CN111149275B - 蓄电装置 - Google Patents

蓄电装置 Download PDF

Info

Publication number
CN111149275B
CN111149275B CN201880061272.9A CN201880061272A CN111149275B CN 111149275 B CN111149275 B CN 111149275B CN 201880061272 A CN201880061272 A CN 201880061272A CN 111149275 B CN111149275 B CN 111149275B
Authority
CN
China
Prior art keywords
voltage
side switch
battery
voltage side
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880061272.9A
Other languages
English (en)
Other versions
CN111149275A (zh
Inventor
田川修市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN111149275A publication Critical patent/CN111149275A/zh
Application granted granted Critical
Publication of CN111149275B publication Critical patent/CN111149275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

蓄电装置具备:设为能充放电的蓄电池(5);升降压电路(2),进行升压动作和降压动作,所述升压动作生成通过对从蓄电池(5)提供的电压进行PWM控制而升压的升压电压并将该升压电压输出给高压直流总线(10),所述降压动作通过PWM控制而对从高压直流总线提供的电压进行降压并生成降压电压并将该降压电压提供给蓄电池;检测装置(6),输出对蓄电池(5)的满充电状态进行检测的检测信号X;和控制部(4),基于检测信号X的输入,将升降压电路(2)的高压侧开关(8)维持为断开状态。

