TWI251332B - High temperature annealing of spin coated Pr1-xCaxMnO3 thin film for RRAM application - Google Patents

High temperature annealing of spin coated Pr1-xCaxMnO3 thin film for RRAM application Download PDF

Info

Publication number
TWI251332B
TWI251332B TW093124064A TW93124064A TWI251332B TW I251332 B TWI251332 B TW I251332B TW 093124064 A TW093124064 A TW 093124064A TW 93124064 A TW93124064 A TW 93124064A TW I251332 B TWI251332 B TW I251332B
Authority
TW
Taiwan
Prior art keywords
baking
film
temperature
annealing
group
Prior art date
Application number
TW093124064A
Other languages
English (en)
Other versions
TW200525737A (en
Inventor
Fengyan Zhang
Wei-Wei Zhuang
David Russell Evans
Sheng Teng Hsu
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200525737A publication Critical patent/TW200525737A/zh
Application granted granted Critical
Publication of TWI251332B publication Critical patent/TWI251332B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

1251332 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於PCMO薄膜之旋塗,且特別是關於一種 可在RR AM應用中增強?〇^/[〇薄膜的雙極轉換性質之退 火處理。 【先前技術】 使用旋塗於P t基板上的p C Μ 0薄膜,在室溫中運算 之電子可程式電阻非揮發性記憶體器件係由Zhuang等在 2002年9月26日提出申請的美國專利申請序號第 10/256,380 號,名稱爲 “ Method Resistance Memory M e t a ] O x i d e T h i n F i 1 m D e p o s i t i ο η ” 中證實,且其中述及 —種於RAM器件中形成一 CMR層之技術。該PCMO薄膜 係成長在鉑層上且,於低溫熱處理之後,展現出非晶形或 多晶形的結構。此電阻器可用具有不同脈衝寬度之單極電 子脈衝逆向程式化到一高或低電阻狀態。不過,爲了要在 RRAM應用中使用CMR,更佳者爲使用雙極電脈衝轉換 性質。此等轉換性質需要一種結晶良好的PCM〇薄膜。 【發明內容】 一種在一 RRAM器件中形成一 PCMO薄膜之方法, 其係包括準備一基板;在該基板上沈積一金屬屏障層;在 該屏障層上形成一底部電極;使用一由Pr(CH3C02)3 · H2〇、Ca(CH3C02)2 · H2〇、和 Mn(ni)(CH3C02)3 · 2H2〇 (2) 1251332 在醋酸溶劑中組成的PCMO前驅物旋塗一層 P 1.1 _ x C a χ Μ η〇3 (P C Μ 0 )於該底部電極上;及於至少一烘烤步 驟中烘烤該P C Μ 0薄膜,其中該烘烤步驟可包括5例如’ 一第一烘烤步驟,在約5 0 °C至1 5 0 °C的溫度烘烤約1 〇秒 至1小時;一第二烘烤步驟,在約1 〇 〇 °C至2 0 0 °C的溫度 烘烤約]0秒至1小時;和一第三烘烤步驟’在約1 5 0 °C 至3 0 0 °C的溫度烘烤約1 〇秒至1小時。另外,可用單一 烘烤步驟,在約5 0 °C至3 0 (TC的溫度烘烤約1 〇秒至1小 時。在每一旋塗步驟之後,該(等)烘烤步驟之後係進行 該PCMO薄膜的退火,於一第一退火步驟中,係在約400 °C至9 0 0 °C的溫度進行約1 〇秒至1小時;重複該旋塗步 驟,該至少一烘烤步驟和該第一退火步驟,直到該PCMO 薄膜具有合意的厚度爲止;在溫度約4 5 0 °C至1 〇 〇 (TC的一 第二退火步驟中,將該PCMO薄膜退火約1分鐘至24小 時,從而製成一 PCMO薄膜,其具有PnxCaxMn〇3(〇.2 < =X < = 0.5 )之晶格結構;沈積一頂部電極;將該頂部 電極作成圖樣;以及完成該RRAM器件。 本發明之目標係要詳細說明一種經旋塗的P C Μ 0薄膜 之高溫退火方法,以形成供 RRAM應用,具有雙極電子 脈衝轉換性質的結晶良好之P C Μ 0薄膜。 本發明此摘要與諸目標係經提供以促成對本發明本質 之快速瞭解。經由參考下面配合附圖的對本發明較佳具體 實例之詳細說明,可得到對本發明之更徹底瞭解。 (3) 1251332 【實施方式】 較佳具體實例之詳細說明 本發明方法係包括準備一基板,其可由矽、二氧化矽 、或多晶矽所形成。於該基板上沈積一 Ta、TaN、Ta2〇5 、Ti、TiN、TiAIN、TaAIN、TiSiN、TaSiN、或丁iAl 之 屏障層’且在該屏障層上形成一底部電極。該底部電極可 由pt、Ir、或IrTaO所形成。於該底部電極上旋塗一層 Pr]>xCaxMn03(PCM0)薄膜。 該等PCMO前驅物係在醋酸溶劑中的Pr(CH3C02)3 · H2O、Ca(CH3C〇2)2 · H20、Mn(III)(CH3C〇2)3 · 2H20。然 後’在一或更多道烘烤步驟中烘烤該PCMO薄膜,例如一 第一烘烤步驟可包括於約5 0 °C至1 5 0 °C的溫度烘烤約1 〇 秒至1小時;一第二烘烤步驟可包括於約1 〇 Ot至2 0 (TC 溫度烘烤約]〇秒至1小時;及一第三烘烤步驟可包括於 約]5 0 °C至3 0 0。(:溫度烘烤約1 〇秒至1小時。於需要時, 可於本發明方法中使用3道以上的烘烤步驟以達到合意的 薄膜厚度。於該等步驟中使用不同的烘烤溫度;較佳者, 由第一步驟進展至第二步驟時以及由第二步驟進展至第三 步驟時,增加溫度。另外,本發明方法可使用單一烘烤步 驟’其可包括於約5 0 °C至3 0 0 °C的溫度下烘烤約1 0秒至 ]小時。於每次塗佈之後,在該(等)烘烤步驟之後,於 第一退火步騾中,在約4 00 °C至 90 0 °C快速熱退火(RTA )或爐內預退火此薄膜約1 0秒至1小時。重複該旋塗製 程直到該PCMO薄膜具有合意的厚度爲止。將該結構快速 -7- (4) 1251332 熱’ 火或置於爐中進行退火後熱處理,在此也稱爲第二退 火步驟。退火後熱處理之溫度約爲4 5 0 °c至1 〇 〇 〇 °c,且退 火時間爲約1分鐘至24小時。該退火氣圍可爲氧、氮、 ^ '或真空、或彼等之任何組合,且係在從真空至周遭氣 s的受控制壓力下實施。此等氣圍也可用於烘烤、預退火 和後段退火中任何一步驟或所有步驟中。 然後,於該PCMO薄膜上沈積一 Pt、Ir、An、或其 他貴金屬或金屬氧化物之頂部電極且使用淺遮罩,或者濕 式或乾式蝕刻程序製作圖樣。在頂部電極沈積與蝕刻之後 ’可進行一後段退火。頂部電極沈積後之退火後熱處理之 溫度爲約4 5 0 °C至1 0 0 0 °C,且退火時間爲約1分鐘至2 4 小時。同樣地,該退火氣圍可爲在從真空至周遭氣圍的控 制壓力下之氧、氮、氬、或真空、或彼等之任何組合。晶 體 Pri-xCaxMn〇3 的組成爲 〇»2 < = X < = 0.5。 圖1繪示出成長於銥基板上,且在6 0 0 °C的0 2中後 段退火15分鐘之PCMO薄膜之典型XRD光譜。圖2繪示 出成長於鉑基板上,且在600 °C的〇2中後段退火]5分鐘 之PCMO薄膜之典型XRD光譜。 圖3繪示出沈積於鉑基板上之p r】-x C a χ Μ η〇3 ( X = 0.4 )薄膜之電阻轉換性質。每次塗覆後都將此薄膜在氧氣圍 中於5 0 0 °C中預退火5分鐘且在氮氣圍中於5 5 〇 °C進行 RTA後段退火1 5分鐘’經過3個旋塗循環,製成3層之 PCMO薄膜。此器件之50奈秒(ns )的寫入條件爲5伏 (V ),而5 0奈秒的重置條件爲-5伏。該測量係經由施 (5) 1251332 加正偏壓至頂部電極及施加接地探針於該底部電極而完成 的。寫入電阻比重置電阻較大約兩個數量級。 本發明方法也可用來製造小型電容器,例如1 〇平方 微米以下的電容器。 如此,已於上文揭示出供RRAM應用的經旋塗 Pn_xCaxMn03薄膜之高溫退火方法。應瞭解者,在由後附 申請專利範圍所界定的本發明範圍內可對其作出進一步的 變更及修改。 【圖式簡單說明】 圖1係成長於銥基板上,在 6 0 0 °C的氧氣中退火15 分鐘之PCMO薄膜之典型XRD光譜。 圖2係成長於銷基板上,在 6 0 0 °C的氧氣中退火15 分鐘之PCMO薄膜之典型XRD光譜。 圖 3繪示出經沈積於鉑基板上之 Pri_xCaxMn03 ( X = G.4 )薄膜之電阻轉換性質。 -9-

Claims (1)

1251332 ⑴ 十、申請專利範圍 ].一種在一 RRAM裝置中形成一 PCMO薄膜之方法, 其包括: 製備一基板; 在該基板上沈積一金屬屏障層; 在該金屬屏障層上形成一底部電極; 旋塗一層 Pn_xCaxMn03(PCM0)於該底部電極上,其 係使用一由 Pr(CH3C02)3.H20、Ca(CH3C〇2)2.H20、和 Μ n (I Π ) ( C H 3 C 0 2) 3 · 2 Η 2 0所組成的 P C Μ Ο前驅物於醋酸 溶劑中; 於至少一烘烤步驟中烘烤該PCMO薄膜,其中該至少 --烘烤步驟包括在約5 0 °C至3 0 0 °C的溫度烘烤約1 〇秒至 1小時; 在每一旋塗步驟之後,於一第一退火步騾中,在約 4〇〇°C至9 00 °C溫度將該PCMO薄膜退火約10秒至1小時 重複該旋塗步驟,該至少一烘烤步驟和該第一退火步 驟’直到該PCMO薄膜具有合意的厚度爲止; 在一第二退火步驟中,於約4 5 0。(:至]〇 〇 〇 °C溫度將該 P C Μ 0薄膜退火,約1分鐘至2 4小時,從而製成一具有 ρ 】·〗· X C a λ’ Μ η 0 3 ( 0.2 < = X < = 〇 . 5 )晶格結構之 P C Μ 0 薄 膜; 沈積一頂部電極; 將該頂部電極製成圖樣;及 -10- (2) 1251332 完成該RRAM裝置。 2 .根據申請專利範圍第1項之方法’其中該製備一基 板係包括製備一選自矽、二氧化矽和多晶矽基板所構成群 組中的基板。 3 .根據申請專利範圍第1項之方法,更進一步包括提 供一該至少一烘烤步驟,該第一退火步驟和該第二退火步 驟所用之氣圍,其中該退火氣圍係選自氧、氮、氬、真空 和彼等之任何組合所構成群組中者,其經控制壓力在真空 至周圍大氣壓範圍。 4 .根據申請專利範圍第1項之方法,其中該沈積一金 屬屏障層係包括沈積一金屬之金屬屏障層,該金屬係選自 Ta、 TaN、 Ta205、 Ti、 TiN、 TiAIN、 TaAIN、 TiSiN、 TaSiN、及TiAl所構成的群組之中者。 5 .根據申請專利範圍第1項之方法,其中該在該金屬 屏障層上形成一底部電極係包括沈積一電極材料之底部電 極,該電極材料係選自P t、I r和Ir T a 0所構成的群組之中 者。 6 ·根據申請專利範圍第1項之方法,其中該沈積一頂 部電極係包括沈積一電極材料之頂部電極,該電極材料選 自Pt、lx*、An、其他貴金屬和貴金屬氧化物所構成的群組 之中者。 7 .根據申請專利範圍第1項之方法,其中係在該沈積 一頂部電極之前實施該第二退火步驟。 8 .根據申請專利範圍第1項之方法,其中係在該沈積 -11 - (3) 1251332 一頂部電極之後實施該第二退火步驟。 9· 一種在一RRAM裝置中形成一 PCMO薄膜之方法, 其包括: 製備一基板,其係選自矽、二氧化矽和多晶矽基板所 構成之群組中者; 在該基板上沈積一金屬屏障層; 在該金屬屏障層上形成一底部電極; 於該底部電極上旋塗一層pri.xCaxMn03(PCM0),其 係使用一由 Pr(CH3C〇2)3 · H2〇、Ca(CH3C〇2)2 · H2〇、和 Mn(III)(CH3C02)3· 2H20所組成的PCMO前驅物於醋酸 溶劑中; 於至少一烘烤步驟中烘烤該PCMO薄膜,其中該至少 一烘烤步驟包括在約5 0 °C至3 0 0 °C的溫度烘烤約1 〇秒至 1小時; 在每一旋塗步驟之後,於一第一退火步驟中,在約 4 〇 〇 °C至9 0 0 °C溫度將該P C Μ 0薄膜退火約1 0秒至I小時 重複該旋塗步驟,該至少一烘烤步驟和該第一退火步 驟,直到該PCMO薄膜具有合意的厚度爲止; 在一第二退火步驟中,於約4 5 〇 r至1 〇 〇 〇 °c溫度將該 PCMO薄膜退火,約]分鐘至24小時,從而製成一具有 Pr].xCaxMn03 ( 0.2 < = X < = 〇.5 )晶格結構之 PCM0 薄 膜; 提供一供該至少一烘烤步驟、該第一退火步驟和該第 -12- (4) 1251332 一退火步驟所用之氣圍,其中該退火氣圍係選自氧、氮、 氬、真空和彼等之任何組合所構成群組中者,其經控制壓 力在真空至周圍大氣壓範圍; 沈積一頂部電極; 將該頂部電極製成圖樣;及 完成該RRAM裝置。 ]〇 .根據申請專利範圍第9項之方法,其中該烘烤該 PC M0薄膜係包括在至少3個分開的烘烤步驟中烘烤該 PC M0薄膜,其中該等至少3個分開的烘烤步驟係包括在 約5 0 °C至1 5 0 °C溫度約1 〇秒至1小時之第一烘烤步驟; 在約1 〇 〇 °C至2 0 0 °C溫度約1 〇秒至1小時之第二烘烤步驟 ;及在約1 5 0 °C至3 0 CTC溫度約1 〇秒至1小時之第三烘烤 步驟。 Π .根據申請專利範圍第9項之方法,其中該沈積一 金屬屏障層係包括沈積一金屬之金屬屏障層,該金屬係選 自 Ta、TaN、Ta2〇5、Ti、TiN、TiA】N、TaAIN、TiSiN、 TaSiN、及Ti A1所構成的群組之中者。 1 2 .根據申請專利範圍第9項之方法,其中該在該金 屬屏障層上形成一底部電極係包括沈積一電極材料之底部 電極,該電極材料係選自P t、I r和I r T a 0所構成的群組之 中者。 1 3 ·根據申請專利範圍第9項之方法,其中該沈積一 頂部電極係包括沈積一電極材料之頂部電極,該電極材料 選自Pt、Ir、Au、其他貴金屬和貴金屬氧化物所構成的群 -13 > (5) 1251332 組之中者。 I4·根據申請專利範圍第9項之方法,其中係在該沈 積一頂部電極之前實施該第二退火步驟。 1 5,根據申請專利範圍第9項之方法,其中係在該沈 積一頂部電極之後實施該第二退火步驟。 1 6.—種在一 RRAM裝置中形成一 PcM〇薄膜之方法 ’其包括: 製備一基板; 在該基板上沈積一金屬之金屬屏障層,該金屬係選自 Ta、TaN、Ta2〇5、Ti、丁iN、TiAIN、TaAIN、TiSiN、 T a S i N、及T i A 1所構成的群組中者; 在該金屬屏障層上形成一電極材料之底部電極,該電 極材料係選自Pt、Ir和IrTaO所構成的群組中者; 於該底部電極上旋塗一層 Pr^xCaxMnOWPCMO),其 係使用一由 P r ( C Η 3 C 0 2) 3 · Η 2 0、C a ( C Η 3 C 〇 2 ) 2 · Η 2 Ο、和 Μ η ( Π I) ( C Η 3 C Ο 2) 3 · 2 Η 2 〇所組成的Ρ C Μ Ο前驅物於醋酸 溶劑中; 在至少3個分開的烘烤步驟中烘烤該PCMO薄膜’其 中該等至少3個分開的烘烤步驟係包括在約5 0 °C至1 5 〇 C 溫度約ίο秒至1小時之第一烘烤步驟;在約100°c至200 °C溫度約1 〇秒至1小時之第二烘烤步驟,及在約1」〇 C 至3 0 0 t溫度約1〇秒至1小時之第三拱烤步驟; 在每-旋塗步驟之後,在一第—退火步驟中約 4 0 0 °C至90CTC溫度下將該PCM0薄膜退火約]〇秒至1小 -14- (6) 1251332 時; 重複該旋塗步驟、該至少3個分開的烘烤步驟和該第 一退火步驟,直到該P C Μ 0薄膜具有合意的厚度爲止; 在第二退火步驟中,於約4 5 〇 °C至1 0 0 0 °C溫度下將該 P C Μ 0薄膜退火約1分鐘至2 4小時,從而製成一具有 Pn.xCa.MnOs ( 0.2 < = X < = 〇. 5 )晶格結構之 PCMO 薄膜 沈積一電極材料之頂部電極,該電極材料選自P t、I r 、Au、其他貴金屬和貴金屬氧化物所構成的群組; 將該頂部電極作成圖樣;及 完成該RRAM裝置。 1 7 .根據申請專利範圍第1 6項之方法,其中該製備一 基板係包括製備一選自矽、二氧化矽和多晶矽基板所構成 群組中的基板。 1 8 .根據申請專利範圍第1 6項之方法,其進一步包括 提供一供該至少3個分開的烘烤步驟、該第一退火步驟和 該第二退火步驟所用之氣圍,其中該退火氣圍係選自氧、 氮、氬、真空和彼等之任何組合所構成群組中者,其經控 制壓力在真空至周圍大氣壓範圍。 1 9 .根據申請專利範圍第1 6項之方法,其中係在該沈 積一頂部電極之前實施該第二退火步驟。 2 〇 .根據申請專利範圍第1 6項之方法,其中係在該沈 積一頂部電極之後實施該第二退火步驟。 2 ].根據申請專利範圍第1 0或]6項之方法,其中於 -15- (7) 1251332 該至少3個分開的烘烤步驟之每一步驟中係使用不同的烘 烤溫度。 2 2 .根據申請專利範圍第2 ]項之方法,其中在第二烘 烤步驟中的烘烤溫度係高於在第一烘烤步驟中者,且第三 烘烤步驟中的烘烤溫度係高於第二烘烤步驟中者。
-16 -
TW093124064A 2003-08-13 2004-08-11 High temperature annealing of spin coated Pr1-xCaxMnO3 thin film for RRAM application TWI251332B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/640,728 US6774054B1 (en) 2003-08-13 2003-08-13 High temperature annealing of spin coated Pr1-xCaxMnO3 thim film for RRAM application

Publications (2)

Publication Number Publication Date
TW200525737A TW200525737A (en) 2005-08-01
TWI251332B true TWI251332B (en) 2006-03-11

Family

ID=32825666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093124064A TWI251332B (en) 2003-08-13 2004-08-11 High temperature annealing of spin coated Pr1-xCaxMnO3 thin film for RRAM application

Country Status (6)

Country Link
US (1) US6774054B1 (zh)
EP (1) EP1507288A3 (zh)
JP (1) JP4756570B2 (zh)
KR (1) KR100587752B1 (zh)
CN (1) CN1316563C (zh)
TW (1) TWI251332B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965137B2 (en) * 2002-08-02 2005-11-15 Unity Semiconductor Corporation Multi-layer conductive memory device
US6911361B2 (en) * 2003-03-10 2005-06-28 Sharp Laboratories Of America, Inc. Low temperature processing of PCMO thin film on Ir substrate for RRAM application
US6955992B2 (en) * 2003-09-30 2005-10-18 Sharp Laboratories Of America, Inc. One mask PT/PCMO/PT stack etching process for RRAM applications
US20060171200A1 (en) * 2004-02-06 2006-08-03 Unity Semiconductor Corporation Memory using mixed valence conductive oxides
US7082052B2 (en) 2004-02-06 2006-07-25 Unity Semiconductor Corporation Multi-resistive state element with reactive metal
US7402456B2 (en) * 2004-04-23 2008-07-22 Sharp Laboratories Of America, Inc. PCMO thin film with memory resistance properties
JP4460363B2 (ja) * 2004-06-08 2010-05-12 シャープ株式会社 半導体装置及びその製造方法
US7169637B2 (en) * 2004-07-01 2007-01-30 Sharp Laboratories Of America, Inc. One mask Pt/PCMO/Pt stack etching process for RRAM applications
US7339813B2 (en) * 2004-09-30 2008-03-04 Sharp Laboratories Of America, Inc. Complementary output resistive memory cell
WO2006109622A1 (ja) * 2005-04-12 2006-10-19 Matsushita Electric Industrial Co., Ltd. 電気素子,メモリ装置,および半導体集積回路
KR100722853B1 (ko) * 2005-06-23 2007-05-30 한양대학교 산학협력단 절연막의 적층증착에 의한 저항 메모리 소자의 제조방법
US20070048990A1 (en) * 2005-08-30 2007-03-01 Sharp Laboratories Of America, Inc. Method of buffer layer formation for RRAM thin film deposition
US20070205096A1 (en) * 2006-03-06 2007-09-06 Makoto Nagashima Magnetron based wafer processing
US8395199B2 (en) 2006-03-25 2013-03-12 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
KR100785509B1 (ko) * 2006-06-19 2007-12-13 한양대학교 산학협력단 ReRAM 소자 및 그 제조 방법
US8454810B2 (en) 2006-07-14 2013-06-04 4D-S Pty Ltd. Dual hexagonal shaped plasma source
US7932548B2 (en) 2006-07-14 2011-04-26 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
US8308915B2 (en) 2006-09-14 2012-11-13 4D-S Pty Ltd. Systems and methods for magnetron deposition
CN100550459C (zh) * 2007-01-12 2009-10-14 中国科学院上海硅酸盐研究所 提高脉冲触发电阻式随机存储器抗疲劳特性的方法
CN101441890B (zh) * 2008-12-18 2011-11-30 中国科学院微电子研究所 电阻转变型存储器及其驱动装置和方法
WO2010087000A1 (ja) * 2009-01-30 2010-08-05 株式会社 東芝 不揮発性記憶装置の製造方法
KR101105981B1 (ko) 2009-04-28 2012-01-18 한양대학교 산학협력단 저항변화 메모리 소자 및 이의 제조방법
US8227783B2 (en) * 2009-07-13 2012-07-24 Seagate Technology Llc Non-volatile resistive sense memory with praseodymium calcium manganese oxide
US8377718B2 (en) * 2010-11-10 2013-02-19 Micron Technology, Inc. Methods of forming a crystalline Pr1-xCaxMnO3 (PCMO) material and methods of forming semiconductor device structures comprising crystalline PCMO
US8859382B2 (en) 2011-10-26 2014-10-14 Micron Technology, Inc. Methods of forming metal oxide and memory cells
US11301557B2 (en) 2019-07-19 2022-04-12 Dell Products L.P. System and method for data processing device management
WO2021236224A1 (en) * 2020-05-20 2021-11-25 Hrl Laboratories, Llc Method of growing crystalline optical films on si substrates which may optionally have an extremely small optical loss in the infra-red spectrum with hydrogenation of the crystalline optical films

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946710A (en) * 1987-06-02 1990-08-07 National Semiconductor Corporation Method for preparing PLZT, PZT and PLT sol-gels and fabricating ferroelectric thin films
WO1992019564A1 (en) * 1991-05-01 1992-11-12 The Regents Of The University Of California Amorphous ferroelectric materials
US5188902A (en) * 1991-05-30 1993-02-23 Northern Illinois University Production of PT/PZT/PLZI thin films, powders, and laser `direct write` patterns
US5699035A (en) * 1991-12-13 1997-12-16 Symetrix Corporation ZnO thin-film varistors and method of making the same
US5650362A (en) * 1993-11-04 1997-07-22 Fuji Xerox Co. Oriented conductive film and process for preparing the same
US6066581A (en) * 1995-07-27 2000-05-23 Nortel Networks Corporation Sol-gel precursor and method for formation of ferroelectric materials for integrated circuits
JPH0959022A (ja) * 1995-08-23 1997-03-04 Nippon Steel Corp Mn系ペロフスカイト酸化物薄膜の製造方法
DE19743270A1 (de) * 1997-09-30 1999-04-01 Siemens Ag Herstellverfahren für eine keramische Schicht
US6040040A (en) * 1998-01-28 2000-03-21 Ncr Corporation Multi-layer thermal transfer media from selectively curable formulations
JP3996767B2 (ja) * 1999-06-10 2007-10-24 シメトリックス・コーポレーション 集積回路及び集積回路の形成方法
JP2002305288A (ja) * 2000-08-25 2002-10-18 Nomura Shinzo キャパシタ電極構造及び半導体記憶装置
US6531371B2 (en) * 2001-06-28 2003-03-11 Sharp Laboratories Of America, Inc. Electrically programmable resistance cross point memory
US6693821B2 (en) * 2001-06-28 2004-02-17 Sharp Laboratories Of America, Inc. Low cross-talk electrically programmable resistance cross point memory
JP4488661B2 (ja) * 2001-09-18 2010-06-23 Okiセミコンダクタ株式会社 強誘電体キャパシタの製造方法
US6759249B2 (en) * 2002-02-07 2004-07-06 Sharp Laboratories Of America, Inc. Device and method for reversible resistance change induced by electric pulses in non-crystalline perovskite unipolar programmable memory
JP2004092296A (ja) * 2002-09-03 2004-03-25 Hideyuki Onoda 仮設足場設計データ提供装置およびその方法、ならびに仮設足場設計データ提供プログラム

Also Published As

Publication number Publication date
CN1581435A (zh) 2005-02-16
EP1507288A3 (en) 2007-06-06
TW200525737A (en) 2005-08-01
US6774054B1 (en) 2004-08-10
JP2005064502A (ja) 2005-03-10
EP1507288A2 (en) 2005-02-16
CN1316563C (zh) 2007-05-16
JP4756570B2 (ja) 2011-08-24
KR100587752B1 (ko) 2006-06-09
KR20050017394A (ko) 2005-02-22

Similar Documents

Publication Publication Date Title
TWI251332B (en) High temperature annealing of spin coated Pr1-xCaxMnO3 thin film for RRAM application
US7407858B2 (en) Resistance random access memory devices and method of fabrication
EP1905086B1 (en) Method for forming multi-layered binary oxide film for use in resistance random access memory
TWI280638B (en) Low temperature processing of PCMO thin film on Ir substrate for RRAM application
US20070048990A1 (en) Method of buffer layer formation for RRAM thin film deposition
US6939724B2 (en) Method for obtaining reversible resistance switches on a PCMO thin film when integrated with a highly crystallized seed layer
US8592791B2 (en) Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof
JP2008034814A5 (zh)
JP5278717B1 (ja) 固体電子装置
US7098101B1 (en) Method of forming PrxCa1−xMnO3 thin films having a PrMnO3/CaMnO3 super lattice structure using metalorganic chemical vapor deposition
JP2007288016A (ja) メモリ素子およびメモリ素子の製造方法
JP5007528B2 (ja) 圧電素子の製造方法
JP2011523791A (ja) 多結晶層の製造方法
Wu et al. Highly stable SrZrO3 bipolar resistive switching memory by Ti modulation layer
TWI342066B (en) Resistance random access memory
CN109585647B (zh) 氧化镍/氧化钛/氧化镍多层异质结忆阻器的制备方法
JPH1153935A (ja) Lsro薄膜およびその製造方法
JP2005236236A (ja) RRAMに用いるためのIr基板上のPCMO薄膜の低温処理
Mandeljc et al. Contribution to the low-temperature crystallization of PZT-based CSD thin films
US20180371617A1 (en) Low Temperature Method of Forming Layered HT-LiCoO2
Watts et al. The effects of baking cycles on the properties of ferroelectric thin films
Hur et al. NiCr Alloy as both Absorption layer and top electrode onto Pb (Zr0. 3Ti0. 7) O3 thin films for Infrared Sensors
JP2000031401A (ja) 強誘電体素子の製造方法及び半導体記憶装置
JP2000007335A (ja) 複合鉛酸化物およびその薄膜の製造方法
JP2000031400A (ja) 強誘電体素子の製造方法及び半導体記憶装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees