JP4862164B2 - パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡 - Google Patents

パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡 Download PDF

Info

Publication number
JP4862164B2
JP4862164B2 JP2008515426A JP2008515426A JP4862164B2 JP 4862164 B2 JP4862164 B2 JP 4862164B2 JP 2008515426 A JP2008515426 A JP 2008515426A JP 2008515426 A JP2008515426 A JP 2008515426A JP 4862164 B2 JP4862164 B2 JP 4862164B2
Authority
JP
Japan
Prior art keywords
pulse laser
laser beam
light
timing
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008515426A
Other languages
English (en)
Other versions
JPWO2007132540A1 (ja
Inventor
守 橋本
丈夫 南川
尚生 谷本
小林  実
克昌 藤田
聡 河田
勉 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2008515426A priority Critical patent/JP4862164B2/ja
Publication of JPWO2007132540A1 publication Critical patent/JPWO2007132540A1/ja
Application granted granted Critical
Publication of JP4862164B2 publication Critical patent/JP4862164B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Microscoopes, Condenser (AREA)
  • Lasers (AREA)

Description

本発明は、パルスレーザ光の調整装置、調整方法、及び光学顕微鏡に関し、特に詳しくは、複数のパルスレーザ光のタイミングを調整する調整装置、調整方法、及び光学顕微鏡に関する。
CARS(Coherent Anti−Stokes Raman Scatterting)顕微鏡は、無染色かつ高分解に生体試料を観測することができる顕微鏡として注目されている。CARS分光では波長の異なる2つのレーザ光を入射して、入射光の周波数差が分子の固有振動数に一致した際に生じる散乱光を観測する。すなわち、CARS顕微鏡では、波長の異なる2つのレーザ光を入射したときに発生する、非線形光学効果に基づいて分光イメージングを実現している。
この非線形光学効果を効率よく起こすには、高いピークパワーを持つ超短パルスレーザを用いる必要がある。また、観測する分子振動の周波数は数cm−1であるため、レーザにも3〜5cm−1のスペクトル幅が要求され、フーリエ変換限界から3〜5psecの時間幅を持つパルスレーザが最適とされる。
このような、2台の超短パルスレーザ光を時間的、空間的に重ね合わせて入射することにより、非線形光学効果が引き起こされる。しかしながら、市販されているレーザ同期システムでは、約1psecの時間的な揺らぎ(タイミングジッター)が生じてしまう。CARSは多光子過程であり、その信号強度は、入射パルス強度に依存している。従って、2つのパルスレーザ光のタイミングジッターは、信号の揺らぎ、すなわちイメージの劣化を引き起こす。タイミングジッターをfsecオーダーにまで抑えるとともに、熟練した操作を要するCARSイメージングのための安定な高精度同期自動制御システムの開発が望まれている。
パルスレーザ光を高精度に同期させる技術が開示されている(非特許文献1、2参照)。非線形光学結晶を用いた非特許文献1では、和周波を利用してパルスを差動検出している。そして、ジッターをアト秒領域まで、抑えることに成功している。また、非特許文献2では、光パルスを高速なフォトダイオードで検出している。そして、その175次成分を用いて電気的に2台のピコ秒レーザ間の時間差を求め、ジッターを約21fsecまで抑えることに成功している。
T.R.Schibli et al.,Opt.Lett.,28,(2003)pp947−949 D.J.Jones et al.,Rev.Sci.Inst.,73,(2002)pp2843−2848
しかしながら、上記の技術では、以下に示す問題点がある。例えば、非特許文献1では、フェムト秒レーザに対して制御を行っているため、ピコ秒レーザに適用した場合、位相整合条件によって使用可能な波長が限定されてしまう。また、非特許文献2では高周波回路を用いるため、動作を安定させることが困難であり、外乱に弱いといった問題点がある。すなわち、高周波回路が必要となるため、装置を簡便な構成にすることが困難である。また、電子回路の温度特性などにより、室温が変化すると同期がずれるという問題点もある。
このように従来のパルスレーザ光の同期装置では、容易に同期させることが困難であるという問題点があった。
本発明は上述の問題点に鑑みてなされたものであり、容易にパルスレーザ光のタイミングを調整することができるパルスレーザ光のタイミング調整装置、タイミング調整方法、及び該調整装置を用いた光学顕微鏡を提供することを目的とする。
本発明の第1の態様にかかるパルスレーザ光のタイミング調整装置は、複数のパルスレーザ光のタイミングを調整するパルスレーザ光のタイミング調整装置であって、第1のパルスレーザ光を出射する第1のパルスレーザ光源(例えば、本発明の実施の形態にかかる第1のパルスレーザ光源11)と、第2のパルスレーザ光を出射する第2のパルスレーザ光源(例えば、本発明の実施の形態にかかる第2のパルスレーザ光源12)と、前記第1のパルスレーザ光の一部、及び第2のパルスレーザ光の一部を取り出すビームサンプラー(例えば、本発明の実施の形態にかかるビームサンプラー15、16)と、前記ビームサンプラーで取り出された光ビームから、前記第1のパルスレーザ光が前記第2のパルスレーザ光から遅れた第1のタイミング調整用光ビームと、前記第2のパルスレーザ光が前記第1のパルスレーザ光から遅れた第2のタイミング調整用光ビームとを生成するタイミング遅延手段(例えば、本発明の実施の形態にかかる第1のミラーペア21、及び第2のミラーペア31)と、前記第1のタイミング調整用光ビームを受光する第1の検出器であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に基づく第1の検出信号を出力する第1の検出器(例えば、本発明の実施の形態にかかる第1の検出器23)と、前記第2のタイミング調整用光ビームを受光する第2の検出器であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に基づく第2の検出信号を出力する第2の検出器(例えば、本発明の実施の形態にかかる第1のパルスレーザ光源11)と、前記第1の検出器からの第1の検出信号と前記第2の検出器からの第2の検出信号とに基づいて、前記第1のパルスレーザ光源と前記第2のパルスレーザ光源とのタイミングを調整するタイミング調整手段(例えば、本発明の実施の形態にかかるタイミング調整手段42)とを備えるものである。これにより、容易にタイミングを調整することができる。
本発明の第2の態様にかかるパルスレーザ光のタイミング調整装置は、上述のタイミング調整装置であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光とを合成する光合成手段(例えば、本発明の実施の形態にかかる光合成手段14)をさらに備え、前記ビームサンプラーが前記光合成手段によって合成された合成光の一部を取り出し、前記第1のパルスレーザ光源が第1の波長のパルスレーザ光を出射し、前記第2のパルスレーザ光源が第2の波長のパルスレーザ光を出射し、前記タイミング遅延手段が、前記第1の波長に対する反射率が前記第2の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第1のパルスレーザ光を反射するミラーと、によって、前記第1のタイミング調整用光ビームを生成し、前記第2の波長に対する反射率が前記第1の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第2のパルスレーザ光を反射するミラーと、によって、前記第2のタイミング調整用光ビームを生成する、ものである。これにより、容易にタイミングを調整することができる。
本発明の第3の態様にかかるパルスレーザ光のタイミング調整装置は、上述のタイミング調整装置であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光とを合成する光合成手段をさらに備え、前記ビームサンプラーが前記光合成手段によって合成された合成光の一部を取り出し、前記第1のパルスレーザ光源が第1の波長のパルスレーザ光を出射し、前記第2のパルスレーザ光源が第2の波長のパルスレーザ光を出射し、前記タイミング遅延手段が正の群速度分散を有する第1の光学素子によって、前記第1のタイミング調整用光ビームを生成し、負の群速度分散を有する第2の光学素子によって、前記第1のタイミング調整用光ビームを生成する、ものである。これにより、容易にタイミングを調整することができる。
本発明の第4の態様にかかるパルスレーザ光のタイミング調整装置は、上述のタイミング調整装置であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光とを偏光状態の違いに基づいて第1のパルスレーザ光、又は第2のパルスレーザ光を遅れさせることにより、前記第1、及び第2のタイミング調整用光ビームを生成するものである。これにより、同じ波長のパルスレーザ光に対してもタイミングを調整することができる。
本発明の第5の態様にかかるパルスレーザ光のタイミング調整装置は、上述のタイミング調整装置であって、前記第1の検出信号と前記第2の検出信号との差分に基づく差分信号を出力する差動増幅器と、前記差動増幅器からの差分信号が一定の値となるようフィードバック制御を行うものである。これにより、安定してタイミングを調整することができる。
本発明の第6の態様にかかる光学顕微鏡は、上記のパルスレーザ光のタイミング調整装置を備え、前記タイミング調整装置によってタイミングが調整された前記第1のパルスレーザ光と前記第2のパルスレーザ光とを試料に照射するものである。これにより、安定した観察が可能となる。
本発明の第7の態様にかかるパルスレーザ光のタイミング調整方法は、複数のパルスレーザ光のタイミングを調整するパルスレーザ光のタイミング調整方法であって、第1のパルスレーザ光、及び第2のパルスレーザ光を出射するステップと、前記第1のパルスレーザ光の一部、及び前記第2のパルスレーザ光の一部を取り出すステップと、前記取り出された光ビームから、前記第1のパルスレーザ光が前記第2のパルスレーザ光から遅れた第1のタイミング調整用光ビームと、前記第2のパルスレーザ光が前記第1のパルスレーザ光から遅れた第2のタイミング調整用光ビームとを生成するステップと、前記第1のタイミング調整用光ビームを第1の検出器に受光させて、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に基づく第1の検出信号を出力するステップと、前記第2のタイミング調整用光ビームを第2の検出器に受光させて、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に基づく第2の検出信号を出力するステップと、前記第1の検出信号と前記第2の検出信号とに基づいて、前記第1のパルスレーザ光源と前記第2のパルスレーザ光源とのタイミングを調整するステップとを有するものである。これにより、容易にタイミングを調整することができる。
本発明の第8の態様にかかるパルスレーザ光のタイミング調整方法は、上述のタイミング調整方法であって、前記第1の波長のパルスレーザ光と前記第2の波長のパルスレーザ光とを合成する前記第1のパルスレーザ光と前記第2のパルスレーザ光とを合成するステップをさらに備え、パルスレーザ光を出射するステップでは、第1の波長の前記第1のパルスレーザ光と、第2の波長の前記第2のパルスレーザ光を出射し、前記取り出すステップでは前記第1の波長のパルスレーザ光と前記第2の波長のパルスレーザ光とが合成された合成光の一部を取り出し、前記タイミングを遅延するステップでは、前記第1の波長に対する反射率が前記第2の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第1のパルスレーザ光を反射するミラーと、によって、前記第1のタイミング調整用光ビームを生成し、前記第2の波長に対する反射率が前記第1の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第2のパルスレーザ光を反射するミラーと、によって、前記第2のタイミング調整用光ビームを生成するものである。これにより、容易にタイミングを調整することができる。
本発明の第9の態様にかかるパルスレーザ光のタイミング調整方法は、上述のタイミング調整方法であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光とを合成するステップをさらに備え、パルスレーザ光を出射するステップでは、第1の波長の前記第1のパルスレーザ光と、第2の波長の前記第2のパルスレーザ光を出射し、前記取り出すステップでは前記第1の波長のパルスレーザ光と前記第2の波長のパルスレーザ光とが合成された合成光の一部を取り出し、前記タイミングを遅延するステップでは、正の群速度分散を有する第1の光学素子によって、前記第1のタイミング調整用光ビームを生成し、負の群速度分散を有する第2の光学素子によって、前記第1のタイミング調整用光ビームを生成するものである。これにより、容易にタイミングを調整することができる。
本発明の第10の態様にかかるパルスレーザ光のタイミング調整装置は、上述のタイミング調整装置であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光とを偏光状態の違いに基づいて第1のパルスレーザ光、又は第2のパルスレーザ光を遅れさせることにより、前記第1、及び第2のタイミング調整用光ビームを生成するものである。これにより、同じ波長のパルスレーザ光に対してもタイミングを調整することができる。
本発明の第11の態様にかかるパルスレーザ光のタイミング調整装置は、上述のタイミング調整方法であって、前記タイミングを調整するステップでは、前記第1の検出信号と前記第2の検出信号との差分に基づく差分信号を出力し、前記差分信号が一定の値となるようフィードバック制御を行っているものである。これにより、タイミング調整を安定して行なうことができる。
本発明によれば、容易にパルスレーザ光のタイミングを調整することができるパルスレーザ光のタイミング調整装置、タイミング調整方法、及び該調整装置を用いた光学顕微鏡を提供することができる。
本発明にかかる光学顕微鏡の構成を示す図である。 本発明にかかる光学顕微鏡においてパルスレーザ光を同期させるためのバランス相互相関器の構成を模式的に示す図である。 バランス相互相関器におけるパルスレーザ光の光強度を示す図である。 バランス相互相関器におけるパルスレーザ光の光強度を示す図である。 バランス相互相関器におけるパルスレーザ光の光強度を示す図である。 バランス相互相関器におけるパルスレーザ光の光強度を示す図である。 差分信号、第1の検出信号、及び第2の検出信号を示す図である。 本発明にかかる光学顕微鏡に用いられるタイミング調整手段の別の構成を示す図である。
符号の説明
11 第1のパルスレーザ光源11 第2のパルスレーザ光源、13 ミラー、
14 光合成手段、15 ビームサンプラー、16 ビームサンプラー、
17 ミラー、18 ビームサンプラー、19 PD、
20 バランス相互相関器、21 第1のミラーペア、22 レンズ、23 検出器、
24 差動アンプ、31 第2のミラーペア、32 レンズ、33 検出器、
41 フィードバック制御部、42 調整手段、43 LPF、44 オシロスコープ、
50 顕微鏡光学系、51 対物レンズ、52 試料、53 対物レンズ、
54 フィルター、55 レンズ、56 光検出器、
61a〜61d ハーフミラー、62 透明板
以下に、本発明を適用可能な実施の形態が説明される。以下の説明は、本発明の実施形態を説明するものであり、本発明が以下の実施形態に限定されるものではない。説明の明確化のため、以下の記載は、適宜、省略及び簡略化がなされている。又、当業者であれば、以下の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能であろう。尚、各図において同一の符号を付されたものは同様の要素を示しており、適宜、説明が省略される。
本発明の実施の形態にかかる光学顕微鏡について図1を用いて説明する。図1は、光学顕微鏡の構成を示す図である。本実施の形態では、光学顕微鏡がCARS顕微鏡として説明する。本実施の形態にかかる光学顕微鏡では、波長の異なる2本のレーザ光を合成して、試料に照射している。
光学顕微鏡100は、2本のパルスレーザ光のタイミングを調整させるタイミング調整装置と、タイミング調整装置によって同期されたパルスレーザ光を照射する顕微鏡光学系50とを備えている。タイミング調整装置は、第1のパルスレーザ光源11と第2のパルスレーザ光源12と、ミラー13と、光合成手段14と、第1のビームサンプラー15と、第2のビームサンプラー16と、ビームスプリッタ18とフォトダイオード(PD)19と、バランス相互相関器20とを備えている。バランス相互相関器20は、第1のミラーペア21と、レンズ22と、第1の検出器23と、第2のミラーペア31と、レンズ32と、第2の検出器33とを備えている。そして、これらの構成要素を用いて同期された2本のパルスレーザ光は、ミラー17で反射されて、顕微鏡光学系50に入射する。顕微鏡光学系50は、対物レンズ51、53と、フィルター54とレンズ55と光検出器56を備えている。そして、試料52からのアンチストークスラマン散乱光を光検出器56で検出して、CARSイメージングを行なっている。
第1のパルスレーザ光源11、及び第2のパルスレーザ光源12は異なる波長のパルスレーザ光を出射する。例えば、第1のパルスレーザ光源11の波長λ1は、770nmであり、第2のパルスレーザ光源12の波長λ2は、840nmである。さらに、第2のパルスレーザ光源12は、800〜900nmの範囲で波長走査することができる。図1では、第1のパルスレーザ光源11のパルスレーザ光をω1として示しており、第2のパルスレーザ光源12のパルスレーザ光をω2として示している。第1のパルスレーザ光源11と第2のパルスレーザ光源12とは、ピコ秒パルスレーザを用いている。第1のパルスレーザ光源11、と第2のパルスレーザ光源12のパルス幅は、例えば、3〜5psecである。また、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とは、略同じパルス幅を有している。
そして、第1のパルスレーザ光源11、と第2のパルスレーザ光源12の繰り返し周波数は、同じ80MHz程度である。この繰り返し周波数は、光が共振器を1往復する時間に基づいている。従って、2つのパルスレーザ光源11、12の共振器のキャビティ長を一致させることによって、パルスを同期させることができる。第1のパルスレーザ光源11、及び第2のパルスレーザ光源12としては、例えば、モードロックチタンサファイアレーザを用いることができる。具体的には、第1のパルスレーザ光源11と第2のパルスレーザ光源12として、Spectra Physics社製Tsunami(登録商標)を用いることができる。第1のパルスレーザ光源11と第2のパルスレーザ光源12は、2枚のミラーの間に微量のチタンが添加されたサファイア結晶が配置された構成をしている。このサファイア結晶に励起光を照射すると所定の波長のパルスレーザ光が出力ミラーから出射する。また、2枚のミラーからなる光共振器の長さを変えることによって、パルスレーザ光のタイミングが変化する。
第1のパルスレーザ光源11からのパルスレーザ光ω1は、光合成手段14に入射する。第2のパルスレーザ光源12からのパルスレーザ光ω2は、ミラー13で反射された後、光合成手段14に入射する。光合成手段14は例えば、ダイクロイックミラーであり、波長によって異なる透過率(反射率)を有している。ここでは、光合成手段14は、波長λ1の光を透過し、波長λ2の光を反射する。従って、パルスレーザ光ω1のほとんどは、光合成手段14を通過し、パルスレーザ光ω2のほとんどは、光合成手段14で反射される。光合成手段14は、それぞれの光軸に対して、45°傾けて配置されている。従って、光合成手段14は、パルスレーザ光ω1とパルスレーザ光ω2とを効率よく、空間的に重ね合わせる。
また、第1のパルスレーザ光源11と光合成手段14の間に、ビームスプリッタ18を配置している。このビームスプリッタ18は、第1のパルスレーザ光ω1の一部を取り出す。そして、ビームスプリッタ18によって取り出された第1のパルスレーザ光ω1の一部は、PD(フォトダイオード)19で検出される。このPD19での検出結果に基づいて、第1のパルスレーザ光と第2のパルスレーザ光とを時間的に重ね合わせている。すなわち、第1のパルスレーザ光のパルスと第2のパルスレーザ光との一部を重複させている。具体的には、PLL(Phase Locked Loop)制御を行い、パルスレーザ光源の発振器の周波数を基準の周波数に一致させている。例えば、第1のパルスレーザ光源11の周波数を基準周波数として、第2のパルスレーザ光源12の周波数を一致させている。これにより、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2の一部を時間的に重複させることができる。しかしながら、PLLでは精度が約1psecであるため、正確に同期させることができない。すなわち、パルス幅が3〜5psecであるため、1psecのずれが生じるとCARSイメージが大幅に劣化してしまう。さらに、外乱等によるタイミングジッターもあるため、CARSイメージングを安定させることが困難になってしまう。そこで、本実施の形態では、後述するバランス相互相関器20からの出力に基づいて、キャビティ長を変えて、パルスレーザ光を同期させている。
このように、光合成手段14は、2本のパルスレーザ光を時間的、空間的に重ね合わせる。すなわち、光合成手段14は、2本のパルスレーザ光を合成する。したがって、光合成手段14から出射される光は2本のパルスレーザ光が合成された合成光となる。光合成手段14によって合成された2本のパルスレーザ光は、ビームサンプラー15に入射する。ビームサンプラー15は、合成光の一部を取り出す。ビームサンプラー15によって取り出された合成光は、第1のタイミング調整用光ビームとなる。例えば、ビームサンプラー15は、光を分岐するビームスプリッタであり、合成光の一部を反射する。ビームサンプラー15は、光軸に対して傾いて配置されている。ビームサンプラー15で反射された光ビームが、第1のタイミング調整用光ビームとなる。ここで、第1のタイミング調整用光ビームには、第1のパルスレーザ光ω1と、第2のパルスレーザ光ω2とが含まれている。
一方、ビームサンプラー15を透過したパルスレーザ光は、ビームサンプラー16に入射する。ビームサンプラー16は、ビームサンプラー15と同様に、パルスレーザ光の一部を取り出す。このビームサンプラー16によって取り出されたパルスレーザ光は、第2のタイミング調整用光ビームとなる。例えば、ビームサンプラー16は、光を分岐するビームスプリッタであり、合成されたパルスレーザ光の一部を反射する。ビームサンプラー16で反射された光ビームが、第2のタイミング調整用光ビームとなる。ここで、第2のタイミング調整用光ビームには、第1のパルスレーザ光ω1と、第2のパルスレーザ光ω2とが含まれている。
このように、ビームサンプラー15、16は、パルスレーザ光の一部を取り出して、2本のタイミング調整用光ビームを生成する。2本のタイミング調整用光ビームにおいて、パルスレーザ光ω1と、パルスレーザ光ω2とは、位置的、空間的に重ね合わされている。すなわち、2本のタイミング調整用光ビームでは、パルスレーザ光ω1と、パルスレーザ光ω2とが合成されたままとなっている。この2本のタイミング調整用光ビームがバランス相互相関器20に入射する。バランス相互相関器20の構成については後述する。ここで、ビームサンプラー15、16は、バランス相互相関器20において光の検出が行なうことができる程度の光を取り出す。すなわち、ビームサンプラー15、16の反射率は、バランス相互相関器20において光の検出が行なうことができる範囲で、低い値に設定されている。これにより、顕微鏡光学系50に入射する光強度を高くすることができる。
ビームサンプラー15、16を透過した合成光は、ミラー17に入射する。ミラー17は、入射された合成光を顕微鏡光学系50の方向に反射する。すなわち、ビームサンプラー15、16を通過した合成光が、CARS顕微鏡の照明光(励起光)となる。具体的には、合成光は、対物レンズ51によって集光されて試料52に入射する。試料52のから光は、対物レンズ53で屈折されてフィルター53に入射する。フィルター53は、所定の波長帯域の光を通過させるフィルターである。従って、試料52からのCARS光は透過して、光検出器56で検出される。試料52からのCARS光は、レンズ55によって、光検出器56の受光面に結像される。光検出器56は、例えば、CCDカメラであり、CARSイメージを撮像する。一方、照明光であるパルスレーザ光ω1、ω2は、フィルター54によって遮光される。すなわち、フィルター54は照明光(励起光)とCARS光を分離する。なお、フィルター54の代わりに分光器を用いてもよい。このように、CARSイメージングは、光検出器56で撮像される。
ここで、CARSは、非線形ラマン散乱の一種である。角周波数ω1、ω2(ω2>ω1)の光が入射すると、試料分子との相互作用によって、角周波数ω3=2ω2−ω1のコヒーレントな光が放出される。このコヒーレントな光がCARSである。CARS光は(ω2−ω1)が試料のラマン活性振動数と等しいときに極大となる。従って、一方のパルスレーザ光の波長を走査することによって、試料52中を構成する分子を同定することができる。
次にバランス相互相関器20の構成について説明する。上記のように、バランス相互相関器20は、第1のタイミング調整用光ビームと、第2のタイミング調整用光ビームが入射される。そして、バランス相互相関器20は、2本のタイミング調整用光ビームを用いて、2本のパルスレーザ光を正確に同期させている。ここで、バランス相互相関器20は、第1のミラーペア21と第2のミラーペア31によって、パルスレーザ光のタイミングを遅延させている。
ビームサンプラー15で取り出された第1のタイミング調整用光ビームは、第1のミラーペア21に入射する。この第1のミラーペア21では、第2のパルスレーザ光ω2に対して第1のパルスレーザ光ω1をΔtだけ遅れさせる。すなわち、第1のパルスレーザ光ω1の光路長が、Δtに対応する距離だけ第2のパルスレーザ光ω2の光路長よりも長くなっている。従って、第1のパルスレーザ光ω1は、第2のパルスレーザ光ω2よりも遅れて伝播していく。ここでは、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが異なる位置で反射される。そして、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とは、タイミングがずれた状態で、レンズ22に入射する。レンズ22は、第1のタイミング調整用光ビームを屈折する。このレンズ22によって、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが同じ位置に集光される。そして、レンズ22で集光された第1のパルスレーザ光ω1と第2のパルスレーザ光ω2は、第1の検出器23に入射する。すなわち、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2の集光位置に、第1の検出器23の受光面が配置されている。
一方、ビームサンプラー16で取り出された第2のタイミング調整用光ビームは、第2のミラーペア31に入射する。この第2のミラーペア31は、第1のパルスレーザ光ω1に対して第2のパルスレーザ光ω2をΔtだけ遅れさせる。すなわち、第2のパルスレーザ光ω2の光路長が、Δtに対応する距離だけ第1のパルスレーザ光ω1の光路長よりも長くなっている。ここでΔtを正数とすると、第1のパルスレーザ光ω1は−Δtだけ第2のパルスレーザ光ω2に対して遅れている。第2のパルスレーザ光ω2は、第1のパルスレーザ光ω1よりも遅れて伝播していく。ここでは、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが異なる位置で反射される。そして、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とは、タイミングがずれた状態で、レンズ32に入射する。レンズ32は、第2のタイミング調整用光ビームを屈折する。このレンズ32によって、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが同じ位置に集光される。そして、レンズ32で集光された第1のパルスレーザ光ω1と第2のパルスレーザ光ω2は、第2の検出器33に入射する。すなわち、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2の集光位置に、第2の検出器33の受光面が配置されている。
ここで、図2を用いて第1のミラーペア21と第2のミラーペア31の構成について説明する。図2はバランス相互相関器20の構成を示す図である。第1のミラーペア21は、ダイクロイックミラー25と、反射ミラー26とを備えている。また、第2のミラーペア31はダイクロイックミラー35と反射ミラー36とを備えている。ダイクロイックミラー25、35は波長に応じて異なる反射率、及び透過率を有している。
ダイクロイックミラー25は、波長λ1と波長λ2とで異なる透過率を有している。波長λ1に対するダイクロイックミラー25の透過率は、波長λ2に対するダイクロイックミラー25の透過率よりも高い。換言すると、波長λ1に対するダイクロイックミラー25の反射率は、波長λ2に対するダイクロイックミラー25の反射率よりも低い。具体的には、ダイクロイックミラー25は、波長λ1の光を透過して、波長λ2の光を反射する。すなわち、ダイクロイックミラー25は波長λ1の光に対しては、高い透過率を有し、波長λ2の光に対しては高い反射率を有している。従って、ダイクロイックミラー25は第1のパルスレーザ光ω1のほとんどを透過し、第2のパルスレーザ光ω2のほとんどを反射する。
ここで、ダイクロイックミラー25は、反射ミラー26の前面に配置されている。換言すると、反射ミラー26はダイクロイックミラー25の背面側に配置されている。従って、ダイクロイックミラー25を透過した光のみ、反射ミラー26に入射する。ここで、第2のパルスレーザ光ω2のほとんどは、ダイクロイックミラー25で反射するため、反射ミラー26には入射しない。一方、第1のパルスレーザ光ω1のほとんどは、ダイクロイックミラー25を透過して、反射ミラー26に入射する。反射ミラー26は、ガラス基板に金属膜が蒸着された平面鏡であり、波長に関わらず入射した光のほとんどを反射する。従って、第1のパルスレーザ光ω1のほとんどは、反射ミラー26の反射面で反射し、第2のパルスレーザ光ω2のほとんどはダイクロイックミラー25の反射面で反射する。
さらに、ダイクロイックミラー25と反射ミラー26とは、所定の間隔を隔てて配置されている。すなわち、ダイクロイックミラー25の反射面と、反射ミラー26の反射面とは、所定の距離だけ離れて配置されている。この距離は、第1のパルスレーザ光ω1を遅れさせる時間に基づいた値となる。具体的には、タイミング遅れΔtが数psecとなるよう、反射面の間の距離が設定されている。タイミング遅れΔtは、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2のパルス幅より短くなっている。例えば、反射面を1mm程度隔てて配置すると、片道で約3psec遅れる。従って、反射面間の距離は1mm以下とすることが好ましい。このように、ダイクロイックミラー25と反射ミラー26とは近接して対向配置されている。また、ダイクロイックミラー25の反射面と、反射ミラー26の反射面とは、平行に配置されている。ここで、第1のミラーペア21の反射面は、第1のタイミング調整用光ビームの光軸に対して傾いている。なお、図1では、第1のミラーペア21の反射面が光軸に対して45°傾けて配置されているが、これに限られるものではない。例えば、タイミング調整用光ビームの第1のミラーペア21の反射面に対する入射角を0°に近づけてもよい。
このように、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とは、異なる反射面で反射される。従って、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とは、異なる位置で反射される。従って、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とはタイミング遅れが生じるとともに、異なる光軸となって伝播していく。
上述のように、第1のミラーペア21で反射された第1のパルスレーザ光ω1と第2のパルスレーザ光ω2はレンズ22に入射する。レンズ22は、第1のパルスレーザ光ω1と第2のω2との位置が一致するように、光を屈折する。すなわち、第1のパルスレーザ光ω1と第2のパルスレーザ光の光軸との中間に、レンズ22の光軸が配置されている。従って、レンズ22は、第1のパルスレーザ光ω1の光軸と第2のパルスレーザ光ω2の光軸が、交差するように、光を屈折する。そして、2本のパルスレーザ光の光軸の交差点に、検出器23の受光面が配置されている。従って、ダイクロイックミラー25の反射面から検出器23までの光路長は、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とで略等しくなる。すなわち、ビームサンプラー15から検出器23までの間で、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とには、所定のタイミング遅れΔtが発生する。したがって、第1のパルスレーザ光ω1は、第2のパルスレーザ光ω2に対して、Δtだけ遅れる。ここで、タイミング遅れΔtは、ダイクロイックミラー25と反射ミラー26との間の間隔に対応する時間である。
第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とは、集光されて第1の検出器23に入射する。ここで、第1の検出器23は、2光子検出器であり、2光子吸収を検出する。すなわち、第1の検出器23は、受光面での2光子吸収の発生数に応じた第1の検出信号を出力する。具体的には、第1の検出器23は、GaAsPフォトダイオードであり、例えば、浜松ホトニクス社製G1117を用いることができる。第1の検出器23の受光感度は300〜680nmとなっている。従って、波長λ1のフォトン、又は波長λ2のフォトンの1光子吸収を検出しない。
第1の検出器23は、PN接合のバンドギャップが波長λ1の1フォトンに対応するエネルギーよりも大きくなっている。バンドギャップをEg、プランク定数をh、波長λ1の光の振動数をν1とするとEg>hν1となっている。従って、波長λ1のフォトンのみが入射したときでは、電子がバンドギャップを超えない。もちろん、波長λ2は、波長λ1よりも長い。そのため、波長λ2のフォトンのみが入射したときも、電子がバンドギャップを超えない。すなわち、680nmよりも長い波長λ1、及び波長λ2の光に対して、第1の検出器23には感度がない。一方、波長λ1のフォトンと、波長λ2のフォトンとが同時に入射したときに、価電子帯の電子がバンドギャップを越える。すなわち、2光子吸収によって励起された電子がバンドギャップを超えて、伝導帯に上がる。2光子が同時吸収に吸収されると伝導電子(自由電子)、及び正孔が発生する。そして、伝導電子、及び正孔によって生じる電流を増幅することによって、第1の検出信号が得られる。従って、第1の検出器23からは、2光子吸収に基づく第1の検出信号が出力される。
第1の検出器23には、所定のバンドギャップを有するフォトダイオードを用いることができる。ここで、バンドギャップは、パルスレーザ光の波長λ1、λ2に応じて、設定している。すなわち、1光子吸収では、伝導電子が発生せず、2光子吸収で伝導電子が発生するバンドギャップのフォトダイオードを選択すればよい。すなわち、波長λ1の光子と波長λ2の光子とのエネルギーの和が、バンドギャップよりも大きくなっている第1の検出器23としては、フォトダイオードに限らず、フォトマルチプライヤー(光電子増倍管)等を用いることも可能である。すなわち、2光子吸収に応じた検出信号を出力する検出器であればよい。換言すると、1光子吸収では感度がなく、2光子吸収に感度を有する検出器で検出する。ここで、2光子吸収は、入射光強度の2乗に比例して起きる。従って、第1の検出器23では、光強度の2乗に比例した第1の検出信号を得ることができる。
一方、第2のタイミング調整用光ビームは、第2のミラーペア31に入射する。第2のミラーペア31も同様に、ダイクロイックミラー35と反射ミラー36とを備えている。ここで、ダイクロイックミラー35は、ダイクロイックミラー25とは異なる透過率、及び反射率の分布を有している。すなわち、波長λ1、λ2に対する反射率、及び透過率がダイクロイックミラー35とダイクロイックミラー25とで異なる。ダイクロイックミラー35は、ダイクロイックミラー25と異なり波長λ1の光を反射して、波長λ2の光を透過する。ダイクロイックミラー25とダイクロイックミラー35とでは、異なる波長の光を反射させるように、設計を変えている。具体的には、ガラス基板にコーティングされた誘電体薄膜の種類や膜厚等を変化させることによって、透過率、反射率を変えている。
波長λ1に対するダイクロイックミラー35の透過率は、波長λ2に対するダイクロイックミラー35の透過率よりも低い。換言すると、波長λ1に対するダイクロイックミラー35の反射率は、波長λ2に対するダイクロイックミラー35の反射率よりも高い。具体的には、ダイクロイックミラー35は、波長λ1の光を反射して、波長λ2の光を透過する。すなわち、ダイクロイックミラー35は波長λ1の光に対しては、高い反射率を有し、波長λ2の光に対しては高い透過率を有している。従って、ダイクロイックミラー35は第1のパルスレーザ光ω1のほとんどを反射し、第2のパルスレーザ光ω2のほとんどを透過する。
ここで、ダイクロイックミラー35は、反射ミラー36の前面に配置されている。換言すると、反射ミラー36はダイクロイックミラー35の背面側に配置されている。従って、ダイクロイックミラー35を透過した光のみ、反射ミラー36に入射する。ここで、第1のパルスレーザ光ω1のほとんどは、ダイクロイックミラー35で反射するため、反射ミラー36には入射しない。一方、第2のパルスレーザ光ω2のほとんどは、ダイクロイックミラー35を透過して、反射ミラー36に入射する。反射ミラー36は波長に関わらず入射光のほとんどを反射する。従って、第2のパルスレーザ光ω2のほとんどは、反射ミラー36の反射面で反射し、第1のパルスレーザ光ω1のほとんどはダイクロイックミラー35の反射面で反射する。
さらに、ダイクロイックミラー35と反射ミラー36とは、第1のミラーペア21と同様に、所定の間隔を隔てて配置されている。すなわち、ダイクロイックミラー35と反射ミラー36との配置は、第1のミラーペア21におけるダイクロイックミラー25と反射ミラー26との配置と同じである。従って、第1のパルスレーザ光ω1に対して、第2のパルスレーザ光ω2を遅れさせることができる。タイミング遅れは、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2のパルス幅より短くなっている。さらに、第1のミラーペア21のタイミング遅れΔtと、第2のミラーペア31によるタイミング遅れΔtでは、値が等しくなっている。すなわち、第1のミラーペア21によって、第1のパルスレーザ光ω1がΔtだけ遅れ、第2のミラーペア31によって第2のパルスレーザ光ω2がΔtだけ遅れる。
このように、第2のタイミング調整用光ビームでは、第2のパルスレーザ光ω2を遅らせる。ここで、タイミング遅れΔtは、ダイクロイックミラー35と反射ミラー36との間の間隔に対応する時間である。このように、第1のミラーペア21と第2のミラーペア31では、タイミング遅れΔtの大きさは同じである。また、第1のミラーペア21と第2のミラーペア31では、タイミング遅れΔtは符号が正負反対である。ここで、第1のミラーペア21によるタイミング遅れをΔtとすると、第2のミラーペア31によるタイミング遅れは−Δtとなる。
第2のミラーペア31で反射した光ビームは、レンズ32を介して、第2の検出器33に入射する。ここで、レンズ32と第2の検出器33とは、レンズ22と第1の検出器23と同様の構成を有している。すなわち、レンズ32は、第2のミラーペア31において異なる位置で反射された第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とを集光する。そして、レンズ32による集光位置に、第2の検出器33の受光面が配置されている。また、第2の検出器33は、第1の検出器23と同様に2光子検出器である。従って、波長λ1のフォトンと、波長λ2のフォトンとの2光子吸収に基づく第2の検出信号を出力する。ここで、第1の検出器23と第2の検出器33とは同じタイプのフォトダイオードを用いることが好ましい。
なお、パルスレーザ光の繰り返し周波数は、80MHzである。そのため、パルスレーザ光が入射する時間間隔は、第1の検出器23、第2の検出器33の応答速度に比べて十分速い。従って、第1の検出器23、及び第2の検出器33では、複数のパルスによって発生する2光子吸収の平均値が検出信号として出力される。
このように、第1のミラーペア21では、第1のパルスレーザ光ω1を遅らせ、第2のミラーペア31では、第2のパルスレーザ光ω2を遅らせている。従って、2本のタイミング調整用光ビームの一方では、第1のパルスレーザ光ω1が遅れた状態で検出され、他方では、第2のパルスレーザ光ω2が遅れた状態で検出される。すなわち、バランス相互相関器20は、ビームサンプラー15、16で取り出された光ビームから、第1のパルスレーザ光ω1が第2のパルスレーザ光ω2から遅れた第1のタイミング調整用光ビームと、第2のパルスレーザ光ω2が第1のパルスレーザ光ωから遅れた第2のタイミング調整用光ビームとを生成する。そして、第1のタイミング調整用光ビームを第1の検出器23で検出し、第2のタイミング調整用光ビームを第2の検出器33で検出する。そして、第1の検出器23からの第1の検出信号と、第2の検出器33からの第2の検出信号とは、図1に示す差動アンプ(差動増幅器)24に入力される。差動アンプ24は、第1の検出信号と第2の検出信号との差分を取る。そして、この差分に基づく差分信号を出力する。
ここで、パルスレーザ光の光強度と各信号について図3A〜図5を用いて説明する。図3A、図3B、図4A、及び図4Bは、時間によるパルスレーザ光強度の変化を示している。図3A、図3B、図4A、及び図4Bはミラーペアによってタイミング遅れが生じた後の、光強度を示している。ここで、図3A、及び図4Aは、第1のミラーペア21で反射されたパルスレーザ光の光強度を示し、図3B、及び図4Bは、第2のミラーペア31で反射されたパルスレーザ光の光強度を示している。以下の説明では、バランス相互相関器20に入射する前のパルスレーザ光のずれをタイミングジッターτとして説明する。
ここで、図3A、及び図3Bは、タイミングジッターτ=0の場合の光強度を示している。すなわち、図3A、及び図3Bは、バランス相互相関器20に入射する前において、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが同期している場合の光強度を示している。図4A、及び図4Bは、タイミングジッターτが0でない場合の光強度を示している。すなわち、図4A、及び図4Bは、バランス相互相関器20に入射する前において、第2のパルスレーザ光ω2が第1のパルスレーザ光ω1よりも遅れている場合の光強度を示している。ここで、パルスレーザ光の分布がガウシアンであるとして説明する。また、図5は検出信号、及び差分信号を示す図である。
まず、図3A、及び図3Bを用いて、τ=0の場合について説明する。すなわち、ミラーペア21に入射する前において、第1のパルスレーザ光ω1のピークタイミングと、第2のパルスレーザ光ω2のピークタイミングは一致しているとして説明する。ここで、第1のミラーペア21で反射された第1のタイミング調整用光ビームは、図3Aに示すように、第1のパルスレーザ光ω1のピークタイミングは第2のパルスレーザ光ω2のピークタイミングよりもΔtだけ遅れている。一方、第2のミラーペア31で反射された第2のタイミング調整用光ビームは、図3Bに示すように、第2のパルスレーザ光ω2のピークタイミングは第1のパルスレーザ光ω1のピークタイミングよりもΔtだけ遅れている。
ここで、ミラーペアで反射された後の、ピークタイミングのずれ量をΔdとする。ピークタイミングのずれ量Δdはタイミング遅れΔtと等しくなる。従って、第1のミラーペア21によって生じる第1のタイミング調整用光ビームのピークタイミングのずれ量Δdと、第2のミラーペア31によって生じる第2のタイミング調整用光ビームのピークタイミングのずれ量Δdは一致する。図3A、及び図3B中に斜線で示されている第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが重なり合う面積は、第1のタイミング調整用光ビームと第2のタイミング調整用光ビームとで等しくなる。すなわち、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが同じガウシアンであるとすると、同じずれ量Δdだけ前後にずれているため、斜線で示す重複部分の面積が等しくなる。
ここで、2光子検出器である第1の検出器23、及び第2の検出器33では、重複部分において、光強度の2乗に比例した検出信号を出力する。よって、第1の検出信号と第2の検出信号とは等しくなる。第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが同期している場合、第1の検出信号と第2の検出信号とが同じ値となる。タイミングジッターτが0の場合、差分信号は0となる。
次に、タイミングジッターτが0でない場合について図4A、及び図4Bを用いて説明する。ここでは、第1のミラーペア21に入射する前において、第1のパルスレーザ光ω1に対して第2のパルスレーザ光ω2が遅れている場合について説明する。この場合、図4A、及び図4B中に斜線で示されいる第1のパルスレーザ光ω1と第2のパルスレーザ光ω2との重なり合う面積が異なる。すなわち、第2のミラーペア31に入射する前における第2のパルスレーザ光ω2の遅れが、第2のミラーペア31によって強調される。従って、図4Bに示すように、第2のミラーペア31では、第2のパルスレーザ光ω2がより遅れるため、重複部分の面積が小さくなる。一方、第1のミラーペア21に入射する前における第2のパルスレーザ光ω2の遅れが、第1のミラーペア21によって打ち消される。従って、第1のタイミング調整用光ビームにおけるピークタイミングのずれ量Δdは第2のタイミング調整用光ビームよりも小さくなる。よって、図4Aの斜線で示す重複部分の面積が大きくなる。
タイミングジッターが0でない場合、差分信号は0とはならない。そして、差分信号の値は、バランス相互相関器20に入射する前のタイミングのずれによって、変化する。例えば、差分信号の正負によって、どちらのパルスレーザ光が遅れているか検出することができる。また、差分信号の大きさによって、どの程度のずれ量があるか測定することができる。ここで、第1のミラーペア21によるタイミング遅れΔtとタイミングジッターτが完全に打ち消し合うとき、ずれ量Δd=0となる。よって、第1の検出信号は最大となる。一方、第2のミラーペア31によるタイミング遅れ−Δtとタイミングジッターτが完全に打ち消し合うとき、ずれ量Δd=0となる。よって、第2の検出信号は最大となる。
上記の差分信号をSdiff、第1の検出信号をSTPD1、第2の検出信号をSTPD2とするとこれらの信号は数式1で示される
Figure 0004862164
数式1では、g1は第1のパルスレーザ光の強度、g2は第2のパルスレーザ光の強度、tは時間とする。
ここで、差分信号Sdiff、第1の検出信号STPD1、及び第2の検出信号STPD2は、図5に示すようになる。図5は、横軸がタイミングジッターτを示し、縦軸が信号強度を示している。また、図5では、上から順番に差分信号Sdiff、第1の検出信号STPD1、第2の検出信号STPD2が示されている。ここで、差分信号Sdiff=第1の検出信号STPD1−第2の検出信号STPD2である。
ここで、タイミングジッターτ=0のとき、差分信号Sdiffが0となる。すなわち、第1の検出信号STPD1=第2の検出信号STPD2となるため、差分信号Sdiffが0となる。そして、タイミングジッターτがΔtに比べて十分大きい場合、検出信号の強度はほぼ0となる。また、τ=0の近傍では、τが大きくなるにつれて、差分信号Sdiffの強度が低くなっている。ここで、図5の点線で挟まれた範囲では、タイミングジッターτに応じて、差分信号Sdiffがほぼリニアに変化する。点線で挟まれた範囲では、差分信号Sdiffに基づいて、ずれの方向と大きさを測定することができる。すなわち、この範囲では、差分信号Sdiffの強度がパルスレーザ光のずれに対応している。
第1の検出信号STPD1は、ずれ量Δd=−5psecの辺りでピークとなっている。このピーク位置は、第1のミラーペア21でのタイミング遅れΔtに相当する。ここで、第1の検出信号STPD1がピークのとき、ずれ量Δd=0となる。すなわち、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2のピークが一致している。そして、タイミングジッターτがピークの位置から離れていくにしたがって、第1の検出信号STPD1の強度が低くなっていく。一方、第2の検出信号STPD2は、タイミングジッターτ=+5psecの辺りでピークとなっている。ここで、第2の検出信号STPD2がピークのとき、ずれ量Δd=0となる。すなわち、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2のピークが一致している。そして、タイミングジッターτがピークから離れていくにしたがって、第2の検出信号STPD2の強度が低くなっていく。
このように、差分信号Sdiffがタイミングジッターτに応じてほぼリニアに変化する範囲がある。この範囲内でフィードバック制御することによって、容易にパルスレーザ光を同期させることができる。具体的には、PLL制御で、差分信号Sdiffがリニアに変化する範囲まで、タイミングジッターτを小さくする。そして、差分信号Sdiffをフィードバック制御部41に入力する。フィードバック制御部41は、例えば、デジタルPIDコントローラなどの演算処理装置を備えている。ここでは、差分信号Sdiffを0にするようフィードバック制御している。
フィードバック制御部41は差分信号Sdiffに基づいて第2のパルスレーザ光源12に取り付けられたタイミング調整手段42を制御する。タイミング調整手段42は、第2のパルスレーザ光源12の共振器長を変えるためのアクチュエータ等を備えている。フィードバック制御部41は、タイミング調整手段42に設けられたアクチュエータを駆動して、共振器長を変化させる。すなわち、タイミング調整手段42のアクチュエータが駆動することによってキャビティー長を制御することができる。よって、パルスレーザ光のタイミングが変化する。そして、差分信号Sdiffを0に近づけるよう、タイミング調整手段42を駆動する。差分信号Sdiffの測定を一定周期で行い、この測定結果に応じてフィードバック制御が実行される。これにより、パルスレーザ光のタイミングを安定して同期させることができる。
具体的には、第2のパルスレーザ光ω2がタイミングジッターτによって遅れる場合、第1の検出信号STPD1が大きくなり、第2の検出信号STPD2が小さくなる。よって、差分信号Sdiffが正のとき、第2のパルスレーザ光ω2に対して第1のパルスレーザ光ω1を遅らせるよう制御する。これにより、タイミングジッターτを低減することができる。一方、第1のパルスレーザ光ω1がタイミングジッターτによって遅れる場合、第1の検出信号STPD1が小さくなり、第2の検出信号STPD2が大きくなる。よって、差分信号Sdiffが負のとき、第1のパルスレーザ光ω1に対して第2のパルスレーザ光ω2を遅らせるよう制御する。これにより、タイミングジッターτを低減することができる。そして、タイミングジッターτ=0のとき、差分信号Sdiff=0でバランスする。差分信号Sdiffがリニアに変化する範囲内では、差分信号Sdiffの値をタイミングジッターτに換算することができる。そして、差分信号Sdiffに基づいてパルスタイミングを調整する。
上記のフィードバック制御を行うことによって、タイミングジッターτを低減することができる。さらに、本実施の形態では、ローパスフィルター43を介して差分信号Sdiffをオシロスコープ44で観測することで、タイミングジッターを測定している。ここで、帯域150Hzで、1psec程度であったタイミングジッターτを、フィードバック制御により8fsecまで低減させることができる。このように、フィードバック制御を行うことによって、安定したパルスレーザ光の同期が可能となる。
なお、上記の説明では、パルスレーザ光を同期させる制御について説明したが、本実施の形態は、これに限るものではない。例えば、パルスレーザ光のタイミングがずれるよう制御してもよい。具体的には、パルスレーザ光の入射タイミングのずれが一定となるよう制御することが可能である。この場合、差分信号Sdiffを0以外の値になるようフィードバック制御を行う。この値は、入射タイミングのずれに応じた値となる。すなわち、差分信号Sdiffが一定の値となるようフィードバック制御を行うことによって、入射タイミングを制御することができる。さらに、入射タイミングが変化するように、制御してもよい。
このように、フィードバック制御を行っているため、常時、同期させることができる。よって、波長走査によってタイミングジッターが生じる場合でも、容易に同期させることができる。従って、CARS顕微鏡などの波長走査が必要な光学顕微鏡に好適である。もちろん、パルスレーザ光のタイミング調整装置は、CARS顕微鏡に対する利用に限られるものではない。例えば、2台のパルスレーザ光を利用した非線形分光に対しても利用することができる。具体的には、2光子励起レーザ顕微鏡や、ポンププローブ分光顕微鏡などに利用することが可能である。すなわち、上記のタイミング調整装置からのパルスレーザ光を照明光(励起光)として試料に照射するレーザ光顕微鏡に好適である。
さらに、上記の説明では、第1のミラーペア21、及び第2のミラーペア31とによって、2つのパルスレーザ光のうち1つが遅れた第1のタイミング調整用光ビームと、他方が遅れた第2のタイミング調整用光ビームとを生成したが、本発明はこれに限るものではない。すなわち、上記の説明では、タイミングを遅延させるためのタイミング遅延手段として第1のミラーペア21と第2のミラーペア31とを用いたが、本実施の形態は、これに限るものではない。例えば、図6に示す構成のタイミング遅延手段60を用いることができる。
図6に示すタイミング遅延手段60では、合成する前のパルスレーザ光が入射されている。すなわち、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが別々に入射されている。ここで、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とは、タイミング調整手段60に入射する前の光路長を一致させている。
タイミング遅延手段60は、ハーフミラー61a〜61dを4つ備えている。これらをまとめてハーフミラー61とする。ハーフミラー61は、入射光の略半分を透過し、略半分を反射する。4つのハーフミラー61a〜61d間は上下対称、及び左右対称に配置されている。例えば、4つのハーフミラー61a〜61dの中心が正方形の4角にそれぞれ配置されている。また、対角に配置されたハーフミラー61aとハーフミラー61dは、平行に配置されている。同様に、対角に配置されたハーフミラー61bとハーフミラー61cは、平行に配置されている。そして、ハーフミラー61aとハーフミラー61bとは直交する方向に配置されている。また、それぞれのハーフミラー61a〜61dは、パルスレーザ光ω1、ω2の光軸に対して45°傾いて配置されている。
第1のパルスレーザ光ω1は、まず、ハーフミラー61aに入射する。ハーフミラー61aは第1のパルスレーザ光ω1の一部を透過し、一部を反射する。従って、第1のパルスレーザ光ω1が分岐する。分岐された一方の光ビームは、ハーフミラー61bに入射し、他方はハーフミラー61cに入射する。ハーフミラー61bに入射した第1のパルスレーザ光ω1の一部はハーフミラー61bを透過して、第1の検出器23に入射する。ハーフミラー61cに入射した第1のパルスレーザ光ω1の一部はハーフミラー61で反射され、第2の検出器33に入射する。
一方、第2のパルスレーザ光ω2は、まず、ハーフミラー61dに入射する。従って、第2のパルスレーザ光ω2は、第1のパルスレーザ光ω1と同様に、2本に分岐される。ハーフミラー61dによって分岐された一方の光ビームは、ハーフミラー61bに入射し、他方はハーフミラー61cに入射する。ハーフミラー61bに入射した第1のパルスレーザ光ω1の一部はハーフミラー61で反射され、第1の検出器23に入射する。ハーフミラー61cに入射した第1のパルスレーザ光ω1の一部はハーフミラー61を透過して、第2の検出器33に入射する。
このように、ハーフミラー61b、61cによって、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが合成される。ここで、タイミング遅延手段60には、透明板63が設けられている。透明板63は、ハーフミラー61cと、ハーフミラー61dとの光路中、及びハーフミラー61aと、ハーフミラー61bとの光路中に配置される。透明板63は、例えば、透明なガラスなどで構成される。透明板63は空気よりも屈折率が高い。従って、透明板63と通過した光は、屈折率、及び透明板の厚さに応じた光路差が与えられる。
ハーフミラー61aで反射され、ハーフミラー61bに入射する第1のパルスレーザ光ω1、及びハーフミラー61dで反射され、ハーフミラー61cに入射する第2のパルスレーザ光ω2は、透明板63を通過する。一方、ハーフミラー61aを透過して、ハーフミラー61cに入射する第1のパルスレーザ光ω1、及びハーフミラー61dを透過して、ハーフミラー61bに入射する第2のパルスレーザ光ω2は、ガラス板を通過せず、空気のみを伝播していく。従って、ハーフミラー61b、61cで合成される合成光では、パルスレーザ光にタイミング遅れΔtが生じる。このタイミング遅れΔtは透明板63の材質、厚さ等に応じたものとなる。透明板63としては、波長分散の小さい材質を用いることが好ましい。
具体的には、ハーフミラー61bでの合成光では、透明板63を通過した第1のパルスレーザ光ω1が、第2のパルスレーザ光ω2よりも遅れる。一方、ハーフミラー61cでの合成光では、透明板63を通過した第2のパルスレーザ光ω2が、第1のパルスレーザ光ω1よりも遅れる。従って、第1の検出器23は、第2のパルスレーザ光ω2に対して第1のパルスレーザ光ω1が遅れた第1のタイミング調整用光ビームを受光する。一方、第2の検出器33は、第1のパルスレーザ光ω1に対して第2のパルスレーザ光ω2が遅れた第2のタイミング調整用光ビームを受光する。ここで、第1の検出器23、及び第2の検出器33は、図2で示したものと同様の2光子検出器である。よって、図2に示す構成と同様に、タイミングを調整することができる。
このように、図6に示すタイミング遅延手段60では、ダイクロイックミラーを用いていないため、波長の近いパルスレーザ光に対してもタイミング遅延を生じさせることができる。すなわち、図2に示す構成では、ダイクロイックミラーを用いているため、調整可能な波長の差が、ダイクロイックミラーの性能によって制限される。換言すると、ダイクロイックミラーで分離することができないほど波長差が小さい場合、図2に示す構成では、タイミングを遅延することができない。図6に示す構成では、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが別々の光路を伝播している状態で、タイミング遅延を生じさせている。これにより、より波長の近いパルスレーザ光を調整することができる。
一方、図2に示す構成では、光合成手段14で合成した光ビームに対してタイミング遅延を発生させている。そのため、より確実にタイミングを調整することができる。すなわち、顕微鏡光学系50に入射する合成光の一部を分岐しているため、バランス相互相関器20の差分信号は合成光のタイミングジッターτを正確に反映している。換言すると、図2に示す構成では、第1のパルスレーザ光ω1と第2のパルスレーザ光ω2とが異なる光路を通過することによって生じる光路長の微小なずれを排除することができる。これにより、正確にタイミングを調整することができる。
もちろん、タイミングを遅延するためのタイミング遅延手段は、図2や、図6に示す構成に限られるものではない。すなわち、ダイクロイックミラーやハーフミラー、反射ミラーなどを組み合わせることによって、様々なタイプのタイミング遅延手段を構成することができる。例えば、図6に示す構成において、透明板63を設けずに、ハーフミラー61の中心が長方形の4角に配置することによって、タイミングを遅延させることができる。この場合、空気中の伝播距離が異なるため、光路差が生じる。このように、第1のパルスレーザ光ω1が第2のパルスレーザ光ω2から遅れた第1のタイミング調整用光ビームと、第2のパルスレーザ光ω2が第1のパルスレーザ光ω1から遅れた第2のタイミング調整用光ビームとを生成する構成をタイミング遅延手段として用いればよい。そして、第1のタイミング調整用光ビームを第1の検出器23で受光し、第2のタイミング調整用光ビームを第2の検出器33で受光すれば、簡便な構成で正確なタイミング調整が可能となる。
さらに、群速度分散を持つ光学素子によってタイミング遅延手段を構成することも可能である。例えば、正の群速度分散を持つ光学素子は、波長の短い光を遅れさせることができる。一方、負の群速度分散を持つ光学素子は、波長の長い光を遅れさせることができる。従って、第1のミラーペア21の代わりに、正の群速度分散を持つ光学素子を配置し、第2のミラーペア31の代わりに負の群速度分散を持つ光学素子を配置すればよい。すなわち、正の群速度分散を持つ光学素子を介してビームサンプラーによって取り出された第1のタイミング調整用光ビームを検出し、負の群速度分散を持つ光学素子を介して第2のタイミング調整用光ビームを検出すればよい。このような群速度分散を持つ光学素子としては、光ファイバーや、回折格子ペア等を用いることができる。
なお、ビームサンプラー15、16は図1に示す構成に限られるものではない。たとえば、ビームサンプラー15で取り出された光ビームをハーフミラーに入射させてもよい。この場合、ビームサンプラー16は不要となる。ビームサンプラーは第1のパルスレーザ光ω1の一部と、第2のパルスレーザ光の一部とを取り出す構成であればよい。従って、図6に示したように、光合成手段14で合成する前に光ビームを取り出してもよい。また、第1のパルスレーザ光源11、及び第2のパルスレーザ光源12は、ピコ秒パルスレーザ光に限られるものではない。例えば、フェムト秒パルスレーザ光源を用いることも可能である。
また、2光子吸収に限らず、多光子吸収を用いてパルスレーザ光のタイミングを調整してもよい。すなわち、多光子吸収を検出する検出器からの検出信号によって、タイミングを調整してもよい。これにより、例えば、3本以上のパルスレーザ光のタイミングを調整することができる。さらに、多光子吸収に限らず、非線形光学効果を用いてパルスレーザ光のタイミングを調整してもよい。すなわち、非線形光学効果を検出する検出器からの検出信号を用いてタイミングを調整してもよい。このように、第1の検出器23、及び第2の検出器33に多光子吸収に基づく検出信号を出力するものや、非線形光学効果に基づく検出信号を出力するものを用いてもよい。
さらには、図6に示す構成を用いることによって、同じ波長のパルスレーザ光に対して、タイミングを調整することが可能となる。従って、光へテロダイン検波などのほとんど等しい波長のパルスレーザ光を合成する際にも、有効である。すなわち、第1のパルスレーザ光と第2のパルスレーザ光とを同じ波長にすることも可能である。この場合、図6に示す構成に限らず、偏光状態の違いを用いて、2つのパルスレーザ光の分離、合成を行なってもよい。例えば、第1のパルスレーザ光と第2のパルスレーザ光が直線偏光の場合、偏光ビームスプリッタなどを用いて、第1のパルスレーザ光と第2のパルスレーザ光を分離することができる。すなわち、図1、図2のダイクロイックミラーの代わりに偏光ビームスプリッタなどを用いる。そして、偏光面の違いに応じて第1のパルスレーザ光と第2のパルスレーザ光とを合成、分離する。これにより、光合成手段によって合成されたパルスレーザ光が分離される。そして、分離されたパルスレーザ光の一方のタイミングを遅れさせた後、パルスレーザ光を合成する。すなわち、分離された第1のパルスレーザ光と第2のパルスレーザ光との間に光路長の差を設ける。これにより、第1、及び第2のタイミング調整用光ビームが生成される。そして、上記と同様の方法によってタイミングを調整する。このようにして光の時間、及び位置を合わせることによって、今後の高速光通信分野での利用が可能となる。このように、偏光ビームスプリッタ等を用いることによって、偏光状態の違いに応じてパルスレーザ光の分離、合成を行なうことができる。よって、同じ波長のパルスレーザ光のタイミングを調整することが可能となる。
さらに、偏光ビームスプリッタを用いずに、タイミングを遅延させることも可能である。例えば、バビネ補償板や液晶素子等の複屈折素子を用いて、タイミングを遅延させることができる。具体的には、直線偏光である第1及び第2のパルスレーザ光の偏光面を互いに直交させて、合成する。すなわち、第1のパルスレーザ光の偏光面と第2のパルスレーザ光の偏光面とが直交した状態で、2本のレーザ光を重ね合わせて、2本のタイミング調整用光ビームを生成する。そして、2本のタイミング調整用光ビームのそれぞれを、例えば、バビネ補償板に入射させる。このバビネ補償板は、互いに直交する光学軸を有する1対の光学くさびを有している。そして、一方の光学くさびをマイクロメータのネジによって移動させることにより、その光学くさびの光路長が変わる。また、他方の光学くさびは固定されており、その光路長は一定である。ここで、1対の光学くさびの光学軸をそれぞれ第1のパルスレーザ光又は第2のパルスレーザ光の偏光面と一致させる。これにより、偏光状態の違いに基づいて、一方のパルスレーザ光のみ所定のタイミングだけ遅延させることができる。すなわち、1対の光学くさびの光路長差に応じたタイミング遅延を2本のパルスレーザ光に対して与えることができる。そして、2枚のバビネ補償板の一方で第1のパルスレーザ光を遅延させ、他方で第2のパルスレーザ光を遅延させる。このように2本のパルスレーザ光の偏光状態の違いによって、一方のパルスレーザ光のタイミングが遅れたタイミング調整用光ビームを生成することができる。よって、複屈折素子を用いることにより、第1の第1のパルスレーザ光と第2のパルスレーザ光とを分離せずに、タイミング遅延を与えることが可能である。さらには、同じ波長のパルスレーザ光のタイミングを調整することが可能となる。
本発明によれば、容易にパルスレーザ光のタイミングを調整することができるため、CARS顕微鏡、2光子励起レーザ顕微鏡、ポンププローブ分光顕微鏡等の光学顕微鏡に適用することができる。

Claims (9)

  1. 複数のパルスレーザ光のタイミングを調整するパルスレーザ光のタイミング調整装置であって、
    第1のパルスレーザ光を出射する第1のパルスレーザ光源と、
    第2のパルスレーザ光を出射する第2のパルスレーザ光源と、
    前記第1のパルスレーザ光と前記第2のパルスレーザ光とを合成して、前記第1のパルスレーザ光と前記第2のパルスレーザ光とが空間的に重なり合った状態の合成光を生成する光合成手段と、
    前記光合成手段によって合成された前記第1のパルスレーザ光と前記第2のパルスレーザ光とが空間的に重なり合った状態の合成光の一部を取り出すビームサンプラーと、
    前記第1のパルスレーザ光と前記第2のパルスレーザ光の波長の違い又は偏光状態の違いに基づいて、前記ビームサンプラーで取り出された前記第1のパルスレーザ光と前記第2のパルスレーザ光とが空間的に重なり合った状態の合成光の一部から、前記第1のパルスレーザ光が前記第2のパルスレーザ光から遅れた第1のタイミング調整用光ビームと、前記第2のパルスレーザ光が前記第1のパルスレーザ光から遅れた第2のタイミング調整用光ビームと、を生成するタイミング遅延手段と、
    前記第1のタイミング調整用光ビームを受光する第1の検出器であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に応じて強度が変化する第1の検出信号を出力する第1の検出器と、
    前記第2のタイミング調整用光ビームを受光する第2の検出器であって、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に応じて強度が変化する第2の検出信号を出力する第2の検出器と、
    前記第1の検出器からの第1の検出信号と前記第2の検出器からの第2の検出信号とに基づいて、前記第1のパルスレーザ光源と前記第2のパルスレーザ光源とのタイミングを調整するタイミング調整手段とを備えるパルスレーザ光のタイミング調整装置。
  2. 前記第1のパルスレーザ光源が第1の波長のパルスレーザ光を出射し、
    前記第2のパルスレーザ光源が第2の波長のパルスレーザ光を出射し、
    前記タイミング遅延手段が前記第1の波長に対する反射率が前記第2の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第1の波長のパルスレーザ光を反射するミラーと、によって、前記第1のタイミング調整用光ビームを生成し、
    前記第2の波長に対する反射率が前記第1の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第2の波長のパルスレーザ光を反射するミラーと、によって、前記第2のタイミング調整用光ビームを生成する、請求項1に記載のパルスレーザ光のタイミング調整装置。
  3. 前記第1のパルスレーザ光源が第1の波長のパルスレーザ光を出射し、
    前記第2のパルスレーザ光源が第2の波長のパルスレーザ光を出射し、
    前記タイミング遅延手段が
    正の群速度分散を有する第1の光学素子によって、前記第1のタイミング調整用光ビームを生成し、
    負の群速度分散を有する第2の光学素子によって、前記第2のタイミング調整用光ビームを生成する、
    請求項1に記載のレーザ光のタイミング調整装置。
  4. 前記第1の検出信号と前記第2の検出信号との差分に基づく差分信号を出力する差動増幅器を更に備え、
    前記タイミング調整手段は、前記差動増幅器からの差分信号が一定の値となるようフィードバック制御を行う
    請求項1乃至3のいずれかに記載のパルスレーザ光のタイミング調整装置。
  5. 請求項1乃至4のいずれかに記載のパルスレーザ光のタイミング調整装置を備え、
    前記タイミング調整装置によってタイミングが調整された前記第1のパルスレーザ光と前記第2のパルスレーザ光とを試料に照射する光学顕微鏡。
  6. 複数のパルスレーザ光のタイミングを調整するパルスレーザ光のタイミング調整方法であって、
    第1のパルスレーザ光、及び第2のパルスレーザ光を出射するステップと、
    前記第1のパルスレーザ光と前記第2のパルスレーザ光とを合成して、前記第1のパルスレーザ光と前記第2のパルスレーザ光とが空間的に重なり合った状態の合成光を生成するステップと、
    前記光合成手段によって合成された前記第1のパルスレーザ光と前記第2のパルスレーザ光とが空間的に重なり合った状態の合成光の一部を取り出すステップと、
    前記第1のパルスレーザ光と前記第2のパルスレーザ光の波長の違い又は偏光状態の違いに基づいて、前記第1のパルスレーザ光と前記第2のパルスレーザ光とが空間的に重なり合った状態の合成光の一部から、前記第1のパルスレーザ光が前記第2のパルスレーザ光から遅れた第1のタイミング調整用光ビームと、前記第2のパルスレーザ光が前記第1のパルスレーザ光から遅れた第2のタイミング調整用光ビームとを生成するステップと、
    前記第1のタイミング調整用光ビームを第1の検出器に受光させて、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に応じて強度が変化する第1の検出信号を出力するステップと、
    前記第2のタイミング調整用光ビームを第2の検出器に受光させて、前記第1のパルスレーザ光と前記第2のパルスレーザ光との非線形光学効果に応じて強度が変化する第2の検出信号を出力するステップと、
    前記第1の検出信号と前記第2の検出信号とに基づいて、前記第1のパルスレーザ光源と前記第2のパルスレーザ光源とのタイミングを調整するステップとを有するパルスレーザ光のタイミング調整方法。
  7. 前記パルスレーザ光を出射するステップでは、第1の波長の前記第1のパルスレーザ光と、第2の波長の前記第2のパルスレーザ光を出射し、
    前記タイミングを遅延するステップでは、
    前記第1の波長に対する反射率が前記第2の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第1のパルスレーザ光を反射するミラーと、によって、前記第1のタイミング調整用光ビームを生成し、
    前記第2の波長に対する反射率が前記第1の波長に対する反射率よりも低いダイクロイックミラーと、前記ダイクロイックミラーを通過した前記第2のパルスレーザ光を反射するミラーと、によって、前記第2のタイミング調整用光ビームを生成する、
    請求項6に記載のパルスレーザ光のタイミング調整方法。
  8. 前記パルスレーザ光を出射するステップでは、第1の波長の前記第1のパルスレーザ光と、第2の波長の前記第2のパルスレーザ光を出射し、
    前記取り出すステップでは前記第1の波長のパルスレーザ光と前記第2の波長のパルスレーザ光とが合成された合成光の一部を取り出し、
    前記タイミングを遅延するステップでは、
    正の群速度分散を有する第1の光学素子によって、前記第1のタイミング調整用光ビームを生成し、
    負の群速度分散を有する第2の光学素子によって、前記第1のタイミング調整用光ビームを生成する、
    請求項6に記載のレーザ光のタイミング調整方法。
  9. 前記タイミングを調整するステップでは、
    前記第1の検出信号と前記第2の検出信号との差分に基づく差分信号を出力し、
    前記差分信号が一定の値となるようフィードバック制御を行っている、
    請求項6乃至8のいずれかに記載のパルスレーザ光のタイミング調整方法。
JP2008515426A 2006-05-15 2006-11-20 パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡 Active JP4862164B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008515426A JP4862164B2 (ja) 2006-05-15 2006-11-20 パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006135293 2006-05-15
JP2006135293 2006-05-15
JP2008515426A JP4862164B2 (ja) 2006-05-15 2006-11-20 パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡
PCT/JP2006/323080 WO2007132540A1 (ja) 2006-05-15 2006-11-20 パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡

Publications (2)

Publication Number Publication Date
JPWO2007132540A1 JPWO2007132540A1 (ja) 2009-09-17
JP4862164B2 true JP4862164B2 (ja) 2012-01-25

Family

ID=38693643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008515426A Active JP4862164B2 (ja) 2006-05-15 2006-11-20 パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡

Country Status (3)

Country Link
US (1) US20100232459A1 (ja)
JP (1) JP4862164B2 (ja)
WO (1) WO2007132540A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816932B2 (en) 2014-08-18 2017-11-14 Canon Kabushiki Kaisha Pulsed light synchronizer and microscope system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160352B2 (ja) * 2008-09-12 2013-03-13 オリンパス株式会社 レーザ顕微鏡装置
FR2955664B1 (fr) * 2010-01-22 2012-02-10 Centre Nat Rech Scient Methode pour la detection d'un signal optique non lineaire resonant et dispositif pour la mise en oeuvre de ladite methode
JP2012237714A (ja) * 2011-05-13 2012-12-06 Sony Corp 非線形ラマン分光装置、顕微分光装置及び顕微分光イメージング装置
EP2751616A4 (en) * 2011-08-29 2015-12-02 Genia Photonics Inc SYSTEM AND METHOD FOR SYNCHRONIZING LIGHT PULSES AT A SELECTED LOCATION
JP5820689B2 (ja) * 2011-10-28 2015-11-24 ギガフォトン株式会社 レーザ装置
JP5926055B2 (ja) * 2012-01-06 2016-05-25 国立大学法人大阪大学 波長走査パルス光同期システムおよびその制御方法
US9228878B2 (en) * 2012-03-19 2016-01-05 Advanced Energy Industries, Inc. Dual beam non-contact displacement sensor
JP5969701B2 (ja) * 2012-06-11 2016-08-17 ヘルムホルツ ツェントルム ミュンヘン ドイチェス フォルシュンクスツェントルム フュア ゲスントハイト ウント ウンベルト ゲゼルシャフト ミット ベシュレンクテル ハフツング 対象物を撮像するための撮像システムと方法
JP6103008B2 (ja) * 2015-09-09 2017-03-29 ソニー株式会社 非線形ラマン分光装置、顕微分光装置及び顕微分光イメージング装置
US20170261739A1 (en) * 2016-03-10 2017-09-14 The Board Of Trustees Of The Leland Stanford Junior University Multi-pass microscopy
CN106200206A (zh) * 2016-08-29 2016-12-07 清华大学 基于双孤子脉冲产生的相干反斯托克斯拉曼显微成像系统
US10876900B1 (en) * 2018-08-02 2020-12-29 Government Of The United States, As Represented By The Secretary Of The Air Force Systems and methods for high-speed, spectroscopic, gas-phase thermometry
CN113167811A (zh) * 2018-12-13 2021-07-23 治疗诊断科技有限公司 光输出系统、测量系统、光学泵浦探测扫描隧道显微镜系统、运算器、程序、运算方法
US11692883B2 (en) 2020-10-28 2023-07-04 Advanced Energy Industries, Inc. Fiber optic temperature probe
CN114172006A (zh) * 2021-11-10 2022-03-11 中国科学院上海光学精密机械研究所 一种飞秒激光再生放大器时间同步装置
CN115128001B (zh) * 2022-06-20 2024-04-12 中国科学院上海光学精密机械研究所 波长编码的探针光产生装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588216A (en) * 1966-09-02 1971-06-28 Polaroid Corp Plastic optical elements
US4593113A (en) * 1985-01-14 1986-06-03 The United States Of America As Represented By The Secretary Of The Navy Synthesis of transition metal dithiene complexes
US4864618A (en) * 1986-11-26 1989-09-05 Wright Technologies, L.P. Automated transaction system with modular printhead having print authentication feature
US5036040A (en) * 1989-06-20 1991-07-30 Eastman Kodak Company Infrared absorbing nickel-dithiolene dye complexes for dye-donor element used in laser-induced thermal dye transfer
US5051736A (en) * 1989-06-28 1991-09-24 International Business Machines Corporation Optical stylus and passive digitizing tablet data input system
DE4202038A1 (de) * 1992-01-25 1993-07-29 Basf Ag Verwendung einer fluessigkeit, enthaltend ir-farbstoffe, als druckfarbe
US5477012A (en) * 1992-04-03 1995-12-19 Sekendur; Oral F. Optical position determination
US5852434A (en) * 1992-04-03 1998-12-22 Sekendur; Oral F. Absolute optical position determination
DE4308635A1 (de) * 1993-03-18 1994-09-22 Basf Ag Farbbänder, enthaltend im IR-Bereich absorbierende Verbindungen
US5652412A (en) * 1994-07-11 1997-07-29 Sia Technology Corp. Pen and paper information recording system
US5661506A (en) * 1994-11-10 1997-08-26 Sia Technology Corporation Pen and paper information recording system using an imaging pen
KR100483981B1 (ko) * 1996-02-22 2005-11-11 가부시키가이샤 니콘 펄스폭신장광학계및이러한광학계를갖춘노광장치
US5692073A (en) * 1996-05-03 1997-11-25 Xerox Corporation Formless forms and paper web using a reference-based mark extraction technique
US6518950B1 (en) * 1997-10-07 2003-02-11 Interval Research Corporation Methods and systems for providing human/computer interfaces
US6964374B1 (en) * 1998-10-02 2005-11-15 Lucent Technologies Inc. Retrieval and manipulation of electronically stored information via pointers embedded in the associated printed material
JP3380764B2 (ja) * 1999-02-01 2003-02-24 日本電信電話株式会社 光パルス時間ずれ検出・測定方法及び装置
DE19926812A1 (de) * 1999-06-13 2000-12-14 Arno Euteneuer Strahlungs-Meßvorrichtung
JP2002107301A (ja) * 2000-10-03 2002-04-10 Univ Osaka コヒーレントアンチストークスラマン散乱顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816932B2 (en) 2014-08-18 2017-11-14 Canon Kabushiki Kaisha Pulsed light synchronizer and microscope system

Also Published As

Publication number Publication date
WO2007132540A1 (ja) 2007-11-22
JPWO2007132540A1 (ja) 2009-09-17
US20100232459A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP4862164B2 (ja) パルスレーザ光のタイミング調整装置、調整方法及び光学顕微鏡
JP5501360B2 (ja) 光学顕微鏡およびその制御方法
CN103487146B (zh) 一种简便的超宽带受激拉曼光谱显微成像系统
US9297980B2 (en) Optical device for transmission-type scanning by moving scanning beam without moving observation sample
JP5697584B2 (ja) 誘導ラマン散乱計測装置および誘導ラマン散乱計測方法
WO2014125729A1 (ja) 測定装置及び測定方法
US20140043606A1 (en) Stimulated raman scattering detection apparatus
WO2015079786A1 (ja) 光計測装置及び光計測方法
EP2409140B1 (en) Coherent anti-stokes raman spectroscopy
CN108107008A (zh) 一种时域热反射谱测量系统
JP6387106B2 (ja) ノイズ低減装置及びそれを備える検出装置
US8064059B2 (en) Optical pulse duration measurement
WO2016147253A1 (ja) テラヘルツ波測定装置
JP2015197513A (ja) 光源装置およびそれを用いた情報取得装置
WO2015046070A1 (ja) 光学測定装置および光学測定方法
US10132681B2 (en) Noise reduction apparatus and detection apparatus including the same
JP2006300808A (ja) ラマン分光測定装置
JP2000329695A (ja) 蛍光寿命測定装置
JP7000117B2 (ja) ノイズ低減装置およびそれを有する検出装置
JP2010197359A (ja) 信号波形測定装置及び測定方法
JP2016029340A (ja) 計測装置
JP5917664B2 (ja) 誘導ラマン散乱計測装置および誘導ラマン散乱計測方法
JP2017102265A (ja) 走査型顕微鏡
JPH09304189A (ja) シングルパルスオートコリレータ
JPH03282336A (ja) 超短幅パルス光の波形計測方法及び装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4862164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250