Description

蓄电装置
技术领域
本发明涉及将被太阳能发电系统发电的电力蓄电于蓄电池,或者根据需要将被蓄电于蓄电池的电力提供给负载设备的蓄电装置。
背景技术
在设置于一般家庭的太阳能发电系统中,被太阳能面板发电的直流电力通过功率调节器内的逆变器而被转换为给定的交流电压并提供给家庭内的负载设备,或者提供给电力系统。
近年来提出一种蓄电装置,能够将被太阳能面板发电的直流电力蓄电于蓄电池,在必要时经由功率调节器来将蓄电于该蓄电池的电力提供给家庭内的负载设备。
该蓄电装置的被太阳能面板发电的直流电力经由功率调节器内的PV转换器而被提供给高压直流总线,通过双向转换器而被降压并向蓄电池进行充电。此外,蓄电于蓄电池的直流电力通过双向转换器而被升压并且通过平滑用电容器而被平滑并提供给高压直流总线,通过功率调节器内的逆变器而被转换为交流电压并提供给家庭内的负载设备。
作为能够经由升降压斩波器向蓄电池进行充电、或者经由升降压斩波器从蓄电池进行放电的充放电电路,已知专利文献1。
在先技术文献
专利文献
专利文献1:JP特开平7-115730号公报
发明内容
-发明要解决的课题-
在上述的蓄电装置中,在蓄电池被充电到满充电状态之后,需要将向蓄电池的充电电流可靠地切断,防止过充电导致的蓄电池的劣化。
斩波电路为了使电力变换效率提高,一般使用FET来作为开关元件。通过这样的斩波电路,在蓄电池的满充电后,为了将向蓄电池的充电电流切断,需要使构成斩波电路的FET以均等的时间交替地接通/断开,使充放电电流相互抵消。
但是,在对FET进行PWM控制的状态下,存在不能将向蓄电池的充电电流完全切断、产生过充电导致的蓄电池的劣化的问题点。
该发明鉴于这样的事情而作出,其目的在于,提供一种在蓄电池为满充电后,能够将向蓄电池的充电电流切断的蓄电装置。
-解决课题的手段-
此外,解决上述课题的蓄电装置具备:设为能充放电的蓄电池;和升降压电路,进行升压动作和降压动作,所述升压动作生成通过对从所述蓄电池提供的电压进行PWM控制而升压的升压电压并提供给高压直流总线,所述降压动作通过PWM控制来对从所述高压直流总线提供的电压进行降压并提供给所述蓄电池,所述蓄电池的特征在于,具备:检测装置,输出对蓄电池的满充电状态进行了检测的检测信号;和控制部,基于检测信号的输入,将升降压电路的高压侧开关维持为断开状态。
通过该结构,若蓄电池为满充电状态,则高压侧开关被维持为断开状态,向蓄电池的充电电流被切断。
此外,在上述的蓄电装置中,优选所述控制部在将所述高压侧开关维持为断开状态的状态下,从外部设备输入请求来自所述升降压电路的升压电压的输出的指令信号时,使所述升降压电路的动作复原为升压动作。
通过该结构,即使高压侧开关是断开状态,向控制部输入指令信号时,也从升降压电路输出升压电压。
此外,在上述的蓄电装置中,优选所述控制部在将所述高压侧开关维持为断开状态的状态下,所述高压直流总线的电压从通常电压降低时,使所述升降压电路的动作复原为升压动作。
通过该结构,即使高压侧开关是断开状态,若高压直流总线的电压从通常电压降低,则从升降压电路输出升压电压。
此外,在上述的蓄电装置中,优选所述检测信号包含检测出所述蓄电池的周围温度为给定范围外的检测信号。
通过该结构,可防止周围温度为给定范围外的蓄电池的充电。
此外,在上述的蓄电装置中,优选所述外部设备是基于太阳能面板的发电电力,向所述高压直流总线提供高压直流电压的功率调节器。
通过该结构,若从功率调节器向高压直流总线提供的电压降低,则从升降压电路输出升压电压。
此外,在上述的蓄电装置中,优选所述升降压电路具备:所述高压侧开关以及低压侧开关,在所述高压直流总线的一对端子间被串联连接;和电感器,一端连接于所述高压侧开关和低压侧开关的连接点,另一端连接于所述蓄电池的一个端子,所述高压侧开关与低压侧开关由通过所述控制部而被PWM控制的MOSFET构成,所述高压侧开关具备从所述电感器向所述高压直流总线流过所述蓄电池的放电电流的体二极管。
通过该结构,在高压侧开关被维持为断开状态时,从蓄电池经由高压侧开关的体二极管向高压直流总线流过放电电流。并且,若通过升降压电路再次开始升压动作,则从高压侧开关向高压直流总线提供升压电压。
-发明效果-
通过本发明的蓄电装置,在蓄电池为满充电之后,能够切断向蓄电池的充电电流。
附图说明
图1是表示太阳能发电系统的蓄电装置的电路图。
图2是表示蓄电装置的动作的流程图。
图3的(a)~(d)是表示升降压电路的线圈中流过的电流的波形图。
具体实施方式
以下,按照附图来对将本发明具体化的一实施方式进行说明。
图1所示的太阳能发电系统的蓄电装置具备:电池组1、升降压电路2、平滑用电容器3以及充放电控制部4。电池组1具备蓄电池5和对该蓄电池5的充放电状态进行管理的BMU(电池管理单元)6。BMU6对蓄电池5的单元电压、SOC(State of charge:充电量)、蓄电池5的周围温度等进行检测,并将各检测信号X输出给充放电控制部4。
升降压电路2由线圈7、MOSFET(metal-oxide-semiconductor field-effecttransistor,金属氧化物半导体场效应晶体管)所构成的高压侧(high side)的第一开关8、和低压侧(low side)的第二开关9构成,经由一对端子t1、t2而与高压直流总线10连接。
第一开关8与第二开关9在端子t1、t2之间被串联连接,线圈7被连接于第一开关8和第二开关9的连接点与蓄电池5的正侧端子之间。此外,蓄电池5的负侧端子经由升降压电路2而与端子t2连接。
从充放电控制部4向第一开关8以及第二开关9的栅极输入控制信号Q1、Q2。并且,通过控制信号Q1、Q2,第一开关8以及第二开关9被PWM控制,通过与线圈7的配合来进行升压动作或者降压动作。
具体而言,在升压动作时,例如300V的蓄电池5的输出电压被升压至380V,并提供给高压直流总线10。此外,在降压动作时,提供给高压直流总线10的例如380V的直流电压被降压至300V,并提供给蓄电池5。
在第二开关9的源极/漏极间存在体二极管D2,在第一开关8的源极/漏极间存在体二极管D1。体二极管D2被存在为线圈7侧为阴极,体二极管D1被存在为线圈7侧为阳极。
平滑用电容器3被连接于端子t1、t2之间,对从升降压电路2输出的升压电压进行平滑并输出至高压直流总线10。
在高压直流总线10连接功率调节器11。在功率调节器11连接太阳能面板12以及家庭内的交流负载13以及工业电力系统14。
并且,通过太阳能面板12来发电的直流电力通过功率调节器11内的PV转换器而被升压并且通过逆变器而被转换为工业交流电力,提供给家庭内的交流负载13或者工业电力系统14。此外,通过PV转换器而被升压的高压直流电压被提供给高压直流总线10。
提供给高压直流总线10的电压被电压计15检测,该检测电压V1被输出给充放电控制部4。此外,向充放电控制部4输入指令信号CS,该指令信号CS请求从功率调节器11向高压直流总线10的升压电压的提供。
