TW201837541A - 緊密的光束整形及操縱總成 - Google Patents

緊密的光束整形及操縱總成 Download PDF

Info

Publication number
TW201837541A
TW201837541A TW106144179A TW106144179A TW201837541A TW 201837541 A TW201837541 A TW 201837541A TW 106144179 A TW106144179 A TW 106144179A TW 106144179 A TW106144179 A TW 106144179A TW 201837541 A TW201837541 A TW 201837541A
Authority
TW
Taiwan
Prior art keywords
optical
optical component
shaping
assembly
target position
Prior art date
Application number
TW106144179A
Other languages
English (en)
Other versions
TWI741104B (zh
Inventor
強納森 M 羅斯伯格
班傑明 席普來安尼
保羅 E 葛林
強納桑 C 史屈爾茲
Original Assignee
美商寬騰矽公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商寬騰矽公司 filed Critical 美商寬騰矽公司
Publication of TW201837541A publication Critical patent/TW201837541A/zh
Application granted granted Critical
Publication of TWI741104B publication Critical patent/TWI741104B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0911Anamorphotic systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本發明闡述用於將光學光束自光學源耦合至高科技系統之設備及方法。緊密的低成本光束整形及操縱總成可位於該光學源與該高科技系統之間且提供對諸如光束位置、光束旋轉及光束入射角之光束參數之自動化調整。該光束整形及操縱總成可用於將細長光束耦合至複數個光學波導。

Description

緊密的光束整形及操縱總成
本申請案針對於用於將輸出光束自雷射或其他光學源耦合至高科技光學系統之輸入之設備及方法。
雷射及發光二極體(LED)可提供在可用於高科技光學系統(諸如光學通信系統、生物分析系統、醫療裝置、材料處理系統及防空系統)之一或多個可選擇波長下之強輻射。來自雷射或LED之輸出可經準直或未經準直,且輻射可係脈衝的或連續波。在某些情形中,短光學脈衝(例如 ,小於大約1奈秒之光學脈衝)可由雷射或LED產生且經提供至高科技光學系統。 某些高科技光學系統可包含精密光學裝置,來自雷射或LED之輸出必須耦合至該等精密光學裝置。精密光學裝置之一項實例係晶片上之整合式光學波導。通常,來自雷射或LED之光束輸出之空間模態分佈型並不與由波導支援之基本模態(舉例而言)之空間模態分佈型匹配良好。因此,可需要一或多個光學組件以改良光束之空間模態分佈型與光束所耦合之光學系統之接收光學組件之空間模態分佈型之間的匹配。
某些實施例係關於一種光束整形及操縱總成,該光束整形及操縱總成包括:第一光學組件,其經配置以將輸入光束之第一橫向光束形狀轉變為第二光束之第二橫向光束形狀;第二光學組件,其經配置以使該第二橫向光束形狀圍繞該第二光束之光學軸線旋轉;及第三光學組件,其經配置以調整輸出光束在目標位置處之第一位置或第一方向角中之一者。 某些實施例係關於一種將光束自系統之光學源耦合至接收光學組件之方法。該方法可包括如下動作:由光束整形及操縱總成自該光學源接收該光束;用該光束整形及操縱總成將該光束之第一橫向光束形狀轉變為輸出光束之第二橫向光束形狀;用該光束整形及操縱總成將該輸出光束定位在該接收光學組件上;及用該光束整形及操縱總成使該第二橫向光束形狀以可調整方式旋轉。 某些實施例係關於一種用於將輻射光束耦合至設備之光學系統,該光學系統包括:三個旋轉致動器;及三個光學組件,其分別耦合至該三個旋轉致動器,其中每一旋轉致動器具有圍繞軸件軸線旋轉以使該三個光學組件中之一光學組件移動之驅動軸件,其中該三個旋轉致動器之該等軸件軸線基本上平行於同一平面,且其中藉由該三個旋轉致動器致動該三個光學組件會使該光束在三個不同自由度上變更。 某些實施例係關於一種用於將輻射光束耦合至設備之光學系統,該光學系統包括:第一光學組件,其經支撐在可調整座架中;及第一致動器,其耦合至該可調整座架,其中藉由該第一致動器使該第一光學組件移動會使離開該第一光學組件之離開光束之橫向形狀及偏振旋轉,其中該橫向形狀及偏振之該旋轉係圍繞沿著該離開光束居中地伸展之光學軸線。 某些實施例係關於一種用於變更輻射光束之光學系統,該光學系統可包括:第一光學組件,其由經組態以使該第一光學組件圍繞第一軸線旋轉之可調整座架支撐;旋轉致動器,其具有圍繞不平行於該第一軸線之第二軸線旋轉之驅動軸件;凸輪臂,其連接至該驅動軸件;軸承,其連接至該凸輪臂;及彎曲表面,其連接至該可調整座架,其中當致動該旋轉致動器以使該第一光學組件旋轉時該軸承跨越該彎曲表面伸展。 某些實施例係關於一種光學光束操縱設備,該光學光束操縱設備包括:第一旋轉致動器,其經配置以使第一光學窗旋轉;第二旋轉致動器,其經配置以使第二光學窗旋轉;及透鏡;其中該第一光學窗之旋轉調整光學光束在目標位置處之側向位置且該第二光學窗之旋轉調整該光束在該目標位置處之入射角而不使該側向位置改變超過10微米。 某些實施例係關於一種光學光束操縱設備,該光學光束操縱設備包括三個可旋轉透明光學窗,該三個可旋轉透明光學窗經配置而以三個正交自由度調整來自該光束操縱設備之輸出光束之三個參數。 依據以下說明連同附圖可更全面地理解本發明教示之前述及其他態樣、實施方案、動作、功能性、特徵及實施例。
相關申請案之交叉參考 本申請案主張2016年12月16日提出申請且標題為「Compact Beam Shaping and Steering Assembly」之第62/435,679號美國臨時申請案之優先權,該美國臨時申請案以其全文引用方式併入。I. 簡介 本文中所闡述之技術係關於用於將光學光束自雷射或發光二極體耦合至包含精密光學組件之高科技系統之設備及方法。高科技系統可包含一或多個精密光學組件(例如 ,整合式光學波導、整合式光學耦合器、整合式光學調變器、光學繞射元件、光纖等)且可進一步包含機械組件、微機械組件、電氣電路、微流體組件、微機電組件、生物微機電組件及/或生物光電子組件。根據某些實施例,闡述包含對光束參數之五個自動化調整之小輪廓緊密光束整形及操縱總成。該總成亦可包含對光束聚焦及光束形狀之手動或自動化調整。在某些實施方案中,該總成可用於將圓形光束自雷射耦合至生物光電子晶片上之整合式光學波導之線性陣列,且提供以高效率耦合至該複數個波導中之幾乎均勻功率。可藉由對該光束整形及操縱總成中之光學組件之自動化操縱調整跨越該等波導之耦合均勻性。 該光束整形及操縱總成可併入至可攜式儀錶(例如 ,飛行時間成像儀器、利用壽命解析之螢光偵測之生物分析儀器、基因定序儀器、光同調斷層掃描儀器、醫療儀器等)中以提供緊密光學源與緊密高科技系統之精密光學裝置之間的精確且穩定光學耦合。該光束整形及操縱總成可減少振動、溫度變化及製造變化對光學源與高科技系統之間的光學耦合之效應。在2016年5月20日提出申請且標題為「Pulsed Laser and Bioadvanced System」之第15/161,088號美國專利申請案及2016年12月16日提出申請且標題為「Compact Mode-Locked Laser Module」之第62/435,688號美國專利申請案中闡述此等實施例之光學源之實例,該等美國專利申請案以引用方式併入本文中。此儀錶可係容易攜帶的且以與針對需要大量光學源及大量光學耦合組件之習用儀錶之情形相比較相當低之成本生產。高可攜帶性可使此等儀器對於研究、開發、臨床用途、場部署、軍事及商業應用更有用。 發明人已認識到且瞭解到,當雷射或LED及其驅動電路可輸出超過100毫瓦之功率位準且在大小方面經製成為非常緊密的(例如 ,大約一張A4紙或更小之大小,該A4紙具有大約40 mm或更小之厚度)時,諸如脈衝雷射及LED之光學源可能係更有用的。當經製成為緊密的時,此等光學源可併入至可攜式高科技儀器中,該等可攜式高科技儀器可在以下各項之領域中使用但不限於以下各項之領域:(舉例而言)醫療診斷、光學通信、用於藥物開發之大量並行樣本分析、基因定序或蛋白質分析。術語「光學」可用於係指超紫外線、可見、近紅外線及短波長紅外線光譜頻帶。 發明人已進一步認識到且瞭解到,將此等光學源製造為可容易地換入至可攜式高科技儀器中且自可攜式高科技儀器換出之模組可係有利的。此隨插即用能力可最小化儀器之停機時間,且允許在不同儀器中使用單個源。發明人已進一步認識到,雷射及LED一般具有具不同光束參數(例如 ,光束大小、光束形狀、光束準直、光束方向、橫向光束分佈型)之輸出光束,且接收光學光束之高科技系統可具有對該等所接收光束參數之不同要求。 為適應光學源與高科技系統之間的光束參數差異,發明人已設想出在下文進一步詳細地闡述之光束整形及操縱設備以及相關聯方法。該光束整形及操縱設備係可併入至儀器中以調適來自光學源之輸出光束從而使其符合光學源將耦合之高科技系統之可接受光束參數的緊密總成(例如 ,小於一張A4紙之大小之二分之一且小於40 mm厚度)。在以下說明中,結合僅僅係「高科技」儀器之一項實例之基因定序儀器闡述光束整形及操縱設備之實施例。然而,應瞭解,所闡述實施例之光束整形及操縱設備可與其他類型之儀器一起使用,無論該等其他類型之儀器是否包含高科技或進階光學技術。 在實施例中,高科技儀器1-100可包括安裝在該儀器內或以其他方式耦合至該儀器之光學源1-110,如 1-1 中所繪示。根據某些實施例,光學源1-110可係鎖模雷射。鎖模雷射可包含在雷射腔中或耦合至雷射腔之元件(例如 ,可飽和吸收器、聲光調變器、克爾透鏡),該元件誘發雷射之縱向頻率模式之相位鎖定。在其他實施例中,光學源1-110可包括增益開關雷射。增益開關雷射可包括調變雷射之增益介質中之光學增益之外部調變器(例如 ,脈衝驅動器電路)。 儀器1-100可包含光束整形及操縱總成1-150及高科技系統1-160。光束整形及操縱總成1-150可包含一或多個光學組件(例如 ,透鏡、鏡、光學濾波器、光束整形光學器件、衰減器)且經組態以對光學脈衝1-122 (或連續波光束)進行操作及/或將光學脈衝1-122自光學源1-110遞送至高科技系統1-160。 根據某些實施例,高科技系統可使用光學組件、偵測器、電子器件及通信硬體引導、收集且分析光學信號。舉例而言,高科技系統1-160可包含若干光學組件,該等光學組件經配置以將光學脈衝引導至待分析之至少一個樣本,自該至少一個樣本接收一或多個光學信號(例如 ,螢光、背向散射輻射),且產生表示該等所接收光學信號之一或多個電信號。在某些實施例中,高科技系統1-160可包含一或多個光偵測器及經組態以處理來自該等光偵測器之電信號之信號處理電子器件(例如 ,一或多個微控制器、一或多個場可程式化閘極陣列、一或多個微處理器、一或多個數位信號處理器、邏輯閘 )。該高科技系統亦可包含經組態以經由資料通信鏈路(未展示)將資料傳輸至外部裝置且自外部裝置接收資料之資料傳輸硬體。在某些實施例中,高科技系統1-160可經組態以接納生物光電晶片1-140,生物光電晶片1-140固持待分析之一或多個樣本。可在晶片上部分地處理用於樣本分析之資料信號及/或將該等資料信號傳輸至外部處理器以用於分析。另外,根據某些實施例,可在樣本分析期間將指示光學耦合至晶片1-140及/或樣本井之資料信號即時提供至光束整形及操縱總成1-150以即時維持充足光學耦合。 儘管光學脈衝1-122經繪示為具有單個橫向光學模式,但在某些實施例中,來自光學源1-110之輸出可係多模態的。舉例而言,橫向輸出光束分佈型可由於光學源之多模態操作而具有多個強度峰值及最小值。在某些實施例中,可藉由光束整形及操縱總成1-150中之一或多個光學組件(例如 ,藉由漫射光學器件)使多模態輸出均質化。在某些實施方案中,多模態輸出可耦合至高科技系統1-160中之複數個光纖或波導。舉例而言,多模態輸出之每一強度峰值可耦合至連接至生物光電晶片1-140之單獨波導或波導群組。允許光學源以多模態操作可達成來自光學源之更高輸出功率。在某些實施方案中,光學源1-110可產生具有其他橫向光束分佈型(諸如但不限於高頂光束分佈型、環形光束分佈型及線形光束分佈型)之脈衝1-122。可用具有經圖案化或梯度塗層之光學元件、繞射光學元件、雙態光學元件、旋轉三稜鏡透鏡、梯度折射率元件或此等光學元件中之兩者或兩者以上之組合來產生此等光束分佈型。 對於某些實施例,高科技儀器可經組態以接納可拆卸經封裝生物光電晶片1-140。該晶片可包含複數個反應室、經配置以將光學激發能量遞送至該等反應室之整合式光學組件及經配置以偵測螢光發射或來自該等反應室之其他光學發射之整合式光偵測器。在某些實施方案中,晶片1-140可係一次性的,然而在其他實施方案中該晶片可係可再用的。當該晶片由儀器接納時,其可與光學源1-110電通信且光學通信且與高科技系統1-160電通信及/或光學通信。在某些實施例中,生物光電子晶片可安裝(例如 ,經由承窩連接)在可包含額外儀器電子器件之電子電路板(未展示) (諸如印刷電路板(PCB))上之系統內。舉例而言,其上安裝有生物光電晶片1-140之PCB可包含經組態以將電力、一或多個時脈信號及控制信號提供至生物光電晶片1-140的電路,及經配置以接收表示自晶片上之反應室偵測之發射之信號的信號處理電路。該PCB亦可包含經組態以接收與耦合至生物光電晶片1-140之波導中之光學脈衝1-122之光學耦合及功率位準有關之回饋信號的電路。在某些實施例中,該PCB可包含經組態以將驅動信號提供至光束整形及操縱總成1-150以變更光束參數以用於較佳耦合至生物光電晶片1-140的電路。在某些情形中,可產生該等驅動信號以用於對(例如 )由使用者調整之光束參數之開環控制。在某些實施例中,可產生該等驅動信號作為閉環回饋控制系統之一部分,例如 ,以維持光學光束之對準及/或耦合效率。在某些實施方案中,可由儀器1-100中之資料處理電路部分地或完全地處理自生物光電子晶片傳回之資料,儘管可經由網路連接將資料傳輸至一或多個遠端資料處理器以用於資料處理。 1-2 繪示根據某些實施例之來自光學源1-110之輸出脈衝1-122之時間強度分佈型。在某些情形中,所發射脈衝之峰值強度值可係大致相等的,且該等分佈型可具有高斯時間分佈型,儘管諸如sech2 分佈型之其他分佈型可係可能的。在某些實施方案中,該等脈衝可不具有對稱時間分佈型且可具有其他時間分佈型,諸如使用增益開關雷射之實施例。每一脈衝之持續時間可由半高全寬(FWHM)值表徵,如 1-2 中所指示。根據脈衝光學源之某些實施例,可形成超短光學脈衝且該等超短光學脈衝具有介於大約10皮秒(ps)與大約100 ps之間的時間FWHM值。在其他情形中,FWHM值可比10 ps短或比100 ps長。 根據某些實施例,輸出脈衝1-122可分開規律間隔T 。在某些實施例中(例如 ,對於鎖模雷射),T 可由脈衝在光學源1-110之雷射腔內之往返行進時間判定。根據某些實施例,脈衝分開間隔T 可介於大約1 ns與大約30 ns之間。在某些情形中,脈衝分開間隔T 可介於大約5 ns與大約20 ns之間,對應於介於大約0.7米與大約3米之間的雷射腔長度。在某些實施例中,光束整形及操縱總成1-150可另外改變光學脈衝之脈衝長度(例如 ,藉由使用頻率分散元件,諸如光柵及/或光纖、繞射光學元件或鈴流腔)。在某些實施例中,光束整形及操縱總成可另外改變脈衝分開間隔T (例如 ,藉由將自光學源1-110接收之光束分裂成不同光學路徑、在不同光學路徑中添加不同延遲且重新組合該等光學路徑以使來自不同路徑之脈衝交錯)。在某些情形中,脈衝分開間隔T 可並非有規律的,且光束整形及操縱總成1-150可執行其光束整形及操縱功能而不管脈衝分開間隔如何。 對於其中光學脈衝1-122激發複數個反應室中之螢光發射(其隨後經並行偵測及分析)之實施例,所要脈衝分開間隔T 可由如下因素之組合判定:舉例而言,反應室數目、螢光發射特性及偵測與資料處置電路用於自反應室讀取資料之速度。發明人已認識到且瞭解到,不同螢光團可藉由其不同螢光衰變速率或時間發射機率曲線來區分。因此,需要存在足以收集可用於在其不同發射特性之間進行區分之選定螢光團之充足統計資料的脈衝分開間隔T 。另外,若脈衝分開間隔T 太短,則資料處置電路無法與由大量反應室收集之大量資料保持同步。發明人已認識到且瞭解到,介於大約5 ns與大約20 ns之間的脈衝分開間隔T 適合用於具有高達大約2 ns之衰變速率之螢光團且適合用於處置來自介於大約60,000個與10,000,000個之間的反應室之資料。 根據某些實施方案,光束整形及操縱模組1-150可自光學源1-110接收輸出脈衝且經組態以變更至少三個光束參數以達成光束自光學源1-110至高科技系統1-160之經改良耦合。可由光束整形及操縱模組1-150變更之光束參數包含但不限於:高科技系統中之目標位置處之光束位置、高科技系統中之目標位置處之光束方向或入射角、光束形狀、光束準直、圍繞光束之光學軸線之光束旋轉、光束偏振與偏振定向、光束光譜組件、光束之橫向強度分佈型、平均光束功率、脈衝持續時間及脈衝分開時間。 參考 1-3 中所繪示之生物分析實施例,在某些實施方案中,輸出脈衝1-122可耦合至生物光電子晶片上之一或多個光學波導1-312中。在某些實施例中,該等光學脈衝可經由光柵耦合器1-310耦合至一或多個波導,儘管在某些情形中可使用至生物光電子晶片上之光學波導之端之耦合。象限(quadrant)(象限(quad))偵測器1-320可位於半導體基板1-305 (例如 ,矽基板)上以用於輔助光學脈衝1-122之光束對準至光柵耦合器1-310。一或多個波導1-312及反應室1-330可整合於同一半導體基板上,其中介入介電層1-410(例如 ,二氧化矽層)位於基板、波導、反應室與光偵測器1-322之間。 每一波導1-312可包含漸縮部分1-315或在反應室1-330下面之其他光學特徵以均衡沿著波導耦合至反應室之光學功率。縮減錐可將更多光學能量驅迫至波導之芯外側,從而增加至反應室之耦合且補償沿著波導之光學損耗,包含耦合至反應室中之光之損耗。第二光柵耦合器1-317可位於每一波導之端處以將光學能量引導至整合式光電二極體1-324。該整合式光電二極體可偵測沿著波導向下耦合之功率量且將所偵測信號提供至控制光束整形及操縱模組1-150之回饋電路(舉例而言)。 反應室1-330可與波導之漸縮部分1-315對準且凹陷在桶形件1-340中。可針對每一反應室1-330存在位於半導體基板1-305上之時間方格化光偵測器1-322。金屬塗層及/或多層塗層1-350可在反應室周圍且在波導上面形成以阻止不在反應室中(例如 ,分散在反應室上面之溶液中)之螢光團之光學激發。金屬塗層及/或多層塗層1-350可凸起而超出桶形件1-340之邊緣以在每一波導之輸入端及輸出端處減少波導1-312中之光學能量之吸收性損耗。 根據某些實施例,在生物光電晶片1-140可存在波導、反應室及時間方格化光偵測器之複數個列,使得可實施對樣本之大量並行分析。舉例而言,在某些實施方案中,可存在128列,每一列具有512個反應室,總共65,536個反應室。其他實施方案可包含每列更少或更多反應室、更少或更多波導列,且可包含其他佈局組態。在某些情形中,可存在成百上千或甚至成千上萬個波導列。可經由一或多個整合式星形耦合器或多模干擾耦合器或者藉由位於至晶片1-140之光學耦合器與複數個波導之間的任何其他構件將來自光學源1-110之光學功率分配至多個波導。 發明人已發現,在某些情形中,當嘗試將功率自光學源1-110高效地耦合至複數個(大量)整合式光學波導1-312時可出現問題。為了將充足功率提供至每一波導及反應室1-330,對於大量反應室,輸入光束之平均功率隨著反應室數目增加而成比例地上升。對於某些整合式光學波導系統(諸如氮化矽波導芯/二氧化矽包覆層),高平均功率可導致波導之損耗之暫時改變且因此導致隨時間而變的反應室中之明顯功率不穩定性。發明人已量測在高平均功率下整合式光學波導中之時間相依損耗,且在 1-4 中標繪實例性結果。若來自雷射之平均功率位準變得太高,則可發生對整合式波導或晶片上之其他整合式光學組件(尤其係接近光耦合至晶片中之位置)的光學損壞。 針對具有氮化矽芯之單模波導之三個相同長度,將插入損耗量測為時間之函數。耦合至三個波導中之初始平均功率位準係0.5 mW、1 mW及2 mW。 1-4 之曲線圖針對三個功率位準將波導之每一長度之所量測插入損耗之改變展示為時間之函數。該曲線圖展示在高功率位準下損耗可在少於10分鐘內改變3 dB。對於某些應用,諸如其中可運行反應達數十分鐘或小時之單分子基因定序,此等功率不穩定性可並非係可接受的。 結合 1-5 闡述高科技系統1-160之實施例之進一步細節, 1-5 圖解說明可插入至高科技系統1-160中以用於大量並行樣本分析之生物光電晶片1-140之一部分。在 1-5 中繪示在反應室1-330中發生之生物反應之非限制性實例。在此實例中,在反應室中發生核苷酸或核苷酸類似物至與目標核酸互補之生長鏈中之順序併入。可偵測核苷酸或核苷酸類似物之順序併入以將DNA定序。該反應室可具有介於大約150 nm與大約250 nm之間的深度及介於大約80 nm與大約160 nm之間的直徑。金屬化層1-540 (例如 ,用於電參考電位之金屬化)可在光偵測器上面經圖案化以提供阻擋來自毗鄰反應室及其他非需要光源之雜散光之孔隙。根據某些實施例,聚合酶1-520可位於反應室1-330內(例如 ,附接至該室之基底)。該聚合酶可吸收目標核酸1-510 (例如 ,源自DNA之核酸之一部分),且將互補核酸之生長鏈定序以產生生長DNA鏈1-512。用不同螢光團標記之核苷酸或核苷酸類似物可分散在反應室上面及反應器內之溶液中。 當將所標記核苷酸或核苷酸類似物1-610併入至互補核酸之生長鏈中(如 1-6 中所繪示)時,可藉由自波導1-312耦合至反應室1-330中之光學能量脈衝重複地激發一或多個所附接螢光團1-630。在某些實施例中,一或若干螢光團1-630可用任一適合連接體1-620附接至一或多個核苷酸或核苷酸類似物1-610。併入事件可持續高達大約100 ms之一段時間。在此時間期間,可用時間方格化光偵測器1-322偵測由(若干)螢光團之激發引起之螢光發射脈衝。在某些實施例中,可在每一像素處存在一或多個額外整合式裝置1-323以用於信號處置(例如 ,放大、讀出、路由 )。根據某些實施例,每一像素可包含使螢光發射通過且減少來自激發脈衝之輻射傳輸之單層或多層光學濾波器1-530。某些實施方案可不使用光學濾波器1-530。藉由將具有不同發射特性(例如 ,螢光衰變速率、強度、螢光波長)之螢光團附接至不同核苷酸(A、C、G、T),在DNA鏈1-512併入核酸且達成對生長DNA鏈之基因序列之判定時偵測且區分不同發射特性。 根據某些實施例,經組態以基於螢光發射特性分析樣本之高科技系統1-160可偵測不同螢光分子之間的螢光壽命及/或強度差異及/或不同環境中之相同螢光分子之間的壽命及/或強度差異。藉由闡釋方式, 1-7 標繪可表示來自兩個不同螢光分子(舉例而言)之螢光發射之兩個不同螢光發射機率曲線(A及B)。參考曲線A (虛線),在由短或超短光學脈衝激發之後,來自第一分子之螢光發射之機率pA (t) 可隨時間衰變,如所繪示。在某些情形中,發射光子之機率隨時間之減小可由指數衰變函數表示,其中PAo 係初始發射機率且τ1 係表徵發射衰變機率之與第一螢光分子相關聯之時間參數。τ1 可稱為第一螢光分子之「螢光壽命」、「發射壽命」或「壽命」。在某些情形中,τ1 之值可因螢光分子之區域環境而變更。其他螢光分子可具有不同於曲線A中所展示之發射特性。舉例而言,另一螢光分子可具有不同於單一指數衰變之衰變分佈型,且其壽命可由半衰期值或某一其他度量來表徵。 第二螢光分子可具有係指數的但具有可量測地不同之壽命τ2 之衰變分佈型,如針對 1-7 中之曲線B所繪示。在所展示之實例中,曲線B之第二螢光分子之壽命比曲線A之壽命短,且在第二分子之激發之後不久發射機率pB (t) 比曲線A之發射機率高。在某些實施例中,不同螢光分子可具有介於自大約0.1 ns至大約20 ns之範圍內之壽命或半衰期值。 發明人已認識到且瞭解到,螢光發射壽命之差異可用於辨別不同螢光分子之存在或不存在及/或用於辨別螢光分子所經受之不同環境或條件。在某些情形中,基於壽命(而非發射波長,舉例而言)辨別螢光分子可簡化高科技儀器1-100之態樣。作為實例,波長區別光學器件(諸如波長濾波器、每一波長之專用偵測器、在不同波長下之專用脈衝光學源、及/或繞射光學器件)可在數目上減少或在基於壽命而辨別螢光分子時經消除。在某些情形中,可使用以單個特性波長操作之單個脈衝光學源來激發在光學光譜之同一波長區域內發射但具有可量測地不同之壽命的不同螢光分子。使用單個脈衝光學源而非在不同波長下之多個源來激發且辨別在同一波長區域內發射之不同螢光分子的高科技系統可操作且維護起來不那麼複雜,更緊密,且可以更低成本來製造。 儘管基於螢光壽命分析之高科技系統可具有特定益處,但可藉由允許額外偵測技術而增加由高科技系統獲得之資訊量及/或偵測準確度。舉例而言,某些高科技系統1-160可另外經組態以基於螢光波長及/或螢光強度而辨別樣本之一或多個性質。 再次參考 1-7 ,根據某些實施例,可用經組態以在激發螢光分子之後將螢光發射事件時間方格化之光偵測器區分不同螢光壽命。可在光偵測器之單個電荷累積循環期間發生時間方格化。電荷累積循環係讀出事件之間的間隔,在該間隔期間將光生載波累積在時間方格化光偵測器之方格中。在 1-8 中用圖表方式介紹藉由發射事件之時間方格化判定螢光壽命之概念。在就在之前之時間te 處,同一類型(例如 ,對應於 1-7 曲線B之類型)之螢光分子中之一螢光分子或螢光分子總體由短或超短光學脈衝激發。對於大分子總體,發射強度可具有類似於曲線B之時間分佈型,如 1-8 中所繪示。 然而,對於單個分子或小數目個分子,針對此實例,根據 1-7 中之曲線B之統計資料發生螢光光子發射。時間方格化光偵測器1-322可將自發射事件產生之載波累積至關於(若干)螢光分子之激發時間在時間上經解析之離散時間方格( 1-8 中指示三個)中。當對大數目個發射事件求和(例如 ,對應於針對方格1、方格2、方格3在曲線下方之區)時,所得時間方格(插圖中所繪示)可近似 1-8 中所展示之衰變強度曲線,且經方格化信號可用於區分不同螢光分子或螢光分子位於其中之不同環境。在2015年8月7日提出申請、標題為「Integrated Device for Temporal Binning of Received Photons」之第14/821,656號美國專利申請案中闡述時間方格化光偵測器1-322之實例,該美國專利申請案以引用方式併入本文中。 在其中來自反應室之發射強度為低或其中樣本之表徵取決於來自反應室之強度值之情形中,遞送至反應室之功率隨時間而保持穩定係有益的。舉例而言,若遞送至反應室之功率由於波導中之時間相依損耗而減小3 dB (參見 1-4 ),則螢光發射事件數目可降至低於儀器之雜訊本底之位準。在某些情形中,區分光子信號與雜訊之失敗可不利地影響用於區分螢光團壽命之光子統計資料。因此,可丟失重要分析資訊,可發生分析錯誤(例如 ,基因解碼錯誤),或定序運行可失敗。II. 將輸出光束自光學源耦合至高科技系統 發明人已設想出用於將輸出光束自光學源耦合至高科技系統之設備及方法。可使用單個小輪廓底盤(例如 ,高度小於35 mm)以適中成本組裝設備(稱為「光束整形及操縱總成」),該單個小輪廓底盤支撐用於使對多個光束參數之動態調整自動化之所有光學及機械組件。在某些實施例中,該光束整形及操縱總成可量測其最長側為小於140 mm且具有小於35 mm之厚度。由於其緊密大小,總成可安裝在包含光學源1-110及高科技系統1-160之可攜式高科技儀器(諸如上文所闡述之可攜式DNA定序儀器)中。其他應用包含但不限於讀板儀、凝膠掃描機、聚合酶鏈反應(PCR)機器、螢光選別器及微陣列檢定之用途。 由於其調整多個光束參數之能力,因此光束整形及操縱總成1-150可使光學源及高科技系統免於為了進行光束整形及操縱而需要專業組件。光束整形及操縱總成1-150亦可適應光學源及高科技系統中之製造及組裝變化,而且降低光束耦合對諸如溫度改變及振動之環境因素之敏感度。在某些實施例中,光束整形及操縱總成可處置具有高達2瓦特之平均功率、具有短至10皮秒之脈衝持續時間之脈衝光學光束。亦可使用該總成來解決高科技系統(諸如上文所闡述之基因定序系統)中之時間相依波導損耗。 減少時間相依波導損耗之效應之一種方法係減小在晶片上使用之整合式波導之長度。但在某些情形中,可需要明顯長度之波導來將光學信號路由至反應室。另一選擇係或另外,可降低耦合至波導中之輻射之強度。發明人已認識到且瞭解到,時間相依波導損耗可係最有問題的,其中來自光學源1-110之光束首先耦合至整合式光學電路之單個波導中且然後在諸多波導當中重新分配。在耦合區域處,強度可係非常高的且導致波導損耗之迅速改變。 為減少耦合區域處之時間相依波導損耗,發明人已設想出切片式光柵耦合器2-100,在 2-1A 中展示切片式光柵耦合器2-100之經簡化圖解說明。該切片式光柵耦合器可係位於高科技系統1-160中之晶片上之精密整合式光學組件,且包括毗鄰於複數個波導2-120而形成之為長度L 之光柵2-110。該等波導可具有接收由光柵2-110繞射之光之漸縮端2-122。該等漸縮端可具有不同寬度(例如 ,寬度朝向光柵之相對端更寬,如所繪示)。由該等漸縮端橫跨之總寬度可小於或大致等於光柵之長度L 。舉例而言,該切片式光柵耦合器可整合至包含一光子電路及若干反應室1-330之基板上。 在某些實施例中,來自光學源1-110之光束可經整形(或由光學源產生)使得其在± X方向上延伸以基本上匹配具有長度L 之光柵耦合器之所接受大面積光束分佈型。該大面積光束分佈型可具有在± X方向上大致匹配光柵之長度L (在1/e2 強度值之間所量測)之光束長度或第一腰部以及在Y 方向上大致匹配光柵之寬度(在1/e2 強度值之間所量測)之光束寬度或第二腰部。舉例而言,經延伸光束2-112可具有如由 2-1A 中之虛線橢圓所繪示之形狀。當此光束入射於光柵上(例如 ,在+Z 方向上行進)時,光柵將使該光束朝向波導2-120之漸縮端2-122繞射至+Y 方向中。該光束可具有在X 方向上之橫向強度分佈型,該橫向強度分佈型在其中心處最強烈且使其強度朝向光束之邊緣移動而減小(在± X方向上減小)。對於此光束,該等波導之漸縮端2-122可在光柵2-110之相對端處較寬且在該光柵之中心處較窄,使得類似功率量耦合至複數個波導2-120中之每一波導中。儘管在圖式中展示10個波導,但切片式光柵耦合器可具有更多波導(例如 ,介於20個與2000個之間)。藉由跨越諸多波導分配功率耦合,可減少或消除與因最初將所有功率耦合至單個波導中且隨後將光學功率分配至多個波導中而產生之時間相依損耗相關聯之不利效應。經擴展光束亦減小光柵耦合器處之強度且降低損壞光柵2-110或耦合區域之風險。在 2-1A 及其他圖式中,僅為了便於闡述方向而使用座標軸。可在不背離本應用之範疇之情況下使用座標軸之其他定向。 發明人已發現,意外地,難以藉助 2-1A 中所繪示之切片式光柵耦合器2-100及光束配置獲得功率至複數個波導2-120中之均勻耦合。即使光束之橫向強度分佈型可係高斯的或良好表徵的使得可預先計算漸縮端2-122之不同寬度以在理論上捕獲相等量之功率,發明人亦發現,耦合均勻性對光束之橫向強度分佈型之改變且對± X方向上之光束位移高度敏感。 發明人已設想出一種將寬光束耦合至複數個波導之方法,該方法提供用於改良耦合至該等波導之功率位準之均勻性的調整,降低耦合對光束之橫向強度分佈型及對光束位移之敏感度。在 2-1B 中圖解說明該方法。根據某些實施例,來自光學源(諸如雷射)之圓形光束可經重新整形為相對於光柵線以角度f定向之橢圓形光束2-122。橢圓形光束之長軸之長度可超過光柵2-110及漸縮端陣列2-122之長度L 且可經旋轉使得橢圓之長軸相對於光柵2-110之齒或線之縱向方向處於側滾角f。在某些實施例中,角度f可介於0.25度與25度之間。光束2-122之部分可在± X方向及± Y方向上延伸超過光柵2-110之邊緣。根據某些實施例,光束整形及操縱模組1-150可將來自光學源1-110之圓形光束重新整形為橢圓形光束,該橢圓形光束與表徵接收光柵2-110及毗鄰漸縮波導端2-122之耦合區域之長度的長度L 相比較加大了介於10 %與35 %之間。作為僅僅一項實例,圓形光束可整形為橢圓,該橢圓針對具有大致120微米之長度L 的光柵2-110之耦合區域具有大致150微米之長軸長度l1 (在1/e2 強度值之間所量測)。光柵2-110之耦合區域之長度L可介於50微米與250微米之間,且該光柵之寬度可介於10微米與50微米之間。然而 2-1A 中所展示之耦合配置可允許來自95%以上之光束區之功率耦合至漸縮端2-122中, 2-1B 中所展示之耦合配置可允許來自介於80%與95%之間的光束區之功率耦合至該等漸縮端中,同時亦展現對光束之長軸之長度l1 之經減小敏感度及跨越波導陣列之經改良功率分裂均勻性。發明人已認識到且瞭解到,總體耦合效率之降低不僅僅藉由耦合穩定性之改良、對光束長度之經減小敏感度及至波導中之經耦合功率之均勻性來補償。然而,在某些實施例中,細長光束可以大致0度之角度對準至光柵2-110或其他接收光學組件。 在操作期間,可調整側滾角f及在XY 方向上之光束位移以獲得且維持功率跨越複數個波導2-120之均勻耦合。為補償在X 方向上具有不對稱強度分佈型之光束2-122,可在± X及/或± Y方向上調整該光束之位置以改良跨越波導2-120之耦合均勻性。舉例而言,若光束在+X 方向上之強度大於光束在–X 方向上之強度,則可使光束在–X 方向上移動以幫助等化耦合至該等波導中之功率。另外或另一選擇係,可使光束在+Y 方向上移動(針對所展示之角度),使得光束在+X 方向上之一部分在+Y 方向上移動離開光柵2-110且減少在+X 方向上耦合至漸縮端2-122之功率量,同時光束在–X 方向上之一部分移動至光柵2-110上且增加在–X 方向上耦合至漸縮端2-122之功率量。若光束2-122在X 方向上具有對稱強度分佈型,則可進行在±Y 方向、±X 方向及/或± f方向(舉例而言)上之調整以改良將功率耦合至該等波導中之均勻性及/或效率。在某些實施方案中,另外或另一選擇係,可做出對其他光束參數(例如 ,入射角、光束大小、偏振)之調整以改良耦合效率及/或均勻性。 關於闡述光束角度及方向,+Z 可用於指示光學光束之行進方向。XY 方向可稱為「橫向」或「側向」方向。該X 方向可用於指示水平方向且該Y 方向可用於指示垂直方向。光束圍繞Z 軸之旋轉可稱為「側滾」且由符號f指示。圍繞X 軸之旋轉可稱為「縱傾」且由符號qx 指示。圍繞Y 軸之旋轉可稱為「側傾」且由符號qy 指示。 儘管可使用經致動轉向鏡或光學窗(舉例而言)執行對±X 方向及±Y 方向之調整,但對光束大小及光束側滾或旋轉(± f)之調整並非簡單的。舉例而言,對光束大小及光束旋轉之調整可耦合至且影響其他光束參數,諸如光束位置。發明人亦已認識到且瞭解到,在不使光束位移之情況下對光束在光柵上之入射角(縱傾角及側傾角)之調整可用於改良至波導之耦合效率且適應光學源1-110及高科技系統1-160之接收光學器件之製造變化。發明人已進一步認識到且瞭解到,來自光束整形及操縱總成之光束品質應係高的(例如 ,小於1.5之M2 值),使得在某些情形中可達成至高科技系統1-160之光學組件之高效耦合。發明人已瞭解到,藉助對多個光束參數之自動化控制連同用於場內用途之緊密且穩定總成一起提供光束大小、位置、入射角及旋轉調整係困難挑戰。 在 2-2A 中繪示光束整形及操縱模組1-150之實例。根據某些實施例,光束整形及操縱模組可包括經組態以支撐光束整形及操縱模組之致動器及光學組件之牢固底盤2-210。在實施例中,該底盤可包含其上可安裝有該等光學組件之底座,且可進一步包含可附接至該底座或與該底座形成整體之側壁或其一部分。模組1-150可進一步包含附接至該底盤之蓋,以便封圍該等光學組件。在某些情形中,該蓋可包含該等側壁或其一部分。 該底盤及該蓋可由金屬及/或低熱膨脹複合材料形成或組裝。在某些情形中,該底盤及該蓋可由單片鋁機械加工或鑄造而成。當底盤2-210由單片材料製作時,可藉由以下方式使將光學組件固持在光束整形及操縱總成內之元件及/或光學組件自身相對於彼此準確地對準:使該等元件及/或組件對齊至經機械加工至底盤中之對準特徵或放置在底盤中之對準銷。底盤2-210可呈適合於裝納光束整形及操縱模組1-150之光學組件之任何形狀,且可經組態安裝至其中併入有光學源1-110之儀器之框架或底盤。 發明人已認識到且瞭解到,光束整形及操縱模組之底盤2-210可另外提供對高科技系統1-160之印刷電路板(PCB) 2-290之至少一區域之支撐,在印刷電路板(PCB) 2-290上可安裝有具有諸如分析晶片(例如 ,生物光電晶片1-140)之接收光學組件之裝置,如 2-2B 中所繪示。光束整形及操縱模組之底盤2-210可使PCB之以其他方式未經支撐或可移動區域穩定化。舉例而言,底盤2-210可藉助機械座架2-214 (例如 ,具有高度調整螺絲)在數個位置處附接至高科技儀器之底盤或框架2-212,機械座架2-214提供橫跨在PCB 2-290之區上方之剛性總成。支撐分析晶片1-140的PCB之區域可接近由模組之底盤2-210橫跨之區且可固定至光束整形及操縱模組之底盤2-210 (例如 ,藉助緊固件2-216)以減少光束整形及操縱模組1-150與分析晶片1-140之間的相對運動(例如 ,平面外運動,諸如由機械振動引起的PCB之板振動)。舉例而言,緊固件2-216 (例如 ,螺絲)可將PCB 2-290之區域(其可以其他方式未經支撐)剛性地固定至在光束整形及操縱模組1-150之光學輸出埠附近之位置且減少或消除可由於耦合至PCB之機械振動而以其他方式發生的PCB之平面外偏轉。因此,光束整形及操縱模組1-150可機械地減少將以其他方式作用於晶片或高科技系統1-160之接收光學器件且使該等接收光學器件相對於光束整形及操縱模組1-150位移之振動。 根據某些實施例,底盤2-210及整個光束操縱總成1-150可安裝至儀器之底盤或框架2-212,使得可相對於儀器之底盤或框架2-212調整底盤之定向。舉例而言,可使用三點安裝方案,其中三個機械座架2-214各自提供對底盤2-210之獨立高度調整。藉由用此等座架2-214獨立地調整高度,除總體高度以外亦可調整底盤2-210相對於輸入光束2-205之一或多個角度(例如 ,縱傾角及側滾角)。在某些情形中,形成於兩個安裝位置(螺絲可自機械座架延伸穿過該等安裝位置)處之狹槽2-203 ( 2-2A 中所展示)可允許底盤2-210相對於輸入光束2-205之進一步角度調整(例如 ,側傾)。 在某些實施例中,光束整形及操縱模組1-150之致動器可包括經配置以致動光束整形及操縱模組之光學組件之一或多個步進馬達(在所圖解說明之實施例中為五個,2-221、2-222、2-223、2-224、2-225)。為減小光束整形及操縱模組之高度,該等致動器可經安裝使得其軸件大致位於同一平面中,如圖式中所繪示。在某些實施方案中,一或多個步進馬達可具有正交於平面或處於其他定向之軸件。在某些情形中,一或多個步進馬達可部分地製作於可附接至光束整形及操縱模組之PCB上,如 2-2B 之實例中所繪示。舉例而言,製作於PCB 2-290上之步進馬達(未展示)可延伸至光束整形及操縱模組1-150中且致動光學組件以使其圍繞Y 軸旋轉。在美國臨時專利申請案62/289,019中闡述部分地由PCB製作之步進馬達之實例,該美國臨時專利申請案以引用方式併入本文中。部分地由PCB製作之馬達可包含經組態以使光束整形及操縱模組之光學組件圍繞垂直於PCB之平面之軸線旋轉之驅動軸件。在某些實施方案中,可使用其他類型之致動器(例如 ,壓電致動器、線性馬達)作為致動器。 根據某些實施例且再次參考 2-2A 2-3 中之光學表示,光束整形及操縱模組1-150可包含第一光學窗2-231、第二光學窗2-232、聚焦透鏡2-233、第三光學窗2-235及第四光學窗2-237。在某些情形中,可替代光學窗使用具有具與λ/20一樣好或更好之平坦度之表面之光學平板以達成更高光束品質。為了安全,光學快門2-239可包含於總成1-150中以阻擋輸出光束。在實施例中,透明光學窗可由致動器(諸如分別為步進馬達2-221、2-222、2-223、2-224)致動以調整聚焦透鏡2-233之焦點處之光束位置及光束入射角。光學窗及聚焦透鏡可經抗反射塗佈以減少自光學器件之非需要菲涅爾(Fresnel)反射。根據某些實施例,該等光學窗之相對面可在10弧秒之內係平行的,儘管在某些情形中可容忍更少平行度。該等光學窗可具有相同厚度,或可具有不同厚度。光學窗之厚度可介於3 mm與20 mm之間。儘管在某些情形中可使用轉向鏡來調整光束位置及入射角,但首先來說,光學窗之優點係其實質上免除將來自底盤2-210之機械振動耦合至光束位置及入射角之改變中。舉例而言,儘管光學窗可因振動運動而位移,穿過光學窗之光束之光學光束路徑應保持不變。另外,首先來說,光學窗之光學座架中之熱膨脹效應或製造變化(可使光學窗位移)將不影響光束路徑。在某些實施方案中,可存在位於光束整形及操縱模組內以重新引導光束路徑之一或多個轉向鏡2-234,儘管在某些情形中穿過光束整形及操縱模組之光束路徑可係筆直的或彎曲的且可不使用轉向鏡來摺疊光束路徑。 根據某些實施方案,轉向鏡2-234可係二向分光的,使得其使在第一波長範圍中之一或多個波長通過,且反射在第二波長範圍中之一或多個波長。舉例而言,二向分光經塗佈轉向鏡2-234可使來自光學源1-110之在紅外線波長區域中之基本波長通過從而到達束集堆及/或光偵測器(未展示)且將在可見光譜範圍中之經倍頻波長反射至生物光電晶片1-140。在其他實施方案中,轉向鏡2-234可具有針對單個特性波長之反射塗層,且並非二向分光的。在此等實施方案中,可藉助光束整形及操縱總成中之其他光學組件(例如 ,干涉濾波器、薄膜、稜鏡)達成輸入光束中之波長之分開。 在實施例中,轉向鏡2-234可安置於可調整座架2-246上,可調整座架2-246可由固定螺絲2-247 (舉例而言)調整。此調整可僅在一個自由度上。舉例而言,調整固定螺絲2-247可粗略地調整光束2-350穿過光學窗2-231、2-232、2-235、2-237及透鏡2-233之高度角方向。在某些情形中,轉向鏡2-234可藉助非可調整安裝配置安裝至底盤2-210。 根據某些實施例且參考 2-2A 2-3 兩者,可藉由第一致動器2-221使第一光學窗2-231圍繞第一旋轉軸線旋轉。為輔助闡釋,圖式中針對傳出光束2-350指示右側正交座標系XYZ (其中+Z 軸指向光束行進方向)。該第一旋轉軸線可基本上平行於Y 軸以使光學光束2-350緊接在第一光學窗之後在±X 方向上移位。可藉由第二致動器2-222使第二光學窗2-232圍繞基本上垂直於第一旋轉軸線之第二旋轉軸線旋轉以使光學光束緊接在第二光學窗之後在±Y 方向上移位。在某些實施方案中,可顛倒第一光學窗及第二光學窗之次序。可藉由第三致動器2-223使第三光學窗2-235圍繞基本上平行於第一旋轉軸線之第三旋轉軸線旋轉以使光學光束緊接在第三光學窗之後在±X 方向上移位。可藉由第四致動器2-224使第四光學窗2-237圍繞基本上垂直於第一旋轉軸線之第四旋轉軸線旋轉以使光學光束緊接在第四光學窗之後在±Y 方向上移位。在某些實施方案中,可顛倒第三光學窗及第四光學窗之次序。 可自 2-3 理解由於使光學光束2-350在光束整形及操縱模組1-150中平移而產生的對基板表面2-340處之經聚焦光學光束之效應。基板之表面可位於聚焦透鏡2-233之焦點處或大致位於該焦點處。舉例而言,傳出光學光束2-350可穿過聚焦透鏡2-233且聚焦至生物光電子或其他分析晶片1-140處之切片式光柵耦合器2-100上。藉由使位於聚焦透鏡2-233後面之光學器件旋轉而產生的光學光束2-350之側向平移引起表面2-340處之± X 、± Y平移。作為實例,當光學窗2-235具有大致6 mm之厚度及大致1.5之折射率時第三光學窗2-235圍繞其旋轉軸線之旋轉可使表面2-340處之經聚焦光束在平行於X 軸線之方向上平移多達± 1200微米。當光學窗2-237具有大致6 mm之厚度及大致1.5之折射率時第四光學窗2-237圍繞其旋轉軸線之旋轉可使表面2-340處之經聚焦光束在平行於Y 軸之方向上平移多達± 1200微米。可分別針對更薄光學窗或更厚光學窗而達成光束之更少或更多運動。另外,具有具高折射率(例如 ,大於大致1.5)之材料之光學窗可提供更大光束位移。 藉由使位於聚焦透鏡2-233前面之光學器件2-231、2-232旋轉而產生的光學光束2-350之側向平移引起改變經聚焦光束在表面2-340處之入射角(縱傾角及側傾角)而不明顯地改變光束在表面2-340處之(X, Y )位置。舉例而言,第一光學窗2-231圍繞其旋轉軸線之旋轉可使光學光束在聚焦透鏡2-233處在±X 方向上位移。當光學窗具有大致9 mm之厚度及大致1.8之折射率時光學光束在聚焦透鏡處之此移動將使入射角qy 或光學光束相對於Z 軸在XZ 平面中在表面2-340處之側傾( 2-3 中未展示)改變多達± 1.0度。在某些實施例中,第二光學窗2-232圍繞其旋轉軸線之旋轉使光學光束在±Y 方向上位移且導致入射角qx 或在YZ 平面中在表面2-340處之縱傾改變多達± 1.0度。由於表面2-340位於透鏡2-233之大致焦距f 處,因此藉由使光束2-350在透鏡前面平移而使入射角改變多達± 1.0度將不明顯地影響經聚焦光束在表面2-340處之(X, Y )位置。在某些情形中,光束在目標位置處(例如 ,在表面2-340處)之位置之XY 之所得交叉耦合側向位移係至多± 10微米。在某些情形中,目標位置處之交叉耦合側向位移(歸因於光學窗2-231、2-232之旋轉)可不大於± 5微米。當透鏡2-233具有較短焦距且使用較厚光學窗時可獲得入射角之較大改變(例如 ,高達± 10度),儘管交叉耦合位移可不改變。 藉由使光學窗2-231、2-232、2-235、2-237中之一或多者之運動自動化,可以一或多個自由度執行輸出光束之連續掃描。對於 2-2A 中所繪示之實施例,可藉由使第二光學窗2-232及第四光學窗2-237在同一方向上連續地旋轉而實施該等光學窗之連續掃描。連續掃描模式對於將輸出光束對準至高科技系統1-160中之接收光學組件或埠可係有用的。連續或逐步掃描對於將輸出光束耦合至高科技系統中之多個接收光學組件或埠亦可係有用的。舉例而言,輸出光束可順序地步進至在高科技系統1-160中之同一晶片上或不同晶片上之不同光柵耦合器。以此方式,可幾乎同時執行多個不同檢定(每一者具有用於樣本分析之複數個樣本井)。 在某些實施例中,可存在位於表面2-340與光束整形及操縱模組1-150之間以使光束在–Y 方向或+Y 方向上偏轉之轉向鏡( 2-3 中未展示),使得表面2-340可平行於光學光束2-350。此將允許生物光電晶片1-140 (舉例而言)平行於下伏印刷電路板而安裝,如 2-2B 中所繪示。在某些情形中,轉向鏡可由矽晶圓、熔融矽石或其他經拋光基板之小部分(例如 ,小於5平方毫米)以低成本形成,塗佈有反射材料,且安裝在含有生物光電晶片1-140之封裝內。 在某些實施方案中,聚焦透鏡2-233可係具有介於5公分與1米之間的焦距之單透鏡(singlet lens)。另一選擇係,聚焦透鏡2-233可係一對中繼透鏡中之一者,其中另一透鏡可位於光束整形及操縱總成1-150內側或外側。在某些實施例中,透鏡2-233可係變焦透鏡。可手動(例如 ,藉由用戶操作其上安裝有透鏡之定位器(未展示))控制或可經由致動器自動控制聚焦透鏡2-233之位置、放大及/或縮小,使得可對透鏡之位置、放大及/或縮小進行動態調整。在某些實施方案中,透鏡2-233可安裝於在製造時定位或由用戶定位之固定透鏡座架中。 根據某些實施例,可藉助光學稜鏡達成對光束形狀及光束旋轉之調整。在某些實施方案中,可使用變形稜鏡對2-252來壓縮或擴展輸入光學光束之橫向強度分佈型之一個尺寸。參考 2-2A ,變形稜鏡對可在一個方向(針對傳入光學光束2-205所參考之X 方向)上將輸入光學光束2-205之橫向強度分佈型壓縮介於3倍與8倍之間(取決於稜鏡形狀),且不影響Y 方向之橫向強度分佈型。壓縮或擴展量可由光學光束穿過之稜鏡進入面與離開面之間的切割角判定。根據某些實施方案,可以進入稜鏡面與離開稜鏡面之間的介於15度與45度之間的角度切割該等稜鏡。可用抗反射塗層塗佈該等稜鏡面。由於在一個維度(在所展示之實例中之X 維度)上之壓縮,光學光束在X 方向上在透鏡2-233之焦點處之寬度與Y 方向之橫向強度分佈型相比較將更大或經延伸,如 2-1B 中所指示。在某些實施例中,可藉由使聚焦透鏡2-233沿著光學光束路徑移動(例如 ,藉助線性致動器使透鏡2-233移動)及/或改變由聚焦透鏡2-233提供之有效放大或縮小(例如 ,改變變焦透鏡設定)而進行對光束大小及橢圓度之調整。 儘管在某些實施方案中可使用一對圓柱形透鏡來擴展或壓縮光學光束,但發明人發現,所得光束形狀對透鏡對之對準高度敏感。舉例而言,若使圓柱形透鏡對圍繞光束之光學軸線旋轉小至1度之量,則所得光束形狀旋轉此量之五倍以上。 根據某些實施例,可在製造時對準變形稜鏡對2-252。舉例而言,該等稜鏡可對齊至形成或安裝於底盤2-210中之經機械加工對準特徵及/或銷(未展示)。在某些實施方案中,該等稜鏡可對齊至形成或安裝於中間板2-250中之經機械加工特徵及/或銷,該等經機械加工特徵及/或銷可對齊至底盤2-210上之對準特徵且附接至底盤2-210。在某些情形中,中間板2-250之定向可係可在底盤內調整的以用於精細調諧稜鏡對(例如 ,用於工廠對準)。在某些情形中,變形稜鏡對2-252中之每一稜鏡可係可個別地調整的(例如 ,安裝於旋轉定位器上)。另外或另一選擇係,中間板2-250可包含可旋轉調整或安裝於旋轉定位器上。在某些實施例中,可藉助一個或兩個步進馬達使稜鏡對或該對中之每一個別稜鏡之定向自動化。發明人已認識到且瞭解到,可在製造時手動調整變形稜鏡對以使來自光學源之光束形狀靈活性地針對適合地各種各樣之光束形狀適用於高科技系統,且可藉助由光束整形及操縱總成1-150中之其他光學組件提供之自動化光束旋轉、位移及入射角調整動態地處置耦合至該高科技系統之品質。 變形稜鏡對2-252可將額外益處提供給光束整形及操縱總成1-150。第一益處係,其可提供在不同波長下之光學光束之空間分開。在某些實施方案中,去往總成之輸入光束2-205可包括多個頻率(例如 ,來自雷射之基本頻率或波長及第二諧波頻率或自雷射光束路徑中之非線性光學元件輸出之經倍頻波長)。變形稜鏡對2-252可使兩個不同波長在不同方向上折射,如由 2-2A 中之虛線及實線所繪示。舉例而言,傳入光學光束2-205之紅外線部分可沿著虛線路徑行進至束集堆2-260及/或光電二極體,舉例而言,且光學光束2-205之經倍頻部分可沿著實線路徑行進穿過總成1-150。變形稜鏡對2-252之第二益處係其可降低光束耦合對輸入光束2-205之±X 位移之敏感度。敏感度之降低歸因於光學光束藉由稜鏡對在X 方向上之縮小。 另外,光束形狀不受輸入光束在XY 方向上之位置影響,條件係光束不被稜鏡對2-252中之任一稜鏡之邊緣裁剪。就此而言,光束形狀已減小對將使稜鏡對相對於輸入光束位移之振動、熱膨脹及/或機械加工變化之敏感度。舉例而言,傳入光學光束2-205可在XY 方向上位移高達± 3 mm而在稜鏡對2-252後面不影響橢圓形光束形狀。當在總成1-150中使用交叉對之圓柱形透鏡來將輸入光束2-205重新整形時光束形狀對XY 位移之免疫係不可能的。 可採用與光束整形有關之其他實施方案。根據某些實施方案,可顛倒地使用或配置變形稜鏡對2-252,使得其可將橢圓形光束轉變為圓形光束。此對於將來自二極體雷射之橫向光束分佈型自細長形狀轉換為更圓形形狀(舉例而言)可係有用的。在某些實施例中,可不需要光束形狀之轉換使得不使用變形稜鏡對2-252,且可代替變形稜鏡對2-252而安裝一或多個轉向鏡。在此等實施例中,可使用影像旋轉稜鏡2-254來使輸入光束之偏振旋轉。在某些情形中,可替代變形稜鏡對而使用伽利略光束擴展器以將任何形狀之輸入光束重新定大小(放大或縮小)。根據某些實施例,可將一或多個偏振旋轉器(半波板)或轉變器(四分之一波板、偏振膜)安裝在光束整形及操縱總成中之任何適合位置處以對輸入光束之偏振進行操作。可使偏振旋轉器或偏振轉變器手動(由使用者)或自動(由致動器)旋轉。 根據某些實施例,可使用影像旋轉稜鏡2-254達成橫向光束形狀及偏振之旋轉。在某些實施例中,離開變形稜鏡對2-252之光束可居中地穿過旋轉稜鏡,該旋轉稜鏡圍繞大致平行於進入稜鏡之光學光束之光學軸線之旋轉軸線旋轉。稜鏡之旋轉可使光學光束之橫向形狀及其偏振圍繞其光學軸線旋轉從而離開稜鏡。以此方式,可使具有橢圓形橫向光束形狀(如 2-1B 中所繪示)之光學光束圍繞其光學軸線(例如 ,在 2-1B 中所圖解說明之± f方向上)旋轉。根據某些實施例,旋轉稜鏡可係達夫稜鏡。具有不同光學佈局之其他實施例可使用其他影像旋轉稜鏡(例如 斯密特(Schmitt)稜鏡、鏡群組)。 在某些實施方案中,影像旋轉稜鏡2-254可安裝於具有圍繞旋轉軸線旋轉之支架2-410之旋轉總成中,該旋轉軸線在 2-4 之圖解說明中平行於光學光束之Z 軸。根據某些實施例,該支架可具有騎在至少三個軸承2-420上之圓柱形表面2-412。在某些情形中,可使用四個軸承2-420。該等軸承可安裝在安裝至底盤2-210之桿或軸上。致動器(例如 ,步進馬達)可對槓桿臂2-434進行按壓及釋放以使支架旋轉。在某些實施例中,背靠支撐件2-446之壓縮彈簧2-440 (或任何其他適合彈簧)可作用於對應槓桿臂2-432以對抗對槓桿臂2-434之致動器按壓提供穩定化抗衡力,移除機械連桿中之任何背隙,且抵靠軸承2-420保持支架。在某些情形中,支撐件2-446可包括安裝在光束整形及操縱總成1-150上方之蓋之一部分。藉助對槓桿臂2-434之步進馬達按壓,可使支架2-410旋轉± 12.5度。由於透過稜鏡之光學反射,因此可使光束形狀在表面2-340處旋轉多達± 25度。使用可商購步進馬達,光束旋轉之解析度可小於步進馬達之0.1度/每步(例如 ,介於0.01度/微步與0.1度/微步之間)。 支架2-410可包含其中可安裝有影像旋轉稜鏡2-254之經機械加工凹部,使得影像旋轉稜鏡之中心與支架之旋轉軸線同心。該經機械加工凹部可包括在經組裝時經對準以大致平行於光束整形及操縱總成1-150中之所計劃光學光束路徑的一或多個對準面或銷。在組裝期間,影像旋轉稜鏡2-254可藉由以下方式經對準:將該稜鏡對齊至對準面或銷中之一或多者及藉助任何適合緊固構件將該稜鏡固定在支架中。另外,支撐軸承2-420之桿可平行於底盤2-210中之經機械加工特徵而對準,使得旋轉稜鏡之中心軸線與支架2-410之旋轉軸線且與穿過光束整形及操縱總成1-150之所計劃光學光束路徑大致重合。因此,大致對準至穿過總成之所計劃光學光束路徑之輸入光束2-205將以光束位移及光束方向之最小改變使其形狀(橫向強度分佈型)旋轉。 發明人亦已認識到且瞭解到,具有光束整形及操縱總成1-150之小輪廓形狀係有益的。當使用同一類型之致動器(例如 ,旋轉步進馬達)來對總成內之所有可移動光學組件進行操作時此可係困難的。使用同一類型之致動器就經減小複雜度、經減小數目個不同部件、體積折扣成本及互換容易性而言可係有益的。然而,總成1-150中之光學組件利用圍繞正交軸線之旋轉。舉例而言且再次參考 2-2A ,兩個光學窗2-232、2-237圍繞平行於圖式中所展示之X 軸之軸線旋轉,且可分別由步進馬達2-222、2-224直接驅動。在此情形中,光學窗可直接安裝至馬達之驅動軸件之端(舉例而言)。另一方面,光學窗2-231、2-235兩者圍繞基本上正交於X 軸之軸線旋轉。通常,此將需要將用於此兩個光學窗2-231、2-235之致動器正交於用於另外兩個光學窗2-232、2-237之致動器而安裝,此將明顯地增加光束整形及操縱總成1-150之總體高度。另一選擇係,其可需要使用不同類型之致動器,此將增加光束整形及操縱總成中具有不同設計之組件之數目。 為維持光束整形及操縱總成之總體小輪廓,可使用允許所有旋轉致動器經安裝使得其驅動軸件全部位於大致同一平面中或位於大致平行平面中的機械連桿2-242、2-244。在 2-5A 中繪示允許旋轉致動器之此安裝之實例性機械連桿2-242 (其不需要齒輪、滑輪或鏈輪),儘管在某些實施例中可使用其他連桿。根據某些實施例,機械連桿可包括附接至致動器之旋轉驅動軸件2-530之凸輪臂2-510、附接至凸輪臂之軸承2-520及連接至光學座架2-505之槓桿臂2-540。致動器之軸件2-530可圍繞第一軸線(例如 ,平行於圖式中所展示之X 軸之軸線)旋轉。光學座架2-505可固持光學窗2-231,舉例而言,且使用軸及/或軸承2-550圍繞大致正交於驅動軸件之旋轉軸線之第二旋轉軸線(例如 ,平行於Y 軸之軸線)旋轉。當操作致動器時,軸承2-520按壓在槓桿臂2-540上且跨越槓桿臂之表面伸展,從而致使光學窗2-231圍繞第二旋轉軸線旋轉。背靠支撐件2-446之扭力彈簧2-560 (或任何其他適合彈簧)可對抗對槓桿臂2-540之致動器按壓提供穩定化抗衡力且移除機械連桿中之任何背隙。在某些情形中,支撐件2-446可包括用於覆蓋光束整形及操縱總成1-150之蓋子之一部分。 2-5A 中所展示之機械連桿可用於使光束整形及操縱總成中之光學窗、轉向鏡及/或影像旋轉稜鏡旋轉。 發明人已認識到且瞭解到,槓桿臂2-540圍繞第二旋轉軸線之旋轉移動及軸承2-520之圓形軌跡通常將由於致動器之驅動軸件2-530之角度改變而引起光學組件2-231之非線性角度改變。根據某些實施例,彎曲表面2-545可形成於槓桿臂上,此補償非線性。與在槓桿臂2-540之接觸表面係平坦時之情形相比較,當在槓桿臂2-540上採用彎曲表面時,可在光學組件之經延伸運動範圍內存在旋轉驅動軸件2-530之角度改變與光學組件2-231之角度改變之間的線性或大致線性關係。彎曲表面2-545之曲率可經工程設計以針對所要應用提供線性化關係。使用彎曲表面2-545可增加由旋轉致動器之旋轉運動引起的經線性化輸出(例如 ,光學窗2-231之旋轉運動)之有效範圍。舉例而言,該輸出可在圍繞軸承2-550之30度之旋轉內在± 5%誤差內保持線性。在某些實施方案中,該輸出可在圍繞軸承2-550之30度之旋轉內在± 2%誤差內保持線性。作為一項實例, 2-4 中所展示之支架2-410之槓桿臂2-434可包含彎曲表面以使將軸承2-520按壓在槓桿臂2-434上之致動器之旋轉角與影像旋轉稜鏡2-254之旋轉角之間之關係線性化。 作為另一實例,彎曲表面2-545可經工程設計以提供穿過光學窗2-231之光學光束之線性化位移,藉由 2-5A 中所繪示之機械連桿使光學窗2-231旋轉。彎曲表面之設計可考量凸輪臂2-510之旋轉運動、光學窗2-231之旋轉運動及穿過光學窗之光學光束之斯奈爾-笛卡爾定律。當在槓桿臂2-540中形成適當地設計之曲率時,可在凸輪臂2-510之延伸範圍之旋轉運動內獲得線性化位移。在 2-5B 之圖表中展示在凸輪臂2-510之延伸範圍之旋轉運動內之線性化光束位移之實例。與資料之線性擬合展示0.983之R2 值。資料點中之雜訊中之某些雜訊據信為歸因於軸承2-520之運動之不規則性及彎曲表面2-545之平滑度。關於較高品質軸承及彎曲表面2-545之更精確機械加工或拋光而預期更高R2 值。在實施例中,經工程設計彎曲表面2-545可將機械連桿之所量測輸出線性化至高達0.98之R2 值,儘管在某些情形中可獲得更高值。 在光束整形及操縱總成1-150中使用之光學組件(例如 ,變形稜鏡2-252、達夫稜鏡2-254、轉向鏡2-234及光學窗)可具有適中或高光學品質。在某些實施例中,該等光學組件針對光學光束穿過其且自其反射之表面可具有40-20 (劃痕、麻點)或更佳之表面品質。此等表面之平坦度可係高達633 nm或更小之波長之1/4。抗反射(AR)塗層可施加至光學光束穿過之表面。AR塗層在某些實施例中可係窄頻帶,或在其他實施例中可係寬頻帶。若兩個波長之光束穿過表面(例如 ,基本及第二諧波光學光束),則二向分光AR塗層可施加至該表面。在某些實施方案中,在光學器件上所使用之任何塗層可係高功率塗層,使得光束整形及操縱總成可用於產生高達100瓦特之輸出光束功率之光學源。 光束整形及操縱模組1-150之有利態樣係:可實質上獨立於對經聚焦光束在表面2-340處之位置之XY 調整而進行對入射於接收光學耦合組件上之光束之qx 及qy 之入射角調整(參考 1-3 ),如結合 2-3 所闡釋。另外,可實質上獨立於qx 、qyXY 調整而進行對光束旋轉或側滾f之調整。因此,五個光束參數(qx 、qyXY 及f)可基本上獨立於彼此而經調整。舉例而言,對任何一個參數之調整可在基本上不具有至其他光束參數中之交叉耦合之情況下來進行。進一步地,接收光學組件上之光束聚焦可基本上獨立於其他光束特性而改變(例如 ,藉由使透鏡2-233平移)。獨立調整之此等態樣可降低入射光束對準至接收光學組件之複雜度,且可允許光學光束2-350自動化對準至接收光學組件。舉例而言且再次參考 1-3 ,來自具有脈衝1-122 (其經由光柵耦合器1-310或切片式光柵耦合器2-100耦合至一或多個波導1-312中)之輸入光學光束之光學能量可在對準程序期間用在該一或多個波導之相對端處之一或多個光電二極體1-324來監測。可調整光束之入射角及旋轉角中之任一者以增加或最佳化耦合而不明顯改變光束在光柵耦合器上之位置。另外,若需要,則對光束聚焦之調整可藉由使透鏡2-233沿著光學光束路徑移動而獨立於對其他光束參數之調整來進行。由於對光束參數之調整基本上彼此分開,因此光束整形及操縱總成1-150可用於更容易地使來自光學源1-110之光學光束至高科技系統1-160之對準自動化且增加及維持高耦合效率。若對一個光束參數(例如X 位置)之調整交叉耦合至一或多個其他光束參數(例如 ,入射角或光束形狀)中,則對準將係更複雜的且難以自動化。 根據某些實施例,自動化對準程序可用於將來自光學源1-110之光學光束對準至高科技系統1-160中之波導耦合器(例如 ,切片式光柵耦合器2-100)。對準程序可包括針對光柵耦合器2-100執行螺旋搜索,如 2-6 中所繪示,儘管可使用其他類型之搜索圖案(諸如光柵掃描及交互書寫掃描)。可藉由以下方式執行螺旋搜索:使第三光學窗2-235及第四光學窗2-237旋轉以使經聚焦光束2-350在晶片之表面上在XY 方向上側向平移。舉例而言,在將晶片1-140裝載至高科技儀器1-100中且接通光學源1-110之後,光學光束可在於 2-6 標誌為「A」之位置處撞擊晶片之表面。在此位置處,可不存在任何由象限偵測器1-320偵測之信號。可執行螺旋搜索路徑2-610,同時監測來自象限偵測器Q1 、Q2 、Q3 、Q4 之信號。在位置「B」處,象限偵測器可開始對齊來自其偵測器之光束之(X ,Y )位置信號。控制電路可然後判定光束相對於象限偵測器之中心之位置,取消螺旋路徑之執行,且操作致動器2-223及2-224以將光束操縱至象限偵測器1-320之中心(點「C」)。光柵耦合器2-100可大致居中地位於象限偵測器上方。隨後,可進行精細位置、光束旋轉及入射角調整以增加耦合至波導2-120中之光學功率之量且改良耦合至每一波導中之功率之均勻性。在某些實施例中,可監測來自耦合至多個波導2-120之多個整合式光電二極體1-324之光學功率以輔助對光柵耦合器處之光學光束進行精細調整以用於改良耦合至該多個光學波導中之功率之均勻性。 可使用其他方法及設備來搜索象限偵測器1-320且將經聚焦光束2-350對準至光柵耦合器2-100。在某些實施例中,可改良象限偵測器1-320之敏感度以擴展可在其內偵測光學光束之範圍。舉例而言,可比較來自象限偵測器之具有處於高功率(例如 ,完全接通)之光學光束功率之信號與來自象限偵測器之具有處於低設定(例如 ,關斷)之光學光束功率之信號。另外,當光學光束可位於距象限偵測器之明顯距離處時,該等信號可在較長時間週期內經整合以改良象限偵測器之位置偵測敏感度。 在某些實施例中,光散射元件2-630可製作於晶片1-140上在象限偵測器1-320周圍。當經聚焦光束未對準且在遠離象限偵測器之周邊位置處時,該等散射元件可使光自經聚焦光束朝向象限偵測器1-320散射。所偵測經散射光然後可指示光束之位置。 在某些實施方案中,寬度類似於期望經聚焦光束大小之窄線性散射元件(例如 ,溝渠或肋、柱或草皮陣列,未展示)或線偵測器可經放置穿過象限偵測器之中心或經放置至象限偵測器之側(或相對於象限偵測器呈任一適合定向),且顯著地延伸超過象限偵測器之相對邊緣(例如 ,延伸至大於初始光束偏移誤差之合理預期之距離)。由於設計上知曉此元件或偵測器之定向,因此可首先使經聚焦光束2-350在垂直於該元件之方向上掃描直至光束撞擊該元件或偵測器且藉由散射至象限偵測器1-320或直接藉由線偵測器而肯定地經偵測到。然後,可使該光束在另一方向上掃描以找出象限偵測器1-320。 根據某些實施例,可最初使光學光束在晶片1-140之表面2-340處擴展(例如 ,藉由用致動器使透鏡2-233移動而使光束散焦,將散焦透鏡插入於光束路徑中或使用其他構件)。可然後大大增加光束在晶片上之佔用面積(例如 ,10倍或更多倍),使得任何掃描程序可在對象限偵測器1-320進行搜索時在光束位置之間使用更大步數(例如 ,關於螺旋形掃描之放射環之間的更大偏移)。此及前述替代搜索方法可減少與將經聚焦光束2-350對準至光柵耦合器2-100相關聯之搜索時間。 在對準之後,可將經聚焦光學光束主動地維持在經對準位置中。舉例而言,可使用來自象限偵測器之回饋以及致動器2-223及2-224之啟動主動地維持在相對於象限偵測器1-320之初始對準之後判定的光束之(X ,Y )位置以將光束維持在大致固定位置中。在某些實施例中,可不在初始對準之後調整光學光束在表面處之入射角以最佳化耦合至波導中之功率。另外,耦合至波導中之功率量可在所有量測中維持在大致恆定位準。 根據某些實施例,遞送至波導2-120之功率可藉由使用對光束整形及操縱總成1-150之控制光學組件及/或光學源1-110內之光學或其他組件之回饋而維持在大致恆定位準。舉例而言,來自經配置以自該等波導中之一或多者接收光之光電二極體之一或多個光電二極體1-324信號可由信號處理器監測以估計耦合至該等波導之功率位準。可回應於該等波導處之功率位準之所偵測到之改變而產生控制信號,且該等控制信號可施加至光束整形及操縱總成及/或光學源中之致動器。關於包括使用倍頻晶體產生經倍頻輸出光束之雷射之光學源,控制信號可施加至控制半波板在光學源中之定向之致動器。半波板之旋轉可改變進入倍頻晶體之光學脈衝之偏振,且因此改變經倍頻波長之轉換效率及功率。此可在不影響光學源之穩定性或必須使光學光束相對於光柵耦合器2-100不對準之情況下控制光學功率。 根據某些實施例,在 2-7 中繪示用於光束對準及功率穩定化之實例性電路。象限偵測器1-320表示為四個光電二極體,且波導光電二極體1-324表示為第五光電二極體。在某些實施方案中,可存在複數個(大量)波導2-120,光學功率自單個光柵耦合器耦合至複數個(大量)波導2-120。因此,可存在經配置以自具有連接至控制電路2-730之信號輸出之波導接收輻射之複數個(大量)波導光電二極體1-324。放大電路2-710可經配置以偵測藉由二極體之光導產生之電壓。根據某些實施例,放大電路2-710可包括將類比信號轉換為數位信號之CMOS電子器件(例如 ,FET、取樣電路、類比轉數位轉換器)。在其他實施例中,可將類比信號自放大電路提供至控制電路2-730。 在某些實施例中,控制電路可包括以下元件中之一者或組合:類比及數位電路、ASIC、FPGA、DSP、微控制器及微處理器。控制電路2-730可經組態以處理自一或多個波導光電二極體接收之信號以判定每一波導中之光學功率位準。控制電路2-730可進一步經組態以處理來自象限偵測器1-320之所接收信號以判定光學光束相對於象限偵測器之(X ,Y )位置。在某些實施方案中,控制電路2-730經組態以偵測耦合至每一波導中之功率,且將控制信號提供至致動器以使光學光束移動使得功率在該等波導中經等化或跨越該等波導具有最高均勻性。 光學光束在X 方向上之位置可(舉例而言)由經調適以執行以下演算法之控制電路2-730判定: Sx = [(VQ1 + VQ4 ) – (VQ2 + VQ3 )]/VT 其中Sx 係對應於x 方向之正規化信號位準,VQn 係自象限偵測器之第n個光電二極體接收之信號位準(例如 ,電壓),且VT 係藉由對來自所有四個二極體之信號求和而接收之總信號位準。另外,可(舉例而言)使用以下演算法判定光學光束在Y 方向上之位置: Sy = [(VQ3 + VQ4 ) – (VQ1 + VQ2 )]/VT 。 可藉由對來自經配置以偵測晶片上之波導中之每一者中之功率之所有光電二極體1-324的信號求和而判定耦合至晶片1-140上之所有波導中之平均功率。 控制信號可由控制電路2-730回應於XY 之所偵測光束位置且回應於在一或多個波導2-120中偵測到之功率位準而產生。可經由一或多個通信鏈路(SM1、SM2、…SM5)將該等控制信號作為數位信號提供至光束整形及操縱模組1-150之致動器且經由一或多個通信鏈路WP將該等控制信號作為數位信號提供至光學源系統1-110之致動器或控制件(例如 ,經配置以使半波板或光束衰減器旋轉之致動器、用於將電功率施加至二極體光學源之控制件)。可施加該等控制信號以使功率穩定化及/或改良光學源1-110與高科技系統1-160之間的光學耦合。 如可自前述說明瞭解,光束整形及操縱總成1-150可有利地不包含將顯著地增加成本之某些光束整形及操縱組件。此等組件包含電光學組件及熱光學組件、相位陣列或光束組合組件及微機電系統。根據某些實施例,可使用標準機械加工及模製能力來製造光束整形及操縱總成1-150之所有部分。 儘管主要針對耦合至切片式光柵耦合器而闡述光束整形及操縱總成之使用,但其可用於將光學光束耦合至其他光學系統,諸如但不限於光纖、二維光纖陣列、經由對接耦合之整合式光學波導、一或多個微流體通道、稜鏡耦合器或經配置以激發表面電漿子之光學系統。 光束整形及操縱總成1-150之某些實施例可包含用於監測且估計該總成中之至少某些組件之操作狀態之感測器及電路( 2-2A 中未展示此兩者)。舉例而言,光束整形及操縱總成1-150可包含印刷電路板,該印刷電路板包含用以監測光束操縱組件之健康及/或操作(例如 ,致動器之操作狀態、光學組件之運動)之電路且包含用於操作該等致動器之控制電路。在某些情形中,PCB可包含微控制器及/或控制電路2-730,微控制器及/或控制電路2-730提供處理所接收信號且基於該等經處理所接收信號而將控制信號輸出至該等致動器。用於監測該等組件之運動之感測器可包含光學編碼器、機械編碼器、光學接近開關及限制開關(用於監測組件之機械運動以判定該等組件是否如所指令而移動)。在某些情形中,可依據供應至對光學組件進行操作之致動器之電流量而判定該光學組件之運動。在某些實施例中,溫度感測器及/或電流感測器(例如 ,熱阻器)可用於監測總成中之電子組件(例如 ,步進馬達或其他致動器)以判定該等電子組件是否在安全操作溫度內操作或判定對光學組件位置之任何溫度補償調整以取消對光束特性之溫度效應。 在某些實施例中,一或多個光電二極體、一或多個成像陣列及/或一或多個象限偵測器可併入於光束整形及操縱總成1-150中以監測光學光束2-350在總成內之一或多個位置處之特性。可經監測之特性包含但不限於基本光束中之功率、第二諧波光束中之功率、輸出光束位置、輸出光束指向方向、輸出光束形狀及輸出光束指向角度。舉例而言,可使用光電二極體來監測當不同波長之光束分開時束集堆2-260處之基本光束或另一光束中之能量。第二光電二極體可監測透過轉向鏡(例如 ,鏡2-234)洩漏或自光學窗2-231、2-232、2-235、2-237或透鏡2-233或者總成1-150內之其他光學組件之小面反射之第二諧波光束或基本光束中之功率量。在某些情形中,光電二極體可安裝在放置在底盤2-210上方之蓋中或安裝在底盤基底中以接收來自光學窗之小面反射。在某些情形中,來自基本光束及/或第二諧波光束之光學功率可用於估計光學源之健康(例如 ,提供輸入光束2-205之鎖模雷射之穩定性)。在實施例中,自偵測鎖模雷射光束之光電二極體產生之信號可用於在光電二極體處產生在時間上相鎖至脈衝到達時間之時脈信號。 可使用象限偵測器或成像陣列來監測來自光束整形及操縱總成內之光學組件之小面或來自位於總成下游之光學組件的一或多個雜散所反射光束之位置及/或存在。作為實例且參考 2-3 ,象限偵測器或成像陣列可安裝在相對於光學窗2-231、2-232、2-235、2-237之位置處以偵測且監測自光學窗之低位準小面反射之位置及/或光束形狀。來自以此方式配置之一或多個象限偵測器及/或成像陣列之輸出可用於幫助使傳出光束之位置、形狀、旋轉角f及指向角穩定化。 來自(若干)電、熱及光學感測器之信號可提供至與光束整形及操縱總成1-150一起經提供之PCB上之信號處理邏輯(例如 ,微控制器及/或邏輯晶片)以判定該光束整形及操縱總成是否穩定地且如所預期而操作且若總成出故障則產生錯誤信號。在某些實施方案中,該PCB可安裝至光束整形及操縱總成之底盤2-210,儘管在其他實施例中,該PCB可位於別處且經由多線電纜連接至總成1-150內之該等感測器、致動器及任何其他電子器件。 