)、及至少二條渠溝(7),該渠溝(7)設入n層(2)中,也稱「trench」。此外,在半導體裝置(30)的前側與後側設有接觸層(4)(5),它們當作陽極電極與陰極電極。渠溝(7)宜利用一蝕刻程序產生。接觸層(4)(5)宜由一種金屬構成。該金屬層(4)也可特別由二種不同之上下重疊的金屬層構成。渠溝(7)用p摻雜的矽或聚矽充填,因此產生p摻雜區域(8)。由電的觀點看,該半導體裝置TJBS係為PN二極體〔在p摻雜區域(8)(當作陽極)以及n層(2)(當作陰極)之間的PN過渡區〕以及一種肖特基二極體〔在接觸層(4)(當作陽極)與n層(2)(當作陰極)之間的肖特基屏障〕的組合。一如在傳統的接合屏障肖特基二極體,電流沿二極體的流動方向只流過該肖特基二極體。但由於缺少旁側的p擴散,在此「渠溝接合屏障肖特基二極體」的場合,沿流動方向之流動電流的有效面積和在一「渠溝MOS屏障肖特基二極體」相似,而比一傳統的「接合屏障肖特基二極體」大得多。沿逆向,該空間電荷區域隨電壓上升而擴張,且當電壓小於該「渠溝接合屏障肖特基二極體」的貫穿電壓時,就在相鄰的p區域之間的區域中央相撞擊。因此,一如在該「接合屏障肖特基二極體」的場合,與高逆向電流有關的肖特基效應被遮蔽,且逆向電流因而減少。此遮蔽效應與構造參數關係密切,例如與Dt
〔渠溝(7)深度〕、Wn
〔渠溝(7)間距離〕及Wp
〔渠溝(7)寬度〕有關。在TJBS的場合,要製造渠溝(7),不需p-擴散作業。如此不會像在傳統JBS那樣受到側向p擴散的負面影響。在渠溝(7)之間在平台區域(2.1)中的空間電荷區域可直接作似一度空間式的擴張,因為渠溝(7)的深度Dt
(它是對於肖特基效應的遮蔽作用的一重要構造參數)不再與可供電沿流動方向流動的有效面積有關聯。對於肖特基效應的遮蔽效果與在TMBS的場合相似,因此遠比具有擴散的p盆的傳統JBS有效率得多。另方面由於利用PN二極體造成之箝位作用,故該TJBS有高強固性。該PN二極體的貫穿電壓BV- p n
設計成使它低於該肖特基二極體的貫穿電壓BV- s c h o t t k y
。此外貫穿作用發生在渠溝(7)的底部。在貫穿作業時,「阻斷電流」只流過PN二極體的PN過渡區。因此流動方向與阻斷方向在幾何性質上係分開者。此TJBS因此具有如PN二極體的強固性。要做TJBS構形的半導體裝置(30),宜具有一種驟變的PN過渡區。要避免像在「冷肖特基二極體」的電荷補償作用,因為這裡主要並不考慮高度阻斷的二極體,而係考慮Z二極體,其貫穿電壓在幾十伏特的量級,特別是約20V~40V。此外,在TJBS的場合不會發生「熱」電荷載體注入的情事,因為並無MOS構造存在。因此TJBS特宜當作Z二極體用在汽車的供電網路,特別是用在汽車的發電機系統。
在以下說明該半導體裝置(30)的一種有利的製造方法。在此方面也參見第8圖所示的流程圖。由一n+基質(1)開始(步驟80)。將一n層(2)施到此n+基質上(步驟81)。這點宜利用外延(Epitaxie)程序達成。在下一步驟(82),將渠溝(7)蝕刻到n層(2)中。然後將渠溝(7)用p摻雜的矽或聚矽充填(步驟83)。在進一步的步驟(84)將接觸層(4)(5)(宜由金屬構成)施到半導體裝置(30)的前側及後側。
在以下配合第4圖說明本發明另一實施例。第4圖中所示的半導體裝置(40)同樣由一n+基質(1)、一設在其上的n層(2)、及至少二條做到n層(2)中的渠溝(Trench)(7)構成。在渠溝(7)中設有p區域(9),蓋住該渠溝(7)的底與側壁。此外在晶片的前側上(包含該渠溝的表面)設有接觸層(4)(5),當作陽電極及陰電極,特別是接觸層(4)宜可再由二個不同之上下重疊的金屬層構成。在此該渠溝(7)完全用該第二金屬層充填。但在本發明此實施例,渠溝(7)內的p區域(9)並非利用p摻雜的矽或聚矽充填而造成。該p摻數的區域係藉著將渠溝(7)用p摻雜物質鋪設。然後作淺擴散而達成。所用p摻雜物質宜為硼。在此半導體裝置(40)同樣地要造成驟變的PN過渡區。在第4圖的實施例,當渠溝深度Dt 0
約1~3 μ m時,淺擴散的侵入深度例如不大於0.2 μ m,則對於肖特基效應的遮蔽作用及阻斷能力係與第3圖具有充填的渠溝(7)的第一實施例很像。對於沿流動方向的高流動性、高強固性以及通用於作齊納二極體(以用在汽車供電網路,特別是汽車發電機系統)的優點,其情形也是如此。與第3圖所示的本發明第1實施例相比,此第二實施例的一優點為:比起將渠溝(7)用p摻雜的矽或聚矽充填的做法來,先用一摻雜物質鋪設然後作擴散以製造該p區域(9)的方式較簡單。但這種方式的缺點在於電流沿順向流動方向流過具有侵入深度Xj p
的p-擴散區域,其有效面積減少。但一項詳盡的研究卻顯示,對於貫穿電壓在幾十伏特量級的半導體裝置(40),這種缺點實際上可忽視。當半導體裝置(40)的貫穿電壓為20伏特時,在室溫時及在電流密度約500A/cm2
時流動電壓只增加約10mV。
在以下說明製造該半導體裝置(40)的一種有利的方法(第4圖的實施例),其中亦參照第9圖的流程圖。此處也從一n+基質(1)開始(步驟90),將一n層(2)施到該n+基質(1)上(宜利用外延作用)(步驟91)。利用一蝕刻程序將渠溝(7)設到n層(2)中(步驟92)。然後將渠溝(7)的底與側壁蓋以一氧化物層(步驟93)。所用p摻雜材料宜為硼,此摻雜材料宜由氣相析出到渠溝(7)中。然後作擴散程序(步驟94),其中硼擴散到層(2)中並形成p區域(9)在此作特別淺的p擴散。這點宜用快速熱退火(RTA)的技術達成。然後再將接觸層(4)(5)設到半導體裝置(40)的前側及後側(步驟95)。
以下配合第5圖說明本發明另一實施例。第5圖中所示的半導體裝置(50)有一n+基質(1)、一設在此基質(1)上的n層(2)、及至少二個設入n層(2)中的渠溝(7)。該n層(2)也宜利用一蝕刻程序產生。此外該半導體裝置(50)在前側及後側有接觸層(4)(5),分別當作陽電極及陰電極,它們宜由金屬構成。特別是該金屬層(4)也可由二個不同之上下重疊的金屬層構成。但在此本發明實施例,該渠溝(7)與第3圖實施例不同,只有一部分用p摻雜的矽或聚矽充填,亦即只充填到一厚度Dp
,因此形成p區域(8)。從電的觀點看,此實施例同樣地為一種PN二極體〔在p摻雜區域(當作陽極)與n層(2)(當作陰極)之間的PN過渡區〕與一肖特基二極體〔在接觸層(4)(當作陽極)與n層(2)(當作陰極)之間的肖特基屏障〕的組合。但在這裡,該肖特基屏障係在半導體裝置(50)表面及在渠溝(7)的上區域(它未用p摻雜的矽或聚矽充填)的側壁上形成。此半導體裝置(50)的一優點為,即使在渠溝(7)的上區域的側壁,由於肖特基式接觸面積較大,故順向流動電壓較低。然而這點會造成較大的逆向電流,如此會有某種缺點。但在實用上此實施例可依個別需求將參數Dp
作正確的調整使該半導體裝置(50)的順向電壓與逆向電流最佳化。
以下說明製造該半導體裝置(50)(第5圖的實施例)的一種有利的製造方法,其中亦參照第10圖的流程圖。此處也從一n+基質(1)開始(步驟100),將一n層(2)(宜利用外延)施到該基質(1)上(步驟101)。利用一道蝕刻程序將渠溝(7)做入該n層(2)中(步驟102)。然後將該渠溝(7)用p摻雜的矽或聚矽充填。在下一步驟(103),將該設到渠溝(7)中的p摻雜的矽或聚矽部分地除去直到只留下厚度Dp
