TW201728070A - 電力轉換系統及其控制方法 - Google Patents

電力轉換系統及其控制方法 Download PDF

Info

Publication number
TW201728070A
TW201728070A TW105135744A TW105135744A TW201728070A TW 201728070 A TW201728070 A TW 201728070A TW 105135744 A TW105135744 A TW 105135744A TW 105135744 A TW105135744 A TW 105135744A TW 201728070 A TW201728070 A TW 201728070A
Authority
TW
Taiwan
Prior art keywords
converter
voltage
power
battery
current
Prior art date
Application number
TW105135744A
Other languages
English (en)
Other versions
TWI701898B (zh
Inventor
Yoshiharu Nakajima
Naoki Ayai
Yusuke Shimizu
Original Assignee
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries filed Critical Sumitomo Electric Industries
Publication of TW201728070A publication Critical patent/TW201728070A/zh
Application granted granted Critical
Publication of TWI701898B publication Critical patent/TWI701898B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

電力轉換系統,係將直流電源電路與電力調節器互相連接而成的電力轉換系統,電力調節器具備:第1DC/DC轉換器,設於直流電源電路與DC匯流排之間;及逆變器,設於DC匯流排與交流電路之間,在交流半週期內係與第1DC/DC轉換器交替地一邊具有休止期間一邊進行開關動作;直流電源電路具備:蓄電池;及雙向性之第2DC/DC轉換器,設於蓄電池與第1DC/DC轉換器之間,包含直流電抗器;具有:控制部,進行將流通於第2DC/DC轉換器之直流電抗器的電流設為一定值之控制。

