TW201603503A - 接收器、發射器及通信系統 - Google Patents

接收器、發射器及通信系統 Download PDF

Info

Publication number
TW201603503A
TW201603503A TW104119179A TW104119179A TW201603503A TW 201603503 A TW201603503 A TW 201603503A TW 104119179 A TW104119179 A TW 104119179A TW 104119179 A TW104119179 A TW 104119179A TW 201603503 A TW201603503 A TW 201603503A
Authority
TW
Taiwan
Prior art keywords
delay
signal
data
circuit
signals
Prior art date
Application number
TW104119179A
Other languages
English (en)
Other versions
TWI708482B (zh
Inventor
高橋宏雄
Original Assignee
新力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新力股份有限公司 filed Critical 新力股份有限公司
Publication of TW201603503A publication Critical patent/TW201603503A/zh
Application granted granted Critical
Publication of TWI708482B publication Critical patent/TWI708482B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0041Delay of data signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/12Synchronisation of different clock signals provided by a plurality of clock generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4291Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a clocked protocol
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/159Applications of delay lines not covered by the preceding subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Pulse Circuits (AREA)

Abstract

本發明揭示一種包含一第一接收電路之接收器,該第一接收電路透過一第一資料單工通道接收包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線。該第一接收電路包含一延遲調整電路,該延遲調整電路經組態以調整該三個信號之至少一者之一延遲量。