所闡述技術之實施例至少包含在下文(1)至(51)中所陳述之組態及方法。 (1)一種光束整形及操縱總成,其包括:第一光學組件,其經配置以將輸入光束之第一橫向光束形狀轉變成第二光束之第二橫向光束形狀;第二光學組件,其經配置以使該第二橫向光束形狀圍繞該第二光束之光學軸線旋轉;及第三光學組件,其經配置以調整輸出光束在目標位置處之第一位置或第一方向角中之一者。 (2)如組態(1)之光束整形及操縱總成,其中穿過該第一光學組件之該輸入光束高達± 3 mm之位移不改變該第二橫向光束形狀。 (3)如組態(1)或(2)之光束整形及操縱總成,其中該第一光學組件包括變形稜鏡對。 (4)如組態(1)至(3)中任一組態之光束整形及操縱總成,其進一步包括束集堆,其中該第一光學組件使該輸入光束中之光學波長在空間上分開,且該束集堆經定位以自該第一光學組件接收處於第一波長之輸出。 (5)如組態(4)之光束整形及操縱總成,其進一步包括轉向鏡,該轉向鏡經配置以接收具有第二波長之該第二光束且將該第二光束引導至該第三光學組件。 (6)如組態(1)至(5)中任一組態之光束整形及操縱總成,其中該第二光學組件包括達夫稜鏡。 (7)如組態(1)至(6)中任一組態之光束整形及操縱總成, 其中該第三光學組件包括光學窗。 (8)如組態(1)至(7)中任一組態之光束整形及操縱總成,其進一步包括支撐該第一光學組件、該第二光學組件及該第三光學組件之底盤,其中該底盤安裝在包括印刷電路板(PCB)之儀器中,具有接收該第二光束之接收光學組件之裝置安裝在該印刷電路板(PCB)上,其中該PCB之含有該裝置之區域附接至該底盤以減少該裝置相對於該光束整形及操縱總成之運動。 (9)如組態(1)至(8)中任一組態之光束整形及操縱總成,其進一步包括經配置以調整以下各項中之一者之第四光學組件:該輸出光束在該目標位置處之第二位置或第二方向角。 (10)如組態(9)之光束整形及操縱總成,其中由對該第四光學組件之調整對該目標位置處之該輸出光束造成之第一效應基本上不影響由對該第三光學組件之調整對該目標位置處之該輸出光束造成之第二效應且反之亦然。 (11)如組態(9)或(10)之光束整形及操縱總成,其進一步包括 第一致動器,其耦合至該第三光學組件;及第二致動器,其耦合至該第四光學組件,其中該第一致動器及該第二致動器各自包含基本上平行於同一平面之旋轉驅動軸件。 (12)如組態(11)之光束整形及操縱總成,其中該第一致動器及該第二致動器之該等旋轉驅動軸件基本上平行。 (13)如組態(11)或(12)之光束整形及操縱總成,其中由該第三光學組件對該目標位置處之該輸出光束實現之改變係在基本上正交於由該第四光學組件對該目標位置處之該輸出光束實現之改變之維度上。 (14)如組態(1)至(13)中任一組態之光束整形及操縱總成,其中該第三光學組件經配置以調整該輸出光束在該目標位置處之該第一方向角,該光束整形及操縱總成進一步包括:第四光學組件,其經配置以調整該輸出光束在該目標位置處之第二方向角;第五光學組件,其經配置以調整該輸出光束在該目標位置處之該第一位置;及第六光學組件,其經配置以調整該輸出光束在該目標位置處之第二位置。 (15)如組態(14) 之光束整形及操縱總成,其進一步包括聚焦透鏡,該聚焦透鏡經配置使得該第三光學組件及該第四光學組件安置於該聚焦透鏡之第一側上且該第五光學組件及該第六光學組件安置於該聚焦透鏡之第二側上。 (16)如組態(14)或(15)之光束整形及操縱總成,其中該第一方向角係該輸出光束在該目標位置處之俯仰角;該第二方向角係該輸出光束在該目標位置處之側傾角;該第一位置係該輸出光束在該目標位置處之X方向位置;且該第二位置係該輸出光束在該目標位置處之Y 方向位置,該X方向與該Y方向係正交的。 (17)如組態(1)至(16)中任一組態之光束整形及操縱總成,其中該第二橫向光束形狀係實質上橢圓形的且該第一橫向光束形狀係實質上圓形的。 (18)一種將光束自系統之光學源耦合至接收光學組件之方法,該方法包括如下動作:由光束整形及操縱總成自該光學源接收該光束;用該光束整形及操縱總成將該光束之第一橫向光束形狀轉變為輸出光束之第二橫向光束形狀;用該光束整形及操縱總成將該輸出光束定位在該接收光學組件上;及用該光束整形及操縱總成使該第二橫向光束形狀以可調整方式旋轉。 (19)如(18)之方法,其中藉由使由單片材料製成之光學組件旋轉而執行該旋轉。 (20)如(18)或(19)之方法,其中該第一橫向光束形狀係圓形的且該第二橫向光束形狀係橢圓形的。 (21)如(18)至(20)中任一項之方法,其進一步包括用該光束整形及操縱總成改變該輸出光束在該接收光學組件上之入射角及位置中之一者或兩者。 (22)如(18)至(21)中任一項之方法,其中使用光學窗之旋轉來調整該輸出光束在該接收光學組件上之入射角。 (23)如(18)至(22)中任一項之方法,其中該輸出光束之橫向大小比該接收光學組件之耦合區域大介於10%與35%之間且相對於該接收光學組件以側滾角定向。 (24)如(23)之方法,其進一步包括調整該輸出光束在該接收光學組件處之位置以補償該第二橫向光束形狀中之強度不對稱性。 (25)如(18)至(24)中任一項之方法,其中該接收光學組件包括經組態以將該輸出光束耦合至複數個波導之切片式光柵耦合器。 (26)如(25)之方法,其進一步包括用該光束整形及操縱總成調整耦合至該複數個波導之功率之均勻性。 (27)一種用於將輻射光束耦合至設備之光學系統,該光學系統包括:三個旋轉致動器;及三個光學組件,其分別耦合至該三個旋轉致動器,其中每一旋轉致動器具有圍繞軸件軸線旋轉以使該三個光學組件中之一光學組件移動之驅動軸件,其中該三個旋轉致動器之該等軸件軸線基本上平行於同一平面,且其中藉由該三個旋轉致動器致動該三個光學組件會使該光束在三個不同自由度上變更。 (28)如組態(27)之光學系統,其中該三個光學組件與該三個旋轉致動器之間的耦合不包含齒輪、滑輪或鏈輪。 (29)如組態(27)或(28)之光學系統,其中該三個光學組件中之至少兩個光學組件係透明光學窗且該等驅動軸件中之至少兩個驅動軸件基本上平行。 (30)如組態(27)至(29)中任一組態之光學系統,其中該三個旋轉致動器具有基本上相同大小及結構。 (31)如組態(27)至(30)中任一組態之光學系統,其中藉由該三個旋轉致動器中之第一旋轉致動器使該三個光學組件中之第一光學組件移動會使該橫向光束形狀在離開該第一光學組件之位置處圍繞沿著離開該第一光學組件之該光束居中地伸展之光學軸線旋轉。 (32)如組態(31)之光學系統,其中該第一光學組件之移動使該光束在該目標位置處圍繞沿著該經聚焦光束居中地伸展之光學軸線旋轉,其中該經聚焦光束在該目標位置處基本上不具有側向位移。 (33)如組態(27)至(32)中任一組態之光學系統,其進一步包括用以將該光束聚焦至該設備中之目標位置之透鏡,其中藉由該三個旋轉致動器中之兩個旋轉致動器使該三個光學組件中之兩個光學組件移動會變更該經聚焦光束在該目標位置處之入射角,其中該經聚焦光束在該目標位置處基本上不具有側向位移。 (34)如組態(33)之光學系統,其進一步包括第四光學組件,其耦合至第四旋轉致動器,該第四旋轉致動器具有圍繞軸件軸線旋轉以使該第四光學組件移動之驅動軸件;及第五光學組件,其耦合至第五旋轉致動器,該第五旋轉致動器具有圍繞軸件軸線旋轉以使該第五光學組件移動之驅動軸件,其中該第四旋轉致動器及該第五旋轉致動器之該等軸件軸線基本上平行於同一平面。 (35)如組態(34)之光學系統,其中該三個旋轉致動器以及該第四旋轉致動器及該第五旋轉致動器之該等軸件軸線基本上位於同一平面中。 (36)如組態(34)或(35)之光學系統,其中該光學系統具有不大於40 mm之高度。 (37)如組態(34)至(36)中任一組態之光學系統,其中該第四光學組件及該第五光學組件之移動使該目標位置處之該經聚焦光束以兩個自由度側向平移,其中該光束在該目標位置處基本上不具有入射角之改變。 (38)如組態(27)至(37)中任一組態之光學系統,其進一步包括經組態以將所接收圓形光束形狀轉換為細長光束形狀之光束整形組件。 (39)如組態(38)之光學系統,其中該光束整形組件進一步經組態以將該光束中之不同輻射波長在空間上分開。 (40)一種用於將輻射光束耦合至設備之光學系統,該光學系統包括:第一光學組件,其經支撐在可調整座架中;及第一致動器,其耦合至該可調整座架,其中藉由該第一致動器使該第一光學組件移動會使離開該第一光學組件之離開光束之橫向形狀及偏振旋轉,其中該橫向形狀及偏振之該旋轉係圍繞沿著該離開光束居中地伸展之光學軸線。 (41)如組態(40)之光學系統,其中該第一光學組件由單片材料製成,該單片材料經對準使得該光束沿著該第一光學組件之旋轉軸線居中地入射。 (42)如組態(40)或(41)之光學系統,其進一步包括:第二光學組件,其經配置以將該光束之第一橫向光束形狀轉變為第二光束之第二橫向光束形狀且將該光束中之波長在空間上分開;及束集堆,其經配置以自該光束接收在空間上分開之波長。 (43)如組態(40)至(42)中任一組態之光學系統,其進一步包括經配置以調整該離開光束之方向角之額外光學組件。 (44)如組態(43)之光學系統,其中該額外光學組件係透明光學窗。 (45)一種用於變更輻射光束之光學系統,該光學系統包括:第一光學組件,其由經組態以使該第一光學組件圍繞第一軸線旋轉之可調整座架支撐;旋轉致動器,其具有圍繞不平行於該第一軸線之第二軸線旋轉之驅動軸件;凸輪臂,其連接至該驅動軸件;軸承,其連接至該凸輪臂;及彎曲表面,其連接至該可調整座架,其中當致動該旋轉致動器以使該第一光學組件旋轉時該軸承跨越該彎曲表面伸展。 (46)如組態(45)之光學系統,其中該彎曲表面經整形以使由於藉由該驅動軸件使該凸輪臂旋轉而發生的穿過該光學組件之光學光束之參數之改變線性化。 (47)一種光學光束操縱設備,其包括:第一旋轉致動器,其經配置以使第一光學窗旋轉;第二旋轉致動器,其經配置以使第二光學窗旋轉;及透鏡,其中該第一光學窗之旋轉調整光學光束在目標位置處之側向位置且該第二光學窗之旋轉調整該光束在該目標位置處之入射角而不使該側向位置改變多於10微米。 (48)如組態(47)之光學光束操縱設備,其中該第一旋轉致動器之旋轉驅動軸件基本上平行於該第二旋轉致動器之旋轉驅動軸件。 (49)一種光學光束操縱設備,其包括三個可旋轉透明光學窗,該三個可旋轉透明光學窗經配置而以三個正交自由度調整來自該光束操縱設備之輸出光束之三個參數。 (50)如組態(49)之光學光束操縱設備,其進一步包括經組態以使該三個可旋轉透明光學窗旋轉之三個旋轉致動器,其中該三個旋轉致動器之驅動軸件基本上平行於同一平面。 (51)如組態(50)之光學光束操縱設備,其中該等驅動軸件基本上彼此平行。VI. 總結 在如此闡述光束整形及操縱總成之數個實施例之數個態樣之後,應瞭解,熟習此項技術者將易於做出各種變更、修改及改良。此類變更、修改及改良意欲係本發明之一部分且意欲在本發明之精神及範疇內。儘管已結合各個實施例及實例闡述本發明教示,但並非意欲將本發明教示限制於此等實施例或實例。相反,本發明教示囊括各種替代方案、修改及等效形式,如熟習此項技術者將瞭解。 舉例而言,實施例可經修改以在光束整形及操縱總成中包含比上文所闡述的多或少之光學組件。此外,光學組態可不同於所展示之彼等光學組態,其中某些光束整形及操縱總成在通過總成之光學路徑中具有更多或更少轉彎或摺疊。 儘管已闡述並圖解說明了各種發明性實施例,但熟習此項技術者將容易地想像用於執行所闡述之功能及/或獲得所闡述之結果及/或優點中之一或多者之各種其他構件及/或結構,且此等變化及/或修改中之每一者皆被認為係在所闡述之發明性實施例之範疇內。更一般而言,熟習此項技術者將易於瞭解,所闡述之所有參數、尺寸、材料及組態意欲係實例且實際參數、尺寸、材料及/或組態將取決於使用發明性教示之一個或多個具體應用。熟習此項技術者將認識到或僅使用常規實驗即能夠斷定所闡述之特定發明性實施例之諸多等效內容。因此,應理解前述實施例僅係以舉例方式呈現且在隨附申請專利範圍及其等效內容之範疇內,可不同於所特定闡述及主張來實踐發明性實施例。本發明之發明性實施例可針對於所闡述之每一個別特徵、系統、系統升級及/或方法。另外,若此等特徵、系統、系統升級及/或方法不相互矛盾,則兩個或兩個以上此等特徵、系統及/或方法之任何組合包含在本發明之發明範疇內。 進一步地,儘管可指示本發明之某些優點,但應瞭解,並非本發明之每一實施例將包含每一所闡述優點。某些實施例可不實施經闡述為有利之任何特徵。因此,前述說明及圖式係僅藉由實例之方式。 本申請案中所引用之所有文獻及類似材料(包含但不限於專利、專利申請案、文章、書籍、論文及網頁,不管此等文獻及類似材料之格式如何)以其全文引用方式明確地併入。在所併入文獻及類似材料中之一或多者不同於此申請案(包含但不限於所定義術語、術語使用、所闡述技術或類似者)或與此申請案矛盾之情況下,以此申請案為準。 所使用之章節標題僅出於組織目的,而不能解釋為以任何方式限制標的物。 而且,所闡述之技術可體現為方法,已提供該方法之至少一項實例。作為方法之一部分實施之行動可以任一適合方式排序。因此,實施例可經構建,其中以不同於所圖解說明之次序執行行動,其可包含同時執行某些行動,即使在說明性實施例中經展示為依序行動。 如所定義及使用之所有定義應理解為控制在辭典定義、以引用方式併入之文檔中之定義及/或所定義術語之普遍意義以內。 數值及範圍可在說明書及申請專利範圍內經闡述為大致或精確值或範圍。舉例而言,在某些情形中、術語「大約」、「大致」及「實質上」可參考值而使用。此等參考意欲囊括所參考值以及該值之正負合理變化。舉例而言,片語「介於大約10與大約20之間」意欲在某些實施例中意指「介於精確地10與精確地20之間」而且在某些實施例中意指「介於10 ± δ1與20 ± δ2之間」。值之變化量δ1、δ2可在某些實施例中小於值之5%、在某些實施例中小於值之10%且在某些實施例中又小於值之20%。在其中給出大範圍之值(例如 ,包含兩個或兩個以上數量級之範圍)之實施例中,值之變化量δ1、δ2可高達50%。舉例而言,若可操作範圍自2延伸至200,則「大致80」可囊括介於40與120之間的值且該範圍可係與介於1與300之間一樣大。當僅預期精確值時,使用術語「精確地」,例如 ,「介於精確地2與精確地200之間」。術語「基本上」用於指示值在誤差不超過± 3 %之情況下係相同的或處於目標值或條件。 術語「毗鄰」可係指彼此緊密接近地配置之兩個元件(例如,在小於兩個元件中之較大元件之橫向或垂直尺寸之大約五分之一之距離內)。在某些情形中,毗鄰元件之間可存在介入結構或層。在某些情形中,毗鄰元件可在不具有介入結構或元件之情況下緊接地彼此毗鄰。 除非明確指示相反情形,否則如在說明書中及在申請專利範圍中所使用之不定冠詞「一(a及an)」應理解為意指「至少一個」。 如在說明書中及在申請專利範圍中所使用之片語「及/或」應理解為意指如此結合之元件中之「任一者或兩者」,即,在一些情形中以結合方式存在且在其他情形下以分離方式存在之元件。以「及/或」列示之多個元件應以相同方式來理解,即,如此結合之元件中之「一或多者」。可視情況存在除由「及/或」從句特定識別之元件以外的其他元件,無論與特定識別之彼等元件相關還是不相關。因此,作為非限制性實例,當結合諸如「包括」之開放式語言使用時,對「A及/或B」之提及在一個實施例中可係指僅A (視情況包含除B以外之元件);在另一實施例中,係指僅B (視情況包含除A以外之元件);在再一實施例中,係指A及B兩者(視情況包含其他元件);等等。 如在說明書中及在申請專利範圍中所使用,「或」應理解為具有與如上文所定義之「及/或」相同之含義。舉例而言,在分離清單中之物項時,「或」或者「及/或」應解釋為係包含性的,亦即,包含若干元件或元件清單中之至少一者(但亦包含一個以上)及視情況包含額外未列出物項。術語「僅(only)」明確指示相反情形,諸如「其中之僅一者」或「其中之恰好一者」或「由……組成」當在申請專利範圍中使用時將係指包含若干元件或元件清單中之恰好一個元件。一般而言,如所使用之術語「或」在前面有排他性術語(諸如「任一者」、「其中之一者」、「其中之僅一者」或「其中之恰好一者」)時應僅將其解釋為指示排他性替代項(亦即,「一者或另一者而非兩者」)。當在申請專利範圍中使用時,「基本上由……組成」應具有如其用於專利法律領域中之普通含義。 如在說明書中及在申請專利範圍中所使用,參考一或多個要素之清單之片語「至少一」應理解為意指選自要素清單中之任一或多個要素之至少一個要素,但未必包含要素清單內特定列出之各自及每一要素中之至少一者,且不排除要素清單中要素之任何組合。此定義亦允許可視情況存在除片語「至少一」所指之要素清單內特定識別之要素之外之要素,無論與特定識別之彼等要素相關還是不相關。因此,作為非限制性實例,在一個實施例中,「A及B中之至少一者」(或等效地,「A或B中之至少一者」,或等效地,「A及/或B中之至少一者」)可係指至少一個(視情況包含一個以上) A,而不存在B (且視情況包含除B以外之元件);在另一實施例中,係指至少一個(視情況包括一個以上) B,而不存在A (且視情況包含除A以外之元件);在又一實施例中,係指至少一個(視情況包含一個以上) A及至少一個(視情況包含一個以上) B (且視情況包含其他元件);等等。 在申請專利範圍中以及在上文說明書中,所有過渡性片語(諸如「包括」、「包含」、「攜載」、「具有」、「含有」、「涉及」、「固持」、「由……構成」及諸如此類)應理解為係開放式,亦即,意指包括但不限於。僅過渡性片語「由……組成」及「基本上由……組成」應分別係封閉式或半封閉式過渡性片語。 不應將申請專利範圍解讀為限制於所闡述之次序或元件,除非陳述彼效應。應理解,熟習此項技術者可在不背離隨附申請專利範圍之精神及範疇之情況下做出形式及細節之各種改變。主張在隨附申請專利範圍及其等效內容之精神及範疇內之所有實施例。
1-100‧‧‧高科技儀器/儀器
1-110‧‧‧光學源/光學源系統
1-122‧‧‧光學脈衝/脈衝/輸出脈衝
1-140‧‧‧生物光電晶片/晶片/經封裝生物光電晶片/分析晶片
1-150‧‧‧光束整形及操縱總成/光束整形及操縱模組/模組/光束操縱總成/總成
1-160‧‧‧高科技系統
1-305‧‧‧半導體基板
1-310‧‧‧光柵耦合器
1-312‧‧‧光學波導/波導/整合式光學波導
1-315‧‧‧漸縮部分
1-317‧‧‧第二光柵耦合器
1-320‧‧‧象限偵測器
1-322‧‧‧光偵測器/時間方格化光偵測器
1-323‧‧‧整合式裝置
1-324‧‧‧整合式光電二極體/光電二極體
1-330‧‧‧反應室
1-340‧‧‧桶形件
1-350‧‧‧金屬塗層/多層塗層
1-410‧‧‧介入介電層
1-510‧‧‧目標核酸
1-512‧‧‧生長DNA鏈
1-520‧‧‧聚合酶
1-530‧‧‧單層或多層光學濾波器/光學濾波器
1-540‧‧‧金屬化層
1-610‧‧‧所標記核苷酸或核苷酸類似物
1-620‧‧‧連接器
1-630‧‧‧螢光團
2-100‧‧‧切片式光柵耦合器
2-110‧‧‧光柵耦合器
2-112‧‧‧經延伸光束
2-120‧‧‧波導
2-122‧‧‧漸縮端/漸縮端陣列/漸縮波導端/橢圓形光束/光束
2-203‧‧‧狹槽
2-205‧‧‧輸入光束/傳入光學光束/輸入光學光束/光學光束
2-210‧‧‧牢固底盤/底盤
2-212‧‧‧高科技儀器之底盤或框架/儀器之底盤或框架
2-214‧‧‧機械座架/座架
2-216‧‧‧緊固件
2-221‧‧‧步進馬達/第一致動器
2-222‧‧‧步進馬達/第二致動器
2-223‧‧‧步進馬達/第三致動器/致動器
2-224‧‧‧步進馬達/第四致動器/致動器
2-225‧‧‧步進馬達
2-231‧‧‧第一光學窗/光學窗/光學器件/光學組件
2-232‧‧‧第二光學窗/光學窗/光學器件
2-233‧‧‧聚焦透鏡/透鏡
2-234‧‧‧轉向鏡/二向分光經塗佈轉向鏡/鏡
2-235‧‧‧第三光學窗/光學窗
2-237‧‧‧第四光學窗/光學窗
2-239‧‧‧光學快門
2-242‧‧‧機械連桿
2-244‧‧‧機械連桿
2-246‧‧‧可調整座架
2-247‧‧‧固定螺絲
2-250‧‧‧中間板
2-252‧‧‧變形稜鏡對/稜鏡對/變形稜鏡
2-254‧‧‧影像旋轉稜鏡/達夫稜鏡
2-260‧‧‧束集堆
2-290‧‧‧印刷電路板
2-340‧‧‧基板表面/表面
2-350‧‧‧光束/傳出光束/光學光束/傳出光學光束/經聚焦光束
2-410‧‧‧支架
2-412‧‧‧圓柱形表面
2-420‧‧‧軸承
2-432‧‧‧槓桿臂
2-434‧‧‧槓桿臂
2-440‧‧‧壓縮彈簧
2-446‧‧‧支撐件
2-505‧‧‧光學座架
2-510‧‧‧凸輪臂
2-520‧‧‧軸承
2-530‧‧‧旋轉驅動軸件/軸件/驅動軸件
2-540‧‧‧槓桿臂
2-545‧‧‧彎曲表面/經工程設計彎曲表面
2-550‧‧‧軸/軸承
2-560‧‧‧扭力彈簧
2-610‧‧‧螺旋搜索路徑
2-630‧‧‧光散射元件
2-710‧‧‧放大電路
2-730‧‧‧控制電路/微控制器
A‧‧‧螢光發射機率曲線/曲線
B‧‧‧螢光發射機率曲線/曲線
f‧‧‧焦距
L‧‧‧長度
l1 ‧‧‧長軸長度
pA(t)‧‧‧機率
pB(t)‧‧‧發射機率
PAo ‧‧‧初始發射機率
Q1、Q2、Q3、Q4‧‧‧象限偵測器
SM1-SM5‧‧‧通信鏈路
T‧‧‧規律間隔
t1‧‧‧時間
WP‧‧‧通信鏈路
X‧‧‧光束參數
Y‧‧‧光束參數
θx‧‧‧光束參數
θy‧‧‧光束參數
f‧‧‧角度/側滾角
τ1‧‧‧螢光壽命/發射壽命/壽命
τ2‧‧‧螢光壽命/發射壽命/壽命
熟習此項技術者將理解,本文中所闡述之各圖僅出於圖解說明目的。應理解,在某些例項中,本發明之各種態樣可經展示為放大的以促進對本發明之理解。在圖式中,相似元件符號貫穿各圖一般係指相似特徵、功能上類似及/或結構上類似之元件。圖式未必按比例繪製,而是重點放在圖解說明教示之原理上。圖式並非意欲以任何方式限制本發明教示之範疇。 1-1 係根據某些實施例之高科技系統之方塊圖繪示。 1-2 繪示根據某些實施例之可由高科技系統中之光學源產生之一連串光學脈衝。 1-3 繪示可包含於可安裝在高科技系統內之晶片上之並行反應室之實例。根據某些實施例,可經由由接近每一室形成之光偵測器所偵測到之一或多個波導及發射光學地激發該等反應室。 1-4 圖解說明在三個不同光學功率下波導中之時間相依損耗。 1-5 繪示根據某些實施例之整合式反應室、光學波導及時間方格化光偵測器之進一步細節。 1-6 繪示根據某些實施例之可在反應室內發生之生物反應之實例。 1-7 繪示具有不同衰變特性之兩個不同螢光團之發射機率曲線。 1-8 繪示根據某些實施例之螢光發射之時間方格化偵測。 2-1A 繪示根據某些實施例之細長光束至複數個波導之耦合。 2-1B 繪示根據某些實施例之細長且經旋轉光束至複數個波導之耦合。 2-2A 繪示根據某些實施例之光束整形及操縱模組。 2-2B 繪示根據某些實施例之安裝至在儀器中且加固印刷電路板之底盤之光束整形及操縱模組。 2-3 繪示根據某些實施例之光束整形及操縱組件之光學細節。 2-4 繪示根據某些實施例之用於影像旋轉稜鏡之旋轉座架之元件。 2-5A 繪示根據某些實施例之用於使光學組件旋轉之機械連桿。 2-5B 圖解說明包含經工程設計彎曲表面以補償機械連桿中之非線性之機械連桿之線性化光束位移。 2-6 繪示根據某些實施例之光學光束至晶片上之光學耦合器之對準。 2-7 繪示根據某些實施例之用於將光學脈衝自光學源耦合至生物光電子晶片之多個波導中之偵測與控制電路。 依據在結合圖式進行時下文所陳述之詳細說明將更明瞭本發明之特徵及優點。當參考圖式闡述實施例時,可使用方向性參考(「上面」、「下面」、「頂部」、「底部」、「左」、「右」、「水平」、「垂直」 )。此等參考僅意欲作為對讀者在法向定向上觀看圖式之輔助。此等方向性參考不意欲闡述所體現裝置之特徵之較佳或僅有定向。可使用其他定向來體現裝置。

Claims (51)

  1. 一種光束整形及操縱總成,其包括: 第一光學組件,其經配置以將輸入光束之第一橫向光束形狀轉變為第二光束之第二橫向光束形狀; 第二光學組件,其經配置以使該第二橫向光束形狀圍繞該第二光束之光學軸線旋轉;及 第三光學組件,其經配置以調整以下各項中之一者:輸出光束在目標位置處之第一位置或第一方向角。
  2. 如請求項1之光束整形及操縱總成,其中該輸入光束穿過該第一光學組件高達± 3 mm之位移不改變該第二橫向光束形狀。
  3. 如請求項1之光束整形及操縱總成,其中該第一光學組件包括變形稜鏡對。
  4. 如請求項1之光束整形及操縱總成,其進一步包括束集堆,其中該第一光學組件使該輸入光束中之光學波長在空間上分開,且該束集堆經定位以自該第一光學組件接收處於第一波長之輸出。
  5. 如請求項‎4之光束整形及操縱總成,其進一步包括轉向鏡,該轉向鏡經配置以接收具有第二波長之該第二光束且將該第二光束引導至該第三光學組件。
  6. 如請求項1之光束整形及操縱總成,其中該第二光學組件包括達夫稜鏡(dove prism)。
  7. 如請求項1之光束整形及操縱總成,其中該第三光學組件包括光學窗。
  8. 如請求項1至7中任一項之光束整形及操縱總成,其進一步包括支撐該第一光學組件、該第二光學組件及該第三光學組件之底盤,其中該底盤係安裝在包括印刷電路板(PCB)之儀器中,具有接收該第二光束之接收光學組件之裝置安裝在該印刷電路板(PCB)上,其中該PCB之含有該裝置之區域附接至該底盤以減少該裝置相對於該光束整形及操縱總成之運動。
  9. 如請求項1至‎7中任一項之光束整形及操縱總成,其進一步包括經配置以調整以下各項中之一者之第四光學組件:該輸出光束在該目標位置處之第二位置或第二方向角。
  10. 如請求項9之光束整形及操縱總成,其中由對該第四光學組件之調整對該目標位置處之該輸出光束造成之第一效應基本上不影響由對該第三光學組件之調整對該目標位置處之該輸出光束造成之第二效應且反之亦然。
  11. 如請求項9之光束整形及操縱總成,其進一步包括: 第一致動器,其耦合至該第三光學組件;及 第二致動器,其耦合至該第四光學組件, 其中該第一致動器及該第二致動器各自包含基本上平行於同一平面之旋轉驅動軸件。
  12. 如請求項‎11之光束整形及操縱總成,其中該第一致動器及該第二致動器之該等旋轉驅動軸件基本上平行。
  13. 如請求項11之光束整形及操縱總成,其中由該第三光學組件對該目標位置處之該輸出光束實現之改變係在基本上正交於由該第四光學組件對該目標位置處之該輸出光束實現之改變之維度上。
  14. 如請求項1之光束整形及操縱總成,其中該第三光學組件係經配置以調整該輸出光束在該目標位置處之該第一方向角,該光束整形及操縱總成進一步包括: 第四光學組件,其經配置以調整該輸出光束在該目標位置處之第二方向角; 第五光學組件,其經配置以調整該輸出光束在該目標位置處之該第一位置;及 第六光學組件,其經配置以調整該輸出光束在該目標位置處之第二位置。
  15. 如請求項‎14之光束整形及操縱總成,其進一步包括聚焦透鏡,該聚焦透鏡經配置使得該第三光學組件及該第四光學組件安置於該聚焦透鏡之第一側上且該第五光學組件及該第六光學組件安置於該聚焦透鏡之第二側上。
  16. 如請求項14或‎15之光束整形及操縱總成,其中: 該第一方向角係該輸出光束在該目標位置處之俯仰角; 該第二方向角係該輸出光束在該目標位置處之側傾角(yaw angle); 該第一位置係該輸出光束在該目標位置處之X 方向位置;且 該第二位置係該輸出光束在該目標位置處之Y 方向位置,該X方向與該Y方向係正交的。
  17. 如請求項1之光束整形及操縱總成,其中該第二橫向光束形狀係實質上橢圓形的,且該第一橫向光束形狀係實質上圓形的。
  18. 一種將光束自系統之光學源耦合至接收光學組件之方法,該方法包括: 由光束整形及操縱總成自該光學源接收該光束; 用該光束整形及操縱總成將該光束之第一橫向光束形狀轉變為輸出光束之第二橫向光束形狀; 用該光束整形及操縱總成將該輸出光束定位在該接收光學組件上;及 用該光束整形及操縱總成使該第二橫向光束形狀以可調整方式旋轉。
  19. 如請求項18之方法,其中藉由使由單片材料製成之光學組件旋轉來執行該旋轉。
  20. 如請求項18之方法,其中該第一橫向光束形狀係圓形的,且該第二橫向光束形狀係橢圓形的。
  21. 如請求項18之方法,其進一步包括用該光束整形及操縱總成改變該輸出光束在該接收光學組件上之入射角及位置中之一者或兩者。
  22. 如請求項18至21中任一項之方法,其中使用光學窗之旋轉來調整該輸出光束在該接收光學組件上之入射角。
  23. 如請求項18至21中任一項之方法,其中該輸出光束之橫向大小比該接收光學組件之耦合區域大介於10%與35%之間且相對於該接收光學組件以側滾角(roll angle)定向。
  24. 如請求項23之方法,其進一步包括調整該輸出光束在該接收光學組件處之位置以補償該第二橫向光束形狀中之強度不對稱性。
  25. 如請求項21之方法,其中該接收光學組件包括經組態以將該輸出光束耦合至複數個波導之切片式光柵耦合器。
  26. 如請求項25之方法,其進一步包括用該光束整形及操縱總成調整耦合至該複數個波導之功率之均勻性。
  27. 一種用於將輻射光束耦合至設備之光學系統,該光學系統包括: 三個旋轉致動器;及 三個光學組件,其分別耦合至該三個旋轉致動器,其中每一旋轉致動器具有圍繞軸件軸線旋轉以使該三個光學組件中之一光學組件移動之驅動軸件,其中該三個旋轉致動器之該等軸件軸線基本上平行於同一平面,且其中藉由該三個旋轉致動器致動該三個光學組件會使該光束在三個不同自由度上變更。
  28. 如請求項27之光學系統,其中該三個光學組件與該三個旋轉致動器之間的耦合不包含齒輪、滑輪或鏈輪。
  29. 如請求項27之光學系統,其中該三個光學組件中之至少兩個光學組件係透明光學窗,且該等驅動軸件中之至少兩個驅動軸件基本上平行。
  30. 如請求項27之光學系統,其中該三個旋轉致動器具有基本上相同大小及結構。
  31. 如請求項27之光學系統,其中藉由該三個旋轉致動器中之第一旋轉致動器使該三個光學組件中之第一光學組件移動會使該橫向光束形狀在離開該第一光學組件之位置處圍繞沿著離開該第一光學組件之該光束居中地伸展之光學軸線旋轉。
  32. 如請求項31之光學系統,其中該第一光學組件之移動使該光束在該目標位置處圍繞沿著該經聚焦光束居中地伸展之光學軸線旋轉,其中該經聚焦光束在該目標位置處基本上不具有側向位移。
  33. 如請求項‎27至32中任一項之光學系統,其進一步包括用以將該光束聚焦至該設備中之目標位置之透鏡,其中藉由該三個旋轉致動器中之兩個旋轉致動器使該三個光學組件中之兩個光學組件移動會變更該經聚焦光束在該目標位置處之入射角,其中該經聚焦光束在該目標位置處基本上不具有側向位移。
  34. 如請求項33之光學系統,其進一步包括: 第四光學組件,其耦合至第四旋轉致動器,該第四旋轉致動器具有圍繞軸件軸線旋轉以使該第四光學組件移動之驅動軸件;及 第五光學組件,其耦合至第五旋轉致動器,該第五旋轉致動器具有圍繞軸件軸線旋轉以使該第五光學組件移動之驅動軸件,其中該第四旋轉致動器及該第五旋轉致動器之該等軸件軸線基本上平行於同一平面。
  35. 如請求項34之光學系統,其中該三個旋轉致動器以及該第四旋轉致動器及該第五旋轉致動器之該等軸件軸線基本上位於同一平面中。
  36. 如請求項34之光學系統,其中該光學系統具有不大於40 mm之高度。
  37. 如請求項34之光學系統,其中該第四光學組件及該第五光學組件之移動使該目標位置處之該經聚焦光束以兩個自由度側向平移,其中該光束在該目標位置處之入射角基本上不具有改變。
  38. 如請求項27之光學系統,其進一步包括經組態以將所接收圓形光束形狀轉換為細長光束形狀之光束整形組件。
  39. 如請求項38之光學系統,其中該光束整形組件進一步經組態以將該光束中之不同輻射波長在空間上分開。
  40. 一種用於將輻射光束耦合至設備之光學系統,該光學系統包括: 第一光學組件,其經支撐在可調整座架中;及 第一致動器,其耦合至該可調整座架,其中藉由該第一致動器使該第一光學組件移動會使離開該第一光學組件之離開光束之橫向形狀及偏振旋轉,其中該橫向形狀及該偏振之該旋轉係圍繞沿著該離開光束居中地伸展之光學軸線。
  41. 如請求項40之光學系統,其中該第一光學組件係由單片材料製成,該單片材料經對準使得該光束沿著該第一光學組件之旋轉軸線居中地入射。
  42. 如請求項40之光學系統,其進一步包括: 第二光學組件,其經配置以將該光束之第一橫向光束形狀轉變為第二光束之第二橫向光束形狀且將該光束中之波長在空間上分開;及 束集堆,其經配置以自該光束接收在空間上分開之波長。
  43. 如請求項‎40至‎42中任一項之光學系統,其進一步包括經配置以調整該離開光束之方向角之額外光學組件。
  44. 如請求項‎43之光學系統,其中該額外光學組件係透明光學窗。
  45. 一種用於變更輻射光束之光學系統,該光學系統包括: 第一光學組件,其由經組態以使該第一光學組件圍繞第一軸線旋轉之可調整座架支撐; 旋轉致動器,其具有圍繞不平行於該第一軸線之第二軸線旋轉之驅動軸件; 凸輪臂,其連接至該驅動軸件; 軸承,其連接至該凸輪臂;及 彎曲表面,其連接至該可調整座架,其中當致動該旋轉致動器以使該第一光學組件旋轉時,該軸承跨越該彎曲表面伸展。
  46. 如請求項‎45之光學系統,其中該彎曲表面經整形以使由於藉由該驅動軸件使該凸輪臂旋轉而發生的穿過該光學組件之光學光束之參數之改變線性化。
  47. 一種光學光束操縱設備,其包括: 第一旋轉致動器,其經配置以使第一光學窗旋轉; 第二旋轉致動器,其經配置以使第二光學窗旋轉;及 透鏡,其中該第一光學窗之旋轉調整光學光束在目標位置處之側向位置,且該第二光學窗之旋轉調整該光束在該目標位置處之入射角而不使該側向位置改變多於10微米。
  48. 如請求項47之光學光束操縱設備,其中該第一旋轉致動器之旋轉驅動軸件基本上平行於該第二旋轉致動器之旋轉驅動軸件。
  49. 一種光學光束操縱設備,其包括三個可旋轉透明光學窗,該三個可旋轉透明光學窗經配置而以三個正交自由度調整來自該光束操縱設備之輸出光束之三個參數。
  50. 如請求項‎49之光學光束操縱設備,其進一步包括經組態以使該三個可旋轉透明光學窗旋轉之三個旋轉致動器,其中該三個旋轉致動器之驅動軸件基本上平行於同一平面。
  51. 如請求項‎50之光學光束操縱設備,其中該等驅動軸件基本上彼此平行。
TW106144179A 2016-12-16 2017-12-15 緊密的光束整形及操縱總成 TWI741104B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662435679P 2016-12-16 2016-12-16
US62/435,679 2016-12-16

Publications (2)

Publication Number Publication Date
TW201837541A true TW201837541A (zh) 2018-10-16
TWI741104B TWI741104B (zh) 2021-10-01

Family

ID=60943130

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110131365A TWI799965B (zh) 2016-12-16 2017-12-15 光學系統、光學光束操縱設備、和耦合光束之方法
TW106144179A TWI741104B (zh) 2016-12-16 2017-12-15 緊密的光束整形及操縱總成

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110131365A TWI799965B (zh) 2016-12-16 2017-12-15 光學系統、光學光束操縱設備、和耦合光束之方法

Country Status (11)

Country Link
US (3) US10551624B2 (zh)
EP (1) EP3555691A1 (zh)
JP (3) JP7050068B2 (zh)
KR (2) KR102407102B1 (zh)
CN (2) CN116466494A (zh)
AU (2) AU2017378337A1 (zh)
BR (1) BR112019012069A2 (zh)
CA (1) CA3047108A1 (zh)
MX (1) MX2019007069A (zh)
TW (2) TWI799965B (zh)
WO (1) WO2018112170A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466316B2 (en) 2015-05-20 2022-10-11 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US10605730B2 (en) 2015-05-20 2020-03-31 Quantum-Si Incorporated Optical sources for fluorescent lifetime analysis
DE102015119875A1 (de) * 2015-06-19 2016-12-22 Laser- Und Medizin-Technologie Gmbh, Berlin Lateral abstrahlende Lichtwellenleiter und Verfahren zur Einbringung von Mikromodifikationen in einen Lichtwellenleiter
CN109219743B (zh) * 2016-06-01 2022-04-26 宽腾矽公司 用于检测及分析分子的集成装置
EP3555691A1 (en) * 2016-12-16 2019-10-23 Quantum-Si Incorporated Compact beam shaping and steering assembly
CA3047133A1 (en) 2016-12-16 2018-06-21 Quantum-Si Incorporated Compact mode-locked laser module
US11835841B2 (en) 2017-10-27 2023-12-05 Exciting Technology LLC System, method and apparatus for non-mechanical optical and photonic beam steering
US11835838B2 (en) 2017-10-27 2023-12-05 Exciting Technology LLC System, method and apparatus for non-mechanical optical and photonic beam steering
US10845671B2 (en) 2017-10-27 2020-11-24 Exciting Technology, Llc System, method and apparatus for non-mechanical optical and photonic beam steering
DE102017127813A1 (de) * 2017-11-24 2019-05-29 Tesat-Spacecom Gmbh & Co. Kg Strahlausrichtung in unidirektionalen optischen Kommunikationssystemen
EP3807622A1 (en) 2018-06-15 2021-04-21 Quantum-Si Incorporated Data acquisition control for advanced analytic instruments having pulsed optical sources
CN109239940B (zh) * 2018-11-02 2021-05-07 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪
CA3117889A1 (en) 2018-11-15 2020-05-22 Quantum-Si Incorporated Methods and compositions for protein sequencing
JP7052745B2 (ja) * 2019-01-25 2022-04-12 トヨタ自動車株式会社 車両制御システム
US11035985B1 (en) * 2019-02-27 2021-06-15 Lockheed Martin Corporation Multi-lenslet PIC imagers and packaging configurations
JP2022537277A (ja) 2019-06-14 2022-08-25 クアンタム-エスアイ インコーポレイテッド 改善されたビームアラインメント感度を有するスライス格子カプラ
CA3159566A1 (en) 2019-10-29 2021-05-06 Quantum-Si Incorporated Peristaltic pumping of fluids and associated methods, systems, and devices
DE102019129932B4 (de) * 2019-11-06 2023-12-21 Technische Universität Braunschweig Optische Detektionseinrichtung und Verfahren zum Betreiben einer optischen Detektionseinrichtung
WO2021146475A1 (en) 2020-01-14 2021-07-22 Quantum-Si Incorporated Sensor for lifetime plus spectral characterization
JP2023510577A (ja) * 2020-01-14 2023-03-14 クアンタム-エスアイ インコーポレイテッド 寿命特性評価のための集積センサ
US11199665B2 (en) * 2020-01-28 2021-12-14 Hewlett Packard Enterprise Development Lp Optical device for redirecting optical signals
TW202147591A (zh) 2020-03-02 2021-12-16 美商寬騰矽公司 用於多維信號分析之整合感應器
KR20220165754A (ko) 2020-04-08 2022-12-15 퀀텀-에스아이 인코포레이티드 스큐가 감소된 통합 센서
US20230038746A1 (en) 2020-04-17 2023-02-09 Exciting Technology LLC System, method, and apparatus for high precision light beam steering using a triplet lens
WO2022266229A1 (en) * 2021-06-15 2022-12-22 Exciting Technology LLC System, method, and apparatus for high precision light beam steering
CN116134046A (zh) 2020-05-20 2023-05-16 宽腾矽公司 用于蛋白质测序的方法及组合物
CN113375914B (zh) * 2021-06-04 2022-09-02 哈尔滨工程大学 一种用于激光板条面检测的光斑强度分布获取方法
CN114217447B (zh) * 2021-11-22 2023-07-07 中国工程物理研究院应用电子学研究所 一种激光束整形变换装置
US20240110871A1 (en) * 2022-09-13 2024-04-04 Quantum-Si Incorporated Sensor chip assembly and methods to manufacture the same

Family Cites Families (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034949A (en) * 1965-05-12 1977-07-12 Philco Corporation Optical apparatus
GB1521931A (en) * 1976-01-31 1978-08-16 Ferranti Ltd Optical apparatus
US4295226A (en) 1980-07-02 1981-10-13 Bell Telephone Laboratories, Incorporated High speed driver for optoelectronic devices
JPS6317581A (ja) 1986-07-10 1988-01-25 Sumitomo Electric Ind Ltd 発光素子の駆動回路
US4850686A (en) * 1987-02-06 1989-07-25 Asahi Kogaku Kogyo K.K. Apparatus for adjusting light beam direction
US5108179A (en) 1989-08-09 1992-04-28 Myers Stephen A System and method for determining changes in fluorescence of stained nucleic acid in electrophoretically separated bands
EP0472318A3 (en) 1990-08-06 1994-08-10 At & T Corp Led pulse shaping circuit
US5196709A (en) 1991-05-03 1993-03-23 University Of Maryland Systems Fluorometry method and apparatus using a semiconductor laser diode as a light source
US5329210A (en) 1991-11-13 1994-07-12 At&T Bell Laboratories High-speed driver for an LED communication system or the like
JP3018717B2 (ja) 1992-03-03 2000-03-13 松下電器産業株式会社 短波長レーザ光源および短波長レーザ光源の製造方法
JPH05275780A (ja) 1992-03-27 1993-10-22 Topcon Corp パルスレーザドライバの保護回路
JPH05283766A (ja) 1992-03-31 1993-10-29 Toshiba Corp レーザ発振管装置およびその取付け方法
JP2575270B2 (ja) 1992-11-10 1997-01-22 浜松ホトニクス株式会社 核酸の塩基配列決定方法、単一分子検出方法、その装置及び試料の作成方法
CA2155186A1 (en) 1993-02-01 1994-08-18 Kevin M. Ulmer Methods and apparatus for dna sequencing
US6715685B2 (en) * 1993-11-17 2004-04-06 Symbol Technologies, Inc. Optical path design for scanning assembly in compact bar code readers
US5471515A (en) 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
JP3089382B2 (ja) 1994-01-31 2000-09-18 ミヤチテクノス株式会社 レーザ発振装置
US5461637A (en) 1994-03-16 1995-10-24 Micracor, Inc. High brightness, vertical cavity semiconductor lasers
JPH10501616A (ja) 1994-05-27 1998-02-10 ノバルティス アクチエンゲゼルシャフト 漸減励起された発光を検出するための方法
US5814565A (en) 1995-02-23 1998-09-29 University Of Utah Research Foundation Integrated optic waveguide immunosensor
JPH11505370A (ja) 1995-05-19 1999-05-18 ケレル−ヴアインガルテン,ウルスラ パルス化されたレーザビームを発生するレーザ装置において優先的に使用する光学部品
JP2735039B2 (ja) 1995-06-09 1998-04-02 日本電気株式会社 光パルス発生方法および装置
US5854651A (en) * 1996-05-31 1998-12-29 Eastman Kodak Company Optically correcting deviations from straightness of laser emitter arrays
JPH103022A (ja) 1996-06-18 1998-01-06 Fuji Photo Film Co Ltd 光学装置の固定機構
DE19702261C2 (de) 1997-01-23 2000-02-03 Grieshaber Vega Kg Mikrowellen-Pulsgenerator
AU762888B2 (en) 1997-02-12 2003-07-10 Us Genomics Methods and products for analyzing polymers
US6825921B1 (en) 1999-11-10 2004-11-30 Molecular Devices Corporation Multi-mode light detection system
DE19980326T1 (de) * 1998-01-21 2000-06-15 Renishaw Plc Strahllenkeinrichtung
GB9810350D0 (en) 1998-05-14 1998-07-15 Ciba Geigy Ag Organic compounds
US6787308B2 (en) 1998-07-30 2004-09-07 Solexa Ltd. Arrayed biomolecules and their use in sequencing
US6716394B2 (en) 1998-08-11 2004-04-06 Caliper Technologies Corp. DNA sequencing using multiple fluorescent labels being distinguishable by their decay times
JP2000155052A (ja) 1998-09-14 2000-06-06 Agency Of Ind Science & Technol 光パルス入力型高速ジョセフソンサンプリング測定回路
US6205266B1 (en) * 1998-10-06 2001-03-20 Trw Inc. Active alignment photonics assembly
US6185235B1 (en) 1998-11-24 2001-02-06 Spectra-Physics Lasers, Inc. Lasers with low doped gain medium
US6393035B1 (en) 1999-02-01 2002-05-21 Gigatera Ag High-repetition rate passively mode-locked solid-state laser
US7056661B2 (en) 1999-05-19 2006-06-06 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
EP1681356B1 (en) 1999-05-19 2011-10-19 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
WO2000072412A1 (de) 1999-05-21 2000-11-30 Gigaoptics Gmbh Passiv modengekoppelter femtosekundenlaser
JP2001025102A (ja) 1999-07-01 2001-01-26 Toshiba Corp 電気車制御装置
DE19934638B4 (de) 1999-07-23 2004-07-08 Jenoptik Ldt Gmbh Modensynchronisierter Festkörperlaser mit mindestens einem konkaven Faltungsspiegel
US6944201B2 (en) 1999-07-30 2005-09-13 High Q Laser Production Gmbh Compact ultra fast laser
US20010021215A1 (en) 1999-07-30 2001-09-13 Udo Bunting Compact ultra fast laser
JP3314772B2 (ja) 1999-09-01 2002-08-12 日本電気株式会社 光パルス発生装置及びそれを用いた光クロック抽出装置と光クロック分周装置と光クロック抽出分周装置
US6545759B1 (en) 1999-11-30 2003-04-08 Nile F. Hartman Transverse integrated optic interferometer
US6834064B1 (en) 1999-12-08 2004-12-21 Time-Bandwidth Products Ag Mode-locked thin-disk laser
US7671295B2 (en) 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
DE10017884C2 (de) * 2000-04-11 2003-12-24 Toptica Photonics Ag Vorrichtung zur geometrischen Strahlformung eines Lichtstrahlprofils
US7175811B2 (en) 2000-04-28 2007-02-13 Edgelight Biosciences Micro-array evanescent wave fluorescence detection device
US6917726B2 (en) 2001-09-27 2005-07-12 Cornell Research Foundation, Inc. Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes
JP2004505472A (ja) 2000-07-28 2004-02-19 ダニエル コプフ 非線形光学系において使用するためのレーザー
FR2813121A1 (fr) 2000-08-21 2002-02-22 Claude Weisbuch Dispositif perfectionne de support d'elements chromophores
JP2002239773A (ja) * 2000-12-11 2002-08-28 Matsushita Electric Ind Co Ltd 半導体レーザー加工装置および半導体レーザー加工方法
JP2002368313A (ja) 2001-06-12 2002-12-20 Aisin Seiki Co Ltd 受動型モードロック・ファイバーレーザー
US6856435B2 (en) * 2001-07-27 2005-02-15 Gigabit Optics Corporation System and method for optical multiplexing and/or demultiplexing
US6995841B2 (en) 2001-08-28 2006-02-07 Rice University Pulsed-multiline excitation for color-blind fluorescence detection
US20030058904A1 (en) 2001-09-24 2003-03-27 Gigatera Ag Pulse-generating laser
EP1317035A1 (en) 2001-11-29 2003-06-04 Hitachi Ltd. Optical pulse generator
GB2382648B (en) 2001-12-11 2003-11-12 Amersham Pharm Biotech Uk Ltd System and method for time correlated multi-photon counting measurements
US20030169784A1 (en) 2002-03-08 2003-09-11 Sutter Dirk H. Method and device to avoid optical damage of an intracavity optic
US7179654B2 (en) 2002-03-18 2007-02-20 Agilent Technologies, Inc. Biochemical assay with programmable array detection
US6924887B2 (en) 2002-03-27 2005-08-02 Sarnoff Corporation Method and apparatus for generating charge from a light pulse
US7595883B1 (en) 2002-09-16 2009-09-29 The Board Of Trustees Of The Leland Stanford Junior University Biological analysis arrangement and approach therefor
JP2003177328A (ja) 2002-09-17 2003-06-27 Olympus Optical Co Ltd 走査型光学顕微鏡
US7330301B2 (en) 2003-05-14 2008-02-12 Imra America, Inc. Inexpensive variable rep-rate source for high-energy, ultrafast lasers
DE10323669A1 (de) 2003-05-14 2004-12-02 Atmel Germany Gmbh Treiberschaltung zum Betreiben eines elektronischen Bauteils
JP2004363419A (ja) 2003-06-06 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> パルス光源
JP4398331B2 (ja) 2003-09-25 2010-01-13 パナソニック株式会社 レーザ駆動装置、光ディスク装置、レーザ駆動方法およびレーザ駆動用集積回路
WO2005073407A1 (en) 2003-10-07 2005-08-11 Ut-Battelle, Llc Advanced integrated circuit biochip
AT412829B (de) 2003-11-13 2005-07-25 Femtolasers Produktions Gmbh Kurzpuls-laservorrichtung
US7184184B2 (en) * 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7968851B2 (en) 2004-01-13 2011-06-28 Spectrum Dynamics Llc Dynamic spect camera
DE602005020421D1 (de) 2004-02-19 2010-05-20 Helicos Biosciences Corp Verfahren zur analyse von polynukleotidsequenzen
US20060000814A1 (en) 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
US20060029110A1 (en) 2004-08-03 2006-02-09 Imra America, Inc. Cavity monitoring device for pulse laser
US7170050B2 (en) 2004-09-17 2007-01-30 Pacific Biosciences Of California, Inc. Apparatus and methods for optical analysis of molecules
KR100590565B1 (ko) 2004-10-30 2006-06-19 삼성전자주식회사 반도체 레이저 다이오드 및 그 제조 방법
US7738086B2 (en) 2005-05-09 2010-06-15 The Trustees Of Columbia University In The City Of New York Active CMOS biosensor chip for fluorescent-based detection
KR100701006B1 (ko) 2005-05-31 2007-03-29 한국전자통신연구원 포물선 도파로형 평행광 렌즈 및 이를 포함한 파장 가변외부 공진 레이저 다이오드
US7646546B1 (en) * 2005-06-10 2010-01-12 Cvi Laser, Llc Anamorphic optical system providing a highly polarized laser output
US7426322B2 (en) 2005-07-20 2008-09-16 Searete Llc. Plasmon photocatalysis
US8975216B2 (en) 2006-03-30 2015-03-10 Pacific Biosciences Of California Articles having localized molecules disposed thereon and methods of producing same
US7742510B2 (en) 2006-04-27 2010-06-22 Spectralus Corporation Compact solid-state laser with nonlinear frequency conversion using periodically poled materials
ES2329206B1 (es) 2006-05-04 2010-08-30 Universitat Illes Balears Aparato y metodo para la obtencion de pulsos cortos de luz laser mediante bloqueo pasivo de modos por saturacion de ganancia cruzada entre polarizaciones ortogonales.
JP2008028379A (ja) 2006-06-22 2008-02-07 Fujifilm Corp モードロックレーザ装置
US8207509B2 (en) 2006-09-01 2012-06-26 Pacific Biosciences Of California, Inc. Substrates, systems and methods for analyzing materials
WO2008028160A2 (en) 2006-09-01 2008-03-06 Pacific Biosciences Of California, Inc. Substrates, systems and methods for analyzing materials
FR2908888B1 (fr) 2006-11-21 2012-08-03 Centre Nat Rech Scient Dispositif pour la detection exaltee de l'emission d'une particule cible
US7394841B1 (en) 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications
US8885239B2 (en) 2007-02-21 2014-11-11 Hewlett-Packard Development Company, L.P. Method and apparatus for controlling multiple beam spacing
GB2447254B (en) 2007-03-01 2009-10-14 Toshiba Res Europ Ltd A photon detector
TWI684644B (zh) 2007-08-13 2020-02-11 美商網路生物有限公司 利用電泳偵測核酸及生物分子之整合微流體系統、生物晶片及方法
US7873085B2 (en) 2007-10-23 2011-01-18 Andrei Babushkin Method and device for controlling optical output of laser diode
JP2009122493A (ja) 2007-11-16 2009-06-04 Nippon Telegr & Teleph Corp <Ntt> アナモルフィックプリズム
WO2009082706A1 (en) 2007-12-21 2009-07-02 The Trustees Of Columbia University In The City Of New York Active cmos sensor array for electrochemical biomolecular detection
US20110165652A1 (en) 2008-01-14 2011-07-07 Life Technologies Corporation Compositions, methods and systems for single molecule sequencing
JP5290737B2 (ja) 2008-02-08 2013-09-18 古河電気工業株式会社 光−マイクロ波発振器及びパルス発生装置
EP2263087B1 (en) 2008-03-13 2017-08-09 Pacific Biosciences of California, Inc. Labeled reactants and their uses
JP5495506B2 (ja) 2008-05-13 2014-05-21 キヤノン株式会社 レーザ装置および光断層画像撮像装置
JP2010028751A (ja) 2008-07-24 2010-02-04 Toshiba Corp コンプリメンタリー光配線装置
AU2009292629B2 (en) 2008-09-16 2014-03-20 Pacific Biosciences Of California, Inc. Substrates and optical systems and methods of use thereof
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
RU2508562C2 (ru) * 2008-10-09 2014-02-27 Конинклейке Филипс Электроникс Н.В. Устройство управления направлением луча и светоизлучающее устройство
JP2010103291A (ja) 2008-10-23 2010-05-06 Fujifilm Corp モード同期レーザ装置
EP2182523B1 (en) 2008-10-31 2013-01-09 CSEM Centre Suisse d'Electronique et de Microtechnique SA -Recherche et Développement Charge sampling device and method based on a MOS-transmission line
FR2938935B1 (fr) 2008-11-21 2011-05-06 Eolite Systems Dispositif d'allongement de la duree de vie d'un systeme optique non lineaire soumis au rayonnement d'un faisceau laser intense et source optique non lineaire comprenant ce dispositif
JP2010204006A (ja) 2009-03-05 2010-09-16 Anritsu Corp 光信号モニタ装置及び該装置のサンプリング周波数調整方法
US20100255487A1 (en) 2009-03-27 2010-10-07 Life Technologies Corporation Methods and apparatus for single molecule sequencing using energy transfer detection
WO2010117420A2 (en) 2009-03-30 2010-10-14 Pacific Biosciences Of California, Inc. Fret-labeled compounds and uses therefor
CN101562310B (zh) 2009-05-04 2010-09-01 北京国科世纪激光技术有限公司 被动锁模皮秒激光器
CN101572380B (zh) 2009-06-03 2010-11-17 南京大学 2.12微米锁模激光器
US8664876B2 (en) 2009-06-29 2014-03-04 Tai-Her Yang Lighting device with optical pulsation suppression by polyphase-driven electric energy
US8501406B1 (en) 2009-07-14 2013-08-06 Pacific Biosciences Of California, Inc. Selectively functionalized arrays
DE102009036273B4 (de) 2009-08-05 2014-11-13 Jenoptik Laser Gmbh Laser und Verfahren zur Erzeugung gepulster Laserstrahlung
CN102549478B (zh) * 2009-08-14 2016-02-24 爱克透镜国际公司 带有同时变量的像差校正的光学器件
US8278728B2 (en) 2009-10-17 2012-10-02 Florida Institute Of Technology Array of concentric CMOS photodiodes for detection and de-multiplexing of spatially modulated optical channels
JP5397195B2 (ja) 2009-12-02 2014-01-22 日立化成株式会社 光半導体素子搭載用基板の製造方法、及び、光半導体装置の製造方法
CN102712614B (zh) 2009-12-04 2015-12-02 拜奥蒂乌姆股份有限公司 杂环取代的呫吨染料
US20110236983A1 (en) 2009-12-29 2011-09-29 Joseph Beechem Single molecule detection and sequencing using fluorescence lifetime imaging
JP5276025B2 (ja) 2010-01-07 2013-08-28 古河電気工業株式会社 半導体レーザ駆動用電気パルス発生装置
JP6050684B2 (ja) 2010-01-22 2016-12-21 ニューポート コーポレーション 広範に同調可能な光パラメトリック発振器
EP3943920B1 (en) 2010-02-19 2024-04-03 Pacific Biosciences Of California, Inc. Integrated analytical system and method for fluorescence measurement
US9054479B2 (en) 2010-02-24 2015-06-09 Alcon Lensx, Inc. High power femtosecond laser with adjustable repetition rate
US20110206071A1 (en) 2010-02-24 2011-08-25 Michael Karavitis Compact High Power Femtosecond Laser with Adjustable Repetition Rate
US8279901B2 (en) 2010-02-24 2012-10-02 Alcon Lensx, Inc. High power femtosecond laser with adjustable repetition rate and simplified structure
US8953651B2 (en) 2010-02-24 2015-02-10 Alcon Lensx, Inc. High power femtosecond laser with repetition rate adjustable according to scanning speed
US8865077B2 (en) 2010-06-11 2014-10-21 Industrial Technology Research Institute Apparatus for single-molecule detection
US8865078B2 (en) 2010-06-11 2014-10-21 Industrial Technology Research Institute Apparatus for single-molecule detection
CN101915752B (zh) 2010-07-05 2012-06-06 中国科学院深圳先进技术研究院 激光扫描成像装置
JP2012032183A (ja) 2010-07-28 2012-02-16 Olympus Corp 試料観測装置および試料観測方法
CN101938081B (zh) 2010-09-01 2011-10-05 天津大学 基于多通脉冲压缩器的兆赫兹光子晶体光纤超短脉冲激光器
CN102448211A (zh) 2010-09-30 2012-05-09 富准精密工业(深圳)有限公司 发光二极管驱动电路
JP2012150186A (ja) 2011-01-18 2012-08-09 Nikon Corp 出力波長選択型レーザ装置
WO2012112925A2 (en) 2011-02-18 2012-08-23 NVS Technologies, Inc. Quantitative, highly multiplexed detection of nucleic acids
WO2012133292A1 (ja) 2011-03-29 2012-10-04 オリンパス株式会社 単一発光粒子検出を用いた光分析装置、光分析方法並びに光分析用コンピュータプログラム
US8728563B2 (en) 2011-05-03 2014-05-20 Palmaz Scientific, Inc. Endoluminal implantable surfaces, stents, and grafts and method of making same
JP5517992B2 (ja) 2011-05-20 2014-06-11 株式会社日立メディアエレクトロニクス 走査型投射装置
US8774238B2 (en) 2011-06-30 2014-07-08 Coherent, Inc. Mode-locked optically pumped semiconductor laser
DE102011114874B4 (de) 2011-09-30 2024-09-26 Carl Zeiss Microscopy Gmbh Mikroskop umfassend eine Auswerteschaltung für einen optoelektronischen Detektor zum Aufzeichnen insbesondere von Fluoreszenzereignissen
EP2764589B1 (en) 2011-10-07 2017-08-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Laser device with kerr effect based mode-locking and operation thereof
CA2856163C (en) 2011-10-28 2019-05-07 Illumina, Inc. Microarray fabrication system and method
DE102011055330A1 (de) 2011-11-14 2013-05-16 Leica Microsystems Cms Gmbh Verfahren zum Messen der Lebensdauer eines angeregten Zustandes in einer Probe
US9606060B2 (en) 2012-01-13 2017-03-28 California Institute Of Technology Filterless time-domain detection of one or more fluorophores
US9372308B1 (en) 2012-06-17 2016-06-21 Pacific Biosciences Of California, Inc. Arrays of integrated analytical devices and methods for production
CN102832536A (zh) 2012-08-16 2012-12-19 中国科学院光电研究院 一种用于输出锁模皮秒激光的谐振腔及锁模皮秒激光器
CA3040684C (en) 2012-08-20 2023-02-07 Hod Finkelstein Method and system for fluorescence lifetime based sequencing
EP4123294A1 (en) 2012-12-18 2023-01-25 Pacific Biosciences Of California, Inc. An optical analytical device
US8724666B1 (en) 2013-01-04 2014-05-13 Alcon Lensx, Inc. Self starting mode-locked laser oscillator
JP5705887B2 (ja) * 2013-01-17 2015-04-22 古河電気工業株式会社 光操作装置
JP6163308B2 (ja) 2013-02-04 2017-07-12 スペクトロニクス株式会社 短光パルス発生装置
JP6161188B2 (ja) 2013-02-05 2017-07-12 株式会社ブイ・テクノロジー レーザ加工装置、レーザ加工方法
US20160238532A1 (en) 2013-06-21 2016-08-18 Invenio Imaging Inc. Multi-photon systems and methods
JP2015015337A (ja) 2013-07-04 2015-01-22 キヤノン株式会社 モードロックレーザ
CN105980580B (zh) 2013-11-17 2020-03-03 宽腾矽公司 用于探测、检测和分析分子的光学系统和测定芯片
CN203774604U (zh) 2014-03-05 2014-08-13 北京工业大学 一种sesam被动锁模激光器
US9765395B2 (en) 2014-04-28 2017-09-19 Nanomedical Diagnostics, Inc. System and method for DNA sequencing and blood chemistry analysis
CN104078839B (zh) 2014-06-26 2017-04-19 中国科学院半导体研究所 基于波导耦合微盘光子分子激光器的光脉冲同步信号源
EP3194934B1 (en) 2014-08-08 2024-03-06 Quantum-Si Incorporated Integrated device for use with an external light source for probing, detecting, and analyzing molecules by luminescence lifetime measurements
CN104201547A (zh) 2014-09-16 2014-12-10 北京中科思远光电科技有限公司 带光纤种子的一体化超短脉冲激光系统及其倍频系统
US9666748B2 (en) 2015-01-14 2017-05-30 International Business Machines Corporation Integrated on chip detector and zero waveguide module structure for use in DNA sequencing
CN104518419B (zh) 2015-01-28 2018-03-13 湖南科瑞特科技股份有限公司 一种被动锁模激光器
US9645377B2 (en) 2015-02-06 2017-05-09 The Johns Hopkins University Compressive imaging systems and methods
WO2016149397A1 (en) 2015-03-16 2016-09-22 Pacific Biosciences Of California, Inc. Integrated devices and systems for free-space optical coupling
US9966723B2 (en) 2015-05-14 2018-05-08 Jgm Associates, Inc. High pulse energy and high beam quality mini laser
US10605730B2 (en) 2015-05-20 2020-03-31 Quantum-Si Incorporated Optical sources for fluorescent lifetime analysis
US11466316B2 (en) 2015-05-20 2022-10-11 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US10246742B2 (en) 2015-05-20 2019-04-02 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US20210277463A1 (en) 2015-05-20 2021-09-09 Quantum-Si Invorporated Pulsed laser and bioanalytic system
CA2986151A1 (en) * 2015-05-20 2016-11-24 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US10326251B2 (en) 2015-06-08 2019-06-18 University Of Central Florida Research Foundation, Inc. Ultra-low noise mode-locked laser, methods, and applications
US10215846B2 (en) * 2015-11-20 2019-02-26 Texas Instruments Incorporated Compact chip scale LIDAR solution
US9971148B2 (en) * 2015-12-02 2018-05-15 Texas Instruments Incorporated Compact wedge prism beam steering
EP3296783B1 (en) 2016-09-15 2023-11-29 IMEC vzw Integrated photonics waveguide grating coupler
CA3047133A1 (en) 2016-12-16 2018-06-21 Quantum-Si Incorporated Compact mode-locked laser module
EP3555691A1 (en) 2016-12-16 2019-10-23 Quantum-Si Incorporated Compact beam shaping and steering assembly
EP3807622A1 (en) 2018-06-15 2021-04-21 Quantum-Si Incorporated Data acquisition control for advanced analytic instruments having pulsed optical sources
JP2022537277A (ja) 2019-06-14 2022-08-25 クアンタム-エスアイ インコーポレイテッド 改善されたビームアラインメント感度を有するスライス格子カプラ
CA3167740A1 (en) 2020-01-14 2021-07-22 Quantum-Si Incorporated Amplitude-modulated laser

Also Published As

Publication number Publication date
AU2017378337A1 (en) 2019-06-20
TWI741104B (zh) 2021-10-01
AU2022283756A1 (en) 2023-02-02
KR20220084181A (ko) 2022-06-21
MX2019007069A (es) 2019-08-01
US11249318B2 (en) 2022-02-15
JP2020502576A (ja) 2020-01-23
JP7050068B2 (ja) 2022-04-07
EP3555691A1 (en) 2019-10-23
KR20190093217A (ko) 2019-08-08
CA3047108A1 (en) 2018-06-21
BR112019012069A2 (pt) 2019-11-12
WO2018112170A1 (en) 2018-06-21
US20220128828A1 (en) 2022-04-28
JP7453265B2 (ja) 2024-03-19
US20200124864A1 (en) 2020-04-23
US20180173000A1 (en) 2018-06-21
TW202144859A (zh) 2021-12-01
CN116466494A (zh) 2023-07-21
JP2024045177A (ja) 2024-04-02
JP2022058609A (ja) 2022-04-12
CN110088667B (zh) 2023-05-23
US10551624B2 (en) 2020-02-04
CN110088667A (zh) 2019-08-02
KR102407102B1 (ko) 2022-06-13
TWI799965B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
TWI741104B (zh) 緊密的光束整形及操縱總成
CN110068921B (zh) 紧凑型显微镜
CN107924027B (zh) 用于光耦合的集成靶点波导器件和系统
JP5522443B2 (ja) 走査型共焦点顕微鏡検査の改善、およびその関連技術
TW201838276A (zh) 緊密的鎖模雷射模組
JP4862164B2 (ja) パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡
Larson et al. Design and construction of a multiwavelength, micromirror total internal reflectance fluorescence microscope
CN103674926B (zh) 光学装置
US20240348906A1 (en) Apparatus and methods for transmitting light
US20220163786A1 (en) Laser systems and optical devices for laser beam shaping
JP2006350044A (ja) 光チャネルモニタ
CN210571973U (zh) 一种带有光镊的显微拉曼系统
US20230375404A1 (en) Illumination systems and optical devices for laser beam shaping
EP3492213B1 (en) Laser processing apparatus
WO2024039784A1 (en) Rotational-based adjustable optical mount
JP2005031246A (ja) レーザ顕微鏡