為止(步驟104)。這點宜利用一道蝕刻程序達成。然後再將接觸層(4)(5)施到該半導體裝置(50)的前側及後側(步驟105)。
在本發明的一種有利的進一步特點的範疇中,所有上述實施例都可在半導體裝置的邊緣區域還包含一額外的構造,以減少邊緣場厚度。
舉例而言這種構造可由低摻雜的p區域、場板或類似物構成。
在以下配合第6圖說明依第3圖〔半導體裝置(30)〕的另一種有利的實施變更例,它另設有一種邊緣構造以減少邊緣場強度。該處所述之半導體裝置(60)的特點為在半導體裝置邊緣的寬的渠溝與深的p擴散作用。此半導體裝置(60)包含一+n基質(1)。在n+基質(1)上設有一n層(2)。有一附加之渠溝(7b)設入該n層(2)中。該渠溝(7)(7b)宜利用一蝕刻程序產生。如第6圖所示,渠溝(7b)做得比渠溝(7)更寬。渠溝(7)(7b)用p摻雜的矽或聚矽充填,因此在渠溝(7)(7b)中產生p摻雜區域(8)(8b)。在該寬的渠溝(7b)上緊接著一p摻雜區域(10)。該n+基質(1)之背向n層(2)的那一側也帶有一接觸層(5)。在半導體裝置(60)的前側上同樣施有一接觸層(4)。此接觸層(4)不蓋住半導體裝置的整個前側。它只蓋住渠溝(7)(7b)及鄰接渠溝旁的自由的n層(2)以及p摻雜區域(10)的一部分。半導體裝置(60)之其餘的前側用一氧化物層(11)蓋住。因此該氧化物層(11)延伸過該p摻雜區域(10)的一部分及其旁側右邊的自由的n層(2)。為了在半導體裝置(60)的邊緣達成比半導體裝置內部區域更高的貫穿電壓,故該p摻雜區域(10)的侵入深度Xj p - e d g e
宜選設成比渠溝(7)(7b)的深度更大一一對於順向電壓有某些負面作用,因為該n層(2)須對應地做得較厚。但一項詳細研究卻顯示該p摻雜區域(10)的侵入深度Xj p - e d g e
只要略大於渠溝(7)(7b)深度深度Dt
,就能有利地在半導體裝置(60)的邊緣達成較高的貫穿電壓。因此該設得較深的p摻雜區域(10)對於流動電壓在實際上的負面影響小到可忽略。
一種製造一半導體裝置(60)的有利方法在以下配合第11圖所示的流程圖說明。此處也從一n+基質(1)開始(步驟110),在其上施一n層(2)(宜利用外延)(步驟111)。在下一步驟利用一對應於設計的遮罩在前側上用一種p摻雜物質(特別是硼)作深滲透產生該p摻雜區域(10)(步驟112)。這點可有利地達成,使得該n層(2)之自由的表面之未被遮罩蓋住的區域用該p摻雜物質鋪設。這點也可藉著將摻雜物質由氣相析出或作離子植入而達成。然後該摻雜物質藉加熱而摻透到其下方的n層(2)中。藉著一道蝕刻程序將渠溝(7)(7b)做致n層(2)中(步驟113),其中該渠溝(7b)做得比渠溝(7)更寬。然後將渠溝(7)(7b)用p摻雜的矽或聚矽充填(步驟114),如此造成該p摻雜區域(8)(8b)。然後再將接觸層(4)與(5)施到半導體裝置(60)的前側及後側上(步驟115)。在此也宜用一遮罩技術,由為該半導體裝置(60)前側只有一部分區域要用接觸層(4)覆蓋。該表面留下的部分用氧化物層(11)鈍化。
以下配合第7圖說明另一有利實施變更例。第7圖中所示的半導體裝置(70)的特點為一寬的渠溝及在半導體裝置邊緣的深p擴散,其中該擴散領域一直延到半導體裝置(70)的邊緣。此半導體裝置(70)包含一n+基質(1)。在該n+基質(1)上設有一n層(2)。在n層(2)中設入渠溝(7)(7b)。該渠溝(7)(7b)也宜利用一蝕刻程序產生。如第7圖所示,該渠溝(7b)做得比渠溝(7)更寬。渠溝(7)(7b)用p摻雜的矽或聚矽充填,因此在渠溝(7)(7b)中造成p摻雜的區域(8)。緊接著該較寬的渠溝(7b)有一個p摻雜的區域(10)。該n+基質(1)之背向n層(2)的那一側也帶有一接觸層(5)。在該半導體裝置(60)的前側上同樣設有一接觸層(4)。為了使半導體裝置(70)的邊緣比其內區域有更高的貫穿電壓,故該p摻雜區域(10)的侵入深度Xj p - e d g e
選設成比渠溝(7)(7b)的深度Dt
更大。此外該半導體裝置(60)的邊緣上的渠溝(7b)的位置以及該p摻雜的區域(10)的位置選設成使得該p-摻雜的區域(10)的一邊緣區域終止於該較寬的渠溝(7b)下方,並且不再與該渠溝(7)(7b)之間的平台區域(61)接觸。上述要述--該p摻雜的區域(10)的侵入深度Xj p - e d g e
要比渠溝(7)(7b)的深度Dt
略大--對於流動電壓有某些負面的影響,因為n層(2)須對應地做得較厚一些。但一項詳細的研究卻顯示:要在半導體裝置(60)的邊緣有利地達成較高的貫穿電壓,該p摻雜的區域(10)的侵入深度Xj p - e d g e
只須略大於該渠溝的深度Dt
一點點即可。因此在實際上,該設得較深的p摻雜區域對於流動電壓的不利影響的可以忽視。此實施變更例與第6圖所示的半導體裝置(60)的不同處主要在於:此處該p摻雜區域(10)一直延伸到半導體裝置(70)的邊緣為止。如此固然可在半導體裝置(70)的邊緣產生一「開放」的PN過渡區(它會造成較高的逆向電流),但可藉著適當蝕刻技術將該阻斷電流明顯減少。在此實施例的優點為:不需遮罩以在半導體裝置前側施接觸層。此外,可特別有利地將該半導體裝置安裝在所謂的「壓合殼體」(Press-Fit-Gehuse),因為在半導體裝置(70)表面不出現易損的氧化物。
一種有利的製造半導體裝置(70)的方法與上述製造半導體裝置(60)之所述方法相似。與其不同之處只在於一種不同的遮罩構造,以產生p摻雜區域(在此處它係一直延到邊緣為止)。此外不需作遮蔽以施覆接觸層(4),因為半導體裝置(70)整個前面都遮蓋住。
第6及第7圖所述之邊緣構造也可用相同方式使用在第4及第5圖所述的半導體裝置。
如上述,依本發明設計的半導體裝置由於其強固性而特別適合配合一汽車的供電網路當作齊納二極體用,特別是用在汽車的發電機系體。為此,該半導體裝置(20)(30)宜有12V~30V之間(特別是15V~25V之間)的貫穿電壓。特別有利的一點,係使該半導體裝置在阻斷作業中可用數百A/cm2
的度量級(特別是400A/cm2
~約600A/cm2
)的高電流密度操作。
(1)...n+層
(2)...n摻雜層
(2.1) 平台區域
(61)...平台區域
(4)...接觸層
(5)...接觸層
(6)...氧化物層
(7)(7b)...渠溝
(8)(8b)...p摻雜的區域
(9)(10)...p摻雜的區域
(11)...氧化物層
(80)...層
(81)...層
(82)...層
(83)...層
(90)...層
(91)...層
(92)...層
(93)...層
(94)...層
(95)...層
(100)...層
(101)...層
(102)...層
(103)...層
(104)...層
(105)...層
(110)...層
(111)...層
(112)...層
(113)...層
(114)...層
(115)...層
Dp
...厚度
Dt 0
...渠溝的深度
To
...氧化物層的厚度
Wm
...渠溝間的距離
Wn
...渠溝間的距離
Wt
...渠溝的寬度
Wp 0
...在遮罩上p區域的寬度
Xj p
...侵入深度
Xj p - e d g e
...侵入深度
第1圖係一傳統的「接合屏障肖特基二極體」,第2圖係一傳統的「渠溝MOS屏障肖特基二極體」,第3圖係一本發明半導體裝置的第一實施例,第4圖係一本發明半導體裝置的第二實施例,第5圖係一本發明半導體裝置的第三實施例,第6圖係一本發明半導體裝置的第四實施例,第7圖係一本發明半導體裝置的第五實施例,第8圖係第一製造方法的一流程圖,第9圖係第二製造方法的一流程圖,第10圖係第三製造方法的一流程圖,第11圖係第一製造方法的一流程圖。
(1)...n+層
(2)...n摻雜層
(2.1)...平台區域
(4)...接觸層
(5)...接觸層
(7)...渠溝
(8)...p摻雜的區域
(30)...半導體裝置
Claims (16)
- 一種半導體裝置(30)(40)(50)(60)(70),此半導體裝置(30)(40)(50)(60)(70)包含肖特基二極體與PN二極體的組合,其PN二極體的貫穿電壓(BV-pn )小於該肖特基二極體的貫穿電壓(BV-schottky ),該PN二極體用於作箝位元件功能,該半導體裝置(60)包含一n+基質(1),在該n+基質(1)上設有一n層(2),在該n層(2)中設有多數渠溝(7)(7b),該渠溝(7)(7b)用一p摻雜物質充填,使得在渠溝(7)(7b)中設有p摻雜區域(8)(8b),有另一p摻雜區域(10)接到該渠溝(7b),其浸入n層(2)中的侵入深度(Xjp-edge )大於渠溝(7)(7b)的深度(Dt )且該n+基質(1)與n層(2)帶有接觸層(4)(5)。
- 申請專利範圍第1項之半導體裝置,其中:其中該接觸層(4)將半導體裝置(30)的前側部份地蓋住。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該半導體裝置(60)前側之未被接觸層(4)蓋住的區域用一個氧化層(11)蓋住。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該另一p摻雜區域(10)一直孔到達該渠溝(7b),其侵入n層(2)中的侵入深度大於渠溝(7)(7b)的深度(Dt )且該區域(10)一直達到半導體裝置(70)的邊緣,該n+基質與該n層(2)帶有接觸層(4)(5),其中該接觸層(4)(5)將半導體裝置(70)的前側與後側整面蓋住。
- 如申請專利範圍第1或第2項之半導體裝置,其中:此半導體裝置可用高電流密度在貫穿作業中操作,該電流密度在數百A/cm2 的度量級,特別是在400A/cm2 ~約600A/cm2 。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該p摻雜區域(8)(8b)由p摻雜的矽或多晶矽構成。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該p摻雜區域(9)(10)利用一道擴散程序產生。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該接觸層(4)(5)由金屬構成。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該接觸層(4)(5)設計成多層式。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該半導體裝置設計成使得在PN二極體貫穿時,該貫穿作用宜在渠溝(7)(7b)的底的區域發生。
- 如申請專利範圍第1或第2項之半導體裝置,其中:該渠溝(7)設計成條帶狀或島狀。
- 如申請專利範圍第1或第2項之半導體裝置,其中:其係當作Z二極體使用者。
- 如申請專利範圍第1或第2項之半導體裝置,其中: 其係用於汽車的供電網路者,特別是用於汽車的發電機系統者。
- 如申請專利範圍第1或第2項之半導體裝置,其中:其貫穿電壓在10V~50V之間,特別是在12V與40V之間。
- 一種用於製造申請專利範圍第1項的半導體裝置(60)的方法,其特徵在:將一n層(2)施到一n+基質(1)上,將渠溝(7)(7b)設入該n層(2)中,將該渠溝(7)(7b)用p摻雜的矽或聚矽充填以形成p摻雜的區域,將另一p摻雜區域(10)在渠溝(7b)處設入該n層(2)中,其中此區域(10)的侵入深度(Xjp-edge )大於渠溝(7)(7b)的深度(Dt ),且將該n+基質(1)及n層(2)鋪設以接觸層(4)(5),其中該接觸層(4)只將半導體裝置(60)的前側部分地蓋住,且該前側不被接觸層(4)蓋住的區域用一氧化物層(11)蓋住。
- 一種用於製造申請專利範圍第1項的半導體裝置(70)的方法,其特徵在:將一n層(2)施到一n+基質(1)上,將渠溝(7)(7b)設入該n層(2)中,將該渠溝(7)(7b)用p摻雜的矽或聚矽充填以形成p摻雜區域(8),將另一p摻雜區域(10)在渠溝(7b)處設入該n層(2)中,其中該區域(10)的侵入深度(Xjp-edge )大於渠溝(7)(7b)的深度(Dt ),且其中該p摻雜區域(10)一直達到半導體裝置(70)的邊緣為止,且該n+基質(1)與n層(2)整面用接觸層(4)(5)鋪設。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004053761A DE102004053761A1 (de) | 2004-11-08 | 2004-11-08 | Halbleitereinrichtung und Verfahren für deren Herstellung |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200633237A TW200633237A (en) | 2006-09-16 |
TWI398003B true TWI398003B (zh) | 2013-06-01 |
Family
ID=35519745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094133446A TWI398003B (zh) | 2004-11-08 | 2005-09-27 | 半導體裝置及其製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8816467B2 (zh) |
EP (1) | EP1812971B1 (zh) |
JP (1) | JP5300264B2 (zh) |
KR (1) | KR20070084014A (zh) |
CN (1) | CN101091260B (zh) |
DE (1) | DE102004053761A1 (zh) |
TW (1) | TWI398003B (zh) |
WO (1) | WO2006048387A1 (zh) |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004059640A1 (de) * | 2004-12-10 | 2006-06-22 | Robert Bosch Gmbh | Halbleitereinrichtung und Verfahren zu deren Herstellung |
JP4939839B2 (ja) * | 2006-05-30 | 2012-05-30 | 株式会社東芝 | 半導体整流素子 |