Description

接收器、發射器及通信系統 相關申請案之交叉參考
本申請案主張2014年7月7日申請之日本優先權專利申請案JP 2014-139812之權利,該案之全部內容以引用的方式併入本文中。
本發明係關於一種接收一信號之接收器、一種發射一信號之發射器及一種發射及接收一信號之通信系統。
近年來,結合一電子裝置之高功能性及多功能性,各種器件(諸如一半導體晶片、一感測器及一顯示器器件)安裝於該電子裝置上。在此等器件之間交換大量資料,且該資料之一量回應於該電子裝置之高功能性及多功能性而增大。因此,例如,通常使用適於依幾Gbps發射及接收資料之一高速介面交換該資料。
為了改良一高速介面中之通信效能,通常調整偏斜。例如,在PTL 1中,揭示一種經調適以調整一差動資料信號與一差動時脈信號之間的偏斜之偏斜調整電路。
[引用清單]
[專利文獻]
[PTL 1]
WO2012/147258
如上文所述,在一通信系統中,期望有高通信效能,且預期該通信效能之進一步改良。
期望提供一種使得可增強通信效能之接收器、發射器及通信系統。
在本發明之一個例示性態樣中,一種接收器包括一第一接收電路,該第一接收電路經組態以透過一第一資料單工通道接收包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線,其中該第一接收電路包含一延遲調整電路,該延遲調整電路經組態以調整該三個信號之至少一者之一延遲量。
本發明之此例示性態樣可進一步包括:一第二接收電路,其經組態以透過一第二資料單工通道接收包含使用三個信號發射之一第二符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三接收電路,其經組態以透過一第三資料單工通道接收包含使用三個信號發射之一第三符號之一第三資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
在本發明之另一例示性態樣中,一種發射器包括一第一發射電路,該第一發射電路經組態以透過一第一資料單工通道發射包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線,其中該第一發射電路包含一延遲調整電路,該延遲調整電路經組態以調整該三個信號之至少一者之一延遲量。
本發明之此例示性態樣可進一步包括:一第二發射電路,其經組態以透過一第二資料單工通道發射包含使用三個信號發射之一第二 符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三發射電路,其經組態以透過一第三資料單工通道發射包含使用三個信號發射之一第三符號之一第三資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
在本發明之又一例示性態樣中,一種通信系統包括:一發射器,其包含一第一發射電路,該第一發射電路經組態以透過一第一資料單工通道發射包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線;一接收器,其包含一第一接收電路,該第一接收電路經組態以透過該第一資料單工通道接收該第一資料;及一延遲調整電路,其經組態以調整該三個信號之至少一者之一延遲量。
本發明之此例示性態樣可進一步包括:一第二接收電路,其經組態以透過一第二資料單工通道接收包含使用三個信號發射之一第二符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三接收電路,其經組態以透過一第三資料單工通道接收包含使用三個信號發射之一第三符號之一第三資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
此外,本發明之此例示性態樣可進一步包括:一第二發射電路,其經組態以透過一第二資料單工通道發射包含使用三個信號發射之一第二符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三發射電路,其經組態以透過一第三資料單工通道發射包含使用三個信號發射之一第三符號之一第三資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
在本發明之又一例示性態樣中,一種傳達資料之方法包括:透過一第一資料單工通道傳達包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信 號線;及調整該三個信號之至少一者之一延遲量。
本發明之上述例示性態樣可進一步包含一第一延遲電路、一第二延遲電路及一第三延遲電路。
本發明之上述例示性態樣可進一步包含一控制區段,該控制區段經組態以控制及/或調整該第一延遲電路、該第二延遲電路及該第三延遲電路之至少一者之一延遲量。
本發明之上述例示性態樣可能夠在一校準模式中操作以執行各種操作以判定及/或設定該三個信號之至少一者之一相對延遲量。
本發明之上述例示性態樣可為亦包括一CMOS影像感測器之一成像系統之部分。
此外或替代地,本發明之上述例示性態樣可為亦包括一無線通信電路之一行動通信器件之部分。
順便提及,此處所述之效應係非限制性的。藉由本發明技術實現之效應可為本發明中所述之效應之一或多者。
應瞭解,前文一般描述及下文詳細描述係例示性的,且經提供以進一步說明所主張技術。
1‧‧‧通信系統
1A‧‧‧通信系統
1C‧‧‧通信系統
2‧‧‧通信系統
3‧‧‧通信系統
7A‧‧‧發射路徑
7B‧‧‧發射路徑
7C‧‧‧發射路徑
8A‧‧‧發射路徑
8B‧‧‧發射路徑
8C‧‧‧發射路徑
9A‧‧‧發射路徑
9B‧‧‧發射路徑
9C‧‧‧發射路徑
10‧‧‧發射器
10A‧‧‧發射器
11‧‧‧發射區段
11A‧‧‧發射區段
12‧‧‧發射區段
12A‧‧‧發射區段
13‧‧‧發射區段
13A‧‧‧發射區段
14‧‧‧發射資料產生區段
15‧‧‧信號產生區段
16‧‧‧正反器(F/F)
17A‧‧‧延遲量資訊接收區段
20‧‧‧接收器
20A‧‧‧接收器
20C‧‧‧接收器
21‧‧‧接收區段
21A‧‧‧接收區段
21B‧‧‧接收區段
21C‧‧‧接收區段
21D‧‧‧接收區段
21E‧‧‧接收區段
21F‧‧‧接收區段
22‧‧‧接收區段
22A‧‧‧接收區段
22B‧‧‧接收區段
22C‧‧‧接收區段
22D‧‧‧接收區段
22E‧‧‧接收區段
22F‧‧‧接收區段
23‧‧‧接收區段
23A‧‧‧接收區段
23B‧‧‧接收區段
23C‧‧‧接收區段
23D‧‧‧接收區段
23E‧‧‧接收區段
23F‧‧‧接收區段
27A‧‧‧延遲量資訊發射區段
28C‧‧‧接收區段
30‧‧‧輸出區段
30A‧‧‧輸出區段
31‧‧‧輸出控制區段
32A‧‧‧驅動器
32B‧‧‧驅動器
32C‧‧‧驅動器
33A‧‧‧延遲區段
33B‧‧‧延遲區段
33C‧‧‧延遲區段
39‧‧‧控制區段
41A‧‧‧電阻器
41B‧‧‧電阻器
41C‧‧‧電阻器
42A‧‧‧放大器
42B‧‧‧放大器
42C‧‧‧放大器
43‧‧‧時脈產生區段
43E‧‧‧時脈產生區段
44‧‧‧正反器(F/F)
45‧‧‧正反器(F/F)
46‧‧‧信號產生區段
47‧‧‧型樣偵測區段
48‧‧‧控制區段
48A‧‧‧控制區段
48C‧‧‧控制區段
48D‧‧‧控制區段
48E‧‧‧控制區段
50A‧‧‧延遲區段
50B‧‧‧延遲區段
50C‧‧‧延遲區段
51‧‧‧延遲緩衝器
52‧‧‧延遲緩衝器
53‧‧‧延遲緩衝器
54‧‧‧選擇器
55A‧‧‧選擇器
55B‧‧‧選擇器
55C‧‧‧選擇器
58C‧‧‧控制區段
60‧‧‧發射器
64‧‧‧發射資料產生區段
67‧‧‧控制區段
70‧‧‧接收器
71‧‧‧接收區段
72‧‧‧接收區段
73‧‧‧接收區段
77‧‧‧延遲量資料發射區段
79‧‧‧型樣偵測區段
80‧‧‧發射器
87‧‧‧控制區段
90‧‧‧接收器
91‧‧‧接收區段
92‧‧‧接收區段
93‧‧‧接收區段
97‧‧‧相位資訊發射區段
100‧‧‧印刷電路板
101‧‧‧圖案佈線
102‧‧‧連接器
110‧‧‧晶片
120‧‧‧晶片
130‧‧‧相位比較電路
131‧‧‧正反器(F/F)
132‧‧‧正反器(F/F)
133‧‧‧正反器(F/F)
134‧‧‧及(AND)電路
136‧‧‧正反器(F/F)
137‧‧‧正反器(F/F)
138‧‧‧正反器(F/F)
139‧‧‧及(AND)電路
150A‧‧‧延遲區段
150B‧‧‧延遲區段
150C‧‧‧延遲區段
200‧‧‧發射器
CH1‧‧‧通道
CH2‧‧‧通道
CH3‧‧‧通道
CH4‧‧‧通道
CH5‧‧‧通道
CN‧‧‧符號
CTLA‧‧‧延遲控制信號
CTLB‧‧‧延遲控制信號
CTLC‧‧‧延遲控制信號
CTLCK‧‧‧相位控制信號
DD‧‧‧延遲量資料
DET‧‧‧信號
DL1‧‧‧資料單工通道
DL2‧‧‧資料單工通道
DL3‧‧‧資料單工通道
ID‧‧‧延遲量資料
ID1‧‧‧延遲量資料
ID2‧‧‧延遲量資料
ID3‧‧‧延遲量資料
IP‧‧‧相位資訊
IP1‧‧‧相位資訊
IP2‧‧‧相位資訊
IP3‧‧‧相位資訊
IS‧‧‧延遲量資訊
IS1‧‧‧延遲量資訊
IS2‧‧‧延遲量資訊
IS3‧‧‧延遲量資訊
IT1‧‧‧控制信號
IT2‧‧‧控制信號
IT3‧‧‧控制信號
NS‧‧‧符號
P1‧‧‧SoT部分
P11‧‧‧前置碼
P12‧‧‧同步碼
P13‧‧‧同步碼
P2‧‧‧標頭部分
P21‧‧‧錯誤偵測碼
P3‧‧‧有效負載部分
P31‧‧‧延遲量資料
P4‧‧‧註腳部分
P41‧‧‧錯誤偵測碼
P42‧‧‧填充項
P5‧‧‧EoT部分
P51‧‧‧開機自我檢測碼
PCT1‧‧‧封包
PCT2‧‧‧封包
RxCK‧‧‧時脈
RxF‧‧‧信號
RxP‧‧‧信號
RxR‧‧‧信號
S1‧‧‧信號
S2‧‧‧信號
SEL‧‧‧資料單工通道選擇信號
SIG1A‧‧‧信號
SIG1B‧‧‧信號
SIG1C‧‧‧信號
SIG2A‧‧‧信號
SIG2B‧‧‧信號
SGI2C‧‧‧信號
SIG3A‧‧‧信號
SIG3B‧‧‧信號
SIG3C‧‧‧信號
SIGA‧‧‧信號
SIGB‧‧‧信號
SIGC‧‧‧信號
TinA‧‧‧輸入端子
TinB‧‧‧輸入端子
TinC‧‧‧輸入端子
ToutA‧‧‧輸出端子
ToutB‧‧‧輸出端子
ToutC‧‧‧輸出端子
TxCK‧‧‧時脈
TxF‧‧‧信號
TxP‧‧‧信號
TxR‧‧‧信號
VH‧‧‧高位準電壓
VL‧‧‧低位準電壓
VM‧‧‧中間位準電壓
隨附圖式經包含以提供對本發明技術之進一步瞭解,且併入於本說明書中並構成本說明書之一部分。該等圖式繪示實施例,且連同本說明書用於說明本發明技術之原理。
圖1為繪示根據本發明之一第一實施例之一通信系統之一組態實例之一方塊圖。
圖2為繪示由圖1中所繪示之通信系統發射及接收之一封包之一組態實例之一說明圖。
圖3為繪示由圖1中所繪示之通信系統發射及接收之一信號之一電壓狀態之一說明圖。
圖4為繪示圖1中所繪示之一發射區段之一組態實例之一方塊圖。
圖5為繪示由圖1中所繪示之通信系統發射及接收之一符號之轉變之一說明圖。
圖6為繪示圖4中所繪示之一驅動器之一組態實例之一電路圖。
圖7為繪示圖1中所繪示之一接收區段之一組態實例之一方塊圖。
圖8為繪示圖7中所繪示之接收區段之接收操作之一實例之一說明圖。
圖9為繪示圖1中所繪示之通信系統之一操作實例之一流程圖。
圖10A為繪示圖1中所繪示之一發射器之一安裝實例之一說明圖。
圖10B為繪示其他發射器之一安裝實例之一說明圖。
圖11為繪示根據第一實施例之一修改之一通信系統之一組態實例之一方塊圖。
圖12為繪示圖11中所繪示之一接收區段之一組態實例之一方塊圖。
圖13為繪示圖11中所繪示之一發射區段之一組態實例之一方塊圖。
圖14為繪示圖13中所繪示之一驅動器之一組態實例之一電路圖。
圖15為繪示根據第一實施例之另一修改之一通信系統之一組態實例之一方塊圖。
圖16為繪示圖15中所繪示之一接收區段之一組態實例之一方塊圖。
圖17為繪示圖15中所繪示之接收區段之一組態實例之一方塊 圖。
圖18為繪示圖15中所繪示之接收區段之另一組態實例之一方塊圖。
圖19為繪示根據一第二實施例之一通信系統之一組態實例之一方塊圖。
圖20為繪示由圖19中所繪示之通信系統發射及接收之一封包之一組態實例之一說明圖。
圖21為繪示圖19中所繪示之一接收區段之一組態實例之一方塊圖。
圖22為繪示圖19中所繪示之通信系統之一操作實例之一流程圖。
圖23為根據一第三實施例之一通信系統之一組態實例之一方塊圖。
圖24為繪示圖23中所繪示之一接收區段之一組態實例之一方塊圖。
圖25為繪示圖23中所繪示之通信系統之一操作實例之一流程圖。
圖26為繪示圖23中所繪示之通信系統中之信號之一實例之一波形圖。
圖27為繪示圖23中所繪示之通信系統中之信號之另一實例之一波形圖。
圖28為繪示圖23中所繪示之通信系統中之信號之又一實例之一波形圖。
圖29為繪示圖23中所繪示之通信系統中之信號之又一實例之一波形圖。
圖30為繪示圖23中所繪示之通信系統中之信號之又一實例之一 波形圖。
圖31為繪示圖23中所繪示之通信系統中之信號之又一實例之一波形圖。
圖32為繪示應用根據該等實施例之任一者之通信系統之一智慧型電話之一外觀組態之一透視圖。
圖33為繪示應用根據該等實施例之任一者之通信系統之一應用程式處理器之一組態實例之一方塊圖。
圖34為繪示應用根據該等實施例之任一者之通信系統之一影像感測器之一組態實例之一方塊圖。
圖35為繪示根據一修改之一接收區段之一組態實例之一方塊圖。
圖36為繪示根據一修改之一接收區段之一組態實例之一方塊圖。
下文將參考圖式詳細描述本發明之實施例。應注意,將依以下次序給出描述。
1.第一實施例
2.第二實施例
3.第三實施例
4.應用實例
<1.第一實施例>
(組態實例)
(整個組態實例)
圖1繪示應用根據一第一實施例之一接收器之一通信系統之一組態實例。在一通信系統1中,一接收器20偵測偏斜並調整該偏斜(去偏斜)。通信系統1包含一發射器10及接收器20。
發射器10包含一發射資料產生區段14以及三個發射區段11、12及13。發射資料產生區段14產生發射資料,將該發射資料劃分成三個片段,並將該三個發射資料片段供應至發射區段11、12及13。發射區段11透過一資料單工通道DL1將資料發射至接收器20,發射區段12透過一資料單工通道DL2將資料發射至接收器20,且發射區段13透過一資料單工通道DL3將資料發射至接收器20。此時,發射區段11、12及13各使用一封包PCT1來發射該資料。
圖2繪示封包PCT1之一組態實例。封包PCT1包含一發射開始(SoT)部分P1、一標頭部分P2、一有效負載部分P3、一註腳部分P4及一發射結束(EoT)部分P5。
SoT部分P1界定封包PCT1之起點,且可包含例如一前置碼P11及一同步碼P12。前置碼P11包含所有封包PCT1共有之一固定型樣。同步碼P12用於通信系統1中之同步且包含一固定型樣。
標頭部分P2可包含例如一錯誤偵測碼P21。錯誤偵測碼P21為用於執行標頭部分P2之錯誤核對之一程式碼,且在此實例中為一循環冗餘核對(CRC)碼。該錯誤偵測碼不限於此,且替代地,例如該錯誤偵測碼可為一漢明碼或一核對和碼。
有效負載部分P3包含待發射資料之一主體。
註腳部分P4可包含例如一錯誤偵測碼P41及一填充項P42。錯誤偵測碼P41為用於執行有效負載部分P3之錯誤核對之一程式碼,且在此實例中為一循環冗餘核對碼。填充項P42調整資料單工通道DL1、DL2與DL3之間的資料量之差,且必要時藉由一資料單工通道單元予以插入。
EoT部分P5界定封包PCT1之終點,且可包含例如一開機自我檢測碼(post code)P51。開機自我檢測碼P51具有對應於註腳部分P4之最新資料之一固定型樣。
發射區段11將封包PCT1發射至接收器20。此時,發射區段11使用三個信號SIG1A、SIG1B及SIG1C來將封包PCT1發射至接收器20。同樣地,發射區段12使用三個信號SIG2A、SIG2B及SIG2C來將封包PCT1發射至接收器20。此外,發射區段13使用三個信號SIG3A、SIG3B及SIG3C來將封包PCT1發射至接收器20。在此實例中,發射此等信號之發射路徑7A至7C、8A至8C及9A至9C之特性阻抗為50歐姆。
信號SIG1A至SIG1C、SIG2A至SIG2C及SIG3A至SIG3C各在三個電壓位準(高位準電壓VH、中間位準電壓VM及低位準電壓VL)之間轉變。在下文中,一信號SIGA適用於指示信號SIG1A、SIG2A及SIG3A之任一者,一信號SIGB適用於指示信號SIG1B、SIG2B及SIG3B之任一者,且一信號SIGC適用於指示信號SIG1C、SIG2C及SIG3C之任一者。
圖3繪示信號SIGA、SIGB及SIGC之電壓狀態。發射區段11、12及13之各者使用三個信號SIGA、SIGB及SIGC來發射六個符號「+x」、「-x」、「+y」、「-y」、「+z」及「-z」。例如,在發射符號「+x」時,發射區段11將信號SIGA設定至高位準電壓VH,將信號SIGB設定至低位準電壓VL,且將信號SIGC設定至中間位準電壓VM。在發射符號「-x」時,發射區段11將信號SIGA設定至低位準電壓VL,將信號SIGB設定至高位準電壓VH,且將信號SIGC設定至中間位準電壓VM。在發射符號「+y」時,發射區段11將信號SIGA設定至中間位準電壓VM,將信號SIGB設定至高位準電壓VH,且將信號SIGC設定至低位準電壓VL。在發射符號「-y」時,發射區段11將信號SIGA設定至中間位準電壓VM,將信號SIGB設定至低位準電壓VL,且將信號SIGC設定至高位準電壓VH。在發射符號「+z」時,發射區段11將信號SIGA設定至低位準電壓VL,將信號SIGB設定至中間位準電壓VM,且將信號SIGC設定至高位準電壓VH。在發射符號 「-z」時,發射區段11將信號SIGA設定至高位準電壓VH,將信號SIGB設定至中間位準電壓VM,且將信號SIGC設定至低位準電壓VL。
接收器20包含三個接收區段21、22及23。接收區段21接收信號SIG1A、SIG1B及SIG1C,接收區段22接收信號SIG2A、SIG2B及SIG2C,且接收區段23接收信號SIG3A、SIG3B及SIG3C。
(發射區段11、12及13)
圖4繪示發射區段11之一組態實例。應注意,其亦適用於發射區段11及12。發射區段11包含一信號產生區段15、一正反器(F/F)16及一輸出區段30。
信號產生區段15基於一符號CS、信號TxF、TxR及TxP以及一時脈TxCK判定一符號NS。符號CS及NS之各者指示六個符號「+x」、「-x」、「+y」、「-y」、「+z」及「-z」之任一者。符號CS為一當前發射之符號(當前符號),且符號NS為一隨後發射之符號(下一符號)。
圖5繪示信號產生區段15之操作。圖5繪示六個符號「+x」、「-x」、「+y」、「-y」、「+z」及「-z」及其間之轉變。
信號TxF允許符號在「+x」與「-x」之間轉變,允許符號在「+y」與「-y」之間轉變,且允許符號在「+z」與「-z」之間轉變。具體言之,在信號TxF為「1」時,執行轉變以便變更符號之極性(例如,從「+x」至「-x」),且在信號TxF為「0」時,不執行此轉變。
在信號TxF為「0」時,信號TxR及TxP各允許符號在「+x」與除「+x」外之符號之間轉變,允許符號在「+y」與除「+y」外之符號之間轉變,且允許符號在「+z」與除「+z」外之符號之間轉變。具體言之,在信號TxR及TxP分別為「1」及「0」時,在圖5中順時針執行轉變同時保持符號之極性(例如,從「+x」至「-x」),且在信號TxR及TxP分別為「1」及「1」時,在圖5中順時針執行轉變同時變更符號之極性(例如,從「+x」至「-y」)。此外,在信號TxR及TxP分別為 「0」及「0」時,在圖5中逆時針執行轉變同時保持符號之極性(例如,從「+x」至「+z」),且在信號TxR及TxP分別為「0」及「1」時,在圖5中逆時針執行轉變同時變更符號之極性(例如,從「+x」至「-z」)。
依此方式,在信號產生區段15中,藉由信號TxF、TxR及TxP判定符號之轉變方向。因此,信號產生區段15基於當前符號CS以及此等信號TxF、TxR及TxP判定下一符號NS。在此實例中,接著,信號產生區段15使用一3位元信號S1將符號NS供應至正反器16。
正反器16使信號S1延遲達時脈TxCK之一個時脈並將經延遲信號S1輸出為一3位元信號S2。換言之,正反器16使由信號S1指示之下一符號NS延遲達時脈TxCK之一個時脈以產生當前符號CS。接著,正反器16將信號S2供應至信號產生區段15及輸出區段30。
輸出區段30基於信號S2產生信號SIGA、SIGB及SIGC。
圖6繪示輸出區段30之一組態實例。輸出區段30包含一輸出控制區段31以及驅動器32A、32B及32C。
輸出控制區段31基於信號S2將一控制信號供應至驅動器32A、32B及32C之各者以控制驅動器32A、32B及32C之操作。
驅動器32A基於從輸出控制區段31供應之控制信號將信號SIGA之電壓狀態設定至三個電壓位準(高位準電壓VH、中間位準電壓VM及低位準電壓VL)之任一者。驅動器32B基於從輸出控制區段31供應之控制信號將信號SIGB之電壓狀態設定至三個電壓位準之任一者。驅動器32C基於從輸出控制區段31供應之控制信號將信號SIGC之電壓狀態設定至三個電壓位準之任一者。
藉由此組態,允許輸出區段30基於由信號S2指示之符號CS將信號SIGA、SIGB及SIGC之各者設定至對應於符號CS之三個電壓位準,如圖3中所繪示。
接著,更詳細描述輸出區段30之驅動器32A。應注意,其亦適用於驅動器32B及32C。
驅動器32A包含電晶體35及36以及電阻器37及38。在此實例中,電晶體35及36為N通道金屬氧化物半導體(MOS)場效應電晶體(FET)。電晶體35之一閘極供應有來自輸出控制區段31之控制信號,其汲極供應有電壓V1,且其源極連接至電阻器37之一第一端。電晶體36之一閘極供應有來自輸出控制區段31之控制信號,其汲極連接至電阻器38之一第一端,且其源極接地。電阻器37及38之各者用作一終端電阻器。電阻器37之第一端連接至電晶體35之源極,且其第二端連接至電阻器38之一第二端及一輸出端子ToutA。電阻器38之第一端連接至電晶體36之汲極,且其第二端連接至電阻器37之第二端及輸出端子ToutA。
例如,在信號SIGA設定至高位準電壓VH時,輸出控制區段31將高位準控制信號供應至電晶體35,且將低位準控制信號供應至電晶體36。因此,電晶體35進入接通狀態,且電晶體36進入關斷狀態,從而一輸出電流流動通過電晶體35,且信號SIGA設定至高位準電壓VH。例如,在信號SIGA設定至低位準電壓VL時,輸出控制區段31將低位準控制信號供應至電晶體35,且將高位準控制信號供應至電晶體36。因此,電晶體35進入關斷狀態,且電晶體36進入接通狀態,從而該輸出電流流動通過電晶體36,且信號SIGA設定至低位準電壓VL。例如,在信號SIGA設定至中間位準電壓VM時,輸出控制區段31將低位準控制信號供應至電晶體35及電晶體36。因此,電晶體35及電晶體36進入關斷狀態,且信號SIGA藉由接收區段21、22及23之電阻器41A、41B及41C(後文將描述)設定至中間電壓VM。
(接收區段21、22及23)
圖7繪示接收區段21之一組態實例。應注意,其亦適用於接收區 段22及23。接收區段21包含電阻器41A、41B及41C;放大器42A、42B及42C;延遲區段50A、50B及50C;一時脈產生區段43;正反器(F/F)44及45;一信號產生區段46;一型樣偵測區段47以及一控制區段48。
電阻器41A、41B及41C之各者用作通信系統1中之一終端電阻器。電阻器41A之一第一端連接至一輸入端子TinA且供應有信號SIGA,且其之一第二端連接至各自電阻器41B及41C之第二端。電阻器41B之一第一端連接至一輸入端子TinB且供應有信號SIGB,且其第二端連接至各自電阻器41A及41C之第二端。電阻器41C之一第一端連接至一輸入端子TinC且供應有信號SIGC,且其第二端連接至各自電阻器41A及41B之第二端。
放大器42A、42B及42C之各者輸出對應於一正輸入端子處之一信號與一負輸入端子處之一信號之間的差之一信號。放大器42A之一正輸入端子連接至放大器42C之一負輸入端子及電阻器41A之第一端,且供應有信號SIGA。放大器42A之一負輸入端子連接至放大器42B之一正輸入端子及電阻器41B之第一端,且供應有信號SIGB。放大器42B之正輸入端子連接至放大器42A之負輸入端子及電阻器41B之第一端,且供應有信號SIGB。放大器42B之一負輸入端子連接至放大器42C之一正輸入端子及電阻器41C之第一端,且供應有信號SIGC。放大器42C之正輸入端子連接至放大器42B之負輸入端子及電阻器41C之第一端,且供應有信號SIGC。放大器42C之負輸入端子連接至放大器42A之正輸入端子及電阻器41A之第一端,且供應有信號SIGA。
藉由此組態,放大器42A輸出對應於信號SIGA與信號SIGB之間的差之一信號,放大器42B輸出對應於信號SIGB與信號SIGC之間的差之一信號,且放大器42C輸出對應於信號SIGC與信號SIGA之間的差之一信號。
圖8繪示放大器42A、42B及42C之一操作實例。在此實例中,信號SIGA設定至高位準電壓VH,且信號SIGB設定至低位準電壓VL。此時,信號SIGC之電壓藉由電阻器41A、41B及41C設定至中間位準電壓VM。在此情況下,一電流Iin按次序流動通過輸入端子TinA、電阻器41A、電阻器41B及輸入端子TinB。放大器42A之正輸入端子供應有高位準電壓VH且其負輸入端子供應有低位準電壓VL,且據此其間之差變為正。因此,放大器42A輸出「1」。放大器42B之正輸入端子供應有低位準電壓VL且其負輸入端子供應有中間位準電壓VM,且據此其間之差變為負。因此,放大器42B輸出「0」。放大器42C之正輸入端子供應有中間位準電壓VM且其負輸入端子供應有高位準電壓VH,且據此其間之差變為負。因此,放大器42C輸出「0」。
延遲區段50A基於一延時控制信號CTLA設定一延遲量,且使放大器42A之輸出信號延遲並輸出該經延遲信號。延遲區段50A包含延遲緩衝器51至53及一選擇器54。延遲緩衝器51之一輸入端子連接至放大器42A之一輸出端子及選擇器54之一第一輸入端子。延遲緩衝器51之一輸出端子連接至延遲緩衝器52之一輸入端子及選擇器54之一第二輸入端子。延遲緩衝器52之輸入端子連接至延遲緩衝器51之輸出端子及選擇器54之第二輸入端子。延遲緩衝器52之一輸出端子連接至延遲緩衝器53之一輸入端子及選擇器54之一第三輸入端子。延遲緩衝器53之輸入端子連接至延遲緩衝器52之輸出端子及選擇器54之第三輸入端子。延遲緩衝器53之一輸出端子連接至選擇器54之一第四輸入端子。選擇器54基於延遲控制信號CTLA選擇並輸出輸入至第一輸入端子之一信號、輸入至第二輸入端子之一信號、輸入至第三輸入端子之一信號及輸入至第四輸入端子之一信號之一者。藉由此組態,延遲區段50A基於延遲控制信號CTLA而依四個位準調整放大器42A之輸出信號之延遲量。
同樣地,延遲區段50B基於一延遲控制信號CTLB設定延遲量,且延遲放大器42B之輸出信號並輸出該經延遲信號。延遲區段50C基於一延遲控制信號CTLC設定延遲量,且延遲放大器42C之輸出信號並輸出該經延遲信號。
藉由此組態,接收區段21之延遲區段50A、50B及50C分別調整資料單工通道DL1之信號SIG1A、SIG1B及SIG1C之偏斜。接收區段22之延遲區段50A、50B及50C分別調整資料單工通道DL2之信號SIG2A、SIG2B及SIG2C之偏斜。此外,接收區段23之延遲區段50A、50B及50C分別調整資料單工通道DL3之信號SIG3A、SIG3B及SIG3C之偏斜。
時脈產生區段43基於延遲區段50A、50B及50C之輸出信號產生一時脈RxCK。
正反器44使延遲區段50A、50B及50C之輸出信號延遲達時脈RxCK之一個時脈並輸出所得信號。換言之,正反器44之輸出信號之各者指示一當前符號CS2。在此,類似於符號CS及NS,當前符號SC2指示六個符號「+x」、「-x」、「+y」、「-y」、「+z」及「-z」之任一者。
正反器45使正反器44之三個輸出信號延遲達時脈RxCK之一個時脈並輸出所得信號。換言之,正反器45使當前符號CS2延遲達時脈RxCK之一個時脈以產生一符號PS2。符號PS2為一先前已接收之符號(先前符號),且類似於符號CS、NS及CS2,符號PS2指示六個符號「+x」、「-x」、「+y」、「-y」、「+z」及「-z」之任一者。
信號產生區段46基於正反器44及45之輸出信號以及時脈RxCK產生信號RxF、RxR及RxP。由接收區段21之信號產生區段46產生之信號RxF、RxR及RxP分別對應於發射區段11中之信號TxF、TxR及TxP。由接收區段22之信號產生區段46產生之信號RxF、RxR及RxP分別對應於發射區段12中之信號TxF、TxR及TxP。由接收區段23之信號 產生區段46產生之信號RxF、RxR及RxP分別對應於發射區段13中之信號TxF、TxR及TxP。換言之,類似於信號TxF、TxR及TxP,此等信號RxF、RxR及RxP指示符號轉變。信號產生區段46基於由正反器44之輸出信號指示之當前符號CS2及由正反器45之輸出信號指示之先前符號PS2,識別符號轉變(圖5)以產生信號RxF、RxR及RxP。
型樣偵測區段47基於信號RxF、RxR及RxP偵測型樣。具體言之,在一校準模式中,型樣偵測區段47比較經接收封包PCT1之SoT部分P1中之同步碼P12與一已知型樣,且使用標頭部分P2中之錯誤偵測碼P21偵測一錯誤。接著,在未偵測到一錯誤時,型樣偵測區段47透過一信號DET向控制區段48通知型樣之比較結果。換言之,同步碼P12為各封包PCT1中包含之一固定型樣且係已知的。因此,型樣偵測區段47比較經接收封包PCT1之同步碼P12與此一已知型樣。此時,在延遲區段50A、50B及50C所作之偏斜調整已夠充分時,圖案彼此一致,且在偏斜調整不夠充分時,圖案彼此不一致。型樣偵測區段47向控制區段48通知此一比較結果。
在校準模式中,控制區段48判定延遲區段50A、50B及50C之延遲量。具體言之,在校準模式中,控制區段48分別透過延遲控制信號CTLA、CTLB及CTLC循序地設定延遲區段50A、50B及50C之延遲量,並基於由型樣偵測區段47所得之比較結果(信號DET)判定延遲區段50A、50B及50C之延遲量。可例如在通信系統1之電源接通時設定校準模式。此外,該校準模式可經如此組態以便予以週期性地設置。
如上文所述,在通信系統1中,在校準模式中,接收區段21之延遲區段50A、50B及50C分別調整資料單工通道DL1中之信號SIG1A、SIG1B及SIG1C之偏斜。接收區段22之延遲區段50A、50B及50C分別調整資料單工通道DL2中之信號SIG2A、SIG2B及SIG2C之偏斜。接收區段23之延遲區段50A、50B及50C分別調整資料單工通道DL3中之信 號SIG3A、SIG3B及SIG3C之偏斜。因此,在通信系統1中,可能增強通信效能。
在此,放大器42A至42C對應於本發明中之「第一放大器區段」之一特定但為非限制性的實例。延遲區段50A至50C對應於本發明中之「第一延遲區段」之一特定但為非限制性的實例。正反器44及45、信號產生區段46、型樣偵測區段47及控制區段48對應於本發明中之「控制區段」之一特定但為非限制性的實例。
(操作及功能)
隨後,將描述根據第一實施例之通信系統1之操作及一功能。
(一般操作概要)
首先,參考圖1、圖4、圖7等,描述通信系統1之一般操作概要。發射資料產生區段14產生發射資料,將該發射資料劃分成三個片段,並將該三個發射資料片段供應至發射區段11、12及13。發射區段11將信號SIG1A、SIG1B及SIG1C發射至接收區段21,發射區段12將信號SIG2A、SIG2B及SIG2C發射至接收區段22,且發射區段13將信號SIG3A、SIG3B及SIG3C發射至接收區段23。
在發射區段11、12及13之各者中,信號產生區段15基於當前符號CS以及信號TxF、TxR及TxP判定下一符號NS,並將下一符號NS輸出為信號S1。正反器16使信號S1延遲達時脈TxCK之一個時脈,並將經延遲信號S1輸出為信號S2。輸出區段30基於信號S2產生信號SIGA、SIGB及SIGC。
在接收區段21、22及23之各者中,放大器42A輸出對應於信號SIGA與信號SIGB之間的差之信號,放大器42B輸出對應於信號SIGB與信號SIGC之間的差之信號,且放大器42C輸出對應於信號SIGC與信號SIGA之間的差之信號。延遲區段50A基於延遲控制信號CTLA設定延遲量以使放大器42A之輸出信號延遲,延遲區段50B基於延遲控 制信號CTLB設定延遲量以使放大器42B之輸出信號延遲,且延遲區段50C基於延遲控制信號CTLC設定延遲量以使放大器42C之輸出信號延遲。時脈產生區段43基於延遲區段50A、50B及50C之輸出信號產生時脈RxCK。正反器44使延遲區段50A、50B及50C之輸出信號延遲達時脈RxCK之一個時脈並輸出所得信號。正反器45使正反器44之三個輸出信號延遲達時脈RxCK之一個時脈並輸出所得信號。信號產生區段46基於正反器44及45之輸出信號以及時脈RxCK產生信號RxF、RxR及RxP。型樣偵測區段47基於信號RxF、RxR及RxP偵測型樣。具體言之,在校準模式中,型樣偵測區段47比較經接收封包PCT1之同步碼P12與一已知型樣,且使用錯誤偵測碼P21偵測一錯誤。接著,在未偵測到一錯誤時,型樣偵測區段47透過信號DET向控制區段48通知型樣之比較結果。在校準模式中,控制區段48判定延遲區段50A、50B及50C之延遲量。
(接收區段21、22及23之詳細操作)
圖9繪示接收區段21之一操作實例。應注意,其亦適用於接收區段22及23。在校準模式中,控制區段48循序地切換延遲控制信號CTLA、CTLB及CTLC以循序地設定延遲區段50A、50B及50C之延遲量,且獲取由型樣偵測區段47所得之比較結果。接著,控制區段48基於該比較結果判定延遲區段50A、50B及50C之延遲量。下文將詳細描述該操作。
首先,接收區段21之控制區段48將操作模式設定至校準模式(步驟S1)。
接著,控制區段48將延遲區段50A、50B及50C之延遲量設定至最小值(步驟S2)。具體言之,控制區段48使用延遲控制信號CTLA、CTLB及CTLC控制延遲區段50A、50B及50C之各者中之選擇器54以選擇並輸出輸入至第一輸入端子之一信號。
接著,型樣偵測區段47執行型樣比較(步驟S3)。具體言之,型樣偵測區段47比較經接收封包PCT1之同步碼P12與一已知型樣,且使用錯誤偵測碼P21偵測一錯誤。接著,在未偵測到一錯誤時,型樣偵測區段47透過信號DET向控制區段48通知型樣之比較結果。
隨後,控制區段48確認是否已設定延遲區段50A、50B及50C之延遲量之所有組合(步驟S4)。
當在步驟S4處未確認已設定延遲區段50A、50B及50C之延遲量之所有組合時(在步驟S4處為「否」),控制區段48設定延遲區段50A、50B及50C之延遲量之所有組合中之未設組合之延遲量(步驟S5),且程序返回至步驟S3。接著,重複步驟S3至S5處之程序直至設定延遲區段50A、50B及50C之延遲量之所有組合為止。換言之,在此實例中,由於依四個位準設定延遲區段50A、50B及50C之各者之延遲量之所有組合,故型樣偵測區段47執行型樣比較64次。
