TW201320153A - 使用氨預流在矽基板上的氮化鋁成核方法 - Google Patents

使用氨預流在矽基板上的氮化鋁成核方法 Download PDF

Info

Publication number
TW201320153A
TW201320153A TW101120376A TW101120376A TW201320153A TW 201320153 A TW201320153 A TW 201320153A TW 101120376 A TW101120376 A TW 101120376A TW 101120376 A TW101120376 A TW 101120376A TW 201320153 A TW201320153 A TW 201320153A
Authority
TW
Taiwan
Prior art keywords
substrate
reaction chamber
aln
aluminum
layer
Prior art date
Application number
TW101120376A
Other languages
English (en)
Other versions
TWI494973B (zh
Inventor
William E Fenwick
Jeff Ramer
Original Assignee
Bridgelux Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgelux Inc filed Critical Bridgelux Inc
Publication of TW201320153A publication Critical patent/TW201320153A/zh
Application granted granted Critical
Publication of TWI494973B publication Critical patent/TWI494973B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明揭示一種製造發光二極體(LED)的結晶氮化鎵(GaN)所使用之矽晶圓,其包括一矽(Si)基板、一氮化鋁(AlN)緩衝層以及一氮化鎵(GaN)上方層。該矽晶圓具有至少200公釐的直徑以及一Si(111)1x1表面。該AlN緩衝層係覆蓋該Si(111)表面。該GaN上方層係位在該緩衝層上方。在整個晶圓當中,大體上AlN的最底部原子平面內並沒有AlN的鋁原子,並且在整個晶圓當中,大體上AlN的最底部原子平面內只存在AlN的氮原子。一種製作該AlN緩衝層的方法,包括流動三甲基鋁之前,預流體積比通過一反應室的氫氣少0.01%之第一氨量,然後讓一後續氨量流過該反應室。

Description

使用氨預流在矽基板上的氮化鋁成核方法
本人特此證明,本對應文件於2011年7月25日,透過EFS WEB以電子形式傳送給美國專利商標局。/Darien K.Wallace/(註冊編號:53,736)
本發明一般係關於成長氮化鎵於矽上之方法。
第三族氮化物,例如氮化鎵(GaN)的薄膜用於生產高效光電發光器。傳統上來說,GaN已經直接成長於藍寶石基板上(Al2O3)。GaN成長於薄層內而非成長於單一三維成長模式內,以便達到該磊晶成長的高品質晶體結構。因為來自半導體產業大規模生產矽的規模經濟,所以成長GaN磊晶層於矽上會比成長於藍寶石上節省可觀的成本。生產結晶矽的大量設備都已經降價,現在這些設備可用於生產發光二極體(light emitting diode,LED)。
不過目前嘗試在矽基板上成長高品質磊晶層尚未完全成功。因為GaN與矽的晶格常數和熱膨脹係數之間差異極大,GaN並不適合直接在矽基板上磊晶成長。因為即使在成長溫度高於1000℃時,GaN的晶格常數要遠小於結晶矽的晶格常數,這樣GaN磊晶層冷卻至室溫時通常會破裂。此外,GaN的熱膨脹係數遠大於矽的熱膨脹係數。如此隨著矽上成長的GaN層從高溫冷卻至室溫,則GaN晶體相對於矽晶體較小的晶格距離變得更明顯。直接沉積在矽上的GaN層會在冷卻時承受更多張應力(tensile stress),甚至導致底下的矽基板拱起。
因此,已經嘗試在矽基板與該磊晶GaN層之間成長緩衝層,以便補償GaN與矽的晶格常數和熱膨脹係數差異。例如,AlN、AlGaN和AlGaIN的緩衝層已經成長於矽基板與GaN層之間。
不過,可成長於現有緩衝層之上的磊晶GaN層之品質並不佳。目前形成AlN和AlGaN緩衝層的方法導致內含結構缺陷,例如不連續、錯位以及瑕疵的GaN層磊晶成長。這些缺陷會讓GaN層的形貌與光學特性退化,使得該等GaN層不適合用於高品質LED。
因此構思一種在一矽基板上成長緩衝層的方法,能夠可在該等緩衝層之上成長具有較少結構缺陷的高品質磊晶GaN層。
製造發光二極體(LED)的結晶氮化鎵(GaN)所使用的矽晶圓包括一矽基板、一氮化鋁緩衝層、一氮化鋁鎵(AlxGa1-xN)的第二緩衝層以及一GaN上方層。該矽晶圓具有至少200公釐的直徑以及一Si(111)1x1表面(相對於Si(111)7x7重新建構表面)。該AlN緩衝層係覆蓋該基板的Si(111)表面,並且厚度介於205至250奈米之間。該氮化鋁鎵的第二緩衝層設置在氮化鋁的緩衝層與氮化鎵上方層之間。
在整個晶圓當中,大體上AlN緩衝層的最底部原子平面內並沒有AlN的鋁原子,並且在整個晶圓當中,大體上AlN的最底部原子平面內只存在AlN緩衝層的氮原子。如此,該AlN緩衝層具有單一極性。該矽和AlN排列成AlN<0001>∥Si<111>。該矽基板與該AlN緩衝層之 間並無金屬鋁。此外,該矽基板與該AlN緩衝層之間並沒有SiNx層。
AlN緩衝層的製造方法包括在流動三甲基鋁之前預先流動第一少量氨,以便形成單極性AlN。該AlN緩衝層的結晶度受到AlN的初始晶核層品質,以及該AlN與該矽(111)表面之間的原子鍵結性質的影響。因為該氨預流步驟,AlN的初始晶核層在該矽晶圓的整個表面之上開始成長,而只有氮原子鍵結至矽(111)表面。
在第一清潔步驟中,矽(Si)基板在金屬有機化學氣相沉積(MOCVD)裝置的反應室內加熱至950℃以上。然後氫氣(H2)以每分鐘106與118立方公分之間的量流過該反應室,通過該矽基板表面的每一平方公分。在一個態樣中,氫氣流動期間該反應室內的溫度高於1100℃。
在該氨預流步驟中,第一氨量流過該反應室,而該氫氣仍舊流過該反應室。該第一氨量比流過該反應室的氫氣體積少0.01%。流過該矽基板表面每一平方公分的該第一氨量不超過每分鐘0.006立方公分。該氨預流步驟的執行時間介於三十秒到三分鐘之間。該氨預流步驟期間的溫度介於1000℃與1050℃之間。
然後三甲基鋁(Al2(CH3)6)流過該反應室,而該氫氣與第一氨量仍舊流過該反應室。該三甲基鋁以每分鐘大約九十微摩耳的量,流過該反應室持續十到二十分鐘。
然後後續氨量流過該反應室,而三甲基鋁仍舊流過該反應室。該後續氨量比流過該反應室的氫氣體積多0.002%。在一個態樣中,流過該反應室的該後續氨量只比氫、三甲基鋁和氨的總量少5%。
底下的詳細說明當中描述進一步細節以及具體實施例和技術。本發明摘要並不用於定義本發明。本發明 由該等申請專利範圍所定義。
在此將詳細參考本發明的某些具體實施例,附圖中將說明其範例。
第一圖為顯示在一矽基板11之上的緩衝層上成長單晶GaN薄膜10之圖解圖。首先在矽基板11上成長氮化鋁(AlN)12的緩衝層,然後在AlN 12之上成長較高的氮化鋁鎵(AlxGa1-xN)13之緩衝層。最後,在氮化鋁鎵13的頂層之上成長GaN層10。在一些具體實施例中,該GaN層包括許多子層。AlN 12的緩衝層由下方初始晶核層14和較厚上方層15所構成。
在成長氮化鎵(GaN)層10之前,先在一矽基板上成長緩衝層是有許多因素的,首先,若允許鎵直接與該矽基板反應,則鎵會發生該矽基板11的回熔蝕刻。鎵與矽之間的反應導致GaN層10不佳的晶體品質與形貌。再來,SiNx可隨GaN沉積在矽上而形成,造成該GaN層變厚之前,GaN晶體在該矽基板的整個表面之上往3維方向成長,而非2維方向。三維晶體成長導致不如二維晶體成長的較低品質GaN層。第三,GaN與結晶矽之間的晶格失配導致該GaN層與該矽的介面上有較大張應變。在室溫之下,GaN與矽Si(111)的六邊形表面方位間之晶格失配大約為16.9%。進一步,Si(111)上GaN的平面熱膨脹係數非常廣泛(GaN為5.59×10-6K-1並且Si為2.6×10-6K-1)。熱膨脹係數的差異會導致GaN層從成長溫度冷卻到室溫時破裂。
為了解決直接在矽上成長GaN導致的問題,通常在該矽與該GaN之間沉積緩衝層。例如,AlN 12的晶核 層可先成長於矽基板11上,接著成長氮化鋁鎵(AlxGa1-xN)的其他緩衝層13。該AlN晶核層和該等其他緩衝層緩解上述四個問題。首先,AlN緩衝層12不允許鎵與矽基板11接觸。第二,GaN未直接成長於該矽基板上,所以可避免在該矽表面上形成無晶SiNx,否則會讓該GaN的晶體形成退化。第三,GaN與Si(111)之間的晶格失配由較小的AlN晶格常數補償,其施加壓應力給該GaN,抵銷來自底下Si(111)的GaN之張應力。第四,AlN較少的晶格常數補償從成長溫度冷卻至室溫時,該GaN晶體相較於該矽晶體的較大比例收縮。
不過,該GaN層以及其他磊晶層的品質也取決於AlN晶核層12的品質。因此,簡單成長一層AlN,解決上述直接在矽上成長GaN不然無法產生高品質GaN所導致的四個問題。氮化鋁晶核層12的特性,例如其錯位密度以及表面形貌,是影響較高磊晶層特性的關鍵。AlN層12當成一結晶樣板,用於較高的緩衝層,並且最終用於GaN層10。接著,AlN層12的特性大部分由開始成長AlN的情況,以及由成長該AlN之前處理矽基板11之情況來決定。
從此可了解,AlN與Si(111)之間23.4%的晶格失配,將阻礙Si(111)之上成長的AlN層內達成低錯位密度。矽晶體的該(111)平面內矽原子間之距離為3.840埃,而纖鋅礦AlN的C平面內鋁原子之間或氮原子之間的距離為3.112埃。不過由於矽的(111)平面與AlN的C平面之間晶格一致,允許緩解在該AlN/Si介面上固定不合適錯位間隔的晶體應力,所以仍舊可達成AlN與Si(111)之間光滑的介面形貌。但是對於維持光滑的介面 形貌來說,關鍵是要在固定間隔上達到相同種類的不合適錯位。
本說明書揭示一種開始成長AlN而在AlN與Si(111)之間產生一光滑介面的方法。該方法成長具有低錯位密度的AlN之單極性緩衝層。成長於該AlN緩衝層之上的該等後續緩衝層維持高品質晶體型態,並且可在該等緩衝層之上形成更高品質的GaN和其他磊晶層。
第二圖為在一矽基板上成長高品質AlN晶核層的方法16之流程例示步驟。在第一步驟17中,矽(Si)基板在反應室內加熱至950℃以上。在一個態樣中,該基板在金屬有機化學氣相沉積(MOCVD)系統(也稱為金屬有機氣相磊晶系統)的反應室內加熱至1140℃以上。該基板為沿著該(111)平面切割的三個8吋矽晶圓型態。該等三個晶圓放置在直徑465公釐的晶圓接收器上。
第三A圖為例示矽的晶體結構23之圖式。切割該等三個矽晶圓的該(111)平面為與第三A圖中矽原子A、C和F交錯之平面。矽原子A、F和24定義該(010)平面,其中該等矽原子形成一方形格式。一致的(100)、(010)和(001)平面中方形相鄰轉角上矽原子間之距離為5.431埃。不過六角形的該(111)平面相鄰矽原子之間有較短距離。例如,該(111)平面內原子A與B之間的距離為3.840埃,這種該六角形Si(111)內原子之間較短的距離,與沿著AlN C平面的六角形內氮原子間之距離有更好的匹配度。第三B圖例示第三A圖的原子A-F,其中該(111)平面與該頁的平面一致。在第一步驟17之後該等三個矽晶圓的表面具有如第三B圖內所示的Si(111)1x1結構25,而非Si(111)7×7重構的DAS(dimer-adatom-stacking)缺陷結構。該矽基板加熱到高於 850℃時,該更穩定、已切割的Si(111)7×7表面結構分成固定Si(111)1x1六角結構25。
在步驟18中,氫氣流過該反應室,以便從該等晶圓內去除SiO2,並且對該矽基板表面進行一般清潔。流過該矽基板表面每一平方公分的該氫氣介於每分鐘106與118立方公分之間。在一個態樣中,每分鐘180-200公升的氫氣流過該反應室。該矽基板在該氫氣流內以1140℃烘烤大約十五分鐘,以去除原生的氧。然後反應室內的溫度下降至大約1020℃。
在步驟19中,第一氨(NH3)量流過該反應室,而該氫氣仍舊流過該反應室。該第一氨量比流過該反應室的氫氣體積少0.01%。該第一氨量流過該反應室的時間介於三十秒到三分鐘之間。在一個態樣中,每分鐘至少十立方公分的氨流過該465-mm晶圓接收器之上。如此,少於每分鐘0.00588立方公分的氨流過該矽基板表面每一平方公分。在1020℃上,該第一氨量不足以在該矽基板的表面之上形成一層SiNx。不過,該第一氨量足以在該Si(111)1x1表面上形成少量Si-N鍵。
在步驟20中,三甲基鋁(Al2(CH3)6)流過該反應室,而該氫氣仍舊流過該反應室。該三甲基鋁以每分鐘大約九十微摩耳的量流過該反應室。在一個態樣中,每分鐘九十微摩耳的三甲基鋁流過該反應室持續十到二十分鐘。
在步驟21中,後續氨量流過該反應室,而三甲基鋁仍舊流過該反應室。該後續氨量比流過該反應室的氫氣體積多0.002%。在一個態樣中,流過該反應室的該後續氨量只比氫、三甲基鋁和氨的總量少5%。流過該反應室的後續氨量只比總流量少5%而持續大約十五分鐘 時,則氮化鋁(AlN)的初始晶核層14成長為介於25-50奈米的厚度。該AlN緩衝層12的結晶度受到AlN的初始晶核層品質,以及該AlN與該矽(111)表面之間的原子鍵結性質的影響。因為在步驟19中預流該氨,該初始晶核層14在該8吋晶圓的整個表面之上開始成長,而只有氮原子鍵結至該矽(111)表面。
在步驟22中,三甲基鋁的流量提高到大約每分鐘180微摩耳,並且反應室內的溫度提高到大約1120℃。該AlN的緩衝層在增加的三甲基鋁流量之下,另外成長180-200奈米,達到總厚度205-250奈米。
第四圖為代表在形成該AlN緩衝層的清潔、預流、初始成長以及增厚成長階段期間,氫氣、氨以及三甲基鋁流過該反應室之圖式。在其他具體實施例中,相較於一個步驟,在較高三甲基鋁濃度的多個階段中成長額外180-200奈米的AlN。
在步驟20中該三甲基鋁開始流過該反應室時,以及在步驟21中該後續氨量流過該反應室之前,先開始形成AlN的初始晶核層14。接著,來自該三甲基鋁的鋁接觸該基板表面之前,在該矽基板11的該Si(111)1x1表面上存在非常少量的氮氣。隨著形成AlN的第一種子晶體,該鋁原子與該Si(111)1x1表面上存在的氮原子形成鍵結,而非直接與該基板表面上的矽原子鍵結。來自該氨預流步驟的氮確保:通過整個矽晶圓所形成的AlN晶體內該鋁和氮交替層的極性,將具有面向該矽基板的氮層以及在頂端上的鋁層。
第五圖為例示纖鋅礦氮化鋁(wurtzite AlN)的晶體結構26之圖式。較小的球體代表鋁原子27,較大的球體代表氮原子28。該AlN晶體的C平面與形成該晶體 頂端表面上六角形的所有六個鋁原子交錯。該C平面內六角形周圍相鄰鋁原子間之距離是3.112埃。因此,中間六角形周圍相鄰鋁原子間之距離也是3.112埃。沿著AlN C平面的氮與鋁之六角形大約與該矽基板的該Si(111)1x1表面上矽原子之六角形吻合。
第六圖為覆蓋在該Si(111)1x1表面上該矽基板的該晶體結構之上,該AlN的C平面內該鋁六邊形之晶體結構圖。因為該矽六角形周圍原子間之距離為3.840埃,並且該AlN六角形周圍原子間之距離為3.112埃,則每一矽晶胞的晶格距離為6.652埃,並且AlN晶胞的晶格距離為5.390埃。如此,有23.4%的晶格失配。不過,五個AlN晶胞的寬度(26.95埃)大約與四個矽晶胞的寬度(26.61埃)吻合,如第六圖所示。每一第五個AlN晶胞都能與每一第四個矽晶胞鍵結。
第七圖為垂直看向該Si(111)表面和AlN的C平面之該矽基板與AlN之晶體結構圖。第七圖例示該AlN晶體的每一第五晶胞如何匹配該Si(111)1x1表面上每一第四晶胞。AlN與矽的表面結構間之固定失配允許成長具有低錯位密度的AlN晶體。
不過,若並非在該Si(111)1x1表面上開始形成的AlN晶體之所有晶島都具有相同極性,則該AlN緩衝層的錯位密度較高。若AlN晶體的某些晶島由氮原子鍵結該矽所形成,而AlN晶體的其他晶島由鋁原子鍵結該矽所形成,則不連續性以及堆疊缺陷形成於具有相反極性而成長在一起的晶島之處。第七圖顯示使用方法16形成的AlN初始晶核層只有氮原子鍵結至該Si(111)1x1表面。在整個表面晶圓當中,大體上該氮化鋁的最底部原子平面內只存在氮化鋁的氮原子。因為使用方法16形 成的AlN之初始晶核層具有單一極性,所以可在該晶核層之上成長一GaN層,該層具有小於2x109 cm-2的錯位密度。
某些成長AlN緩衝層的先前方法,利用成長該AlN之前在該矽基板表面上沉積一金屬Al層,以避免形成無晶SiNx。該矽基板表面上有鋁原子可能導致至少某些AlN晶體晶島隨著該氮化鋁最底部原子平面形成鋁。因為這些先前技術方法無法避免至少某些氮原子鍵結至該矽基板(不一定要為無晶SiNx)、AlN的某些晶島隨著該氮化鋁最底部原子平面形成氮,並且所產生的AlN層具有混合極性。在另一方面,方法16允許成長單一極性材料。
如此方法16可用於製造矽基板的晶圓,其上成長一AlN緩衝層、AlGaN層以及最後一上方GaN層。該矽基板具有一Si(111)表面,在該矽加熱高於850℃時,從一7x7結構轉換成一1x1結構。該AlN緩衝層為一裝置,用於補償該GaN與該矽基板的該Si(111)表面間之晶格失配,如此可在減少應力的情況下成長該上方GaN層。該AlN緩衝層頂端上的該AlGaN對於GaN有比矽更好的晶格匹配。該矽基板為直徑至少200公釐的晶圓,例如8吋晶圓。該AlN緩衝層係覆蓋該基板的Si(111)表面,排列為AlN<0001>∥Si<111>。GaN的上方層成長於該AlN緩衝層之上的該AlGaN層上。在整個晶圓當中,大體上氮化鋁的最底部原子平面內並沒有氮化鋁的鋁原子,並且在整個晶圓當中,大體上氮化鋁的最底部原子平面內只存在氮化鋁的氮原子。如此在整個晶圓當中,大體上只有AlN的氮原子與該Si(111)表面形成鍵 結。該矽基板與該AlN緩衝層之間既沒有金屬鋁也沒有任何SiNx層存在。
雖然上面已經針對教導目的描述某些特定具體實施例,不過本專利文件的教導具有一般適用性,並且不受限於上述的特定具體實施例。因此,在不悖離申請專利範圍內揭示的本發明範疇之下,可實現所描述具體實施例許多特色之許多修改、調整以及組合。
10‧‧‧單晶GaN薄膜
11‧‧‧矽基板
12‧‧‧氮化鋁
13‧‧‧氮化鎵鋁
14‧‧‧晶核層
15‧‧‧上方層
16‧‧‧方法
23‧‧‧晶體結構
24‧‧‧矽原子
25‧‧‧結構
26‧‧‧晶體結構
27‧‧‧鋁原子
28‧‧‧氮原子
附圖例示本發明的具體實施例,其中同樣的編號代表同樣的組件。
第一圖為顯示在一矽基板之上的緩衝層上成長單晶GaN薄膜之剖面圖。
第二圖為在一矽基板上成長AlN的初始晶核層之方法流程圖。
第三A圖顯示矽的晶體結構模型。
第三B圖為沿著矽的Si(111)1x1表面之矽原子圖。
第四圖為第二圖的方法期間,氫、三甲基鋁和氨的氣流通過一反應室之圖式。
第五圖為纖鋅礦氮化鋁的晶體結構模型。
第六圖為沿著該Si(111)1x1表面覆蓋在該矽晶體結構之上AlN的C平面內該鋁六邊形之晶體結構圖。
第七圖為垂直看向該Si(111)表面的一矽基板與一AlN晶核層之晶體結構圖。
24‧‧‧矽原子
27‧‧‧鋁原子
28‧‧‧氮原子

Claims (20)

  1. 一種裝置,包括:一矽(Si)基板,其中該基板為直徑至少200公釐的一晶圓,並且其中該基板具有一Si(111)表面;一氮化鋁(AlN)緩衝層,係覆蓋該基板的該Si(111)表面;以及一氮化鎵(GaN)上方層,係位在該緩衝層上方,其中在整個晶圓當中,大體上該氮化鋁的最底部原子平面內並沒有該氮化鋁的鋁原子,並且在整個晶圓當中,大體上該氮化鋁的最底部原子平面內只存在該氮化鋁的氮原子。
  2. 如申請專利範圍第1項之裝置,其中該基板與該緩衝層之間並無氮化矽(SiNx)層。
  3. 如申請專利範圍第1項之裝置,其中該Si(111)表面具有一Si(111)1x1結構而不是一Si(111)7x7結構。
  4. 如申請專利範圍第1項之裝置,其中該矽與氮化鋁排列成AlN<0001>∥Si<111>。
  5. 如申請專利範圍第1項之裝置,其中該基板與該緩衝層之間並無金屬鋁。
  6. 如申請專利範圍第1項之裝置,更包括:一第二緩衝層,其包括氮化鋁鎵(AlxGa1-xN),其中氮化鋁鎵的該第二緩衝層設置在該氮化鋁緩衝層與該氮化鎵上方層之間。
  7. 如申請專利範圍第1項之裝置,其中該氮化鋁(AlN)緩衝層厚度介於205至250奈米之間。
  8. 一種方法,包括:(a)在反應室內將一矽(Si)基板加熱至950℃以上; (b)將氫氣(H2)流過該反應室;(c)將一第一氨(NH3)量流過該反應室,同時該氫氣仍舊流過該反應室,其中該第一氨量的體積比流過該反應室的該氫氣體積少0.01%;(d)將三甲基鋁(Al2(CH3)6)流過該反應室,同時該氫氣仍舊流過該反應室;(e)將一後續氨量流過該反應室,同時該三甲基鋁仍舊流過該反應室,其中該後續氨量的體積比流過該反應室的該氫氣體積多0.002%。
  9. 如申請專利範圍第8項之方法,其中執行該第一氨量流過該反應室介於三十秒至三分鐘之間。
  10. 如申請專利範圍第8項之方法,其中該基板為具有一表面的一晶圓,並且其中流過該矽基板表面每一平方公分的該第一氨量不超過每分鐘0.006立方公分。
  11. 如申請專利範圍第8項之方法,其中該基板為具有一表面的一晶圓,並且其中利用流過該矽基板表面每一平方公分的氫氣每分鐘106與118立方公分之間,來執行將該氫氣流過該反應室。
  12. 如申請專利範圍第8項之方法,其中執行該三甲基鋁流過該反應室持續介於十至二十鐘之間。
  13. 如申請專利範圍第8項之方法,其中該三甲基鋁以每分鐘大約九十微摩耳的量流過該反應室。
  14. 如申請專利範圍第8項之方法,其中(b)內氫氣流動期間該反應室內的溫度高於1100℃,並且其中(c)內該第一氨量流動期間該反應室內的溫度介於1000℃與1050℃之間。
  15. 一種裝置,包括:一矽(Si)基板,其中該基板為直徑大於六吋的一 晶圓,並且其中該基板具有一Si(111)表面;該基板上之一氮化鎵(GaN)上方層,其中在該Si(111)表面與該氮化鎵上方層之間具有一晶格失配;以及元件,用於補償該晶格失配,如此可在減少應力之下成長該氮化鎵的上方層,其中該元件包括氮原子,並且其中在該整個晶圓當中,大體上只有該元件的氮原子與該Si(111)表面形成鍵接。
  16. 如申請專利範圍第15項之裝置,其中該基板與該元件之間並無其他實質層。
  17. 如申請專利範圍第15項之裝置,其中該Si(111)表面具有一Si(111)1x1結構而不是一Si(111)7x7結構。
  18. 如申請專利範圍第15項之裝置,更包括:一緩衝層,其包括氮化鋁鎵(AlxGa1-xN),其中氮化鋁鎵的該緩衝層設置在該元件與該氮化鎵上方層之間。
  19. 如申請專利範圍第15項之裝置,其中該元件為厚度介於180至200奈米之間的一層。
  20. 如申請專利範圍第15項之裝置,其中該元件為一單一極性材料。
TW101120376A 2011-07-25 2012-06-07 使用氨預流在矽基板上的氮化鋁成核方法 TWI494973B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/190,420 US20130026480A1 (en) 2011-07-25 2011-07-25 Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow

Publications (2)

Publication Number Publication Date
TW201320153A true TW201320153A (zh) 2013-05-16
TWI494973B TWI494973B (zh) 2015-08-01

Family

ID=47596497

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101120376A TWI494973B (zh) 2011-07-25 2012-06-07 使用氨預流在矽基板上的氮化鋁成核方法

Country Status (6)

Country Link
US (3) US20130026480A1 (zh)
JP (2) JP5842057B2 (zh)
KR (1) KR101552412B1 (zh)
CN (1) CN103415915A (zh)
TW (1) TWI494973B (zh)
WO (1) WO2013015894A2 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130081956A (ko) * 2012-01-10 2013-07-18 삼성전자주식회사 질화물 반도체층 성장 방법
US20150084058A1 (en) * 2012-03-19 2015-03-26 Koninklijke Philips N.V. Light emitting device grown on a silicon substrate
JP2013206976A (ja) * 2012-03-27 2013-10-07 Fujitsu Ltd 化合物半導体装置及びその製造方法
JP6178065B2 (ja) * 2012-10-09 2017-08-09 株式会社東芝 半導体装置
KR101901932B1 (ko) * 2012-11-02 2018-09-27 엘지전자 주식회사 이종 기판, 질화물 반도체 발광 소자 및 그 제조 방법
JP2014187202A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 半導体発光装置及びその製造方法
CN103337570A (zh) * 2013-06-07 2013-10-02 合肥彩虹蓝光科技有限公司 改善4 inch GaN基外延片内均匀性和波长集中度的方法
KR102099435B1 (ko) * 2013-06-10 2020-04-09 엘지이노텍 주식회사 반도체 구조물 및 그 제조방법
KR102098250B1 (ko) 2013-10-21 2020-04-08 삼성전자 주식회사 반도체 버퍼 구조체, 이를 포함하는 반도체 소자 및 반도체 버퍼 구조체를 이용한 반도체 소자 제조방법
US9627199B2 (en) * 2013-12-13 2017-04-18 University Of Maryland, College Park Methods of fabricating micro- and nanostructure arrays and structures formed therefrom
KR102188493B1 (ko) 2014-04-25 2020-12-09 삼성전자주식회사 질화물 단결정 성장방법 및 질화물 반도체 소자 제조방법
KR102439708B1 (ko) 2014-05-27 2022-09-02 실라나 유브이 테크놀로지스 피티이 리미티드 광전자 디바이스
KR102318317B1 (ko) 2014-05-27 2021-10-28 실라나 유브이 테크놀로지스 피티이 리미티드 반도체 구조물과 초격자를 사용하는 진보된 전자 디바이스 구조
JP6986349B2 (ja) 2014-05-27 2021-12-22 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd n型超格子及びp型超格子を備える電子デバイス
US11322643B2 (en) 2014-05-27 2022-05-03 Silanna UV Technologies Pte Ltd Optoelectronic device
JP6480244B2 (ja) * 2015-04-10 2019-03-06 株式会社ニューフレアテクノロジー 気相成長方法
US20170069716A1 (en) * 2015-09-08 2017-03-09 M/A-Com Technology Solutions Holdings, Inc. Parasitic channel mitigation using aluminum nitride diffusion barrier regions
US9806183B2 (en) 2015-11-30 2017-10-31 Veeco Instruments, Inc. Stress control on thin silicon substrates
US11411169B2 (en) 2017-10-16 2022-08-09 Akoustis, Inc. Methods of forming group III piezoelectric thin films via removal of portions of first sputtered material
US11832521B2 (en) * 2017-10-16 2023-11-28 Akoustis, Inc. Methods of forming group III-nitride single crystal piezoelectric thin films using ordered deposition and stress neutral template layers
US10581398B2 (en) * 2016-03-11 2020-03-03 Akoustis, Inc. Method of manufacture for single crystal acoustic resonator devices using micro-vias
US11411168B2 (en) 2017-10-16 2022-08-09 Akoustis, Inc. Methods of forming group III piezoelectric thin films via sputtering
US11895920B2 (en) 2016-08-15 2024-02-06 Akoustis, Inc. Methods of forming group III piezoelectric thin films via removal of portions of first sputtered material
JP6786307B2 (ja) * 2016-08-29 2020-11-18 株式会社ニューフレアテクノロジー 気相成長方法
US9917156B1 (en) 2016-09-02 2018-03-13 IQE, plc Nucleation layer for growth of III-nitride structures
US10283597B2 (en) * 2016-11-10 2019-05-07 The United States Of America, As Represented By The Secretary Of The Navy Scandium-containing III-N etch-stop layers for selective etching of III-nitrides and related materials
JP6760556B2 (ja) * 2016-11-30 2020-09-23 住友電工デバイス・イノベーション株式会社 半導体基板の製造方法
KR20180069403A (ko) * 2016-12-15 2018-06-25 삼성전자주식회사 질화 갈륨 기판의 제조 방법
JP2018101701A (ja) * 2016-12-20 2018-06-28 住友電工デバイス・イノベーション株式会社 半導体基板およびその製造方法
WO2019023170A1 (en) * 2017-07-26 2019-01-31 The Penn State Research Foundation CRYSTALLINE FILMS OBTAINED FROM A CRYSTAL SILICON GERM LAYER PREPARED BY ALUMINUM-INDUCED CRYSTALLIZATION
US11856858B2 (en) 2017-10-16 2023-12-26 Akoustis, Inc. Methods of forming doped crystalline piezoelectric thin films via MOCVD and related doped crystalline piezoelectric thin films
WO2019113513A1 (en) 2017-12-08 2019-06-13 Baker Hughes, A Ge Company, Llc Ionic liquid based well asphaltene inhibitors and methods of using the same
EA202091413A1 (ru) 2018-07-11 2020-09-24 Бейкер Хьюз Холдингз Ллк Скважинные ингибиторы асфальтенов на основе ионной жидкости и способы их применения
US11038023B2 (en) 2018-07-19 2021-06-15 Macom Technology Solutions Holdings, Inc. III-nitride material semiconductor structures on conductive silicon substrates
KR20220074936A (ko) 2019-12-12 2022-06-03 존슨 맛쎄이 푸엘 셀스 리미티드 전기촉매 잉크
US11618968B2 (en) 2020-02-07 2023-04-04 Akoustis, Inc. Apparatus including horizontal flow reactor with a central injector column having separate conduits for low-vapor pressure metalorganic precursors and other precursors for formation of piezoelectric layers on wafers
GB202005922D0 (en) 2020-04-23 2020-06-10 Johnson Matthey Fuel Cells Ltd Electrocatalyst layer decal
CN114725254B (zh) * 2022-06-09 2022-09-02 江西兆驰半导体有限公司 一种发光二极管外延片及其制备方法
CN115287751A (zh) * 2022-06-22 2022-11-04 西安电子科技大学 一种基于AlPN成核层的低射频损耗硅基GaN薄膜及制备方法

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511816A (en) * 1982-03-11 1985-04-16 Nobuo Mikoshiba Surface acoustic wave device using an elastic substrate and an aluminum nitride piezoelectric film
JP3100644B2 (ja) 1991-02-22 2000-10-16 株式会社東芝 半導体発光素子及びその製造方法
US5306662A (en) 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
JP2917742B2 (ja) 1992-07-07 1999-07-12 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子とその製造方法
EP1313153A3 (en) 1992-07-23 2005-05-04 Toyoda Gosei Co., Ltd. Light-emitting device of gallium nitride compound semiconductor
JP2626431B2 (ja) 1992-10-29 1997-07-02 豊田合成株式会社 窒素−3族元素化合物半導体発光素子
JP2681733B2 (ja) 1992-10-29 1997-11-26 豊田合成株式会社 窒素−3族元素化合物半導体発光素子
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
JP2827794B2 (ja) 1993-02-05 1998-11-25 日亜化学工業株式会社 p型窒化ガリウムの成長方法
JP2778405B2 (ja) 1993-03-12 1998-07-23 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
US5432808A (en) 1993-03-15 1995-07-11 Kabushiki Kaisha Toshiba Compound semicondutor light-emitting device
JP2803741B2 (ja) 1993-03-19 1998-09-24 日亜化学工業株式会社 窒化ガリウム系化合物半導体の電極形成方法
EP0622858B2 (en) 1993-04-28 2004-09-29 Nichia Corporation Gallium nitride-based III-V group compound semiconductor device and method of producing the same
JP2785254B2 (ja) 1993-06-28 1998-08-13 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
US6005258A (en) 1994-03-22 1999-12-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities
JP2956489B2 (ja) 1994-06-24 1999-10-04 日亜化学工業株式会社 窒化ガリウム系化合物半導体の結晶成長方法
US5974069A (en) * 1994-09-16 1999-10-26 Rohm Co., Ltd Semiconductor laser and manufacturing method thereof
JP2666237B2 (ja) 1994-09-20 1997-10-22 豊田合成株式会社 3族窒化物半導体発光素子
JP3548442B2 (ja) 1994-09-22 2004-07-28 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
JP3646649B2 (ja) 1994-09-22 2005-05-11 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
JP2735057B2 (ja) 1994-12-22 1998-04-02 日亜化学工業株式会社 窒化物半導体発光素子
EP0730044B1 (en) 1995-03-01 2001-06-20 Sumitomo Electric Industries, Limited Boron-aluminum nitride coating and method of producing same
JP3332127B2 (ja) 1995-03-20 2002-10-07 株式会社東芝 半導体素子
JP2890396B2 (ja) 1995-03-27 1999-05-10 日亜化学工業株式会社 窒化物半導体発光素子
JP3890930B2 (ja) 1995-03-29 2007-03-07 日亜化学工業株式会社 窒化物半導体発光素子
JP3250438B2 (ja) 1995-03-29 2002-01-28 日亜化学工業株式会社 窒化物半導体発光素子
JP3511970B2 (ja) 1995-06-15 2004-03-29 日亜化学工業株式会社 窒化物半導体発光素子
JP3135041B2 (ja) 1995-09-29 2001-02-13 日亜化学工業株式会社 窒化物半導体発光素子
CN1160801C (zh) 1995-11-06 2004-08-04 日亚化学工业株式会社 氮化物半导体器件
JP3209096B2 (ja) 1996-05-21 2001-09-17 豊田合成株式会社 3族窒化物化合物半導体発光素子
JP3780887B2 (ja) 1996-09-08 2006-05-31 豊田合成株式会社 半導体発光素子及びその製造方法
JP3304787B2 (ja) 1996-09-08 2002-07-22 豊田合成株式会社 半導体発光素子及びその製造方法
JP3344257B2 (ja) 1997-01-17 2002-11-11 豊田合成株式会社 窒化ガリウム系化合物半導体及び素子の製造方法
JP3374737B2 (ja) 1997-01-09 2003-02-10 日亜化学工業株式会社 窒化物半導体素子
JP3223832B2 (ja) 1997-02-24 2001-10-29 日亜化学工業株式会社 窒化物半導体素子及び半導体レーザダイオード
JP3506874B2 (ja) 1997-03-24 2004-03-15 豊田合成株式会社 窒素−3族元素化合物半導体発光素子
JP3795624B2 (ja) 1997-03-31 2006-07-12 豊田合成株式会社 窒素−3族元素化合物半導体発光素子
JP3654738B2 (ja) 1997-04-07 2005-06-02 豊田合成株式会社 3族窒化物半導体発光素子
JPH114020A (ja) 1997-04-15 1999-01-06 Toshiba Corp 半導体発光素子及びその製造方法、並びに半導体発光装置
JP3314666B2 (ja) 1997-06-09 2002-08-12 日亜化学工業株式会社 窒化物半導体素子
JP3505357B2 (ja) 1997-07-16 2004-03-08 株式会社東芝 窒化ガリウム系半導体素子およびその製造方法
JP3822318B2 (ja) 1997-07-17 2006-09-20 株式会社東芝 半導体発光素子及びその製造方法
JP4118371B2 (ja) 1997-12-15 2008-07-16 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 電極に銀を有する窒化物半導体発光装置およびその製造方法ならびに半導体光電子装置
JP4118370B2 (ja) 1997-12-15 2008-07-16 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 反射p電極を有する窒化物半導体発光装置およびその製造方法ならびに半導体光電子装置
EP1928034A3 (en) 1997-12-15 2008-06-18 Philips Lumileds Lighting Company LLC Light emitting device
JP3622562B2 (ja) 1998-03-12 2005-02-23 日亜化学工業株式会社 窒化物半導体発光ダイオード
KR100589622B1 (ko) 1998-03-12 2006-09-27 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자
JP4629178B2 (ja) 1998-10-06 2011-02-09 日亜化学工業株式会社 窒化物半導体素子
JP3063756B1 (ja) 1998-10-06 2000-07-12 日亜化学工業株式会社 窒化物半導体素子
JP3063757B1 (ja) 1998-11-17 2000-07-12 日亜化学工業株式会社 窒化物半導体素子
JP3424629B2 (ja) 1998-12-08 2003-07-07 日亜化学工業株式会社 窒化物半導体素子
JP3427265B2 (ja) 1998-12-08 2003-07-14 日亜化学工業株式会社 窒化物半導体素子
US20010042866A1 (en) 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
JP2000277441A (ja) 1999-03-26 2000-10-06 Nagoya Kogyo Univ 半導体構造とそれを備えた半導体素子及び結晶成長方法
JP3551101B2 (ja) 1999-03-29 2004-08-04 日亜化学工業株式会社 窒化物半導体素子
US6838705B1 (en) 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
JP3748011B2 (ja) 1999-06-11 2006-02-22 東芝セラミックス株式会社 GaN半導体結晶成長用Siウエーハ、それを用いたGaN発光素子用ウエーハ及びそれらの製造方法
DE19955747A1 (de) 1999-11-19 2001-05-23 Osram Opto Semiconductors Gmbh Optische Halbleitervorrichtung mit Mehrfach-Quantentopf-Struktur
JP5965095B2 (ja) 1999-12-03 2016-08-10 クリー インコーポレイテッドCree Inc. 内部および外部光学要素による光取出しを向上させた発光ダイオード
TWI289944B (en) 2000-05-26 2007-11-11 Osram Opto Semiconductors Gmbh Light-emitting-diode-element with a light-emitting-diode-chip
US6586762B2 (en) 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
US6391748B1 (en) * 2000-10-03 2002-05-21 Texas Tech University Method of epitaxial growth of high quality nitride layers on silicon substrates
JP3786114B2 (ja) 2000-11-21 2006-06-14 日亜化学工業株式会社 窒化物半導体素子
US6649287B2 (en) 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
US6906352B2 (en) 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6630689B2 (en) 2001-05-09 2003-10-07 Lumileds Lighting, U.S. Llc Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US6488767B1 (en) 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
TW558847B (en) 2001-07-12 2003-10-21 Nichia Corp Semiconductor device
CN100405619C (zh) 2002-01-28 2008-07-23 日亚化学工业株式会社 具有支持衬底的氮化物半导体器件及其制造方法
JP4063548B2 (ja) 2002-02-08 2008-03-19 日本碍子株式会社 半導体発光素子
KR101030068B1 (ko) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
DE10245628A1 (de) 2002-09-30 2004-04-15 Osram Opto Semiconductors Gmbh Elektromagnetische Strahlung emittierender Halbleiterchip und Verfahren zu dessen Herstellung
JP4267376B2 (ja) 2003-06-04 2009-05-27 新日本製鐵株式会社 遅れ破壊特性の優れた高強度pc鋼線およびその製造方法
JP2005159299A (ja) 2003-10-30 2005-06-16 Sharp Corp 半導体発光素子
US7026653B2 (en) 2004-01-27 2006-04-11 Lumileds Lighting, U.S., Llc Semiconductor light emitting devices including current spreading layers
US7115908B2 (en) 2004-01-30 2006-10-03 Philips Lumileds Lighting Company, Llc III-nitride light emitting device with reduced polarization fields
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
DE102005016592A1 (de) 2004-04-14 2005-11-24 Osram Opto Semiconductors Gmbh Leuchtdiodenchip
US7791061B2 (en) 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
CN100369198C (zh) * 2004-06-15 2008-02-13 中国科学院半导体研究所 自适应柔性层制备无裂纹硅基ⅲ族氮化物薄膜的方法
US20060002442A1 (en) 2004-06-30 2006-01-05 Kevin Haberern Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures
US7795623B2 (en) 2004-06-30 2010-09-14 Cree, Inc. Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
US7687827B2 (en) * 2004-07-07 2010-03-30 Nitronex Corporation III-nitride materials including low dislocation densities and methods associated with the same
US7737459B2 (en) 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
US7335920B2 (en) 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
SG124417A1 (en) * 2005-02-02 2006-08-30 Agency Science Tech & Res Method and structure for fabricating III-V nitridelayers on silicon substrates
CN1825539A (zh) * 2005-02-22 2006-08-30 中国科学院半导体研究所 一种在硅衬底上生长无裂纹ⅲ族氮化物的方法
US7446345B2 (en) 2005-04-29 2008-11-04 Cree, Inc. Light emitting devices with active layers that extend into opened pits
KR100616686B1 (ko) 2005-06-10 2006-08-28 삼성전기주식회사 질화물계 반도체 장치의 제조 방법
US7547925B2 (en) 2005-11-14 2009-06-16 Palo Alto Research Center Incorporated Superlattice strain relief layer for semiconductor devices
US7338826B2 (en) * 2005-12-09 2008-03-04 The United States Of America As Represented By The Secretary Of The Navy Silicon nitride passivation with ammonia plasma pretreatment for improving reliability of AlGaN/GaN HEMTs
JP2007273946A (ja) 2006-03-10 2007-10-18 Covalent Materials Corp 窒化物半導体単結晶膜
US7910945B2 (en) 2006-06-30 2011-03-22 Cree, Inc. Nickel tin bonding system with barrier layer for semiconductor wafers and devices
US7754514B2 (en) 2006-08-22 2010-07-13 Toyoda Gosei Co., Ltd. Method of making a light emitting element
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
US7589360B2 (en) * 2006-11-08 2009-09-15 General Electric Company Group III nitride semiconductor devices and methods of making
US7557378B2 (en) 2006-11-08 2009-07-07 Raytheon Company Boron aluminum nitride diamond heterostructure
US20080111144A1 (en) * 2006-11-15 2008-05-15 The Regents Of The University Of California LIGHT EMITTING DIODE AND LASER DIODE USING N-FACE GaN, InN, AND AlN AND THEIR ALLOYS
US7813400B2 (en) 2006-11-15 2010-10-12 Cree, Inc. Group-III nitride based laser diode and method for fabricating same
EP2087507A4 (en) * 2006-11-15 2010-07-07 Univ California METHOD FOR THE HETEROEPITAXIAL GROWTH OF QUALITATIVELY HIGH-QUALITY N-SIDE-GAN, INN AND AIN AND THEIR ALLOYS THROUGH METALLORGANIC CHEMICAL IMMUNE
US7547908B2 (en) 2006-12-22 2009-06-16 Philips Lumilieds Lighting Co, Llc III-nitride light emitting devices grown on templates to reduce strain
JP4259591B2 (ja) * 2007-01-16 2009-04-30 住友電気工業株式会社 Iii族窒化物結晶の製造方法、iii族窒化物結晶基板およびiii族窒化物半導体デバイス
US7598170B2 (en) * 2007-01-26 2009-10-06 Asm America, Inc. Plasma-enhanced ALD of tantalum nitride films
US8021904B2 (en) 2007-02-01 2011-09-20 Cree, Inc. Ohmic contacts to nitrogen polarity GaN
JP4691060B2 (ja) * 2007-03-23 2011-06-01 古河電気工業株式会社 GaN系半導体素子
TW200903805A (en) 2007-05-24 2009-01-16 Univ California Polarization-induced barriers for N-face nitride-based electronics
US20080296626A1 (en) * 2007-05-30 2008-12-04 Benjamin Haskell Nitride substrates, thin films, heterostructures and devices for enhanced performance, and methods of making the same
US20080296625A1 (en) * 2007-06-04 2008-12-04 Sharp Laboratories Of America Inc. Gallium nitride-on-silicon multilayered interface
KR100901822B1 (ko) * 2007-09-11 2009-06-09 주식회사 실트론 질화갈륨 성장용 기판 및 질화갈륨 기판 제조 방법
US8569794B2 (en) * 2008-03-13 2013-10-29 Toyoda Gosei Co., Ltd. Group III nitride semiconductor device and method for manufacturing the same, group III nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
US7791101B2 (en) 2008-03-28 2010-09-07 Cree, Inc. Indium gallium nitride-based ohmic contact layers for gallium nitride-based devices
US8309987B2 (en) * 2008-07-15 2012-11-13 Imec Enhancement mode semiconductor device
US8673074B2 (en) * 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
TWI471913B (zh) * 2009-07-02 2015-02-01 Global Wafers Co Ltd Production method of gallium nitride based compound semiconductor
JP5916980B2 (ja) * 2009-09-11 2016-05-11 シャープ株式会社 窒化物半導体発光ダイオード素子の製造方法
US9012253B2 (en) * 2009-12-16 2015-04-21 Micron Technology, Inc. Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods
US8409895B2 (en) * 2010-12-16 2013-04-02 Applied Materials, Inc. Gallium nitride-based LED fabrication with PVD-formed aluminum nitride buffer layer
US8916906B2 (en) * 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
DE112014004343B4 (de) * 2013-09-23 2019-01-31 Ultratech, Inc. Verfahren und Vorrichtung zum Ausbilden von Galliumnitridschichten mit Bauelementqualität auf Siliziumsubstraten

Also Published As

Publication number Publication date
CN103415915A (zh) 2013-11-27
JP2016020299A (ja) 2016-02-04
US20140318443A1 (en) 2014-10-30
WO2013015894A3 (en) 2013-04-04
WO2013015894A2 (en) 2013-01-31
US9617656B2 (en) 2017-04-11
KR101552412B1 (ko) 2015-09-10
TWI494973B (zh) 2015-08-01
JP5842057B2 (ja) 2016-01-13
US10174439B2 (en) 2019-01-08
US20170198410A1 (en) 2017-07-13
US20130026480A1 (en) 2013-01-31
KR20130137019A (ko) 2013-12-13
JP2014513035A (ja) 2014-05-29

Similar Documents

Publication Publication Date Title
TWI494973B (zh) 使用氨預流在矽基板上的氮化鋁成核方法
TWI497757B (zh) 用於成長矽上氮化鎵之含硼緩衝層
JP4335187B2 (ja) 窒化物系半導体装置の製造方法
US9142723B2 (en) Semiconductor wafer comprising gallium nitride layer having one or more silicon nitride interlayer therein
JP5874495B2 (ja) Gaを含むIII族窒化物半導体の製造方法
JP5073624B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
EP2904630B1 (en) Semiconductor material
JP3772816B2 (ja) 窒化ガリウム結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
KR20100104997A (ko) 전위 차단층을 구비하는 질화물 반도체 기판 및 그 제조 방법
JP2004115305A (ja) 窒化ガリウム単結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
JP2003124124A (ja) 半導体素子、エピタキシャル基板、半導体素子の製造方法、及びエピタキシャル基板の製造方法
JP2003192496A (ja) Iii族窒化物半導体基板およびその製造方法
CN217444336U (zh) 一种基于ScAlMgO4衬底的GaN外延结构
JP3946448B2 (ja) 窒化物半導体基板の製造方法
CN114975080A (zh) 一种基于ScAlMgO4衬底的GaN外延结构
US9419081B2 (en) Reusable substrate bases, semiconductor devices using such reusable substrate bases, and methods for making the reusable substrate bases
CN117276419A (zh) 一种用于深紫外发光二极管的AlN本征层及其制备方法
JP2004273822A (ja) GaN半導体及びその製造方法
JP2005008517A (ja) 窒化物半導体基板の製造方法
JP2004296700A (ja) 窒化物半導体の成長方法
JP2004253622A (ja) エピタキシャル基板及び半導体積層構造