充放电控制部4基于预先设定的程序来输出控制信号Q1、Q2并对第一以及第二开关8、9进行PWM控制。升降压电路2基于控制信号Q1、Q2的输入,进行升压动作或者降压动作。
此外,若从BMU6向充放电控制部4输入检测信号X,则第一开关8被断开,充电电流向蓄电池5的提供被切断。
充放电控制部4在从电压计15输入的检测电压V1降低至高压直流总线10的通常的电压、例如小于380V时,或者从功率调节器11输入指令信号CS时,使升降压电路2进行升压动作并向高压直流总线10提供升压电压。
接下来,根据图2对如上述那样构成的蓄电装置的作用进行说明。
在蓄电装置的工作时,通过充放电控制部4,升降压电路2的第一开关以及第二开关8、9根据控制信号Q1、Q2而被PWM控制并被交替接通/断开驱动。并且,进行对蓄电池5的输出电压进行升压并提供给高压直流总线10的升压动作、或者对从功率调节器11向高压直流总线10提供的高压电压进行降压并提供给蓄电池5的降压动作(步骤S1)。
接下来,基于从BMU6输出的检测信号X,判定蓄电池5的周围温度是否为预先设定的给定的温度范围内(步骤S2),在是给定的温度范围内的情况下移至步骤S3,判定蓄电池5的单元电压是否达到预先设定的上限值。
并且,在蓄电池5的周围温度为给定的温度范围内,单元电压未达到上限值的情况下,第一开关以及第二开关8、9的开关控制被继续。
若蓄电池5的周围温度为给定的温度范围外,或者单元电压达到上限值,则移至步骤S4,从充放电控制部4输出将第一开关8设为断开状态的控制信号Q1。其结果,停止充电电流向蓄电池5的提供。
例如由锂离子电池构成的蓄电池5若以周围温度为给定的温度范围外的极低温或者高温的状态进行充电,则可能产生故障。在步骤S2中,为了避免这样的故障,基于蓄电池5的周围温度,判定充电电流向蓄电池5的提供的可否。
若第一开关8被维持为断开状态,则充电电流向蓄电池5的提供被停止,但从蓄电池5经由线圈7以及第一开关8的体二极管D1流向平滑用电容器3或者高压直流总线10的放电电流是被允许的状态。因此,蓄电池5的SOC值缓慢降低。
接下来,充放电控制部4在将第一开关8维持为断开状态的状态下,基于被输入的检测信号X,继续蓄电池5的SOC值是否小于100的判定(步骤S5、S8)。
接下来,若SOC值小于100,则与步骤S2同样地,判定蓄电池5的周围温度是否为预先设定的给定的温度范围内(步骤S6),在是给定的温度范围内的情况下移至步骤S7,解除第一开关8的断开动作,复原至步骤S1。
在步骤S6中,若蓄电池5的周围温度从给定的温度范围脱离,则将第一开关8维持为断开状态并复原至步骤S5。因此,第一开关8被维持为断开状态,直到蓄电池5的SOC值小于100,并且蓄电池5的周围温度为给定的温度范围内。
此外,在步骤S8中将第一开关8维持为断开状态的状态下,若电压计15的检测电压V1降低,或者从功率调节器11输入指令信号CS,则充放电控制部4再次开始第一以及第二开关8、9的PWM控制,向高压直流总线10输出升压电压。
说明在上述的蓄电装置的动作时向蓄电池5的充电时以及放电时流向线圈7的电流。
在图3的(a)~(d)中,电流IL是升降压电路2的第一开关以及第二开关8、9被PWM控制时流向线圈7的电流,+侧的电流是从蓄电池5向升降压电路2流动的放电电流Id,-侧的电流是从升降压电路2向线圈7流动的充电电流Ic。
如图3的(a)所示,在电流IL的平均值Ave是0的情况下,充电电流Ic与放电电流Id为平衡状态,因此不向蓄电池5提供充电电流Ic,也不存在从蓄电池5流动放电电流Id的情况。
如图3的(b)所示,在电流IL的平均值Ave是+侧的情况下,放电电流Id比充电电流Ic大,因此从蓄电池5向升降压电路2流动放电电流。
如图3的(c)所示,在电流IL的平均值Ave是-侧的情况下,充电电流Ic比放电电流Id大,因此从升降压电路2向蓄电池5流动充电电流。
在图3的(c)所示的充电状态下,蓄电池5的单元电压达到上限值且第一开关8被断开时,如图3的(d)所示,充电电流Ic被切断,少量的放电电流Id被从线圈7经由第一开关8的体二极管D1提供给平滑用电容器3以及高压直流总线10。
从该状态起,蓄电池5的单元电压降低,第一开关8的开关动作被再次开始,则充电电流Ic可能作为浪涌电流而流入蓄电池5。
因此,如图3的(d)所示,使第一开关8断开动作时,控制第二开关9的开关动作以使得电流IL的平均值Ave为0附近。通过进行这样的控制,第一开关8的开关动作被再次开始时,浪涌电流向蓄电池5的流入被抑制。
此外,将使第一开关8断开动作的瞬间的电流IL的值取样/保持,在第一开关8的开关动作的再次开始时,也可以控制第一以及第二开关8、9的开关动作,以使得流过线圈7的充电电流Ic不大于被取样/保持的电流值。
在如上述那样构成的蓄电装置中,能够得到以下所示的效果。
(1)在蓄电池5的充电时,若蓄电池5的单元电压达到上限值,则将升降压电路2的第一开关8设为不导通,能够将充电电流向蓄电池5的提供切断。因此,能够防止过充电导致的蓄电池5的劣化。
(2)通过BMU6来检测蓄电池5的单元电压,能够基于该BMU6的检测信号X来将第一开关8设为不导通,因此能够可靠地防止蓄电池5的过充电。
(3)能够防止极低温或者高温下的蓄电池5的充电所导致的故障。
(4)通过将升降压电路2的第一开关8设为不导通,能够将充电电流向蓄电池5的提供可靠地切断。
(5)在将第一开关8设为不导通的状态下,高压直流总线10的电压降低时,或者请求升压电压从功率调节器11向高压直流总线10的提供的指令信号CS被输出,则能够使第一以及第二开关8、9复原为通常的PWM控制。因此,基于高压直流总线10的电压的降低、或者来自功率调节器11的指令信号CS的输入,能够立即移至来自蓄电池5的放电模式即从升降压电路2将升压电压提供给高压直流总线10的升压模式。
(6)在将第一开关8设为不导通的状态下,从蓄电池5经由线圈7以及第一开关8的体二极管D1向高压直流总线10提供放电电流。此时,在体二极管D1中,由于产生一定的正向电压降,因此产生正向电流的电流值所对应的电力消耗。因此,基于高压直流总线10的电压的降低、或者来自功率调节器11的指令信号CS的输入,立即对第一以及第二开关8、9进行PWM控制,从而能够抑制电力消耗,并且向高压直流总线10提供升压电压。
另外,上述实施方式也可以如以下那样变更。
·在图2所示的步骤S3中,也可以检测SOC值是否达到上限值。
·充放电控制部4例如也可以具备:一个以上的存储器,保存构成为实现实施方式中说明的各种控制的计算机可读命令;和一个以上的处理器,构成为执行该计算机可读命令。或者,充放电控制部4也可以是面向特定用途的IC(ASIC)等的集成电路。
-符号说明-
2...升降压电路,4...控制部(充放电控制部),5...蓄电池,6...检测装置(电池管理单元),7...电感器(线圈),8...高压侧开关(第一开关),9...低压侧开关(第二开关),10...高压直流总线,11...外部设备(功率调节器)。

Claims (7)

1.一种蓄电装置,其特征在于,具备:
设为能充放电的蓄电池;
升降压电路,进行升压动作和降压动作,所述升压动作生成通过对从所述蓄电池提供的电压进行PWM控制而升压的升压电压并提供给高压直流总线,所述降压动作生成通过对从所述高压直流总线提供的电压进行PWM控制而降压的降压电压并提供给所述蓄电池,所述升降压电路具有高压侧开关、低压侧开关以及电感器,所述高压侧开关连接于所述高压直流总线的一对端子中的高压侧,并且在向所述高压直流总线流过所述蓄电池的放电电流的方向具有体二极管,所述低压侧开关连接于所述高压侧开关和所述高压直流总线的所述一对端子中的低压侧,所述电感器的一端连接于所述高压侧开关和所述低压侧开关的连接点,另一端连接于所述蓄电池的一个端子;
检测装置,输出对所述蓄电池的满充电状态进行了检测的检测信号;和
控制部,对所述高压侧开关和所述低压侧开关进行PWM控制,
所述控制部基于所述检测信号的输入,进行将所述升降压电路的所述高压侧开关维持为断开状态并且对所述低压侧开关进行PWM控制从而从所述蓄电池经由所述高压侧开关的所述体二极管向所述高压直流总线流过所述蓄电池的放电电流的所述升压动作,
在将所述高压侧开关维持为断开状态的情况下,与对所述高压侧开关和所述低压侧开关进行PWM控制的情况相比,对所述低压侧开关进行PWM控制,使得流过所述电感器的电流的平均值接近0。
2.根据权利要求1所述的蓄电装置,其特征在于,
所述控制部在将所述高压侧开关维持为断开状态的状态下,从外部设备输入了请求来自所述升降压电路的升压电压的输出的指令信号时,使所述升降压电路的动作复原为升压动作。
3.根据权利要求1或2所述的蓄电装置,其特征在于,
所述控制部在将所述高压侧开关维持为断开状态的状态下,所述高压直流总线的电压从通常电压降低时,使所述升降压电路的动作复原为升压动作。
4.根据权利要求1所述的蓄电装置,其特征在于,
所述检测信号包含检测出所述蓄电池的周围温度为给定范围外的检测信号。
5.根据权利要求2所述的蓄电装置,其特征在于,
所述外部设备是基于太阳能面板的发电电力而向所述高压直流总线提供高压直流电压的功率调节器。
6.根据权利要求1或2所述的蓄电装置,其特征在于,
所述控制部将使所述高压侧开关断开动作的瞬间的流过所述电感器的电流的值取样/保持,在从将所述高压侧开关维持为断开状态的状态再次开始所述高压侧开关的PWM控制时,对所述高压侧开关和所述低压侧开关进行PWM控制,使得流过所述电感器的电流的值不大于被取样/保持的电流的值。
7.一种蓄电装置,具备:
设为能充放电的蓄电池;和
升降压电路,具备在高压直流总线的一对端子间被串联连接的由MOSFET构成的高压侧开关以及低压侧开关,
所述升降压电路进行升压动作和降压动作,所述升压动作生成对从所述蓄电池提供的电压进行升压的升压电压并提供给所述高压直流总线,所述降压动作生成对从所述高压直流总线提供的电压进行降压的降压电压并提供给所述蓄电池,
所述蓄电装置的特征在于,具备:
检测装置,输出对所述蓄电池的满充电状态进行了检测的检测信号;
控制部,对所述高压侧开关及所述低压侧开关执行PWM控制;和
电感器,一端连接于所述高压侧开关和低压侧开关的连接点,另一端连接于所述蓄电池的一个端子,
所述高压侧开关具备从所述电感器向所述高压直流总线流过所述蓄电池的放电电流的体二极管,
所述控制部基于所述检测信号的输入,将所述升降压电路的高压侧开关维持为断开状态,并且控制所述低压侧开关,以便放电电流流经所述高压侧开关的体二极管,
在将所述高压侧开关维持为断开状态的情况下,与对所述高压侧开关和所述低压侧开关进行PWM控制的情况相比,对所述低压侧开关进行PWM控制,使得流过所述电感器的电流的平均值接近0。
CN201880061272.9A 2017-09-22 2018-08-17 蓄电装置 Active CN111149275B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-182595 2017-09-22
JP2017182595 2017-09-22
PCT/JP2018/030468 WO2019058821A1 (ja) 2017-09-22 2018-08-17 蓄電装置