當在步驟S4處確認已設定延遲區段50A、50B及50C之延遲量之所有組合時(在步驟S4處為「是」),控制區段48判定延遲區段50A、50B及50C之延遲量(步驟S6)。具體言之,控制區段48基於在步驟S3至S5處所獲取之型樣比較結果選擇延遲區段50A、50B及50C之延遲量,使得同步碼P12與已知型樣一致。存在其中同步碼P12與已知型樣一致之複數個延遲量組合,例如,即使因溫度變動、電源電壓變動等進一步產生偏斜,控制區段48亦可選擇具有預期允許通信同時抑制受偏斜影響之一大裕度之一組合。接著,控制區段48指示延遲區段50A、50B及50C分別透過延遲控制信號CTLA、CTLB及CTLC使輸入信號延遲達在步驟S6處所判定之對應延遲量。
接著,控制區段44結束校準模式(步驟S7)。
依此方式,結束流程。此後,延遲區段50A、50B及50C使信號SIGA、SIGB及SIGC分別延遲達在步驟S6處所判定之延遲量。此允許 接收區段21、22及23分別接收從發射區段11、12及13發射之資料,同時抑制受偏斜影響。據此,可能增強通信系統1中之通信效能。
此外,在通信系統1中,可能簡化組態,此係因為使用經接收封包PCT1之同步碼P12調整偏斜。通常,在一通信系統中,常使用用於通信同步之一固定碼,諸如同步碼P12。在通信系統1中,使用此一已知的固定碼執行型樣比較。因此,沒必要提供產生用於偏斜調整之一特定碼之一電路,其可能簡化組態。
此外,在通信系統1中,依此方式調整偏斜。因此,諸如發射器10之一印刷電路板(PCB)及接收器20之一印刷電路板之構件適用於各種應用。
圖10A繪示發射器10之一安裝實例。在此實例中,其中整合發射資料產生區段14、發射區段11、12及13等之一晶片110安裝於一印刷電路板100上。印刷電路板100包含十個圖案佈線101。圖案佈線101之各者之一第一端連接至晶片110,且其之一第二端與一連接器102安裝在一起。在十個圖案佈線101中,九個圖案佈線101對應於資料單工通道DL1、DL2及DL3。在此實例中未使用剩餘的一個圖案佈線101。資料單工通道DL1、DL2及DL3之各者中之三個圖案佈線之長度可合意地等於彼此。
圖10B繪示根據使用印刷電路板100之另一應用之一發射器200之一安裝實例。在此實例中,一晶片120安裝於印刷電路板100上。在此實例中,藉由整合輸出五對差動信號(通道CH1至CH5)之電路組態晶片120。在通道CH1至CH5之各者中,兩個圖案佈線之長度可合意地等於彼此。
如圖10A及圖10B中所繪示,當在兩個應用中使用相同印刷電路板100時,例如,十個圖案佈線之長度可合意地等於彼此。然而,實際上,此圖案佈局通常係困難的。在此一情況下,例如,存在其中對 圖10B中所繪示之應用賦予優先權且使通道CH1至CH5之各者中之兩個圖案佈線之長度等於彼此之一情況。在其中此一印刷電路板100用於發射器10中之情況下,在資料單工通道DL1、DL2及DL3之各者中,三個圖案佈線之長度不等於彼此,其可致使偏斜。特定言之,在資料傳送速率為高時,偏斜變得顯著。在通信系統1中,如上文所述般調整偏斜。因此,在此一情況下,可能執行通信同時抑制受偏斜影響。
順便提及,在此實例中,印刷電路板100適用於複數個應用。然而,此係非限制性的。例如,在預備其中可藉由切換實現晶片110及晶片120兩者之功能之一晶片時,其中此一晶片安裝於印刷電路板100上之一模組亦適用於複數個應用。依此方式,各種構件適用於各種應用。
(效應)
如上文所述,在第一實施例中,在接收區段中提供三個延遲區段。因此,可能增強通信效能,且諸如一印刷電路板之構件適用於各種應用。
在第一實施例中,使用一同步碼調整偏斜。因此,可能簡化組態。
(修改1-1)
在如上文所述之實施例中,在接收區段21、22及23中調整偏斜。然而,組態不限於此,且可在發射區段中進一步調整偏斜。下文將詳細描述本修改。
圖11繪示根據本修改之一通信系統1A之一組態實例。通信系統1A包含一接收器20A及一發射器10A。
接收器20A包含接收區段21A、22A及23A以及一延遲量資訊發射區段27A。接收區段21A接收信號SIG1A、SIG1B及SIG1C且產生延遲 量資訊IS1。接收區段22A接收信號SIG2A、SIG2B及SIG2C且產生延遲量資訊IS2。接收區段23A接收信號SIG3A、SIG3B及SIG3C且產生延遲量資訊IS3。
圖12繪示接收區段21A之一組態實例。應注意,其亦適用於接收區段22A及23A。接收區段21A包含一控制區段48A。類似於根據上文所述之實施例之控制區段48,在校準模式中,控制區段48A判定延遲區段50A、50B及50C之延遲量。此外,控制區段48A亦具有將關於該經判定延遲量之資訊輸出為延遲量資訊IS1之一功能。
延遲量資訊發射區段27A將從接收區段21A、22A及23A供應之延遲量資訊IS1、IS2及IS3分別發射至發射器10A作為延遲量資訊IS。可透過一預備的專用信號線發射延遲量資訊IS。替代地,例如,可透過資料單工通道DL1至DL3中之未使用的資料單工通道發射延遲量資訊IS。
發射器10A包含一延遲量資訊接收區段17A以及發射區段11A、12A及13A。延遲量資訊接收區段17A接收從接收器20A供應之延遲量資訊IS。接著,延遲量資訊接收區段17A基於經接收延遲量資訊IS,產生指示發射區段11A之延遲區段33A、33B及33C(後文將描述)之延遲量之一控制信號IT1,產生指示發射區段11B之延遲區段33A、33B及33C(後文將描述)之延遲量之一控制信號IT2,且產生指示發射區段11C之延遲區段33A、33B及33C(後文將描述)之延遲量之一控制信號IT3。發射區段11A基於控制信號IT1,透過資料單工通道DL1將資料發射至接收區段21A。發射區段12A基於控制信號IT2,透過資料單工通道DL2將資料發射至接收區段22A。發射區段13A基於控制信號IT3,透過資料單工通道DL3將資料發射至接收區段23A。
圖13繪示發射區段11A之一組態實例。圖14繪示發射區段11A之一輸出區段30A之一組態實例。應注意,其亦適用於發射區段12A及 13A。輸出區段30A包含一控制區段39以及延遲區段33A、33B及33C。控制區段39基於控制信號IT1控制延遲區段33A、33B及33C之延遲量。延遲區段33A內插於輸出控制區段31與驅動器32A之間。延遲區段33A基於從控制區段39供應之延遲控制信號使從輸出控制區段31供應之兩個控制信號延遲,並將該等經延遲控制信號供應至驅動器32A。延遲區段33B內插於輸出控制區段31與驅動器32B之間。延遲區段33B基於從控制區段39供應之延遲控制信號使從輸出控制區段31供應之兩個控制信號延遲,並將該等經延遲控制信號供應至驅動器32B。延遲區段33C內插於輸出控制區段31與驅動器32C之間。延遲區段33C基於從控制區段39供應之延遲控制信號使從輸出控制區段31供應之兩個控制信號延遲,並將該等經延遲信號供應至驅動器32C。在此實例中,延遲區段33A、33B及33C之各者之組態類似於延遲區段50A等之組態。藉由此組態,發射區段11A之延遲區段33A、33B及33C分別調整資料單工通道DL1之信號SIG1A、SIG1B及SIG1C之偏斜。發射區段12A之延遲區段33A、33B及33C分別調整資料單工通道DL2之信號SIG2A、SIG2B及SIG2C之偏斜。發射區段13A之延遲區段33A、33B及33C分別調整資料單工通道DL3之信號SIG3A、SIG3B及SIG3C之偏斜。
依此方式,在通信系統1A中,不僅在接收區段21、22及23中調整偏斜,而且在發射區段11A、12A及13A中調整偏斜。因此,可能解決較大偏斜。具體言之,例如,即使除產生由三個信號SIGA、SIGB及SIGC經發射通過之路徑之長度之差所致之偏斜外,亦歸因於溫度變動、電源電壓變動等而進一步產生偏斜,但仍可執行通信同時抑制受偏斜影響。
(修改1-2)
在上文所述之實施例中,在接收區段21、22及23中調整偏斜。 組態不限於此,且替代地,例如發射區段可調整偏斜。具體言之,例如,在根據修改1-1之通信系統1A(圖11至圖14)中,接收區段21A、22A及23A可省略延遲區段50A、50B及50C。甚至在依此方式組態該通信系統時,可獲得類似於根據上文所述之實施例之通信系統1之效應之效應。
(修改1-3)
在上文所述之實施例中,基於接收區段21之接收結果判定接收區段21中之延遲區段50A、50B及50C之延遲量,基於接收區段22之接收結果判定接收區段22中之延遲區段50A、50B及50C之延遲量,且基於接收區段23之接收結果判定接收區段23中之延遲區段50A、50B及50C之延遲量。然而,組態不限於此,且替代地,例如可進一步提供判定接收區段21、22及23之各者中之延遲區段50A、50B及50C之延遲量之一冗餘接收區段。下文將詳細描述根據本修改之一通信系統1C。
圖15繪示通信系統1C之一組態實例。通信系統1C包含一接收器20C。接收器20C包含一接收區段28C以及接收區段21C、22C及23C。接收區段28C基於信號SIG1A至SIG1C、SIG2A至SIG2C及SIG3A至SIG3C產生延遲量資訊IS1、IS2及IS3。
圖16繪示接收區段28C之一組態實例。接收區段28C包含選擇器55A、55B及55C以及一控制區段58C。
選擇器55A基於一資料單工通道選擇信號SEL選擇並輸出信號SIG1A、SIG2A及SIG3A之一者。選擇器55B基於資料單工通道選擇信號SEL選擇並輸出信號SIG1B、SIG2B及SIG3B之一者。選擇器55C基於資料單工通道選擇信號SEL選擇並輸出信號SIG1C、SIG2C及SIG3C之一者。換言之,選擇器55A、55B及55C各基於資料單工通道選擇信號SEL選擇關於資料單工通道DL1至DL3之一者之信號SIGA、SIGB或 SIGC。
類似於根據上文所述之實施例之控制區段48,控制區段58C透過資料單工通道選擇信號SEL選擇資料單工通道DL1、DL2及DL3之一者,並基於對應於該選定資料單工通道之三個信號判定延遲區段50A、50B及50C之延遲量。接著,控制區段58C將基於對應於資料單工通道DL1之三個信號SIG1A、SIG1B及SIG1B判定之延遲量輸出為延遲量資訊IS1,將基於對應於資料單工通道DL2之三個信號SIG2A、SIG2B及SIG2C判定之延遲量輸出為延遲量資訊IS2,且將基於對應於資料單工通道DL3之三個信號SIG3A、SIG3B及SIG3C判定之延遲量輸出為延遲量資訊IS3。
接收區段21C基於延遲量資訊IS1接收信號SIG1A、SIG1B及SIG1C。接收區段22C基於延遲量資訊IS2接收信號SIG2A、SIG2B及SIG2C。接收區段23C基於延遲量資訊IS3接收信號SIG3A、SIG3B及SIG3C。
圖17繪示接收區段21C之一組態實例。應注意,其亦適用於接收區段22C及23C。接收區段21C包含一控制區段48C。類似於根據上文所述之實施例之控制區段48,在校準模式中,控制區段48C判定延遲區段50A、50B及50C之延遲量。此外,在一正常操作模式中,控制區段48C亦具有基於延遲量資訊IS1設定延遲區段50A、50B及50C之延遲量之一功能。
藉由此組態,在通信系統1C中,首先,接收區段21C、22C及23C在電源接通時依校準模式操作且調整偏斜。接著,在結束校準模式之後,接收區段21C、22C及23C依正常操作模式操作,且分別接收從發射區段11、12及13發射之資料。接著,接收區段28C循序地選擇資料單工通道DL1、DL2及DL3之一者,基於對應於該選定資料單工通道之三個信號判定延遲區段50A、50B及50C之延遲量以產生延遲量 資訊IS1、IS2及IS3。接收區段21C基於延遲量資訊IS1重新調整偏斜,接收區段22C基於延遲量資訊IS2重新調整偏斜,且接收區段23C基於延遲量資訊IS3重新調整偏斜。
依此方式,在通信系統1C中,接收區段28C循序地檢查資料單工通道DL1、DL2及DL3之各者中之三個信號之偏斜,而接收區段21C、22C及23C分別接收從發射區段11、12及13發射之資料。因此,在通信系統1C中,即使偏斜歸因於溫度變動、電源電壓變動等而變化,仍可在不停止通信之情況下調整偏斜。
順便提及,在此實例中,接收區段21C、22C及23C各獨自地在校準模式中調整偏斜,且在結束校準模式之後分別基於延遲量資訊IS1、IS2及IS3調整偏斜。然而,組態不限於此。例如,可不提供校準模式且接收區段21C、22C及23C可分別基於延遲量資訊IS1、IS2及IS3恆定地調整偏斜。圖18繪示在此情況下之一接收區段21D之一組態實例。應注意,其亦適用於接收區段22D及23D。藉由在根據上文所述之修改之接收區段21中省略型樣偵測區段47並用一控制區段48D取代控制區段48C來組態接收區段21D。控制區段48D基於偏斜資訊IS1設定延遲區段50A、50B及50C之延遲量。在此組態中,接收區段21D、22D及23D不獨自地執行偏斜調整,而是分別基於由接收區段28C產生之延遲量資訊IS1、IS2及IS3執行偏斜調整。
(修改1-4)
在上文所述之實施例中,控制區段48循序地變更三個延遲區段50A、50B及50C之延遲量。然而,組態不限於此,且例如,控制區段48可循序地變更三個延遲區段50A、50B及50C之一者或兩者之延遲量。具體言之,例如,在印刷電路板之圖案佈線之一者之佈線長度不同於其他圖案佈線之佈線長度時,僅可調整關於圖案佈線之一者之佈線長度之延遲區段之延遲量。
(修改1-5)
在上文所述之實施例中,例如,在輸出端子Tout1之電壓設定至中間位準電壓VM時,電晶體35及36進入關斷狀態。然而,組態不限於此,且替代地,電晶體35及36可進入接通狀態。此達成戴維寧(Thevenin)端接,且可將輸出端子Tout1之電壓設定至中間位準電壓VM。
(其他修改)
可組合此等修改之兩者或更多者。
<2.第二實施例>
接著,描述根據一第二實施例之一通信系統2。在第二實施例中,提供專用於偏斜調整之一封包。應注意,類似數字用於指定根據上文所述之第一實施例之通信系統1之實質上類似的組件,且其描述被適當地省略。
圖19繪示通信系統2之一組態實例。通信系統2包含一發射器60及一接收器70。發射器60包含發射區段11A、12A及13A、一控制區段67以及一發射資料產生區段64。
如圖13及圖14中所繪示,發射區段11A基於控制信號IT1設定延遲區段33A、33B及33C之延遲量,且透過資料單工通道DL1將資料發射至接收器70。同樣地,發射區段12A基於控制信號IT2設定延遲區段33A、33B及33C之延遲量,且透過資料單工通道DL2將資料發射至接收器70,並且發射區段13A基於控制信號IT3設定延遲區段33A、33B及33C之延遲量,且透過資料單工通道DL3將資料發射至接收器70。
在校準模式中,控制區段67產生指示發射區段11A之延遲區段33A、33B及33C之延遲量之控制信號IT1,產生指示發射區段12A之延遲區段33A、33B及33C之延遲量之控制信號IT2,產生指示發射區 段13A之延遲區段33A、33B及33C之延遲量之控制信號IT3,且產生包含關於此等延遲量之資訊之延遲量資料DD。此外,控制區段67亦具有基於延遲量資料ID產生控制信號IT1、IT2及IT3之一功能。
發射資料產生區段64基於延遲量資料DD,產生包含發射區段11A之延遲區段33A至33C之延遲量之資訊之發射資料以將該發射資料供應至發射區段11A,產生包含發射區段12A之延遲區段33A至33C之延遲量之資訊之發射資料以將該發射資料供應至發射區段12A,且產生包含發射區段13A之延遲區段33A至33C之延遲量之資訊之發射資料以將該發射資料供應至發射區段13A。
藉由此組態,發射區段11A、12A及13A各依正常操作模式使用封包PCT1(圖2)發射資料,且各依校準模式使用不同於封包PCT1之一封包PCT2發射資料。
圖20繪示封包PCT2之一組態實例。SoT部分P1包含校準模式特有之一同步碼P13來取代正常操作模式中之同步碼P12。此外,有效負載部分P3包含指示發射區段11A、12A及13A中之發射封包PCT2之發射區段之延遲區段33A至33C之延遲量之延遲量資料P31。
接收器70包含接收區段71至73及一延遲量資料發射區段77。接收區段71接收信號SIG1A、SIG1B及SIG1C且產生延遲量資料ID1。接收區段72接收信號SIG2A、SIG2B及SIG2C且產生延遲量資料ID2。接收區段73接收信號SIG3A、SIG3B及SIG3C且產生延遲量資料ID3。
圖21繪示接收區段71之一組態實例。應注意,其亦適用於接收區段72及73。藉由在根據第一實施例之接收區段21(圖7)中省略延遲區段50A、50B及50C以及控制區段48並用型樣偵測區段79取代型樣偵測區段47來組態接收區段71。型樣偵測區段79藉由型樣比較偵測經接收封包之SoT部分P1中之同步碼是同步碼P12還是P13。在該經偵測同步碼為同步碼P13時,型樣偵測區段79判定經接收封包為封包PCT2, 且從有效負載部分P3獲取延遲量資料P31以將延遲量資料P31輸出為延遲量資料ID1。
延遲量資料發射區段77將從各自接收區段71、72及73供應之延遲量資料ID1、ID2及ID3發射至發射器60作為延遲量資料ID。可透過一預備的專用信號線發射延遲量資料ID。此外,例如,可透過資料單工通道DL1至DL3中之未使用的資料單工通道發射延遲量資料ID。
圖22繪示通信系統2之一操作實例。
首先,發射器60之控制區段67將操作模式設定至校準模式(步驟S11)。
接著,控制區段67將發射區段11A、12A及13A之各者中之延遲區段33A、33B及33C之延遲量設定至最小值(步驟S12)。
接著,發射器60發射資料(步驟S13)。具體言之,首先,控制區段67產生包含以下資訊之延遲量資料DD:關於發射區段11A之延遲區段33A、33B及33C之延遲量之資訊、關於發射區段12A之延遲區段33A、33B及33C之延遲量之資訊及關於發射區段12C之延遲區段33A、33B及33C之延遲量之資訊。接著,發射資料產生區段64基於延遲量資料DD,產生包含發射區段11A之延遲區段33A、33B及33C之延遲量之資訊之發射資料以將該發射資料供應至發射區段11A,產生包含發射區段12A之延遲區段33A、33B及33C之延遲量之資訊之發射資料以將該發射資料供應至發射區段12A,且產生包含發射區段13A之延遲區段33A、33B及33C之延遲量之資訊之發射資料以將該發射資料供應至發射區段13A。接著,發射區段11A透過資料單工通道DL1將資料發射至接收區段71,發射區段11B透過資料單工通道DL2將資料發射至接收區段72,且發射區段11C透過資料單工通道DL3將資料發射至接收區段73。依此方式,發射區段11A、12A及13A各使用圖20中所繪示之封包PCT2發射資料。
接著,接收區段71、72及73之各者中之型樣偵測區段79執行型樣偵測(步驟S14)。具體言之,各型樣偵測區段79藉由型樣比較偵測經接收封包之SoT部分P1中之同步碼是同步碼P12還是P13。接著,在該經偵測同步碼為同步碼P13時,各型樣偵測區段79判定經接收封包為封包PCT2,且從有效負載部分P3獲取延遲量資料P31。接著,接收區段71之型樣偵測區段79將延遲量資料P31輸出為延遲量資料ID1,接收區段72之型樣偵測區段79將延遲量資料P31輸出為延遲量資料ID2,且接收區段73之型樣偵測區段79將延遲量資料P31輸出為延遲量資料ID3。接著,延遲量資料發射區段77將延遲量資料ID1、ID2及ID3發射至發射器60作為延遲量資料ID。
接著,發射器60之控制區段67確認是否已設定發射區段11A、12A及13A之各者中之延遲區段33A、33B及33C之延遲量之所有組合(步驟S15)。
當在步驟S15處未確認已設定延遲區段33A、33B及33C之延遲量之所有組合時(在步驟S15處為「否」),控制區段67設定延遲區段33A、33B及33C之延遲量之所有組合中之未設組合之延遲量(步驟S16),且程序返回至步驟S13。接著,重複步驟S13至S16處之程序直至已設定延遲區段33A、33B及33C之延遲量之所有組合為止。換言之,在此實例中,由於依四個位準設定延遲區段33A、33B及33C之各者之延遲量,故控制區段67執行型樣比較64次。
當在步驟S15處確認已設定延遲區段33A、33B及33C之延遲量之所有組合時(在步驟S15處為「是」),控制區段67判定發射區段11A、12A及13A之各者中之延遲區段33A、33B及33C之延遲量(步驟S17)。具體言之,控制區段67基於在步驟S13至S16處獲取之延遲量資料ID,判定發射區段11A之延遲區段33A至33C之延遲量,判定發射區段12A之延遲區段33A至33C之延遲量,且判定發射區段13A之延遲區段 33A至33C之延遲量。接著,控制區段67透過控制信號IT1、IT2及IT3指示發射區段11A、12A及13A之各者中之延遲區段33A、33B及33C使輸入信號延遲達在步驟S17處所判定之對應延遲量。
接著,控制區段67結束校準模式(步驟S18)。
依此方式結束流程。此後,發射區段11A、12A及13A之各者中之延遲區段33A、33B及33C各使信號延遲達在步驟S17處所判定之延遲量。依此方式,由發射區段11A、11B及11C執行偏斜調整。因此,可增強通信系統2中之通信效能。
在通信系統2中,提供專用於偏斜調整之封包PCT2。因此,例如,在封包PCT2之有效負載部分P3中包含延遲量資料P31,其可增強偏斜調整之靈活性。
如上文所述,在第二實施例中,提供專用於偏斜調整之封包。因此,可增強偏斜調整之靈活性。其他效應類似於上文所述之第一實施例中之效應。
(修改2-1)
在上文所述之實施例中,發射器60之控制區段67基於延遲量資料ID判定發射區段11A、12A及13A之各者中之延遲區段33A、33B及33C之延遲量。然而,組態不限於此。替代地,例如,接收器70之延遲量資料發射區段77可基於延遲量資料ID1判定發射區段11A之延遲區段33A、33B及33C之延遲量,可基於延遲量資料ID2判定發射區段11B之延遲區段33A、33B及33C之延遲量,且可基於延遲量資料ID3判定發射區段11C之延遲區段33A、33B及33C之延遲量,並將該等經判定延遲量發射至發射器60作為延遲量資料ID。
<3.第三實施例>
接著,描述根據一第三實施例之一通信系統3。在第三實施例中,藉由不同於型樣比較之一方法執行偏斜調整。應注意,類似數字 用於指定根據上文所述之第一實施例等之通信系統1及2之實質上類似的組件,且其描述被適當地省略。
圖23繪示通信系統3之一組態實例。通信系統3包含一發射器80及一接收器90。
發射器80包含一控制區段87。在校準模式中,控制區段87接收從接收器90供應之相位資訊IP。控制區段87基於相位資訊IP,產生指示發射區段11A之延遲區段33A、33B及33C之延遲量之控制信號IT1,產生指示發射區段11B之延遲區段33A、33B及33C之延遲量之控制信號IT2,且產生指示發射區段11C之延遲區段33A、33B及33C之延遲量之控制信號IT3。
接收器90包含接收區段91、92及93以及一相位資訊發射區段97。接收區段91接收信號SIG1A、SIG1B及SIG1C,且產生相位資訊IP1。接收區段92接收信號SIG2A、SIG2B及SIG2C,且產生相位資訊IP2。接收區段93接收信號SIG3A、SIG3B及SIG3C,且產生相位資訊IP3。
圖24繪示接收區段91之一組態實例。應注意,其亦適用於接收區段92及93。藉由在根據第一實施例之接收區段21(圖7)中省略型樣偵測區段47、控制區段48以及延遲區段50A、50B及50C並添加一相位比較電路130來組態接收區段91。
在此實例中,相位比較電路130比較放大器42A之一輸出信號SAB之一相位、放大器42B之一輸出信號SBC之一相位與放大器42C之一輸出信號SCA之一相位。相位比較電路130包含正反器(F/F)131至133及136至138,以及及(AND)電路134及139。正反器131之一資料輸入端子連接至放大器42B之輸出端子,其時脈端子連接至放大器42A之輸出端子,且其之一輸出端子連接至AND電路134之一第一輸入端子及正反器132之一資料輸入端子。正反器132之資料輸入端子連接至 正反器131之輸出端子及AND電路134之第一輸入端子,其之一時脈輸入端子連接至放大器42A之輸出端子,且其之一輸出端子連接至AND電路134之一第二輸入端子及正反器133之一資料輸入端子。正反器133之資料輸入端子連接至正反器132之輸出端子及AND電路134之第二輸入端子,其之一時脈輸入端子連接至放大器42A之輸出端子,且其之一輸出端子連接至AND電路134之一第三輸入端子。AND電路134判定並輸出正反器131至133之輸出信號之一邏輯乘積。正反器136之一資料輸入端子連接至放大器42C之輸出端子,其之一時脈端子連接至放大器42A之輸出端子,且其之一輸出端子連接至AND電路139之一第一輸入端子及正反器137之一資料輸入端子。正反器137之資料輸入端子連接至正反器136之輸出端子及AND電路139之第一輸入端子,其之一時脈輸入端子連接至放大器42A之輸出端子,且其之一輸出端子連接至AND電路139之一第二輸入端子及正反器138之一資料輸入端子。正反器138之資料輸入端子連接至正反器137之輸出端子及AND電路139之第二輸入端子,其之一時脈輸入端子連接至放大器42A之輸出端子,且其之一輸出端子連接至AND電路139之一第三輸入端子。AND電路139判定並輸出正反器136至138之輸出信號之一邏輯乘積。相位比較電路130將AND電路134及139之輸出信號輸出為相位資訊IP1。
相位資訊發射區段97將分別從接收區段91、92及93供應之相位資訊IP1、IP2及IP3發射至發射器80作為相位資訊IP。相位資訊發射區段97可包含例如選擇並輸出相位資訊IP1、IP2及IP3之一者之一選擇器。透過一預備的專用信號線發射相位資訊IP。應注意,組態不限於此,且例如,可在不提供該選擇器之情況下藉由並行信號發射相位資訊IP。此外,例如,相位資訊發射區段97可透過資料單工通道DL1至DL3中之未使用的資料單工通道發射相位資訊IP。
圖25繪示通信系統3之一操作實例。
首先,發射器80之控制區段87將操作模式設定至校準模式(步驟S21)。
接著,發射區段11A、12A及13A之各者交替地發射符號「+x」及「-x」(步驟S22)。具體言之,例如,可使用封包PCT1之開機自我檢測碼P51。開機自我檢測碼P51具有其中交替地配置符號「+x」及「-x」之一型樣、其中交替地配置符號「+y」及「-y」之一型樣或其中交替地配置符號「+z」及「-z」之一型樣,此取決於註腳部分P4之最新資料。發射區段11A、12A及13A之各者可使用例如此一開機自我檢測碼P51來交替地發射符號「+x」及「-x」。
接著,控制區段87循序地設定發射區段11A、12A及13A之各者中之延遲區段33A及33B之延遲量以獲取相位資訊IP(步驟S23)。
圖26至圖28繪示相位比較電路130之相位比較操作。圖26繪示其中信號SIGA之相位與信號SIGB之相位實質上一致之一情況,圖27繪示其中信號SIGA之相位先於信號SIGB之相位之一情況,且圖28繪示其中信號SIGA之相位遲於信號SIGB之相位之一情況。在圖26至圖28中,(A)繪示信號SIGA之一波形,(B)繪示信號SIGB之一波形,(C)繪示信號SIGC之一波形,(D)繪示信號SIGA與信號SIGB之間的差(SIGA-SIGB),(E)繪示信號SIGB與信號SIGC之間的差(SIGB-SIGC),(F)繪示信號SIGC與信號SIGA之間的差(SIGC-SIGA),(G)繪示信號SAB之一波形,(H)繪示信號SBC之一波形,且(I)繪示信號SCA之一波形。如圖26至圖28中所繪示,在交替地發射符號「+x」及「-x」時,信號SIGA變為其中電壓在高位準電壓VH與低位準電壓VL之間交替之一信號,信號SIGB變為藉由使信號SIGA反相獲得之一信號,且信號SIGC變為維持中間位準電壓VM之一DC信號。
如圖27中所繪示,在信號SIGA之相位先於信號SIGB之相位時, 在信號SAB之上升時間,信號SBC變為高位準(「1」)(圖27之(H))且信號SCA變為低位準(「0」)(圖27之(I))。因此,相位比較電路130之正反器131輸出一高位準信號且正反器136輸出一低位準信號。因此,AND電路134輸出一高位準信號且AND電路139輸出一低位準信號。
如圖28中所繪示,在信號SIGA之相位遲於信號SIGB之相位時,在信號SAB之上升時間,信號SBC變為低位準(「0」)(圖28之(H))且信號SCA變為高位準(「1」)(圖28之(I))。因此,相位比較電路130之正反器131輸出一低位準信號且正反器136輸出一高位準信號。因此,AND電路134輸出一低位準信號且AND電路139輸出一高位準信號。
相位資訊發射區段97基於相位比較電路130之輸出信號產生相位資訊IP,並將相位資訊IP供應至發射器80之控制區段87。接著,控制區段87循序地設定發射區段11A、12A及13A之各者中之延遲區段33A及33B之延遲量以調整信號SIGA之相位及信號SIGB之相位。
接著,控制區段87判定延遲區段33A及33B之延遲量(步驟S24)。具體言之,控制區段87選擇允許信號SIGA之相位及信號SIGB之相位彼此實質上一致之延遲區段33A及33B之延遲量。依此方式,在通信系統3中,使用開機自我檢測碼P51為一已知型樣之事實執行相位比較,其中交替地配置兩個符號(在此實例中,符號「+x」及「-x」)。接著,該控制區段基於相位比較結果循序地設定延遲區段33A及33B之延遲量以允許信號SIGA之相位及信號SIGB之相位彼此實質上一致。
接著,發射區段11A、12A及13A之各者交替地發射符號「+z」及「-z」(步驟S25)。具體言之,類似於在步驟S22處之程序,發射區段11A、12A及13A之各者使用例如開機自我檢測碼P51來交替地發射符號「+z」及「-z」。
接著,控制區段87循序地設定發射區段11A、12A及13A之各者 中之延遲區段33A及33C之延遲量以獲取相位資訊IP(步驟S26)。
圖29至圖31繪示相位比較電路130之相位比較操作。圖29繪示其中信號SIGA之相位與信號SIGC之相位實質上一致之一情況,圖30繪示其中信號SIGA之相位先於信號SIGC之相位之一情況,且圖31繪示其中信號SIGA之相位遲於信號SIGC之相位之一情況。如圖29至圖31中所繪示,在交替地發射符號「+z」及「-z」時,信號SIGA變為其中電壓在高位準電壓VH與低位準電壓VL之間交替之一信號,信號SIGB變為維持中間位準電壓VM之一DC信號,且信號SIGC變為藉由使信號SIGA反相而獲得之一信號。
如圖30中所繪示,在信號SIGA之相位先於信號SIGC之相位時,在信號SAB之上升時間,信號SBC變為低位準(「0」)(圖30之(H))且信號SCA變為高位準(「1」)(圖30之(I))。因此,相位比較電路130之正反器131輸出一低位準信號且正反器136輸出一高位準信號。因此,AND電路134輸出一低位準信號且AND電路139輸出一高位準信號。
如圖31中所繪示,在信號SIGA之相位遲於信號SIGC之相位時,在信號SAB之上升時間,信號SBC變為高位準(「1」)(圖31之(H))且信號SCA變為低位準(「0」)(圖31之(I))。因此,相位比較電路130之正反器131輸出一高位準信號且正反器136輸出一低位準信號。因此,AND電路134輸出一高位準信號且AND電路139輸出一低位準信號。
相位資訊發射區段97基於相位比較電路130之輸出信號產生相位資訊IP,並將相位資訊IP供應至發射器80之控制區段87。接著,控制區段87循序地設定發射區段11A、12A及13A之各者中之延遲區段33A及33C之延遲量以調整信號SIGA之相位及信號SIGC之相位。
接著,控制區段87判定延遲區段33A及33C之延遲量(步驟S27)。具體言之,控制區段87判定允許信號SIGA之相位及信號SIGB之相位彼此實質上一致之延遲區段33A及33C之延遲量。
接著,控制區段87結束校準模式(步驟S28)。
依此方式,結束流程。此後,發射區段11A、12A及13A之各者中之延遲區段33A、33B及33C使各自信號延遲達在步驟S24及S27處所判定之延遲量。依此方式,由發射區段11A、11B及11C執行偏斜調整。據此,可增強通信系統3中之通信效能。
在通信系統3中,藉由信號SIGA、SIGB與SIGC之間的相位比較執行偏斜偵測。因此,可比其中藉由型樣比較執行偏斜偵測之情況(如同第一實施例等之情況)更直接地計算出偏斜。
如上文所述,在本實施例中,藉由信號SIGA、SIGB與SIGC之間的相位比較執行偏斜偵測。因此,可直接地計算出偏斜。其他效應類似於上文所述之第一實施例中之效應。
<4.應用實例>
接著,將描述在上文所述之實施例及修改中所述之通信系統之應用實例。
圖32繪示應用根據上文所述之實施例等之任一者之通信系統之一智慧型電話700(多功能行動電話)之一外觀。各種器件安裝於智慧型電話700上,且根據上文所述之實施例等之任一者之通信系統用於在該等器件之間交換資料。
圖33繪示用於智慧型電話700之一應用程式處理器710之一組態實例。應用程式處理器710包含一中央處理單元(CPU)711、一記憶體控制區段712、一電源控制區段713、一外部介面714、一圖形處理單元(GPU)715、一媒體處理區段716、一顯示器控制區段717及一行動工業處理器介面(MIPI)介面718。在此實例中,CPU 711、記憶體控制區段712、電源控制區段713、外部介面714、GPU 715、媒體處理區段716及顯示器控制區段717連接至一系統匯流排719,且被允許透過系統匯流排719彼此交換資料。
CPU 711根據程式處理智慧型電話700中所處置之各種資訊。記憶體控制區段712控制用於供CPU 711進行資訊處理之一記憶體901。電源控制區段713控制智慧型電話700之一電源。
在此實例中,外部介面714為用於與外部器件通信之一介面,且連接至一無線通信區段902及一影像感測器810。例如,根據上文所述之實施例等之任一者之接收器可用於外部介面714。無線通信區段902與一行動電話之一基地台無線地通信,且可包含一基頻帶區段、一射頻(RF)前端區段等。影像感測器810獲取一影像且可包含例如一CMOS感測器等。
GPU 715執行影像處理。媒體處理區段716處理諸如音訊、字元及圖形之資訊。顯示器控制區段717透過MIPI介面718控制一顯示器904。MIPI介面718將一影像信號發射至顯示器904。該影像信號之實例可包含一YUV格式信號及一RGB格式信號。例如,根據上文所述之實施例等之任一者之發射器可用於MIPI介面718。
圖34繪示影像感測器810之一組態實例。影像感測器810包含一感測器區段811、一影像信號處理器(ISP)812、一聯合圖像專家群組(JPEG)編碼器813、一CPU 814、一隨機存取記憶體(RAM)815、一唯讀記憶體(ROM)816、一電源控制區段817、一內部積體電路(I2C)介面818及一MIPI介面819。在此實例中,此等區塊各連接至一系統匯流排820,且被允許透過系統匯流排820彼此交換資料。
感測器區段811獲取一影像且可由例如一CMOS感測器組態而成。ISP 812對由感測器區段811獲取之影像執行預定處理。JPEG編碼器813編碼由ISP 812處理之影像以產生一JPEG格式影像。CPU 814根據程式控制影像感測器810之各區塊。RAM 815為用於供CPU 814進行資訊處理之一記憶體。ROM 816保存由CPU 814執行之程式。電源控制區段817控制影像感測器810之一電源。I2C介面818接收來自應用 程式處理器710之一控制信號。儘管未繪示,但影像感測器810除接收來自應用程式處理器710之該控制信號外,亦接收一時脈信號。更具體言之,影像感測器810經如此組態以便基於各種頻率之時脈信號進行操作。MIPI介面819將一影像信號發射至應用程式處理器710。該影像信號之實例可包含一YUV格式信號及一RGB格式信號。例如,根據上文所述之實施例等之任一者之發射器可用於MIPI介面819。
在上文中,儘管已參考電子單元之實施例、修改及應用實例描述本發明技術,但本發明技術不限於此,且可作出各種修改。
例如,在上文所述之實施例中,發射器10等可透過三個資料單工通道DL1至DL3將資料發射至接收器20等。然而,組態不限於此,且替代地,例如可使用兩個或更少個資料單工通道,或可使用四個或更多個資料單工通道。
此外,例如,在上文所述之實施例中,可在資料單工通道DL1至DL3之各者中發射三個信號SIGA、SIGB及SIGC。然而,組態不限於此,且可發射四個或更多個信號。
此外,例如,在上文所述之實施例中,控制區段48E控制延遲區段50A、50B及50C之延遲量。然而,組態不限於此,且例如,控制區段48E亦可如同圖35中所繪示之一接收區段21E般控制時脈RxCK之一相位。接收區段21E包含控制區段48E及一時脈產生區段43E。控制區段48E透過延遲控制信號CTLA、CTLB及CTLC控制延遲區段50A、50B及50C之延遲量,且透過一相位控制信號CTLCK控制時脈RxCK之相位。時脈產生區段43E具有基於相位控制信號CTLCK切換時脈RxCK之相位之一功能。據此,在校準模式中,接收區段21E可例如循序地設定延遲區段50A、50B及50C之延遲量,且可循序地設定時脈RxCK之相位以判定適當設定。甚至藉由此組態,亦可獲得類似於上文所述之實施例中之效應之效應。
此外,例如,在上文所述之實施例中,延遲區段50A安置於放大器42A之一後級中,延遲區段50B安置於放大器42B之一後級中,且延遲區段50C安置於放大器42C之一後級中。然而,組態不限於此。替代地,例如,如同一接收區段21F,一延遲區段150A可安置於放大器42A之一前級中,一延遲區段150B可安置於放大器42B之一前級中,且一延遲區段150C可安置於放大器42C之一前級中。延遲區段150A包含低通濾波器151至153及一選擇器154。其亦適用於延遲區段150B及150C。低通濾波器151至153之各者可包含例如一電阻器及一電容器。選擇器154可包含例如一類比開關。藉由此組態,延遲區段150A、150B及150C切換低通濾波器之級數以調整延遲量。甚至藉由此組態,亦可獲得類似於上文所述之實施例中之效應之效應。
應注意,本說明書中所述之效應係闡釋性且非限制性的。藉由本發明技術實現之效應可為除上文所述之效應外之效應。
應注意,允許本發明技術具有以下組態。
(1)一種接收器,其包括:一第一接收電路,其經組態以透過一第一資料單工通道接收包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線,其中該第一接收電路包含一延遲調整電路,該延遲調整電路經組態以調整該三個信號之至少一者之一延遲量。
(2)如(1)之接收器,其中該延遲調整電路包含一型樣偵測區段,該型樣偵測區段經組態以藉由使用該第一資料中包含之一同步碼偵測該三個信號之至少一者之一相對延遲量。
(3)如(1)或(2)之接收器,其中該第一接收電路包含一第一延遲電路、一第二延遲電路及一第三延遲電路。
(4)如(3)之接收器,其中該第一接收電路進一步包含一第一放大器、一第二放大器及一第三放大器,該第一放大器經組態以接收該三 個信號之一第一信號及一第二信號,並將一第一經放大信號輸出至該第一延遲電路,該第二放大器經組態以接收該三個信號之該第二信號及一第三信號,並將一第二經放大信號輸出至該第二延遲電路,且該第三放大器經組態以接收該三個信號之該第一信號及該第三信號,並將一第三經放大信號輸出至該第三延遲電路。
(5)如(3)或(4)之接收器,其中該延遲調整電路包含一控制區段,該控制區段經組態以使用一第一延遲控制信號調整該第一延遲電路之一延遲量,使用一第二延遲控制信號調整該第二延遲電路之一延遲量,且使用一第三延遲控制信號調整該第三延遲電路之一延遲量。
(6)如(1)至(5)中任一者之接收器,其進一步包括一冗餘接收區段,該冗餘接收區段經組態以透過該第一資料單工通道接收該第一資料,產生一第一延遲量資訊,並將該第一延遲量資訊輸出至該延遲調整電路。
(7)如(1)至(6)中任一者之接收器,其中在一校準模式中,該第一接收電路經組態以:接收來自一發射器之包含一延遲量資料之該第一資料;執行一型樣偵測以從該第一資料獲取該延遲量資料;及判定該三個信號之至少一者之一相對延遲量。
(8)如(7)之接收器,其中在該校準模式中,該第一接收電路進一步經組態以將該三個信號之至少一者之該相對延遲量發射至該發射器。
(9)如(1)至(8)中任一者之接收器,其進一步包括:一第二接收電路,其經組態以透過一第二資料單工通道接收包含使用三個信號發射之一第二符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三接收電路,其經組態以透過一第三資料單工通道接收包含使用三個信號發射之一第三符號之一第三資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
(10)一種發射器,其包括:一第一發射電路,其經組態以透過一第一資料單工通道發射包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線,其中該第一發射電路包含一延遲調整電路,該延遲調整電路經組態以調整該三個信號之至少一者之一延遲量。
(11)如(10)之發射器,其中該第一發射電路包含一第一延遲電路、一第二延遲電路及一第三延遲電路。
(12)如(11)之發射器,其中該第一發射電路進一步包含一控制區段,該控制區段經組態以控制該第一延遲電路、該第二延遲電路及該第三延遲電路之至少一者之一延遲量。
(13)如(12)之發射器,其中該控制區段經組態以接收來自該延遲調整電路之一控制信號。
(14)如(11)至(13)中任一者之發射器,其中在一校準模式中,該第一發射電路經組態以:將該第一延遲電路、該第二延遲電路及該第三延遲電路之各自延遲量設定至最小值;將包含一延遲量資料之該第一資料發射至一接收器;接收來自該接收器之該延遲量資料;及基於該延遲量,將該第一延遲電路、該第二延遲電路及該第三延遲電路之各自延遲量設定至經校正值。
(15)如(10)至(14)中任一者之發射器,其中該延遲調整電路經組態以回應於接收自該發射器外部之一起源之一延遲量資訊信號而調整該延遲量。
(16)如(10)至(15)中任一者之發射器,其進一步包括:一第二發射電路,其經組態以透過一第二資料單工通道發射包含使用三個信號發射之一第二符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三發射電路,其經組態以透過一第三資料單工通道發射包含使用三個信號發射之一第三符號之一第三 資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
(17)一種成像系統,其包括:一CMOS影像感測器;及如(10)至(16)中任一者之發射器。
(18)一種行動通信器件,其包括:一無線通信電路;及如(10)至(17)中任一者之發射器。
(19)一種通信系統,其包括:一發射器,其包含一第一發射電路,該第一發射電路經組態以透過一第一資料單工通道發射包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線;一接收器,其包含一第一接收電路,該第一接收電路經組態以透過該第一資料單工通道接收該第一資料;及一延遲調整電路,其經組態以調整該三個信號之至少一者之一延遲量。
(20)如(19)之通信系統,其中該延遲調整電路定位於該接收器中。
(21)如(19)或(20)之通信系統,其中該延遲調整電路定位於該發射器中。
(22)如(19)至(21)中任一者之通信系統,其中該延遲調整電路包含定位於該接收器中之一第一延遲調整區段及定位於該發射器中之一第二延遲調整區段。
(23)如(19)至(22)中任一者之通信系統,其中該第一發射電路包含一第一延遲電路、一第二延遲電路及一第三延遲電路。
(24)如(23)之通信系統,其中在一校準模式中:該發射器經組態以:將該第一延遲電路、該第二延遲電路及該第三延遲電路之各自延遲量設定至最小值;將包含一延遲量資料之該第一資料發射至該接收器;接收來自該接收器之一相對延遲量;及基於該延遲量,將該第一 延遲電路、該第二延遲電路及該第三延遲電路之各自延遲量設定至經校正值;且該接收器經組態以:接收來自該發射器之該第一資料;執行一型樣偵測以從該第一資料獲取該延遲量資料;判定該三個信號之至少一者之一相對延遲量;及將該三個信號之至少一者之該相對延遲量發射至該發射器。
(25)一種傳達資料之方法,其包括:透過一第一資料單工通道傳達包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線;及調整該三個信號之至少一者之一延遲量。
應注意,本發明技術亦可組態為如下。
(1)一種接收器,其包含: 一第一放大器區段,其經組態以產生一第一信號、一第二信號及一第三信號,基於一第一發射信號與一第二發射信號之間的差產生該第一信號,基於該第二發射信號與一第三發射信號之間的差產生該第二信號,基於該第三發射信號與該第一發射信號之間的差產生該第三信號,從一發射器發射該第一發射信號、該第二發射信號及該第三發射信號; 一第一延遲區段,其經組態以使該第一信號、該第二信號及該第三信號之各者延遲,且變更該第一信號、該第二信號及該第三信號之各者之一延遲量;及 一控制區段,其經組態以基於藉由該第一延遲區段予以延遲之經延遲第一信號、經延遲第二信號及經延遲第三信號,設定該第一延遲區段中之第一信號、第二信號及第三信號之各者之一延遲量。
(2)如(1)之接收器,其中 該發射器使用該第一發射信號、該第二發射信號及該第三發射信號來發射一系列封包, 該等封包之各者按次序包含一第一部分、一有效負載部分及一第二部分,且該控制區段循序地變更該第一延遲區段之延遲量之各者以判定允許獲取該第一部分中包含之一預定型樣之延遲量之一或複數個組合,並基於該等組合設定該等延遲量之各者。
(3)如(2)之接收器,其中該預定型樣指示一同步碼。
(4)如(2)或(3)之接收器,其中該控制區段判定允許獲取該預定型樣且不包含該第一部分中之一錯誤之延遲量之一或複數個組合。
(5)如(1)至(4)中任一者之接收器,其進一步包含:一第二放大器,其經組態以產生一第四信號、一第五信號及一第六信號,基於該第一發射信號與該第二發射信號之間的差產生該第四信號,基於該第二發射信號與該第三發射信號之間的差產生該第五信號,且基於該第三發射信號與該第一發射信號之間的差產生該第六信號;及一第二延遲區段,其經組態以使該第四信號、該第五信號及該第六信號之各者延遲,且變更該第四信號、該第五信號及該第六信號之各者之一延遲量,其中該控制區段亦基於藉由該第二延遲區段予以延遲之經延遲第四信號、經延遲第五信號及經延遲第六信號,調整該第一延遲區段中之延遲量之各者。
(6)如(1)至(5)中任一者之接收器,其進一步包含:一偏斜資訊產生區段,其經組態以基於該第一信號、該第二信號及該第三信號產生偏斜資訊,該偏斜資訊指示該第一發射信號、該第二發射信號與該第三發射信號之間的偏斜,其中該發射器經組態以調整該第一發射信號、該第二發射信號與該第三發射信號之間的偏斜。
(7)如(1)至(6)中任一者之接收器,其進一步包含: 一時脈產生區段,其經組態以產生一時脈信號並調整該時脈信號之一相位以輸出該經調整時脈信號,基於藉由該第一延遲區段予以延遲之經延遲第一信號、經延遲第二信號及經延遲第三信號產生該時脈信號,其中該控制區段基於藉由該第一延遲區段予以延遲之經延遲第一信號、經延遲第二信號及經延遲第三信號,設定該時脈產生區段中之時脈信號之相位之一調整量。
(8)如(1)至(7)中任一者之接收器,其中該第一發射信號、該第二發射信號及該第三發射信號具有不同於彼此之電壓位準。
(9)一種接收器,其包含:一接收區段,其經組態以接收從一發射器發射之三個或更多個發射信號,該發射器經組態以調整具有不同於彼此之電壓位準之三個或更多個發射信號之間的偏斜;及一偏斜資訊產生區段,其經組態以基於該接收區段之一接收結果產生指示該三個或更多個發射信號之間的偏斜之偏斜資訊,並將該偏斜資訊供應至該發射器。
(10)如(9)之接收器,其中該發射器使用該三個或更多個發射信號來發射一系列封包,該等封包之各者按次序包含一第一部分、一有效負載部分及一第二部分,且在該接收區段獲取該系列封包之一者之第一部分中包含之一預定型樣時,該偏斜資訊產生區段基於該等封包之該者之有效負載部分產生該偏斜資訊。
(11)如(10)之接收器,其中該系列封包中之在該第一部分中包含該預定型樣之一封包在該有效負載部分中包含設定資訊,該設定資訊指示該發射器中之偏斜之設定。
(12)如(11)之接收器,其中 該接收區段從該複數個封包之各者獲取該設定資訊,且該偏斜資訊產生區段將設定資訊之複數個片段作為該偏斜資訊供應至該發射器。
(13)如(11)之接收器,其中該接收區段從該複數個封包之各者獲取該設定資訊,且該偏斜資訊產生區段將設定資訊之複數個片段之一者作為該偏斜資訊供應至該發射器。
(14)如(9)之接收器,其中該三個或更多個發射信號包含一第一發射信號、一第二發射信號及一第三發射信號,且該接收區段包含:一第一放大器區段,其經組態以產生一第一信號、一第二信號及一第三信號,基於該第一發射信號與該第二發射信號之間的差產生該第一信號,基於該第二發射信號與該第三發射信號之間的差產生該第二信號,且基於該第三發射信號與該第一發射信號之間的差產生該第三信號;及一比較區段,其經組態以比較該第一信號、該第二信號與該第三信號之轉變時序。
(15)如(14)之接收器,其中該發射器使用該三個或更多個發射信號來發射一系列封包,該等封包之各者按次序包含一第一部分、一有效負載部分及一第二部分,且該偏斜資訊產生區段基於由該比較區段所得之一比較結果產生該偏斜資訊,藉由對應於該第一信號、該第二信號及該第三信號之第二部分之信號部分之轉變時序之間的比較獲得該比較結果。
(16)如(15)之接收器,其中該第一發射信號、該第二發射信號及該第三發射信號之兩者之各者中之第二部分在兩個電壓位準之間交替 地轉變。
(17)一種接收器,其包含:一第一延遲區段,其經組態以使從一發射器發射之三個或更多個發射信號之各者延遲,且變更該三個或更多個發射信號之各者之一延遲量,該三個或更多個發射信號具有不同於彼此之電壓位準;及一控制區段,其經組態以基於藉由該第一延遲區段予以延遲之三個或更多個經延遲發射信號,設定該第一延遲區段中之三個或更多個發射信號之各者之延遲量。
(18)一種發射器,其包含:一發射區段,其包含對應於三個或更多個發射信號之複數個延遲區段,且經組態以基於藉由該複數個延遲區段予以延遲之信號產生該三個或更多個發射信號,該三個或更多個發射信號具有不同於彼此之電壓位準;及一偏斜資訊獲取區段,其經組態以獲取指示該三個或更多個發射信號之間的偏斜之偏斜資訊,從接收該三個或更多個發射信號之一接收器發射該偏斜資訊,其中該發射區段基於該偏斜資訊設定該等延遲區段之各者中之一延遲量。
(19)如(18)之發射器,其中提供包含一校準模式之複數個操作模式,且在該校準模式中該發射區段循序地變更該等延遲區段之各者之延遲量以產生該三個或更多個發射信號。
(20)如(19)之發射器,其中該發射區段使用該三個或更多個發射信號來發射一系列封包,該等封包之各者包含一第一部分、一有效負載部分及一第二部分,且該系列封包之一者在該第一部分中包含一預定型樣且在該有效 負載部分中包含關於該等延遲區段之各者之延遲量之資訊。
(21)一種具備一發射器及一接收器之通信系統,該接收器包含:一第一放大器區段,其經組態以產生一第一信號、一第二信號及一第三信號,基於一第一發射信號與一第二發射信號之間的差產生該第一信號,基於該第二發射信號與一第三發射信號之間的差產生該第二信號,基於該第三發射信號與該第一發射信號之間的差產生該第三信號,且從該發射器發射該第一發射信號、該第二發射信號及該第三發射信號;一第一延遲區段,其經組態以使該第一信號、該第二信號及該第三信號之各者延遲,且變更該第一信號、該第二信號及該第三信號之各者之一延遲量;及一控制區段,其經組態以基於藉由該第一延遲區段予以延遲之經延遲第一信號、經延遲第二信號及經延遲第三信號,設定該第一延遲區段中之第一信號、第二信號及第三信號之各者之一延遲量。
(22)如(21)之通信系統,其中該發射器為獲取並發射影像資料之一影像感測器,且該接收器為接收該影像資料並基於該影像資料執行預定處理之一處理器。
熟習此項技術者應瞭解,取決於設計需求及其他因素,可發生各種修改、組合、子組合及更改,只要其等係在所附申請專利範圍或其等效物之範疇內。
21‧‧‧接收區段
22‧‧‧接收區段
23‧‧‧接收區段
41A‧‧‧電阻器
41B‧‧‧電阻器
41C‧‧‧電阻器
42A‧‧‧放大器
42B‧‧‧放大器
42C‧‧‧放大器
43‧‧‧時脈產生區段
44‧‧‧正反器(F/F)
45‧‧‧正反器(F/F)
46‧‧‧信號產生區段
47‧‧‧型樣偵測區段
48‧‧‧控制區段
50A‧‧‧延遲區段
50B‧‧‧延遲區段
50C‧‧‧延遲區段
51‧‧‧延遲緩衝器
52‧‧‧延遲緩衝器
53‧‧‧延遲緩衝器
54‧‧‧選擇器
CTLA‧‧‧延遲控制信號
CTLB‧‧‧延遲控制信號
CTLC‧‧‧延遲控制信號
DET‧‧‧信號
RxCK‧‧‧時脈
RxF‧‧‧信號
RxP‧‧‧信號
RxR‧‧‧信號
SIGA‧‧‧信號
SIGB‧‧‧信號
SIGC‧‧‧信號
TinA‧‧‧輸入端子