Description

電力轉換系統及其控制方法
本發明關於電力轉換系統及其控制方法。
本申請主張2016年1月18日申請的日本申請第2016-006999號之優先權,並援用上述日本申請記載的全部記載內容。
例如太陽光發電用的電力調節器((Power Conditioner)電力轉換裝置),係將直流的發電電力轉換為交流,而對商用電力系統進行系統互連的運轉。依據典型的電力調節器之轉換動作,藉由升壓電路將發電之電壓升壓至比交流側之峰值電壓更高的一定電壓之後,經由逆變器轉換為交流電壓。此情況下,升壓電路及逆變器持續進行高速的開關動作。
另一方面,該電力調節器中,轉換效率之提升為重要者。於此,將直流側之電壓與交流側之瞬間電壓之絕對值持續進行比較,僅在必要升壓的期間使升壓電路進行開關動作,僅在必要降壓的期間使逆變器進行開關動作之控制(以下,稱為最小開關轉換方式)被提案(參照例如 專利文獻1、2)。藉由此種最小開關轉換方式可於升壓電路及逆變器具有開關動作之休止期間,可以減少和該休止期間相應部分的開關損失等,因此可以提升轉換效率。
又,近年,使用太陽電池及蓄電池之2種類之直流電源,進行直流/交流之電力轉換的所謂複合型的電力調節器被提案(例如參照專利文獻3、4)。此種複合型的電力調節器,可以將來自1或複數個太陽光發電面板之輸出及蓄電池之輸出與1台電力調節器進行連結。在電力調節器內對應於各電源必要時可以搭載DC/DC轉換器(DC/DC converter,直流/直流轉換器)(截波電路(chopper))及逆變器,以進行和商用電力系統間之系統互連運轉。
[先行技術文獻] [專利文獻]
[專利文獻1]特開2014-241714號公報
[專利文獻2]特開2014-241715號公報
[專利文獻3]特開2015-142460號公報
[專利文獻4]特開2015-192549號公報
一表現之本發明的電力轉換系統,係將直流電源電路與電力調節器互相連接而成的電力轉換系統,上述電力調節器具備:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排(直流匯流排)之間;及逆變器,設於 上述DC匯流排與交流電路之間,在交流半週期內係與上述第1DC/DC轉換器交替地一邊具有休止期間一邊進行開關動作;上述直流電源電路具備:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器;具有:控制部,進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
又,另一觀點之電力轉換系統的控制方法,係以電力轉換系統為執行主體的控制方法,該電力轉換系統將直流電源電路與電力調節器互相連接而成,上述電力調節器具有:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排之間;及逆變器,設於上述DC匯流排與交流電路之間;上述直流電源電路具有:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器;上述第2DC/DC轉換器,係將上述蓄電池之電壓升壓至上述第1DC/DC轉換器之低電壓側之電壓,或朝其相反方向進行降壓,上述第1DC/DC轉換器與上述逆變器係在交流半週期內交替地一邊具有休止期間一邊進行開關動作,進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
1‧‧‧電力調節器
3‧‧‧商用電力系統
4‧‧‧負載
5‧‧‧交流電路
6‧‧‧蓄電池
7A、7B、7C‧‧‧太陽光發電面板
8‧‧‧DC/DC轉換器
8L‧‧‧直流電抗器
9‧‧‧直流電源電路
10‧‧‧控制部
11‧‧‧DC/DC轉換器
11L‧‧‧直流電抗器
12‧‧‧DC匯流排
13‧‧‧逆變器
14‧‧‧低電壓側電容器
15‧‧‧中間電容器
16‧‧‧交流電抗器
17‧‧‧交流側電容器
18、20、22‧‧‧電壓感測器
19、21‧‧‧電流感測器
30‧‧‧電力監控器
80‧‧‧控制部
81‧‧‧低電壓側電容器
82‧‧‧高電壓側電容器
83、85‧‧‧電壓感測器
84‧‧‧電流感測器
100‧‧‧電力轉換系統
d1~d8‧‧‧二極體
Q1~Q8‧‧‧開關元件
[圖1]電力轉換系統之概略構成之一例之圖。
[圖2]表示僅著眼於圖1中之蓄電池時的電力轉換系統之詳細之電路圖之一例。
[圖3]簡略表示最小開關轉換方式中的DC/DC轉換器及逆變器之動作之特徴的波形圖(橫向)。
[圖4]簡略表示最小開關轉換方式中的DC/DC轉換器及逆變器之動作之特徴的波形圖(縱向)。
[圖5]第2DC/DC轉換器之高電壓側之電壓控制方塊線圖。
[圖6]第2DC/DC轉換器中的直流電抗器之電流控制方塊線圖。
[圖7]作為比較用,由圖2將第2DC/DC轉換器削除的電路圖。
[圖8]藉由圖7之電路中的電流感測器檢測的系統電流之波形圖。
[圖9]藉由圖7之電路中的電壓感測器檢測的系統電壓之波形圖。
[圖10]藉由圖7之電路中的電流感測器檢測的對蓄電池之充電電流之波形圖。
[圖11]藉由電壓感測器檢測的DC/DC轉換器與電力調節器之相互連接點之電壓之波形圖。
[圖12]藉由圖2之電路中的電流感測器檢測的對蓄電池之充電電流之波形圖。
[圖13]資訊信號之傳送/接收之例之圖。
[圖14A]DC/DC轉換器之開關動作之一之例之表示圖。
[圖14B]DC/DC轉換器之開關動作之另一例之表示圖。
[本開示所欲解決的課題]
複合型的電力調節器中,特別是欲將各種蓄電池連接的現實之需求存在。但是假設使用個別種類之蓄電池,則其端子電壓普及廣範圍。現實上乃有可能使用想定範圍外之電壓之蓄電池,現狀為電力調節器側之對應不足。
另一方面,蓄電池作為直流電源而適用最小開關轉換方式之情況下,流通於蓄電池的充放電電流成為脈流。此乃因為DC匯流排之電壓非為一定電壓引起的無效電流,無法完全被與蓄電池並聯連接的電解電容器吸收之故。此雖不致於立即成為問題,但是將一定值之直流電流與脈流電流進行比較時,後者基於蓄電池之內部電阻而產生的損失較大。
有鑑於該課題,本開示之目的為,在電力轉換系統中,提升對於各種之蓄電池之泛用性,而且,減少蓄電池之損失。
[本開示之效果]
依據本開示,在電力轉換系統中,可以提升對於各種蓄電池之泛用性,而且,可以減少蓄電池之損失。
[實施形態之要旨]
本發明之實施形態之要旨至少包含以下。
(1)電力轉換系統,係將直流電源電路與電力調節器互相連接而成的電力轉換系統,上述電力調節器具備:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排之間;及逆變器,設於上述DC匯流排與交流電路之間,在交流半週期內係與上述第1DC/DC轉換器交替地一邊具有休止期間一邊進行開關動作;上述直流電源電路具備:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器;具有:控制部,進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
如此構成的電力轉換系統中,即使在電力調節器與蓄電池之間存在輸出入電壓之較大差異,升降壓亦為可能,而且電壓之適用範圍變廣。因此,輸出電壓互異的各種蓄電池可以經由第2DC/DC轉換器連接於電力調節器。又,第1DC/DC轉換器與逆變器在交流半週期內交互地具有開關之休止期間的最小開關轉換方式中,脈流波形之電流會朝第1DC/DC轉換器之低電壓側流通,但是控制部例如在將第1DC/DC轉換器之低電壓側(第2DC/DC轉換器之高電壓側)之電壓設為一定值之控制中,進行將流 通於第2DC/DC轉換器之直流電抗器的電流設為一定值的控制,依此,在蓄電池僅流通直流電流,脈流波形之電流不流通。依此,可以抑制蓄電池之內部電阻引起的損失,延遲蓄電池之劣化,而且充分發揮蓄電池之性能。
(2)又,(1)之電力轉換系統中,上述控制部係在上述第2DC/DC轉換器之高電壓側之電壓回授控制之操作量,乘上將高電壓側之電壓目標值以低電壓側之電壓檢測值除得之值而得算出之值,將依一定之週期對該算出之值實施平均化而得之值確定為充放電電流目標值,而將上述第2DC/DC轉換器之高電壓側控制為一定電壓亦可。
此情況下,在第2DC/DC轉換器之低電壓側可以流通平均化處理的平坦的直流電流。亦即,第2DC/DC轉換器可以將蓄電池之充放電電流控制為非脈流波形的一定電流。
(3)又,(2)之電力轉換系統中,例如假設T為上述週期,igdc_ref為上述充放電電流目標值,ipwm_ref_pi_vdc為上述操作量,vdc_ref為上述電壓目標值,及vgdc為上述電壓檢測值之情況下,
藉由該運算,可以將蓄電池之充放電電流目標值控制 為非脈流的一定電流。
(4)又,(1)之電力轉換系統中,上述控制部係以依交流半週期針對基於上述第1DC/DC轉換器之低電壓側之電壓回授的補償量實施平均化之值,確定為包含於上述第1DC/DC轉換器的直流電抗器之電流目標值,而將上述第1DC/DC轉換器之低電壓側控制為一定電壓亦可。
此情況下,在第1DC/DC轉換器之低電壓側,可以流通平均化處理的平坦的直流電流。因此,第1DC/DC轉換器之低電壓側之電壓可以設為一定值。
(5)又,(2)或(3)之電力轉換系統中,上述電力調節器係與1或複數個太陽光發電面板同時連接之複合型電力調節器,上述第2DC/DC轉換器將與上述太陽光發電面板之輸出電壓之中最高的電壓一致之電壓輸出至高電壓側亦可。
第2DC/DC轉換器,係將與太陽光發電面板之輸出電壓之中最高的電壓一致之電壓輸出至高電壓側之情況下,電力調節器可以使最小開關轉換方式之動作最佳化。
(6)同樣地,(4)之上述電力調節器係與1或複數個太陽光發電面板同時連接之複合型電力調節器,上述第1DC/DC轉換器將與上述太陽光發電面板之輸出電壓之中最高的電壓一致之電壓輸出至低電壓側亦可。
(7)又,(2)、(3)或(5)之電力轉換系統中,上述第2DC/DC轉換器將自身之高電壓側控制為一定電壓之情況下,上述第2DC/DC轉換器進行由上述電力調節器接收 應設為一定的電壓目標值之通信亦可。
此情況下,藉由通信可由電力調節器對第2DC/DC轉換器通知高電壓側之輸出電壓目標值。例如將與太陽光發電面板之輸出電壓之中最高的電壓一致之電壓設為DC匯流排之電壓之情況下,可將輸出電壓目標值通知第2DC/DC轉換器。依此,第2DC/DC轉換器可將與太陽光發電面板之輸出電壓之中最高的電壓一致之電壓輸出至高電壓側。又,結果,第1DC/DC轉換器之開關停止期間增加,此舉有助於最小開關轉換方式之動作之最佳化。
(8)又,(4)或(6)之電力轉換系統中,上述第1DC/DC轉換器將自身之低電壓側控制為一定電壓之情況下,上述第1DC/DC轉換器進行對上述第2DC/DC轉換器傳送輸出電力指令值之通信亦可。
此情況下,藉由對第2DC/DC轉換器通知輸出電力指令值,第2DC/DC轉換器可將充放電電流控制為和輸出電力指令值相應的定電流。
(9)另一方面,就方法之觀點而言,電力轉換系統的控制方法係以電力轉換系統為執行主體的控制方法,該電力轉換系統將直流電源電路與電力調節器互相連接而成,上述電力調節器具有:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排之間;及逆變器,設於上述DC匯流排與交流電路之間;上述直流電源電路具有:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器; 上述第2DC/DC轉換器,係將上述蓄電池之電壓升壓至上述第1DC/DC轉換器之低電壓側之電壓,或朝其相反方向進行降壓,上述第1DC/DC轉換器與上述逆變器係在交流半週期內交替地一邊具有休止期間一邊進行開關動作,進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
依據此種電力轉換系統的控制方法,即使在電力調節器與蓄電池之間存在輸出入電壓之差時,第2DC/DC轉換器亦可以發揮雙方之電壓協調功能。因此,輸出電壓互異的各種蓄電池可以經由第2DC/DC轉換器連接於電力調節器。又,第1DC/DC轉換器與逆變器在交流半週期內交互地具有開關之休止期間的最小開關轉換方式中,脈流波形之電流雖會朝第1DC/DC轉換器之低電壓側流通,但是將流通於第2DC/DC轉換器之直流電抗器的電流設為一定值之控制,例如可以在將第1DC/DC轉換器之低電壓側(第2DC/DC轉換器之高電壓側)之電壓設為一定值之控制中進行,依此,在蓄電池僅流通直流電流,而不流通脈流波形之電流。依此,可以抑制蓄電池之內部電阻引起的損失,延遲蓄電池之劣化,又,可以充分發揮蓄電池之性能。
(10)又,電力轉換系統,和(1)不同地如下表現。亦即,係將直流電源電路與電力調節器互相連接而成的電力轉換系統,上述電力調節器具備:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排之間;及逆變 器,設於上述DC匯流排與交流電路之間,在交流半週期內係與上述第1DC/DC轉換器交替地一邊具有休止期間一邊進行開關動作;上述直流電源電路具備:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器;又,該電力轉換系統係具有:電容器,設於上述第1DC/DC轉換器與上述第2DC/DC轉換器之間;及控制部,針對流經上述第1DC/DC轉換器的脈動的電流之中之脈動成分及直流成分,上述脈動成分由上述電容器供給,上述直流成分由上述第2DC/DC轉換器供給,依此而進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
[實施形態之詳細]
以下,參照圖面說明實施形態之詳細。
<第1實施形態>
首先,說明第1實施形態之電力轉換系統(亦包含其控制方法)。
《電路構成》
圖1係電力轉換系統100之概略構成之一例之表示圖。該電力轉換系統100係將複數而且複數種類之直流電源連接於複合型電力調節器1而構成,可進行與商用電力 系統3之系統互連。在商用電力系統3與電力調節器1之間之交流電路5連接有需要家之負載4。圖中,複合型電力調節器1例如連接有3個太陽光發電面板7A、7B、7C。又,該「3個」僅為一例。又,在電力調節器1經由雙向性之DC/DC轉換器8連接有蓄電池6。具體而言,DC/DC轉換器8之低電壓側(圖之左側)連接於蓄電池6,高電壓側(圖之右側)連接於電力調節器1。
於此,舉出例如數值例,商用電力系統3之電壓為AC202V,該情況下之峰值(最大值)約286V,由太陽光發電面板7A、7B、7C輸入電力調節器1內之DC/DC轉換器(未圖示)經由MPPT(Maximum Power Point Tracking)控制的電壓為DC250V。該電壓成為電力調節器1內之DC匯流排電壓。另一方面,蓄電池6之電壓為DC39~53V。因此,蓄電池6之電壓被DC/DC轉換器8升壓,進一步藉由電力調節器1內之DC/DC轉換器11(圖2)升壓至DC250V。
設置DC/DC轉換器8之基本效果在於,即使電力調節器1與蓄電池6之間存在輸出入電壓之較大差異,亦可以進行升降壓,而且電壓之適用範圍變廣。因此,輸出電壓互異的各種蓄電池6可以經由DC/DC轉換器8連接於電力調節器1。
圖2係僅著眼於圖1中之蓄電池6的電力轉換系統100之詳細之表示用電路圖之一例。在交流電路5與蓄電池6之間設置電力調節器1及DC/DC轉換器8。圖 1中雖省略,在交流電路5設有交流電路5之電力監控器30。
又,蓄電池6實際上並非僅單純之電池而是構成為蓄電系統,具有監控自身之狀態的監控器機能及與外部進行資訊交換之通信機能(詳細如後述)。
作為電力調節器1之主要電路要素,係具備:DC/DC轉換器11;其之高電壓側之DC匯流排12;連接於DC匯流排12的逆變器13;連接於DC/DC轉換器11之低電壓側的低電壓側電容器14;連接於DC匯流排12的中間電容器15;交流電抗器16;及交流側電容器17。DC/DC轉換器8之高電壓側係與DC/DC轉換器11之低電壓側互相連接。逆變器13係與DC/DC轉換器11之高電壓側互相連接。
DC/DC轉換器11具備:作為構成截波電路的電路要素之直流電抗器11L、高側(high side)之開關元件Q3及逆並聯連接的二極體d3、低側(low side)之開關元件Q4及逆並聯連接的二極體d4。
逆變器13係將開關元件Q5、Q6、Q7、Q8全橋式連接者。於開關元件Q5、Q6、Q7、Q8分別以逆並聯方式連接有二極體d5、d6、d7、d8。
DC/DC轉換器8及DC/DC轉換器11可以同時使用於雙向,蓄電池6之放電時成為升壓截波,蓄電池6之充電時成為降壓截波。又,逆變器13不僅進行由直流至交流之轉換,亦可以成為雙向性之DC/AC轉換器,可 以進行逆方向之,由交流至直流之轉換。
開關元件Q3~Q8例如可以使用圖示之IGBT(Insulated Gate Bipolar Transistor)或MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)。
交流電抗器16及交流側電容器17係構成濾波器電路,防止逆變器13產生的高頻成分洩漏至交流電路5。
作為計測用之電路要素設有:對低電壓側電容器14之兩端電壓進行檢測的電壓感測器18;對流經直流電抗器11L的電流進行檢測的電流感測器19;對DC匯流排12之電壓亦即中間電容器15之兩端電壓進行檢測的電壓感測器20;對流經交流電抗器16的電流進行檢測的電流感測器21;及對交流側電容器17之兩端電壓進行檢測的電壓感測器22。各感測器之檢測輸出信號被傳送至控制部10。
控制部10對開關元件Q3、Q4、Q5~Q8之導通/關斷進行控制。
控制部10例如包含電腦,藉由電腦執行軟體(電腦程式),而實現必要的控制機能。軟體記憶於控制部之記憶裝置(未圖示)。但是,亦可以僅由不包含電腦的硬體電路構成控制部10。
另一方面,DC/DC轉換器8具備作為截波電路的直流電抗器8L、高側之開關元件Q1及逆並聯連接的二極體d1、低側之開關元件Q2及逆並聯連接的二極體d2。又,DC/DC轉換器8之低電壓側連接有低電壓側電容 器81,高電壓側連接有高電壓側電容器82。開關元件Q1、Q2例如可以使用IGBT或MOSFET。
作為計測用之電路要素而設有對電容器81之兩端電壓進行檢測的電壓感測器83、對流經直流電抗器8L的電流進行檢測的電流感測器84、對高電壓側電容器82之兩端電壓進行檢測的電壓感測器85。各感測器之檢測輸出信號被傳送至控制部80。
控制部80對開關元件Q1、Q2之導通/關斷進行控制。
控制部80例如包含電腦,藉由電腦執行軟體(電腦程式),實現必要的控制機能。軟體記憶於控制部之記憶裝置(未圖示)。但是,亦可以僅由不含電腦的硬體電路構成控制部80。
DC/DC轉換器8及蓄電池6構成直流電源電路9。亦即,電力轉換系統100係將直流電源電路9與電力調節器1互相連接而成者。電力調節器1具備:設於直流電源電路9與DC匯流排12之間的第1DC/DC轉換器11;及設於DC匯流排12與交流電路5之間,在交流半週期內與第1DC/DC轉換器11交替地一邊具有休止期間一邊進行開關動作的逆變器13。
又,直流電源電路9之第2DC/DC轉換器8設於蓄電池6與第1DC/DC轉換器11之間,係包含直流電抗器8L的雙向性之轉換器。
又,控制部10及控制部80具有通信機能, 控制部10可與電力監控器30及控制部80進行必要的通信。控制部80可與蓄電池6及控制部10進行必要的通信。
《最小開關轉換方式之說明》
圖3及圖4係最小開關轉換方式中的DC/DC轉換器11及逆變器13之動作特徴之簡略表示的波形圖。兩圖係同一內容,圖3特別以直流輸入至交流輸出為止的振幅之關係容易被觀察的方式橫向表示,圖4特別以控制之時序容易被觀察的方式縱向表示。作為比較用,圖3之上段及圖4之左欄分別表示非最小開關轉換方式之典型的開關控制之波形圖。又,圖3之下段及圖4之右欄分別表示最小開關轉換方式之動作之波形圖。
首先,圖3之上段(或圖4之左欄),在典型的開關控制中,相對於輸入的直流電壓Vdc,DC/DC轉換器之輸出係較Vdc更高值之等間隔之脈衝列狀。該輸出經由中間電容器平滑化,於DC匯流排現出電壓VO。相對於此,逆變器使經由PWM(Pulse Width Modulation)控制的開關依半週期進行極性反轉。結果,經由最終的平滑化而獲得正弦波之交流電壓Vac
接著,在圖3之下段之最小開關轉換方式中,和交流波形之電壓目標值Vac之瞬間值之絕對值與輸入的直流電壓Vdc之比較結果相應地,使DC/DC轉換器11與逆變器13進行動作。亦即,在電壓目標值Vac之絕 對值中當Vac<Vdc(或Vac≦Vdc)時,DC/DC轉換器11停止(圖中之「ST」),當Vac≧Vdc(或Vac>Vdc)時,DC/DC轉換器11進行升壓動作(圖中之「OP」)。DC/DC轉換器11之輸出經由中間電容器15平滑化,於DC匯流排12出現圖示之電壓VO
於此,中間電容器15係小容量(例如μF(微法拉)之位準)。因此,成為交流波形之絕對值之峰值前後的一部分之波形不被平滑化而直接殘留。亦即,平滑僅在抵消DC/DC轉換器11之高頻開關之軌跡的程度下起作用,無法對商用頻率之2倍左右之低頻進行平滑化的方式下,使中間電容器15成為小容量。
相對於此,逆變器13係對應於電壓目標值Vac之絕對值與直流電壓Vdc之比較結果,在Vac<Vdc(或Vac≦Vdc)時進行高頻開關(圖中之「OP」),在Vac≧Vdc(或Vac>Vdc)時停止高頻開關(圖中之「ST」)。停止高頻開關時之逆變器13,藉由選擇將開關元件Q5、Q8設為導通(on)、將Q6、Q7設為關斷(off)之狀態,及將開關元件Q5、Q8設為關斷、將Q6、Q7設為導通之狀態之任一,僅進行必要的極性反轉。逆變器13之輸出經由交流電抗器16及交流側電容器17平滑化,而獲得所要之交流輸出。
於此,如圖4之右欄所示,DC/DC轉換器11與逆變器13係交替進行高頻開關之動作,DC/DC轉換器11進行升壓之動作時,逆變器13停止高頻開關,對DC 匯流排12之電壓僅進行必要的極性反轉。反之,逆變器13進行高頻開關動作時,DC/DC轉換器11停止,低電壓側電容器14之兩端電壓經由直流電抗器11L及二極體d3出現於DC匯流排12。
藉由以上使DC/DC轉換器11與逆變器13進行最小開關轉換方式之動作。
《第2DC/DC轉換器之控制》
接著,對第2(外加之)DC/DC轉換器8之控制進行說明。
圖5係DC/DC轉換器8之高電壓側之電壓控制方塊線圖。控制之執行主體係控制部80。圖中,控制部80係以電壓感測器85(圖2)檢測的高電壓側之電壓檢測值vdc作為控制量,而對高電壓側之電壓目標值vdc_ref與控制量vdc之誤差量dvdc進行計算。控制部80使誤差量dvdc通過PI補償器而算出操作量ipwm_ref_pi_vdc。
以下表示求出直流電抗器8L之電流目標值igdc_ref之式。
又,文字字體之差異(立體/斜體)無特別意義,同一文字表示同一量(以下同樣)。
上記之式中,藉由高電壓側之電壓控制方塊線圖算出的操作量ipwm_ref_pi_vdc,實體上意味著輸出入DC/DC轉換器8之高電壓側電容器82的電流。因此,在DC/DC轉換器8中的直流電抗器8L之電流目標值之算出時,係將高電壓側之電壓目標值vdc_ref除以電壓感測器83(圖2)檢測的蓄電池側之電壓檢測值vgdc而獲得之值,在該獲得之值乘上操作量ipwm_ref_pi_vdc而換算出直流電抗器8L之電流目標值。將該換算值以較PWM週期更長的的一定週期T實施平均化後設為直流電抗器8L之電流目標值igdc_ref。為除去交流成分之目的將T設為交流週期(例如1/60[秒])或其之1/2。
圖6係DC/DC轉換器8中的直流電抗器8L之電流控制方塊線圖。控制部80係以電流感測器84檢測的直流電抗器8L之電流檢測值igdc作為控制量,對其與直流電抗器8L之電流目標值igdc_ref間之誤差量digdc進行計算。控制部80使誤差量digdc通過PI補償器,以該計算結果作為外部干擾補償並加上蓄電池側之電壓檢測值vgdc,進一步以高電壓側之電壓檢測值vdc除之。依此,算出操作量th_sw。使用該操作量來決定DC/DC轉換器8之開關元件Q1、Q2之工作(duty)。
又,DC/DC轉換器8將與太陽光發電面板7A、7B、7C之輸出電壓之中最高的電壓一致之電壓輸出至高電壓側。
DC/DC轉換器8將與太陽光發電面板7A、7B、7C之 輸出電壓之中最高的電壓一致之電壓輸出至高電壓側之情況下,DC/DC轉換器11之開關停止期間增加。此舉有助於電力調節器1中的最小開關轉換方式之動作之最佳化。
又,同樣地,DC/DC轉換器11將與太陽光發電面板7A、7B、7C之輸出電壓之中最高的電壓一致之電壓輸出至低電壓側亦可。
《驗證》
對上述DC/DC轉換器8之控制之結果進行驗證。作為此之一例,係將約1.5kW之電力由商用電力系統3充電至蓄電池6之情況。
圖7係作為比較用,由圖2刪除DC/DC轉換器8的電路圖。圖8係藉由圖7之電路中的電流感測器21檢測的系統電流(頻率為50Hz)之波形圖。又,圖9係藉由圖7之電路中的電壓感測器22檢測的系統電壓(頻率為50Hz)之波形圖。圖10係藉由圖7之電路中的電流感測器19檢測的對蓄電池6之充電電流之波形圖。藉由前述之最小開關轉換方式,充電電流成為脈流,平均值為29.6[A],0起觀察到的峰值係68[A],脈流之週期為交流之週期之1/2。
接著,表示圖2之電路所示電力轉換系統100之波形圖。
電流感測器21檢測的系統電流(頻率為50Hz)之波形圖,及電壓感測器22檢測的系統電壓(頻率為50Hz)之波 形圖分別和圖8及圖9同一。
圖11係電壓感測器18、85檢測的DC/DC轉換器8與電力調節器1之相互連接點之電壓之波形圖。該波形圖係於縱軸方向擴大縮尺。平均值為200[V],峰值對峰值之值為6[V]。
圖12係藉由圖2之電路中的電流感測器84檢測的對蓄電池6之充電電流之波形圖。如圖示,雖有極微小的變動,但充電電流成為可謂直流之狀態。電流之平均值為30.2[A],峰值對峰值之值為1.8[A]。
由以上之驗證結果可知,藉由將DC/DC轉換器8設於蓄電池6與電力調節器1之間,藉由進行特定之控制,可使對蓄電池6之充電電流成為直流。又,於此針對充電之記載,蓄電池6之放電時亦同樣地,放電電流成為直流。
充放電電流成為直流時,和以平均值為同一值的脈流進行充放電之情況比較,蓄電池6之內部電阻引起的損失降低2/3。
《關於通信》
藉由將DC/DC轉換器8設於蓄電池6與電力調節器1之間,可使DC/DC轉換器8之控制部80發揮通信之協調功能。例如在DC/DC轉換器8搭載和蓄電池6之通信相關的各種通信介面機能,例如即使使用不同蓄電池廠商之各種通信規格的蓄電池6,亦可以進行與DC/DC轉換器8 之通信。由電力調節器1來看,只要DC/DC轉換器8可以通信,即可不受蓄電池6之通信規格影響,實用上極為便利。
圖13係資訊信號之傳送/接收之例之表示圖。在DC/DC轉換器8與蓄電池6之間進行信號S1、S2之傳送/接收。在電力調節器1與DC/DC轉換器8之間進行信號S3、S4之傳送/接收。在電力監控器30與電力調節器1之間進行信號S5、S6之傳送/接收。
信號之內容例如以下。PCS表示電力調節器,PV表示太陽光發電面板,DC/DC表示DC/DC轉換器8之略語。
S1:運轉開始指示,運轉停止指示
S2:蓄電池兩端電壓,電池片(cell)電壓,系統動作資訊,電流,SOC(State of Charge)
S3:DC/DC動作指示,PCS動作狀況
S4:DC/DC動作模式,對PCS之要求狀態,蓄電池動作資訊
S5:PCS動作指示,蓄電池動作指示,蓄電池充放電目標值,PCS輸出電力最大值,錯誤解除旗標
S6:PCS動作內容,蓄電池動作內容,PCS輸出電力,各PV發電電力,蓄電池充放電電力,蓄電池容量(SOC),PCS狀態,蓄電池狀態,登錄代碼
《第1實施形態之彙整》
上述電力轉換系統100中,在電力調節器1與蓄電池6之間存在輸出入電壓之較大差異時,升降壓亦為可能,而且電壓之適用範圍變廣。因此,輸出電壓互異的各種蓄電池可以連接於電力調節器1。又,第1DC/DC轉換器11與逆變器13在交流半週期內交替具有開關之休止期間的最小開關轉換方式中,脈流波形之電流朝第1DC/DC轉換器11之低電壓側流通,但是只要進行將流經第2DC/DC轉換器8之直流電抗器8L的電流設為一定值之控制(換言之,將DC/DC轉換器8之高電壓側之電壓設為一定值之控制),依此,在蓄電池6僅流通直流電流,不流通脈流波形之電流。依此,可以抑制蓄電池6之內部電阻引起的損失,延緩蓄電池6之劣化,又,蓄電池6之性能可以充分發揮。
又,第2DC/DC轉換器8將自身之高電壓側控制為一定電壓之情況下,第2DC/DC轉換器8進行由電力調節器1接收應設為一定的電壓目標值之通信。藉由該通信可由電力調節器1對第2DC/DC轉換器8進行高電壓側之輸出電壓目標值之通知。例如將與太陽光發電面板之輸出電壓之中最高的電壓一致之電壓設為DC匯流排12之電壓之情況下,可將輸出電壓目標值通知第2DC/DC轉換器8。依此,第2DC/DC轉換器8可將與太陽光發電面板之輸出電壓之中最高的電壓一致之電壓輸出至高電壓側。結果,第1DC/DC轉換器11之開關停止期間增加,此舉有助於最小開關轉換方式之動作之最佳化。
<第2實施形態>
接著,對第2實施形態之電力轉換系統(亦包含其控制方法)進行說明。電路構成及最小開關轉換係和第1實施形態同樣。
第2實施形態中,係將第1實施形態中的第2DC/DC轉換器8之定電流控制設為所謂「從屬」,由電力調節器1內之DC/DC轉換器11主導進行將DC/DC11之低電壓側控制為一定電壓的定電壓控制。
《第1DC/DC轉換器之控制》
首先,如以下對電路之諸量進行定義。又,以下之「蓄電池部..」係意味著經由DC/DC轉換器8連接於蓄電池6之DC/DC轉換器11之低電壓側終端。
Idc:直流電抗器11L之電流檢測值
I* dc:直流電抗器11L之電流目標值
Vdc:蓄電池部輸入電壓檢測值(電壓感測器18之檢測值)
V* dc:蓄電池部輸入電壓目標值
Cdc:電容器14及82之合成容量
Vac:交流系統電壓檢測值(電壓感測器22之檢測值)
I* ac:交流輸出電流目標值
Cac:交流側電容器17之容量
I* inv:交流電抗器16之電流目標值
V* inv:逆變器13之交流側之電壓目標值
Rinv:逆變器13之電阻成分(主要是交流電抗器16之電阻成分)
Linv:交流電抗器16之電感
Co:中間電容器15之容量
Vo:中間電容器15之電壓檢測值(電壓感測器20之檢測值)
V* o:中間電容器15之電壓目標值
Rdc:DC/DC轉換器11之電阻成分(主要是直流電抗器11L之電阻成分)
Ldc:直流電抗器11L之電感
首先,直流電抗器11L之電流檢測值Idc,由合成容量Cdc與蓄電池部輸入電壓檢測值Vdc可以記載為(1)式。
以電壓回授方式改寫,f設為控制週期,則成為(2)式。
依交流半週期實施平均化,則成為以下之(3)式。
如此而在交流半週期之回授控制中獲得直流電抗器電流之直流成分。其中,T係交流半週期,Kdc係補償係數。
直流電抗器11L之電流目標值,可將(逆變器13之直流側之電力)+(中間電容器15之充放電電力)除以開關元件Q4之集極-射極間之電壓(此為IGBT之情況下,MOSFET之情況下為汲極-源極間之電壓)而算出。開關元件Q4之集極-射極間之電壓可由蓄電池部輸入電壓檢測值Vdc將電阻成分與直流電抗器11L之電感Ldc引起的電壓降納入考慮進行計算。亦即,直流電抗器11L之電流目標值可以表示為以下之(4)式。
依交流半週期取平均即成為(5)式。
取交流半週期中的平均時,中間電容器15之 充放電電力與直流電抗器11L之電壓降成為0,因此改寫為(6)式。又,記號< >表示平均值。
交流電抗器16之電流目標值I* inv,可依據交流輸出電流目標值I* ac與交流側電容器Cac之充放電電流表示為(7)式。
基於交流側電容器17之充放電電流為0,因此對交流週期之有效值進行計算而成為(8)式。
逆變器13之電壓目標值V* inv,係在交流系統電壓檢測值Vac將電阻成分與交流電抗器16之電感成分引起的電壓降納入考慮,而以(9)式表示。
對交流週期之有效值進行計算,基於交流電 抗器16之電壓降成為0,代入(8)式而成為(10)式。
於(6)式代入(8)式與(10)式而成為(11)式。
解開<I* ac>rms而成為(12)式,使用(3)式計算I* dc_r而獲得交流輸出電流之有效值。
<I* ac>rms、<Vac>rms之值確定後,可以藉由PLL(Phase Locked Loop)生成與交流電壓同步的I* ac、V* ac,將其代入(7)式而獲得逆變器13之電流目標值I* inv。又,由(9)式獲得V* inv,由(4)式獲得直流電抗器電流目標值I* dc
藉由以上之運算,依據電力調節器1之DC/DC轉換器11中的低電壓側之定電壓控制,可使基於最小開關轉換方式的電力調節器1之系統互連動作成為可能。
依此,蓄電池6之充放電電流之波形圖可以獲得和前 述之圖12同樣之結果。
圖14A及圖14B係表示DC/DC轉換器11之開關動作之2例之圖。
中間電容器15之電壓目標值Vdc *設為一定電壓,太陽光發電中之發電電壓之最大值亦即電壓值設為Vpv-max之情況下,Vdc *<Vpv-max時,中間電容器15之電壓Vo之最小電壓成為Vpv-max,因此DC/DC轉換器11持續成為升壓或降壓動作,非為最小開關轉換而導致轉換效率降低(圖14A)。因此,藉由將Vdc *之設定值設為Vpv-max,則DC/DC轉換器11之無用的升壓動作消除,因此可以提升轉換效率(圖14B)。
《第2實施形態之彙整》
如上述說明,第2實施形態中,係將基於第1DC/DC轉換器11之低電壓側之電壓回授的補償量依交流半週期實施平均化而獲得之值,確定為第1DC/DC轉換器11之直流電抗器11L之電流目標值,可以將第1DC/DC轉換器11之低電壓側控制為一定電壓。
藉由對第1DC/DC轉換器11之低電壓側之電壓進行成為一定值的定電壓控制,依此,在第1DC/DC轉換器11主導下,第2DC/DC轉換器8進行定電流控制,可以將第2DC/DC轉換器8的電流設為一定值。
因此,在蓄電池6僅流通直流電流,不流通脈流波形之電流。依此,可以抑制蓄電池6之內部電阻引起的損 失,延緩蓄電池6之劣化,又,蓄電池6之性能可以充分發揮。
又,第1DC/DC轉換器11將自身之低電壓側控制為一定電壓之情況下,第1DC/DC轉換器11可以進行對第2DC/DC轉換器8傳送輸出電力指令值之通信。此情況下,可對第2DC/DC轉換器8通知輸出電力指令值,第2DC/DC轉換器8可以將充放電電流控制為和輸出電力指令值相應的定電流。
<補記>
又,此次揭示的實施形態在全部之點僅為例示並非用來限制者。本發明之範圍表示於申請專利範圍,亦包含和申請專利範圍具有均等之意義及範圍內之全部變更。
但是,如說明書及圖面之揭示具備全部構成要素的電力轉換系統亦包含於本發明。
1‧‧‧電力調節器
3‧‧‧商用電力系統
4‧‧‧負載
5‧‧‧交流電路
6‧‧‧蓄電池
8‧‧‧DC/DC轉換器
8L‧‧‧直流電抗器
9‧‧‧直流電源電路
10‧‧‧控制部
11‧‧‧DC/DC轉換器
11L‧‧‧直流電抗器
12‧‧‧DC匯流排
13‧‧‧逆變器
14‧‧‧低電壓側電容器
15‧‧‧中間電容器
16‧‧‧交流電抗器
17‧‧‧交流側電容器
18、20、22‧‧‧電壓感測器
19、21‧‧‧電流感測器
30‧‧‧電力監控器
80‧‧‧控制部
81‧‧‧低電壓側電容器
82‧‧‧高電壓側電容器
83、85‧‧‧電壓感測器
84‧‧‧電流感測器
100‧‧‧電力轉換系統
d1~d8‧‧‧二極體
Q1~Q8‧‧‧開關元件

Claims (10)

  1. 一種電力轉換系統,係將直流電源電路與電力調節器互相連接而成的電力轉換系統,上述電力調節器具備:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排之間;及逆變器,設於上述DC匯流排與交流電路之間,在交流半週期內係與上述第1DC/DC轉換器交替地一邊具有休止期間一邊進行開關動作;上述直流電源電路具備:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器;具有:控制部,進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
  2. 如申請專利範圍第1項之電力轉換系統,其中上述控制部係在上述第2DC/DC轉換器之高電壓側之電壓回授控制之操作量,乘上將高電壓側之電壓目標值以低電壓側之電壓檢測值除得之值而得算出之值,將依一定週期對該算出之值實施平均化而得之值確定為充放電電流目標值,而將上述第2DC/DC轉換器之高電壓側控制為一定電壓。
  3. 如申請專利範圍第2項之電力轉換系統,其中設定T為上述週期,igdc_ref為上述充放電電流目標值,ipwm_ref_pi_vdc為上述操作量, vdc_ref為上述電壓目標值,及vgdc為上述電壓檢測值之情況下,
  4. 如申請專利範圍第1項之電力轉換系統,其中上述控制部係以依交流半週期針對基於上述第1DC/DC轉換器之低電壓側之電壓回授的補償量實施平均化之值,確定為包含於上述第1DC/DC轉換器的直流電抗器之電流目標值,而將上述第1DC/DC轉換器之低電壓側控制為一定電壓。
  5. 如申請專利範圍第2或3項之電力轉換系統,其中上述電力調節器係與1或複數個太陽光發電面板同時連接之複合型電力調節器,上述第2DC/DC轉換器,係將與上述太陽光發電面板之輸出電壓之中最高的電壓一致之電壓輸出至高電壓側。
  6. 如申請專利範圍第4項之電力轉換系統,其中上述電力調節器係與1或複數個太陽光發電面板同時連接之複合型電力調節器,上述第1DC/DC轉換器,係將與上述太陽光發電面板之輸出電壓之中最高的電壓一致之電壓輸出至低電壓側。
  7. 如申請專利範圍第2、3或5項之電力轉換系統,其中上述第2DC/DC轉換器將自身之高電壓側控制為一定 電壓之情況下,上述第2DC/DC轉換器進行由上述電力調節器接收應設為一定的電壓目標值之通信。
  8. 如申請專利範圍第4或6項之電力轉換系統,其中上述第1DC/DC轉換器將自身之低電壓側控制為一定電壓之情況下,上述第1DC/DC轉換器進行對上述第2DC/DC轉換器傳送輸出電力指令值之通信。
  9. 一種電力轉換系統的控制方法,係以電力轉換系統為執行主體的控制方法,該電力轉換系統將直流電源電路與電力調節器互相連接而成,上述電力調節器具有:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排之間;及逆變器,設於上述DC匯流排與交流電路之間;上述直流電源電路具有:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器;上述第2DC/DC轉換器,係將上述蓄電池之電壓升壓至上述第1DC/DC轉換器之低電壓側之電壓,或朝其相反方向進行降壓,上述第1DC/DC轉換器與上述逆變器係在交流半週期內交替地一邊具有休止期間一邊進行開關動作,進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
  10. 一種電力轉換系統,係將直流電源電路與電力調節器互相連接而成的電力轉換系統, 上述電力調節器具備:第1DC/DC轉換器,設於上述直流電源電路與DC匯流排之間;及逆變器,設於上述DC匯流排與交流電路之間,在交流半週期內係與上述第1DC/DC轉換器交替地一邊具有休止期間一邊進行開關動作;上述直流電源電路具備:蓄電池;及雙向性之第2DC/DC轉換器,設於上述蓄電池與上述第1DC/DC轉換器之間,包含直流電抗器;又,該電力轉換系統係具有:電容器,設於上述第1DC/DC轉換器與上述第2DC/DC轉換器之間;及控制部,針對流經上述第1DC/DC轉換器的脈動的電流之中之脈動成分及直流成分,上述脈動成分由上述電容器供給,上述直流成分由上述第2DC/DC轉換器供給,依此而進行將流通於上述第2DC/DC轉換器之上述直流電抗器的電流設為一定值之控制。
TW105135744A 2016-01-18 2016-11-03 電力轉換系統及其控制方法 TWI701898B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006999A JP6558254B2 (ja) 2016-01-18 2016-01-18 電力変換システム及びその制御方法
JP2016-006999 2016-01-18

Publications (2)

Publication Number Publication Date
TW201728070A true TW201728070A (zh) 2017-08-01
TWI701898B TWI701898B (zh) 2020-08-11

Family

ID=59362665

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135744A TWI701898B (zh) 2016-01-18 2016-11-03 電力轉換系統及其控制方法

Country Status (6)

Country Link
US (1) US11139657B2 (zh)
EP (1) EP3407479A4 (zh)
JP (1) JP6558254B2 (zh)
CN (1) CN107070279B (zh)
TW (1) TWI701898B (zh)
WO (1) WO2017126175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692928B (zh) * 2018-11-28 2020-05-01 國立高雄科技大學 交錯式電力轉換器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169571B (zh) * 2016-12-07 2020-06-02 台达电子企业管理(上海)有限公司 监测直流母线电容容值的方法和装置
CN107363103B (zh) * 2017-07-10 2019-08-02 太原重工股份有限公司 芯棒限动的控制方法及控制系统
CN111149275B (zh) * 2017-09-22 2023-09-12 株式会社村田制作所 蓄电装置
CN108336795B (zh) * 2018-03-27 2024-06-18 深圳市爱克斯达电子有限公司 一种电池充电方法、电池充电电路及充电器
JP7010109B2 (ja) * 2018-03-29 2022-01-26 住友電気工業株式会社 電力変換装置、蓄電装置、及び、電力変換装置の制御方法
TWI691156B (zh) * 2018-12-22 2020-04-11 緯穎科技服務股份有限公司 電源供應系統、切換諧振轉換器以及電源供應方法
CN113228494B (zh) * 2019-01-22 2024-05-14 住友电气工业株式会社 电力转换装置及其控制方法
JP6646790B1 (ja) 2019-02-22 2020-02-14 株式会社日立製作所 直流電力ネットワークシステム並びにdc/dcコンバータ装置及びその制御方法
JP7431866B2 (ja) * 2021-07-29 2024-02-15 寧徳時代新能源科技股▲分▼有限公司 充放電装置、電池充電方法及び充放電システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2575723B2 (ja) * 1987-07-27 1997-01-29 株式会社 アマダ 板材の曲げ加工方法及び曲げ加工用金型
JPH1031525A (ja) 1996-07-15 1998-02-03 Fuji Electric Co Ltd 太陽光発電システム
JP4200244B2 (ja) * 1998-11-10 2008-12-24 パナソニック株式会社 系統連系インバータ装置
JP4550363B2 (ja) * 2001-02-16 2010-09-22 シーメンス アクチエンゲゼルシヤフト 自動車用電気システム
WO2003056694A1 (en) * 2001-12-26 2003-07-10 Toyota Jidosha Kabushiki Kaisha Electrical load apparatus, electrical load control method, and computer-readable record medium with recorded program for enabling computer to control electrical load
JP2005137142A (ja) * 2003-10-31 2005-05-26 Sumitomo Electric Ind Ltd 昇圧コンバータ及びそれを含むモータ駆動回路
TWI320626B (en) * 2006-09-12 2010-02-11 Ablerex Electronics Co Ltd Bidirectional active power conditioner
TWI337444B (en) * 2007-07-05 2011-02-11 Nat Kaohsiung First University Of Science Technology Cascade power converter
JP5586096B2 (ja) * 2011-01-17 2014-09-10 ニチコン株式会社 電力変換装置
JP5267589B2 (ja) * 2011-02-03 2013-08-21 株式会社日本自動車部品総合研究所 電力変換装置
CN202663171U (zh) * 2012-02-15 2013-01-09 西安胜唐电源有限公司 一种锂离子蓄电池化成仪
CN102723762A (zh) 2012-02-15 2012-10-10 西安胜唐电源有限公司 一种锂离子蓄电池化成电路
JP5939096B2 (ja) 2012-09-05 2016-06-22 株式会社日本自動車部品総合研究所 電力変換装置
WO2014068686A1 (ja) 2012-10-30 2014-05-08 株式会社安川電機 電力変換装置
EP2775599B1 (en) * 2013-03-04 2018-09-05 Nxp B.V. Boost converter
US9882380B2 (en) * 2013-05-17 2018-01-30 Electro Standards Laboratories For hybrid super-capacitor / battery systems in pulsed power applications
JP5618022B1 (ja) 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
JP5618023B1 (ja) 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
KR102136564B1 (ko) * 2013-10-22 2020-07-23 온세미컨덕터코리아 주식회사 전원 공급 장치 및 그 구동 방법
DE102013112077B4 (de) * 2013-11-04 2020-02-13 Sma Solar Technology Ag Verfahren zum Betrieb einer Photovoltaikanlage mit Energiespeicher und bidirektionaler Wandler für den Anschluss eines Energiespeichers
CN103973105B (zh) * 2013-12-10 2018-01-19 国家电网公司 一种大功率双向dc/dc变换器高动态性能控制方法
WO2015105081A1 (ja) * 2014-01-09 2015-07-16 住友電気工業株式会社 電力変換装置及び三相交流電源装置
JP2015142460A (ja) 2014-01-29 2015-08-03 京セラ株式会社 電力制御装置、電力制御システム、および電力制御方法
JP2015146666A (ja) * 2014-02-03 2015-08-13 オムロン株式会社 電力変換装置
JP6086085B2 (ja) * 2014-03-18 2017-03-01 株式会社安川電機 電力変換装置、発電システム、電力変換装置の制御装置および電力変換装置の制御方法
JP2015192549A (ja) 2014-03-28 2015-11-02 パナソニックIpマネジメント株式会社 電力変換装置及び電力変換方法
JP6303970B2 (ja) * 2014-10-17 2018-04-04 住友電気工業株式会社 変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692928B (zh) * 2018-11-28 2020-05-01 國立高雄科技大學 交錯式電力轉換器

Also Published As

Publication number Publication date
JP2017130991A (ja) 2017-07-27
US20180287390A1 (en) 2018-10-04
EP3407479A1 (en) 2018-11-28
CN107070279A (zh) 2017-08-18
TWI701898B (zh) 2020-08-11
US11139657B2 (en) 2021-10-05
EP3407479A4 (en) 2019-09-11
WO2017126175A1 (ja) 2017-07-27
JP6558254B2 (ja) 2019-08-14
CN107070279B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
TWI701898B (zh) 電力轉換系統及其控制方法
JP6481621B2 (ja) 電力変換装置及び三相交流電源装置
JP4776348B2 (ja) インバータ装置
JP5958531B2 (ja) インバータ装置
EP3404820B1 (en) Power conversion system and power conversion device
TWI633745B (zh) 變換裝置
JP6569839B1 (ja) 電力変換装置
WO2014199796A1 (ja) インバータ装置
KR102318326B1 (ko) 전력 변환 장치 및 3상 교류 전원 장치
JP6597258B2 (ja) 電力変換装置及び電源システム並びに電力変換装置の制御方法
WO2017061177A1 (ja) 電力変換装置及びその制御方法
US10917022B2 (en) Power conversion device and control method for power conversion device
JP6349974B2 (ja) 変換装置
JP5987192B2 (ja) 電力変換装置及び系統連系システム
CN104124884A (zh) 光伏逆变器和光伏空调系统
JP6988703B2 (ja) 電力変換装置、太陽光発電システム、及び、電力変換装置の制御方法
JP5950970B2 (ja) 電力変換装置
JP6075041B2 (ja) 変換装置
Abeywardana et al. An Interleaved Boost Inverter Based Battery-Supercapacitor Hybrid Energy Storage System with a Reduced Number of Current Sensors
CN112398359B (zh) 辅助谐振换流极变换器的控制电路、控制方法
CN206472047U (zh) 电力转换系统
JP2011188600A (ja) 充電システム

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees