TW201619204A - α-烯烴低聚合物之製造方法及製造裝置 - Google Patents

α-烯烴低聚合物之製造方法及製造裝置 Download PDF

Info

Publication number
TW201619204A
TW201619204A TW104131257A TW104131257A TW201619204A TW 201619204 A TW201619204 A TW 201619204A TW 104131257 A TW104131257 A TW 104131257A TW 104131257 A TW104131257 A TW 104131257A TW 201619204 A TW201619204 A TW 201619204A
Authority
TW
Taiwan
Prior art keywords
reactor
olefin
producing
low polymer
gas
Prior art date
Application number
TW104131257A
Other languages
English (en)
Other versions
TWI654210B (zh
Inventor
Hiroki Emoto
Original Assignee
Mitsubishi Chem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chem Corp filed Critical Mitsubishi Chem Corp
Publication of TW201619204A publication Critical patent/TW201619204A/zh
Application granted granted Critical
Publication of TWI654210B publication Critical patent/TWI654210B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/107Alkenes with six carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本發明係關於α-烯烴低聚合物之製造方法、及α-烯烴低聚合物之製造裝置。該α-烯烴低聚合物之製造方法係在反應器內,於觸媒存在下,在反應溶劑中施行α-烯烴的低聚合反應而製造α-烯烴低聚合物之方法中,將該反應器內的氣相部氣體的一部分導入熱交換器並冷卻而獲得的冷凝液,循環供應給該反應器的α-烯烴低聚合物之製造方法;其中,使該反應器中循環供應的該冷凝液,分散於該反應器內的氣相部。

Description

α-烯烴低聚合物之製造方法及製造裝置
本發明係關於α-烯烴低聚合物之製造方法及製造裝置。
以乙烯等α-烯烴作為原料的α-烯烴低聚合物之製造,由於該低聚合反應係屬於放熱反應,因而一邊冷卻反應系統一邊進行。所以,針對能一邊除去反應器內所產生的反應熱,一邊連續地製造α-烯烴低聚合物的工業性方法進行各種檢討。
例如專利文獻1及2記載有:將乙烯在觸媒存在下施行寡聚化,而製造平均分子量50至350之α-烯烴寡聚物的方法,其中,將反應器內的氣相氣體使用作為冷媒,在不會直接接觸液相的熱交換器中,冷卻反應器內的氣相氣體之一部分,再使用冷凝的液體除去聚合熱而防止熱交換器遭髒污。
專利文獻3所記載的α-烯烴低聚合物之製造方法,係將反應器內的氣體導入於熱交換器,並將從該熱交換器出口獲得的冷凝液及該氣體循環於該反應器中的方法,為抑制氣相部出現反應液的霧沫夾帶現象,便將反應器內的氣相部之氣體線性速度控制於既定範圍內。
專利文獻4記載有:在反應器內,於有機溶劑與均相觸媒存在下,將乙烯施行寡聚化而製造1-己烯等α-烯烴低聚合物 時,使用丙烯等冷卻劑將反應器的塔頂予以冷卻的方法,為提升內部冷卻循環,便利用冷凝器將反應器的塔頂溫度設為約15℃~約20℃。
專利文獻5記載有:在將烴施行寡聚化時,從反應器液相的底部供應液化烴(α-烯烴);專利文獻6記載有:從反應器液相的底部供應液化烴及經液化的蒸發性冷媒。
[先前技術文獻] [專利文獻]
專利文獻1:日本專利特表2006-500411號公報
專利文獻2:日本專利特表2006-500412號公報
專利文獻3:日本專利特開2009-120588號公報
專利文獻4:日本專利特表2009-503155號公報
專利文獻5:國際公開第09/060342號
專利文獻6:國際公開第09/060343號
在以乙烯等α-烯烴作為原料而獲得α-烯烴低聚合物的α-烯烴之低聚合反應中,冷卻反應系統的方法係從反應器脫除副產聚合物或去活觸媒等髒污物質極微量的反應器內之氣相氣體,再利用熱交換器(冷凝器)施行冷卻冷凝,並使冷凝液及非冷凝氣體循環於反應器中的方法,從防止熱交換器污染之觀點係屬較佳。又,此時,非冷凝氣體較佳係供應給反應器的液相部底部。
但是,該方法在反應器內的氣液界面處,因聚合熱而 氣化的氣體氣泡、或因該氣化氣體與非冷凝氣體的氣泡破裂,導致在反應器內的氣相部產生反應液的霧靄。該霧靄會因霧沫夾帶而與氣體一起被反應器中脫除並到達熱交換器,而導致熱交換器的冷卻熱傳面,特別係入口部髒污,致使阻礙長期安定運轉。
若熱交換器遭污染便會阻礙熱交換效率,且通氣阻力會上升,明顯的情況會造成無法持續運轉。所以,產生必需定期性、或視需要停止運轉並清洗熱交換器,造成無法持續運轉。
本發明係為解決上述α-烯烴低聚合物之製造步驟中的問題而完成。
即,本發明課題所提供的α-烯烴低聚合物之製造方法及製造裝置,係在利用α-烯烴之低聚合反應而進行α-烯烴低聚合物之製造時,脫除反應器內的氣相氣體並利用熱交換器冷卻,再將所獲得冷凝液與非冷凝氣體循環供應於反應器並排熱的α-烯烴低聚合物之製造方法及製造裝置,可防止在反應器的氣相部所生成反應液的霧靄,因霧沫夾帶而與氣體一起到達熱交換器造成熱交換器遭污染的情形,藉此便可長期安定運轉。
本發明者為解決上述問題經深入鑽研,結果發現藉由在反應器的氣相部將實質未含髒污物質的液體形成液滴並使分散,利用該液滴捕捉反應液的霧靄,便可防止該霧靄一起與氣相部的氣體被從反應器中排出,其結果便可防止熱交換器遭污染,俾可長期安定運轉。又,發現該實質未含髒污物質的液體較佳係從由熱交換器所獲得冷凝液及/或反應生成液分離回收的反應溶劑。
即、本發明主旨係如以下[1]~[14]。
[1]一種α-烯烴低聚合物之製造方法,係在反應器內,於觸媒存在下,在反應溶劑中施行α-烯烴的低聚合反應而製造α-烯烴低聚合物之方法中,將該反應器內的氣相部氣體的一部分導入熱交換器並冷卻而獲得的冷凝液,循環供應給該反應器的α-烯烴低聚合物之製造方法;其中,使該反應器中循環供應的該冷凝液,分散於該反應器內的氣相部。
[2]如[1]所記載的α-烯烴低聚合物之製造方法,其中,上述熱交換器係設於上述反應器的外部。
[3]如[1]或[2]所記載的α-烯烴低聚合物之製造方法,其中,上述冷凝液係形成液滴並使之分散。
[4]如[1]至[3]中任一項所記載的α-烯烴低聚合物之製造方法,其中,上述冷凝液係利用噴霧器形成液滴並使之分散。
[5]如[4]所記載的α-烯烴低聚合物之製造方法,其中,上述噴霧器方式係從包含離心力方式、剪切力方式及壓力方式之群組中選擇1種以上的方式。
[6]如[1]至[5]中任一項所記載的α-烯烴低聚合物之製造方法,其中,上述反應器的氣相部之氣體出口溫度係較該反應器的液相溫度低8℃以上。
[7]如[1]至[5]中任一項所記載的α-烯烴低聚合物之製造方法,其中,上述熱交換器的入口溫度係較該反應器的液相溫度低8℃以上。
[8]如[1]至[7]中任一項所記載的α-烯烴低聚合物之製造方法, 其中,由上述熱交換器獲得的非冷凝氣體係循環供應給上述反應器的液相部。
[9]如[1]至[8]中任一項所記載的α-烯烴低聚合物之製造方法,其中,上述觸媒係由含鉻化合物、含氮化合物(b)、及含鋁化合物(c)的組合構成。
[10]如[9]所記載的α-烯烴低聚合物之製造方法,其中,上述觸媒係更進一步含有含鹵化合物(d)。
[11]如[1]至[10]中任一項所記載的α-烯烴低聚合物之製造方法,其中,上述α-烯烴係乙烯。
[12]一種α-烯烴低聚合物之製造裝置,係施行α-烯烴之低聚合反應,而製造α-烯烴低聚合物的裝置,其具備有:反應器、熱交換器、循環供應手段、及液滴分散手段;該反應器係供應觸媒、α-烯烴及反應溶劑,施行α-烯烴之低聚合反應;該熱交換器係將從該反應器內的氣相部脫除之氣體予以冷卻而獲得冷凝液;該循環供應手段係將由該熱交換器獲得的冷凝液,循環供應給該反應器;該液滴分散手段係使來自該循環供應手段的冷凝液、及來自該第2循環供應手段的反應溶劑之至少一者,分散於該反應器內的氣相部中。
[13]如[12]所記載的α-烯烴低聚合物之製造裝置,其中,上述液滴分散手段係在上述反應器內的氣相部中所設置之噴霧器。
[14]一種α-烯烴低聚合物之製造方法,係在反應器內,於觸媒存在下,在反應溶劑中施行α-烯烴之低聚合反應而製造α-烯烴低聚合物的方法;其中,將該反應器內的氣相部氣體之至少一部分導入於該反應器外的熱交換器並冷卻時,該反應器內的氣相部出口溫度較該反應器的 液相溫度低8℃以上。
根據本發明,在α-烯烴低聚合物之製造程序中,可防止將反應器的氣相部氣體予以冷卻的熱交換器遭污染,俾能長期安定運轉。
10‧‧‧反應器
10a‧‧‧攪拌機
10b‧‧‧噴霧器
11a‧‧‧去活劑供應管
12‧‧‧第1供應管
12a‧‧‧乙烯供應管
13‧‧‧第2供應管
13a、13b‧‧‧觸媒供應管
13c‧‧‧泵
14‧‧‧第3供應管
20‧‧‧脫氣槽
20A‧‧‧冷凝器
21、31‧‧‧循環配管
22、32、41、42、51、111、112、113、114、115‧‧‧配管
30‧‧‧乙烯分離塔
40‧‧‧高沸物分離塔
50‧‧‧己烯分離塔
52‧‧‧溶劑循環配管
60‧‧‧壓縮機
100‧‧‧回流冷凝系統
110‧‧‧熱交換器
120‧‧‧氣液分離器
130‧‧‧鼓風機
圖1係表示本發明α-烯烴低聚合物之製造方法及製造裝置之一形態的程序流程圖。
以下針對本發明實施形態進行詳細說明。又,本發明並不侷限於以下實施形態,在其主旨範圍內可實施各種變化。又,所使用的圖式係用於說明本實施形態,並非表示實際大小。
[α-烯烴低聚合物之製造步驟]
首先,參照表示本發明α-烯烴低聚合物之製造方法及製造裝置之一態樣的圖1,針對本發明所採行的α-烯烴低聚合物之製造步驟進行說明。關於本發明原料α-烯烴、觸媒及反應溶劑等,容後述。
以下說明中,主要係舉以α-烯烴之乙烯作為原料的1-己烯(乙烯三聚體)之製造為例說明本發明,惟本發明並不僅侷限於從乙烯進行1-己烯之製造。
圖1所示裝置的主要裝置係設有:使乙烯在鉻系觸媒等觸媒存在下進行低聚合反應的完全混合攪拌型反應器10、以及使反應器10內的乙烯氣體及從液相氣化的蒸氣成分冷卻冷凝之回流 冷凝系統100。
又,具備有:脫氣槽20、乙烯分離塔30、高沸物分離塔40、及己烯分離塔50。該脫氣槽20係從反應器10脫除的反應生成液中,分離出未反應乙烯氣體。該乙烯分離塔30係使從脫氣槽20脫除的反應生成液中之乙烯餾出。該高沸物分離塔40係從乙烯分離塔30脫除的反應生成液中,分離出高沸點物質(以下稱「HB(高沸點化合物)」)。該己烯分離塔50係將從高沸物分離塔40的塔頂脫除之餾出液施行蒸餾,而餾出1-己烯。
圖1所示裝置中,從乙烯供應管12a經由壓縮機60及第1供應管12,朝反應器10連續地供應原料乙烯。在脫氣槽20及冷凝器20A中被分離的未反應乙烯,經由循環配管21導入於該壓縮機60中,且經由循環配管31導入在乙烯分離塔30中被分離出的乙烯,再與來自乙烯供應管12a的乙烯一起作為原料乙烯循環於反應器10中。
另一方面,從第2供應管13將在乙烯之低聚合反應時所使用的反應溶劑供應給反應器10。該反應溶劑係在後段的己烯分離塔50中被分離回收。在該第2供應管13中,經由觸媒供應管13a供應觸媒成分中之含過渡金屬化合物(a)及含氮化合物(b),且經由觸媒供應管13b供應含鹵化合物(d),再與反應溶劑一起導入於反應器10中。
再者,從第3供應管14將含鋁化合物(c)直接導入於反應器10。含鋁化合物(c)亦可在從觸媒供應管13a及13b供應觸媒成分前,先利用第2供應管13的反應溶劑稀釋後,才供應給反應器10(未圖示)。該等觸媒成分較佳係供應給反應器10內的液相 部。
另外,在將來自己烯分離塔50的反應溶劑循環供應給反應器10時,亦可將從觸媒供應管13a與13b供應觸媒成分前的第2供應管13之反應溶劑之至少一部分,形成液滴並分散供應給反應器10的氣相部。供應態樣係可採用與來自後述熱交換器110的冷凝液為同樣態樣。
反應器10係可舉例如:攪拌機10a、附設有導流板或夾套等習知周知之形式物。攪拌機10a係使用槳輪、三葉後掠槳(Pfaudler)、螺槳或渦輪等形式之攪拌翼,其可與平板、圓筒或髮夾式線圈等導流板組合而使用。
圖1中,在反應器10中設有噴霧器10b。該噴霧器10b係用於使來自回流冷凝系統100的冷凝液形成液滴並分散於反應器10內的氣相部中。
所謂「分散」係指經由配管等供應給反應器之氣相部的液體,分為複數液滴並呈散落狀態或散佈。
圖1中,虛線L係表示氣液界面。
回流冷凝系統100係具備有:熱交換器110、氣液分離器120及鼓風機130。該熱交換器110係經由配管111導入被導入於反應器10液相中的乙烯氣體、及來自液相的氣化蒸氣,並將其冷卻冷凝。該氣液分離器120係經由配管112導入由熱交換器110獲得的冷凝液及非冷凝氣體成分之一部分,並將其分離為冷凝液與氣體成分。該鼓風機130係經由配管113、第1供應管12,將在氣液分離器120中分離的氣體成分,導入於反應器10之液相中。
由熱交換器110獲得的冷凝液、及在氣液分離器120 中被分離的冷凝液,分別經由配管114、115,循環供應給在反應器10內的氣相部中所設置之噴霧器10b(圖1所示係旋轉圓盤噴霧式噴霧器),並形成液滴且分散。
反應器10的運轉條件,反應溫度(液相溫度的實測值)係50℃~250℃、較佳係100℃~200℃、更佳係120℃~170℃。又,反應壓力通常係常壓~250kg/cm2(24.5MPa)、較佳係5~150kg/cm2(0.49~14.7MPa)、更佳係10~100kg/cm2(0.98~9.8MPa)的範圍。
乙烯的三聚化反應較佳係依反應器10內的反應液中,1-己烯相對於乙烯的莫耳比[(反應液中之1-己烯)/(反應液中之乙烯)]較佳為0.05~1.5、更佳為0.10~1.0的方式實施。
所以,在連續反應的情況,較佳係依反應液中的乙烯與1-己烯之莫耳比成為上述範圍的方式,調節觸媒濃度、反應壓力或其他條件;在批次反應的情況,較佳係在莫耳比成為上述範圍的時點停止反應。依此,可抑制副產較1-己烯高沸點的成分,有更加提高1-己烯選擇率的傾向。
再者,反應器10內的氣相部之氣體線性速度較佳係0.1cm/s~10.0cm/s、更佳係0.3cm/s~5.0cm/s、特佳係0.5cm/s~3.0cm/s。
藉由將反應器10的氣相部之氣體線性速度控制於上述範圍內,當將反應器10內的乙烯氣體、及由液相氣化的蒸氣成分送入熱交換器110時,可抑制反應液之霧沫夾帶的傾向。
另外,反應器的氣相部之氣體出口溫度較佳係較反應器10的液相溫度低8℃以上、更佳係低10℃以上、特佳係低10~40 ℃、最佳係低15~35℃。
藉由反應器的氣相部之氣體出口溫度較液相溫度低8℃以上,便會以反應液的霧靄為核,從氣相部的氣體生成冷凝液,因而霧靄直徑變大,容易在反應器的氣相部進行氣液分離,而有減少反應器的氣相部出口氣體中之反應液霧靄數的傾向。
但,上述反應器的氣相部之氣體出口溫度並無必要過度降低。理由係必需增大熱交換器110的冷卻傳熱面、及/或必需將冷媒變更為由水液化的蒸發性冷媒等,涉及建置費增加的緣故所致。
另外,當上述反應器的氣相部之氣體出口溫度係與上述熱交換器的入口溫度同等之情況,亦可利用上述熱交換器的入口溫度測定。理由係供應給上述熱交換器的蒸氣溫度較佳係較反應器10的液相溫度低8℃以上、更佳係低10℃以上、特佳係低10~40℃、最佳係低15~35℃。
利用反應器10內的噴霧器10b分散之液滴直徑、及形成液滴並分散供應的方法並無特別的限定,較佳係以下態樣。
在反應器的氣相部所存在之構件中產生的冷凝物,在未經由任何分散手段,而自然地呈棒狀掉落的情況,並非本發明的效果。理由係無法捕捉反應液的霧靄,亦無法使反應器的氣相部之氣體出口溫度降低。
上述液滴直徑通常係0.05~5mm、較佳係0.1~3mm、更佳係0.3~2mm、特佳係0.5~1.5mm。若液滴直徑過小,則液滴不會掉落至反應器的液相部,而會與反應器10的氣相部氣體進行霧沫夾帶,因而會污染熱交換器110,且會造成熱交換器110的液體 負荷過度提高,會有運轉困難的傾向。若液滴直徑過大,則液滴數相對地變少,總液滴的總表面積變小,因而會有反應液的霧靄捕捉效果變小之傾向。
使液滴分散的方法並無特別的限定,如圖1所示較佳係使用噴霧器10b。噴霧器方式並無特別的限定,較佳係離心力方式、剪切力方式、或壓力方式等。該等之中,從液滴分散效率的觀點,更佳係離心力方式。
離心力方式更佳係旋轉圓盤噴霧方式。又,壓力方式更佳係噴嘴噴霧方式。
旋轉圓盤噴霧方式的噴霧器10b,係朝旋轉的圓盤中心部供應液體,利用離心力在圓盤外周部施行液體的微粒化。旋轉圓盤噴霧方式噴霧器10b的情況,噴霧器10b、的旋轉圓盤直徑相對於反應器10的直徑之比率,通常係0.1~0.8、較佳係0.2~0.6、更佳係0.3~0.5。
在旋轉圓盤中,亦可沿其半徑方向設置複數堰,藉此便可有效率地施行液滴化。
噴嘴噴霧方式係有:(1)加壓噴嘴、(2)二流體噴嘴、及(3)加壓二流體噴嘴等3種方式。
加壓噴嘴噴霧方式時,經加壓的液體會被導入於通稱為核心的迴轉室中,然後經賦予迴轉力的液體會通過銳孔板形成膜狀而微粒化。
二流體噴嘴噴霧方式時,使液體接觸於壓縮氣體,藉由剪切而施行微粒化。
加壓二流體噴嘴噴霧方式時,活用前述2種噴嘴特徵 的方式,在中心部設置加壓噴嘴,且從其周圍流入低壓輔助氣體便可促進微粒化。
此種噴霧器10b在反應器10內的氣相部中,通常設置於較氣液界面L更靠上方0.3~3m左右、較佳係0.5~2m左右處。
再者,供應給噴霧器的液量相對於從反應器氣液界面部上升的氣體量,依體積比計,較佳係1~50%、更佳係2~30%、特佳係4~20%。若該供應液量過少,便會有難以捕捉反應液霧靄的傾向;若液量過多,則會因液滴彼此間的融合而導致液滴直徑變更大,故無效率可言。
熱交換器110通常係使用被冷凝流體冷卻時所採用的多管式直立式或臥式熱交換器。該等已知係一般的回流冷凝器,本實施形態較佳係使用直立式的多管式熱交換器。
構成熱交換器110的材料並無特別的限定,可舉例如:通常眾所周知構成回流冷凝器之材料的碳鋼、鋼、鈦合金、SUS304、SUS316及SUS316L等,可配合製程再行適當選擇。又,熱交換器110的熱傳面積係配合排熱負載程度、負荷控制方式等再行適當決定。
回流冷凝系統100的作用係如下。
被導入於反應器10內之液相部中的乙烯氣體、與因反應器10內的乙烯之低聚合反應所生成之聚合熱而導致部分液相氣化的氣化蒸氣之混合氣體,係利用配管111供應給熱交換器110。
上述配管111為防止因配管內表面上所附著反應液之霧靄肇因生成的聚乙烯,導致配管阻塞情形,較佳係採行絕熱保溫、或積極地使配管內表面上積極地生成冷凝液,且為防止反應液 附著霧靄,較佳係採用雙層管等冷卻配管。
供應給熱交換器110的混合氣體利用冷卻水(未圖示),冷卻冷凝至通常為30~100℃、較佳為45~95℃、更佳為55~90℃,冷凝液利用配管114再度循環供應給反應器10。
再者,從熱交換器110所獲得非冷凝氣體與與冷凝液之一部分,係利用配管112輸送給氣液分離器120,並在氣液分離器120中分離為乙烯與冷凝液,乙烯係利用鼓風機130經由配管113及第1供應管12循環供應給反應器10的液相部。又,冷凝液係經由配管115循環供應給反應器10。
在此,由熱交換器110獲得的冷凝液、及在氣液分離器120中被分離的冷凝液,分別經由配管114、115被導入於反應器10的氣相中所配設之噴霧器10b(圖1係記載旋轉圓盤噴霧方式),而微粒化。經微粒化的冷凝液在反應器10的氣相部中形成液滴並分散,一邊與上升氣體進行逆流接觸一邊掉落於液面。依此藉由將冷凝液循環供應給反應器10的氣相部並形成液滴且分散,便可抑制熱交換器110上附著副產物聚合物等污染物質。
此項理由可推定如以下(1)與(2)。
(1)在反應器10內,藉由反應液的氣化而生成的氣體中,存在有含觸媒成分或乙烯的霧靄。藉由該霧靄在反應器10內的氣相部中,與冷凝液的液滴接觸,而被吸收於冷凝液的液滴中,然後再與冷凝液的液滴一起掉落於反應液的液面。
(2)藉由經微細化的低溫冷凝液液滴,在反應器10內的氣相部中,接觸到高溫的上升氣體,而冷卻高溫氣體,便從氣體中生成冷凝液。由於此時的冷凝係以反應液的霧靄作為核而引發,因而霧靄 直徑增加,經增加直徑的霧靄在未伴同氣體的情況下掉落於反應液的液面。
藉由上述(1)、(2),可防止在反應器的氣相部所生成反應液之霧靄,因霧沫夾帶而與氣體一起到達熱交換器導致熱交換器遭污染的情形。
另外,利用後段的己烯分離塔50從反應生成液分離出的反應溶劑,藉由其前段的分離蒸餾而幾乎未含髒污物質,因而即便在反應器10的氣相部中,分散利用己烯分離塔50分離回收的反應溶劑之液滴,同樣地仍可抑制熱交換器110上附著副產物聚合物等。
依此,由於本發明可防止熱交換器110遭污染,因而可長期間持續安定地運轉,但當熱交換器110上附著副產物聚合物等髒污物質而逐漸污染的情況,便停止運轉並清洗熱交換器110。
此情況,洗淨液通常係使用從反應器10出口所獲得反應生成液中,施行分離而獲得的反應溶劑。洗淨液的溫度通常係110℃以上、較佳係115~170℃。又,洗淨時的壓力越低越好,通常係71kg/cm2(7.0MPa)以下、較佳係31kg/cm2(3.0MPa)以下、更佳係10kg/cm2(0.98MPa)以下。洗淨液係使用噴霧嘴供應給熱交換器110的內部,並洗淨因反應液的霧沫夾帶影響而受髒污的熱交換器110內部。根據本發明可大幅降低此種熱交換器110的洗淨頻度。
反應器10中已達既定轉化率的反應生成液,係從反應器10的底部經由配管11連續地被脫除,並供應給脫氣槽20。此時,利用從去活劑供應管11a供應的2-乙基己醇等觸媒去活劑,停止乙烯的三聚化反應。經利用脫氣槽20脫氣的未反應乙烯,從脫 氣槽20的上部,經由熱交換器20A、循環配管21、壓縮機60及第1供應管12,循環供應給反應器10。又,經脫氣未反應乙烯的反應生成液被從脫氣槽20的槽底脫除。
脫氣槽20的運轉條件,溫度通常係30℃~240℃、較佳係80℃~190℃,壓力通常係常壓~150kg/cm2(14.7MPa)、較佳係常壓~90kg/cm2(8.8MPa)。
從脫氣槽20的槽底脫除之反應生成液,經由配管22供應給乙烯分離塔30。在乙烯分離塔30中,利用蒸餾從塔頂部餾出分離乙烯,該乙烯經由循環配管31與第1供應管12循環供應給反應器10。又,從塔底部脫除經除去乙烯的反應生成液。
乙烯分離塔30的運轉條件,塔頂部壓力通常係常壓~30kg/cm2(0.1~2.9MPa)、較佳係常壓~20kg/cm2(0.1~2.0MPa),又,回流比(R/D)通常係0~500、較佳係0.1~100。
在乙烯分離塔30經餾出分離乙烯的反應生成液,被從乙烯分離塔30的塔底部脫除,並利用配管32供應給高沸物分離塔40。在高沸物分離塔40中利用蒸餾,從塔底部經由配管42脫除高沸點成分(HB:高沸點化合物)。又,從塔頂部經由配管41脫除經分離出高沸點成分的餾出物。
高沸物分離塔40的運轉條件,就塔頂部壓力通常係0.1~10kg/cm2(0.01~0.98MPa)、較佳係0.5~5kg/cm2(0.05~0.49MPa),又,回流比(R/D)通常係0~100、較佳係0.1~20。
接著,從高沸物分離塔40的塔頂部脫除之餾出液,經由配管41供應給己烯分離塔50。在己烯分離塔50中,利用蒸餾從塔頂部經由配管51餾出1-己烯。
再者,從己烯分離塔50的塔底部脫除反應溶劑,例如正庚烷,再作為反應溶劑並經由溶劑循環配管52、泵13c、第2供應管13循環供應給反應器10。循環供應給反應器10的反應溶劑係與上述冷凝液同樣,亦可形成液滴並分散於該反應器內的氣相部。
己烯分離塔50的運轉條件,塔頂部壓力通常係0.1~10kg/cm2(0.01~0.98MPa)、較佳係0.5~5kg/cm2(0.05~0.49MPa),又,回流比(R/D)通常係0~100、較佳係0.2~20。
[α-烯烴]
本發明α-烯烴低聚合物之製造方法中,作為原料使用的α-烯烴係可舉例如碳數2~8之取代或非取代α-烯烴。此種α-烯烴的具體例係可舉:乙烯、丙烯、1-丁烯、1-己烯、1-辛烯、3-甲基-1-丁烯及4-甲基-1-戊烯等。其中,本發明原料的α-烯烴較佳係乙烯。
屬於生成物的α-烯烴低聚合物係由上述作為原料的α-烯烴進行低聚合反應(二聚體化~五聚體化)而生成的α-烯烴。當以乙烯作為原料的情況,可獲得乙烯之低聚合物(二聚體~五聚體)的1-丁烯、1-己烯、1-辛烯及1-癸烯,特別係能依高產率且高選擇率獲得屬於乙烯之三聚體的1-己烯、及/或屬於乙烯之四聚體的1-辛烯。
再者,當將乙烯使用作為原料的情況,原料中亦可含有乙烯以外的雜質成分。具體的雜質成分係可舉例如:甲烷、乙烷、氮、氧、水、乙炔、二氧化碳、一氧化碳及硫化氫等。
關於甲烷、乙烷及氮,相對於原料乙烯較佳係在 0.1mol%以下,關於氧、水、乙炔、二氧化碳、一氧化碳及硫化氫等硫份,相對於原料乙烯較佳係在1molppm以下。
[觸媒]
本發明所使用的觸媒係在能使原料α-烯烴進行低聚合反應,而生成α-烯烴低聚合物的觸媒之前提下,其餘並無特別的限定,較佳係具含鋁化合物(c)的觸媒。
再者,更佳係將含過渡金屬化合物(a)、含氮化合物(b)及含鋁化合物(c)使用作為觸媒的構成成分,且包含源自該等化合物之成分的鉻系觸媒。又,從提升觸媒活性、及目標α-烯烴低聚合物之選擇率的觀點,更佳係觸媒的構成成分含有含鹵化合物(d)。
[含過渡金屬化合物(a)]
本發明較佳使用作為觸媒構成成分的含過渡金屬化合物(a)(以下有時稱「觸媒成分(a)」)中,所含有的金屬係在過渡金屬之前提下,其餘並無特別的限定,其中較佳係使用週期表第4~6族的過渡金屬。
具體而言,較佳從包含鉻、鈦、鋯、釩及鉿之群組中選擇1種以上的金屬,更佳係鉻或鈦,特佳係鉻。
含過渡金屬化合物(a)通常係一般式MeZn所示的1種以上化合物。此處,一般式MeZn中,Me係過渡金屬元素,Z係任意的有機基或無機基、或者陰性原子。n係表示1至6的整數,較佳係2以上。當n為2以上的情況,Z係可為相同或相異。
有機基係可舉亦可具有取代基的碳數1~30之烴基。 具體而言,可舉:羰基、烷氧基、羧基、β-二酮基、β-酮羧基、β-酮酯基及醯胺基等。
再者,無機基係可舉例如硝酸基及硫酸基等金屬鹽形成基。又,陰性原子係可舉例如氧及鹵素等。另外,含有鹵素的含過渡金屬化合物(a)並不包含於後述含鹵化合物(d)中。
過渡金屬為鉻的含過渡金屬化合物(以下有時稱「含鉻化合物」)之情況,具體例係可舉:第三丁醇鉻(IV)、乙醯丙酮鉻(III)、三氟乙醯丙酮鉻(III)、六氟乙醯丙酮鉻(III)、(2,2,6,6-四甲基-3,5-庚二酮酸)鉻(III)、Cr(PhCOCHCOPh)3(但,其中Ph係表示苯基)、醋酸鉻(II)、醋酸鉻(III)、2-乙基己酸鉻(III)、苯甲酸鉻(III)、環烷酸鉻(III)(chromium(III)naphthenate)、庚酸鉻(III)、Cr(CH3COCHCOOCH3)3、二氯化鉻、三氯化鉻、二溴化鉻、三溴化鉻、二碘化鉻、三碘化鉻、二氟化鉻、及三氟化鉻等。
過渡金屬為鈦的含過渡金屬化合物(以下有時稱「含鈦化合物」)之情況,具體例係可舉:TiCl4、TiBr4、TiI4、TiBrCl3、TiBr2Cl2、Ti(OC2H5)4、Ti(OC2H5)2Cl2、Ti(O-n-C3H7)4、Ti(O-n-C3H7)2Cl2、Ti(O-iso-C3H7)4、Ti(O-iso-C3H7)2Cl2、Ti(O-n-C4H9)4、Ti(O-n-C4H9)2Cl2、Ti(O-iso-C4H9)4、Ti(O-iso-C4H9)2Cl2、Ti(O-tert-C4H9)4、Ti(O-tert-C4H9)2Cl2、TiCl4(thf)2(左示化學式中,thf係表示四氫呋喃。)、Ti[(CH3)2N]4、Ti[(C2H5)2N]4、Ti[(n-C3H7)2N]4、Ti[(iso-C3H7)2N]4、Ti[(n-C4H9)2N]4、Ti[(tert-C4H9)2N]4、Ti(OSO3CH3)4、Ti(OSO3C2H5)4、Ti(OSO3C3H7)4、Ti(OSO3C4H9)4、TiCp2Cl2、TiCp2ClBr(左示化學式中,Cp係表示環戊二烯基。以下的含鋯化合物亦同)、Ti(OCOC2H5)4、 Ti(OCOC2H5)2Cl2、Ti(OCOC3H7)4、Ti(OCOC3H7)2Cl2、Ti(OCOC3H7)4、Ti(OCOC3H7)2Cl2、Ti(OCOC4H9)4、及Ti(OCOC4H9)2Cl2等。
過渡金屬為鋯的含過渡金屬化合物(以下有時稱「含鋯化合物」)之情況,具體例係可舉:ZrCl4、ZrBr4、ZrI4、ZrBrCl3、ZrBr2Cl2、Zr(OC2H5)4、Zr(OC2H5)2Cl2、Zr(O-n-C3H7)4、Zr(O-n-C3H7)2Cl2、Zr(O-iso-C3H7)4、Zr(O-iso-C3H7)2Cl2、Zr(O-n-C4H9)4、Zr(O-n-C4H9)2Cl2、Zr(O-iso-C4H9)4、Zr(O-iso-C4H9)2Cl2、Zr(O-tert-C4H9)4、Zr(O-tert-C4H9)2Cl2、Zr[(CH3)2N]4、Zr[(C2H5)2N]4、Zr[(n-C3H7)2N]4、Zr[(iso-C3H7)2N]4、Zr[(n-C4H9)2N]4、Zr[(tert-C4H9)2N]4、Zr(OSO3CH3)4、Zr(OSO3C2H5)4、Zr(OSO3C3H7)4、Zr(OSO3C4H9)4、ZrCp2Cl2、ZrCp2ClBr、Zr(OCOC2H5)4、Zr(OCOC2H5)2Cl2、Zr(OCOC3H7)4、Zr(OCOC3H7)2Cl2、Zr(OCOC3H7)4、Zr(OCOC3H7)2Cl2、Zr(OCOC4H9)4、Zr(OCOC4H9)2Cl2、ZrCl2(HCOCFCOF)2、及ZrCl2(CH3COCFCOCH3)2等。
過渡金屬為鉿的含過渡金屬化合物(以下有時稱「含鉿化合物」)之情況,具體例係可舉:二甲基亞甲矽基雙{1-(2-甲基-4-異丙基-4H-薁基)}二氯化鉿、二甲基亞甲矽基雙{1-(2-甲基-4-苯基-4H-薁基)}二氯化鉿、二甲基亞甲矽基雙[1-{2-甲基-4-(4-氯苯基)-4H-薁基}]二氯化鉿、二甲基亞甲矽基雙[1-{2-甲基-4-(4-氟苯基)-4H-薁基}]二氯化鉿、二甲基亞甲矽基雙[1-{2-甲基-4-(3-氯苯基)-4H-薁基}]二氯化鉿、二甲基亞甲矽基雙[1-{2-甲基-4-(2,6-二甲苯基)-4H-薁基}]二氯化鉿、二甲基亞甲矽基雙{1-(2-甲基-4,6-二異 丙基-4H-薁基)}二氯化鉿、二苯基亞甲矽基雙{1-(2-甲基-4-苯基-4H-薁基)}二氯化鉿、甲苯基亞甲矽基雙{1-(2-甲基-4-苯基-4H-薁基)}二氯化鉿、甲苯基亞甲矽基雙[1-{2-甲基-4-(1-萘基)-4H-薁基}]二氯化鉿、二甲基亞甲矽基雙{1-(2-乙基-4-苯基-4H-薁基)}二氯化鉿、二甲基亞甲矽基雙[1-{2-乙基-4-(1-蒽基)-4H-薁基}]二氯化鉿、二甲基亞甲矽基雙[1-{2-乙基-4-(2-蒽基)-4H-薁基}]二氯化鉿、二甲基亞甲矽基雙[1-{2-乙基-4-(9-菲基)-4H-薁基}]二氯化鉿、二甲基亞甲基雙[1-{2-甲基-4-(4-聯苯基)-4H-薁基}]二氯化鉿、二甲基鍺烯基雙[1-{2-甲基-4-(4-聯苯基)-4H-薁基}-]二氯化鉿、二甲基亞甲矽基雙{1-(2-乙基-4-(3,5-二甲基-4-三甲矽烷基苯基-4H-薁基)}二氯化鉿、二甲基亞甲矽基[1-{2-甲基-4-(4-聯苯基)-4H-薁基}][1-{2-甲基-4-(4-聯苯基)茚基}]二氯化鉿、二甲基亞甲矽基{1-(2-乙基-4-苯基-4H-薁基)}{1-(2-甲基-4,5-苯并茚基)}二氯化鉿、二甲基亞甲矽基雙{1-(2-甲基-4-苯基茚基)}二氯化鉿、二甲基亞甲矽基雙{1-(2-甲基-4,5-苯并茚基)}二氯化鉿、及二甲基亞甲矽基雙[1-{2-甲基-4-(1-萘基)茚基}]二氯化鉿等。
該等含過渡金屬化合物(a)係可單獨使用1種、亦可組合2種以上使用。該等含過渡金屬化合物(a)中,較佳係含鉻化合物,而含鉻化合物中特佳係2-乙基己酸鉻(III)。
[含氮化合物(b)]
本發明中,較佳使用作為觸媒構成成分的含氮化合物(b)(以下亦稱「觸媒成分(b)」)並無特別的限定,可舉:胺類、醯胺類或醯亞胺類等。
胺類係可舉例如吡咯化合物。具體例係可舉:吡咯、2,4-二甲基吡咯、2,5-二甲基吡咯、2,5-二乙基吡咯、2,4-二乙基吡咯、2,5-二正丙基吡咯、2,5-二正丁基吡咯、2,5-二正戊基吡咯、2,5-二正己基吡咯、2,5-二苄基吡咯、2,5-二異丙基吡咯、2-甲基-5-乙基吡咯、2,5-二甲基-3-乙基吡咯、3,4-二甲基吡咯、3,4-二氯吡咯、2,3,4,5-四氯吡咯、2-乙醯基吡咯、吲哚、2-甲基吲哚、或2個吡咯環經由取代基鍵結而成的二吡咯等吡咯、或該等的衍生物。
衍生物係可舉例如金屬吡咯衍生物。具體例係可舉:二乙基吡咯鋁、乙基二吡咯鋁、三吡咯鋁、二乙基(2,5-二甲基吡咯)鋁、乙基雙(2,5-二甲基吡咯)鋁、叄(2,5-二甲基吡咯)鋁、二乙基(2,5-二乙基吡咯)鋁、乙基雙(2,5-二乙基吡咯)鋁、及叄(2,5-二乙基吡咯)鋁等吡咯鋁類;吡咯鈉及(2,5-二甲基吡咯)鈉等吡咯鈉類;吡咯鋰及(2,5-二甲基吡咯)鋰等吡咯鋰類;吡咯鉀及(2,5-二甲基吡咯)鉀等吡咯鉀類。
另外,吡咯鋁類並未包含於後述含鋁化合物(c)中。又,含鹵素的吡咯化合物並未包含於後述含鹵化合物(d)中。
再者,亦可為例如雙(二乙膦基乙基)胺、雙(二苯膦基乙基)胺、N,N-雙(二苯膦)甲胺、或N,N-雙(二苯膦)異丙胺之類的雙膦胺類。
醯胺類係可舉例如:乙醯胺、N-甲基己醯胺、琥珀醯胺、順丁烯二酸一醯胺、N-甲基苯甲醯胺、咪唑-2-羧醯胺、二-2-噻吩甲醯基胺、β-內醯胺、δ-內醯胺或者ε-己內醯胺、或該等與週期表第1、2或13族金屬的鹽。
醯亞胺類係可舉例如:1,2-環己烷二羧基醯亞胺、琥 珀醯亞胺、酞醯亞胺、順丁烯二醯亞胺、2,4,6-哌啶三酮、或者全氫化吖癸因環-2,10-二酮、或該等與週期表第1、2或13族金屬的鹽。
磺醯胺類及磺醯亞胺類係可舉例如:苯磺醯胺、N-甲基甲磺醯胺、或者N-甲基三氟甲基磺醯胺、或該等與週期表第1、2或13族金屬的鹽。
該等含氮化合物(b)係可單獨使用1種、亦可組合2種以上使用。
本發明就該等之中,較佳係胺類,其中更佳係吡咯化合物、特佳係2,5-二甲基吡咯或二乙基(2,5-二甲基吡咯)鋁。
[含鋁化合物(c)]
本發明較佳使用作為觸媒成分的含鋁化合物(c)(以下有時稱「觸媒成分(c)」)並無特別的限定,係可舉:三烷基鋁化合物、烷氧基烷基鋁化合物、氫化烷基鋁化合物、或鋁氧烷化合物等。
另外,鹵化烷基鋁化合物並未包含於含鋁化合物(c)中,而是包含於後述含鹵化合物(d)中。
三烷基鋁化合物係可舉例如:三甲基鋁、三乙基鋁及三異丁基鋁。烷氧基鋁化合物係可舉例如二乙基乙醇鋁。
氫化烷基鋁化合物係可舉例如二乙基氫化鋁。鋁氧烷化合物係可舉例如甲基鋁氧烷及乙基鋁氧烷。
該等含鋁化合物(c)係可單獨使用1種、亦可組合2種以上使用。該等之中,較佳係三烷基鋁化合物、更佳係三乙基鋁。
[含鹵化合物(d)]
本發明觸媒的構成成分係除上述成分之外,較佳係更進一步含有含鹵化合物(d)(以下有時稱「觸媒成分(d)」)。該含鹵化合物(d)並無特別的限定,可舉例如:鹵化烷基鋁化合物、含氯甲苯骨架化合物、具2個以上鹵素原子的碳數1以上之直鏈狀鹵化烴、及具1個以上鹵素原子的碳數3以上之環狀鹵化烴。
含鹵化合物(d)係可舉例如:二乙基氯化鋁、三氯三乙基化二鋁(ethyl aluminium sesquichloride)、及乙基二氯化鋁(ethyl aluminium dichloride)等含鹵化烷基鋁化合物;氯甲苯、(1-氯乙基)苯、2-甲基氯甲苯、3-甲基氯甲苯、4-甲基氯甲苯、4-乙基氯甲苯、4-異丙基氯甲苯、4-第三丁基氯甲苯、4-乙烯基氯甲苯、α-乙基-4-甲基氯甲苯、α,α'-二氯鄰二甲苯、α,α'-二氯間二甲苯、α,α'-二氯對二甲苯、2,4-二甲基氯甲苯、2,5-二甲基氯甲苯、2,6-二甲基氯甲苯、3,4-二甲基氯甲苯、2,3,5,6-四甲基氯甲苯、1-(氯甲基)萘、1-(氯甲基)-2-甲基萘、1,4-雙-氯甲基-2,3-二甲基萘、1,8-雙-氯甲基-2,3,4,5,6,7-六甲基萘、9-(氯甲基)蒽、9,10-雙(氯甲基)蒽、7-(氯甲基)苯并蒽、7-氯甲基-12-甲基苯并蒽、二氯甲烷、氯仿、四氯化碳、1,1-二氯乙烷、1,2-二氯乙烷、1,1,1-三氯乙烷、1,1,2-三氯乙烷、1,1,2,2-四氯乙烷、五氯乙烷、六氯乙烷、1,2,3-三氯環丙烷、1,2,3,4,5,6-六氯環己烷、及1,4-雙(三氯甲基)-2,3,5,6-四氯苯等。
該等含鹵化合物(d)係可單獨使用1種、亦可組合2種以上使用。
本發明中較佳使用作為觸媒之觸媒成分的含過渡金屬化合物(a)、含氮化合物(b)、含鋁化合物(c)及含鹵化合物(d)之各 構成成分比率,並無特別的限定,相對於含過渡金屬化合物(a)1莫耳,含氮化合物(b)通常係1莫耳~50莫耳、較佳係2莫耳~30莫耳,含鋁化合物(c)通常係1莫耳~200莫耳、較佳係10莫耳~150莫耳。當觸媒係含有含鹵化合物(d)的情況,相對於含過渡金屬化合物(a)1莫耳,含鹵化合物(d)通常係1莫耳~50莫耳、較佳係2莫耳~30莫耳。
本發明中,觸媒的使用量並無特別的限定,通常係後述反應溶劑每1公升,含過渡金屬化合物(a)依過渡金屬元素換算計成為1.0×10-7莫耳~0.5莫耳、較佳為5.0×10-7莫耳~0.2莫耳、更佳為1.0×10-6莫耳~0.05莫耳的量。
本發明中,當α-烯烴係使用乙烯的情況,較佳係在乙烯的低聚合反應時,含過渡金屬化合物(a)係使用含鉻化合物,並預先在含過渡金屬化合物(a)與含鋁化合物(c)不會相接觸的態樣下,使乙烯、與屬於含過渡金屬化合物(a)的含鉻化合物進行接觸而實施。
藉由此種接觸態樣,選擇性施行乙烯的三聚化反應,可從原料的乙烯依選擇率90%以上獲得屬於乙烯之三聚體的1-己烯。又,此情況可使己烯中所佔的1-己烯比率達99%以上。
此處,所謂「預先使含過渡金屬化合物(a)與含鋁化合物(c)不會相接觸的態樣」,不侷限於乙烯開始進行低聚合反應時,就連後續追加的乙烯與觸媒成分供應給反應器時,均仍維持此種態樣。又,關於批次反應形式較佳亦是利用同樣的態樣。
上述連續反應形式的接觸態樣係可舉下述(1)~(9)。
(1)將觸媒成分(a)、(b)及(d)的混合物、以及觸媒成分(c)分別同時導入反應器的方法。
(2)將觸媒成分(b)~(d)的混合物、及觸媒成分(a)分別同時供應給反應器的方法。
(3)將觸媒成分(a)與(b)的混合物、以及觸媒成分(c)與(d)的混合物分別同時供應給反應器的方法。
(4)將觸媒成分(a)與(d)的混合物、以及觸媒成分(b)與(c)的混合物分別同時供應給反應器的方法。
(5)將觸媒成分(a)與(b)的混合物、觸媒成分(c)、以及觸媒成分(d)分別同時供應給反應器的方法。
(6)將觸媒成分(c)與(d)的混合物、觸媒成分(a)、以及觸媒成分(b)分別同時供應給反應器的方法。
(7)將觸媒成分(a)與(d)的混合物、觸媒成分(b)、以及觸媒成分(c)分別同時供應給反應器的方法。
(8)將觸媒成分(b)與(c)的混合物、觸媒成分(a)、以及觸媒成分(d)分別同時供應給反應器的方法。
(9)將各觸媒成分(a)~(d)分別同時且獨立地供應給反應器的方法。
上述各觸媒成分通常係溶解於乙烯進行低聚合反應時所使用的後述反應溶劑中之後,才供應給反應器。
[反應溶劑]
本發明α-烯烴低聚合物之製造方法中,α-烯烴的低聚合反應係在反應溶劑中實施。
反應溶劑並無特別的限定,較佳係使用飽和烴。較佳係:丁烷、戊烷、3-甲基戊烷、正己烷、正庚烷、2-甲基己烷、辛 烷、環己烷、甲基環己烷、2,2,4-三甲基戊烷及十氫萘等碳數3~20之鏈狀飽和烴、或脂環式飽和烴。
再者,亦可使用苯、甲苯、二甲苯、乙基苯、均三甲苯或四氫萘等芳香族烴、或利用低聚合反應生成的α-烯烴低聚合物,具體而言,係由乙烯進行三聚化時所獲得1-己烯或癸烯等。該等係可單獨使用1種、或使用2種以上的混合溶劑。
該等溶劑之中,從能抑制聚乙烯等副產聚合物生成或析出的觀點,進而從具有獲得更高觸媒活性傾向的觀點,較佳係使用碳數4~10之鏈狀飽和烴或脂環式飽和烴,具體而言,較佳係正庚烷或環己烷、更佳係正庚烷。
關於反應溶劑的使用量並無特別的限制,通常相對於供應給反應器的原料α-烯烴供應量,依質量比計係0.5~5.0倍、較佳係1.0~2.5倍。
[實施例]
以下,根據實施例針對本發明進行更具體說明。又,本發明係在不脫逸其主旨之前提下,並不侷限於以下實施例。
[實施例1]
如圖1所示,在具備有完全混合攪拌型反應器10、脫氣槽20、乙烯分離塔30、高沸物分離塔40、及己烯分離塔50的製程中,施行乙烯的連續低聚合反應[140℃、71kg/cm2(7.0MPa)]。
從第1供應管12,將由乙烯供應管12a新供應的乙烯、一起與從脫氣槽20及乙烯分離塔30分離出的未反應乙烯,利用壓縮機60連續供應給反應器10的液相部。
再者,從第2供應管13將由己烯分離塔50分離出的回收正庚烷,連續供應給反應器10的液相部。又,從觸媒供應管13a,將含有2-乙基己酸鉻(III)(a)與2,5-二甲基吡咯(b)的正庚烷溶液,連續供應給反應器10的液相部,並從觸媒供應管13b經由第2供應管13將六氯乙烷(d)的正庚烷溶液連續供應給反應器10的液相部。又,從第3供應管14將三乙基鋁(c)的正庚烷溶液連續供應給反應器10的液相部。
再者,觸媒係依供應給反應器10的各成分莫耳比,成為(a):(b):(c):(d)=1:25:80:5的方式,連續供應給反應器10的液相部。從反應器10連續地脫除的反應生成液,係在將作為觸媒去活劑之2-乙基己醇從去活劑供應管11a,依相對於三乙基鋁(c)添加3當量之後,再依序利用脫氣槽20、乙烯分離塔30、高沸物分離塔40、己烯分離塔50施行處理。
經導入反應器10內的乙烯氣體、與因反應器10內的乙烯之低聚合反應而生成聚合熱導致部分液相氣化的氣化蒸氣之混合氣體,係利用經絕熱保溫的配管111供應給直立式的多管式熱交換器110。供應給熱交換器110的混合氣體係利用冷卻水依出口溫度成為80℃的方式冷卻,而冷凝液則利用配管114再度循環供應於反應器10。
再者,從熱交換器110的出口所獲得氣體成分之一部分,在利用配管112供應的氣液分離器120中分離為乙烯氣體與冷凝液,而乙烯氣體利用配管113與鼓風機130經由配管12循環供 應給反應器10的液相部。此時,反應器氣相部之實際氣體線性速度係約1cm/s。
來自熱交換器110的冷凝液係經由配管114,而與來自配管115的冷凝液一起供應給在反應器10的氣相部所設置之旋轉圓盤方式噴霧器10b的中心部。供應給噴霧器的液量相對於從反應器氣液界面部上升之氣體量,依體積比計約6%(依質量比計約30%)。
該旋轉圓盤方式噴霧器10b係設置於反應器10內的氣液界面L之上方0.8m處,該旋轉圓盤直徑相對於反應器10之直徑的比率係0.5,從該旋轉圓盤方式噴霧器10b,冷凝液形成液滴直徑1~3mm左右的液滴並分散。
此時,熱交換器110的入口溫度(該溫度係相當於反應器的氣相部之氣體出口溫度)大約123℃。即,反應器10的氣相部的氣體出口溫度係較液相溫度(140℃)低約17℃。
經100日連續運轉後,開放檢查熱交換器110,結果依目視確認到熱交換器110的上部管板面及管內面(冷卻傳導面)幾乎沒有髒污。
[比較例1]
在實施例1中,除配管114與115的冷凝液未供應給噴霧器10b之中心部,而從朝反應器10之氣相部的供應配管,沿反應器10內的內壁供應於液相部之外,其餘均同樣地實施。熱交換器110的入口溫度約133℃。
經95日運轉後開放檢查熱交換器110,結果依目視 確認到在熱交換器110的上部管板面上厚厚地沉積聚乙烯,導致一部分的管遭阻塞。
針對本發明使用特定態樣進行詳細說明,在不致悖離本發明主旨與範圍之前提下,可進行各種變更與變化,此乃熟習此技術者可輕易思及。另外,本申請案係根據2014年9月22日所提出申請之日本專利申請案(特願2014-192685),爰引其全體內容並融入本案中。

Claims (14)

  1. 一種α-烯烴低聚合物之製造方法,係在反應器內,於觸媒存在下,在反應溶劑中施行α-烯烴的低聚合反應而製造α-烯烴低聚合物之方法中,將該反應器內的氣相部氣體的一部分導入熱交換器並冷卻而獲得的冷凝液,循環供應給該反應器的α-烯烴低聚合物之製造方法;其中,使該反應器中循環供應的該冷凝液,分散於該反應器內的氣相部。
  2. 如請求項1之α-烯烴低聚合物之製造方法,其中,上述熱交換器係設於上述反應器的外部。
  3. 如請求項1或2之α-烯烴低聚合物之製造方法,其中,上述冷凝液係形成液滴並使之分散。
  4. 如請求項1至3中任一項之α-烯烴低聚合物之製造方法,其中,上述冷凝液係利用噴霧器形成液滴並使之分散。
  5. 如請求項4之α-烯烴低聚合物之製造方法,其中,上述噴霧器方式係從包含離心力方式、剪切力方式及壓力方式之群組中選擇1種以上的方式。
  6. 如請求項1至5中任一項之α-烯烴低聚合物之製造方法,其中,上述反應器的氣相部之氣體出口溫度係較該反應器的液相溫度低8℃以上。
  7. 如請求項1至5中任一項之α-烯烴低聚合物之製造方法,其中,上述熱交換器的入口溫度係較該反應器的液相溫度低8℃以上。
  8. 如請求項1至7中任一項之α-烯烴低聚合物之製造方法,其 中,將由上述熱交換器獲得的非冷凝氣體循環供應給上述反應器的液相部。
  9. 如請求項1至8中任一項之α-烯烴低聚合物之製造方法,其中,上述觸媒係由含鉻化合物、含氮化合物(b)、及含鋁化合物(c)的組合構成。
  10. 如請求項9之α-烯烴低聚合物之製造方法,其中,上述觸媒係更進一步含有含鹵化合物(d)。
  11. 如請求項1至10中任一項之α-烯烴低聚合物之製造方法,其中,上述α-烯烴係乙烯。
  12. 一種α-烯烴低聚合物之製造裝置,係施行α-烯烴之低聚合反應,而製造α-烯烴低聚合物的裝置;其具備有:反應器,其係供應觸媒、α-烯烴及反應溶劑,施行α-烯烴之低聚合反應;熱交換器,其係將從該反應器內的氣相部脫除之氣體予以冷卻而獲得冷凝液;循環供應手段,其係將由該熱交換器獲得的冷凝液,循環供應給該反應器;以及液滴分散手段,其係使來自該循環供應手段的冷凝液、及來自該第2循環供應手段的反應溶劑之至少一者,分散於該反應器內的氣相部中。
  13. 如請求項12之α-烯烴低聚合物之製造裝置,其中,上述液滴分散手段係在上述反應器內的氣相部中所設置之噴霧器。
  14. 一種α-烯烴低聚合物之製造方法,係在反應器內,於觸媒存在下,在反應溶劑中施行α-烯烴之低聚合反應而製造α-烯烴低聚合 物的方法;其中,將該反應器內的氣相部氣體之至少一部分導入於該反應器外的熱交換器並冷卻時,該反應器內的氣相部出口溫度較該反應器的液相溫度低8℃以上。
TW104131257A 2014-09-22 2015-09-22 α-烯烴低聚合物之製造方法及製造裝置 TWI654210B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-192685 2014-09-22
JP2014192685 2014-09-22

Publications (2)

Publication Number Publication Date
TW201619204A true TW201619204A (zh) 2016-06-01
TWI654210B TWI654210B (zh) 2019-03-21

Family

ID=55581085

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104131257A TWI654210B (zh) 2014-09-22 2015-09-22 α-烯烴低聚合物之製造方法及製造裝置

Country Status (8)

Country Link
US (1) US10214463B2 (zh)
JP (1) JP6565525B2 (zh)
KR (1) KR102385968B1 (zh)
CN (1) CN107074679B (zh)
BR (1) BR112017005851B1 (zh)
MY (1) MY182516A (zh)
TW (1) TWI654210B (zh)
WO (1) WO2016047558A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10807922B2 (en) * 2016-07-15 2020-10-20 Public Joint Stock Company “SIBUR Holding” Method of oligomerization of olefins
KR102354499B1 (ko) * 2017-12-11 2022-01-20 주식회사 엘지화학 에틸렌 저중합체화 방법 및 그 장치
KR20190075572A (ko) 2017-12-21 2019-07-01 주식회사 엘지화학 알파 올레핀 합성 방법 및 그 장치
KR102637591B1 (ko) * 2018-03-21 2024-02-19 주식회사 엘지화학 알파 올레핀 합성 방법 및 그 장치
KR102602865B1 (ko) * 2019-08-21 2023-11-16 주식회사 엘지화학 올리고머 제조 방법 및 올리고머 제조 장치
KR102581118B1 (ko) * 2019-12-09 2023-09-20 주식회사 엘지화학 올리고머 제조 장치
FR3105019B1 (fr) * 2019-12-18 2022-07-22 Ifp Energies Now Reacteur gaz/liquide d’oligomerisation a zones successives de diametre variable
KR102592435B1 (ko) 2020-01-14 2023-10-20 주식회사 엘지화학 올리고머 제조 장치
WO2022050788A1 (ko) * 2020-09-07 2022-03-10 주식회사 엘지화학 올리고머 제조방법
KR20220059682A (ko) * 2020-11-03 2022-05-10 주식회사 엘지화학 올리고머 제조장치
KR20220104418A (ko) * 2021-01-18 2022-07-26 주식회사 엘지화학 올리고머 제조방법
CN113233951B (zh) * 2021-05-12 2022-11-18 天津科技大学 一种用于乙烯选择性齐聚生产线性α-烯烃的生产装置及生产工艺
EP4373799A1 (en) * 2021-07-22 2024-05-29 Chevron Phillips Chemical Company LP Heat exchange configurations for oligomerization of olefins

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744677A (en) * 1991-10-16 1998-04-28 Amoco Corporation Ethylene oligomerization
DE4338414C1 (de) * 1993-11-10 1995-03-16 Linde Ag Verfahren zur Herstellung linearer Olefine
JP3582911B2 (ja) * 1995-09-18 2004-10-27 旭化成ケミカルズ株式会社 連続重合方法
JP5166662B2 (ja) * 2001-09-27 2013-03-21 出光興産株式会社 α−オレフィン低重合体の製造方法
WO2004029011A1 (en) * 2002-09-25 2004-04-08 Shell Internationale Research Maatschappij B.V. Process for making a linear alpha-olefin oligomer using a heat exchanger
WO2004029012A1 (en) 2002-09-25 2004-04-08 Shell Internationale Research Maatschappij B.V. Process for making a linear alpha-olefin oligomer using a heat exchanger
EP1749806B1 (en) 2005-07-29 2008-10-15 Linde AG Method for preparing linear alpha-olefins with improved heat removal
EP1748038A1 (en) * 2005-07-29 2007-01-31 Linde AG Method for preparing linear alpha-olefins
EP1987047B1 (en) 2006-02-03 2015-07-01 ExxonMobil Chemical Patents Inc. Process for generating alpha olefin comonomers
JP2009120588A (ja) * 2007-10-23 2009-06-04 Mitsubishi Chemicals Corp エチレン低重合体の製造方法及び1−ヘキセンの製造方法
ES2489393T3 (es) 2007-11-07 2014-09-01 Sasol Technology (Proprietary) Limited Proceso para polimerizar u oligorimerizar un hidrocarburo
MY156622A (en) 2007-11-07 2016-03-15 Sasol Tech Pty Ltd Process for polymerising or oligomerising a hydrocarbon
DE102010006589A1 (de) 2010-02-02 2011-08-04 Linde Aktiengesellschaft, 80331 Verfahren zur Herstellung linearer a-Olefine
US20130102826A1 (en) 2011-05-24 2013-04-25 James R. Lattner Systems And Methods For Generating Alpha Olefin Oligomers
US8524972B1 (en) 2012-04-18 2013-09-03 Exxonmobil Chemical Patents Inc. Low temperature steam stripping for byproduct polymer and solvent recovery from an ethylene oligomerization process
CA2869701C (en) 2012-05-09 2020-01-07 Sasol Technology (Proprietary) Limited A process for oligomerising a hydrocarbon to form at least one co-monomer product
JP2014177423A (ja) * 2013-03-14 2014-09-25 Mitsubishi Chemicals Corp α−オレフィン低重合体の製造方法

Also Published As

Publication number Publication date
KR20170058935A (ko) 2017-05-29
JP2016065051A (ja) 2016-04-28
US20170190637A1 (en) 2017-07-06
CN107074679A (zh) 2017-08-18
MY182516A (en) 2021-01-25
TWI654210B (zh) 2019-03-21
BR112017005851B1 (pt) 2021-01-19
BR112017005851A2 (pt) 2017-12-12
KR102385968B1 (ko) 2022-04-12
WO2016047558A1 (ja) 2016-03-31
CN107074679B (zh) 2020-11-17
US10214463B2 (en) 2019-02-26
JP6565525B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
TW201619204A (zh) α-烯烴低聚合物之製造方法及製造裝置
JP6891424B2 (ja) α−オレフィン低重合体の製造方法及び製造装置
TWI691474B (zh) α-烯烴低聚合物之製造方法
JP2009120588A (ja) エチレン低重合体の製造方法及び1−ヘキセンの製造方法
JP2014177423A (ja) α−オレフィン低重合体の製造方法
TWI649337B (zh) Method for producing α-olefin low polymer
CN101199943A (zh) 乙烯二聚催化体系、乙烯二聚方法、二聚装置和反应器单元
JP2015074617A (ja) α−オレフィン低重合体の製造方法
US10221109B2 (en) Method for producing alpha-olefin low polymer
TWI648300B (zh) α-烯烴低聚合物之製造方法
JP5938934B2 (ja) α−オレフィン低重合体製造用機器の洗浄方法
JP2012188371A (ja) α−オレフィン低重合体の製造方法