Claims (25)

  1. 一種接收器,其包括:一第一接收電路,其經組態以透過一第一資料單工通道接收包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線,其中該第一接收電路包含一延遲調整電路,該延遲調整電路經組態以調整該三個信號之至少一者之一延遲量。
  2. 如請求項1之接收器,其中該延遲調整電路包含一型樣偵測區段,該型樣偵測區段經組態以藉由使用該第一資料中包含之一同步碼偵測該三個信號之至少一者之一相對延遲量。
  3. 如請求項1之接收器,其中該第一接收電路包含一第一延遲電路、一第二延遲電路及一第三延遲電路。
  4. 如請求項3之接收器,其中該第一接收電路進一步包含一第一放大器、一第二放大器及一第三放大器,該第一放大器經組態以接收該三個信號之一第一信號及一第二信號,並將一第一經放大信號輸出至該第一延遲電路,該第二放大器經組態以接收該三個信號之該第二信號及一第三信號,並將一第二經放大信號輸出至該第二延遲電路,且該第三放大器經組態以接收該三個信號之該第一信號及該第三信號,並將一第三經放大信號輸出至該第三延遲電路。
  5. 如請求項3之接收器,其中該延遲調整電路包含一控制區段,該控制區段經組態以使用一第一延遲控制信號調整該第一延遲電路之一延遲量,使用一第二延遲控制信號調整該第二延遲電路之一延遲量,且使用一第三延遲控制信號調整該第三延遲電路 之一延遲量。
  6. 如請求項1之接收器,其進一步包括一冗餘接收區段,該冗餘接收區段經組態以透過該第一資料單工通道接收該第一資料、產生一第一延遲量資訊,並將該第一延遲量資訊輸出至該延遲調整電路。
  7. 如請求項1之接收器,其中在一校準模式中,該第一接收電路經組態以:接收來自一發射器之包含一延遲量資料之該第一資料;執行一型樣偵測以從該第一資料獲取該延遲量資料;及判定該三個信號之至少一者之一相對延遲量。
  8. 如請求項7之接收器,其中在該校準模式中,該第一接收電路進一步經組態以將該三個信號之至少一者之該相對延遲量發射至該發射器。
  9. 如請求項1之接收器,其進一步包括:一第二接收電路,其經組態以透過一第二資料單工通道接收包含使用三個信號發射之一第二符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三接收電路,其經組態以透過一第三資料單工通道接收包含使用三個信號發射之一第三符號之一第三資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
  10. 一種發射器,其包括:一第一發射電路,其經組態以透過一第一資料單工通道發射包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線,其中該第一發射電路包含一延遲調整電路,該延遲調整電路經組態以調整該三個信號之至少一者之一延遲量。
  11. 如請求項10之發射器,其中該第一發射電路包含一第一延遲電路、一第二延遲電路及一第三延遲電路。
  12. 如請求項11之發射器,其中該第一發射電路進一步包含一控制區段,該控制區段經組態以控制該第一延遲電路、該第二延遲電路及該第三延遲電路之至少一者之一延遲量。
  13. 如請求項12之發射器,其中該控制區段經組態以接收來自該延遲調整電路之一控制信號。
  14. 如請求項11之發射器,其中在一校準模式中,該第一發射電路經組態以:將該第一延遲電路、該第二延遲電路及該第三延遲電路之各自延遲量設定至最小值;將包含一延遲量資料之該第一資料發射至一接收器;接收來自該接收器之該延遲量資料;及基於該延遲量,將該第一延遲電路、該第二延遲電路及該第三延遲電路之該等各自延遲量設定至經校正值。
  15. 如請求項10之發射器,其中該延遲調整電路經組態以回應於接收自該發射器外部之一起源之一延遲量資訊信號而調整該延遲量。
  16. 如請求項10之發射器,其進一步包括:一第二發射電路,其經組態以透過一第二資料單工通道發射包含使用三個信號發射之一第二符號之一第二資料,該第二資料單工通道包含分別對應於該三個信號之三個信號線;及一第三發射電路,其經組態以透過一第三資料單工通道發射包含使用三個信號發射之一第三符號之一第三資料,該第三資料單工通道包含分別對應於該三個信號之三個信號線。
  17. 一種成像系統,其包括: 一CMOS影像感測器;及如請求項10之發射器。
  18. 一種行動通信器件,其包括:一無線通信電路;及如請求項10之發射器。
  19. 一種通信系統,其包括:一發射器,其包含一第一發射電路,該第一發射電路經組態以透過一第一資料單工通道發射包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線;一接收器,其包含一第一接收電路,該第一接收電路經組態以透過該第一資料單工通道接收該第一資料;及一延遲調整電路,其經組態以調整該三個信號之至少一者之一延遲量。
  20. 如請求項19之通信系統,其中該延遲調整電路定位於該接收器中。
  21. 如請求項19之通信系統,其中該延遲調整電路定位於該發射器中。
  22. 如請求項19之通信系統,其中該延遲調整電路包含定位於該接收器中之一第一延遲調整區段及定位於該發射器中之一第二延遲調整區段。
  23. 如請求項19之通信系統,其中該第一發射電路包含一第一延遲電路、一第二延遲電路及一第三延遲電路。
  24. 如請求項23之通信系統,其中在一校準模式中:該發射器經組態以:將該第一延遲電路、該第二延遲電路及該第三延遲電路之 各自延遲量設定至最小值;將包含一延遲量資料之該第一資料發射至該接收器;接收來自該接收器之一相對延遲量;及基於該延遲量,將該第一延遲電路、該第二延遲電路及該第三延遲電路之該等各自延遲量設定至經校正值;且該接收器經組態以:接收來自該發射器之該第一資料;執行一型樣偵測以從該第一資料獲取該延遲量資料;判定該三個信號之至少一者之一相對延遲量;及將該三個信號之至少一者之該相對延遲量發射至該發射器。
  25. 一種傳達資料之方法,其包括:透過一第一資料單工通道傳達包含使用三個信號發射之一第一符號之一第一資料,該第一資料單工通道包含分別對應於該三個信號之三個信號線;及調整該三個信號之至少一者之一延遲量。
TW104119179A 2014-07-07 2015-06-12 接收器、發射器及通信系統 TWI708482B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-139812 2014-07-07
JP2014139812A JP6372202B2 (ja) 2014-07-07 2014-07-07 受信装置、送信装置、および通信システム

Publications (2)

Publication Number Publication Date
TW201603503A true TW201603503A (zh) 2016-01-16
TWI708482B TWI708482B (zh) 2020-10-21

Family

ID=53682756

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119179A TWI708482B (zh) 2014-07-07 2015-06-12 接收器、發射器及通信系統

Country Status (7)

Country Link
US (2) US10516522B2 (zh)
EP (2) EP3761185A3 (zh)
JP (1) JP6372202B2 (zh)
KR (1) KR102383185B1 (zh)
CN (2) CN106489140B (zh)
TW (1) TWI708482B (zh)
WO (1) WO2016006178A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101671018B1 (ko) * 2015-04-22 2016-10-31 (주)이즈미디어 스큐 자동 보정 방법 및 장치
WO2018193844A1 (ja) * 2017-04-17 2018-10-25 株式会社フジクラ 多層基板、多層基板アレイ、及び送受信モジュール
US10506139B2 (en) * 2017-08-03 2019-12-10 Mediatek Inc. Reconfigurable pin-to-pin interface capable of supporting different lane combinations and/or different physical layers and associated method
US11314277B1 (en) * 2019-08-05 2022-04-26 Xilinx, Inc. Serial lane-to-lane skew reduction
KR20210088807A (ko) 2020-01-06 2021-07-15 삼성전자주식회사 전자 장치 및 전자 장치의 동작 방법
US11569805B2 (en) 2021-03-15 2023-01-31 Mediatek Inc. Minimum intrinsic timing utilization auto alignment on multi-die system
CN115328849B (zh) * 2022-08-10 2023-10-03 苏州迅芯微电子有限公司 一种用于数据发送和接收的芯片组合结构

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712882A (en) * 1996-01-03 1998-01-27 Credence Systems Corporation Signal distribution system
TW401539B (en) * 1997-08-04 2000-08-11 Matsushita Electric Ind Co Ltd Delay time adjuster and adjusting method between multiple transmission lines
JP4114291B2 (ja) * 1999-01-20 2008-07-09 ソニー株式会社 半導体装置およびその構成方法
US6944692B2 (en) * 2001-09-13 2005-09-13 Sun Microsystems, Inc. Automated calibration of I/O over a multi-variable eye window
JP4062078B2 (ja) * 2002-12-10 2008-03-19 株式会社日立製作所 スキュー調整装置
JP4467233B2 (ja) * 2002-12-24 2010-05-26 株式会社日立製作所 位相調整装置、位相調整方法および高速並列信号用スキュー補正装置
US7457589B2 (en) * 2004-11-30 2008-11-25 Infineon Technologies Ag Circuit and method for transmitting a signal
US8429502B2 (en) * 2005-11-16 2013-04-23 Qualcomm Incorporated Frame format for millimeter-wave systems
JP2007251348A (ja) * 2006-03-14 2007-09-27 Toshiba Corp コンテンツ復号化装置
JP2007318807A (ja) * 2006-04-27 2007-12-06 Matsushita Electric Ind Co Ltd 多重差動伝送システム
JP5034329B2 (ja) * 2006-06-09 2012-09-26 富士通株式会社 デスキュー装置およびデスキュー方法
US8064535B2 (en) * 2007-03-02 2011-11-22 Qualcomm Incorporated Three phase and polarity encoded serial interface
US9711041B2 (en) 2012-03-16 2017-07-18 Qualcomm Incorporated N-phase polarity data transfer
JP2008294795A (ja) * 2007-05-25 2008-12-04 Panasonic Corp 差動伝送回路
WO2009086142A1 (en) * 2007-12-19 2009-07-09 Rambus Inc. Asymmetric communication on shared links
JP2008278518A (ja) * 2008-06-06 2008-11-13 Elpida Memory Inc 半導体装置およびデータ伝送システム
JP5304280B2 (ja) * 2009-01-30 2013-10-02 株式会社ニコン 位相調整装置およびカメラ
CN101840725B (zh) * 2009-03-20 2013-05-08 南亚科技股份有限公司 信号调整系统与信号调整方法
KR20120035755A (ko) * 2010-10-06 2012-04-16 삼성전기주식회사 적응형 지연 조절 기능이 구비된 데이터 인터페이스 장치
JP5623877B2 (ja) * 2010-11-15 2014-11-12 ルネサスエレクトロニクス株式会社 半導体集積回路およびその動作方法
JP2012124716A (ja) * 2010-12-08 2012-06-28 Canon Inc データ受信装置、データ送信装置、制御方法
WO2012147258A1 (ja) 2011-04-25 2012-11-01 パナソニック株式会社 チャネル間スキュー調整回路
US20120274564A1 (en) * 2011-04-29 2012-11-01 Texas Instruments Incorporated Activity Sensing Using Piezoelectric Sensors for Ultra Low Power Operation of Devices with Significant Inactivity Time
JP2013183425A (ja) * 2012-03-05 2013-09-12 Toshiba Corp カメラモジュール
JP2013251877A (ja) * 2012-06-04 2013-12-12 Canon Inc 撮像装置
TWI569149B (zh) * 2013-01-22 2017-02-01 威盛電子股份有限公司 補償同步資料匯流排之誤差的裝置與方法

Also Published As

Publication number Publication date
JP6372202B2 (ja) 2018-08-15
US10516522B2 (en) 2019-12-24
KR102383185B1 (ko) 2022-04-06
EP3761185A3 (en) 2021-03-10
US20200106596A1 (en) 2020-04-02
CN106489140B (zh) 2020-10-20
EP3167378A1 (en) 2017-05-17
US20170195111A1 (en) 2017-07-06
CN106489140A (zh) 2017-03-08
EP3167378B1 (en) 2020-08-12
CN112073155B (zh) 2023-11-24
EP3761185A2 (en) 2021-01-06
KR20170030497A (ko) 2017-03-17
WO2016006178A1 (en) 2016-01-14
CN112073155A (zh) 2020-12-11
JP2016019095A (ja) 2016-02-01
US11296859B2 (en) 2022-04-05
TWI708482B (zh) 2020-10-21

Similar Documents

Publication Publication Date Title
TW201603503A (zh) 接收器、發射器及通信系統
US9355054B2 (en) Digital calibration-based skew cancellation for long-reach MIPI D-PHY serial links
US7920601B2 (en) Vehicular communications system having improved serial communication
US7401246B2 (en) Nibble de-skew method, apparatus, and system
JP6822400B2 (ja) 送信装置、受信装置、および通信システム、ならびに、信号送信方法、信号受信方法、および通信方法
JP2008295036A (ja) スタック型差動信号送信回路
CN104183258A (zh) 用于不同类型的器件的数据接收的系统和方法
JP2019068454A (ja) 送信装置および通信システム
WO2020158589A1 (ja) 送信装置、送信方法、受信装置、受信方法、および送受信装置
US11233680B2 (en) Transmission device, reception device, and communication system
JP4668295B2 (ja) 無線送受信チップおよびその補正方法
US10015026B2 (en) Transmitter and communication system
KR20170081171A (ko) 송신 장치, 송신 방법, 및 통신 시스템
JP2007241911A (ja) Usbトランシーバ
JP2011095965A (ja) 電子機器