US8111495B2 (en) | 2006-06-23 | 2012-02-07 | Vishay General Semiconductor, Llc | Low forward voltage drop transient voltage suppressor and method of fabricating |
WO2008153142A1 (ja) * | 2007-06-15 | 2008-12-18 | Rohm Co., Ltd. | 半導体装置 |
DE102007045185A1 (de) | 2007-09-21 | 2009-04-02 | Robert Bosch Gmbh | Halbleitervorrichtung und Verfahren zu deren Herstellung |
US8232558B2 (en) * | 2008-05-21 | 2012-07-31 | Cree, Inc. | Junction barrier Schottky diodes with current surge capability |
US20090309181A1 (en) * | 2008-06-12 | 2009-12-17 | Force Mos Technology Co. Ltd. | Trench schottky with multiple epi structure |
DE102009028240A1 (de) * | 2009-08-05 | 2011-02-10 | Robert Bosch Gmbh | Feldeffekttransistor mit integrierter TJBS-Diode |
DE102009028246A1 (de) * | 2009-08-05 | 2011-02-10 | Robert Bosch Gmbh | Gleichrichteranordnung |
DE102009028252A1 (de) * | 2009-08-05 | 2011-02-10 | Robert Bosch Gmbh | Halbleiteranordnung |
DE102009028241A1 (de) * | 2009-08-05 | 2011-02-10 | Robert Bosch Gmbh | Halbleiteranordnung |
DE102009047808B4 (de) | 2009-09-30 | 2018-01-25 | Infineon Technologies Austria Ag | Bipolares Halbleiterbauelement und Verfahren zur Herstellung einer Halbleiterdiode |
US8421162B2 (en) | 2009-09-30 | 2013-04-16 | Suvolta, Inc. | Advanced transistors with punch through suppression |
US8273617B2 (en) | 2009-09-30 | 2012-09-25 | Suvolta, Inc. | Electronic devices and systems, and methods for making and using the same |
DE102009046596A1 (de) * | 2009-11-11 | 2011-05-12 | Robert Bosch Gmbh | Schottkydiode |
EP2541609B1 (en) | 2010-02-23 | 2019-07-03 | Yoshitaka Sugawara | Semiconductor device |
US9117739B2 (en) * | 2010-03-08 | 2015-08-25 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
DE102010003166A1 (de) | 2010-03-23 | 2011-09-29 | Robert Bosch Gmbh | Vorrichtung zur Stromerzeugung mit Solarzellen |
US8530286B2 (en) | 2010-04-12 | 2013-09-10 | Suvolta, Inc. | Low power semiconductor transistor structure and method of fabrication thereof |
DE102010028783A1 (de) | 2010-05-10 | 2011-11-10 | Robert Bosch Gmbh | Gleichrichter-Brückenschaltung |
US8569128B2 (en) | 2010-06-21 | 2013-10-29 | Suvolta, Inc. | Semiconductor structure and method of fabrication thereof with mixed metal types |
US8759872B2 (en) | 2010-06-22 | 2014-06-24 | Suvolta, Inc. | Transistor with threshold voltage set notch and method of fabrication thereof |
DE102010038879A1 (de) | 2010-08-04 | 2012-02-09 | Robert Bosch Gmbh | Gleichrichteranordnung, welche Einpressdioden aufweist |
US8377783B2 (en) | 2010-09-30 | 2013-02-19 | Suvolta, Inc. | Method for reducing punch-through in a transistor device |
US8404551B2 (en) | 2010-12-03 | 2013-03-26 | Suvolta, Inc. | Source/drain extension control for advanced transistors |
DE102010063041A1 (de) | 2010-12-14 | 2012-06-14 | Robert Bosch Gmbh | Generatorvorrichtung mit verbesserter Verpolfestigkeit |
DE102011003961B4 (de) | 2011-02-11 | 2023-07-27 | Robert Bosch Gmbh | Trench-Schottkydiode |
US8461875B1 (en) | 2011-02-18 | 2013-06-11 | Suvolta, Inc. | Digital circuits having improved transistors, and methods therefor |
US8525271B2 (en) | 2011-03-03 | 2013-09-03 | Suvolta, Inc. | Semiconductor structure with improved channel stack and method for fabrication thereof |
US8400219B2 (en) | 2011-03-24 | 2013-03-19 | Suvolta, Inc. | Analog circuits having improved transistors, and methods therefor |
US8748270B1 (en) | 2011-03-30 | 2014-06-10 | Suvolta, Inc. | Process for manufacturing an improved analog transistor |
US8796048B1 (en) | 2011-05-11 | 2014-08-05 | Suvolta, Inc. | Monitoring and measurement of thin film layers |
US8999861B1 (en) | 2011-05-11 | 2015-04-07 | Suvolta, Inc. | Semiconductor structure with substitutional boron and method for fabrication thereof |
US8811068B1 (en) | 2011-05-13 | 2014-08-19 | Suvolta, Inc. | Integrated circuit devices and methods |
US8569156B1 (en) | 2011-05-16 | 2013-10-29 | Suvolta, Inc. | Reducing or eliminating pre-amorphization in transistor manufacture |
US8735987B1 (en) | 2011-06-06 | 2014-05-27 | Suvolta, Inc. | CMOS gate stack structures and processes |
US8995204B2 (en) | 2011-06-23 | 2015-03-31 | Suvolta, Inc. | Circuit devices and methods having adjustable transistor body bias |
US8629016B1 (en) | 2011-07-26 | 2014-01-14 | Suvolta, Inc. | Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer |
JP2013030618A (ja) * | 2011-07-28 | 2013-02-07 | Rohm Co Ltd | 半導体装置 |
WO2013022753A2 (en) | 2011-08-05 | 2013-02-14 | Suvolta, Inc. | Semiconductor devices having fin structures and fabrication methods thereof |
US8748986B1 (en) | 2011-08-05 | 2014-06-10 | Suvolta, Inc. | Electronic device with controlled threshold voltage |
US8645878B1 (en) | 2011-08-23 | 2014-02-04 | Suvolta, Inc. | Porting a circuit design from a first semiconductor process to a second semiconductor process |
US8614128B1 (en) | 2011-08-23 | 2013-12-24 | Suvolta, Inc. | CMOS structures and processes based on selective thinning |
US8680587B2 (en) | 2011-09-11 | 2014-03-25 | Cree, Inc. | Schottky diode |
US8664665B2 (en) | 2011-09-11 | 2014-03-04 | Cree, Inc. | Schottky diode employing recesses for elements of junction barrier array |
US8713511B1 (en) | 2011-09-16 | 2014-04-29 | Suvolta, Inc. | Tools and methods for yield-aware semiconductor manufacturing process target generation |
US9236466B1 (en) | 2011-10-07 | 2016-01-12 | Mie Fujitsu Semiconductor Limited | Analog circuits having improved insulated gate transistors, and methods therefor |
DE102011087591A1 (de) * | 2011-12-01 | 2013-06-06 | Robert Bosch Gmbh | Hochspannungs-Trench-Junction-Barrier-Schottkydiode |
US8895327B1 (en) | 2011-12-09 | 2014-11-25 | Suvolta, Inc. | Tipless transistors, short-tip transistors, and methods and circuits therefor |
US8819603B1 (en) | 2011-12-15 | 2014-08-26 | Suvolta, Inc. | Memory circuits and methods of making and designing the same |
US8883600B1 (en) | 2011-12-22 | 2014-11-11 | Suvolta, Inc. | Transistor having reduced junction leakage and methods of forming thereof |
US8599623B1 (en) | 2011-12-23 | 2013-12-03 | Suvolta, Inc. | Circuits and methods for measuring circuit elements in an integrated circuit device |
US8970289B1 (en) | 2012-01-23 | 2015-03-03 | Suvolta, Inc. | Circuits and devices for generating bi-directional body bias voltages, and methods therefor |
US8877619B1 (en) | 2012-01-23 | 2014-11-04 | Suvolta, Inc. | Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom |
US9093550B1 (en) | 2012-01-31 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same |
US9406567B1 (en) | 2012-02-28 | 2016-08-02 | Mie Fujitsu Semiconductor Limited | Method for fabricating multiple transistor devices on a substrate with varying threshold voltages |
US8863064B1 (en) | 2012-03-23 | 2014-10-14 | Suvolta, Inc. | SRAM cell layout structure and devices therefrom |
US9299698B2 (en) | 2012-06-27 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Semiconductor structure with multiple transistors having various threshold voltages |
US8637955B1 (en) | 2012-08-31 | 2014-01-28 | Suvolta, Inc. | Semiconductor structure with reduced junction leakage and method of fabrication thereof |
US9112057B1 (en) | 2012-09-18 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Semiconductor devices with dopant migration suppression and method of fabrication thereof |
US9041126B2 (en) | 2012-09-21 | 2015-05-26 | Mie Fujitsu Semiconductor Limited | Deeply depleted MOS transistors having a screening layer and methods thereof |
US9431068B2 (en) | 2012-10-31 | 2016-08-30 | Mie Fujitsu Semiconductor Limited | Dynamic random access memory (DRAM) with low variation transistor peripheral circuits |
US8816754B1 (en) | 2012-11-02 | 2014-08-26 | Suvolta, Inc. | Body bias circuits and methods |
US9093997B1 (en) | 2012-11-15 | 2015-07-28 | Mie Fujitsu Semiconductor Limited | Slew based process and bias monitors and related methods |
US9070477B1 (en) | 2012-12-12 | 2015-06-30 | Mie Fujitsu Semiconductor Limited | Bit interleaved low voltage static random access memory (SRAM) and related methods |
US9112484B1 (en) | 2012-12-20 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit process and bias monitors and related methods |
US9268885B1 (en) | 2013-02-28 | 2016-02-23 | Mie Fujitsu Semiconductor Limited | Integrated circuit device methods and models with predicted device metric variations |
US8994415B1 (en) | 2013-03-01 | 2015-03-31 | Suvolta, Inc. | Multiple VDD clock buffer |
US8988153B1 (en) | 2013-03-09 | 2015-03-24 | Suvolta, Inc. | Ring oscillator with NMOS or PMOS variation insensitivity |
US9299801B1 (en) | 2013-03-14 | 2016-03-29 | Mie Fujitsu Semiconductor Limited | Method for fabricating a transistor device with a tuned dopant profile |
US9112495B1 (en) | 2013-03-15 | 2015-08-18 | Mie Fujitsu Semiconductor Limited | Integrated circuit device body bias circuits and methods |
US9449967B1 (en) | 2013-03-15 | 2016-09-20 | Fujitsu Semiconductor Limited | Transistor array structure |
US9478571B1 (en) | 2013-05-24 | 2016-10-25 | Mie Fujitsu Semiconductor Limited | Buried channel deeply depleted channel transistor |
DE102013210546A1 (de) * | 2013-06-06 | 2014-12-11 | Robert Bosch Gmbh | Hochspannungs-Trench-Junction-Barrier-Schottkydiode mit p-Schichten unter dem Schottky-Kontakt |
US9331197B2 (en) | 2013-08-08 | 2016-05-03 | Cree, Inc. | Vertical power transistor device |
US8976575B1 (en) | 2013-08-29 | 2015-03-10 | Suvolta, Inc. | SRAM performance monitor |
KR101461886B1 (ko) * | 2013-09-10 | 2014-11-13 | 현대자동차 주식회사 | 쇼트키 배리어 다이오드 및 그 제조 방법 |
US10868169B2 (en) | 2013-09-20 | 2020-12-15 | Cree, Inc. | Monolithically integrated vertical power transistor and bypass diode |
US9318597B2 (en) | 2013-09-20 | 2016-04-19 | Cree, Inc. | Layout configurations for integrating schottky contacts into a power transistor device |
US10600903B2 (en) | 2013-09-20 | 2020-03-24 | Cree, Inc. | Semiconductor device including a power transistor device and bypass diode |
US20150084063A1 (en) * | 2013-09-20 | 2015-03-26 | Cree, Inc. | Semiconductor device with a current spreading layer |
US9552993B2 (en) * | 2014-02-27 | 2017-01-24 | Semiconductor Components Industries, Llc | Semiconductor device and manufacturing method thereof |
US9710006B2 (en) | 2014-07-25 | 2017-07-18 | Mie Fujitsu Semiconductor Limited | Power up body bias circuits and methods |
US9319013B2 (en) | 2014-08-19 | 2016-04-19 | Mie Fujitsu Semiconductor Limited | Operational amplifier input offset correction with transistor threshold voltage adjustment |
JP2017063237A (ja) * | 2017-01-13 | 2017-03-30 | ローム株式会社 | 半導体装置 |
JP7132719B2 (ja) * | 2018-01-19 | 2022-09-07 | ローム株式会社 | 半導体装置 |
JP2023079552A (ja) * | 2021-11-29 | 2023-06-08 | Tdk株式会社 | ジャンクションバリアショットキーダイオード |
CN116344628B (zh) * | 2023-05-26 | 2023-08-08 | 湖南楚微半导体科技有限公司 | 一种屏蔽栅结构的肖特基二极管及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5241195A (en) * | 1992-08-13 | 1993-08-31 | North Carolina State University At Raleigh | Merged P-I-N/Schottky power rectifier having extended P-I-N junction |
US6078090A (en) * | 1997-04-02 | 2000-06-20 | Siliconix Incorporated | Trench-gated Schottky diode with integral clamping diode |
EP1139433A1 (en) * | 2000-03-31 | 2001-10-04 | Shindengen Electric Manufacturing Company, Limited | Semiconductor device having a Schottky barrier diode structure |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61147570A (ja) * | 1984-12-20 | 1986-07-05 | Sanyo Electric Co Ltd | ショットキバリア半導体装置 |
JPH0750791B2 (ja) * | 1989-09-20 | 1995-05-31 | 株式会社日立製作所 | 半導体整流ダイオード及びそれを使つた電源装置並びに電子計算機 |
US4982260A (en) * | 1989-10-02 | 1991-01-01 | General Electric Company | Power rectifier with trenches |
JP3105975B2 (ja) | 1990-11-28 | 2000-11-06 | 株式会社豊田中央研究所 | 硬化鋼部材用光沢化学研磨処理液および該材の化学研磨処理方法 |
JP3103655B2 (ja) * | 1992-02-07 | 2000-10-30 | 新電元工業株式会社 | 半導体装置 |
US5856692A (en) * | 1995-06-02 | 1999-01-05 | Siliconix Incorporated | Voltage-clamped power accumulation-mode MOSFET |
DE19749195C1 (de) | 1997-11-07 | 1999-06-02 | Kleine Franz Maschf | Fahrzeug mit einer Achsschenkellenkung für zwei zu einer Achse gehörige Räder |
JP3616258B2 (ja) * | 1998-08-28 | 2005-02-02 | 株式会社ルネサステクノロジ | ショットキーダイオードおよびそれを用いた電力変換器 |
US6191447B1 (en) * | 1999-05-28 | 2001-02-20 | Micro-Ohm Corporation | Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same |
FR2797094B1 (fr) * | 1999-07-28 | 2001-10-12 | St Microelectronics Sa | Procede de fabrication de composants unipolaires |
DE50009436D1 (de) | 1999-09-22 | 2005-03-10 | Siced Elect Dev Gmbh & Co Kg | SiC-Halbleitervorrichtung mit einem Schottky-Kontakt und Verfahren zu deren Herstellung |
US6426541B2 (en) * | 2000-07-20 | 2002-07-30 | Apd Semiconductor, Inc. | Schottky diode having increased forward current with improved reverse bias characteristics and method of fabrication |
JP4153811B2 (ja) * | 2002-03-25 | 2008-09-24 | 株式会社東芝 | 高耐圧半導体装置及びその製造方法 |
US6841825B2 (en) | 2002-06-05 | 2005-01-11 | Shindengen Electric Manufacturing Co., Ltd. | Semiconductor device |
JP2004127968A (ja) * | 2002-09-30 | 2004-04-22 | Sanyo Electric Co Ltd | 半導体装置およびその製造方法 |
CN1938224B (zh) | 2004-03-30 | 2011-03-30 | 东洋先进机床有限公司 | 基材表面处理方法及处理了表面的基材、医疗材料和器具 |
-
2004
- 2004-11-08 DE DE102004053761A patent/DE102004053761A1/de not_active Ceased
-
2005
- 2005-09-27 TW TW094133446A patent/TWI398003B/zh active
- 2005-10-21 WO PCT/EP2005/055463 patent/WO2006048387A1/de active Application Filing
- 2005-10-21 EP EP05801556.1A patent/EP1812971B1/de active Active
- 2005-10-21 US US11/666,788 patent/US8816467B2/en active Active
- 2005-10-21 KR KR1020077010299A patent/KR20070084014A/ko not_active Application Discontinuation
- 2005-10-21 JP JP2007539567A patent/JP5300264B2/ja active Active
- 2005-10-21 CN CN2005800378122A patent/CN101091260B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5241195A (en) * | 1992-08-13 | 1993-08-31 | North Carolina State University At Raleigh | Merged P-I-N/Schottky power rectifier having extended P-I-N junction |
US6078090A (en) * | 1997-04-02 | 2000-06-20 | Siliconix Incorporated | Trench-gated Schottky diode with integral clamping diode |
EP1139433A1 (en) * | 2000-03-31 | 2001-10-04 | Shindengen Electric Manufacturing Company, Limited | Semiconductor device having a Schottky barrier diode structure |
Also Published As
Publication number | Publication date |
---|---|
CN101091260B (zh) | 2013-04-17 |
EP1812971B1 (de) | 2020-01-15 |
DE102004053761A1 (de) | 2006-05-18 |
CN101091260A (zh) | 2007-12-19 |
US8816467B2 (en) | 2014-08-26 |
JP5300264B2 (ja) | 2013-09-25 |
TW200633237A (en) | 2006-09-16 |
WO2006048387A1 (de) | 2006-05-11 |
KR20070084014A (ko) | 2007-08-24 |
JP2008519448A (ja) | 2008-06-05 |
EP1812971A1 (de) | 2007-08-01 |
US20080197439A1 (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI398003B (zh) | 半導體裝置及其製造方法 | |
TWI396289B (zh) | 半導體裝置及其製造方法 | |
TWI446550B (zh) | 半導體裝置及其製造方法 | |
US8497563B2 (en) | Semiconductor device and method for its manufacture | |
TWI540738B (zh) | 半導體裝置(二) | |
JP4683075B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
US8003456B2 (en) | Method for producing a semiconductor component | |
JP3348090B2 (ja) | 半導体モジュール | |
TWI543381B (zh) | 半導體裝置 | |
US20220059657A1 (en) | Silicon carbide semiconductor device and method for manufacturing the same | |
US8183660B2 (en) | Semiconductor component having rectifying junctions of different magnitudes and method for producing the same | |
US20050184406A1 (en) | Semiconductor device | |
US9287416B2 (en) | Schottky diode | |
US9224806B2 (en) | Edge termination structure with trench isolation regions | |
TW201106486A (en) | Semiconductor arrangement comprising a Schottky diode | |
US10431653B2 (en) | Trench-based diode and method for manufacturing such a diode | |
CN116364747A (zh) | 二极管及其制造方法 | |
KR20160092337A (ko) | 초접합 구조체 및 트렌치 게이트를 포함하는 전력 모스형 다이오드의 제조방법 |