Publications (2)

Publication Number Publication Date
CN111149275A CN111149275A (zh) 2020-05-12
CN111149275B true CN111149275B (zh) 2023-09-12

Family

ID=65810388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880061272.9A Active CN111149275B (zh) 2017-09-22 2018-08-17 蓄电装置

Country Status (4)

Country Link
US (1) US11522380B2 (zh)
JP (1) JP6962379B2 (zh)
CN (1) CN111149275B (zh)
WO (1) WO2019058821A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161637A (zh) * 2021-03-03 2021-07-23 广西电网有限责任公司南宁供电局 一种铅酸电池硫酸盐化缓解方法及系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259234B1 (en) * 1998-04-15 2001-07-10 Agence Spatiale Europeenne Converter module for an electrical power supply and a system including it
CN1592064A (zh) * 2003-09-05 2005-03-09 三洋电机株式会社 电源单元及具有该单元的电源系统
CN1665114A (zh) * 2004-03-05 2005-09-07 英特赛尔美国股份有限公司 适用于具有预偏置负载的变换器的启动电路
CN101026316A (zh) * 2006-02-17 2007-08-29 新电源系统株式会社 电容器蓄电电源用充电装置和电容器蓄电电源用放电装置
CN101043151A (zh) * 2006-03-20 2007-09-26 富士通株式会社 用于控制dc-dc转换器的电路和方法
JP2009165222A (ja) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp 電力変換装置
CN202218055U (zh) * 2011-09-14 2012-05-09 华侨大学 一种离网型风光互补供电系统智能控制器
CN102577002A (zh) * 2010-10-15 2012-07-11 三洋电机株式会社 蓄电系统
JP2016046838A (ja) * 2014-08-20 2016-04-04 コーセル株式会社 スイッチング電源装置
WO2016103818A1 (ja) * 2014-12-25 2016-06-30 株式会社村田製作所 パワーコンディショナ
KR20170050014A (ko) * 2015-10-29 2017-05-11 엘에스오토모티브 주식회사 역률 보상 장치 및 이의 동작 방법
CN107070279A (zh) * 2016-01-18 2017-08-18 住友电气工业株式会社 电力转换系统及其控制方法

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737702A (en) * 1982-06-07 1988-04-12 Norand Corporation Battery charging control system particularly for hand held device
US5477132A (en) * 1992-01-10 1995-12-19 Space Systems/Loral, Inc. Multi-sectioned power converter having current-sharing controller
JPH07115730A (ja) 1993-10-15 1995-05-02 Fuji Electric Co Ltd 蓄電池の充放電回路の制御方法およびその制御器
US5557188A (en) * 1994-02-01 1996-09-17 Sun Microsystems, Inc. Smart battery system and interface
US6184660B1 (en) 1998-03-26 2001-02-06 Micro International, Ltd. High-side current-sensing smart battery charger
US6118248A (en) * 1998-04-02 2000-09-12 The Procter & Gamble Company Battery having a built-in controller to extend battery service run time
US6246220B1 (en) * 1999-09-01 2001-06-12 Intersil Corporation Synchronous-rectified DC to DC converter with improved current sensing
US6700802B2 (en) * 2000-02-14 2004-03-02 Aura Systems, Inc. Bi-directional power supply circuit
US6700214B2 (en) * 2000-02-14 2004-03-02 Aura Systems, Inc. Mobile power generation system
US6166527A (en) * 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
US6674274B2 (en) * 2001-02-08 2004-01-06 Linear Technology Corporation Multiple phase switching regulators with stage shedding
US7940016B2 (en) * 2004-08-09 2011-05-10 Railpower, Llc Regenerative braking methods for a hybrid locomotive
JP4882235B2 (ja) * 2005-01-27 2012-02-22 ミツミ電機株式会社 電池保護用モジュール
TWI320626B (en) * 2006-09-12 2010-02-11 Ablerex Electronics Co Ltd Bidirectional active power conditioner
JP4179383B2 (ja) * 2007-02-13 2008-11-12 トヨタ自動車株式会社 駆動力発生システムおよびそれを備える車両、ならびにその制御方法
US7932700B2 (en) * 2007-03-26 2011-04-26 The Gillette Company Battery with integrated voltage converter
US7671574B1 (en) * 2007-05-30 2010-03-02 National Semiconductor Corporation Ground voltage drop reduction circuit for a buck DC-DC converter
US7809517B1 (en) * 2007-09-07 2010-10-05 National Semiconductor Corporation Apparatus and method for measuring phase noise/jitter in devices under test
US7889524B2 (en) * 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
US8358107B2 (en) * 2007-12-31 2013-01-22 Intel Corporation Bidirectional power management techniques
US7990119B2 (en) * 2008-07-29 2011-08-02 Telefonaktiebolaget L M Ericsson (Publ) Multimode voltage regulator circuit
JP5361318B2 (ja) * 2008-10-06 2013-12-04 日本リライアンス株式会社 電源装置
JP5141773B2 (ja) * 2008-10-31 2013-02-13 トヨタ自動車株式会社 電動車両および電動車両の制御方法
JP5099229B2 (ja) * 2008-10-31 2012-12-19 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
EP2353919A4 (en) * 2008-10-31 2016-08-10 Toyota Motor Co Ltd ELECTRIC DRIVE SOURCE SYSTEM FOR ELECTRICALLY DRIVEN VEHICLE AND CONTROL METHOD THEREFOR
WO2010128550A1 (ja) * 2009-05-08 2010-11-11 トヨタ自動車株式会社 電源システムおよびそれを備える車両
US8723489B2 (en) * 2009-05-28 2014-05-13 Deeya Energy, Inc. Bi-directional buck-boost circuit
WO2010143280A1 (ja) * 2009-06-10 2010-12-16 トヨタ自動車株式会社 電動車両および電動車両の制御方法
US8565953B2 (en) * 2009-06-10 2013-10-22 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling the same
WO2010143279A1 (ja) * 2009-06-10 2010-12-16 トヨタ自動車株式会社 電動車両の電源システム、電動車両および電動車両の電源システムの制御方法
JP4798305B2 (ja) * 2009-06-10 2011-10-19 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
US8085005B2 (en) * 2009-06-18 2011-12-27 Micrel, Inc. Buck-boost converter with sample and hold circuit in current loop
JP5628820B2 (ja) * 2009-10-05 2014-11-19 日本碍子株式会社 制御装置、制御装置網及び制御方法
WO2011043173A1 (ja) * 2009-10-05 2011-04-14 日本碍子株式会社 制御装置、制御装置網及び制御方法
KR101084214B1 (ko) * 2009-12-03 2011-11-18 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
KR101097260B1 (ko) * 2009-12-15 2011-12-22 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
JP5189607B2 (ja) * 2010-02-04 2013-04-24 トヨタ自動車株式会社 車両用電源装置
US20120074901A1 (en) * 2010-09-27 2012-03-29 Tim Mohammed Centralized charging station
JP5223932B2 (ja) * 2011-01-19 2013-06-26 株式会社日本自動車部品総合研究所 直流電力供給装置
US8669744B1 (en) * 2011-02-15 2014-03-11 Vlt, Inc. Adaptive control of switching losses in power converters
EP3425784B1 (en) * 2011-05-05 2023-09-06 PSEMI Corporation Dc-dc converter with modular stages
US9112409B2 (en) * 2012-08-10 2015-08-18 Texas Instruments Incorporated Switched mode assisted linear regulator with dynamic buck turn-off using ZCD-controlled tub switching
US9473023B2 (en) * 2012-08-10 2016-10-18 Texas Instruments Incorporated Switched mode assisted linear regulator with seamless transition between power tracking configurations
US9276475B2 (en) * 2012-08-10 2016-03-01 Texas Instruments Incorporated Switched mode assisted linear regulator with decoupled output impedance and signal path bandwidth
WO2014033505A1 (en) * 2012-09-03 2014-03-06 Robert Bosch (Sea) Pte. Ltd. Topology and control strategy for hybrid storage systems
US9118193B2 (en) * 2012-10-10 2015-08-25 Ming-Hsiang Yeh Bidirectional wireless charging/discharging device for portable electronic device
US20150073632A1 (en) * 2013-03-12 2015-03-12 Nicholas Hill Tri-hybrid automotive power plant
JP6148882B2 (ja) * 2013-03-13 2017-06-14 株式会社マキタ バッテリパック及び充電器
US9548619B2 (en) * 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10374447B2 (en) * 2013-03-14 2019-08-06 Infineon Technologies Austria Ag Power converter circuit including at least one battery
US20190218894A9 (en) * 2013-03-15 2019-07-18 Fastcap Systems Corporation Power system for downhole toolstring
US9882380B2 (en) * 2013-05-17 2018-01-30 Electro Standards Laboratories For hybrid super-capacitor / battery systems in pulsed power applications
US10333319B2 (en) * 2013-05-17 2019-06-25 Electro Standards Laboratories Hybrid super-capacitor / rechargeable battery system
US9634512B1 (en) * 2013-12-03 2017-04-25 Google Inc. Battery backup with bi-directional converter
US9620975B2 (en) * 2014-01-20 2017-04-11 Nokia Technologies Oy Methods and apparatus for battery characteristic conversion
WO2015132625A1 (en) * 2014-03-03 2015-09-11 Robert Bosch (Sea) Pte. Ltd. Topology and control strategy for hybrid storage systems
CN106170904A (zh) * 2014-03-03 2016-11-30 罗伯特·博世有限公司 混合存储系统
WO2015132631A1 (en) * 2014-03-06 2015-09-11 Robert Bosch (Sea) Pte. Ltd. An improved hybrid storage system
US10056858B2 (en) * 2014-09-17 2018-08-21 Arm Limited Motor driver and a method of operating thereof
US9831781B2 (en) * 2015-02-20 2017-11-28 Linear Technology Corporation Fast transient power supply with a separated high frequency and low frequency path signals
US9796277B2 (en) * 2015-02-27 2017-10-24 GM Global Technology Operations LLC Electric bike extended range battery power electronics and control
US9812879B2 (en) * 2015-07-21 2017-11-07 John Russell Gravett Battery thermal monitoring system
US10270275B2 (en) * 2015-08-27 2019-04-23 General Electric Company Systems and methods for controlling energy storage systems having multiple battery types
US10771001B2 (en) * 2015-09-11 2020-09-08 Invertedpower Pty Ltd Controller for an inductive load having one or more inductive windings
US20170072812A1 (en) * 2015-09-16 2017-03-16 Qualcomm Incorporated Battery Management Systems for Autonomous Vehicles
US20170170732A1 (en) * 2015-12-15 2017-06-15 Neofocal Systems, Inc. System and method for zero voltage switching and switch capacator modulation
WO2017119214A1 (ja) * 2016-01-08 2017-07-13 株式会社村田製作所 電力変換装置
US10050559B2 (en) * 2016-01-20 2018-08-14 Linear Technology Llc Control architecture with improved transient response
US10326296B2 (en) * 2016-02-01 2019-06-18 Qualcomm Incorporated Dual-phase operation for concurrently charging a battery and powering a peripheral device
US9882476B2 (en) * 2016-05-31 2018-01-30 Infineon Tehnologies Austria AG Method and apparatus for phase current estimation in semi-resonant voltage converters
KR20180017339A (ko) * 2016-08-09 2018-02-21 삼성전자주식회사 전원 관리 집적 회로를 포함하는 전자 장치
JP6677186B2 (ja) * 2017-01-26 2020-04-08 株式会社村田製作所 直流給電システム
US10439404B2 (en) * 2017-04-13 2019-10-08 Microsoft Technology Licensing, Llc Hybrid battery pack including bi-directional charge regulator
CN111095713B (zh) * 2017-09-15 2023-05-23 株式会社村田制作所 蓄电装置用升降压装置以及蓄电装置
CN109683104A (zh) * 2017-10-12 2019-04-26 本田技研工业株式会社 电池状态推定方法以及电池状态推定装置
CN111226364B (zh) * 2017-10-17 2022-06-28 株式会社村田制作所 电源装置、电力控制装置、电源装置的继电器判定方法
WO2019097926A1 (ja) * 2017-11-16 2019-05-23 株式会社村田製作所 蓄電モジュールおよび電源システム
CN107947578B (zh) * 2017-12-04 2020-09-15 成都芯源系统有限公司 一种应用于升降压电路的电流采样电路及其控制方法
US10014778B1 (en) * 2018-01-12 2018-07-03 BravoTek Electronics Co., Ltd. SIBO buck-boost converter and control method thereof
EP3530516B1 (en) * 2018-02-23 2022-07-06 Ningbo Geely Automobile Research & Development Co. Ltd. Electrical battery system
JP6649418B2 (ja) * 2018-02-26 2020-02-19 ファナック株式会社 蓄電装置を有するモータ駆動システム
US20200070806A1 (en) * 2018-08-31 2020-03-05 N4 Innovations, Llc Vehicle Power Control System

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259234B1 (en) * 1998-04-15 2001-07-10 Agence Spatiale Europeenne Converter module for an electrical power supply and a system including it
CN1592064A (zh) * 2003-09-05 2005-03-09 三洋电机株式会社 电源单元及具有该单元的电源系统
CN1665114A (zh) * 2004-03-05 2005-09-07 英特赛尔美国股份有限公司 适用于具有预偏置负载的变换器的启动电路
CN101026316A (zh) * 2006-02-17 2007-08-29 新电源系统株式会社 电容器蓄电电源用充电装置和电容器蓄电电源用放电装置
CN101043151A (zh) * 2006-03-20 2007-09-26 富士通株式会社 用于控制dc-dc转换器的电路和方法
JP2009165222A (ja) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp 電力変換装置
CN102577002A (zh) * 2010-10-15 2012-07-11 三洋电机株式会社 蓄电系统
CN202218055U (zh) * 2011-09-14 2012-05-09 华侨大学 一种离网型风光互补供电系统智能控制器
JP2016046838A (ja) * 2014-08-20 2016-04-04 コーセル株式会社 スイッチング電源装置
WO2016103818A1 (ja) * 2014-12-25 2016-06-30 株式会社村田製作所 パワーコンディショナ
KR20170050014A (ko) * 2015-10-29 2017-05-11 엘에스오토모티브 주식회사 역률 보상 장치 및 이의 동작 방법
CN107070279A (zh) * 2016-01-18 2017-08-18 住友电气工业株式会社 电力转换系统及其控制方法

Also Published As

Publication number Publication date
JPWO2019058821A1 (ja) 2020-10-15
JP6962379B2 (ja) 2021-11-05
US11522380B2 (en) 2022-12-06
WO2019058821A1 (ja) 2019-03-28
US20200220370A1 (en) 2020-07-09
CN111149275A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN111226364B (zh) 电源装置、电力控制装置、电源装置的继电器判定方法
US11338689B2 (en) System and method for controlling vehicle including solar cell
KR20120056874A (ko) 무정전 전원 장치
JP6849076B2 (ja) 太陽光発電システム、パワーコンディショナ
WO2011148908A1 (ja) 太陽電池システム
JP5284447B2 (ja) 分散電源システム
JP2017126477A (ja) 燃料電池システム及びその制御方法
JP2018170930A (ja) 電力変換装置、電力変換システム
JP2015192525A (ja) Dc/dcコンバータおよびバッテリシステム
US10826318B2 (en) Voltage increasing and decreasing device for power storage apparatus and power storage apparatus
US9472980B2 (en) Integrated buck/boost battery management for power storage and delivery
KR20160122543A (ko) 하이브리드 차량의 직류변환장치 제어 시스템 및 방법
CN111149275B (zh) 蓄电装置
US10263446B2 (en) Battery control circuit for power generation system using renewable energy
CN109130858B (zh) 一种电动汽车的直流/直流变换器启动控制电路及汽车
JP2008035573A (ja) 電気二重層コンデンサを用いた蓄電装置
JP2021027749A (ja) 充放電制御装置およびそれを備えたバッテリ並びに直流給電システム
JP7264023B2 (ja) ソーラー充電制御装置
CN215835191U (zh) 一种直流不间断电源
US20230147151A1 (en) Charging Apparatus and Method Using Auxiliary Battery
US20230253815A1 (en) Battery charge/discharge testing device and battery discharge power control method
JP7115086B2 (ja) 直流電源回路、太陽光発電システム、及び、直流電源回路の制御方法
CN116349125A (zh) 电压转换电路的控制方法、装置及电子设备
JP2023082913A (ja) 充放電装置、蓄電システム、及び、充放電制御方法
JP2021083249A (ja) ソーラー充電システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant