TW202101464A - 快閃記憶體及其操作方法 - Google Patents

快閃記憶體及其操作方法 Download PDF

Info

Publication number
TW202101464A
TW202101464A TW109120802A TW109120802A TW202101464A TW 202101464 A TW202101464 A TW 202101464A TW 109120802 A TW109120802 A TW 109120802A TW 109120802 A TW109120802 A TW 109120802A TW 202101464 A TW202101464 A TW 202101464A
Authority
TW
Taiwan
Prior art keywords
bit line
selection
transistor
plane
pull
Prior art date
Application number
TW109120802A
Other languages
English (en)
Other versions
TWI724925B (zh
Inventor
岡部翔
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Publication of TW202101464A publication Critical patent/TW202101464A/zh
Application granted granted Critical
Publication of TWI724925B publication Critical patent/TWI724925B/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

本發明的快閃記憶體包含多個平面、控制器、開關單元以及驅動控制電路。控制器被配置為選擇至少1個平面。開關單元被配置為將非選擇平面的位元線電氣連接至基準電壓。驅動控制電路被配置為在非選擇平面的位元線電氣連接至基準電壓之後,共通地對選擇平面及非選擇平面的選擇電晶體提供閘極選擇訊號。藉此,提供一種尋求記憶單元臨界值分布安定化的高信賴性的快閃記憶體。

Description

快閃記憶體及其操作方法
本發明是關於半導體記憶裝置及其操作方法,特別是關於具有複數個平面的快閃記憶體及其操作方法。
NAND型快閃記憶體包含記憶單元陣列,記憶單元陣列包含複數個區塊,各區塊中形成複數個NAND字串,各NAND字串是由複數個記憶單元,在位元線側選擇電晶體與源極線側選擇電晶體之間連接而成。由於快閃記憶體的微型化,位元線側/源極線側選擇電晶體與記憶單元之間的距離愈來愈小,使得位元線側/源極線側選擇電晶體的汲極端容易產生閘極引發汲極漏電流(Gate Induced Drain Leakage,GIDL),導致電子注入鄰接的記憶單元的浮閘,進而使記憶單元的臨界值發生變化,或是發生錯誤寫入。為了抑制這種問題,專利文獻1(特開2014-53565號公報)提出了在位元線側/源極線側選擇電晶體與鄰接的記憶單元之間配置與資料記憶無關的虛擬單元。
NAND型快閃記憶體中,可以藉由增加形成於記憶單元陣列內的區塊數,使得記憶容量增加。然而,若增加了區塊數,在區塊配列方向延伸的全域位元線的配線長度就會變長,讀取速度等會因為其增加的負載電容而變慢。因此,為了尋求記憶容量的增加,同時抑制全域位元線的負載電容,而將記憶單元陣列分割為複數個,且在分割後的複數個記憶單元陣列中,形成一定個數的區塊。
諸如此類將記憶單元陣列分割為複數個的多平面的快閃記憶體中,在1個晶片上形成複數個平面,而1個平面當中,記憶單元陣列、行解碼/驅動電路、列解碼器、頁緩衝/感測電路等能夠各自具備功能而操作。另外,控制器或輸入輸出電路可以由複數個平面共享。控制器或位址解碼器等基於輸入的列位址資訊,從複數個平面中選擇1個或複數個平面,於所選擇的平面中控制讀取操作、編程操作、或抹除操作。舉例來說,平面的選擇是基於來自外部輸入的位址,控制器選擇1個平面,或者同時選擇複數個平面。
第1圖表示具有2個平面P0、P1的快閃記憶體的概略圖。平面P0、平面P1各自具備多個區塊(n-1、n、n+1)、被配置為驅動這些區塊的字元線WL0~WL31的多個行驅動電路(X_DRVn-1、X_DRVn、X_DRVn+1),及被配置為驅動這些區塊的位元線側/源極線側選擇電晶體的驅動控制電路10A、10B。
第2圖表示區塊n的NAND字串以及位元線選擇電路的示意圖。此處例示1個偶數全域位元線BLE,1個奇數全域位元線BLO,連接這些的NAND字串以及位元線選擇電路20。各NAND字串由串接的複數個電晶體所構成,也就是包含:位元線側選擇電晶體SEL_D,與全域位元線BLE/BLO連接;位元線側虛擬單元DCD;源極線側選擇電晶體SEL_S,與源極線SL連接;源極線側虛擬單元DCS;以及記憶單元MC0~MC31,連接於位元線側虛擬單元DCD與源極線側虛擬單元DCS之間。
位元線選擇電路20包含:電晶體BLSE,用於選擇偶數位元線BLE;電晶體BLSO,用於選擇奇數位元線BLO;電晶體YBLE,用於將假想電源VIRPWR與偶數位元線BLE連接;以及電晶體YBLO,用於將假想電源VIRPWR與奇數位元線BLO連接。
另外,平面P0、P1各自的驅動控制電路10A、10B輸出用來驅動源極線側選擇電晶體SEL_S的選擇訊號SGS,以及用來驅動位元線側選擇電晶體SEL_D的選擇訊號SGD。驅動控制電路10A、10B響應快閃記憶體的操作,控制選擇訊號SGS/SGD的電壓位準。
舉例來說,執行讀取操作時,將平面P0作為選擇平面,將平面P1作為非選擇平面,並選擇區塊n。行解碼器(省略繪示)基於行位址的解碼結果,把用於選擇區塊n的區塊選擇訊號BSELn,共通輸出給選擇平面P0的行驅動電路X_DRVn、以及非選擇平面P1的行驅動電路X_DRVn。藉此,選擇平面P0與非選擇平面P1的行驅動電路X_DRVn的通過電晶體會導通。另外,為了使施加在字元線或選擇訊號SGS/SGD的驅動電壓不會因為通過電晶體而下降,區塊選擇訊號BSELn將以相當高的電壓來驅動(例如,大於在字元線所施加的高電壓)。
響應於讀取指令,在選擇平面P0當中,驅動控制電路10A提供等於驅動電壓的選擇訊號SGS/SGD,使位元線側選擇電晶體SEL_D以及源極線側選擇電晶體SEL_S導通,行驅動電路X_DRVn在選擇字元線施加接地(GND)電壓,在非選擇字元線施加讀取通過電壓Vpass,以在選擇平面P0的頁緩衝/感測電路中,讀取並輸出選擇記憶單元的資料,並將所讀取的選擇記憶單元的資料輸出到外部。
另一方面,在非選擇平面P1當中,電晶體以第3圖所示的偏壓電壓驅動,行驅動電路X_DRVn的通過電晶體導通,但由於驅動控制電路10B提供等於GND電壓的選擇訊號SGS/SGD,因此位元線側選擇電晶體SEL_D以及源極線側選擇電晶體SEL_S會被強制斷開,使得非選擇平面P1的記憶單元不會受到選擇平面P0操作的影響。
由於驅動控制電路10A、10B必須要在對應的平面被選擇的期間輸出高電壓的選擇訊號SGS/SGD,因此需要配置有高電壓電晶體或位準偏移器以切換高電壓偏壓,因此使得布局的面積變大。為了降低面積,第4圖所示的快閃記憶體具備由2個平面P0、P1所共享的驅動控制電路10,以對選擇平面P0以及非選擇平面P1共通輸出等於驅動電壓的選擇訊號SGS/SGD。因此,非選擇平面P1的位元線側選擇電晶體SEL_D、以及源極線側選擇電晶體SEL_S均被導通而無法強制地斷開,導致不期望的電流流入非選擇平面P1的NAND字串,而造成記憶單元的臨界值分布發生變動的問題。
第5圖表示讀取操作時,施加在非選擇平面P1的各電晶體的偏壓電壓。讀取操作開始時,由於連接至非選擇平面P1的位元線選擇電路20的各電晶體(YBLE、YBLO、BLSE、BLSO)為斷開(閘極電壓=GND),且位元線側選擇電晶體SEL_D為斷開(選擇訊號SGD=GND),因此非選擇平面P1的全域位元線BLE/BLO為浮動狀態。讀取操作開始後,驅動控制電路10首先將選擇訊號SGD設為高(H)位準(VSGD例如為4.5V)。然而,此H位準的選擇訊號SGD也會提供給非選擇平面P1的位元線側選擇電晶體SEL_D,導致非選擇平面P1的全域位元線BLE/BLO上的電壓受到與閘極的選擇訊號SGD電容耦合的影響,將從初始的浮動狀態的0V,最終上昇到0.5V或更高的電壓(視電容耦合比而定)。
接著,驅動控制電路10將選擇訊號SGS設為H位準(VSGS例如為4.5V),這個選擇訊號SGS也會提供給非選擇平面P1的源極線側選擇電晶體SEL_S。虛擬單元DCS/DCD為抹除後的狀態(負的臨界值),在虛擬字元線DWLS/DWLD施加GND電壓,這個時候,如果NAND字串的所有記憶單元30皆為深層抹除後的狀態(負的臨界值),則NAND字串將產生單元電流Ic。也就是說,電流會透過導通狀態的位元線側選擇電晶體SEL_D、以及源極線側選擇電晶體SEL_S,從全域位元線BLE/BLO流到源極線SL。即使字元線WL全部都設為GND電壓,也沒辦法避免這種單元電流Ic產生。若有單元電流Ic流動,就會讓記憶單元的臨界值分布變動,造成信賴性的低落。
本發明的目的是解決這樣的既有課題,而提供一種尋求記憶單元臨界值分布安定化的高信賴性的快閃記憶體及其操作方法。
關於本發明的快閃記憶體的操作方法,快閃記憶體包含多個平面,在各平面中包括多個NAND字串,各NAND字串包含選擇電晶體及多個記憶單元,且各NAND字串位於位元線與源極線之間。本發明的方法包含:從這些平面中選擇至少1個平面;將非選擇平面的位元線電氣連接至基準電壓;在非選擇平面的位元線電氣連接至基準電壓之後,共通地對選擇平面及非選擇平面的選擇電晶體提供閘極選擇訊號;及在提供閘極選擇訊號之後,從選擇平面讀出資料、寫入資料至選擇平面或將選擇平面的資料抹除。
關於本發明的快閃記憶體,包含:多個平面,在各平面中包括多個NAND字串,各NAND字串包含選擇電晶體及多個記憶單元,且各NAND字串位於位元線與源極線之間;控制器,被配置為從這些平面中選擇至少1個平面,以對選擇平面執行讀取操作、寫入操作或抹除操作;開關單元,具有一控制端,以被配置為將非選擇平面的位元線電氣連接至基準電壓;以及驅動控制電路,被配置為在非選擇平面的位元線電氣連接至基準電壓之後,共通地對選擇平面及非選擇平面的選擇電晶體提供閘極選擇訊號。
根據本發明,藉由在共通地對選擇平面及非選擇平面的選擇電晶體提供閘極選擇訊號之前,將非選擇平面的位元線電氣連接基準電壓,能夠在非操作時或非選擇時,抑制不期望的電流發生在非選擇平面的NAND字串中。
接著,針對本發明的實施形態參照圖式詳細說明。關於本發明的半導體裝置,舉例來說,為NAND型快閃記憶體、或是嵌入如這種快閃記憶體的微處理器、微控制器、邏輯、 應用特定積體電路(ASIC)、處理影像或聲音的處理器、處理無線訊號等的訊號之處理器等。
第6圖表示關於本發明實施例的多平面型的NAND型快閃記憶體的示意圖。本實施例的快閃記憶體100,包含:記憶單元陣列110,包含複數個平面P0、P1;輸入輸出電路120,連接外部輸入輸出端子I/O,執行資料的輸入或輸出;位址暫存器130,從輸入輸出電路120接收位址資料;控制器140,基於從輸入輸出電路120接收到的指令或外部控制訊號(例如命令閘鎖致能訊號CLE、位址閘鎖致能訊號ALE等)以控制各部;字元線選擇・驅動電路150,基於來自位址暫存器130的行位址資訊Ax,執行區塊的選擇或字元線的驅動;頁緩衝/感測電路160,保持從選擇頁讀取出的資料,並保持對選擇頁應該編程的資料;列選擇電路170,基於來自位址暫存器130的列位址資訊Ay,執行頁緩衝/感測電路160內的資料的選擇等;以及內部電壓產生電路180,產生資料的讀取、編程、以及抹除等用途所必要的各種電壓(寫入電壓Vpgm、讀取通過電壓Vpass、抹除電壓Vers、讀取電壓Vread等)。
記憶單元陣列110包含多個平面(例如平面P0、P1),各平面於列方向形成m個區塊。於1個區塊中,如第2圖所示於行方向形成複數個NAND字串。1個NAND字串包含:源極線側選擇電晶體SEL_S;源極線側虛擬單元DCS;直列連接的複數個記憶單元MC0~MC31;汲極側虛擬單元DCD;以及位元線側選擇電晶體SEL_D,源極線側選擇電晶體SEL_S與共通源極線SL連接,位元線側選擇電晶體SEL_D與對應的全域位元線BLE或BLO連接。
與記憶單元MC0~MC31的閘極連接的字元線WL0~WL31,以及與虛擬單元DCS、DCD的閘極連接的虛擬字元線DWLS、DWLD,是由字元線選擇・驅動電路150所驅動。字元線選擇・驅動電路150能夠個別驅動控制選擇平面或非選擇平面的字元線以及虛擬字元線。另外,選擇訊號SGS以及選擇訊號SGD,是從字元線選擇・驅動電路150當中的驅動控制電路10(參照第4圖),提供給源極線側選擇電晶體SEL_S、以及位元線側選擇電晶體SEL_D的閘極。驅動控制電路10由複數個平面共享,也就是說,對選擇平面以及非選擇平面的各選擇區塊,共通提供選擇訊號SGS/SGD。
另外,NAND字串可以是形成於基板表面的2維陣列狀,也可以是利用形成於基板表面上的半導體層的3維陣列狀。另外,1個記憶單元可以是記憶1位元(2值資料)的SLC(單級單元)型,也可以是記憶多位元的MLC(多級單元)型。
各平面的各區塊的NAND字串,透過位元線側選擇電晶體SEL_D,連接全域位元線BLE/BLO;而全域位元線BLE/BLO,則是透過位元線選擇電路20,連接頁緩衝/感測電路160。
第7圖表示在快閃記憶體各操作時所施加的偏壓電壓的一例。在讀取操作中,對位元線施加某個正電壓,對選擇字元線施加某個讀取電壓(例如0V),對非選擇字元線施加讀取通過電壓Vpass(例如4.5V),對選擇訊號SGD/SGS施加正電壓(例如4.5V),將位元線側選擇電晶體SEL_D以及源極線側選擇電晶體SEL_S導通,對共通源極線施加0V。在編程(寫入)操作中,對選擇字元線施加高電壓的編程電壓Vpgm(15~20V),對非選擇字元線施加中間電位(例如10V),讓位元線側選擇電晶體SEL_D導通,並讓源極線側選擇電晶體SEL_S斷開,將「0」或「1」的資料對應的電位提供給位元線。在抹除操作中,對區塊內的字元線施加0V,對P型井(P-well)施加高電壓(例如20V),以區塊為單位抹除資料。
舉例來說,多平面型的快閃記憶體100能夠基於由外部輸入進來的列位址資訊Ay選擇平面P0或P1,或者也能夠響應選擇模式的指令而同時選擇平面P0以及P1雙方。在讀取操作、編程操作、以及抹除操作時,控制器140能夠個別控制選擇平面以及非選擇平面。字元線選擇・驅動電路150基於位址資訊Ax,將用來選擇區塊的H位準的區塊選擇訊號BSEL,輸出到選擇平面以及非選擇平面的行驅動電路的通過電晶體,使通過電晶體導通。另外,如以上所述,從驅動控制電路10輸出的選擇訊號SGS/SGD,是以響應快閃記憶體的操作的電壓而驅動(參照第7圖),這個驅動電壓透過導通狀態的通過電晶體,提供給非選擇平面的區塊,導致不期望的單元電流Ic流入到非選擇平面的NAND字串(參照第5圖)。
為了抑制不期望的單元電流Ic流入非選擇平面中的NAND字串,本發明的一實施例將非選擇平面的全域位元線與基準電壓(例如GND位準)連接,藉以防止由於全域位元線為浮動狀態的電容耦合而引起的電壓上昇。
第8圖說明本實施例的非選擇平面的全域位元線的控制方法。此處假定平面P0為選擇平面,平面P1為非選擇平面,且對平面P0執行選擇區塊n的選擇頁的讀取。
如同第8圖所示,於本實施例中,透過位元線選擇電路20將非選擇平面P1的全域位元線BLE/BLO電氣連接至假想電源VIRPWR的GND位準。控制器140被配置為通過頁緩衝/感測電路160來控制與非選擇平面的全域位元線BLE/BLO連接的位元線選擇電路20,詳細而言,頁緩衝/感測電路160被配置為對位元線選擇電路20中的電晶體YBLE/YBLO施加H位準的電壓YPASS(例如:比供給電壓Vdd還大的電壓),從而將偶數以及奇數的全域位元線BLE/BLO電氣連接至假想電源VIRPWR的GND位準。另外,第8圖例示了1組偶數與奇數全域位元線BLE/BLO,但實際上,非選擇平面的所有全域位元線,都是透過位元線選擇電路20電氣連接至假想電源VIRPWR的GND位準。
第9圖表示本發明用以提供假想電源VIRPWR的驅動電路的第一實施例。驅動電路200包含:P型上拉電晶體PU,連接在供給電壓Vdd以及輸出節點N之間;N型下拉電晶體PD,連接在輸出節點N以及GND位準之間;以及N型電晶體Q,連接在輸出節點N以及輸出端子VIRPWR_OUT之間。控制器140對上拉電晶體PU、下拉電晶體PD以及電晶體Q的閘極分別施加控制訊號S1、S2、S3。針對連接至非選擇平面的驅動電路200,控制器140被配置為提供對應的控制訊號S1、S2、S3以使上拉電晶體PU斷開,並使下拉電晶體PD與電晶體Q導通,以將GND電壓提供給輸出端子VIRPWR_OUT。另一方面,針對連接至選擇平面的驅動電路200,控制器140響應於對應的操作程序將控制訊號S1、S2、S3驅動至H位準或L位準,以從輸出端子VIRPWR_OUT提供供給電壓Vdd或GND位準。
這樣一來,非選擇平面P1的所有全域位元線BLE/BLO,透過導通的電晶體YBLE/YBLO與提供GND位準的假想電源VIRPWR電氣連接,使得未被選擇來進行操作的全域位元線BLE/BLO並非為浮動狀態,而是固定為GND位準的電壓。
讀取操作開始之後,首先,在選擇平面P0當中,藉由頁緩衝/感測電路160執行全域位元線BLE/BLO以及區域位元線LBLE/LBLO的預先充電。區域位元線LBLE/LBLO是指在NAND字串中從全域位元線BLE/BLO到源極線SL的路徑。為了執行全域位元線BLE/BLO以及區域位元線LBLE/LBLO的預先充電,驅動控制電路10(參照第4圖)將共通地提供至選擇平面P0以及非選擇平面P1的選擇訊號SGD從GND位準驅動至H位準(例如,VSGD=4.5V)。該驅動電壓VSGD施加在選擇平面P0以及非選擇平面P1的位元線側選擇電晶體SEL_D的閘極,使位元線側選擇電晶體SEL_D為導通狀態。由於非選擇平面P1的全域位元線BLE/BLO並非浮動狀態,而是固定在GND位準的電壓,因此全域位元線BLE/BLO的電壓不會受到選擇訊號SGD的驅動電壓VSGD的影響而上昇。也就是說,位元線側選擇電晶體SEL_D的閘極、以及全域位元線BLE/BLO之間的電容耦合,事實上可以無視。
接著,在選擇平面P0中,預先充電到全域位元線BLE/BLO以及區域位元線LBLE/LBLO的電荷開始放電。為了執行這些位元線的放電,驅動控制電路10將共通地提供至選擇平面P0以及非選擇平面P1的選擇訊號SGS,從GND位準驅動至H位準(例如,VSGS=4.5V)。該驅動電壓VSGS施加在選擇平面P0以及非選擇平面P1的源極線側選擇電晶體SEL_S的閘極,使源極線側選擇電晶體SEL_S為導通狀態。此時,由於非選擇平面P1的全域位元線BLE/BLO為GND位準,即便記憶單元MC0~MC31以及虛擬單元DCS/DCD處於強抹除狀態(臨界值為負),也可以防止單元電流Ic從全域位元線BLE/BLO流入源極線SL。因此,本發明防止了在非選擇平面P1中記憶單元的臨界值分布發生變動。
接著,針對本發明其他實施例進行說明。在上述實施例中,雖然可藉由對非選擇平面的全域位元線BLE/BLO提供GND電壓,以抑制單元電流Ic由非選擇平面的全域位元線BLE/BLO流入源極線SL,然而當區域位元線LBLE/LBLO的電壓因電容耦合而上昇時,單元電流Iv(如第10A圖所示)就有可能透過位元線側選擇電晶體SEL_D、全域位元線BLE/BLO、以及位元線選擇電路20,從區域位元線LBLE/LBLO流入假想電源VIRPWR。
為了在讀取操作時進行所謂封閉式讀取(Shield Read),耦接至選擇平面P0的假想電源VIRPWR的驅動電路200將偶數頁或奇數頁的非選擇位元線放電到GND位準,將選擇位元線耦接至供給電壓Vdd。為了讓全域位元線的配線容量變大,且讓非選擇位元線在短時間內放電到GND位準,因此,耦接至選擇平面的驅動電路200的下拉電晶體PD需要強的驅動能力。然而,若對於非選擇平面P1藉由該驅動能力強的下拉電晶體PD將上述的單元電流Iv放電,就會讓單元電流Iv一口氣流通,導致區域位元線LBLE/LBLO的電壓變動增大,因而可能對非選擇平面P1的記憶單元的臨界值造成影響。
為了改善上述問題,第10圖(B)示出了本發明的假想電源VIRPWR的驅動電路的第二實施例,驅動電路210在上拉電晶體PU與接地電壓之間設置了並聯的兩個下拉電晶體PD_W、PD,其中下拉電晶體PD_W的驅動能力小於下拉電晶體PD,且利用驅動能力較弱的下拉電晶體PD_W讓單元電流Iv放電。作為讓電晶體的驅動能力相異的1個方法,下拉電晶體PD_W的寬長比(W/L)可小於下拉電晶體PD的寬長比。藉此,下拉電晶體PD_W導通時所流通的汲極電流小於下拉電晶體PD導通時所流通的汲極電流。在此情況下,可以相同的閘極電壓來導通下拉電晶體PD、PD_W。另外,作為讓電晶體的驅動能力相異的另1個方法,也可以將用以驅動(導通)下拉電晶體PD_W的閘極電壓配置為小於用以驅動下拉電晶體PD的閘極電壓,藉以使得流通於下拉電晶體PD_W的汲極電流變小,使得下拉電晶體PD_W的驅動能力小於下拉電晶體PD。舉例來說,由電流鏡電路所控制的偏壓電壓,可施加在驅動能力較弱的下拉電晶體PD_W的閘極,使汲極電流定電流化。另外,也可以同時採用上述2種方法,使得電晶體的驅動能力相異。
接著,針對本實施例的操作進行說明。如第10A圖所示,根據本發明的假想電源VIRPWR的驅動電路200,當非選擇平面P1的選擇訊號SGD從GND驅動到H位準(例如,VSGD=4.5V)時,位元線側選擇電晶體SEL_D的閘極與全域位元線BLE/BLO之間幾乎不會發生耦合效應。然而,在位元線側選擇電晶體SEL_D被導通之前,也就是選擇訊號SGD的電壓VSGD比位元線側選擇電晶體SEL_D的臨界值還小的時候(VSGD>Vth),區域位元線LBLE/LBLO為浮動狀態,導致區域位元線LBLE/LBLO的電壓會因為位元線側選擇電晶體SEL_D的閘極與區域位元線LBLE/LBLO之間的電容耦合而稍微上昇。之後,當位元線側選擇電晶體SEL_D成為導通狀態時,單元電流Iv透過位元線側選擇電晶體SEL_D,從區域位元線LBLE/LBLO流向假想電源VIRPWR的GND位準。
為了改善上述問題,如第10B圖所示,假想電源的驅動電路210被配置為響應於控制訊號S1、S2,使耦接至非選擇平面P1的上拉電晶體PU以及驅動能力較強的下拉電晶體PD斷開;響應於控制訊號S3、S4,使驅動能力較弱的下拉電晶體PD_W以及電晶體Q導通。藉此,單元電流Iv的放電速度或放電量受到限制,以抑制非選擇平面P1中區域位元線LBLE/LBLO上發生急遽的電壓變動,使得單元電流Iv對記憶單元的影響能夠儘量變小。控制訊號S4的電壓也可以和控制訊號S3的電壓相同,如上所述,若是藉由提供相異的閘極驅動電壓來使得下拉電晶體PD_W、PD的驅動能力相異的情況下,也可以使用圖式並未繪出的電流鏡電路所產生的偏壓來產生控制訊號S4,使得流通於下拉電晶體PD_W的汲極電流變小。
另一方面,於一實施例中,例如,於執行封閉式讀取等的時候,耦接至選擇平面P0的假想電源的驅動電路210能夠響應控制訊號S2、S4,使驅動能力較強的下拉電晶體PD以及驅動能力較弱的下拉電晶體PD_W皆導通,讓非選擇位元線在短時間放電到GND位準。
於上述實施例中,例示了具有2個平面的快閃記憶體,但平面數並不限於2個,也可以是3個以上。例如,當平面數為4個時,可以在快閃記憶體中提供2個驅動控制電路,其中1個驅動控制電路由2個平面所共享,且另1個驅動控制電路10由另外2個平面所共享。然而,也可以設計為1個驅動控制電路由4個平面所共享。
詳述了針對本發明較佳的實施形態,但本發明並非限定於特定的實施形態,在申請專利範圍所記載本發明要旨的範圍內,可進行各種的變形/變更。
10,10A,10B:驅動控制電路     Ic,Iv:單元電流 20:位元線選擇電路LBLE/LBLO:區域位元線 30:記憶單元MC0~MC31:記憶單元 100:快閃記憶體N:輸出節點 110:記憶單元陣列P0,P1:平面 120:輸入輸出電路PD:下拉電晶體 130:位址暫存器PU:上拉電晶體 140:控制器Q:電晶體 150:字元線選擇・驅動電路S1,S2,S3,S4:控制訊號 160:頁緩衝/感測電路SEL_D:位元線側選擇電晶體 170:列選擇電路SEL_S:源極線側選擇電晶體 180:內部電壓產生電路SGD/SGS:選擇訊號 200:驅動電路SL:源極線 210:驅動電路Vdd:電壓 Ax:行位址資訊Vers:抹除電壓 Ay:列位址資訊VIRPWR:假想電源 BLE:偶數全域位元線VIRPWR_OUT:輸出端子 BLO:奇數全域位元線Vpass:讀取通過電壓 BLK(0)~BLK(m):區塊Vpgm:寫入電壓 BLSE,BLSO:電晶體Vread:讀取電壓 BSELn-1:區塊選擇訊號VSGD,VSGS:電壓 BSELn:區塊選擇訊號WL0~WL31:字元線 BSELn+1:區塊選擇訊號X_DRVn-1:行驅動電路 DCD:位元線側虛擬單元X_DRVn:行驅動電路 DCS:源極線側虛擬單元X_DRVn+1:行驅動電路 DWLD,DWLS:虛擬字元線YBLE,YBLO:電晶體 GND:接地電壓(0V)YPASS:電壓
第1圖表示既有的多平面型快閃記憶體的概略圖。 第2圖表示記憶單元陣列第n個區塊的NAND字串,以及連接該字串的位元線選擇電路的示意圖。 第3圖表示非選擇平面當中的NAND字串,以及位元線選擇電路的各電晶體的偏壓電壓。 第4圖表示既有的多平面型快閃記憶體中具有多個平面所共享的驅動控制電路的示意圖。 第5圖表示讀取操作時施加在如第4圖所示的快閃記憶體的非選擇平面的各電晶體的偏壓電壓。 第6圖表示關於本發明實施例的NAND型快閃記憶體的示意圖。 第7圖表示在NAND型快閃記憶體操作時所施加的偏壓電壓。 第8圖表示關於本發明實施例的非選擇平面的控制方法。 第9圖表示關於本發明的假想電源的驅動電路的第一實施例的示意圖。 第10A圖表示單元電流Iv透過導通的位元線側選擇電晶體從區域位元線流入假想電源的示意圖。 第10B圖表示關於本發明的假想電源的驅動電路的第二實施例的示意圖。
20:位元線選擇電路
BLE:偶數全域位元線
BLO:奇數全域位元線
BLSE,BLSO:電晶體
MC0~MC31:記憶單元
DCD:位元線側虛擬單元
DCS:源極線側虛擬單元
DWLD,DWLS:虛擬字元線
SEL_D:位元線側選擇電晶體
SEL_S:源極線側選擇電晶體
SGD:選擇訊號
SGS:選擇訊號
SL:源極線
VIRPWR:假想電源
VSGD,VSGS:電壓
WL0~WL31:字元線
YBLE,YBLO:電晶體
YPASS:電壓

Claims (12)

  1. 一種快閃記憶體的操作方法,該快閃記憶體包含多個平面,在各該平面中包括多個NAND字串,各該NAND字串包含選擇電晶體及多個記憶單元,且各該NAND字串位於位元線與源極線之間,該方法包含: 從該些平面中選擇至少1個平面; 將非選擇平面的該位元線電氣連接至基準電壓; 在該非選擇平面的該位元線電氣連接至該基準電壓之後,共通地對該選擇平面及該非選擇平面的該選擇電晶體提供閘極選擇訊號;及 在提供該閘極選擇訊號之後,從該選擇平面讀出資料、寫入資料至該選擇平面或將該選擇平面的資料抹除。
  2. 如請求項1之快閃記憶體的操作方法,其中將該非選擇平面的該位元線電氣連接至該基準電壓的步驟包括: 透過假想電源的驅動電路提供該基準電壓;及 在耦接至該非選擇平面的位元線選擇電路中,導通位於該位元線與假想電源之間的電晶體,使該位元線經由該電晶體耦接至該假想電源的驅動電路所提供的該基準電壓。
  3. 如請求項2之快閃記憶體的操作方法,其中該位元線包括偶數位元線與奇數位元線,藉由頁緩衝/感測電路來控制該位元線選擇電路,以將該非選擇平面的該偶數位元線與該奇數位元線皆連接該基準電壓,該基準電壓為接地電壓,且導通該電晶體的電壓大於供給電壓。
  4. 如請求項2之快閃記憶體的操作方法,其中透過該假想電源的驅動電路提供該基準電壓的步驟包括: 在該假想電源的驅動電路中提供並聯設置的第一下拉電晶體與第二下拉電晶體,該第一下拉電晶體與該第二下拉電晶體耦接至該基準電壓,且該第一下拉電晶體的驅動能力大於該第二下拉電晶體的驅動能力;及 導通該第二下拉電晶體,且斷開該第一下拉電晶體。
  5. 如請求項4之快閃記憶體的操作方法,其中,該選擇電晶體包含位元線側選擇電晶體以及源極線側選擇電晶體,且對該選擇平面及該非選擇平面的該選擇電晶體提供該閘極選擇訊號的步驟包括: 共通地對該選擇平面及該非選擇平面的該位元線側選擇電晶體提供該閘極選擇訊號,以導通該位元線側選擇電晶體; 藉由導通的該位元線側選擇電晶體對該選擇平面的該位元線進行預充電; 在該選擇平面的該位元線進行預充電之後,共通地對該選擇平面及該非選擇平面的該源極線側選擇電晶體提供該閘極選擇訊號,以導通該源極線側選擇電晶體;及 藉由導通的該源極線側選擇電晶體對該選擇平面的該位元線進行放電。
  6. 如請求項5之快閃記憶體的操作方法,更包括: 對耦接至該選擇平面的非選擇位元線的該假想電源的驅動電路的該第一下拉電晶體的閘極提供第一控制訊號,以導通該第一下拉電晶體;及 對耦接至該選擇平面的該非選擇位元線的該假想電源的驅動電路的該第二下拉電晶體的閘極提供第二控制訊號,以導通該第二下拉電晶體。
  7. 一種快閃記憶體,包含: 多個平面,在各該平面中包括多個NAND字串,各該NAND字串包含選擇電晶體及多個記憶單元,且各該NAND字串位於位元線與源極線之間; 控制器,被配置為從該些平面中選擇至少1個平面,以對該選擇平面執行讀取操作、寫入操作或抹除操作; 開關單元,具有一控制端,以被配置為將非選擇平面的該位元線電氣連接至基準電壓;以及 驅動控制電路,被配置為在該非選擇平面的該位元線電氣連接至該基準電壓之後,共通地對該選擇平面及該非選擇平面的該選擇電晶體提供閘極選擇訊號。
  8. 如請求項7之快閃記憶體,更包含: 假想電源的驅動電路,被配置為提供該基準電壓;及 位元線選擇電路,耦接於該位元線與該假想電源的驅動電路之間,且包括該開關單元; 其中,該開關單元包括電晶體。
  9. 如請求項8之快閃記憶體,更包含頁緩衝/感測電路,該位元線透過該位元線選擇電路耦接至該頁緩衝/感測電路; 其中,該位元線包括偶數位元線與奇數位元線; 其中,該頁緩衝/感測電路控制該位元線選擇電路,以將該非選擇平面的該偶數位元線與該奇數位元線皆連接該基準電壓,該基準電壓為接地電壓,且導通該電晶體的電壓大於供給電壓。
  10. 如請求項8之快閃記憶體,其中該假想電源的驅動電路包含第一下拉電晶體與第二下拉電晶體,該第一下拉電晶體與該第二下拉電晶體並聯地設置於該假想電源的驅動電路中,該第一下拉電晶體與該第二下拉電晶體耦接至該基準電壓,且該第一下拉電晶體的驅動能力大於該第二下拉電晶體的驅動能力; 其中,耦接至該非選擇平面的該假想電源的驅動電路被配置為使該第二下拉電晶體導通,且使該第一下拉電晶體斷開。
  11. 如請求項10之快閃記憶體, 其中,該選擇電晶體包含位元線側選擇電晶體以及源極線側選擇電晶體; 其中,該驅動控制電路共通地對該選擇平面及該非選擇平面的該位元線側選擇電晶體提供該閘極選擇訊號,以導通該位元線側選擇電晶體,且該假想電源的驅動電路藉由導通的該位元線側選擇電晶體對該選擇平面的該位元線進行預充電; 其中,該驅動控制電路在該選擇平面的該位元線進行預充電之後,共通地對該選擇平面及該非選擇平面的該源極線側選擇電晶體提供該閘極選擇訊號,以導通該源極線側選擇電晶體,且該假想電源的驅動電路藉由導通的該源極線側選擇電晶體對該選擇平面的該位元線進行放電。
  12. 如請求項10之快閃記憶體,其中該控制器被配置為對耦接至該選擇平面的非選擇位元線的該假想電源的驅動電路的該第一下拉電晶體的閘極提供第一控制訊號,以導通該第一下拉電晶體;並對耦接至該選擇平面的該非選擇位元線的該假想電源的驅動電路的該第二下拉電晶體的閘極提供第二控制訊號,以導通該第二下拉電晶體。
TW109120802A 2019-06-20 2020-06-19 快閃記憶體及其操作方法 TWI724925B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-114682 2019-06-20
JP2019114682A JP6770140B1 (ja) 2019-06-20 2019-06-20 半導体装置およびその動作方法

Publications (2)

Publication Number Publication Date
TW202101464A true TW202101464A (zh) 2021-01-01
TWI724925B TWI724925B (zh) 2021-04-11

Family

ID=72745119

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120802A TWI724925B (zh) 2019-06-20 2020-06-19 快閃記憶體及其操作方法

Country Status (5)

Country Link
US (1) US11081181B2 (zh)
JP (1) JP6770140B1 (zh)
KR (1) KR102333241B1 (zh)
CN (1) CN112116939B (zh)
TW (1) TWI724925B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069415B2 (en) * 2018-10-05 2021-07-20 Samsung Electronics Co., Ltd. Memory device including charge pump circuit
JP7248842B1 (ja) 2022-03-24 2023-03-29 ウィンボンド エレクトロニクス コーポレーション 半導体装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126808A (en) * 1989-10-23 1992-06-30 Advanced Micro Devices, Inc. Flash EEPROM array with paged erase architecture
US5798968A (en) * 1996-09-24 1998-08-25 Sandisk Corporation Plane decode/virtual sector architecture
JP2008186522A (ja) * 2007-01-30 2008-08-14 Toshiba Corp 不揮発性半導体記憶装置のデータ読み出し方法
JP2009146482A (ja) * 2007-12-12 2009-07-02 Sharp Corp 不揮発性半導体記憶装置
US8199576B2 (en) 2009-04-08 2012-06-12 Sandisk 3D Llc Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a double-global-bit-line architecture
US8625322B2 (en) * 2010-12-14 2014-01-07 Sandisk 3D Llc Non-volatile memory having 3D array of read/write elements with low current structures and methods thereof
US8503213B2 (en) * 2011-01-19 2013-08-06 Macronix International Co., Ltd. Memory architecture of 3D array with alternating memory string orientation and string select structures
JP5249394B2 (ja) * 2011-09-28 2013-07-31 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
JP5626812B2 (ja) * 2012-08-30 2014-11-19 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
JP2014053565A (ja) 2012-09-10 2014-03-20 Toshiba Corp 半導体記憶装置およびその製造方法
JP2014063555A (ja) * 2012-09-24 2014-04-10 Toshiba Corp 不揮発性半導体記憶装置、及びその制御方法
JP2014063556A (ja) * 2012-09-24 2014-04-10 Toshiba Corp 不揮発性半導体記憶装置
WO2015025357A1 (ja) * 2013-08-19 2015-02-26 株式会社 東芝 メモリシステム
CN105304129B (zh) * 2014-07-23 2019-07-12 华邦电子股份有限公司 电阻可变型存储器及其写入方法
US20160064452A1 (en) 2014-08-26 2016-03-03 Kabushiki Kaisha Toshiba Memory device
US9431098B1 (en) 2015-08-10 2016-08-30 International Business Machines Corporation Structure for reducing pre-charge voltage for static random-access memory arrays
JP6122478B1 (ja) * 2015-10-22 2017-04-26 ウィンボンド エレクトロニクス コーポレーション 不揮発性半導体記憶装置
JP6103664B1 (ja) * 2016-02-18 2017-03-29 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
JP2019036375A (ja) * 2017-08-17 2019-03-07 東芝メモリ株式会社 半導体記憶装置
JP2019053796A (ja) * 2017-09-14 2019-04-04 東芝メモリ株式会社 半導体記憶装置
JP6820380B2 (ja) 2019-06-18 2021-01-27 ウィンボンド エレクトロニクス コーポレーション ダミーセルの制御方法および半導体装置

Also Published As

Publication number Publication date
TWI724925B (zh) 2021-04-11
JP6770140B1 (ja) 2020-10-14
KR102333241B1 (ko) 2021-12-01
CN112116939B (zh) 2022-12-20
CN112116939A (zh) 2020-12-22
JP2021002415A (ja) 2021-01-07
US11081181B2 (en) 2021-08-03
US20200402578A1 (en) 2020-12-24
KR20200146029A (ko) 2020-12-31

Similar Documents

Publication Publication Date Title
JP4427361B2 (ja) 不揮発性半導体メモリ
JP2008140488A (ja) 半導体記憶装置
US10418113B2 (en) Operation method for suppressing floating gate (FG) coupling
JP2005267821A (ja) 不揮発性半導体メモリ
JP2008146771A (ja) 半導体記憶装置
US20120314506A1 (en) Semiconductor device and method of operating the same
JP2007066440A (ja) 不揮発性半導体記憶装置
US11227658B2 (en) Flash memory and method for controlling the same
US11315612B2 (en) Semiconductor storing apparatus and pre-charge method
US8416629B2 (en) Semiconductor storage device adapted to prevent erroneous writing to non-selected memory cells
JP4690713B2 (ja) 不揮発性半導体記憶装置及びその駆動方法
JP2007305204A (ja) 不揮発性半導体記憶装置
US20130051147A1 (en) Nonvolatile semiconductor memory device
TWI724925B (zh) 快閃記憶體及其操作方法
JP2006146989A (ja) 不揮発性半導体記憶装置
JP6122478B1 (ja) 不揮発性半導体記憶装置
JP2010218623A (ja) 不揮発性半導体記憶装置
JP2006331476A (ja) 不揮発性半導体記憶装置
CN113782083B (zh) 半导体存储装置及预充电方法
TWI727809B (zh) 半導體存儲裝置及預充電方法
US10861560B2 (en) Semiconductor memory device